Science.gov

Sample records for chiral pion-nucleon dynamics

  1. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    NASA Astrophysics Data System (ADS)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  2. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    NASA Astrophysics Data System (ADS)

    Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.

    2016-07-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.

  3. Chiral representation of the πN scattering amplitude and the pion-nucleon sigma term

    NASA Astrophysics Data System (ADS)

    Alarcón, J. M.; Camalich, J. Martin; Oller, J. A.

    2012-03-01

    We present a novel analysis of the πN scattering amplitude in Lorentz covariant baryon chiral perturbation theory renormalized in the extended-on-mass-shell scheme. This amplitude, valid up to O(p3) in the chiral expansion, systematically includes the effects of the Δ(1232) in the δ-counting, has the right analytic properties, and is renormalization-scale independent. This approach overcomes the limitations that previous chiral analyses of the πN scattering amplitude had, providing an accurate description of the partial wave phase shifts of the Karlsruhe-Helsinki and George-Washington groups up to energies just below the resonance region. We also study the solution of the Matsinos group which focuses on the parameterization of the data at low energies. Once the values of the low-energy constants are determined by adjusting the center-of-mass energy dependence of the amplitude to the scattering data, we obtain predictions on different observables. In particular, we extract an accurate value for the pion-nucleon sigma term, σπN. This allows us to avoid the usual method of extrapolation to the unphysical region of the amplitude. Our study indicates that the inclusion of modern meson-factory and pionic-atom data favors relatively large values of the sigma term. We report the value σπN=59(7)MeV and comment on implications that this result may have.

  4. Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory

    SciTech Connect

    Schindler, M. R.; Fuchs, T.; Scherer, S.; Gegelia, J.

    2007-02-15

    We calculate the nucleon form factors G{sub A} and G{sub P} of the isovector axial-vector current and the pion-nucleon form factor G{sub {pi}}{sub N} in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p{sup 4}). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a{sub 1} as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G{sub A}. The inclusion of the axial-vector meson results in an improved description of the experimental data for G{sub A}, while the contribution to G{sub P} is small.

  5. Baryon fields with UL(3 ) ×UR(3 ) chiral symmetry. V. Pion-nucleon and kaon-nucleon Σ terms

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Chen, Hua-Xing; Hosaka, Atsushi

    2016-06-01

    We have previously calculated the pion-nucleon Σπ N term in the chiral mixing approach with u ,d flavors only, and found the lower bound Σπ N≥(" close=")mu0+md0)">1 +16/3 sin2θ 3/2 (gA(0 )+gA(3 )) , where gA(0 ),gA(3 ) , are the flavor-singlet and the isovector axial couplings. With presently accepted values of current quark masses, this leads to Σπ N≥58.0 ±4.5 -6.5+11.4 MeV, which is in agreement with the values extracted from experiments, and substantially higher than most previous two-flavor calculations. The causes of this enhancement are: (1) the large, (16/3 ≃5.3 ), purely SUL(2 ) ×SUR(2 ) algebraic factor; (2) the admixture of the [(1 ,1/2 ) ⊕(1/2 ,1 ) ] chiral multiplet component in the nucleon, whose presence has been known for some time, but that had not been properly taken into account, yet. We have now extended these calculations of Σπ N to three light flavors, i.e., to SUL(3 ) ×SUR(3 ) multiplet mixing. Phenomenology of chiral SUL(3 ) ×SUR(3 ) multiplet mixing demands the presence of three chiral SUL(3 ) ×SUR(3 ) multiplets, viz. [(6 ,3 )⊕(3 ,6 )],[(3 ,3 ¯) ⊕(3 ¯,3 ) ] , and [(3 ¯,3 ) ⊕(3 ,3 ¯) ] , in order to successfully reproduce the baryons' flavor-octet and flavor-singlet axial current coupling constants, as well as the baryon anomalous magnetic moments. Here we use these previously obtained results, together with known constraints on the explicit chiral symmetry breaking in baryons to calculate the Σπ N term, but find no change of Σπ N from the above successful two-flavor result. The physical significance of these results lies in the fact that they show no need for q4q ¯ components, and in particular, no need for an s s ¯ component in the nucleon, in order to explain the large "observed" Σπ N value. We also predict the kaon-nucleon σ term ΣK N that is experimentally unknown, but may be calculable in lattice QCD.

  6. Roy-Steiner-equation analysis of pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-04-01

    We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.

  7. Backward pion-nucleon scattering

    SciTech Connect

    F. Huang; Sibirtsev, Alex; Haidenbauer, Johann; Meissner, Ulf-G.

    2010-02-01

    A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_\\alpha$, $N_\\gamma$, $\\Delta_\\delta$ and $\\Delta_\\beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $\\Delta_{\\beta}$ trajectory from the corresponding Chew-Frautschi plot.

  8. Invited Parallel Talk: Forward pion-nucleon charge exchange reaction and Regge constraints

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meißner, U.-G.

    2009-12-01

    We present our recent study of pion-nucleon charge exchange amplitudes above 2 GeV. We analyze the forward pion-nucleon charge exchange reaction data in a Regge model and compare the resulting amplitudes with those from the Karlsruhe-Helsinki and George-Washington-University partial-wave analyses. We explore possible high-energy constraints for theoretical baryon resonance analyses in the energy region above 2 GeV. Our results show that for the pion-nucleon charge exchange reaction, the appropriate energy region for matching meson-nucleon dynamics to diffractive scattering should be around 3 GeV for the helicity flip amplitude.

  9. Quantum-mechanical picture of peripheral chiral dynamics

    SciTech Connect

    Granados, Carlos; Weiss, Christian

    2015-08-28

    The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(Mπ)] and could be observed in form factor measurements at low momentum transfer.

  10. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  11. Low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}

  12. Nuclear chiral dynamics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  13. Remarks on the pion-nucleon σ-term

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-09-01

    The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

  14. Isospin breaking in low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1995-05-08

    We have analyzed low-energy pion-nucleon data for isospin invariance by comparing charge-exchange amplitudes derived from charge-exchange data with those predicted from recent {pi}{sup {plus_minus}}{ital p} elastic data through the application of isospin invariance. A discrepancy of the order of 7% is observed beyond the contributions of the {pi}{sup {plus_minus}}{ital p} Coulomb interaction and the hadronic mass differences.

  15. Pion-nucleon scattering in the Skyrme model and the P-wave Born amplitudes

    NASA Astrophysics Data System (ADS)

    Hayashi, A.; Saito, S.; Uehara, M.

    1991-03-01

    We treat fluctuating pion fields around a rotating Skyrmion by means of Dirac's quantization method. The rotational collective motion of the Skyrmion is described by collective coordinates, and conventional gauge-fixing conditions are imposed. Taking into account all the relevant terms at the tree level appearing in the Hamiltonian, we show that pion-nucleon scattering amplitudes exhibit the P-wave Born amplitudes attributed to the Yukawa coupling of order √Nc , which is consistent with the prediction of chiral symmetry such as the Adler-Weisberger relation. This resolves the difficulty that the Skyrme model predicts a wrong Nc dependence for the coupling of order N-3/2c.

  16. Light-front representation of chiral dynamics in peripheral transverse densities

    DOE PAGESBeta

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less

  17. Light-front representation of chiral dynamics in peripheral transverse densities

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.

  18. A New Pion-Nucleon Partial Wave Analysis

    NASA Astrophysics Data System (ADS)

    Sadler, Michael; Watson, Shon; Stahov, Jugoslav

    2006-10-01

    Existing determinations of the masses, widths and decay modes of low-lying excited states of the nucleon, as compiled in the Review of Particle Physics, are determined from energy-independent partial wave analyses of pion-nucleon scattering data. For the N*(1440) and most other resonances under 2 GeV, the analyses cited are the Karlsruhe-Helsinki, Carnegie Mellon-Berkeley and Kent State analyses, the latter of which used the elastic amplitudes from the other two. The data included in these analyses were published before 1980. Other analyses, notably the recent ones from George Washington University and the Pittsburgh-Argonne group, are ``not used for averages, fits, limits, etc.'' Complete sets of measurements (differential cross sections, analyzing powers and spin rotation parameters) have been measured in the N*(1440) resonance region since 1980, culminating in the Crystal Ball program at BNL to measure all-neutral final states (charge exchange, multiple pi-zero final states, and inverse photoproduction). A new partial wave analysis of the Karlsruhe-Helsinki type has been started by Abilene Christian University, University of Tuzla, and Rudjer Boskovic Institute. The analysis is constrained by fixed-t and interior hyperbolic dispersion relations. Comparisons of the new analysis to modern experimental data and to previous analyses will be presented.

  19. Pion-nucleon charge exchange amplitudes above 2 GeV

    NASA Astrophysics Data System (ADS)

    Huang, F.; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meißner, U.-G.

    2009-04-01

    The amplitudes for the pion-nucleon charge exchange reaction of the Karlsruhe-Helsinki and the George-Washington-University partial-wave analyses are compared with those of a Regge-cut model with the aim to explore the possibility to provide high-energy constraints for theoretical baryon resonance analyses in the energy region above 2GeV.

  20. Chiral Dynamics 2006

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  1. Light-front representation of chiral dynamics with Δ isobar and large- N c relations

    NASA Astrophysics Data System (ADS)

    Granados, C.; Weiss, C.

    2016-06-01

    Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O( M π - 1 ) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations based on the large- N c limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of π N and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct N c -scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. The methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.

  2. Polarization analysis of vector-meson production in pion-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Habibi, Mohammad F.

    1993-07-01

    In view of the growing (though still incomplete) set of data on vector-meson production in pion-nucleon interactions, the polarization structure of this reaction is presented, together with polarization tests of one-particle-exchange processes in the s and t channels, as well as polarization tests for the Skyrmion model. The amplitude-observable relations are exhibited in the helicity, transversity, and planar-transverse frames. The desirable direction of future experimental programs is also outlined.

  3. a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Wycech, S.

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).

  4. The width of the Roper resonance in baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Gegelia, Jambul; Meißner, Ulf-G.; Yao, De-Liang

    2016-09-01

    We calculate the width of the Roper resonance at next-to-leading order in a systematic expansion of baryon chiral perturbation theory with pions, nucleons, and the delta and Roper resonances as dynamical degrees of freedom. Three unknown low-energy constants contribute up to the given order. One of them can be fixed by reproducing the empirical value for the width of the Roper decay into a pion and a nucleon. Assuming that the remaining two couplings of the Roper interaction take values equal to those of the nucleon, the result for the width of the Roper decaying into a nucleon and two pions is consistent with the experimental value.

  5. A relativistic meson-exchange model of pion-nucleon scattering

    SciTech Connect

    Lee, T.S.H.; Hung, C.T.; Yang, S.N.

    1995-08-01

    Pion-nucleon scattering is investigated using the Kadshevsky three-dimensional reduction of the Bethe-Salpeter equation. The resulting potential includes the direct and crossed N and {Delta} terms, and the t-channel {sigma}- and {rho}-exchange terms. The nucleon-pole condition is imposed to define the renormalization of the nucleon mass and the {pi}NN coupling constant. A mixture of the scalar and vector {sigma}{pi}{pi} couplings is introduced to simulate the broad width of the s-wave correlated two-pion exchange mechanism. Good descriptions of the {pi}N phase shifts up to 400 MeV have been obtained in all S- and P-waves. The off-shell behavior for our model differs significantly from that obtained using different reductions. A paper describing our results was published.

  6. Pion-Nucleon Scattering and Analysis from threshold to the N*(1440) Resonance Region

    NASA Astrophysics Data System (ADS)

    Sadler, Michael; Watson, Shon; Stahov, Jugoslav

    2008-10-01

    Many measurements for pion-nucleon scattering from threshold to the N*(1440) resonance region have been made since 1980, when the landmark Karlsruhe-Helsinki (KH) and Carnegie Mellon-Berkeley (CMB) partial wave analyses (PWA) were completed. These measurements consist of differential cross sections and analyzing powers for elastic scattering and charge exchange. Spin rotation parameters for elastic scattering in the momentum interval 0.4 -- 0.7 GeV/c have also been obtained. The program culminated with measurements of π-p -> Neutrals (charge exchange, multiple pi-zero final states, eta production, and inverse photoproduction) using the Crystal Ball at BNL. Resonance parameters for the N*(1440) in the Review of Particle Physics by the Particle Data Group have been obtained from the KH and CMB analyses. The 2006 edition also includes the analysis by George Washington University (GWU) ``for averages, fits, limits, etc.'', but the parameters were unchanged. An overview of the data will be presented along with comparisons to PWA.

  7. Determination of the pion-nucleon coupling constant and scattering lengths

    NASA Astrophysics Data System (ADS)

    Ericson, T. E.; Loiseau, B.; Thomas, A. W.

    2002-07-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.

  8. The effective chiral Lagrangian from the theta term

    SciTech Connect

    Mereghetti, E.; Hockings, W.H.; Kolck, U. van

    2010-11-15

    We construct the effective chiral Lagrangian involving hadronic and electromagnetic interactions originating from the QCD {theta}-bar term. We impose vacuum alignment at both quark and hadronic levels, including field redefinitions to eliminate pion tadpoles. We show that leading time-reversal-violating (TV) hadronic interactions are related to isospin-violating interactions that can in principle be determined from charge-symmetry-breaking experiments. We discuss the complications that arise from TV electromagnetic interactions. Some implications of the expected sizes of various pion-nucleon TV interactions are presented, and the pion-nucleon form factor is used as an example.

  9. Including the {delta}(1232) resonance in baryon chiral perturbation theory

    SciTech Connect

    Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.

    2005-11-01

    Baryon chiral perturbation theory with explicit {delta}(1232) degrees of freedom is considered. The most general interactions of pions, nucleons, and {delta} consistent with all underlying symmetries as well as with the constraint structure of higher-spin fields are constructed. By use of the extended on-mass-shell renormalization scheme, a manifestly Lorentz-invariant effective-field theory with a systematic power counting is obtained. As applications, we discuss the mass of the nucleon, the pion-nucleon {sigma} term, and the pole of the {delta} propagator.

  10. Chiral Gauge Dynamics and Dynamical Supersymmetry Breaking

    SciTech Connect

    Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U.

    2009-05-07

    We study the dynamics of a chiral SU(2) gauge theory with a Weyl fermion in the I = 3/2 representation and of its supersymmetric generalization. In the former, we find a new and exotic mechanism of confinement, induced by topological excitations that we refer to as magnetic quintets. The supersymmetric version was examined earlier in the context of dynamical supersymmetry breaking by Intriligator, Seiberg, and Shenker, who showed that if this gauge theory confines at the origin of moduli space, one may break supersymmetry by adding a tree level superpotential. We examine the dynamics by deforming the theory on S{sup 1} x R{sup 3}, and show that the infrared behavior of this theory is an interacting CFT at small S{sup 1}. We argue that this continues to hold at large S{sup 1}, and if so, that supersymmetry must remain unbroken. Our methods also provide the microscopic origin of various superpotentials in SQCD on S{sup 1} x R{sup 3}--which were previously obtained by using symmetry and holomorphy--and resolve a long standing interpretational puzzle concerning a flux operator discovered by Affleck, Harvey, and Witten. It is generated by a topological excitation, a 'magnetic bion', whose stability is due to fermion pair exchange between its constituents. We also briefly comment on composite monopole operators as leading effects in two dimensional antiferromagnets.

  11. Measurements of observables in the pion-nucleon system, nuclear a- dependence of heavy quark production and rare decays of D and B mesons

    SciTech Connect

    Sadler, M.E.; Isenhower, L.D.

    1992-02-15

    This report discusses research on the following topics: pion-nucleon interactions; detector tomography facility; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral D and B mesons; N* collaboration at CEBAF; and pilac experiments. (LSP)

  12. Dynamics of the chiral transition

    SciTech Connect

    Gavin, S.

    1994-07-01

    Measurements of disoriented chiral condensates (DCC) in heavy ion collisions at RHIC can yield fundamental information on the nature of the QCD phase transition. I review theoretical efforts to understand DCC formation and present work in progress on possible experimental ramifications.

  13. Dynamics of the chiral transition

    SciTech Connect

    Gavin, S.

    1995-07-10

    Measurements of disoriented chiral condensates (DCC) in heavy ion collisions at RHIC can yield fundamental information on the nature of the QCD phase transition. I review theoretical efforts to understand DCC formation and present work in progress on their possible experimental ramifications. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. {Lambda}* hypernuclei with chiral dynamics

    SciTech Connect

    Uchino, Toshitaka; Hyodo, Tetsuo; Oka, Makoto

    2011-10-21

    As a strangeness S = -1 and baryon number B = 2 system, the two-body bound state of {Lambda}* = {Lambda}(1405) and a nucleon is studied. To solve the {Lambda}*N system, we construct the {Lambda}*N potential by extending the Juelich model with couplings estimated in the chiral unitary approach. We have the {Lambda}*N quasi-bound state with the mass, M{sub {Lambda}}*N{approx}2366 MeV which is shallowly bound with the binding energy B{approx}9 MeV in terms of the K-barNN system. Decay width of the fall apart process, where the {Lambda}*N resonance decays to {pi}{Sigma}N with a nucleon being as a spectator, is estimated to be {Gamma}{sub F.A}{approx}49 MeV.

  15. On Gauge Independent Dynamical Chiral Symmetry Breaking

    SciTech Connect

    Bashir, A.; Raya, A.

    2006-09-25

    Schwinger-Dyson equations (SDEs) are an ideal framework to study nonperturbative phenomena such as dynamical chiral symmetry breaking (DCSB). Loss of gauge invariance is an obstacle to achieve fully reliable predictions from these equations. In addition to Ward-Green-Takahashi identity (WGTI), Landau-Khalatnikov-Fradkin transformations (LKFT) also play an important role in restoring the said invariance at the level of physical observables. On one hand, they impose useful constraints on the transverse part of the fermion-boson vertex and on the other, they govern the change in dynamically generated fermion propagator with a variation of gauge. We consider the latter in this article and study the gauge (in)dependence of chiral condensate in quantum electrodynamics in (2+1) space-time dimensions (QED3)

  16. Threshold pion production in proton-proton collisions at NNLO in chiral EFT

    NASA Astrophysics Data System (ADS)

    Baru, V.; Epelbaum, E.; Filin, A. A.; Hanhart, C.; Krebs, H.; Myhrer, F.

    2016-05-01

    The reaction NN → NN π offers a good testing ground for chiral effective field theory at intermediate energies. It challenges our understanding of the first inelastic channel in nucleon-nucleon scattering and of the charge symmetry breaking pattern in hadronic reactions. In our previous studies, we presented a complete calculation of the pion production operator for s -wave pions up-to-and-including next-to-next-to-leading order (NNLO) in the formulation of chiral effective field theory, which includes pions, nucleons and Δ(1232) degrees of freedom. In this paper we calculate the near-threshold cross section for the pp → d π+ reaction by performing the convolution of the obtained operators with nuclear wave functions based on modern phenomenological and chiral potentials. The available chiral NN wave functions are constructed with a cutoff comparable with the momentum transfer scale inherent in pion production reactions. Hence, a significant portion of the dynamical intermediate-range physics is thereby cut off by them. On the other hand, the NNLO amplitudes evaluated with phenomenological wave functions appear to be largely independent of the NN model used and give corrections to the dominant leading-order contributions as expected from dimensional analysis. The result gives support to the counting scheme used to classify the pion production operators, which is a precondition for a reliable investigation of the chirally suppressed neutral pion production. The explicit inclusion of the Δ(1232) is found to be important but smaller than expected due to cancellations.

  17. Skyrmion dynamics in chiral ferromagnets

    NASA Astrophysics Data System (ADS)

    Komineas, Stavros; Papanicolaou, Nikos

    2015-08-01

    We study the dynamics of skyrmions in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. An important link between topology and dynamics is established through the construction of unambiguous conservation laws obtained earlier in connection with magnetic bubbles and vortices. In particular, we study the motion of a topological skyrmion with skyrmion number Q =1 and a nontopological skyrmionium with Q =0 under the influence of an applied field gradient. The Q =1 skyrmion undergoes Hall motion perpendicular to the direction of the field gradient with a drift velocity proportional to the gradient. In contrast, the nontopological Q =0 skyrmionium is accelerated in the direction of the field gradient, thus exhibiting ordinary Newtonian motion. When the applied field is switched off the Q =1 skyrmion is spontaneously pinned around a fixed guiding center, whereas the Q =0 skyrmionium moves with constant velocity v . We give a systematic calculation of a skyrmionium traveling with any constant velocity v that is smaller than a critical velocity vc.

  18. Pion momentum distributions in the nucleon in chiral effective theory

    SciTech Connect

    Burkardt, Matthias R.; Hendricks, K. S.; Ji, Cheung Ryong; Melnitchouk, Wally; Thomas, Anthony W.

    2013-03-01

    We compute the light-cone momentum distributions of pions in the nucleon in chiral effective theory using both pseudovector and pseudoscalar pion--nucleon couplings. For the pseudovector coupling we identify $\\delta$-function contributions associated with end-point singularities arising from the pion-nucleon rainbow diagrams, as well as from pion tadpole diagrams which are not present in the pseudoscalar model. Gauge invariance is demonstrated, to all orders in the pion mass, with the inclusion of Weinberg-Tomozawa couplings involving operator insertions at the $\\pi NN$ vertex. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  19. Chiral Restoration in a Nuclear Medium ---Probed by S-Wave Pion Dynamics---

    NASA Astrophysics Data System (ADS)

    Kienle, P.

    Using 500 MeV (d,^3He π^-) pion transfer reactions in recoil free kinematics, pionic 1s-states were populated in the ^{115,119,123}Sn isotopes and their binding energies and widths determined by precision missing mass spectroscopy. Using these data and corresponding ones from iso-scalar light nuclei nuclei, ^{16}O, ^{20}Ne and ^{28}Si, we determined the pion nucleus s-wave strength parameters, b_0, b_1, Re B_0, and Im B_0. By comparison of the iso-vector pion nucleon strength, determined from pionic hydrogen X-ray spectroscopy b_1^{free}, with the b_1 in a nuclear medium scaled to the density ρ(0), we deduced a scaling factor, the square of the pion decay constant in the vacuum and in nuclear medium, as R = b_1^{free} / b_1 = f^2_{π}(ρ_0)/f^2_{π} = 0.64. Thus from the observed increase of the pion s-wave iso-vector strength in a nuclear medium a reduction of f^2_{π}, the order parameter of chiral symme try breaking, is indicated in accordance with theoretical expectations. This finding is supported by recent π^+ and π^- scattering experiments. A short outlook is given on a future program at RIBF in RIKEN for precision studies of deeply bound 1s-states in heavy nuclei.

  20. Pion-nucleon correlations in finite nuclei in a relativistic framework: Effects on the shell structure

    NASA Astrophysics Data System (ADS)

    Litvinova, Elena

    2016-04-01

    The relativistic particle-vibration coupling (RPVC) model is extended by the inclusion of isospin-flip excitation modes into the phonon space, introducing a new mechanism of dynamical interaction between nucleons with different isospin in the nuclear medium. Protons and neutrons exchange by collective modes which are formed by isovector π and ρ-mesons, in turn, softened considerably because of coupling to nucleons of the medium. These modes are investigated within the proton-neutron relativistic random phase approximation (pn-RRPA) and relativistic proton-neutron time blocking approximation (pn-RTBA). The appearance of isospin-flip states with sizable transition probabilities at low energies points out that they are likely to couple to the single-particle degrees of freedom and, in addition to isoscalar low-lying phonons, to modify their spectroscopic characteristics. Such a coupling is quantified for the shell structure of 100,132Sn and found significant for the location of the dominant single-particle states.

  1. Measurements of observables in the pion-nucleon system, nuclear a- dependence of heavy quark production and rare decays of D and B mesons. Progress report, 1 December, 1990--15 February, 1992

    SciTech Connect

    Sadler, M.E.; Isenhower, L.D.

    1992-02-15

    This report discusses research on the following topics: pion-nucleon interactions; detector tomography facility; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral D and B mesons; N* collaboration at CEBAF; and pilac experiments. (LSP)

  2. Comparison of the extended linear {sigma} model and chiral perturbation theory

    SciTech Connect

    Alvarez, W.P.; Kubodera, K.; Myhrer, F.

    2005-09-01

    The pion-nucleon-scattering amplitudes are calculated in tree approximation with the use of the extended linear sigma model (ELSM) as well as heavy-baryon chiral perturbation theory (HB{chi}PT), and the nonrelativistic forms of the ELSM results are compared with those of HB{chi}PT. We find that the amplitudes obtained in ELSM do not agree with those derived from the more fundamental effective approach, HB{chi}PT.

  3. Chiral dynamics and peripheral transverse densities

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  4. Chiral dynamics of S -wave baryon resonances

    NASA Astrophysics Data System (ADS)

    Long, Bingwei

    2016-07-01

    As the pion mass approaches a critical value mπ⋆ from below, an S -wave resonance crosses the pion-baryon threshold and becomes a bound state with arbitrarily small binding energy, thus driving the scattering length to diverge. I explore the consequences of chiral symmetry for the values of mπ close to mπ⋆. It turns out that chiral symmetry is crucial for an S -wave resonance to be able to stand very near the threshold and in the meantime to remain narrow, provided that the mass splitting is reasonably small. The effective range of pion-baryon scattering is unexpectedly large, proportional to 4 π fπ2/mπ3 when mπ is around mπ⋆. As a result, this unexpected large length scale causes universality relations to break down much sooner than naively expected.

  5. Model of complex chiral drug metabolic systems and numerical simulation of the remaining chirality toward analysis of dynamical pharmacological activity.

    PubMed

    Ogino, Yoshiyuki; Asahi, Toru

    2015-05-21

    In this study, systems of complicated pathways involved in chiral drug metabolism were investigated. The development of chiral drugs resulted in significant improvement in the remedies available for the treatment of various severe sicknesses. Enantiopure drugs undergo various biological transformations that involve chiral inversion and thus result in the generation of multiple enantiomeric metabolites. Identification of the specific active substances determining a given drug׳s efficacy among such a mixture of different metabolites remains a challenge. To comprehend this complexity, we constructed a mathematical model representing the complicated metabolic pathways simultaneously involving chiral inversion. Moreover, this model is applied to the metabolism of thalidomide, which has recently been revived as a potentially effective prescription drug for a number of intractable diseases. The numerical simulation results indicate that retained chirality in the metabolites reflects the original chirality of the unmetabolized drug, and a higher level of enantiomeric purity is preserved during spontaneous degradation. In addition, chirality remaining after equilibration is directly related to the rate constant not only for chiral inversion but also for generation and degradation. Furthermore, the retention of chirality is quantitatively predictable using this combination of kinetic parameters. Our simulation results well explain the behavior of thalidomide in the practical biological experimental data. Therefore, this model promises a comprehensive understanding of dynamic metabolic systems involving chiral drugs that express multiple enantiospecific drug efficacies. PMID:25791284

  6. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution.

    PubMed

    Mori, Keiji; Itakura, Tsubasa; Akiyama, Takahiko

    2016-09-12

    Reported herein is an enantiodivergent synthesis of chiral biaryls by a chiral phosphoric acid catalyzed asymmetric transfer hydrogenation reaction. Upon treatment of biaryl lactols with aromatic amines and a Hantzsch ester in the presence of chiral phosphoric acid, dynamic kinetic resolution (DKR) involving a reductive amination reaction proceeded smoothly to furnish both R and S isomers of chiral biaryls with excellent enantioselectivities by proper choice of hydroxyaniline derivative. This trend was observed in wide variety of substrates, and various chiral biphenyl and phenyl naphthyl adducts were synthesized with satisfactory enantioselectivities in enantiodivergent fashion. The enantiodivergent synthesis of synthetically challenging, chiral o-tetrasubstituted biaryls were also accomplished, and suggests high synthetic potential of the present method. PMID:27491630

  7. Communication: The influence of vibrational parity in chiral photoionization dynamics

    SciTech Connect

    Powis, Ivan

    2014-03-21

    A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule H{sub 2}O{sub 2}. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix elements are obtained as an average of the electronic dipole matrix elements over the vibrational coordinate, weighted by the product of neutral and ion state vibrational wavefunctions. It is found that the parity of the vibrational Hermite polynomials influences not just the amplitude, but also the phase of the transition matrix elements, and the latter is sufficient, even in the absence of resonant enhancements, to account for enhanced vibrational dependencies in the chiral photoionization dynamics.

  8. Chiral perturbation theory with nucleons

    SciTech Connect

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.

  9. Hypernuclei and in-medium chiral dynamics

    NASA Astrophysics Data System (ADS)

    Finelli, P.

    2008-04-01

    A recently introduced relativistic nuclear energy density functional, constrained by features of low-energy QCD, is extended to describe the structure of hypernuclei. The density-dependent mean field and the spin-orbit potential of a Λ-hyperon in a nucleus, are consistently calculated using the SU(3) extension of in-medium chiral perturbation theory. The leading long-range ΛN interaction arises from kaon-exchange and 2π-exchange with a Σ-hyperon in the intermediate state. Scalar and vector mean fields, originating from in-medium changes of the quark condensates, produce a sizeable short-range spin-orbit interaction. The model, when applied to oxygen as a test case, provides a natural explanation for the smallness of the effective Λ spin-orbit potential: an almost complete cancellation between the background contributions (scalar and vector) and the long-range terms generated by two-pion exchange.

  10. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    SciTech Connect

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  11. The axial anomaly and the dynamical breaking of chiral symmetry

    SciTech Connect

    Gross, Franz; Ito, Hiroshi; Buck, Warren

    1991-10-01

    Using the quark triangle diagram for the Adler-Bell-Jackiw axial anomaly, we calculate the form factor for the {gamma}{sup *}{pi}{sup 0}{yields}{gamma} transition. This form factor depends on the quark mass, and we predict the right behavior with m{sub q}{approx_equal}250 MeV, the same quark mass generated by the dynamical breaking of chiral symmetry through a Nambu-Jona-Lasinio mechanism.

  12. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Palmese, A.; Moreau, P.; Bratkovskaya, E. L.

    2016-01-01

    We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the parton-hadron-string dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the K+/π+ and the (Λ +Σ0) /π- ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modeling of chiral symmetry restoration is driven by the pion-nucleon Σ term in the computation of the quark scalar condensate that serves as an order parameter for CSR and also scales approximately with the effective quark masses ms and mq. Furthermore, the nucleon scalar density ρs, which also enters the computation of , is evaluated within the nonlinear σ -ω model which is constrained by Dirac-Brueckner calculations and low-energy heavy-ion reactions. The Schwinger mechanism (for string decay) fixes the ratio of strange to light quark production in the hadronic medium. We find that above ˜80 A GeV the reaction dynamics of heavy nuclei is dominantly driven by partonic degrees of freedom such that traces of the chiral symmetry restoration are hard to identify. Our studies support the conjecture of "quarkyonic matter" in heavy-ion collisions from about 5 to 40 A GeV and provide a microscopic explanation for the maximum in the K+/π+ ratio at about 30 A GeV, which only shows up if a transition to partonic degrees of freedom is incorporated in the reaction dynamics and is discarded in the traditional hadron-string models.

  13. Brownian dynamics simulation of the nucleosome chirality - the wrapping direction of DNA on the histone octamer

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Ye

    2005-03-01

    In eukaryote nucleosome, DNA wraps around a histone octamer in a left-handed way. We study the process of chirality formation of nucleosome with Brownian dynamics simulation. We model the histone octamer with a quantitatively adjustable chirality: left-handed, right-handed or non-chiral, and simulate the dynamical wrapping process of a DNA molecule on it. We find that the chirality of a nucleosome formed is strongly dependent on that of the histone octamer, and different chiralities of the histone octamer induce its different rotation directions in the wrapping process of DNA. In addition, a very weak chirality of the histone octamer is quite enough for sustaining the correct chirality of the nucleosome formed. We also show that the chirality of a nucleosome may be broken at elevated temperature.

  14. Confinement and dynamical chiral symmetry breaking in QED3

    SciTech Connect

    Bashir, A.; Raya, A.; Cloeet, I. C.; Roberts, C. D.

    2008-11-15

    We establish that QED3 can possess a critical number of flavors, N{sub f}{sup c}, associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalization and photon vacuum polarization are homogeneous functions at infrared momenta when the fermion mass function vanishes. The Ward identity entails that the fermion-photon vertex possesses the same property and ensures a simple relationship between the homogeneity degrees of each of these functions. Simple models for the photon vacuum polarization and fermion-photon vertex are used to illustrate these observations. The existence and value of N{sub f}{sup c} are contingent upon the precise form of the vertex but any discussion of gauge dependence is moot. We introduce an order parameter for confinement. Chiral symmetry restoration and deconfinement are coincident owing to an abrupt change in the analytic properties of the fermion propagator when a nonzero scalar self-energy becomes insupportable.

  15. Confinement and dynamical chiral symmetry breaking in QED3.

    SciTech Connect

    Bashir, A.; Raya, A.; Cloet, I. C.; Roberts, C. D.; Univ. Michoacana de San Nicolas de Hidalgo

    2008-01-01

    We establish that QED3 can possess a critical number of flavors, Nfc, associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalization and photon vacuum polarization are homogeneous functions at infrared momenta when the fermion mass function vanishes. The Ward identity entails that the fermion-photon vertex possesses the same property and ensures a simple relationship between the homogeneity degrees of each of these functions. Simple models for the photon vacuum polarization and fermion-photon vertex are used to illustrate these observations. The existence and value of Nfc are contingent upon the precise form of the vertex but any discussion of gauge dependence is moot. We introduce an order parameter for confinement. Chiral symmetry restoration and deconfinement are coincident owing to an abrupt change in the analytic properties of the fermion propagator when a nonzero scalar self-energy becomes insupportable.

  16. Dynamic domain wall chirality rectification by rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Bisig, Andre; Mawass, Mohamad-Assaad; Stärk, Martin; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Gliga, Sebastian; Weigand, Markus; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2015-03-01

    We report on the observation of magnetic vortex domain wall chirality reversal in ferromagnetic rings that is controlled by the sense of rotation of a magnetic field. We use time-resolved X-ray microscopy to dynamically image the chirality-switching process and perform micromagnetic simulations to deduce the switching details from time-resolved snapshots. We find experimentally that the switching occurs within less than 4 ns and is observed in all samples with ring widths ranging from 0.5 μm to 2 μm, ring diameters between 2 μm and 5 μm, and a thickness of 30 nm, where a vortex domain wall is present in the magnetic onion state of the ring. From the magnetic contrast in the time-resolved images, we can identify effects of thermal activation, which plays a role for the switching process. Moreover, we find that the process is highly reproducible so that the domain wall chirality can be set with high fidelity.

  17. Toward complete pion nucleon amplitudes

    NASA Astrophysics Data System (ADS)

    Mathieu, V.; Danilkin, I. V.; Fernández-Ramírez, C.; Pennington, M. R.; Schott, D.; Szczepaniak, Adam P.; Fox, G.

    2015-10-01

    We compare the low-energy partial-wave analyses of π N scattering with high-energy data via finite-energy sum rules. We construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and reconstruct the real parts using dispersion relations.

  18. Toward complete pion nucleon amplitudes

    DOE PAGESBeta

    Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; Pennington, Michael R.; Schott, Diane M.; Szczepaniak, Adam P.; Fox, G.

    2015-10-05

    We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.

  19. Dynamics of skyrmions in chiral magnets: Dynamic phase transitions and equation of motion

    SciTech Connect

    Lin, Shi-Zeng Reichhardt, Charles; Batista, Cristian D.; Saxena, Avadh

    2014-05-07

    We study the dynamics of skyrmions in a metallic chiral magnet. First, we show that skyrmions can be created dynamically by destabilizing the ferromagnetic background state through a spin polarized current. We then treat skyrmions as rigid particles and derive the corresponding equation of motion. The dynamics of skyrmions is dominated by the Magnus force, which accounts for the weak pinning of skyrmions observed in experiments. Finally, we discuss the quantum motion of skyrmions.

  20. Dynamics and energetics of emergent magnetic monopoles in chiral magnets

    NASA Astrophysics Data System (ADS)

    Schütte, Christoph; Rosch, Achim

    2014-11-01

    The formation and destruction of topologically quantized magnetic whirls, i.e., the so-called skyrmions, in chiral magnets is driven by the creation and motion of singular hedgehog defects. These Bloch points can be identified with emergent magnetic monopoles and antimonopoles. We investigate how the energetics of and forces between monopoles and antimonopoles influence their creation rate and dynamics. We study a single skyrmion line defect in the helical phase using both micromagnetic simulations and a Ginzburg-Landau analysis. Monopole-antimonopole pairs are created in a thermally activated process, largely controlled by the (core) energy of the monopole. The force between monopoles and antimonopoles is linear in distance and described by a string tension. The sign and size of the string tension determines the stability of the phases and the velocity of the monopoles.

  1. The 7th International Workshop on Chiral Dynamics

    NASA Astrophysics Data System (ADS)

    The 7th International Workshop Chiral Dynamics: Theory and Experiment (CD12) took place at Jefferson Lab, Newport News, Virginia, USA, from August 6 to 10, 2012. Following in the tradition of this triennial series of Conferences, it attracted theorists and experimentalists, who were brought together to highlight the recent progress in the field of low energy QCD, and to discuss and explore the direction for future development. The conference consisted of plenary talks and three working groups. We would like to thank the working group organizers for their dedicated effort, namely: Goldstone Bosons: Mario Antonelli, Liping Gan, Jorge Portoles and Urs Wenger; Hadron Structure: Alessandro Bacchetta, Bastian Kubis, Kostas Orginos and Karl Slifer and Few Body Physics: Andreas Nogga, Assumpta Parreno, Michele Viviani and Henry Weller. We would like to express our special thanks to our co-organizers, Patricia Solvignon, Harald Griesshammer, Rocco Schiavilla, Dinko Pocanic, Robert Edwards, and Alexandre Deur for their hard work and advice. Last but not least, we thank the International Advisory Committee for their very useful inputs to the CD12 program. The organizers thank the excellent logistic and administrative support provided by the Jefferson Lab Conference Staff, Ruth Bizot, Cynthia Lockwood, Stephanie Vermeire, Marti Hightower and MeLaina Evans, and the Conference Secretary Mary Fox, which was instrumental for the success of the organization of CD12. We thank Joanna Griffin for the poster design. CD12 was primarily sponsored by Jefferson Lab, along with generous supports from Old Dominion University and the European Physics Journal. The CD12 homepage is located at http://www.jlab.org/conference/CD12 The upcoming Chiral Dynamics Workshop will take place in Pisa, Italy, in 2015. We thank Laura Marcucci and Michele Viviani for graciously taking the baton from us. Jose Goity and Jianping Chen

  2. Chiral dynamics and partonic structure at large transverse distances

    SciTech Connect

    Mark Strikman, Christian Weiss

    2009-12-01

    We study large-distance contributions to the nucleon's parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x ~< M_pi / M_N and transverse distances b ~ 1/M_pi. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse ``core'' radius estimated from the nucleon's axial form factor, R_core = 0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the ``pion cloud'' model of the nucleon's sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry dbar - ubar at x ~ 0.1; (b) the strange sea quarks, s and sbar, are significantly more localized than the light antiquark sea; (c) the nucleon's singlet quark size for x < 0.1 is larger than its gluonic size, average(b^2)_{q + qbar} > average(b^2)_g, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/psi production measured at HERA and FNAL. We show that our approach reproduces the general N_c-scaling of parton densities in QCD, thanks to the degeneracy of N and Delta intermediate states in the large-N_c limit. We also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.

  3. Flexible chiral metamaterials with dynamically optical activity and high negative refractive index

    NASA Astrophysics Data System (ADS)

    Dincer, Furkan; Karaaslan, Muharrem; Unal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2015-06-01

    We demonstrate numerically and experimentally chiral metamaterials (MTMs) based on gammadion-bilayer cross-wires that uniaxially create giant optical activity and tunable circular dichroism as a result of the dynamic design. In addition, the suggested structure gives high negative refractive index due to the large chirality in order to obtain an efficient polarization converter. We also present a numerical analysis in order to show the additional features of the proposed chiral MTM in detail. Therefore, a MTM sensor application of the proposed chiral MTM is introduced and discussed. The presented chiral designs offer a much simpler geometry and more efficient outlines. The experimental results are in a good agreement with the numerical simulation. It can be seen from the results that, the suggested chiral MTM can be used as a polarization converter, sensor, etc. for several frequency regimes.

  4. Time-resolving Attosecond Chiral Dynamics in Molecules with High Harmonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smirnova, O.; Cireasa, R.; Boguslavskiy, A.; Pons, B.; Wong, M. C. H.; Descamps, D.; Petit, S.; Ruf, H.; Thire, N.; Ferre, A.; Suarez, J.; Schmidt, B. E.; Higuet, J.; Alharbi, A. F.; Legare, F.; Blanchet, V.; Fabre, B.; Patchkovskii, S.; Mairesse, Y.; Bhardwaj, R.

    2015-05-01

    We demonstrate extreme chiral sensitivity of high harmonic generation from randomly oriented ensemble of chiral molecules in elliptical mid-infrared fields, and explain the physical mechanism underlying this very strong chiro-optical response. We also use the high harmonic spectra to follow the electronic chiral response with 0.1 femtosecond resolution. We studied two chiral molecules, epoxypropane and fenchone in 1.8 μm, 50 fs, mid-1013 W/cm2 pulses. Very small ellipticity of the incident light, about 1% in the field, is sufficient to induce several percent difference between the high harmonic response of left and right enantiomers. The origin of this effect lies in chiral-sensitive dynamics of the hole created by strong field ionization. Small differences in this dynamics between ionization and recombination are recorded and amplified by several orders of magnitude in high harmonic spectra. Using time-energy mapping we reconstruct sub-femtosecond chiral dynamics and show that the standard measure of the chiral signal is directly proportional to the recombination amplitude to the chiral-sensitive component of the hole wave-packet.

  5. Light-Directed Dynamic Chirality Inversion in Functional Self-Organized Helical Superstructures.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2016-02-24

    Helical superstructures are widely observed in nature, in synthetic polymers, and in supramolecular assemblies. Controlling the chirality (the handedness) of dynamic helical superstructures of molecular and macromolecular systems by external stimuli is a challenging task, but is of great fundamental significance with appealing morphology-dependent applications. Light-driven chirality inversion in self-organized helical superstructures (i.e. cholesteric, chiral nematic liquid crystals) is currently in the limelight because inversion of the handedness alters the chirality of the circularly polarized light that they selectively reflect, which has wide potential for application. Here we discuss the recent developments toward inversion of the handedness of cholesteric liquid crystals enabled by photoisomerizable chiral molecular switches or motors. Different classes of chiral photoresponsive dopants (guests) capable of conferring light-driven reversible chirality inversion of helical superstructures fabricated from different nematic hosts are discussed. Rational molecular designs of chiral molecular switches toward endowing handedness inversion to the induced helical superstructures of cholesteric liquid crystals are highlighted. This Review is concluded by throwing light on the challenges and opportunities in this emerging frontier, and it is expected to provide useful guidelines toward the development of self-organized soft materials with stimuli-directed chirality inversion capability and multifunctional host-guest systems. PMID:26764018

  6. Dynamic control of chirality in phosphine ligands for enantioselective catalysis

    PubMed Central

    Zhao, Depeng; Neubauer, Thomas M.; Feringa, Ben L.

    2015-01-01

    Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly achieved through ligand design with chiral bisphosphines being widely applied as privileged ligands. Switchable phosphine ligands, in which chirality is modulated through an external trigger signal, might offer attractive possibilities to change enantioselectivity in a catalytic process in a non-invasive manner avoiding renewed ligand synthesis. Here we demonstrate that a photoswitchable chiral bisphosphine based on a unidirectional light-driven molecular motor, can be used to invert the stereoselectivity of a palladium-catalysed asymmetric transformation. It is shown that light-induced changes in geometry and helicity of the switchable ligand enable excellent selectivity towards the racemic or individual enantiomers of the product in a Pd-catalysed desymmetrization reaction. PMID:25806856

  7. The Interplay Between Conformation and Absolute Configuration in Chiral Electron Dynamics of Small Diols.

    PubMed

    Daly, Steven; Tia, Maurice; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2016-09-01

    A competition between chiral characteristics alternatively attributable to either conformation or to absolute configuration is identified. Circular dichroism associated with photoexcitation of the outer orbital of configurational enantiomers of 1,3- and 2,3-butanediols has been examined with a focus on the large changes in electron chiral asymmetry produced by different molecular conformations. Experimental gas-phase measurements offer support for the theoretical modeling of this chiroptical effect. A surprising prediction is that a conformationally produced pseudo-enantiomerism in 1,3-butanediol generates a chiral response in the frontier electron dynamics that outweighs the influence of the permanent configurational handedness established at the asymmetrically substituted carbon. Induced conformation, and specifically induced conformational chirality, may thus be a dominating factor in chiral molecular recognition in such systems. PMID:27445202

  8. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy

    NASA Astrophysics Data System (ADS)

    Fidler, Andrew F.; Singh, Ved P.; Long, Phillip D.; Dahlberg, Peter D.; Engel, Gregory S.

    2014-02-01

    Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.

  9. Chiral dynamics in the γ → p → pπ0 reaction

    NASA Astrophysics Data System (ADS)

    Hiller Blin, A. N.; Ledwig, T.; Vicente Vacas, M. J.

    2015-07-01

    We investigate the neutral pion photoproduction on the proton near threshold in covariant chiral perturbation theory with the explicit inclusion of Δ degrees of freedom. This channel is specially sensitive to chiral dynamics and the advent of very precise data from the Mainz microtron has shown the limits of the convergence of the chiral series for both the heavy baryon and the covariant approaches. We show that the inclusion of the Δ resonance substantially improves the convergence leading to a good agreement with data for a wider range of energies.

  10. Dynamics of chiral symmetry breaking in nuclear collisions

    SciTech Connect

    Gavin, S.

    1994-07-01

    Measurements of disoriented chiral condensates in heavy ion collisions at RHIC and the LHC can yield fundamental information on the nature of the QCD phase transition. I review theoretical efforts to understand the evolution of the condensate and present new results on experimental signals in the single pion spectrum and in pion interferometry.

  11. Symmetry-adapted non-equilibrium molecular dynamics of chiral carbon nanotubes under tensile loading

    NASA Astrophysics Data System (ADS)

    Aghaei, Amin; Dayal, Kaushik

    2011-06-01

    We report on non-equilibrium molecular dynamics calculations of chiral single-wall carbon nanotubes using the framework of Objective Structures. This enables us to adapt molecular dynamics to the symmetry of chiral nanotubes and efficiently simulate these systems with small unit cells. We outline the method and the adaptation of a conventional thermostat and barostat to this setting. We then apply the method in order to examine the behavior of nanotubes with various chiralities subject to a constant extensional strain rate. We examine the effects of temperature, strain rate, and pre-compression/pre-tension. We find a range of failure mechanisms, including the formation of Stone-Wales defects, the opening of voids, and the motion of atoms out of the cross-section.

  12. Can disoriented chiral condensates form A dynamical perspective

    SciTech Connect

    Boyanovsky, D. ); de Vega, H.J. , Tour 16, 1er. etage, 4, Place Jussieu 75252 Paris, Cedex 05 ); Holman, R. )

    1995-01-15

    We address the issue of whether a region of disoriented chiral condensate (DCC), in which the chiral condensate has components along the pion directions, can form. We consider a system going through the chiral phase transition via a quench, in which relaxation of the high temperature phase to the low temperature one occurs rapidly (within a time scale of order [similar to]1 fm/[ital c]). We use a density matrix based formalism that takes both thermal and quantum fluctuations into account nonperturbatively to argue that if the O(4) linear [sigma] model is the correct way to model the situation in QCD, then it is very unlikely, at least in the Hartree approximation, that a large ([gt]10 fm) DCC region will form. Typical sizes of such regions are [similar to]1--2 fm and the density of pions in such regions is at most of order [similar to]0.2/fm[sup 3]. We end with some speculations on how large DCC regions may be formed.

  13. A Study of Confinement and Dynamical Chiral Symmetry Breaking in QED3

    SciTech Connect

    Sanchez, Saul; Raya, Alfredo; Bashir, Adnan

    2009-04-20

    We study the gauge invariance of physical observables related to confinement and dynamical chiral symmetry breaking in unquenched QED3 for a simple truncation of the corresponding Schwinger-Dyson equations in arbitrary covariant gauges. An explicit implementation of Landau-Khalatnikov-Fradkin transformations renders these observables gauge independent.

  14. Pion-photon reactions and chiral dynamics in Primakoff processes at COMPASS

    NASA Astrophysics Data System (ADS)

    Friedrich, Jan Michael

    2016-01-01

    With the COMPASS experiment at CERN, pion-photon reactions are investigated via the Primakoff effect, implying that high-energetic pions react with the quasi-real photon field surrounding the target nuclei. The production of a single hard photon in such a pion scattering at lowest momentum transfer to the nucleus is related to pion Compton scattering. From the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from chiral perturbation theory. In the same data taking, reactions with neutral and charged pions in the final state are measured and analyzed. At low energy in the pion-photon centre-of-momentum system, these reactions are governed by chiral dynamics and contain information relevant for chiral perturbation theory. At higher energies, resonances are produced and their radiative coupling is investigated.

  15. In-medium chiral SU (3) dynamics and hypernuclear structure

    NASA Astrophysics Data System (ADS)

    Finelli, P.; Kaiser, N.; Vretenar, D.; Weise, W.

    2007-12-01

    A previously introduced relativistic energy density functional, successfully applied to ordinary nuclei, is extended to hypernuclei. The density-dependent mean field and the spin-orbit potential are consistently calculated for a Λ hyperon in the nucleus using the SU (3) extension of in-medium chiral perturbation theory. The leading long range ΛN interaction arises from kaon-exchange and 2π-exchange with Σ hyperon in the intermediate state. Scalar and vector mean fields reflecting in-medium changes of the quark condensates are constrained by QCD sum rules. The model, applied to oxygen as a test case, describes spectroscopic data in good agreement with experiment. In particular, the smallness of the Λ spin-orbit interaction finds a natural explanation in terms of an almost complete cancellation between scalar-vector background contributions and long-range terms generated by two-pion exchange.

  16. Resonant collective dynamics of the weakly pinned soliton lattice in a monoaxial chiral helimagnet

    NASA Astrophysics Data System (ADS)

    Kishine, Jun-ichiro; Proskurin, I.; Bostrem, I. G.; Ovchinnikov, A. S.; Sinitsyn, Vl. E.

    2016-02-01

    We study the spin dynamics of a confined chiral soliton lattice whose ends are weakly held. We demonstrate that in this case the system possesses its own resonant frequency. To study features of the resonant dynamics, we analyze the collective motion of the system driven by an oscillating magnetic field directed along the chiral axis. By using the method of collective coordinates we find analytically the resonant frequency and verify the result by numerical simulation of the spin dynamics with the aid of Landau-Lifshitz-Gilbert equations. The numerical simulation shows an appearance of the asymmetric profile of the frequency response function with increasing ac field, which is typical for a nonlinear resonance. To give an explanation of this behavior, we invoke the multiple-time-scale method and predict an emergence of hysteresis phenomena. We also demonstrate that the spin-motive force is strongly amplified by the resonant oscillations.

  17. Evidence that centre vortices underpin dynamical chiral symmetry breaking in SU (3) gauge theory

    NASA Astrophysics Data System (ADS)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek

    2015-07-01

    The link between dynamical chiral symmetry breaking and centre vortices in the gauge fields of pure SU (3) gauge theory is studied using the overlap-fermion quark propagator in Lattice QCD. Overlap fermions provide a lattice realisation of chiral symmetry and consequently offer a unique opportunity to explore the interplay of centre vortices, instantons and dynamical mass generation. Simulations are performed on gauge fields featuring the removal of centre vortices, identified through gauge transformations maximising the center of the gauge group. In contrast to previous results using the staggered-fermion action, the overlap-fermion results illustrate a loss of dynamical chiral symmetry breaking coincident with vortex removal. This result is linked to the overlap-fermion's sensitivity to the subtle manner in which instanton degrees of freedom are compromised through the process of centre vortex removal. Backgrounds consisting solely of the identified centre vortices are also investigated. After smoothing the vortex-only gauge fields, we observe dynamical mass generation on the vortex-only backgrounds consistent within errors with the original gauge-field ensemble following the same smoothing. Through visualizations of the instanton-like degrees of freedom in the various gauge-field ensembles, we find evidence of a link between the centre vortex and instanton structure of the vacuum. While vortex removal destabilizes instanton-like objects under O (a4)-improved cooling, vortex-only backgrounds provide gauge-field degrees of freedom sufficient to create instantons upon cooling.

  18. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    SciTech Connect

    Schweitzer, Peter; Strikman, Mark; Weiss, Christian

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  19. Effects of carrier gas dynamics on single wall carbon nanotube chiral distributions during laser vaporization synthesis.

    PubMed

    Landi, Brian J; Raffaelle, Ryne P

    2007-03-01

    We report on the utility of modifying the carrier gas dynamics during laser vaporization synthesis to alter the single wall carbon nanotube (SWNT) chiral distribution. SWNTs produced from an Alexandrite laser using conventional Ni/Co catalysts demonstrate marked differences in chiral distributions due to effects of helium gas and reactor chamber pressure, in comparison to conventional subambient pressures and argon gas. Optical absorption and Raman spectroscopies confirm that the SWNT diameter distribution decreases under higher pressure and with helium gas as opposed to argon. Fluorescence mapping of the raw soots in sodium dodecylbenzene sulfonate (SDBS)-D2O was used to estimate the relative (n, m)-SWNT content of the semiconducting types. A predominance of type II structures for each synthesis condition was observed. The distribution of SWNT chiral angles was observed to shift away from near-armchair configurations under higher pressure and with helium gas. These results illustrate the importance of gas type and pressure on the condensation/cooling rate, which allows for synthesis of specific SWNT chiral distributions. PMID:17450850

  20. Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Lactols for De Novo Synthesis of Carbohydrate.

    PubMed

    Wang, Hao-Yuan; Yang, Ka; Yin, Dan; Liu, Can; Glazier, Daniel A; Tang, Weiping

    2015-11-01

    The control of the stereochemistry at the anomeric position is still one of the major challenges of synthetic carbohydrate chemistry. We have developed a new strategy consisting of a chiral catalyst-directed acylation followed by a palladium-catalyzed glycosidation to achieve high α- and β-stereoselectivity on the anomeric position. The former process involves a dynamic kinetic diastereoselective acylation of lactols derived from Achmatowicz rearrangement, while the latter is a stereospecific palladium-catalyzed allylic alkylation. PMID:26484422

  1. Laser-Induced Dynamical Chirality and Intramolecular Energy Flow in the CH Chromophore

    SciTech Connect

    Thanopulos, Ioannis

    2007-11-29

    We review the quantum dynamics of intramolecular energy flow during and after coherent infrared multiphoton excitation of the CH organic chromophore. The understanding of the underlying dynamics is of central importance for a wide range of systems in molecular physics, chemistry and biology, due to the experimentally supported assumption that the chromophore dynamics is weakly-dependent on a specific environment, in particular on sub-picosecond time scale. The excitation process due to the interaction with the laser field is studied by computationally monitoring the wave packet motion in the configuration sub-space relevant to femtosecond dynamics, using global analytical potential energy and electric dipole functions previously developed. The features of the intramolecular vibrational energy redistribution and the related dynamical time scales are investigated. In particular, we discuss the generation of dynamical chirality in methane istopomers, the corresponding stereomutation and racemization phenomena on the femtosecond time scale, and their relation to intramolecular vibrational energy redistribution.

  2. Chiral super-Tremblay-Turbiner-Winternitz Hamiltonians and their dynamical superalgebra

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2010-12-01

    The family of Tremblay-Turbiner-Winternitz (TTW) Hamiltonians Hk on a plane, corresponding to any positive real value of k, is shown to admit another {\\cal N} = 2 supersymmetric extension than that previously introduced by the present author. This new extension is of the same kind as that considered by D'Hoker and Vinet in the study of magnetic monopoles and is characterized by the fact that all the irreducible representations of the corresponding osp(2/2, \\ {R}) dynamical superalgebra are atypical lowest-weight state ones. The new supersymmetric Hamiltonians may be referred to as chiral super-TTW Hamiltonians, the role of chirality being played here by the fermion number parity operator.

  3. Dynamic Multi-Component Covalent Assembly for the Reversible Binding of Secondary Alcohols and Chirality Sensing

    PubMed Central

    You, Lei; Berman, Jeffrey S.; Anslyn, Eric V.

    2011-01-01

    Reversible covalent bonding is often employed for the creation of novel supramolecular structures, multi-component assemblies, and sensing ensembles. In spite of remarkable success of dynamic covalent systems, the reversible binding of a mono-alcohol with high strength is challenging. Here we show that a strategy of carbonyl activation and hemiaminal ether stabilization can be embodied in a four-component reversible assembly that creates a tetradentate ligand and incorporates secondary alcohols with exceptionally high affinity. Evidence is presented that the intermediate leading to binding and exchange of alcohols is an iminium ion. Further, to demonstrate the use of this assembly process we explored chirality sensing and enantiomeric excess determinations. An induced twist in the ligand by a chiral mono-ol results in large Cotton effects in the circular dichroism spectra indicative of the alcohol’s handedness. The strategy revealed in this study should prove broadly applicable for the incorporation of alcohols into supramolecular architecture construction. PMID:22109274

  4. Determination of absolute configuration in chiral solvents with nuclear magnetic resonance. A combined molecular dynamics/quantum chemical study.

    PubMed

    Kessler, Jiří; Dračínský, Martin; Bouř, Petr

    2015-05-28

    Nuclear magnetic resonance (NMR) spectroscopy is omnipresent in chemical analysis. However, chirality of a molecule can only be detected indirectly by NMR, e.g., by monitoring its interaction with another chiral object. In the present study, we investigate the spectroscopic behavior of chiral molecules placed into a chiral solvent. In this case, the solvent-solute interaction is much weaker, but the application range of such NMR analysis is wider than for a specific chemical shift agent. Two alcohols and an amine were used as model systems, and differences in NMR chemical shifts dependent on the solute-solvent chirality combination were experimentally detected. Combined quantum mechanic/molecular mechanic (QM/MM) computations were applied to reveal the underlying solute-solvent interactions. NMR shielding was calculated using the density functional theory (DFT). While the experimental observations could not be reproduced quantitatively, the modeling provided a qualitative agreement and detailed insight into the essence of solvent-solute chiral interactions. The potentials of mean force (PMF) obtained using molecular dynamics (MD) and the weighted histogram analysis method (WHAM) indicate that the chiral interaction brings about differences in conformer ratios, which are to a large extent responsible for the NMR shifts. The MD results also predicted slight changes in the solvent structure, including the radial distribution function (RDF), to depend on the solvent/solute chirality combination. Apart from the conformer distribution, an effective average solvent electrostatic field was tested as another major factor contributing to the chiral NMR effect. The possibility to simulate spectral effects of chiral solvents from the first-principles opens up the way to NMR spectroscopic determination of the absolute configuration for a larger scale of compounds, including those not forming specific complexes. PMID:25411905

  5. Dynamic Kinetic Resolution of Biaryl Lactones via a Chiral Bifunctional Amine Thiourea-Catalyzed Highly Atropo-enantioselective Transesterification.

    PubMed

    Yu, Chenguang; Huang, He; Li, Xiangmin; Zhang, Yueteng; Wang, Wei

    2016-06-01

    A solution to the unmet synthetic challenge of achieving highly atropo-enantioselective transesterification of Bringmann's lactones has been realized, employing a chiral bifunctional amine thiourea as promoter. The synergistic activation of the lactones and alcohols/phenols by the respective thiourea and amine groups is crucial for achieving the highly enantioselective, high-yielding dynamic kinetic resolution process. This protocol gives highly optically pure, axially chiral biaryl compounds with a broad substrate scope under mild reaction conditions. PMID:27218264

  6. Dynamics of Dirac strings and monopolelike excitations in chiral magnets under a current drive

    DOE PAGESBeta

    Lin, Shi -Zeng; Saxena, Avadh

    2016-02-10

    Skyrmion lines in metallic chiral magnets carry an emergent magnetic field experienced by the conduction electrons. The inflow and outflow of this field across a closed surface is not necessarily equal, thus it allows for the existence of emergent monopoles. One example is a segment of skyrmion line inside a crystal, where a monopole and antimonopole pair is connected by the emergent magnetic flux line. This is a realization of Dirac stringlike excitations. Here we study the dynamics of monopoles in chiral magnets under an electric current. We show that in the process of creation of skyrmion lines, skyrmion linemore » segments are first created via the proliferation of monopoles and antimonopoles. Then these line segments join and span the whole system through the annihilation of monopoles. The skyrmion lines are destroyed via the proliferation of monopoles and antimonopoles at high currents, resulting in a chiral liquid phase. We also propose to create the monopoles in a controlled way by applying an inhomogeneous current to a crystal. Remarkably, an electric field component in the magnetic field direction proportional to the current squared in the low current region is induced by the motion of distorted skyrmion lines, in addition to the Hall and longitudinal voltage. As a result, the existence of monopoles can be inferred from transport or imaging measurements.« less

  7. Pion-photon reactions and chiral dynamics in Primakoff processes at COMPASS

    NASA Astrophysics Data System (ADS)

    Krämer, Markus

    2016-05-01

    At the COMPASS experiment at CERN, pion-photon reactions are investigated using the Primakoff effect, where high-energetic pions react with the quasi-real photons surrounding the target nuclei. The production of a single hard photon in such a pion scattering, at lowest momentum transfer to the nucleus, is related to pion Compton scattering. Studying the energy distribution of the outgoing photons, the pion polarizability can be extracted. In addition to the measurement with a pion beam, control measurements with a muon beam allow us to estimate the systematics. The COMPASS result is in tension with earlier dedicated measurements and rather in agreement with the theoretical expectation from chiral perturbation theory. Based on the same data set, reactions with neutral and charged pions in the final state are studied. At low invariant mass of the pion-photon system, these reactions are governed by chiral dynamics. Using partial-wave analysis techniques, the absolute cross sections for the production of π-π+π- and π-π0π0 states from π-γ interactions are measured and compared to predictions from chiral perturbation theory. At higher pion-photon masses, the production of 3π resonances is studied with the focus on their radiative couplings.

  8. Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures.

    PubMed

    Cheng, Ko-Ting; Lee, Po-Yi; Qasim, Malik M; Liu, Cheng-Kai; Cheng, Wen-Fa; Wilkinson, Timothy D

    2016-04-27

    Negative dielectric nematic liquid crystals (LCs) doped with two azobenzene materials provide electrically switchable and permanently stable scattering mode light modulators based on dynamic fingerprint chiral textures (DFCT) with inhomogeneously helical axes. These light modulators can be switched between transparent (stable large domains of DFCT) states and scattering (stable small domains of DFCT) states by applying electric fields with different frequencies. The generation of DFCT results from the long flexible side chains of the doped chiral dopant. That is, if the DFCT can be obtained, then the large domains of DFCT reflect an intrinsically stable state. Moreover, the stabilization of the small domains of DFCT are caused by the terminal rigid restricted side chains of the other doped chiral dopant. Experimentally, the required amplitude to switch the light modulator from a scattering (transparent) state to a transparent (scattering) state decreases as the frequency of the applied electric field increases (decreases) within the set limits. This study is the first report on the advantages of the light scattering mode of DFCT, including low operating voltage, permanently stable transmission, wide viewing angle, high contrast, and polarization-independent scattering and transparency. PMID:27035635

  9. Dynamics of Dirac strings and monopolelike excitations in chiral magnets under a current drive

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Saxena, Avadh

    2016-02-01

    Skyrmion lines in metallic chiral magnets carry an emergent magnetic field experienced by the conduction electrons. The inflow and outflow of this field across a closed surface is not necessarily equal, thus it allows for the existence of emergent monopoles. One example is a segment of skyrmion line inside a crystal, where a monopole and antimonopole pair is connected by the emergent magnetic flux line. This is a realization of Dirac stringlike excitations. Here we study the dynamics of monopoles in chiral magnets under an electric current. We show that in the process of creation of skyrmion lines, skyrmion line segments are first created via the proliferation of monopoles and antimonopoles. Then these line segments join and span the whole system through the annihilation of monopoles. The skyrmion lines are destroyed via the proliferation of monopoles and antimonopoles at high currents, resulting in a chiral liquid phase. We also propose to create the monopoles in a controlled way by applying an inhomogeneous current to a crystal. Remarkably, an electric field component in the magnetic field direction proportional to the current squared in the low current region is induced by the motion of distorted skyrmion lines, in addition to the Hall and longitudinal voltage. The existence of monopoles can be inferred from transport or imaging measurements.

  10. Dynamical Casimir-Polder interaction between a chiral molecule and a surface

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Passante, Roberto; Rizzuto, Lucia; Buhmann, Stefan Yoshi

    2016-03-01

    We develop a dynamical approach to study the Casimir-Polder force between an initially bare molecule and a magnetodielectric body at finite temperature, valid for arbitrary magnetodielectric properties and also in the presence of chiral effects. Switching on the interaction between the molecule and the field at a particular time, we study the resulting temporal evolution of the Casimir-Polder interaction. The dynamical self-dressing of the molecule and its population-induced dynamics are accounted for and discussed. In particular, we find that the Casimir-Polder force between a molecule and a surface oscillates in time with a frequency related to the molecular transition frequency. We verify that the dynamical force converges to the static result for time much larger than the inverse of the transition frequency, and it is particularly strong around the back-reaction time t =2 d /c , the time needed for the molecule to emit and reabsorb a photon reflected by the surface.

  11. Skyrmion dynamics in chiral ferromagnets under spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Komineas, Stavros; Papanicolaou, Nikos

    2015-11-01

    We study the dynamics of skyrmions under spin-transfer torque in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. In particular, we study the motion of a topological skyrmion with skyrmion number Q =1 and a nontopological skyrmionium with Q =0 using their linear momentum, virial relations, and numerical simulations. The nontopological Q =0 skyrmionium is accelerated in the direction of the current flow and it either reaches a steady state with constant velocity, or it is elongated to infinity. The steady-state velocity is given by a balance between current and dissipation and has an upper limit. In contrast, the topological Q =1 skyrmion converges to a steady state with constant velocity at an angle to the current flow. When the spin current stops the Q =1 skyrmion is spontaneously pinned, whereas the Q =0 skyrmionium continues propagation. Exact solutions for the propagating skyrmionium are identified as solutions of equations given numerically in a previous work. Further exact results for propagating skyrmions are given in the case of the pure exchange model. The traveling solutions provide arguments that a spin-polarized current will cause rigid motion of a skyrmion or a skyrmionium.

  12. Probing internal structure of {Lambda}(1405) in meson-baryon dynamics with chiral symmetry

    SciTech Connect

    Sekihara, Takayasu; Hyodo, Tetsuo; Jido, Daisuke

    2011-10-21

    The internal structure of the resonant {Lambda}(1405) state is investigated based on meson-baryon coupled-channels chiral dynamics, by evaluating density distributions obtained from the form factors of the {Lambda}(1405) state. The form factors are extracted from current-coupled scattering amplitudes in which the current is coupled to the constituent hadrons inside {Lambda}(1405). Using several probe interactions and channel decomposition, we find that the resonant {Lambda}(1405) state is dominantly composed of widely spread K-bar around N, with a small fraction of the escaping {pi}{Sigma} component.

  13. Chiral Phosphoric Acid Catalyzed Asymmetric Ugi Reaction by Dynamic Kinetic Resolution of the Primary Multicomponent Adduct.

    PubMed

    Zhang, Yun; Ao, Yu-Fei; Huang, Zhi-Tang; Wang, De-Xian; Wang, Mei-Xiang; Zhu, Jieping

    2016-04-18

    Reaction of isonitriles with 3-(arylamino)isobenzofuran-1(3H)-ones in the presence of a catalytic amount of an octahydro (R)-binol-derived chiral phosphoric acid afforded 3-oxo-2-arylisoindoline-1-carboxamides in high yields with good to high enantioselectivities. An enantioselective Ugi four-center three-component reaction of 2-formylbenzoic acids, anilines, and isonitriles was subsequently developed for the synthesis of the same heterocycle. Mechanistic studies indicate that the enantioselectivity results from the dynamic kinetic resolution of the primary Ugi adduct, rather than from the C-C bond-forming process. The resulting heterocycle products are of significant medicinal importance. PMID:26997306

  14. Excitation migration along oligophenylenevinylene-based chiral stacks: delocalization effects on transport dynamics.

    PubMed

    Beljonne, D; Hennebicq, E; Daniel, C; Herz, L M; Silva, C; Scholes, G D; Hoeben, F J M; Jonkheijm, P; Schenning, A P H J; Meskers, S C J; Phillips, R T; Friend, R H; Meijer, E W

    2005-06-01

    Atomistic models based on quantum-chemical calculations are combined with time-resolved spectroscopic investigations to explore the migration of electronic excitations along oligophenylenevinylene-based chiral stacks. It is found that the usual Pauli master equation (PME) approach relying on uncoherent transport between individual chromophores underestimates the excitation diffusion dynamics, monitored here by the time decay of the transient polarization anisotropy. A better agreement to experiment is achieved when accounting for excitation delocalization among acceptor molecules, as implemented in a modified version of the PME model. The same models are applied to study light harvesting and trapping in guest-host systems built from oligomers of different lengths. PMID:16852286

  15. Dynamical chiral symmetry breaking and confinement with an infrared-vanishing gluon propagator

    SciTech Connect

    Roberts, C.D.; Hawes, F.T.; Williams, A.G.

    1995-08-01

    We have studied a model Dyson-Schwinger equation for the quark propagator, constructed using an Ansatz for the gluon propagator of the form D(q) {approximately} q{sup 2}/[(q{sup 2}){sup 2} + b{sup 4}] and two Ansatze for the quark-gluon vertex: the minimal Ball-Chiu and the modified form suggested by Curtis and Pennington. The aim was to determine whether such a form of the gluon propagator, which was suggested by a number of authors and which recent lattice simulations of QCD suggest may be plausible, can support dynamical chiral symmetry breaking and ensure quark confinement. The form of the gluon propagator at small space-like momenta is crucial to the nature of the strong interaction spectrum but is presently unknown and information gathered in such studies is invaluable in supporting or invalidating given hypotheses. It was found that there is a critical value of b = b{sub c} such that the model does not support dynamical chiral symmetry breaking for b > b{sub c}. Further, it was shown that this form of gluon propagator cannot confine quarks. As a consequence this form represents a physically unreasonable model. In addition, these results formed the basis for an invited presentation at a workshop on quantum infrared physics and will be published in the proceedings.

  16. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    SciTech Connect

    Yurtsever, E.; Onal, E. D.; Calvo, F.

    2011-05-15

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  17. Structure and discrimination in chiral fluids: A molecular dynamics and integral equation study

    NASA Astrophysics Data System (ADS)

    Cann, N. M.; Das, B.

    2000-08-01

    An analysis of structure and discrimination in simple chiral fluids is presented. The chiral molecules consist of a central carbon bonded to four distinct groups. Molecular-dynamics simulations have been performed on a one-component chiral fluid and on two racemic mixtures. For the racemates, discrimination, as measured by differences in pair distribution functions, is present but found to be small. Intermolecular pair interaction energies are found to be good predictors of the magnitude and the sign (mirror-image pairs favored) of the differences observed in site-site distribution functions. For the one-component fluid, the quality of structural predictions from the reference-interaction-site method and Chandler-Silbey-Ladanyi (CSL) integral equation theories, with the hypernetted chain (HNC) and Percus-Yevick closures, has been examined. These theories generally provide a qualitatively correct description of the site-site distributions. Extensions beyond the HNC level have been explored: Two-field-point bridge diagrams have been explicitly evaluated and included in the CSL theory. The inclusion of these diagrams significantly improves the quality of the integral equation theories. Since the CSL theory has not been used extensively, and bridge diagrams have been evaluated in only a few instances, a detailed analysis of their impact is presented. For racemic mixtures, diagram evaluation is shown to be crucial. Specifically, the differences in site-site distributions for sites on identical and mirror-image molecules are found to originate from bridge diagrams which involve interactions between four-site, or larger, clusters. Discrimination cannot be predicted from an integral equation theory which neglects these diagrams.

  18. Finite volume effects in the chiral extrapolation of baryon masses

    NASA Astrophysics Data System (ADS)

    Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.

    2014-09-01

    We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.

  19. Determination of partial-wave inelasticities for elastic pion-nucleon scattering with the aid of experimental data on π N → ππ N processes in the beam-momentum range 300 < P beam < 500 MeV/ c

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. A.; Sherman, S. G.

    2008-11-01

    The partial-wave inelasticity parameters of the amplitude for elastic pion-nucleon scattering are determined with the aid of the phenomenological amplitude for inelastic π N → ππ N processes in the energy range extending to the threshold for the production of two pions. The resulting inelasticity parameters are compared with their counterparts derived from modern partial-wave analyses. The largest inelastic-scattering cross section in the P11 wave is in excellent agreement with the analogous value from the analysis performed at the George Washington University in 2006. For other waves, however, the present results differ in the majority of cases from respective values given by partial-wave analyses (the distinctions are especially large for the isospin-3/2 amplitudes).

  20. Asymmetric coordination chemistry by chiral-auxiliary-mediated dynamic resolution under thermodynamic control.

    PubMed

    Lin, Zhijie; Gong, Lei; Celik, Mehmet Ali; Harms, Klaus; Frenking, Gernot; Meggers, Eric

    2011-02-01

    A method is presented for the asymmetric synthesis of chiral ruthenium polypyridyl complexes that starts from racemic cis-[Ru(pp)(2)Cl(2)] (pp=2,2'-bipyridine or 1,10-phenanthroline ligands). The chiral bidentate ligands (R)-2-(isopropylsulfinyl)phenol, (R)-SO, and preferably the more electron-rich derivative (R)-2-(isopropylsulfinyl)-4-methoxyphenol, (R)-SO', serve as convenient chiral auxiliaries for the conversion of racemic starting complexes (1a: pp=2,2'-bipyridine; 1b: pp=5,5'-dimethyl-2,2'-bipyridine; c: pp=1,10-phenanthroline) into single diastereomers Λ-[Ru(pp)(2){(R)-SO}]PF(6) (Λ-(S)-2a-c) or Λ-[Ru(pp)(2){(R)-SO'}]PF(6) (Λ-(S)-2a') under a thermodynamically controlled dynamic transformation. The complexes Λ-(S)-2a-c and Λ-(S)-2a' themselves are direct precursors for the generation of optically active ruthenium-polypyridyl complexes by trifluoroacetic-acid-induced replacement of the sulfinylphenolate auxiliaries with bidentate pp ligands under retention of configuration, thereby affording Λ-[Ru(pp)(3)](PF(6))(2) (3a-c) complexes with high enantiomeric ratios of ≥98:2. In particular, by employing the methoxy-modified chiral auxiliary (R)-SO', enantiomeric ratios of >99:1 were reached. In the strategy introduced here, the high steric crowding of an octahedral coordination sphere was exploited by placing a sulfur-based stereocenter in direct proximity to the ruthenium stereocenter, thereby leading to a large difference in the stabilities of the intermediate Λ-S and Δ-S diastereomers and thus providing the opportunity to find suitable reaction conditions for conversion of the destabilized diastereomer into the thermodynamically more-stable one. This method should be of high practical value for the asymmetric synthesis of ruthenium-polypyridyl complexes because it allows one to use readily available racemic ruthenium complexes as starting materials. PMID:21254425

  1. Dynamical breakdown of Abelian gauge chiral symmetry by strong Yukawa interactions

    SciTech Connect

    Benes, Petr; Brauner, Tomas; Hosek, Jiri

    2007-03-01

    We consider a model with anomaly-free Abelian gauge axial-vector symmetry, which is intended to mimic the standard electroweak gauge chiral SU(2){sub L}xU(1){sub Y} theory. Within this model we demonstrate: (1) Strong Yukawa interactions between massless fermion fields and a massive scalar field carrying the axial charge generate dynamically the fermion and boson proper self-energies, which are ultraviolet-finite and chirally noninvariant. (2) Solutions of the underlying Schwinger-Dyson equations found numerically exhibit a huge amplification of the fermion mass ratios as a response to mild changes of the ratios of the Yukawa couplings. (3) The 'would-be' Nambu-Goldstone boson is a composite of both the fermion and scalar fields, and it gives rise to the mass of the axial-vector gauge boson. (4) Spontaneous breakdown of the gauge symmetry further manifests by mass splitting of the complex scalar and by new symmetry-breaking vertices, generated at one loop. In particular, we work out in detail the cubic vertex of the Abelian gauge boson.

  2. Nonequilibrium Chiral Dynamics and Two-Particle Correlations in the Time-Dependent Variational Approach with Squeezed States

    SciTech Connect

    Ikezi, N.; Asakawa, M.; Tsue, Y.

    2006-04-11

    We study the dynamics of chiral phase transition in the O(4) linear sigma model by using the time-dependent variational approach with squeezed states. Our numerical simulations show that large domains of the disoriented chiral condensate (DCC) are formed through the mode-mode correlation. We also present a result of an analysis of the two-particle correlation function for the pion fields, which reflects unique nature of the squeezed states. In particular, we will show that the chaoticity parameter is not close to zero even if DCC domains are produced.

  3. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    NASA Astrophysics Data System (ADS)

    Tan, S. G.; Jalil, M. B. A.; Fujita, T.; Liu, X. J.

    2011-02-01

    We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) ⊗ U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  4. Toroidal Interaction and Propeller Chirality of Hexaarylbenzenes. Dynamic Domino Inversion Revealed by Combined Experimental and Theoretical Circular Dichroism Studies.

    PubMed

    Kosaka, Tomoyo; Inoue, Yoshihisa; Mori, Tadashi

    2016-03-01

    Hexaarylbenzenes (HABs) have greatly attracted much attention due to their unique propeller-shaped structure and potential application in materials science, such as liquid crystals, molecular capsules/rotors, redox materials, nonlinear optical materials, as well as molecular wires. Less attention has however been paid to their propeller chirality. By introducing small point-chiral group(s) at the periphery of HABs, propeller chirality was effectively induced, provoking strong Cotton effects in the circular dichroism (CD) spectrum. Temperature and solvent polarity manipulate the dynamics of propeller inversion in solution. As such, whizzing toroids become more substantial in polar solvents and at an elevated temperature, where radial aromatic rings (propeller blades) prefer orthogonal alignment against the central benzene ring (C6 core), maximizing toroidal interactions. PMID:26882341

  5. Dynamics of chiral primaries in AdS{sub 3}xS{sup 3}xT{sup 4}

    SciTech Connect

    Donos, Aristomenis; Jevicki, Antal

    2006-04-15

    We study in more detail the dynamics of chiral primaries of the D1/D5 system. From the CFT given by the S{sub N} orbifold a study of correlators resulted in an interacting (collective) theory of chiral operators. In AdS{sub 3}xS{sup 3} SUGRA we concentrate on general 1/2 BPS configurations described in terms of a fundamental string. We first establish a correspondence with the linearized field fluctuations and then present the nonlinear analysis. We evaluate in detail the symplectic form of the general degrees of freedom in SUGRA and confirm the appearance of chiral bosons. We then discuss the appearance of interactions and the cubic vertex, in correspondence with the S{sub N} collective field theory representation.

  6. Exploring Enantiospecific Ligand-Protein Interactions Using Cellular Membrane Affinity Chromatography: Chiral Recognition as a Dynamic Process

    PubMed Central

    Jozwiak, Krzysztof; Moaddel, Ruin; Ravichandran, Sarangan; Plazinska, Anita; Kozak, Joanna; Patel, Sharvil; Yamaguchi, Rika; Wainer, Irving

    2008-01-01

    The chiral recognition mechanisms responsible for the enantioselective binding on the α3β4 nicotinic acetyl choline receptor (α3β4 nAChR) and human organic cation transporter 1 (hOCT1) have been reviewed. The results indicate that chiral recognition on the α3β4 nAChR is a process involving initial tethering of dextromethorphan and levomethorphan at hydrophobic pockets within the central lumen followed by hydrogen bonding interactions favoring dextromethorphan. The second step is the defining enantioselective step. Studies with the hOCT1 indentified four binding sites within the transporter that participated in chiral recognition. Each of the enantiomers of the compounds used in the study interacted with three of these sites, while (R)-verapamil interacted with all four. Chiral recognition arose from the conformational adjustments required to produce optimum interactions. With respect to the prevailing interaction-based models, the data suggest that chiral recognition is a dynamic process and that the static point-based models should be amended to reflect this. PMID:18723411

  7. Dynamic Behavior of Clobazam on High-Performance Liquid Chromatography Chiral Stationary Phases.

    PubMed

    Sabia, Rocchina; De Martino, Michela; Cavazzini, Alberto; Villani, Claudio

    2016-01-01

    Clobazam, a 1,5-benzodiazepin-2,4-dione, is a chiral molecule because its ground state conformation features a nonplanar seven-membered ring lacking reflection symmetry elements. The two conformational enantiomers of clobazam interconvert at room temperature by a simple ring-flipping process. Variable temperature HPLC on the Pirkle type (R)-N-(3,5-dinitronenzoyl)phenylglycine and (R,R)-Whelk-O1 chiral stationary phases (CSPs) allowed us to separate for the first time the conformational enantiomers of clobazam and to observe peak coalescence-decoalescence phenomena due to concomitant separation and interconversion processes occurring on the same time scale. Clobazam showed temperature dependent dynamic high-performance liquid chromatography (HPLC) profiles with interconversion plateaus on the two CSPs indicative of on-column enantiomer interconversion. (enantiomerization) in the column temperature range between Tcol = 10°C and Tcol = 30°C, whereas on-column interconversion was absent at temperature close to or lower than Tcol = 5°C. Computer simulation of exchange-deformed HPLC profiles using a program based on the stochastic model yielded the apparent rate constants for the on-column enantiomerization and the corresponding free energy activation barriers. At Tcol = 20°C the averaged enantiomerization barriers, ΔG(‡), for clobazam were found in the range 21.08-21.53 kcal mol(-1) on the two CSPs. The experimental dynamic chromatograms and the corresponding interconversion barriers reported in this article are consistent with the literature data measured by DNMR at higher temperatures and in different solvents. PMID:26477466

  8. The quark-gluon vertex in Landau gauge QCD: Its role in dynamical chiral symmetry breaking and quark confinement

    NASA Astrophysics Data System (ADS)

    Alkofer, Reinhard; Fischer, Christian S.; Llanes-Estrada, Felipe J.; Schwenzer, Kai

    2009-01-01

    The infrared behavior of the quark-gluon vertex of quenched Landau gauge QCD is studied by analyzing its Dyson-Schwinger equation. Building on previously obtained results for Green functions in the Yang-Mills sector, we analytically derive the existence of power-law infrared singularities for this vertex. We establish that dynamical chiral symmetry breaking leads to the self-consistent generation of components of the quark-gluon vertex forbidden when chiral symmetry is forced to stay in the Wigner-Weyl mode. In the latter case the running strong coupling assumes an infrared fixed point. If chiral symmetry is broken, either dynamically or explicitly, the running coupling is infrared divergent. Based on a truncation for the quark-gluon vertex Dyson-Schwinger equation which respects the analytically determined infrared behavior, numerical results for the coupled system of the quark propagator and vertex Dyson-Schwinger equation are presented. The resulting quark mass function as well as the vertex function show only a very weak dependence on the current quark mass in the deep infrared. From this we infer by an analysis of the quark-quark scattering kernel a linearly rising quark potential with an almost mass independent string tension in the case of broken chiral symmetry. Enforcing chiral symmetry does lead to a Coulomb type potential. Therefore, we conclude that chiral symmetry breaking and confinement are closely related. Furthermore, we discuss aspects of confinement as the absence of long-range van der Waals forces and Casimir scaling. An examination of experimental data for quarkonia provides further evidence for the viability of the presented mechanism for quark confinement in the Landau gauge.

  9. Non-Markovian dynamics in chiral quantum networks with spins and photons

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-06-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.

  10. Effect of chirality on domain wall dynamics in molecular ferrimagnet [MnII(HL-pn)(H2O)][MnIII(CN)6]·2H2O

    NASA Astrophysics Data System (ADS)

    Mushenok, F.; Koplak, O.; Morgunov, R.

    2011-11-01

    In this paper we distinguish the contributions of switching, slide, creep and Debye relaxation modes of the domain wall dynamics to the low-frequency magnetic properties of chiral and racemic [MnII(HL-pn)(H2O)][MnIII(CN)6]·2H2O molecular ferrimagnets. We demonstrate that crystal and spin chirality affects the characteristic transition temperatures between different modes. In chiral crystals, transitions to the creep and Debye relaxation modes were observed at T = 7 K and 5 K, whereas in racemic crystals the same transitions occurred at higher temperatures T = 13 K and 9 K, respectively. Difference of the Peierls relief in chiral and racemic crystals is a possible reason of the chirality effect on the domain walls dynamics.

  11. Molecular dynamics simulation and NMR investigation of the association of the β-blockers atenolol and propranolol with a chiral molecular micelle

    NASA Astrophysics Data System (ADS)

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Hoffman, Charlene B.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2015-08-01

    Molecular dynamics simulations and NMR spectroscopy were used to compare the binding of two β-blocker drugs to the chiral molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The molecular micelle is used as a chiral selector in capillary electrophoresis. This study is part of a larger effort to understand the mechanism of chiral recognition in capillary electrophoresis by characterizing the molecular micelle binding of chiral compounds with different geometries and charges. Propranolol and atenolol were chosen because their structures are similar, but their chiral interactions with the molecular micelle are different. Molecular dynamics simulations showed both propranolol enantiomers inserted their aromatic rings into the molecular micelle core and that (S)-propranolol associated more strongly with the molecular micelle than (R)-propranolol. This difference was attributed to stronger molecular micelle hydrogen bonding interactions experienced by (S)-propranolol. Atenolol enantiomers were found to bind near the molecular micelle surface and to have similar molecular micelle binding free energies.

  12. Internal structure of the resonant {Lambda}(1405) state in chiral dynamics

    SciTech Connect

    Sekihara, Takayasu; Hyodo, Tetsuo; Jido, Daisuke

    2011-05-15

    The internal structure of the resonant {Lambda}(1405) state is investigated based on meson-baryon coupled-channels chiral dynamics by evaluating density distributions obtained from the form factors of the {Lambda}(1405) state. The form factors are defined as an extension of the ordinary stable particles and are directly evaluated from the current-coupled meson-baryon scattering amplitude, paying attention to the charge conservation of the probe interactions. For the resonant {Lambda}(1405) state we calculate the density distributions in two ways. One is on the pole position of the {Lambda}(1405) in the complex energy plane, which evaluates the resonant {Lambda}(1405) structure without contamination from nonresonant backgrounds, and another is on the real energy axis around the {Lambda}(1405) resonance energy, which may be achieved in experiments. Using several probe interactions and channel decomposition, we separate the various contributions to the internal structure of the {Lambda}(1405). As a result, we find that the resonant {Lambda}(1405) state is composed of widely spread K-bar around N, which gives dominant component inside the {Lambda}(1405), with escaping {pi}{Sigma} component. Furthermore, we consider K-barN bound state without decay channels, with which we can observe the internal structure of the bound state within real numbers. We also study the dependence of the form factors on the binding energy and meson mass. This verifies that the form factor defined through the current-coupled scattering amplitude serves as a natural generalization of the form factor for the resonance state. The relation between the interaction strength and the meson mass shows that the physical kaon mass appears to be within the suitable range to form a molecular bound state with the nucleon through the chiral SU(3) interaction.

  13. Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops

    SciTech Connect

    Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.

    2004-11-01

    This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16{sup 3}x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58{+-}0.34 GeV from the exponential time dependence of the dynamical correlators with m{sub val}=m{sub sea} and N{sub f}=2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m{sub val}{ne}m{sub sea}. They are positive for m{sub val}{>=}m{sub sea} and negative for m{sub val}chiral perturbation theory (ChPT) and find it describes lattice correlators well. The leading unphysical contribution in partially quenched ChPT comes from the exchange of the two pseudoscalar fields and is also positive for m{sub val}{>=}m{sub sea} and negative for m{sub val}dynamical result and has an appreciably smaller error bar.

  14. Pion and Kaon Masses and Pion Form Factors from Dynamical Chiral-Symmetry Breaking with Light Constituent Quarks

    SciTech Connect

    Scadron, Michael D.; Kleefeld, Frieder; Rupp, George

    2007-02-27

    Light constituent quark masses and the corresponding dynamical quark masses are determined by data, the quark-level linear {sigma} model, and infrared QCD. This allows to define effective nonstrange and strange current quark masses, which reproduce the experimental pion and kaon masses very accurately, by simple additivity. In contrast, the usual nonstrange and strange current quarks employed by the Particle Data Group and Chiral Perturbation Theory do not allow a straightforward quantitative explanation of the pion and kaon masses.

  15. Mechanochemical Encapsulation of Fullerenes in Peptidic Containers Prepared by Dynamic Chiral Self-Sorting and Self-Assembly.

    PubMed

    Szymański, Marek; Wierzbicki, Michał; Gilski, Mirosław; Jędrzejewska, Hanna; Sztylko, Marcin; Cmoch, Piotr; Shkurenko, Aleksander; Jaskólski, Mariusz; Szumna, Agnieszka

    2016-02-24

    Molecular capsules composed of amino acid or peptide derivatives connected to resorcin[4]arene scaffolds through acylhydrazone linkers have been synthesized using dynamic covalent chemistry (DCC) and hydrogen-bond-based self-assembly. The dynamic character of the linkers and the preference of the peptides towards self-assembly into β-barrel-type motifs lead to the spontaneous amplification of formation of homochiral capsules from mixtures of different substrates. The capsules have cavities of around 800 Å(3) and exhibit good kinetic stability. Although they retain their dynamic character, which allows processes such as chiral self-sorting and chiral self-assembly to operate with high fidelity, guest complexation is hindered in solution. However, the quantitative complexation of even very large guests, such as fullerene C60 or C70 , is possible through the utilization of reversible covalent bonds or the application of mechanochemical methods. The NMR spectra show the influence of the chiral environment on the symmetry of the fullerene molecules, which results in the differentiation of diastereotopic carbon atoms for C70 , and the X-ray structures provide unique information on the modes of peptide-fullerene interactions. PMID:26808958

  16. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    SciTech Connect

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-02-15

    Research Highlights: > We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). > Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. > SOC mediated magnetization switching is predicted in rare earth metals (large SOC). > The magnetization trajectory and frequency can be modulated by applied voltage. > This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  17. Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking

    NASA Astrophysics Data System (ADS)

    Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Sato, Daisuke

    2014-04-01

    We analyze dynamical chiral symmetry breaking (Dχ SB) in the Nambu-Jona-Lasinio model by using the non-perturbative renormalization group equation. The equation takes the form of a two-dimensional partial differential equation for the multi-fermion effective interactions V(x,t) where x is the bar {ψ }ψ operator and t is the logarithm of the renormalization scale. The Dχ SB occurs due to the quantum corrections, which means it emerges at some finite tc while integrating the equation with respect to t. At t_c some singularities suddenly appear in V which is compulsory in the spontaneous symmetry breakdown. Therefore there is no solution of the equation beyond tc. We newly introduce the notion of a weak solution to get the global solution including the infrared limit t rArr ∞ and investigate its properties. The obtained weak solution is global and unique, and it perfectly describes the physically correct vacuum even in the case of the first order phase transition appearing in a finite-density medium. The key logic of deduction is that the weak solution we defined automatically convexifies the effective potential when treating the singularities.

  18. Stereolability of chiral ruthenium catalysts with frozen NHC ligand conformations investigated by dynamic-HPLC.

    PubMed

    Menta, Sergio; Pierini, Marco; Cirilli, Roberto; Grisi, Fabia; Perfetto, Alessandra; Ciogli, Alessia

    2015-10-01

    The stereolability of chiral Hoveyda-Grubbs II type ruthenium complexes bearing N-heterocyclic carbene (NHC) ligands with Syn-phenyl groups on the backbone and Syn- or Anti-oriented o-tolyl N-substituents was studied by resorting to dynamic high-performance liquid chromatography (D-HPLC). A complete chromatographic picture of the involved stereoisomers (four for Anti- and two for Syn-complexes) was achieved at very low temperatures (-53°C and -40°C respectively), at which the NHC-Ru bond rotations were frozen out. Inspection of the chromatographic profiles recorded at higher temperatures revealed the presence of plateau zones between the couples of either Syn or Anti stereoisomers, attesting to the active interconversion between the eluted species. Such dynamic chromatograms were successfully simulated through procedures based on both theoretical plate and classical stochastic models. The good superimposition achieved between experimental and simulated chromatographic profiles allowed determination of the related isomerization energy barriers (ΔGisom (#) ), all derived by rotation around the NHC-Ru bond. The obtained diastereomerization barriers between the Anti isomers were found in very good agreement with those previously measured by experimental nuclear magnetic resonance (NMR) and assessed through Density Functional Theory (DFT) calculations. With the same approach, for the first time we also determined the enantiomerization barrier of the Syn isomer. Focused changes to the structure of complex Syn, studied by a molecular modeling approach, were found suitable to strongly reduce the stereolability arising from rotation around the NHC-Ru bond. PMID:26250890

  19. Dynamic Chiral Nanoparticle Assemblies and Specific Chiroplasmonic Analysis of Cancer Cells.

    PubMed

    Zhao, Yuan; Yang, Yaxin; Zhao, Jing; Weng, Ping; Pang, Qingfeng; Song, Qijun

    2016-06-01

    Fabricated Ag@Au core-shell nanoparticle (CS NP) assemblies exhibit pronounced and reverse chiral bisignate plasmonic signals spanning 400 to 580 nm, in comparison to Ag NP assemblies. The time-dependent chiro-optical response of assemblies that shift with shell deposition is systematically recorded. Chiral Ag@Au CS NP assemblies first achieve the special discrimination of circulating tumor cells with HER2 overexpression. PMID:27115447

  20. A dynamical model for pion electroproduction on the nucleon

    SciTech Connect

    George L. Caia; Louis E. Wright; Vladimir Pascalutsa

    2005-06-01

    We develop a Lorenz- and gauge-invariant dynamical model for pion electroproduction in the resonance region. The model is based on solving of the Salpeter (instantaneous) equation for the pion-nucleon interaction with a hadron-exchange potential. We find that the one-particle-exchange kernel of the Salpeter equation for pion electroproduction develops an unphysical singularity for a finite value of Q{sup 2}. We analyze two methods of dealing with this problem. Results of our model are compared with recent single-polarization data for pion electroproduction.

  1. Chiral streamers

    SciTech Connect

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  2. Chiral streamers

    NASA Astrophysics Data System (ADS)

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken

    2015-10-01

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  3. Calculation of doublet capture rate for muon capture in deuterium within chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Adam, J.; Tater, M.; Truhlík, E.; Epelbaum, E.; Machleidt, R.; Ricci, P.

    2012-03-01

    The doublet capture rate Λ1 / 2 of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon (NN) potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant dˆR (cD), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton β-decay and the binding energies of the three-nucleon systems. The calculated values of Λ1 / 2 show a rather large spread for the used values of the dˆR. Precise measurement of Λ1 / 2 in the future will not only help to constrain the value of dˆR, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the constant dˆR will allow for consistent calculations of other two-nucleon weak processes, such as proton-proton fusion and solar neutrino scattering on deuterons, which are important for astrophysics.

  4. Two-Pion Exchange Nucleon-Nucleon Potential: Relativistic Chiral Expansion

    SciTech Connect

    R. Higa; M.R. Robilotta

    2002-08-01

    We present a relativistic procedure for the chiral expansion of the two-pion exchange component of the NN potential, which emphasizes the role of intermediate pi N subamplitudes. The relationship between power counting in pi N and NN processes is discussed and results are expressed directly in terms of observable subthreshold coefficients. Interactions are determined by one and two-loop diagrams, involving pions, nucleons and other degrees of freedom, frozen into empirical subthreshold coefficients. The full evaluation of these diagrams produces amplitudes containing many different loop integrals. Their simplification by means of relations among these integrals leads to a set of intermediate results. Subsequent truncation to order(q{sup 4}) yields the relativistic potential, which depends on four loop integrals, representing bubble, triangle, crossed box and box diagrams. The bubble and triangle integrals are the same as in pi N scattering and we have shown that they also determine the chiral structures of box and crossed box integrals. Relativistic threshold effects were found to begin to contribute at order(q{sup 5}) only and our results should coincide with those of the standard heavy baryon approach. Checking this explicitly, we found differences due to the Goldberger-Treiman discrepancy and terms of order(q{sup 3}), possibly associated with the iteration of the OPEP.

  5. Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory

    DOE PAGESBeta

    de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.

    2015-10-08

    We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m2q). At lowest order, the CP-odd couplings induced by the QCD θ- term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections up to the ordermore » we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g-0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less

  6. Chiral symmetry and chiral-symmetry breaking

    SciTech Connect

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  7. Enabling Light Work in Helical Self-Assembly for Dynamic Amplification of Chirality with Photoreversibility.

    PubMed

    Cai, Yunsong; Guo, Zhiqian; Chen, Jianmei; Li, Wenlong; Zhong, Liubiao; Gao, Ya; Jiang, Lin; Chi, Lifeng; Tian, He; Zhu, Wei-Hong

    2016-02-24

    Light-driven transcription and replication are always subordinate to a delicate chirality transfer. Enabling light work in construction of the helical self-assembly with reversible chiral transformation becomes attractive. Herein we demonstrate that a helical hydrogen-bonded self-assembly is reversibly photoswitched between photochromic open and closed forms upon irradiation with alternative UV and visible light, in which molecular chirality is amplified with the formation of helixes at supramolecular level. The characteristics in these superhelixes such as left-handed or right-handed twist and helical length, height, and pitch are revealed by SEM and AFM. The helical photoswitchable nanostructure provides an easily accessible route to an unprecedented photoreversible modulation in morphology, fluorescence, and helicity, with precise assembly/disassembly architectures similar to biological systems such as protein and DNA. PMID:26709946

  8. Assembly of an Axially Chiral Dynamic Redox System with a Perfluorobiphenyl Skeleton into Dumbbell- or Tripod-type Electron Donors.

    PubMed

    Tamaoki, Hitomi; Katoono, Ryo; Fujiwara, Kenshu; Suzuki, Takanori

    2016-02-12

    The incorporation of F atoms endows a diethenylbiphenyl-based electron donor with configurational stability and SN Ar reactivity. The former enables the dynamic redox pair of (Rax)-1/(Rax ,R,R)-1(2+) to exhibit drastic UV/Vis and CD spectral changes upon electrolysis, whereas the latter makes it possible for (Rax)-1 to serve as a useful chiral synthon for the production of larger assemblies [(Rax ,Rax)-2 d,p,m and (Rax ,Rax ,Rax)-3] containing two or three dyrex units. These dyads and triad also exhibit a clean electrochiroptical response with isosbestic points owing to one-wave multi-electron transfer. PMID:26748461

  9. Dynamic Kinetic Resolution Approach for the Asymmetric Synthesis of Tetrahydrobenzodiazepines Using Transfer Hydrogenation by Chiral Phosphoric Acid.

    PubMed

    Horiguchi, Kosaku; Yamamoto, Eri; Saito, Kodai; Yamanaka, Masahiro; Akiyama, Takahiko

    2016-06-01

    Asymmetric synthesis of tetrahydrobenzodiazepines was achieved by transfer hydrogenation of dihydrobenzodiazepines with benzothiazoline having a hydrogen-bonding donor substituent by means of a newly synthesized chiral phosphoric acid. This method was applicable to various racemic dihydrobenzodiazepines to give the corresponding products in good yields with excellent diastereoselectivities and enantioselectivities taking advantage of the dynamic kinetic resolution. Furthermore, the effect of bulky substituent at 3,3'-position on the catalyst and hydrogen-bonding donor substituent on benzothiazoline was fully elucidated by the theoretical study. PMID:27150449

  10. From chiral quark dynamics with Polyakov loop to the hadron resonance gas model

    SciTech Connect

    Arriola, E. R.; Salcedo, L. L.; Megias, E.

    2013-03-25

    Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.

  11. Electric-field-induced spin resonance in antiferromagnetic insulators: Inverse process of the dynamical chiral magnetic effect

    NASA Astrophysics Data System (ADS)

    Sekine, Akihiko; Chiba, Takahiro

    2016-06-01

    We propose a realization of the electric-field-induced antiferromagnetic resonance. We consider three-dimensional antiferromagnetic insulators with spin-orbit coupling characterized by the existence of a topological term called the θ term. By solving the Landau-Lifshitz-Gilbert equation in the presence of the θ term, we show that, in contrast to conventional methods using ac magnetic fields, the antiferromagnetic resonance state is realized by ac electric fields along with static magnetic fields. This mechanism can be understood as the inverse process of the dynamical chiral magnetic effect, an alternating current generation by magnetic fields. In other words, we propose a way to electrically induce the dynamical axion field in condensed matter. We discuss a possible experiment to observe our proposal, which utilizes the spin pumping from the antiferromagnetic insulator into a heavy metal contact.

  12. Topological Switching and Orbiting Dynamics of Colloidal Spheres Dressed with Chiral Nematic Solitons

    PubMed Central

    Porenta, T.; Čopar, S.; Ackerman, P. J.; Pandey, M. B.; Varney, M. C. M.; Smalyukh, I. I.; Žumer, S.

    2014-01-01

    Metastable configurations formed by defects, inclusions, elastic deformations and topological solitons in liquid crystals are a promising choice for building photonic crystals and metamaterials with a potential for new optical applications. Local optical modification of the director or introduction of colloidal inclusions into a moderately chiral nematic liquid crystal confined to a homeotropic cell creates localized multistable chiral solitons. Here we induce solitons that “dress” the dispersed spherical particles treated for tangential degenerate boundary conditions, and perform controlled switching of their state using focused optical beams. Two optically switchable distinct metastable states, toron and hopfion, bound to colloidal spheres into structures with different topological charges are investigated. Their structures are examined using Q-tensor based numerical simulations and compared to the profiles reconstructed from the experiments. A topological explanation of observed multistability is constructed. PMID:25477195

  13. Finite-volume effects and dynamical chiral symmetry breaking in QED{sub 3}

    SciTech Connect

    Goecke, Tobias; Williams, Richard; Fischer, Christian S.

    2009-02-01

    We investigate the impact of finite-volume effects on the critical number of flavors, N{sub f}{sup c}, for chiral symmetry restoration in QED{sub 3}. To this end we solve a set of coupled Dyson-Schwinger equations on a torus. For order parameters such as the anomalous dimension of the fermion wave function or the chiral condensate, we find substantial evidence for a large dependence on the volume. We observe a shift in N{sub f}{sup c} from values in the range of 3.61{<=}N{sub f}{sup c}{<=}3.84 in the infinite-volume and continuum limit down to values below N{sub f}{<=}1.5 at finite volumes in agreement with earlier results of Gusynin and Reenders in a simpler truncation scheme. These findings explain discrepancies in N{sub f}{sup c} between continuum and lattice studies.

  14. Spiral wave dynamics in the complex Ginzburg--Landau equation with broken chiral symmetry

    NASA Astrophysics Data System (ADS)

    Nam, Keeyeol; Ott, Edward; Gabbay, Michael; Guzdar, Parvez N.

    1998-07-01

    The effect of adding a chiral symmetry breaking term to the two-dimensional complex Ginzburg-Landau equation is investigated. We find that this term causes a shift in the frequency of the spiral wave solutions and that the sign of this shift depends on the topological charge (handedness) of the spiral. For parameters such that nearly stationary spiral domains form (called a “frozen” state), we find that, due to this charge-dependent frequency shift, the boundary between oppositely charged spiral domains moves, resulting in the domination of one domain of charge over the other. In addition, we introduce a quantity which measures the chirality of patterns and use it to characterize the transition between frozen and turbulent states. We also find that, depending on parameters, this transition occurs in two qualitatively distinct ways.

  15. Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution-solid interface.

    PubMed

    Fang, Yuan; Ghijsens, Elke; Ivasenko, Oleksandr; Cao, Hai; Noguchi, Aya; Mali, Kunal S; Tahara, Kazukuni; Tobe, Yoshito; De Feyter, Steven

    2016-07-01

    A dominant theme within the research on two-dimensional chirality is the sergeant-soldiers principle, wherein a small fraction of chiral molecules (sergeants) is used to skew the handedness of achiral molecules (soldiers) to generate a homochiral surface. Here, we have combined the sergeant-soldiers principle with temperature-dependent molecular self-assembly to unravel a peculiar chiral amplification mechanism at the solution-solid interface in which, depending on the concentration of a sergeant-soldiers solution, the majority handedness of the system can either be amplified or entirely reversed after an annealing step, furnishing a homochiral surface. Two discrete pathways that affect different stages of two-dimensional crystal growth are invoked for rationalizing this phenomenon and we present a set of experiments where the access to each pathway can be precisely controlled. These results demonstrate that a detailed understanding of subtle intermolecular and interfacial interactions can be used to induce drastic changes in the handedness of a supramolecular network. PMID:27325099

  16. Chiral quark model of nucleon spin-flavor structure with SU(3) and axial-U(1) breakings

    SciTech Connect

    Cheng, T.P.; Li, L.

    1998-01-01

    The chiral quark model with a nonet of Goldstone bosons can yield an adequate description of the observed proton flavor and spin structure. In a previous publication we have compared the results of an SU(3) symmetric calculation with the phenomenological findings based on experimental measurements and SU(3) symmetry relations. In this paper we discuss their SU(3) and axial U(1) breaking corrections. Our result demonstrates the broad consistency of the chiral quark model with the experimental observations of the proton spin-flavor structure. With two parameters, we obtain a very satifactory fit to the F/D ratios for the octet baryon masses and for their axial vector couplings, as well as the different quark flavor contributions to the proton spin. The result also can account for not only the light quark asymmetry {bar u}{minus}{bar d} but also the strange quark content {bar s} of the proton sea. SU(3) breaking is the key in reconciling the {bar s} value as measured in the neutrino charm production and that as deduced from the pion nucleon {sigma} term. {copyright} {ital 1997} {ital The American Physical Society}

  17. The liquid surface of chiral ionic liquids as seen from molecular dynamics simulations combined with intrinsic analysis

    SciTech Connect

    Lísal, Martin

    2013-12-07

    We present molecular-level insight into the liquid/gas interface of two chiral room-temperature ionic liquids (RTILs) derived from 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]); namely, (R)-1-butyl-3-(3-hydroxy-2-methylpropyl)imidazolium bromide (hydroxypropyl) and 1-butyl-3-[(1R)-nopyl]imidazolium bromide (nopyl). We use our currently developed force field which was validated against the experimental bulk density, heat of vaporization, and surface tension of [bmim][Br]. The force field for the RTILs adopts the Chemistry at Harvard Molecular Mechanics (CHARMM) parameters for the intramolecular and repulsion-dispersion interactions along with the reduced partial atomic charges based on ab initio calculations. The net charges of the ions are around ±0.8e, which mimic the anion to cation charge transfer and many-body effects. Molecular dynamics simulations in the slab geometry combined with the intrinsic interface analysis are employed to provide a detailed description of the RTIL/gas interface in terms of the structural and dynamic properties of the interfacial, sub-interfacial, and central layers at a temperature of 300 K. The focus is on the comparison of the liquid/gas interface for the chiral RTILs with the interface for parent [bmim][Br]. The structure of the interface is elucidated by evaluating the surface roughness, intrinsic atomic density profiles, and orientation ordering of the cations. The dynamics of the ions at the interfacial region is characterized by computing the survival probability, and normal and lateral self-diffusion coefficients in the layers.

  18. The liquid surface of chiral ionic liquids as seen from molecular dynamics simulations combined with intrinsic analysis.

    PubMed

    Lísal, Martin

    2013-12-01

    We present molecular-level insight into the liquid/gas interface of two chiral room-temperature ionic liquids (RTILs) derived from 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]); namely, (R)-1-butyl-3-(3-hydroxy-2-methylpropyl)imidazolium bromide (hydroxypropyl) and 1-butyl-3-[(1R)-nopyl]imidazolium bromide (nopyl). We use our currently developed force field which was validated against the experimental bulk density, heat of vaporization, and surface tension of [bmim][Br]. The force field for the RTILs adopts the Chemistry at Harvard Molecular Mechanics (CHARMM) parameters for the intramolecular and repulsion-dispersion interactions along with the reduced partial atomic charges based on ab initio calculations. The net charges of the ions are around ±0.8e, which mimic the anion to cation charge transfer and many-body effects. Molecular dynamics simulations in the slab geometry combined with the intrinsic interface analysis are employed to provide a detailed description of the RTIL/gas interface in terms of the structural and dynamic properties of the interfacial, sub-interfacial, and central layers at a temperature of 300 K. The focus is on the comparison of the liquid/gas interface for the chiral RTILs with the interface for parent [bmim][Br]. The structure of the interface is elucidated by evaluating the surface roughness, intrinsic atomic density profiles, and orientation ordering of the cations. The dynamics of the ions at the interfacial region is characterized by computing the survival probability, and normal and lateral self-diffusion coefficients in the layers. PMID:24320388

  19. Weak Solution Method of the Non-Perturbative Renormalization Group Equation to Describe Dynamical Chiral Symmetry Breaking and its Application to Beyond the Ladder Analysis in QCD

    NASA Astrophysics Data System (ADS)

    Aoki, Ken-Ichi; Sato, Daisuke

    The method of non-perturbative renormalization group (NPRG) is applied to the analysis of dynamical chiral symmetry breaking (DχSB) in QCD. We show that the DχSB solution of the NPRG flow equation can be obtained without the bosonization. The solution, having the singular point, can be authorized as the weak solution of partial differential equation, and can be easily evaluated using the method of the characteristic curve. Also we show that our non-ladder extended approximation improves almost perfectly the gauge dependence of the chiral condensates.

  20. Octet baryon masses and sigma terms from an SU(3) chiral extrapolation

    SciTech Connect

    Young, Ross; Thomas, Anthony

    2009-01-01

    We analyze the consequences of the remarkable new results for octet baryon masses calculated in 2+1- avour lattice QCD using a low-order expansion about the SU(3) chiral limit. We demonstrate that, even though the simulation results are clearly beyond the power-counting regime, the description of the lattice results by a low-order expansion can be significantly improved by allowing the regularisation scale of the effective field theory to be determined by the lattice data itself. The model dependence of our analysis is demonstrated to be small compared with the present statistical precision. In addition to the extrapolation of the absolute values of the baryon masses, this analysis provides a method to solve the difficult problem of fine-tuning the strange-quark mass. We also report a determination of the sigma terms for all of the octet baryons, including an accurate value of the pion-nucleon sigma term and the first determination of the strangeness sigma term based on 2+1-flavour l

  1. Interactions of vinca alkaloid subunits with chiral amido[4]resorcinarenes: a dynamic, kinetic, and spectroscopic study.

    PubMed

    Botta, Bruno; Fraschetti, Caterina; Novara, Francesca R; Tafi, Andrea; Sacco, Fabiola; Mannina, Luisa; Sobolev, Anatoli P; Mattay, Jochen; Letzel, Matthias C; Speranza, Maurizio

    2009-05-01

    The stereoselectivity of the reaction between (R)-(-)-2-butylamine and the diastereomeric proton-bound complexes of (+)-catharanthine (C) or (-)-vindoline (V) with some chiral amido[4]resorcinarenes has been investigated in the gas phase by ESI-FT-ICR-MS. The reaction stereoselectivity (0.56 < k(homo)/k(hetero) < 16.9) is found to depend critically on the functional groups present in the chiral pendants of the hosts. Rationalisation of the kinetic results is based on careful computational and spectroscopic studies of the most stable conformations of (+)-catharanthine and its protonated form in the isolated state and in water, as well as in a representative host structure. The emerging picture points to the relevant diastereomeric proton-bound complexes as quasi-degenerate, thus suggesting that their stereoselectivity in the guest exchange reaction is mostly due to kinetic factors. The results of this study may represent a starting point for a deeper comprehension of the intrinsic factors that endow these molecules, and their dimeric forms, with their biochemical properties. PMID:19590774

  2. Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions

    NASA Astrophysics Data System (ADS)

    Carlsson, B. D.; Ekström, A.; Forssén, C.; Strömberg, D. Fahlin; Jansen, G. R.; Lilja, O.; Lindby, M.; Mattsson, B. A.; Wendt, K. A.

    2016-01-01

    Chiral effective field theory (χ EFT ) provides a systematic approach to describe low-energy nuclear forces. Moreover, χ EFT is able to provide well-founded estimates of statistical and systematic uncertainties—although this unique advantage has not yet been fully exploited. We fill this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous fit to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of χ EFT . Finally, we study the effect on other observables by demonstrating forward-error-propagation methods that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain efficient and machine-precise first- and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to χ EFT , and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling, showing that statistical errors are, in general, small compared to systematic ones. In conclusion, we find that a simultaneous fit to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in χ EFT . Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector, in particular when varying the cutoff in the chiral potentials. The methodology and results presented in this paper open a new frontier for uncertainty quantification in ab initio nuclear theory.

  3. Dynamic mechanism of the ferroelectric to antiferroelectric phase transition in chiral smectic liquid crystals.

    PubMed

    Song, Jang-Kun; Fukuda, Atsuo; Vij, J K

    2008-08-29

    The temperature-induced phase transition between the chiral smectic phases, antiferroelectric (smectic-C(A)*) and ferroelectric (smectic-C*), is found to occur through solitary wave propagation. We measure the free energy, which shows a double well shape in the entire SmC(A)* temperature range and the global minimum is found to shift from the antiferroelectric order to the ferroelectric order at the transition temperature. However, any significant supercooling is not observed and the transition cannot be described by the first order Landau-de Gennes theory, where the double well potential exists only in a narrow range of temperatures. This implies that the SmC(A)*-SmC* transition can occur only nonhomogeneously through the solitary wave propagation which overcomes the high energy barrier between the two minima. PMID:18851661

  4. Chiral squaring

    NASA Astrophysics Data System (ADS)

    Nagy, S.

    2016-07-01

    We construct the states and symmetries of N = 4 super-Yang-Mills by tensoring two N = 1 chiral multiplets and introducing two extra SUSY generators. This allows us to write the maximal N = 8 supergravity as four copies of the chiral multiplet. We extend this to higher dimensions and discuss applications to scattering amplitudes.

  5. Chiral superconductors.

    PubMed

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed. PMID:27088452

  6. Chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  7. Delta: the First Pion Nucleon Resonance - Its Discovery and Applications

    DOE R&D Accomplishments Database

    Nagle, D. E.

    1984-07-01

    It is attempted to recapture some of the fun and excitement of the pion-scattering work that led to the discovery of what is now called the delta particle. How significant this discovery was became apparent only gradually. That the delta is alive today and thriving at Los Alamos (as well as other places) is described.

  8. The pion nucleon scattering lengths from pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.

    2001-07-01

    This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.

  9. Delta: the first pion nucleon resonance - its discovery and applications

    SciTech Connect

    Nagle, D.E.

    1984-07-01

    It is attempted to recapture some of the fun and excitement of the pion-scattering work that led to the discovery of what is now called the delta particle. How significant this discovery was became apparent only gradually. That the delta is alive today and thriving at Los Alamos (as well as other places) is described.

  10. Precision Measurements of Neutral Pion Electroproduction Near Threshold: A Test of Chiral QCD Dynamics

    SciTech Connect

    Lindgren, Richard A.; Chirapatpimol, Khem; Smith, Lee Cole

    2013-08-01

    Preliminary results are presented from an experiment to measure {pi}{sup 0} electroproduction at and above threshold using the p(e;e' p){pi}{sup 0} reaction. The data were taken at a beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time in {pi}{sup 0} threshold electroproduction, complete coverage of the {phi}{sub {pi}}* and {theta}{sub {pi}}* angles in the center-of-mass (C.M.) was obtained for the invariant mass region up to {Delta}W=18 MeV above the {pi}{sup 0} threshold. At the same time our invariant momentum transfer squared covers the range Q{sup 2} = 0.05-0.15 (GeV/c){sup 2} with twelve bins in Q{sup 2}. The improved kinematic coverage in C.M., W and Q{sup 2} will better constrain theoretical interpretations of the data using phenomenological models and QCD-inspired models such as Heavy Baryon Chiral Perturbation Theory.

  11. Dynamic scaffold of chiral binaphthol derivatives with the alkynylplatinum(II) terpyridine moiety

    PubMed Central

    Leung, Sammual Yu-Lut; Lam, Wai Han; Yam, Vivian Wing-Wah

    2013-01-01

    Platinum(II)-containing complexes with inherently chiral binaphthol derivatives display a versatile scaffold between random coils and single-turn helical strands, in which the conformational transition is controlled by the Pt···Pt and π−π interactions of alkynylplatinum(II) terpyridine moiety upon solvent and temperature modulation. The bisignate Cotton effect in the circular dichroism spectra is indicative of the cooperative transformation from random coil state to a compact single-turn M- or P- helix. More importantly, as revealed by the appearance of new UV-vis absorption and emission bands during conformational change, the self-assembly of the platinum(II)-containing complex into a helical structure is assisted by the metal···metal and π−π interactions of the alkynylplatinum(II) terpyridine moieties. The folded structure with stabilization via metal···metal and π−π interactions has been supported by density functional theory calculations, which provide insights into the folded geometry of these kind of metallo-foldamers. PMID:23542379

  12. Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory

    SciTech Connect

    de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.

    2015-10-08

    We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m2q). At lowest order, the CP-odd couplings induced by the QCD θ- term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections up to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g-0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.

  13. Delta-nucleus dynamics: proceedings of symposium

    SciTech Connect

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P.

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  14. From quarks and gluons to hadrons: Chiral symmetry breaking in dynamical QCD

    NASA Astrophysics Data System (ADS)

    Braun, Jens; Fister, Leonard; Pawlowski, Jan M.; Rennecke, Fabian

    2016-08-01

    We present an analysis of the dynamics of two-flavor QCD in the vacuum. Special attention is paid to the transition from the high-energy quark-gluon regime to the low-energy regime governed by hadron dynamics. This is done within a functional renormalization group approach to QCD amended by dynamical hadronization techniques. These techniques allow us to describe conveniently the transition from the perturbative high-energy regime to the nonperturbative low-energy limit without suffering from a fine-tuning of model parameters. In the present work, we apply these techniques to two-flavor QCD with physical quark masses and show how the dynamics of the dominant low-energy degrees of freedom emerge from the underlying quark-gluon dynamics.

  15. Chiral Graphene Quantum Dots.

    PubMed

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials. PMID:26743467

  16. Dynamical chiral symmetry breaking in Yukawa and Wess-Zumino models

    SciTech Connect

    Bashir, A.; Diaz Cruz, J. L.

    1999-10-25

    We study dynamical mass generation for fermions in the Yukawa and the supersymmetric Wess-Zumino (WZ) models. It is found that above a critical coupling fermion mass can be generated dynamically in the Yukawa model, whereas in the WZ model the fermion does not acquire mass. We also show that the supersymmetry (SUSY) preserving solution is permitted and hence the scalars may not acquire mass either.

  17. Renormalization of the low-energy constants of chiral perturbation theory from loops with dynamical vector mesons

    NASA Astrophysics Data System (ADS)

    Terschlüsen, Carla; Leupold, Stefan

    2016-07-01

    Starting from a relativistic Lagrangian for pseudoscalar Goldstone bosons and vector mesons in the antisymmetric tensor representation, a one-loop calculation is performed to pin down the divergent structures that appear for the effective low-energy action at chiral orders Q2 and Q4 . The corresponding renormalization-scale dependencies of all low-energy constants up to chiral order Q4 are determined. Calculations are carried out for both the pseudoscalar octet and the pseudoscalar nonet, the latter in the framework of chiral perturbation theory in the limit of a large number of colors.

  18. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  19. A new perspective on the Faddeev equations and the K¯NN system from chiral dynamics and unitarity in coupled channels

    NASA Astrophysics Data System (ADS)

    Oset, E.; Jido, D.; Sekihara, T.; Martinez Torres, A.; Khemchandani, K. P.; Bayar, M.; Yamagata-Sekihara, J.

    2012-05-01

    We review recent work concerning the K¯N interaction and Faddeev equations with chiral dynamics which allow us to look at the K¯NN from a different perspective and pay attention to problems that have been posed in previous studies on the subject. We then show results which provide extra experimental evidence on the existence of two Λ(1405) states. Then show the findings of a recent approach to Faddeev equations using chiral unitary dynamics, where an explicit cancellation of the two-body off-shell amplitude with three-body forces stemming from the same chiral Lagrangians takes place. This removal of the unphysical off-shell part of the amplitudes is most welcome and renders the approach unambiguous, showing that only on-shell two-body amplitudes need to be used. With this information in mind we use an approximation to the Faddeev equations within the fixed center approximation to study the K¯NN system, providing answers within this approximation to questions that have been brought before and evaluating binding energies and widths of this three-body system. As a novelty with respect to recent work on the topic we find a bound state of the system with spin S=1, like a bound state of K¯-deuteron, less bound that the one of S=0, where all recent efforts have been devoted. The width is relatively large in this case, suggesting problems in a possible experimental observation.

  20. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.

    PubMed

    Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers. PMID:25698667

  1. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    PubMed Central

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M.A.; Palmans, Anja R.A.; Pavan, Giovanni M.; Meijer, E.W.

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers. PMID:25698667

  2. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    NASA Astrophysics Data System (ADS)

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.

    2015-02-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  3. Helical motion of chiral liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Sano, Masaki

    Artificial swimmers have been intensively studied to understand the mechanism of the locomotion and collective behaviors of cells and microorganisms. Among them, most of the artificial swimmers are designed to move along the straight path. However, in biological systems, chiral dynamics such as circular and helical motion are quite common because of the chirality of their bodies, which are made of chiral biomolecules. To understand the role of the chirality in the physics of microswimmers, we designed chiral artificial swimmers and the theoretical model for the chiral motion. We found that chiral liquid crystal droplets, when dispersed in surfactant solutions, swim in the helical path induced by the Marangoni effect. We will discuss the mechanism of the helical motion with our phenomenological model. This work is supported by Grant-in-Aid for JSPS Fellows (Grant No. 26.9814), and MEXT KAKENHI Grant No. 25103004.

  4. Chiral quark dynamics and topological charge: The role of the Ramond-Ramond U(1) gauge field in holographic QCD

    NASA Astrophysics Data System (ADS)

    Thacker, H. B.; Xiong, Chi; Kamat, Ajinkya S.

    2011-11-01

    The Witten-Sakai-Sugimoto construction of holographic QCD in terms of D4 color branes and D8 flavor branes in type IIA string theory is used to investigate the role of topological charge in the chiral dynamics of quarks in QCD. The QCD theta term arises from a compactified five-dimensional Chern-Simons term on the D4 branes. This term couples the QCD topological charge to the Ramond-Ramond (RR) U(1) gauge field of type IIA string theory. For large Nc the contribution of instantons (D0 branes) is suppressed, and the nonzero topological susceptibility of pure-glue QCD is attributed to the presence of D6 branes, which constitute magnetic sources of the RR gauge field. The topological charge of QCD is required, by an anomaly inflow argument, to coincide in space-time with the intersection of the D6 branes and the D4 color branes. This clarifies the relation between D6 branes and the coherent, codimension-one topological charge membranes observed in QCD Monte Carlo calculations. Using open-string/closed-string duality, we interpret a quark loop (represented by a D4-D8 open-string loop) in terms of closed-string exchange between color and flavor branes. The role of the RR gauge field in quark-antiquark annihilation processes is discussed. RR exchange in the s-channel generates a 4-quark contact term which produces an η' mass insertion and provides an explanation for the observed spin-parity structure of the Okubo-Zweig-Iizuka rule. The (log⁡DetU)2 form of the U(1) anomaly emerges naturally. RR exchange in the t-channel of the qq¯ scattering amplitude produces a Nambu-Jona-Lasinio interaction which may provide a mechanism for spontaneous breaking of SU(Nf)×SU(Nf).

  5. A molecular dynamics simulation study of the association of 1,1";-binaphthyl-2,2";-diyl hydrogenphosphate enantiomers with a chiral molecular micelle

    NASA Astrophysics Data System (ADS)

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2014-08-01

    Molecular dynamics (MD) simulations were used to investigate the binding of 1,1";-binaphthyl-2,2";-diyl hydrogenphosphate (BNP) enantiomers to the molecular micelle poly-(sodium undecyl-(L,L)-leucine-valine) (poly(SULV)). Poly(SULV) is used as a chiral selector in capillary electrophoresis separations. Four poly(SULV) binding pockets were identified and either (R)-BNP or (S)-BNP were docked into each pocket. MD simulations were then used to identify the preferred BNP binding site. Within the preferred site, both enantiomers formed hydrogen bonds with poly(SULV) and penetrated into the poly(SULV) core. Comparisons of BNP enantiomer binding to the preferred poly(SULV) pocket showed that (S)-BNP formed stronger hydrogen bonds, moved deeper into the binding site, and had a lower poly(SULV) binding free energy than the (R) enantiomer. Finally, MD simulation results were in agreement with capillary electrophoresis and NMR experiments. Each technique showed (S)-BNP interacted more strongly with poly(SULV) than (R)-BNP and that the site of chiral recognition was near the poly(SULV) leucine chiral center.

  6. Punctuated Chirality

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  7. Punctuated chirality.

    PubMed

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average. PMID:18841492

  8. Prebiotic chirality

    NASA Astrophysics Data System (ADS)

    Mekki-Berrada, Ali

    Bringing closer phospholipids each other on a bilayer of liposome, causes their rotation around their fatty acids axis, generating a force which brings closer the two sheets of the bilayer. In this theoretical study I show that for getting the greater cohesion of the liposome, by these forces, the serine in the hydrophilic head must have a L chirality. In the case where the hydrophilic head is absent amino acids with L chirality could contribute to this cohesion by taking the place of L-serine. Some coenzymes having a configuration similar to ethanolamine may also contribute. This is the case of pyridoxamine, thiamine and tetrahydrofolic acid. The grouping of amino acids of L chirality and pyridoxamine on the wall could initialize the prebiotic metabolism of these L amino acids only. This would explain the origin of the homo-chirality of amino acids in living world. Furthermore I show that in the hydrophilic head, the esterification of glycerol-phosphate by two fatty acids go through the positioning of dihydroxyacetone-phosphate and L-glyceraldehyde-3-phosphate, but not of D-glyceraldehyde-3-phosphate, prior their hydrogenation to glycerol-3- phosphate. The accumulation of D-glyceraldehyde-3-phosphate in the cytoplasm displace the thermodynamic equilibria towards the synthesis of D-dATP from D-glyceraldehyde-3-phosphate, acetaldehyde and prebiotic adenine, a reaction which does not require a coenzyme in the biotic metabolism. D-dATP and thiamine, more prebiotic metabolism of L-amino acids on the wall, would initialize D-pentoses phosphate and D-nucleotides pathways from the reaction of D-glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate + prebiotic nucleic bases. The exhaustion of the prebiotic glyceraldehyde (racemic) and the nascent biotic metabolism dominated by D-glyceraldehyde-3-phosphate, would explain the origin of homo-chirality of sugars in living world. References: http://en.wikiversity.org/wiki/Prebiotic_chirality

  9. Chiral pattern formation in compact microbial colonies

    NASA Astrophysics Data System (ADS)

    Korolev, Kirill; Bino George, Ashish

    Chirality is ubiquitous in biology from single molecules to entire populations. Yet, we are still lacking a detailed understanding of how chiral patterns emerge from cell competition and growth, even in simple microbial colonies. Although many microbes grow as dense colonies with no apparent chirality, recent experiments with Escherichia coli have demonstrated that internal dynamics in such populations can be in fact chiral. We show that there is a unique way to extend the commonly-used reaction-diffusion models of colony growth to account for the emergent chirality. This new model connects microscopic and macroscopic chirality and explains the origin of logarithmic spirals separating different sub-populations in a colony. We also show that chirality is substantially enhanced by the cooperation among the cells at the expansion frontier. In heterogeneous populations composed of strains with different chiralities and growth rates, our model predicts a very rich set of possible dynamics. For example, different chiralities can result in either sharp boundaries between the strains or promote their intermixing depending on the preferred twisting directions of the strains.

  10. Two-color QCD with chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E.-M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.; Schreiber, A.

    2016-01-01

    The phase diagram of two-color QCD with a chiral chemical potential is studied on the lattice. The focus is on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulations are carried out with dynamical staggered fermions without rooting. The dependence of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented.

  11. Dynamic NMR and Quantum-Chemical Study of the Stereochemistry and Stability of the Chiral MoO2(acac)2 Complex in Solution.

    PubMed

    Conte, Marco; Hippler, Michael

    2016-09-01

    The stereochemistry and dynamics of MoO2(acac)2 in benzene, chloroform, and toluene were investigated by variable temperature (1)H NMR, density functional theory (SOGGA11-X, B3LYP), and ab initio (MP2) methods. In solution, an equilibrium between two chiral enantiomers with C2 symmetry was identified, Λ-cis-MoO2(acac)2 and Δ-cis-MoO2(acac)2. The two enantiomers are connected via achiral cis transition states that switch the enantiomeric conformations via a Ray-Dutt, Bailar, and a newly described racemization twisting mechanism. All three mechanisms have similar calculated activation energies. Activation parameters Ea, ΔH(‡), and ΔS(‡) were experimentally determined for the exchange process, with a small, negative ΔS(‡), and a positive ΔH(‡) of 68.1 kJ mol(-1) in benzene, 54.9 kJ mol(-1) in chloroform, and 60.6 kJ mol(-1) in toluene, in reasonable general agreement with the calculations. Trans configurations of MoO2(acac)2 are very much higher in energy than cis and are not relevant in the temperature range experimentally studied, 243-340 K. The enantiomers interconvert within seconds near room temperature and much faster at elevated temperatures. Racemization will thus prevent the use of enantiomerically pure MoO2(acac)2 for chiral catalysis under practical conditions. PMID:27510306

  12. H2 adsorption on Ag-nanocluster/single-walled carbon nanotube composites: a molecular dynamics study on the effects of nanocluster size, diameter, and chirality of nanotube.

    PubMed

    Akbarzadeh, Hamed; Shamkhali, Amir Nasser

    2015-03-15

    The H2 physisorption on AgN (with N = 32, 108, 256, 500, and 864)/carbon nanotube (CNT; in armchair and zigzag structures with diameters between 0.54 and 2.98 nm) composites were studied by molecular dynamic simulation to investigate the effect of nanocluster size, diameter, and chirality of nanotube on the adsorption phenomena. The calculations indicate that the effects of nanocluster properties are more important than those of the nanotube, in such a way that increase of nanocluster size, decreases the H2 adsorption. Also, the diameter and chirality of CNTs have considerable influence on the adsorption phenomena. As the diameter of nanotube is increased, the amount of adsorption is decreased. Moreover, H2 molecules have more tendencies to those nanoclusters located on the armchair nanotubes than the zigzag ones. Another important result is the reversibility of H2 adsorption on these materials in which the structure of composite in vacuum and after reduction of H2 pressure to zero, is not changed, considerably. PMID:25583625

  13. New chiral zinc complexes: synthesis, structure, and induction of axial chirality.

    PubMed

    Degenbeck, Helmut; Felten, Anne-Sophie; Escudero-Adán, Eduardo C; Benet-Buchholz, Jordi; Di Bari, Lorenzo; Pescitelli, Gennaro; Vidal-Ferran, Anton

    2012-08-20

    We describe an efficient methodology for the preparation of new chiral zinc complexes by assembling dynamically racemic biphenol derivatives and chiral 1,2-diamines with suitable zinc(II) precursors. Mononuclear and dinuclear zinc(II) complexes were formed from differently substituted biphenols. The solid-state and solution structural characterization of the resulting compounds allowed us to demonstrate a preferential sense of induced axial chirality for mononuclear complexes, a phenomenon that was not observed for the dinuclear ones. PMID:22862880

  14. Hydrogen-Regulated Chiral Nanoplasmonics.

    PubMed

    Duan, Xiaoyang; Kamin, Simon; Sterl, Florian; Giessen, Harald; Liu, Na

    2016-02-10

    Chirality is a highly important topic in modern chemistry, given the dramatically different pharmacological effects that enantiomers can have on the body. Chirality of natural molecules can be controlled by reconfiguration of molecular structures through external stimuli. Despite the rapid progress in plasmonics, active regulation of plasmonic chirality, particularly in the visible spectral range, still faces significant challenges. In this Letter, we demonstrate a new class of hybrid plasmonic metamolecules composed of magnesium and gold nanoparticles. The plasmonic chirality from such plasmonic metamolecules can be dynamically controlled by hydrogen in real time without introducing macroscopic structural reconfiguration. We experimentally investigate the switching dynamics of the hydrogen-regulated chiroptical response in the visible spectral range using circular dichroism spectroscopy. In addition, energy dispersive X-ray spectroscopy is used to examine the morphology changes of the magnesium particles through hydrogenation and dehydrogenation processes. Our study can enable plasmonic chiral platforms for a variety of gas detection schemes by exploiting the high sensitivity of circular dichroism spectroscopy. PMID:26745446

  15. Chiral Magnetic Effect in Hydrodynamic Approximation

    NASA Astrophysics Data System (ADS)

    Zakharov, Valentin I.

    We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of "chiral superconductivity". More precise description is a quantum ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitation is the exact chiral limit while temperature—excitingly enough—does not seemingly matter. What is still lacking, is a detailed quantum microscopic picture for the ChME in hydrodynamics. Probably, the chiral currents propagate through lower-dimensional defects, like vortices in superfluid. In case of superfluid, the prediction for the chiral magnetic effect remains unmodified although the emerging dynamical picture differs from the standard one.

  16. Vector meson spectral function and dilepton rate in the presence of strong entanglement effect between the chiral and the Polyakov loop dynamics

    NASA Astrophysics Data System (ADS)

    Islam, Chowdhury Aminul; Majumder, Sarbani; Mustafa, Munshi G.

    2015-11-01

    In this work we have reexplored our earlier study on the vector meson spectral function and its spectral property in the form of dilepton rate in a two-flavor Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model in the presence of a strong entanglement between the chiral and Polyakov loop dynamics. The entanglement considered here is generated through the four-quark scalar-type interaction in which the coupling strength depends on the Polyakov loop and runs with temperature and chemical potential. The entanglement effect is also considered for the four-quark vector-type interaction in the same manner. We observe that the entanglement effect relatively enhances the color degrees of freedom due to the running of both the scalar and vector couplings. This modifies the vector meson spectral function and, thus, the spectral property such as the dilepton production rate in the low invariant mass also gets modified.

  17. Chiral symmetry in rotating systems

    NASA Astrophysics Data System (ADS)

    Malik, Sham S.

    2015-08-01

    The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.

  18. Chiral mirrors

    SciTech Connect

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  19. Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations

    PubMed Central

    Niu, Yuzhen; Pan, Dabo; Shi, Danfeng; Bai, Qifeng; Liu, Huanxiang; Yao, Xiaojun

    2015-01-01

    As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1) protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S)-crizotinib against MTH1 is about 20 times over that of (R)-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S)-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Adaptive biasing force (ABF) methodologies is much lower than that of (R)-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S)-crizotinib and (R)-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S)-crizotinib to MTH1. The adaptive biasing force (ABF) method was further employed to elucidate the unbinding process of (S)-crizotinib and (R)-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S)-crizotinib from the binding pocket is different from (R)-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors. PMID:26677850

  20. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  1. Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems

    SciTech Connect

    Viviani, Michele; Baroni, Alessandro; Girlanda, Luca; Kievsky, Alejandro; Marcucci, Laura E.; Schiavilla, Rocco

    2014-06-01

    Background: Weak interactions between quarks induce a parity-violating (PV) component in the nucleonnucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (chiEFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the p-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the {sup 3}He( {vector n},p){sup 3}H chargeexchange reaction. Methods: The chiEFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A = 2–-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from chiEFT. In the case of the A = 3–-4 systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h^1_pi and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The chiEFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.

  2. Chirality of Viral Capsids

    NASA Astrophysics Data System (ADS)

    Dharmavaram, Sanjay; Xie, Fangming; Bruinsma, Robijn; Klug, William; Rudnick, Joseph

    Most icosahedral viruses are classified by their T-number which identifies their capsid in terms of the number of capsomers and their relative arrangement. Certain T-numbers (T = 7 for instance) are inherently chiral (with no reflection planes) while others (e.g. T = 1) are achiral. We present a Landau-Brazovskii (LB) theory for weak crystallization in which a scalar order parameter that measures density of capsid proteins successfully predicts the various observed T-numbers and their respective chiralities. We find that chiral capsids gain stability by spontaneously breaking symmetry from an unstable chiral state. The inherently achiral LB-free energy does not preferentially select a particular chiral state from its mirror reflection. Based on the physical observation that proteins are inherently chiral molecules with directional interactions, we propose a new chiral term to the LB energy as a possible selection mechanism for chirality.

  3. Unified description of 6Li structure and deuterium-4He dynamics with chiral two- and three-nucleon forces

    DOE PAGESBeta

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2015-05-29

    Here, we provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d) on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic D- to S-state ratio of the 6Li wave function in the d+α configuration of –0.027, in agreement with a determination from 6Li–4He elastic scattering, but overestimates the excitation energy of the 3+more » state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the 2H(α,γ)6Li radiative capture, responsible for the big-bang nucleosynthesis of 6Li.« less

  4. Unified description of ^{6}Li structure and deuterium-^{4}He dynamics with chiral two- and three-nucleon forces.

    PubMed

    Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr

    2015-05-29

    We provide a unified ab initio description of the ^{6}Li ground state and elastic scattering of deuterium (d) on ^{4}He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of ^{6}Li. The calculation reproduces the empirical binding energy of ^{6}Li, yielding an asymptotic D- to S-state ratio of the ^{6}Li wave function in the d+α configuration of -0.027, in agreement with a determination from ^{6}Li-^{4}He elastic scattering, but overestimates the excitation energy of the 3^{+} state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the ^{2}H(α,γ)^{6}Li radiative capture, responsible for the big-bang nucleosynthesis of ^{6}Li. PMID:26066431

  5. Introduction to chiral symmetry

    SciTech Connect

    Koch, V.

    1996-01-08

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.

  6. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    PubMed Central

    Ariga, Katsuhiko; Richards, Gary J.; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P.

    2010-01-01

    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized. PMID:22163577

  7. Isospin Breaking in the Goldberger-Treiman Discrepancies

    SciTech Connect

    Jose Goity; Jordi Saez

    2002-09-01

    Effects of isospin breaking at the level of the Goldberger-Treiman discrepancies involving the neutral isotriplet axial and pion-nucleon couplings are analyzed to leading non-trivial order in chiral perturbation theory.

  8. Generation of chiral spin state by quantum simulation

    NASA Astrophysics Data System (ADS)

    Tanamoto, Tetsufumi

    2016-06-01

    Chirality of materials in nature appears when there are asymmetries in their lattice structures or interactions in a certain environment. Recent development of quantum simulation technology has enabled the manipulation of qubits. Accordingly, chirality can be realized intentionally rather than passively observed. Here we theoretically provide simple methods to create a chiral spin state in a spin-1/2 qubit system on a square lattice. First, we show that switching on and off the Heisenberg and X Y interactions produces the chiral interaction directly in the effective Hamiltonian without controlling local fields. Moreover, when initial states of spin qubits are appropriately prepared, we prove that the chirality with desirable phase is dynamically obtained. Finally, even for the case where switching on and off the interactions is infeasible and the interactions are always on, we show that, by preparing an asymmetric initial qubit state, the chirality whose phase is π /2 is dynamically generated.

  9. Broken chiral symmetry on a null plane

    SciTech Connect

    Beane, Silas R.

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.

  10. Chirality in nonlinear optics.

    PubMed

    Haupert, Levi M; Simpson, Garth J

    2009-01-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made approximately 50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity. PMID:19046125

  11. Chirality in Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  12. Difference in the dynamic properties of chiral and racemic crystals of serine studied by Raman spectroscopy at 3-295 K.

    PubMed

    Kolesov, B A; Boldyreva, E V

    2007-12-27

    Single-crystal polarized Raman spectra (60-4000 cm(-1) at 3 < or = T < or = 295 K) were measured for chiral L- and racemic DL-serine, alpha-amino-beta-hydroxypropionic acid, (NH3)+CH(CH2OH)(COO)-. The Raman spectra of dl-serine do not show any striking changes with temperature or on storage. In contrast to that, the dynamical properties of L-serine change at about 140 K. These changes can be interpreted as the reorientation of the side chain -CH2OH fragments of the zwitterions with respect to the backbone C-C bonds, resulting in the positional disorder of the O-H...O intermolecular H-bonds. The redistribution in the intensities of the Raman spectra of the crystals of L-serine stored for a long time (about a year) indicates the changes in the orientation of the molecular fragments in the direction normal to the axes of the head-to-tail chains. The difference in the thermodynamic functions of L- and DL-serine reported previously [Drebushchak, V. A.; Kovalevskaya, Yu. A.; Paukov, I. E.; Boldyreva, E. V. J. Therm. Anal. Calorim. 2007, 89 (2), 649-654] is explained by the difference in the spectra of external vibrations of the crystals. PMID:18052147

  13. Staggered heavy baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  14. Two-color QCD with non-zero chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E. M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.

    2015-06-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  15. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    PubMed

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  16. Pion scattering and nuclear dynamics

    SciTech Connect

    Johnson, M.B.

    1988-01-01

    A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab.

  17. Spontaneous 1 chiral symmetry breaking in model bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Breier, Rebekka; Selinger, Robin; Ciccotti, Giovanni; Herminghaus, Stephan; Mazza, Marco G.

    2015-03-01

    Chiral symmetry breaking is ubiquitous in biological systems, from DNA to bacterial suspensions. A key unresolved problem is how chiral structures may spontaneously emerge from achiral interactions. We study a simple model of bacterial suspensions in three dimensions that effectively incorporates active motion and hydrodynamic interactions. We perform large-scale molecular dynamics simulations (up to 106 particles) and describe stable (or long-lived metastable) collective states that exhibit chiral organization although the interactions are achiral. We elucidate under which conditions these chiral states will emerge and grow to large scales. We also study a related equilibrium model that clarifies the role of orientational fluctuations.

  18. On consistency of hydrodynamic approximation for chiral media

    NASA Astrophysics Data System (ADS)

    Avdoshkin, A.; Kirilin, V. P.; Sadofyev, A. V.; Zakharov, V. I.

    2016-04-01

    We consider chiral liquids, that is liquids consisting of massless fermions and right-left asymmetric. In such media, one expects existence of electromagnetic current flowing along an external magnetic field, associated with the chiral anomaly. The current is predicted to be dissipation-free. We consider dynamics of chiral liquids, concentrating on the issues of possible instabilities and infrared sensitivity. Instabilities arise, generally speaking, already in the limit of vanishing electromagnetic constant, αel → 0. In particular, liquids with non-vanishing chiral chemical potential might decay into right-left asymmetric states containing vortices.

  19. Architecture of Chiral Poly(phenylacetylene)s: From Compressed/Highly Dynamic to Stretched/Quasi-Static Helices.

    PubMed

    Rodríguez, Rafael; Quiñoá, Emilio; Riguera, Ricardo; Freire, Félix

    2016-08-01

    The remarkable consequences in elongation, dynamic character, response to external stimuli (e.g., solvent effects, metal cations), and aggregation observed in helical poly(phenylacetylene)s (PPAs) when either the type of linkage with the pendant groups (i.e., anilide, benzamide) or the aromatic substitution pattern (i.e., ortho, meta, para) of the parent phenylacetylene monomer undergo modification are analyzed in depth. Two series of PPAs substituted at the phenyl ring in ortho, meta, and para with either (S)-α-methoxy-α-phenylacetic acid (MPA) or (S)-phenylglycine methyl ester (PGME) linked through anilide or benzamide bonds were prepared (i.e., o-, m-, p-poly-1 and poly-2 series) and characterized both in solution and in the solid state (CD, UV-vis, Raman, NMR, DSC, TGA, X-ray, AFM, SEM). Para-substituted polymers (p-poly-1 and p-poly-2) present the most compressed and dynamic helices, which respond easily to external stimuli. Meta-substituted PPAs (m-poly-1 and m-poly-2) exist as a mixture in equilibrium of two different helices (compressed and stretched), both less dynamic than the para counterparts and with a weak response to external stimuli. Moreover, in the solid state, m-poly-1 and m-poly-2 show separate fields for the compressed and for the stretched helices. For its part, the ortho-substituted PPA (o-poly-1) presents a highly stretched, almost planar and practically rigid helical structure, inert to external stimuli and prone to aggregate. These structural changes (elongation/dynamic behavior) are rationalized on the basis of the increasing difficulties imposed by the meta- and ortho-substitution on the accommodation of the pendants within the helical structure. PMID:27419262

  20. Planar plasmonic chiral nanostructures.

    PubMed

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-21

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. PMID:26818746

  1. Chiral solitons in a coupled double Peierls chain

    NASA Astrophysics Data System (ADS)

    Cheon, Sangmo; Kim, Tae-Hwan; Lee, Sung-Hoon; Yeom, Han Woong

    2015-10-01

    Chiral edge states are the hallmark of two- and three-dimensional topological materials, but their one-dimensional (1D) analog has not yet been found. We report that the 1D topological edge states, solitons, of the charge density wave system of indium atomic wires self-assembled on a silicon surface have chirality. The system is described by a coupled double Peierls-dimerized atomic chain, where the interchain coupling induces dynamical sublattice symmetry breaking. This changes its topological symmetry from Z2×Z2 to Z4 and endows solitons with a chiral degree of freedom. Chiral solitons can produce quantized charge transport across the chain that is topologically protected and controllable by the soliton’s chirality. Individual right- and left-chiral solitons in indium wires are directly identified by scanning tunneling microscopy.

  2. Chiral solitons in a coupled double Peierls chain.

    PubMed

    Cheon, Sangmo; Kim, Tae-Hwan; Lee, Sung-Hoon; Yeom, Han Woong

    2015-10-01

    Chiral edge states are the hallmark of two- and three-dimensional topological materials, but their one-dimensional (1D) analog has not yet been found. We report that the 1D topological edge states, solitons, of the charge density wave system of indium atomic wires self-assembled on a silicon surface have chirality. The system is described by a coupled double Peierls-dimerized atomic chain, where the interchain coupling induces dynamical sublattice symmetry breaking. This changes its topological symmetry from Z₂× Z₂to Z₄ and endows solitons with a chiral degree of freedom. Chiral solitons can produce quantized charge transport across the chain that is topologically protected and controllable by the soliton's chirality. Individual right- and left-chiral solitons in indium wires are directly identified by scanning tunneling microscopy. PMID:26450206

  3. Detecting Chirality in Molecules by Linearly Polarized Laser Fields.

    PubMed

    Yachmenev, Andrey; Yurchenko, Sergei N

    2016-07-15

    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a π phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic nonrigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states. PMID:27472111

  4. Detecting Chirality in Molecules by Linearly Polarized Laser Fields

    NASA Astrophysics Data System (ADS)

    Yachmenev, Andrey; Yurchenko, Sergei N.

    2016-07-01

    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a π phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic nonrigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states.

  5. Axially chiral BODIPYs.

    PubMed

    Lerrick, Reinner I; Winstanley, Thomas P L; Haggerty, Karen; Wills, Corinne; Clegg, William; Harrington, Ross W; Bultinck, Patrick; Herrebout, Wouter; Benniston, Andrew C; Hall, Michael J

    2014-05-11

    The synthesis and resolution of a class of chiral organic fluorophores, axially chiral 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (Ax*-BODIPY), is described. Ax*-BODIPYs were prepared through a modular synthesis combined with a late stage Heck functionalisation. Resolution was achieved by preparative chiral HPLC. Absolute stereochemical assignment was performed by comparison of experimental ECD spectra with TD-DFT calculations. PMID:24676233

  6. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  7. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra. PMID:26900756

  8. Chiral geometry in multiple chiral doublet bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  9. Baryon resonances without quarks: A chiral soliton perspective

    SciTech Connect

    Karliner, M.

    1987-03-01

    In many processes involving low momentum transfer it is fruitful to regard the nucleon as a soliton or ''monopole-like'' configuration of the pion field. In particular, within this framework it is possible to obtain detailed predictions for pion-nucleon scattering amplitudes and for properties of baryon resonances. One can also derive model-independent linear relations between scattering amplitudes, such as ..pi..N and anti KN. A short survey of some recent results is given, including comparison with experimental data.

  10. Chiral Drugs: An Overview

    PubMed Central

    Nguyen, Lien Ai; He, Hua; Pham-Huy, Chuong

    2006-01-01

    About more than half of the drugs currently in use are chiral compounds and near 90% of the last ones are marketed as racemates consisting of an equimolar mixture of two enantiomers. Although they have the same chemical structure, most isomers of chiral drugs exhibit marked differences in biological activities such as pharmacology, toxicology, pharmacokinetics, metabolism etc. Some mechanisms of these properties are also explained. Therefore, it is important to promote the chiral separation and analysis of racemic drugs in pharmaceutical industry as well as in clinic in order to eliminate the unwanted isomer from the preparation and to find an optimal treatment and a right therapeutic control for the patient. In this article, we review the nomenclature, pharmacology, toxicology, pharmacokinetics, metabolism etc of some usual chiral drugs as well as their mechanisms. Different techniques used for the chiral separation in pharmaceutical industry as well as in clinical analyses are also examined. PMID:23674971

  11. Spontaneous formation of organic helical architectures through dynamic covalent chemistry.

    PubMed

    Li, Wenfang; Dong, Zeyuan; Zhu, Junyan; Luo, Quan; Liu, Junqiu

    2014-12-01

    The spontaneous formation of organic helical structures, accompanied with an amplification of chirality, by dynamic covalent bonds between achiral and chiral building blocks is reported. PMID:25325888

  12. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    PubMed

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  13. Nuclear forces and chiral theories

    SciTech Connect

    Friar, J.L. |

    1995-09-01

    Recent successes in ab initio calculations of light nuclei (A=2-6) will be reviewed and correlated with the dynamical consequences of chiral symmetry. The tractability of nuclear physics evinced by these results is evidence for that symmetry. The relative importance of three-nucleon forces, four-nucleon forces, multi-pion exchanges, and relativistic corrections will be discussed in the context of effective field theories and dimensional power counting. Isospin violation in the nuclear force will also be discussed in this context.

  14. Chiral Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Tiburzi, Brian C.

    The era of high-precision lattice QCD has led to synergy between lattice computations and phenomenological input from chiral perturbation theory. We provide an introduction to chiral perturbation theory with a bent towards understanding properties of the nucleon and other low-lying baryons. Four main topics are the basis for this chapter. We begin with a discussion of broken symmetries and the procedure to construct the chiral Lagrangian. The second topic concerns specialized applications of chiral perturbation theory tailored to lattice QCD, such as partial quenching, lattice discretization, and finite-volume effects. We describe inclusion of the nucleon in chiral perturbation theory using a heavy-fermion Euclidean action. Issues of convergence are taken up as our final topic. We consider expansions in powers of the strange-quark mass, and the appearance of unphysical singularities in the heavy-particle formulation. Our aim is to guide lattice practitioners in understanding the predictions chiral perturbation theory makes for baryons, and show how the lattice will play a role in testing the rigor of the chiral expansion at physical values of the quark masses.

  15. Applications of chiral symmetry

    SciTech Connect

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  16. Chirality control in oligothiophene through chiral wrapping.

    PubMed

    Sanji, Takanobu; Kato, Nobu; Tanaka, Masato

    2006-01-19

    [structure: see text] Mixing oligothiophenes and polysaccharides, such as amylose and schizophyllan, affords novel inclusion complexes, in which oligothiophene guests adopt twisted conformation in the chiral channel created by left- or right-handed helical wrapping with the polysaccharide host polymers, leading to optical activity. PMID:16408883

  17. Synthesis of Chiral Cyclopentenones.

    PubMed

    Simeonov, Svilen P; Nunes, João P M; Guerra, Krassimira; Kurteva, Vanya B; Afonso, Carlos A M

    2016-05-25

    The cyclopentenone unit is a very powerful synthon for the synthesis of a variety of bioactive target molecules. This is due to the broad diversity of chemical modifications available for the enone structural motif. In particular, chiral cyclopentenones are important precursors in the asymmetric synthesis of target chiral molecules. This Review provides an overview of reported methods for enantioselective and asymmetric syntheses of cyclopentenones, including chemical and enzymatic resolution, asymmetric synthesis via Pauson-Khand reaction, Nazarov cyclization and organocatalyzed reactions, asymmetric functionalization of the existing cyclopentenone unit, and functionalization of chiral building blocks. PMID:27101336

  18. The covariant chiral ring

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Troost, Jan

    2016-03-01

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N = (4 , 4) supersymmetry in two dimensions. For seed target spaces K3 and T 4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  19. Magnetohydrodynamics of chiral relativistic fluids

    NASA Astrophysics Data System (ADS)

    Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg

    2015-08-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ≫m , where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magnetohydrodynamical description of the evolution of such a plasma. We show that, compared to conventional magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  20. New generation chiral metamaterials with small and flat chirality over a certain frequency band based on circular split ring resonators for microwave filter applications

    NASA Astrophysics Data System (ADS)

    Dincer, Furkan; Akgol, Oguzhan; Karaaslan, Muharrem; Unal, Emin; Demirel, Ekrem; Sabah, Cumali

    2016-02-01

    There are many studies in literature on chiral metamaterials (MTMs) to obtain large chiralities with dynamic optical activities. With this regard, this new generation planar chiral MTM study focuses on a small, non-dispersive (constant/flat) chirality admittance over an indicated frequency band which has not been investigated so far in literature. This new generation planar chiral MTM provides a small and a constant/fixed chirality which is mostly ignored by the scientists. This study numerically and experimentally investigates and examines these new generation MTMs based on circular split ring resonators (SRRs) with an increased capacitance in details. Obtained results show that the suggested structure can provide a small and constant/flat chirality admittance over a certain frequency band and hence it can be used to design myriad novel electromagnetic (EM) devices such as transmission and antireflection filters, polarization rotators for any desired frequency regions.

  1. Spontaneous chiral symmetry breaking in collective active motion

    NASA Astrophysics Data System (ADS)

    Breier, Rebekka E.; Selinger, Robin L. B.; Ciccotti, Giovanni; Herminghaus, Stephan; Mazza, Marco G.

    2016-02-01

    Chiral symmetry breaking is ubiquitous in biological systems, from DNA to bacterial suspensions. A key unresolved problem is how chiral structures may spontaneously emerge from achiral interactions. We study a simple model of active swimmers in three dimensions that effectively incorporates hydrodynamic interactions. We perform large-scale molecular dynamics simulations (up to 106 particles) and find long-lived metastable collective states that exhibit chiral organization although the interactions are achiral. We elucidate under which conditions these chiral states will emerge and grow to large scales. To explore the complex phase space available to the system, we perform nonequilibrium quenches on a one-dimensional Lebwohl-Lasher model with periodic boundary conditions to study the likelihood of formation of chiral structures.

  2. Probing molecular chirality by coherent optical absorption spectra

    SciTech Connect

    Jia, W. Z.; Wei, L. F.

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  3. Spintronics: Chiral damping

    PubMed Central

    Kim, Kyoung-Whan; Lee, Hyun-Woo

    2016-01-01

    The analysis of the magnetic domain wall motion in a nanostructured magnetic system with strong spin-orbit coupling shows that the energy dissipation can be chiral when the inversion symmetry is broken. PMID:26906956

  4. Nonlinear chiral transport phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Ishii, Takeaki; Pu, Shi; Yamamoto, Naoki

    2016-06-01

    We study the nonlinear responses of relativistic chiral matter to the external fields such as the electric field E , gradients of temperature and chemical potential, ∇T and ∇μ . Using the kinetic theory with Berry curvature corrections under the relaxation time approximation, we compute the transport coefficients of possible new electric currents that are forbidden in usual chirally symmetric matter but are allowed in chirally asymmetric matter by parity. In particular, we find a new type of electric current proportional to ∇μ ×E due to the interplay between the effects of the Berry curvature and collisions. We also derive an analog of the "Wiedemann-Franz" law specific for anomalous nonlinear transport in relativistic chiral matter.

  5. Chiral plasma instabilities.

    PubMed

    Akamatsu, Yukinao; Yamamoto, Naoki

    2013-08-01

    We study the collective modes in relativistic electromagnetic or quark-gluon plasmas with an asymmetry between left- and right-handed chiral fermions, based on the recently formulated kinetic theory with Berry curvature corrections. We find that there exists an unstable mode, signaling the presence of a plasma instability. We argue the fate of this "chiral plasma instability" including the effect of collisions, and briefly discuss its relevance in heavy ion collisions and compact stars. PMID:23952387

  6. Chiral Vibrational Structures of Proteins at Interfaces Probed by Sum Frequency Generation Spectroscopy

    PubMed Central

    Fu, Li; Wang, Zhuguang; Yan, Elsa C.Y.

    2011-01-01

    We review the recent development of chiral sum frequency generation (SFG) spectroscopy and its applications to study chiral vibrational structures at interfaces. This review summarizes observations of chiral SFG signals from various molecular systems and describes the molecular origins of chiral SFG response. It focuses on the chiral vibrational structures of proteins and presents the chiral SFG spectra of proteins at interfaces in the C-H stretch, amide I, and N-H stretch regions. In particular, a combination of chiral amide I and N-H stretches of the peptide backbone provides highly characteristic vibrational signatures, unique to various secondary structures, which demonstrate the capacity of chiral SFG spectroscopy to distinguish protein secondary structures at interfaces. On the basis of these recent developments, we further discuss the advantages of chiral SFG spectroscopy and its potential application in various fields of science and technology. We conclude that chiral SFG spectroscopy can be a new approach to probe chiral vibrational structures of protein at interfaces, providing structural and dynamic information to study in situ and in real time protein structures and dynamics at interfaces. PMID:22272140

  7. Chirality dependent elastic properties of single-walled boron nitride nanotubes under uniaxial and torsional loading

    SciTech Connect

    Anoop Krishnan, N. M. Ghosh, Debraj

    2014-02-14

    The elastic behavior of single-walled boron nitride nanotubes is studied under axial and torsional loading. Molecular dynamics simulation is carried out with a tersoff potential for modeling the interatomic interactions. Different chiral configurations with similar diameter are considered to study the effect of chirality on the elastic and shear moduli. Furthermore, the effects of tube length on elastic modulus are also studied by considering different aspects ratios. It is observed that both elastic and shear moduli depend upon the chirality of a nanotube. For aspect ratios less than 15, the elastic modulus reduces monotonically with an increase in the chiral angle. For chiral nanotubes, the torsional response shows a dependence on the direction of loading. The difference between the shear moduli against and along the chiral twist directions is maximum for chiral angle of 15°, and zero for zigzag (0°) and armchair (30°) configurations.

  8. Chiral quirkonium decays

    NASA Astrophysics Data System (ADS)

    Fok, R.; Kribs, Graham D.

    2011-08-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between “chiral quirkonia” versus “vectorlike quirkonia” are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, tt¯, tb¯/bt¯, and γH, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and Wγ, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  9. Chiral Quirkonium Decays

    SciTech Connect

    Fok, R.; Kribs, Graham D.; /Fermilab

    2011-06-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N){sub ic} infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between 'chiral quirkonia' versus 'vectorlike quirkonia' are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, t{bar t}, t{bar b}/b{bar t}, and {gamma}H, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and W{gamma}, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  10. New Aspects of Experimental Study of the Pion-Nucleon Interaction in the Resonance Region

    SciTech Connect

    Sumachev, V.V.

    2005-06-01

    New experimental data that were obtained by the PNPI-ITEP Collaboration have resolved some discrete ambiguities in the partial-wave analysis (PWA). These results were used in the new FA02 PWA performed at George Washington University. At the same time, the FA02 PWA has revealed considerable fewer N* and {delta} resonances than those listed in the RPP tables. This circumstance aggravated the known problem of so-called missing resonances. The program for further measurements of the spin rotation parameters in elastic {pi}N scattering that are required to eliminate the remaining discrete PWA ambiguities is discussed.

  11. Spontaneous chirality in simple systems

    PubMed

    Pickett; Gross; Okuyama

    2000-10-23

    Two simple examples of spontaneous chiral symmetry breaking are presented. The first is close-packed cylindrically confined spheres. As the cylinder diameter is varied, one obtains a variety of chiral phases. The second example involves unconfined dipolar particles with an isotropic attraction, which also exhibits chiral ground states. We speculate that a dilute magnetorheological fluid film, with the addition of smaller particles to provide an attractive entropic interaction, will exhibit a chiral columnar ground state. PMID:11030973

  12. Baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Scherer, S.

    2012-03-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  13. Hierarchical amplification of macromolecular helicity of dynamic helical poly(phenylacetylene)s composed of chiral and achiral phenylacetylenes in dilute solution, liquid crystal, and two-dimensional crystal.

    PubMed

    Ohsawa, Sousuke; Sakurai, Shin-ichiro; Nagai, Kanji; Banno, Motonori; Maeda, Katsuhiro; Kumaki, Jiro; Yashima, Eiji

    2011-01-12

    Optically active poly(phenylacetylene) copolymers consisting of optically active and achiral phenylacetylenes bearing L-alanine decyl esters (1L) and 2-aminoisobutylic acid decyl esters (Aib) as the pendant groups (poly(1L(m)-co-Aib(n))) with various compositions were synthesized by the copolymerization of the optically active 1L with achiral Aib using a rhodium catalyst, and their chiral amplification of the macromolecular helicity in a dilute solution, a lyotropic liquid crystalline (LC) state, and a two-dimensional (2D) crystal on the substrate was investigated by measuring the circular dichroism of the copolymers, mesoscopic cholesteric twist in the LC state (cholesteric helical pitch), and high-resolution atomic force microscopy (AFM) images of the self-assembled 2D helix-bundles of the copolymer chains. We found that the macromolecular helicity of poly(1L(m)-co-Aib(n))s could be hierarchically amplified in the order of the dilute solution, LC state, and 2D crystal. In sharp contrast, almost no chiral amplification of the macromolecular helicity was observed for the homopolymer mixtures of 1L and Aib in the LC state and 2D crystal on graphite. PMID:21141965

  14. Chiral Sensitivity in the Dissociative Electron Attachment of Halocamphor Molecules

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan

    2016-05-01

    We have demonstrated chirally-dependent molecular destruction when incident longitudinally-spin-polarized (chiral) electrons break bonds in chiral molecules. This chiral sensitivity was observed through an asymmetry in the dissociative electron attachment (DEA) reaction rate with chiral 3-bromocamphor (C10 H15 BrO). Such an observation provides an unambiguous demonstration of the idea underlying the Vester-Ulbricht hypothesis, which attempts to explain the origins of the homochirality that is observed in many biological systems. While the lack of inversion symmetry in these reactions allows the effects we observe to occur, their dynamic causes are poorly understood. We have further studied the asymmetries in the DEA rates for two additional halocamphor molecules, 3-iodocamphor (C10 H15 IO) and 10-iodocamphor, in a systematic effort to illuminate the mechanisms responsible for the chiral sensitivity. The DEA signal depends on the sign of the incident electron helicity for a given target handedness in all molecules, and it varies with both the atomic number and the location of the heaviest atom in the molecule. Surprisingly, the DEA asymmetries for 10-iodocamphor, in which the heaviest atom is farther from a chiral center than for the other molecules, produced the largest asymmetries. This work was performed at the University of Nebraska-Lincoln. This project was funded by NSF Grant PHY-1206067.

  15. Chiral damping of magnetic domain walls.

    PubMed

    Jué, Emilie; Safeer, C K; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ). PMID:26689141

  16. Chiral damping of magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).

  17. Guiding chiral self-propellers in a periodic potential.

    PubMed

    Nourhani, Amir; Crespi, Vincent H; Lammert, Paul E

    2015-09-11

    Ingenious suggestions continue to be made for separation of racemic mixtures according to the inert structural chirality of the constituents. Recently discovered self-motile micro- or nanoparticles express dynamical chirality, i.e., that which originates in motion, not structure. Here, we predict how dynamically chiral objects, with overdamped dynamics in a soft periodic two-dimensional potential, can display not only separation into well-defined dynamical subclasses defined by motility characteristics, but also the ability to be steered to arbitrary locations in the plane by simply changing the amplitude of the external potential. Orientational and translational diffusion produce new types of drift absent in the noise-free case. As practical implementation seems feasible with acoustic or optical fields, these phenomena can be useful for laboratory microscales manipulations, possibly including reconfigurable microfluidic circuits with complex networks of unidirectional channels. PMID:26406856

  18. Contesting the paradigm of chirality

    NASA Astrophysics Data System (ADS)

    Efrati, Efi

    2012-02-01

    In 1893 Lord Kelvin coined the term chirality, and stated what is to become the elementary paradigm of chirality: 'I call any geometrical figure, or any group of points, chiral, and say it has chirality, if its image in a plane mirror , ideally realized cannot be brought to coincide with itself'. While the notion of chirality has greatly advanced our understanding of the structures of molecules and crystals, it has been shown to be inconsistent with every pseudo-scalar quantification. In this talk I will present a tabletop demonstration of a chiral structure which is constructed through the achiral summation of identical elementary units which are symmetric under reflection. The seeming contradiction to the definition of chirality is reconciled by proposing an alternative definition, relying on the physicist interpretation of the right hand rule.

  19. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density

    NASA Astrophysics Data System (ADS)

    Ruggieri, M.; Peng, G. X.

    2016-05-01

    In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.

  20. Large-N{sub C} properties of the {rho} and f{sub 0}(600) mesons from unitary resonance chiral dynamics

    SciTech Connect

    Nieves, J.; Pich, A.; Ruiz Arriola, E.

    2011-11-01

    We construct {pi}{pi} amplitudes that fulfill exact elastic unitarity, account for one-loop chiral perturbation theory contributions and include all 1/N{sub C} leading terms, with the only limitation of considering just the lowest-lying nonet of exchanged resonances. Within such a scheme, the N{sub C} dependence of {sigma} and {rho} masses and widths is discussed. Robust conclusions are drawn in the case of the {rho} resonance, confirming that it is a stable meson in the limit of a large number of QCD colors, N{sub C}. Less definitive conclusions are reached in the scalar-isoscalar sector. With the present quality of data, we cannot firmly conclude whether or not the N{sub C}=3 f{sub 0}(600) resonance completely disappears at large N{sub C} or if it has a subdominant component in its structure, which would become dominant for a number of quark colors sufficiently large.

  1. Multi-Q hexagonal spin density waves and dynamically generated spin-orbit coupling: Time-reversal invariant analog of the chiral spin density wave

    NASA Astrophysics Data System (ADS)

    Venderbos, J. W. F.

    2016-03-01

    We study hexagonal spin-channel ("triplet") density waves with commensurate M -point propagation vectors. We first show that the three Q =M components of the singlet charge density and charge-current density waves can be mapped to multicomponent Q =0 nonzero angular momentum order in three dimensions (3D) with cubic crystal symmetry. This one-to-one correspondence is exploited to define a symmetry classification for triplet M -point density waves using the standard classification of spin-orbit coupled electronic liquid crystal phases of a cubic crystal. Through this classification we naturally identify a set of noncoplanar spin density and spin-current density waves: the chiral spin density wave and its time-reversal invariant analog. These can be thought of as 3 DL =2 and 4 spin-orbit coupled isotropic β -phase orders. In contrast, uniaxial spin density waves are shown to correspond to α phases. The noncoplanar triple-M spin-current density wave realizes a novel 2 D semimetal state with three flavors of four-component spin-momentum locked Dirac cones, protected by a crystal symmetry akin to nonsymmorphic symmetry, and sits at the boundary between a trivial and topological insulator. In addition, we point out that a special class of classical spin states, defined as classical spin states respecting all lattice symmetries up to global spin rotation, are naturally obtained from the symmetry classification of electronic triplet density waves. These symmetric classical spin states are the classical long-range ordered limits of chiral spin liquids.

  2. Cavity-induced chiral states of fermionic quantum gases

    NASA Astrophysics Data System (ADS)

    Sheikhan, Ameneh; Brennecke, Ferdinand; Kollath, Corinna

    2016-04-01

    We investigate ultracold fermions placed into an optical cavity and subjected to optical lattices which confine the atoms to ladder structures. A transverse running-wave laser beam induces together with the dynamical cavity field a two-photon Raman-assisted tunneling process with spatially dependent phase imprint along the rungs of the ladders. We identify the steady states which can occur by the feedback mechanism between the cavity field and the atoms. We find the spontaneous emergence of a finite cavity field amplitude which leads to an artificial magnetic field felt by the fermionic atoms. These form a chiral insulating or chiral liquid state carrying a chiral current. We explore the rich state diagram as a function of the power of the transverse laser beam, the atomic filling, and the phase imprint during the cavity-induced tunneling. Both a sudden onset or a slow exponential activation with the transverse laser power of the self-organized chiral states can occur.

  3. Chiral phosphorus nanotubes: structure, bonding, and electronic properties.

    PubMed

    Fernández-Escamilla, H N; Quijano-Briones, J J; Tlahuice-Flores, A

    2016-05-14

    The study of black phosphorus nanotubes (PNTs) had been devoted to zigzag and armchair structures, with no consideration of chiral structures to date. In this communication, we studied the structural and electronic (band structure) properties of chiral nanotubes using a periodic plane wave-pseudopotential approach. We found that some chiral nanotubes display similar bandgaps and binding energies per atom (BEA) as armchair PNTs and Born-Oppenheimer molecular dynamics (BOMD) calculations attest their thermal stability. Interestingly, we determined that the bandgap is tuned by varying the PNTs chirality and it is not related to their diameters. This feature can be exploited in optical and electronic applications wherein a direct and sizable bandgap is required. PMID:27094567

  4. Chiral electron-chiral target scattering

    SciTech Connect

    Trantham, K.W.; Gay, T.J. Johnston, M.E.

    1996-05-01

    It is possible to have an electronic counterpart to the well known effect of optical circular dichroism: electron circular dichroism (ECD) is the preferential scattering of longitudinally polarized electrons by a chiral target. Resulting essentially from a difference in total scattering cross section for different incident electron helicities, this {open_quotes}parity-violating{close_quotes} effect is allowed by symmetry because the scattering target is handed. The authors have searched for ECD in camphor by measuring the transmitted intensity of electrons with positive (negative) helicity I{sub +({minus})} through a gas cell containing stereoisomers of camphor vapor and constructing the asymmetry A = (I{sub +} {minus} I{sub {minus}}). Within their sensitivity (2x10{sup {minus}4}) the authors were not able to detect ECD at the energies investigated (10 eV). Prospects for future investigations, particularly in light of the recent positive results measured in Muenster, will be discussed.

  5. Electron-deuteron scattering based on the Chiral Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Rozpȩdzik, Dagmara

    2014-06-01

    Based on the Chiral Effective Field Theory (ChEFT) dynamical picture of the two-pion exchange (TPE) contributions to the nuclear current operator which appear at higher order chiral expansions were considered. Their role in the electron-deuteron scattering reactions was studied and chiral predictions were compared with those obtained in the conventional framework. Results for cross section and various polarization observables are presented. The bound and scattering states were calculated with five different chiral nucleon-nucleon (NN) potentials which leads to the so-called theoretical uncertainty bands for the predicted results.

  6. Distinguishability and chiral stability in solution: Effects of decoherence and intermolecular interactions

    SciTech Connect

    Han, Heekyung; Wardlaw, David M.; Frolov, Alexei M.

    2014-05-28

    We examine the effect of decoherence and intermolecular interactions (chiral discrimination energies) on the chiral stability and the distinguishability of initially pure versus mixed states in an open chiral system. Under a two-level approximation for a system, intermolecular interactions are introduced by a mean-field theory, and interaction between a system and an environment is modeled by a continuous measurement of a population difference between the two chiral states. The resultant equations are explored for various parameters, with emphasis on the combined effects of the initial condition of the system, the chiral discrimination energies, and the decoherence in determining: the distinguishability as measured by a population difference between the initially pure and mixed states, and the decoherence process; the chiral stability as measured by the purity decay; and the stationary state of the system at times long relative to the time scales of the system dynamics and of the environmental effects.

  7. Finite nuclei in relativistic models with a light chiral scalar meson

    SciTech Connect

    Serot, B.D.; Furnstahl, R.J.

    1993-10-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.

  8. Chiral Biomarkers in Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  9. A Chiral Granular Gas

    NASA Astrophysics Data System (ADS)

    Tsai, J.-C.; Ye, Fangfu; Rodriguez, Juan; Gollub, J. P.; Lubensky, T. C.

    2005-05-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations.

  10. A chiral granular gas.

    PubMed

    Tsai, J-C; Ye, Fangfu; Rodriguez, Juan; Gollub, J P; Lubensky, T C

    2005-06-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations. PMID:16090323

  11. Chiral symmetry and pentaquarks

    SciTech Connect

    Dmitri Diakonov

    2004-07-01

    Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.

  12. Chiral symmetry restoration in holographic noncommutative QCD

    NASA Astrophysics Data System (ADS)

    Nakajima, Tadahito; Ohtake, Yukiko; Suzuki, Kenji

    2011-09-01

    We consider the noncommutative deformation of the Sakai-Sugimoto model at finite temperature and finite baryon chemical potential. The space noncommutativity is possible to have an influence on the flavor dynamics of the QCD. The critical temperature and critical value of the chemical potential are modified by the space noncommutativity. The influence of the space noncommutativity on the flavor dynamics of the QCD is caused by the Wess-Zumino term in the effective action of the D8-branes. The intermediate temperature phase, in which the gluons deconfine but the chiral symmetry remains broken, is easy to be realized in some region of the noncommutativity parameter.

  13. Sensing and actuation of smart chiral honeycombs

    NASA Astrophysics Data System (ADS)

    Abramovitch, H.; Burgard, M.; Edery-Azulay, Lucy; Evans, K. E.; Hoffmeister, M.; Miller, W.; Scarpa, F.; Smith, C. W.; Tee, K. F.; Schönecker, A.; Seffner, L.

    2008-03-01

    A chiral honeycomb configuration is developed with embedded piezosensors and actuators for smart sandwich panel applications. The chiral honeycomb concept is made of repeating units of cylinders and plates (ligaments), featuring an in-plane negative Poisson's ratio. Rapid Prototyping vacuum-cast and FDM (Fusion Deposition Moulding) techniques are developed to embed micro fibres composites to be used for potential structural health monitoring (SHM) applications, and microwave absorption screens for electromagnetic compatibility. Finite Element models are also developed to prototype and simulate the response, sensing and actuation capability of the honeycombs for design purposes. Dynamic tests using scanning laser vibrometers and acoustic wave propagation are carried out to assess the feasibility of the concept.

  14. Chiral fermions in asymptotically safe quantum gravity

    NASA Astrophysics Data System (ADS)

    Meibohm, J.; Pawlowski, J. M.

    2016-05-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  15. Dynamics of the Chiral Liquid Crystal 4'-Butyl-4-(S)-(2-methylbutoxy)azoxybenzene in the Isotropic, Cholesteric, and Solid Phases: A Fast Field-Cycling NMR Relaxometry Study.

    PubMed

    Carignani, Elisa; Calucci, Lucia; Juszyńska-Gałązka, Ewa; Gałązka, Mirosław; Massalska-Arodź, Maria; Forte, Claudia; Geppi, Marco

    2016-06-01

    (1)H NMR relaxometry was applied to investigate dynamic processes in the isotropic liquid, cholesteric, and crystalline phases of the chiral mesogen 4'-butyl-4-(S)-(2-methylbutoxy)azoxybenzene (4ABO5*). To this aim, (1)H longitudinal relaxation rates were measured as a function of temperature (between 257 and 319 K) and Larmor frequency (from 10 kHz to 35 MHz by a fast field-cycling relaxometer and at 400 MHz by an NMR spectrometer). The NMR relaxation dispersion (NMRD) curves so obtained were analyzed in terms of models suitable for the description of dynamic processes in the different phases, thus quantitatively determining values of characteristic motional parameters. In particular, internal and overall rotations/reorientations, molecular translational diffusion, and collective motions contribute to relaxation in the isotropic and cholesteric phases, whereas, in the crystalline phase, relaxation is mainly determined by internal motions and molecular reorientations. The results were discussed and compared with those previously obtained on the same compound by dielectric relaxation spectroscopy. PMID:27186864

  16. Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Williams, Jonathan

    A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.

  17. Chirality and protein folding

    NASA Astrophysics Data System (ADS)

    Kwiecinska, Joanna I.; Cieplak, Marek

    2005-05-01

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  18. Chirality and equilibrium biopolymer bundles.

    PubMed

    Grason, Gregory M; Bruinsma, Robijn F

    2007-08-31

    We use continuum theory to show that chirality is a key thermodynamic control parameter for the aggregation of biopolymers: chirality produces a stable disperse phase of hexagonal bundles under moderately poor solvent conditions, as has been observed in in vitro studies of F actin [O. Pelletier et al., Phys. Rev. Lett. 91, 148102 (2003)]. The large characteristic radius of these chiral bundles is not determined by a mysterious long-range molecular interaction but by in-plane shear elastic stresses generated by the interplay between a chiral torque and an unusual, but universal, nonlinear gauge term in the strain tensor of ordered chains that is imposed by rotational invariance. PMID:17931038

  19. Unified description of 6Li structure and deuterium-4He dynamics with chiral two- and three-nucleon forces

    SciTech Connect

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2015-05-29

    Here, we provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d) on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic D- to S-state ratio of the 6Li wave function in the d+α configuration of –0.027, in agreement with a determination from 6Li–4He elastic scattering, but overestimates the excitation energy of the 3+ state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the 2H(α,γ)6Li radiative capture, responsible for the big-bang nucleosynthesis of 6Li.

  20. Chiral drag force

    NASA Astrophysics Data System (ADS)

    Rajagopal, Krishna; Sadofyev, Andrey V.

    2015-10-01

    We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and

  1. Chiral Crystallization of Ethylenediamine Sulfate

    ERIC Educational Resources Information Center

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  2. CHIRAL POLLUTANTS: OCCURRENCE AND SIGNIFICANCE

    EPA Science Inventory

    This task involves process research to determine the environmental occurrence and fate of enantiomers of selected chiral pesticides, PCBs and other chiral pollutants with an emphasis on currently-used modern pesticides expected to have short to intermediate environmental half-liv...

  3. CHIRAL PESTICIDES: OCCURRENCE AND SIGNIFICANCE

    EPA Science Inventory

    Like amino acids, certain pesticides exist in "left-handed" and "right-handed" (chiral) forms. Commercially available chiral pesticides are produced as racemic mixtures in which the ratio of the two forms (or enantiomers) is 1:1. Enantiomers have the same ...

  4. AkF ¯ chiral gauge theories

    NASA Astrophysics Data System (ADS)

    Shi, Yan-Liang; Shrock, Robert

    2015-11-01

    We study asymptotically free chiral gauge theories with an SU (N ) gauge group and chiral fermions transforming according to the antisymmetric rank-k tensor representation, Ak≡[k ]N , and the requisite number, nF ¯, of copies of fermions in the conjugate fundamental representation, F ¯ ≡[1] ¯ N , to render the theories anomaly-free. We denote these as AkF ¯ theories. We take N ≥2 k +1 so that nF ¯≥1 . The A2F ¯ theories form an infinite family with N ≥5 , but we show that the A3F ¯ and A4F ¯ theories are only asymptotically free for N in the respective ranges 7 ≤N ≤17 and 9 ≤N ≤11 , and that there are no asymptotically free AkF ¯ theories with k ≥5 . We investigate the types of ultraviolet to infrared evolution for these AkF ¯ theories and find that, depending on k and N , they may lead to a non-Abelian Coulomb phase, or may involve confinement with massless gauge-singlet composite fermions, bilinear fermion condensation with dynamical gauge and global symmetry breaking, or formation of multifermion condensates that preserve the gauge symmetry. We also show that there are no asymptotically free, anomaly-free SU (N ) SkF ¯ chiral gauge theories with k ≥3 , where Sk denotes the rank-k symmetric representation.

  5. Mass-Selective Chiral Analysis.

    PubMed

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-12

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here. PMID:27070181

  6. Controlling Chirality of Entropic Crystals

    NASA Astrophysics Data System (ADS)

    Damasceno, Pablo F.; Karas, Andrew S.; Schultz, Benjamin A.; Engel, Michael; Glotzer, Sharon C.

    2015-10-01

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams.

  7. Mass-Selective Chiral Analysis

    NASA Astrophysics Data System (ADS)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-01

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.

  8. Controlling Chirality of Entropic Crystals.

    PubMed

    Damasceno, Pablo F; Karas, Andrew S; Schultz, Benjamin A; Engel, Michael; Glotzer, Sharon C

    2015-10-01

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams. PMID:26550757

  9. Chiral Lagrangian from Duality and Monopole Operators in Compactified QCD.

    PubMed

    Cherman, Aleksey; Schäfer, Thomas; Ünsal, Mithat

    2016-08-19

    We show that there exists a special compactification of QCD on R^{3}×S^{1} in which the theory has a domain where continuous chiral symmetry breaking is analytically calculable. We give a microscopic derivation of the chiral Lagrangian, the chiral condensate, and the Gell-Mann-Oakes-Renner relation m_{π}^{2}f_{π}^{2}=-m_{q}⟨q[over ¯]q⟩. Abelian duality, monopole operators, and flavor-twisted boundary conditions play the main roles. The flavor twisting leads to the new effect of fractional jumping of fermion zero modes among monopole instantons. Chiral symmetry breaking is induced by monopole-instanton operators, and the Nambu-Goldstone pions arise by color-flavor transmutation from gapless "dual photons." We also give a microscopic picture of the "constituent quark" masses. Our results are consistent with expectations from chiral perturbation theory at large S^{1}, and yield strong support for adiabatic continuity between the small-S^{1} and large-S^{1} regimes. We also find concrete microscopic connections between N=1 and N=2 supersymmetric gauge theory dynamics and nonsupersymmetric QCD dynamics. PMID:27588843

  10. Chiral Lagrangian from Duality and Monopole Operators in Compactified QCD

    NASA Astrophysics Data System (ADS)

    Cherman, Aleksey; Schäfer, Thomas; Ünsal, Mithat

    2016-08-01

    We show that there exists a special compactification of QCD on R3×S1 in which the theory has a domain where continuous chiral symmetry breaking is analytically calculable. We give a microscopic derivation of the chiral Lagrangian, the chiral condensate, and the Gell-Mann-Oakes-Renner relation mπ2fπ2=-mq⟨q ¯ q ⟩ . Abelian duality, monopole operators, and flavor-twisted boundary conditions play the main roles. The flavor twisting leads to the new effect of fractional jumping of fermion zero modes among monopole instantons. Chiral symmetry breaking is induced by monopole-instanton operators, and the Nambu-Goldstone pions arise by color-flavor transmutation from gapless "dual photons." We also give a microscopic picture of the "constituent quark" masses. Our results are consistent with expectations from chiral perturbation theory at large S1, and yield strong support for adiabatic continuity between the small-S1 and large-S1 regimes. We also find concrete microscopic connections between N =1 and N =2 supersymmetric gauge theory dynamics and nonsupersymmetric QCD dynamics.

  11. Coexistence of chiral symmetry restoration and random orientation of galaxies

    NASA Astrophysics Data System (ADS)

    Aryal, B.; Paudel, S.; Saurer, W.

    2008-02-01

    We studied the chiral symmetry restoration and the spatial orientation of 2288 spiral and spiral barred galaxies that have radial velocities (RV) less than 5000 km s-1. A random direction of the rotation of galaxies is assumed in order to classify the structural modes. The distribution of spin vector and spin vector projections of leading and trailing arm galaxies in the total sample and subsamples are studied. We use chi-square, auto-correlation and Fourier tests in order to discriminate the preferred alignments from the random alignments. A good correlation between the random alignment and the chiral symmetry is noticed in the Local Supercluster (RV < 3000 km s-1) and in galaxies nearby the Local Supercluster (3000 < RV (km s-1) ≤ 5000). Spiral galaxies show a similar result. The barred spirals show an opposite trend to that observed for the spirals. Nearby the Local Supercluster, we noticed a preferred spatial alignment and non-chiral property in the leading and trailing arm spiral barred galaxies. Our result predicts that the progressive loss of chirality might have some connection with the rotationally supported (spirals, barred spirals) and randomized (lenticulars, ellipticals) systems. Thus, we suspect that the dynamical processes in the cluster evolution give rise to a dynamical loss of chirality.

  12. A Simple Method of Resolving the 180 Degree Ambiguity Employing the Chirality of Solar Features

    NASA Astrophysics Data System (ADS)

    Martin, Sara F.; Lin, Y.; Engvold, O.

    2006-06-01

    The 180 degree ambiguity in magnetic field direction along polarity reversal boundaries can be resolved simply and reliably by a technique that we name "chiral method". For a given polarity boundary, the chiral method requires identifying the chirality of at least one solar feature related to the polarity boundary, familiarity with the one-to-one associations between the chirality of solar features, and the polarity of the network magnetic field on at least one side of the polarity boundary. We demonstrate the technique in 6 examples. The examples cover the spectrum of polarity boundaries associated with filament channels and filaments ranging from those associated with active regions to those on the quiet Sun.The applicability of the chiral method to all categories of filaments supports the view that active region filaments and quiescent filaments are the extreme ends in a continuous spectrum of filaments. An example is shown of a filament where the chirality could not be determined in low resolution images because of lack of consistency in barb orientation; however, at high resolution, all threads of this barb were found to be consistent with just one sense of chirality. The chiral method is almost universally applicable because many types of data, that reveal chirality in solar features, are now readily available over the world-wide web. Solar features that most commonly reveal chirality are filaments, filament channels, sigmoids, and both quiescent and dynamic coronal loop systems. Assuming that the chirality of the solar features is identified correctly, the method is fail-safe and physically meaningful because chirality is an observational representation of the helicity and there are clear differences between left-handed and right-handed solar structures.Support from US NSF grant ATM-0209395 and NASA grant NAG5-10852 are acknowledged for S.F.M. and Y.L.

  13. Chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether for enantiomer separation of amino compounds using a normal mobile phase.

    PubMed

    Hirose, Keiji; Yongzhu, Jin; Nakamura, Takashi; Nishioka, Ryota; Ueshige, Tetsuro; Tobe, Yoshito

    2005-03-01

    In order to apply the excellent chiral recognition ability of chiral pseudo-18-crown-6 ethers that we developed to chiral separation, we prepared a chiral stationary phase (CSP) by immobilizing a chiral pseudo-18-crown-6-type host on 3-aminopropyl silica gel. A chiral column was prepared by the slurry-packing method in a stainless steel HPLC column. A liquid chromatography system using this CSP combined with the detection by mass spectrometry was used for enantiomer separation of amino compounds. A normal mobile phase can be used on this CSP as opposed to conventional dynamic coating-type CSPs. Enantiomers of 18 common natural amino acids were efficiently separated. The chiral separation observed for amino acid methyl esters, amino alcohols, and lipophilic amines was fair using this HPLC system. In view of the correlation between the enantiomer selectivity observed in chromatography and the complexion in solution, the chiral recognition in host-guest interactions might contribute to this enantiomer separation. PMID:15704196

  14. Chiral fiber optical isolator

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan

    2009-02-01

    We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.

  15. Switching of inherent chirality driven by self-assembly.

    PubMed

    Jędrzejewska, Hanna; Kwit, Marcin; Szumna, Agnieszka

    2015-09-18

    Dynamic chirality of iminoresorcin[4]arenes that originates from regioselective and diastereoselective keto-enol tautomerisation was switched by non-covalent interactions with achiral molecules, as demonstrated by experimental electronic circular dichroism (ECD) spectra supported by TD DFT calculations. PMID:26235373

  16. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  17. Light-induced rotations of chiral birefringent microparticles in optical tweezers.

    PubMed

    Donato, M G; Mazzulla, A; Pagliusi, P; Magazzù, A; Hernandez, R J; Provenzano, C; Gucciardi, P G; Maragò, O M; Cipparrone, G

    2016-01-01

    We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed to induce rotations is found. The experimental results are compared with analytical calculations of the transfer of angular moment from elliptically polarized light to chiral birefringent particles. PMID:27601200

  18. Light-induced rotations of chiral birefringent microparticles in optical tweezers

    PubMed Central

    Donato, M. G.; Mazzulla, A.; Pagliusi, P.; Magazzù, A.; Hernandez, R. J.; Provenzano, C.; Gucciardi, P. G.; Maragò, O. M.; Cipparrone, G.

    2016-01-01

    We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed to induce rotations is found. The experimental results are compared with analytical calculations of the transfer of angular moment from elliptically polarized light to chiral birefringent particles. PMID:27601200

  19. Improved Measure of Local Chirality

    SciTech Connect

    Terrence Draper; Andrei Alexandru; Ying Chen; Shao-Jing Dong; Ivan Horvath; Frank Lee; Nilmani Mathur; Harry B. Thacker; Sonali Tamhankar; Jianbo Zhang

    2004-06-01

    It is popular to probe the structure of the QCD vacuum indirectly by studying individual fermion eigenmodes, because this provides a natural way to filter out UV fluctuations. The double-peaking in the distribution of the local chiral orientation parameter (X) has been offered as evidence, by some, in support of a particular model of the vacuum. Here we caution that the X-distribution peaking varies significantly with various versions of the definition of X. Furthermore, each distribution varies little from that resulting from a random reshuffling of the left-handed (and independently the right-handed) fields, which destroys any QCD-induced left-right correlation; that is, the double-peaking is mostly a phase-space effect. We propose a new universal definition of the X parameter whose distribution is uniform for randomly reshuffled fields. Any deviations from uniformity for actual data can then be directly attributable to QCD-induced dynamics. We find that the familiar double peak disappears.

  20. Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes

    PubMed Central

    2012-01-01

    Using nonequilibrium molecular dynamics simulations and nonequilibrium Green's function method, we investigate the thermoelectric properties of a series of zigzag and chiral carbon nanotubes which exhibit interesting diameter and chirality dependence. Our calculated results indicate that these carbon nanotubes could have higher ZT values at appropriate carrier concentration and operating temperature. Moreover, their thermoelectric performance can be significantly enhanced via isotope substitution, isoelectronic impurities, and hydrogen adsorption. It is thus reasonable to expect that carbon nanotubes may be promising candidates for high-performance thermoelectric materials. PMID:22325623

  1. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  2. The chiral phase transition and the role of vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Khan, Rashid; Andersen, Jens O.; Kyllingstad, Lars T.; Khan, Majid

    2016-03-01

    We apply optimized perturbation theory to the quark-meson model at finite temperature T and quark chemical potential μ. The effective potential is calculated to one loop both in the chiral limit and at the physical point and used to study the chiral dynamics of two-flavor QCD. The critical temperature and the order of the phase transition depend heavily on whether or not one includes the bosonic and fermionic vacuum fluctuations in the effective potential. A full one-loop calculation in the chiral limit predicts a first-order transition for all values of μ. At the physical point, one finds a crossover in the whole μ-T plane.

  3. Hierarchical self-assembly of chiral fibres from achiral particles

    PubMed Central

    Prybytak, P.; Frith, W. J.; Cleaver, D. J.

    2012-01-01

    We investigate, by molecular dynamics simulation, the behaviour of discotic particles in a solvent of Lennard-Jones spheres. When chromonic disc–sphere interactions are imposed on these systems, three regimes of self-assembly are observed. At moderate temperatures, numerous short threads of discs develop, but these threads remain isolated from one another. Quenching to low temperatures, alternatively, causes all of the discs to floc into a single extended aggregate which typically comprises several distinct sections and contains numerous packing defects. For a narrow temperature range between these regimes, however, defect-free chiral fibres are found to freely self-assemble. The spontaneous chirality of these fibres results from frustration between the hexagonal packing and interdigitation of neighbouring threads, the pitch being set by the particle shape. This demonstration of aggregate-wide chirality emerging owing to packing alone is pertinent to many biological and synthetic hierarchically self-assembling systems. PMID:24098850

  4. Phases of N=1 Supersymmetric Chiral Gauge Theories

    SciTech Connect

    Craig, Nathaniel; Essig, Rouven; Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2012-02-17

    We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing 'mixed phases' are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.

  5. Disoriented Chiral Condensates in High-Energy Nuclear Collisions

    SciTech Connect

    Randrup, Jorgen

    2000-10-18

    This brief lecture series discusses how our current understanding of chiral symmetry may be tested more globally in high-energy nuclear collisions by suitable extraction of pionic observables. After briefly recalling the general features of chiral symmetry, we focus on the SU(2) linear sigma model and show how a semi-classical mean-field treatment makes it possible to calculate its statistical properties, including the chiral phase diagram. Subsequently, we consider scenarios of relevance to high-energy collisions and discuss the features of the ensuing non-equilibrium dynamics and the associated characteristic signals. Finally, we illustrate how the presence of vacuum fluctuations or the inclusion of strangeness may affect the results quantitatively.

  6. Strong, spectrally-tunable chirality in diffractive metasurfaces

    PubMed Central

    De Leon, Israel; Horton, Matthew J.; Schulz, Sebastian A.; Upham, Jeremy; Banzer, Peter; Boyd, Robert W.

    2015-01-01

    Metamaterials and metasurfaces provide a paradigm-changing approach for manipulating light. Their potential has been evinced by recent demonstrations of chiral responses much greater than those of natural materials. Here, we demonstrate theoretically and experimentally that the extrinsic chiral response of a metasurface can be dramatically enhanced by near-field diffraction effects. At the core of this phenomenon are lattice plasmon modes that respond selectively to the illumination’s polarization handedness. The metasurface exhibits sharp features in its circular dichroism spectra, which are tunable over a broad bandwidth by changing the illumination angle over a few degrees. Using this property, we demonstrate an ultra-thin circular-polarization sensitive spectral filter with a linewidth of ~10 nm, which can be dynamically tuned over a spectral range of 200 nm. Chiral diffractive metasurfaces, such as the one proposed here, open exciting possibilities for ultra-thin photonic devices with tunable, spin-controlled functionality. PMID:26338445

  7. Spontaneous chiral resolution in two-dimensional systems of patchy particles.

    PubMed

    Martínez-González, J A; Chapela, G A; Quintana-H, J

    2014-05-21

    Short ranged potentials and their anisotropy produce spontaneous chiral resolution in a two dimensional model of patchy particles introduced in this paper. This model could represent an equimolar binary mixture (racemic mixture) of two kinds of chiral molecules (enantiomers) adsorbed to a bi-dimensional domain where only lateral short ranged interactions are present. Most racemic mixtures undergo chiral resolution due to their spatial anisotropy, the combined effect of long range forces and the thermodynamic conditions. The patchy particles are modeled as a hard disk and four different bonding sites located to produce chirality. Phase behavior and structural properties are analysed using Discontinuous Molecular Dynamics in the canonical ensemble. When the four patchy particles are separated by the angles {60°, 120°, 60°, 120°}, spontaneous chiral resolution is produced, given by the formation of homochiral clusters, if started from the corresponding racemic mixture. Gel behavior is also obtained in all the systems for low temperatures and low densities. PMID:24852548

  8. Spontaneous chiral resolution in two-dimensional systems of patchy particles

    SciTech Connect

    Martínez-González, J. A.; Chapela, G. A.; Quintana-H, J.

    2014-05-21

    Short ranged potentials and their anisotropy produce spontaneous chiral resolution in a two dimensional model of patchy particles introduced in this paper. This model could represent an equimolar binary mixture (racemic mixture) of two kinds of chiral molecules (enantiomers) adsorbed to a bi-dimensional domain where only lateral short ranged interactions are present. Most racemic mixtures undergo chiral resolution due to their spatial anisotropy, the combined effect of long range forces and the thermodynamic conditions. The patchy particles are modeled as a hard disk and four different bonding sites located to produce chirality. Phase behavior and structural properties are analysed using Discontinuous Molecular Dynamics in the canonical ensemble. When the four patchy particles are separated by the angles (60°, 120°, 60°, 120°), spontaneous chiral resolution is produced, given by the formation of homochiral clusters, if started from the corresponding racemic mixture. Gel behavior is also obtained in all the systems for low temperatures and low densities.

  9. Finite nuclei in relativistic models with a light chiral scalar meson

    SciTech Connect

    Furnstahl, R.J. ); Serot, B.D. )

    1993-05-01

    Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon ([ital NN]) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the [ital NN] attraction, is discussed.

  10. Chiral Bosonization of Superconformal Ghosts

    NASA Technical Reports Server (NTRS)

    Shi, Deheng; Shen, Yang; Liu, Jinling; Xiong, Yongjian

    1996-01-01

    We explain the difference of the Hilbert space of the superconformal ghosts (beta,gamma) system from that of its bosonized fields phi and chi. We calculate the chiral correlation functions of phi, chi fields by inserting appropriate projectors.

  11. Life's chirality from prebiotic environments

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Walker, Sara Imari

    2012-10-01

    A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

  12. Critical dimensions for chiral bosons

    SciTech Connect

    Mezincescu, L.; Nepomechie, R.I.

    1988-05-15

    We give the Lagrangian formulation of a Bose model in 1+1 dimensions which describes a free chiral Lie-algebra-valued current. This model is a non-Abelian generalization of the chiral scalar model of Siegel. Both the Abelian and non-Abelian actions have a gauge invariance, which becomes anomalous when the models are quantized. The condition that this anomaly be canceled coincides with the string no-ghost condition.

  13. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation

    PubMed Central

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-01-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application. PMID:27401541

  14. Correlation between structures of chiral polymers and their efficiency for chiral resolution by crystallization.

    PubMed

    Menahem, Tali; Pravda, Martin; Mastai, Yitzhak

    2009-10-01

    In this work, we describe the correlation between chiral polymer structures, particularly alpha-helical and random coil conformations, and their efficiency as chiral resolving agents in crystallization processes. A set of chiral block copolymers based on polyethylene oxide with chiral glutamic acid oligopeptide segments (PEG(113)-b-(+)-(S)-Glu(20)) were synthesized and employed as additives in the crystallization of rac-threonine. CD spectroscopy demonstrates that structures of chiral polymers could be switched between a helical and a disordered random coil by pH. The effect of these polymers at different conformations on the crystallization kinetics, crystal morphology, and chiral resolution of rac-threonine is reported. Our study demonstrates that only chiral polymers with alpha-helical conformations of the chiral segment are effective as additives for chiral resolution throughout crystallization. Overall, our results provide useful guidelines for the selection and design of chiral polymer additives that will act efficiently for chiral resolution by crystallization. PMID:19455618

  15. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation

    NASA Astrophysics Data System (ADS)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  16. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation.

    PubMed

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-01-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application. PMID:27401541

  17. Enzymatic kinetic resolution and chemoenzymatic dynamic kinetic resolution of delta-hydroxy esters. An efficient route to chiral delta-lactones.

    PubMed

    Pàmies, Oscar; Bäckvall, Jan-E

    2002-02-22

    A successful kinetic resolution of a racemic mixture of delta-hydroxy esters 1 was obtained via lipase-catalyzed transesterification (E value up to 360). The combination of the enzymatic kinetic resolution with a ruthenium-catalyzed alcohol racemization led to an efficient dynamic kinetic resolution (ee up to 99% and conversion up to 92%). The synthetic utility of this procedure was illustrated by the practical syntheses of delta-lactones (R)-6-methyl- and (R)-6-ethyl-tetrahydropyran-2-one and (S)-5-(tert-butyldimethylsiloxy)heptanal. The former are important building blocks in the synthesis of natural products and biologically active compounds, and the latter is a key intermediate in the synthesis of widely used commercial insecticide Spinosyn A. PMID:11846671

  18. Effect of chirality on the dynamics of domain walls in the molecular ferrimagnet [MnII(H L-pn)(H2O)][MnIII(CN)6] · 2H2O

    NASA Astrophysics Data System (ADS)

    Mushenok, F. B.; Morgunov, R. B.; Koplak, O. V.; Kirman, M. V.

    2012-04-01

    The contributions from modes of switching, sliding, creep, and Debye relaxation of pinned domain walls to the low-frequency magnetic properties of the chiral and racemic molecular ferrimagnets [MnII(H L-pn)(H2O)][MnIII(CN)6] · 2H2O have been separated. It has been found that the chirality of the atomic and spin structures affects the temperatures of the transitions from the sliding mode to the creep mode and from the creep mode to the mode of Debye relaxation. In the chiral crystals, transitions to the creep and Debye relaxation modes have been observed at temperatures T = 7 and 5 K, respectively. In the racemic crystals, these transitions have been observed at temperatures T = 13 and 9 K, respectively, all other factors being equal.

  19. An Anderson-like model of the QCD chiral transition

    NASA Astrophysics Data System (ADS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  20. Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?

    ERIC Educational Resources Information Center

    LeMarechal, Jean Francois

    2008-01-01

    Several pedagogical objects can be used to discuss chirality. Here, we use the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object. Octahedral chirality is used to find situations equivalent to the cut of the apple. (Contains 5 figures.)

  1. Determination of the chiral condensate from QCD Dirac spectrum on the lattice

    SciTech Connect

    Fukaya, H.; Onogi, T.; Aoki, S.; Chiu, T. W.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Noaki, J.

    2011-04-01

    We calculate the chiral condensate of QCD with 2, 2+1, and 3 flavors of sea quarks. Lattice QCD simulations are performed employing dynamical overlap fermions with up- and down-quark masses covering a range between 3 and 100 MeV. On L{approx}1.8-1.9 fm lattices at a lattice spacing {approx}0.11 fm, we calculate the eigenvalue spectrum of the overlap-Dirac operator. By matching the lattice data with the analytical prediction from chiral perturbation theory at the next-to-leading order, the chiral condensate in the massless limit of up and down quarks is determined.

  2. Chiral magnetic effect in the soft-wall AdS/QCD model

    SciTech Connect

    Gorsky, A.; Kopnin, P. N.; Zayakin, A. V.

    2011-01-01

    The essence of the chiral magnetic effect is generation of an electric current along an external magnetic field. Recently it has been studied by Rebhan, Schmitt, and Stricker within the Sakai-Sugimoto model, where it was shown to be zero. As an alternative, we calculate the chiral magnetic effect in soft-wall AdS/QCD and find a nonzero result with the natural boundary conditions. The mechanism of the dynamical neutralization of the chiral chemical potential via the string production is discussed in the dual two-form representation.

  3. Chiral Chlordane Components in Environmental Matrices

    EPA Science Inventory

    Chlordane, a persistent, bioaccumulative and toxic organochlorine pesticide, has been studied for many years. Since the advent of chiral analysis for environmental samples, over 2,400 measurements have been made of various chiral chlordane components. Chlordane enantiomer fractio...

  4. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Shan; Shimada, Takahiro; Wang, Gang-Feng; Kitamura, Takayuki

    2014-01-01

    Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler-Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties.

  5. Numerical modelling of chirality-induced bi-directional swimming of artificial flagella.

    PubMed

    Namdeo, S; Khaderi, S N; Onck, P R

    2014-02-01

    Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. PMID:24511253

  6. Tactoids of chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo

    The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.

  7. Chiral Thirring–Wess model

    SciTech Connect

    Rahaman, Anisur

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  8. Controlling Chirality of Entropic Crystals

    NASA Astrophysics Data System (ADS)

    Damasceno, Pablo; Karas, Andrew; Schultz, Benjamin; Engel, Michael; Glotzer, Sharon

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams. Work supported by the National Science Foundation, Division of Materials Research Award No. DMR 1120923, U.S. Army Research Office under Grant Award No. W911NF-10-1-0518, and also by the DOD/ASD (R&E) under Award No. N00244-09-1-0062.

  9. Field induced spin chirality and chirality switching in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Tartakovskaya, Elena V.

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman-Kittel-Kasuya-Yosida and the Dsyaloshinsky-Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness.

  10. Chiral lattice fermions with correct vacuum polarization and chiral anomaly

    SciTech Connect

    Pryor, C. )

    1991-04-15

    An action for chiral lattice fermions is proposed, which avoids the Nielsen-Ninomiya theorem by virtue of its nonlocality and nonbilinearity. The action is constructed by eliminating the extra fermion modes with a gauge-violating Majorana-type Wilson mass, which is then rendered invariant by an integration over gauge transformations. The free propagator is calculated, and the one-loop vacuum polarization is shown to be identical to that for Wilson fermions, even at nonzero lattice spacing. Also the chiral anomaly is shown to be the same as for Wilson fermions in the continuum limit.

  11. Repulsive Casimir force in chiral metamaterials.

    PubMed

    Zhao, R; Zhou, J; Koschny, Th; Economou, E N; Soukoulis, C M

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients. PMID:19792309

  12. Chiral Sensor for Enantiodiscrimination of Varied Acids.

    PubMed

    Huang, Huayin; Bian, Guangling; Zong, Hua; Wang, Yabai; Yang, Shiwei; Yue, Huifeng; Song, Ling; Fan, Hongjun

    2016-06-01

    A chiral thiophosphoroamide 4 derived from (1R,2R)-1,2-diaminocyclohexane is used as a highly effective chiral sensor for the chiral recognition of varied acids via ion-pairing and hydrogen-bonding interactions using (1)H, (19)F and (31)P NMR. PMID:27192021

  13. Chirality and gravitational parity violation.

    PubMed

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. PMID:25919812

  14. New Dualities in Supersymmetric Chiral Gauge Theories

    SciTech Connect

    Craig, Nathaniel; Essig, Rouven; Hook, Anson; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC

    2011-08-15

    We analyze the phase structure of supersymmetric chiral gauge theories with gauge group SU(N), an antisymmetric, and F {le} N + 3 flavors, in the presence of a cubic superpotential. When F = N + 3 the theory flows to a superconformal fixed point in the infrared, and new dual descriptions of this theory are uncovered. The theory with odd N admits a self-dual magnetic description. For general N, we find an infinite family of magnetic dual descriptions, characterized by arbitrarily large gauge groups and additional classical global symmetries that are truncated by nonperturbative effects. The infrared dynamics of these theories are analyzed using a-maximization, which supports the claim that all these theories flow to the same superconformal fixed point. A very rich phase structure is found when the number of flavors is reduced below N + 3, including a new self-dual point, transitions from conformal to confining, and a nonperturbative instability for F {le} N. We also give examples of chiral theories with antisymmetrics that have nonchiral duals.

  15. Microwave propagation in chiral metamaterials

    NASA Astrophysics Data System (ADS)

    Prybylski, Aida; Yon, Luis; Noginova, Natalia

    Chiral hyperbolic metamaterials are predicted to show interesting properties associated with possible topological photonic states in these materials, which present new opportunities for light control and manipulation. As prototypes, we consider two metal-dielectric systems designed for microwave range: a twisted wires array, where chirality is associated with shape of metal inclusions, and a rotated layer system, with parallel wires in each layer, and direction of the wires orientation rotated from layer to layer. Systems with different content of metal and layer-to-layer distance were fabricated and studied in the free space propagation experiment. The results were discussed in terms of effective media consideration.

  16. Collisions in Chiral Kinetic Theory.

    PubMed

    Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A

    2015-07-10

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order O(ℏ), which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the H function obeying Boltzmann's H theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing the chiral vortical effect. PMID:26207458

  17. Mechanical chirality: A chiral catalyst with a ring to it

    NASA Astrophysics Data System (ADS)

    Goldup, Stephen M.

    2016-05-01

    A chiral [2]rotaxane in which the asymmetry is derived from the way in which the two components are mechanically interlocked -- rather than being encoded in the covalent connectivity of the components themselves -- has been shown to act as an enantioselective organocatalyst.

  18. Coherent perfect absorption in chiral metamaterials.

    PubMed

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin

    2016-07-15

    We study the coherent perfect absorption (CPA) of a chiral structure and derive analytically the CPA condition for transversely isotropic chiral structures in circular polarization bases. The coherent absorption of such a chiral system is generally polarization dependent and can be tuned by the relative phase between the coherent input beams. To demonstrate our theoretical predictions, a chiral metamaterial absorber operating in the terahertz frequency range is optimized. We numerically demonstrate that a coherent absorption of 99.5% can be achieved. Moreover, we show that an optimized CPA chiral structure can be used as an interferometric control of polarization state of the output beams with constant output intensity. PMID:27420535

  19. Scaling laws in chiral hydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki

    2016-06-01

    We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry, only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.

  20. Chiral xenobiotics bioaccumulations and environmental health prospectives.

    PubMed

    Hussain, Iqbal; ALOthman, Zeid A; Alwarthan, Abdulrahman A; Sanagi, Mohd Marsin; Ali, Imran

    2015-08-01

    The chiral xenobiotics are very dangerous for all of us due to the different enantioselective toxicities of the enantiomers. Besides, these have different enantioselective bioaccumulations and behaviors in our body and other organisms. It is of urgent need to understand the enantioselective bioaccumulations, toxicities, and the health hazards of the chiral xenobiotics. The present article describes the classification, sources of contamination, distribution, enantioselective bioaccumulation, and the toxicities of the chiral xenobiotics. Besides, the efforts are also made to discuss the prevention and remedial measures of the havoc of the chiral xenobiotics. The challenges of the chiral xenobiotics have also been highlighted. Finally, future prospectives are also discussed. PMID:26148690

  1. Soft-mode of charged chiral fibrous viruses (fd).

    PubMed

    Kang, Kyongok

    2016-08-14

    The frictional forces in suspensions vary depending on the size, shape, and the surface of the particles, which are either charged or neutral. For anisotropic particles with no spatial gradient in the order parameter under external parameters, they exhibit either a continuous phase transition or "freezing" of the order parameter fluctuation. They are known as the collective soft-mode, which has a finite cutoff dispersion where the relaxation time diverges. From microscopic dynamics of charged chiral fd-viruses, the soft-mode is revealed with a rotation restoring "twist", obtained from both polarized (VV) and depolarized (VH) small angle dynamic light scattering. Here, I have found the minimum spatial coherence length at a lower I-N binodal concentration, which is due to the reverse of electrostatic repulsive forces with an increase in the concentration of charged chiral rods. PMID:27414163

  2. Chiral selection of single helix formed by diblock copolymers confined in nanopores.

    PubMed

    Deng, Hanlin; Qiang, Yicheng; Zhang, Tingting; Li, Weihua; Yang, Tao

    2016-09-21

    Chiral selection has attracted tremendous attention from the scientific communities, especially from biologists, due to the mysterious origin of homochirality in life. The self-assembly of achiral block copolymers confined in nanopores offers a simple but useful model of forming helical structures, where the helical structures possess random chirality selection, i.e. equal probability of left-handedness and right-handedness. Based on this model, we study the stimulus-response of chiral selection to external conditions by introducing a designed chiral pattern onto the inner surface of a nanopore, aiming to obtain a defect-free helix with controllable homochirality. A cell dynamics simulation based on the time-dependent Ginzburg-Landau theory is carried out to demonstrate the tuning effect of the patterned surface on the chiral selection. Our results illustrate that the chirality of the helix can be successfully controlled to be consistent with that of the tailored surface patterns. This work provides a successful example for the stimulus response of the chiral selection of self-assembled morphologies from achiral macromolecules to external conditions, and hence sheds light on the understanding of the mechanism of the stimulus response. PMID:27536966

  3. Nanospheres, nanotubes, toroids, and gels with controlled macroscopic chirality.

    PubMed

    Arias, Sandra; Freire, Félix; Quiñoá, Emilio; Riguera, Ricardo

    2014-12-01

    The interaction of a highly dynamic poly(aryl acetylene) (poly-1) with Li(+), Na(+), and Ag(+) leads to macroscopically chiral supramolecular nanospheres, nanotubes, toroids, and gels. With Ag(+), nanospheres with M helicity and tunable sizes are generated, which complement those obtained from the same polymer with divalent cations. With Li(+) or Na(+), poly-1 yields chiral nanotubes, gels, or toroids with encapsulating properties and M helicity. Right-handed supramolecular structures can be obtained by using the enantiomeric polymer. The interaction of poly-1 with Na(+) produces nanostructures whose helicity is highly dependent on the solvation state of the cation. Therefore, structures with either of the two helicities can be prepared from the same polymer by manipulation of the cosolvent. Such chiral nanotubes, toroids, and gels have previously not been obtained from helical polymer-metal complexes. Chiral nanospheres made of poly(aryl acetylene) that were previously assembled with metal(II) species can now be obtained with metal(I) species. PMID:25209219

  4. Partial restoration of chiral symmetry in a confining string

    SciTech Connect

    Kharzeev, Dmitri E.; Loshaj, F.

    2014-08-01

    Here, we attempt to describe the interplay of confinement and chiral symmetry breaking in QCD by using the string model. We argue that in the quasi-Abelian picture of confinement based on the condensation of magnetic monopoles and the dual Meissner effect, the world sheet dynamics of the confining string can be effectively described by the 1+1 dimensional massless electrodynamics, which is exactly soluble. The transverse plane distribution of the chromoelectric field stretched between the quark and antiquark sources can then be attributed to the fluctuations in the position of the string. The dependence of the chiral condensate in the string on the (chromo-)electric field can be evaluated analytically, and is determined by the chiral anomaly and the θ-vacuum structure. Moreover, our picture allows us to predict the distribution of the chiral condensate in the plane transverse to the axis connecting the quark and antiquark. This prediction is compared to the lattice QCD results; a good agreement is found.

  5. Chiral modes and directional lasing at exceptional points

    PubMed Central

    Peng, Bo; Özdemir, Şahin Kaya; Liertzer, Matthias; Chen, Weijian; Kramer, Johannes; Yılmaz, Huzeyfe; Wiersig, Jan; Yang, Lan

    2016-01-01

    Controlling the emission and the flow of light in micro- and nanostructures is crucial for on-chip information processing. Here we show how to impose a strong chirality and a switchable direction of light propagation in an optical system by steering it to an exceptional point (EP)—a degeneracy universally occurring in all open physical systems when two eigenvalues and the corresponding eigenstates coalesce. In our experiments with a fiber-coupled whispering-gallery-mode (WGM) resonator, we dynamically control the chirality of resonator modes and the emission direction of a WGM microlaser in the vicinity of an EP: Away from the EPs, the resonator modes are nonchiral and laser emission is bidirectional. As the system approaches an EP, the modes become chiral and allow unidirectional emission such that by transiting from one EP to another one the direction of emission can be completely reversed. Our results exemplify a very counterintuitive feature of non-Hermitian physics that paves the way to chiral photonics on a chip. PMID:27274059

  6. Chiral symmetry restoration and scalar-pseudoscalar partners in QCD

    NASA Astrophysics Data System (ADS)

    Gómez Nicola, A.; Ruiz de Elvira, J.; Torres Andrés, R.

    2013-10-01

    We describe scalar-pseudoscalar partner degeneration at the QCD chiral transition in terms of the dominant low-energy physical states for the light quark sector. First, we obtain within model-independent one-loop chiral perturbation theory that the QCD pseudoscalar susceptibility is proportional to the quark condensate at low T. Next, we show that this chiral-restoring behavior for χP is compatible with recent lattice results for screening masses and gives rise to degeneration between the scalar and pseudoscalar susceptibilities (χS,χP) around the transition point, consistently with an O(4)-like current restoration pattern. This scenario is clearly confirmed by lattice data when we compare χS(T) with the quark condensate, expected to scale as χP(T). Finally, we show that saturating χS with the σ/f0(500) broad resonance observed in pion scattering and including its finite temperature dependence, allows us to describe the peak structure of χS(T) in lattice data and the associated critical temperature. This is carried out within a unitarized chiral perturbation theory scheme which generates the resonant state dynamically and is also consistent with partner degeneration.

  7. Chiral modes and directional lasing at exceptional points.

    PubMed

    Peng, Bo; Özdemir, Şahin Kaya; Liertzer, Matthias; Chen, Weijian; Kramer, Johannes; Yılmaz, Huzeyfe; Wiersig, Jan; Rotter, Stefan; Yang, Lan

    2016-06-21

    Controlling the emission and the flow of light in micro- and nanostructures is crucial for on-chip information processing. Here we show how to impose a strong chirality and a switchable direction of light propagation in an optical system by steering it to an exceptional point (EP)-a degeneracy universally occurring in all open physical systems when two eigenvalues and the corresponding eigenstates coalesce. In our experiments with a fiber-coupled whispering-gallery-mode (WGM) resonator, we dynamically control the chirality of resonator modes and the emission direction of a WGM microlaser in the vicinity of an EP: Away from the EPs, the resonator modes are nonchiral and laser emission is bidirectional. As the system approaches an EP, the modes become chiral and allow unidirectional emission such that by transiting from one EP to another one the direction of emission can be completely reversed. Our results exemplify a very counterintuitive feature of non-Hermitian physics that paves the way to chiral photonics on a chip. PMID:27274059

  8. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  9. On the tensorial nature of chirality

    NASA Astrophysics Data System (ADS)

    Efrati, Efi; Irvine, William

    2013-03-01

    Chirality occupies a central role in fields ranging from biological self assembly to the design of optical meta-materials. The definition of chirality, as given by lord Kelvin in 1893, associates handedness with the lack of mirror symmetry. However, the quantification of chirality based on this definition has proven to be an elusive task. The difficulty in quantifying chirality is contrasted by the ease with which one determines the handedness of objects with a well defined axis such as screws and helices. In this talk I will present table-top demonstrations that show that a single object can simultaneously be left handed and right handed when considered from different directions. The orientation dependence of handedness motivates a tensorial quantification of chirality relating directions to rotations. I will give an explicit example of such a tensorial measure of chirality for embedded surfaces, and show how the tensorial nature of chirality can be probed in experiments and exploited as a design principle.

  10. Micropatterning of cells reveals chiral morphogenesis

    PubMed Central

    2013-01-01

    Invariant left-right (LR) patterning or chirality is critical for embryonic development. The loss or reversal of LR asymmetry is often associated with malformations and disease. Although several theories have been proposed, the exact mechanism of the initiation of the LR symmetry has not yet been fully elucidated. Recently, chirality has been detected within single cells as well as multicellular structures using several in vitro approaches. These studies demonstrated the universality of cell chirality, its dependence on cell phenotype, and the role of physical boundaries. In this review, we discuss the theories for developmental LR asymmetry, compare various in vitro cell chirality model systems, and highlight possible roles of cell chirality in stem cell differentiation. We emphasize that the in vitro cell chirality systems have great promise for helping unveil the nature of chiral morphogenesis in development. PMID:23672821

  11. Chiral extrapolation of the X(3872) binding energy

    NASA Astrophysics Data System (ADS)

    Baru, V.; Epelbaum, E.; Filin, A. A.; Gegelia, J.; Nefediev, A. V.

    2016-02-01

    The role of pion dynamics in the X(3872) charmonium-like state is studied in the framework of a renormalisable effective quantum field theory approach and they are found to play a substantial role in the formation of the X. Chiral extrapolation from the physical point to unphysically large pion masses is performed and the results are confronted with the lattice predictions. The proposed approach overrides the gap between the lattice calculations and the physical limit in mπ.

  12. The Baryon Number Two System in the Chiral Soliton Model

    NASA Astrophysics Data System (ADS)

    Mantovani-Sarti, Valentina; Drago, Alessandro; Vento, Vicente; Park, Byung-Yoon

    2013-03-01

    We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.

  13. Baryon and chiral symmetry breaking

    SciTech Connect

    Gorsky, A.; Krikun, A.

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  14. Chiral phosphines in nucleophilic organocatalysis

    PubMed Central

    Xiao, Yumei; Sun, Zhanhu

    2014-01-01

    Summary This review discusses the tertiary phosphines possessing various chiral skeletons that have been used in asymmetric nucleophilic organocatalytic reactions, including annulations of allenes, alkynes, and Morita–Baylis–Hillman (MBH) acetates, carbonates, and ketenes with activated alkenes and imines, allylic substitutions of MBH acetates and carbonates, Michael additions, γ-umpolung additions, and acylations of alcohols. PMID:25246969

  15. Pion-Skyrmion scattering: collective coordinates at work

    SciTech Connect

    Peskin, M.E.

    1985-06-01

    It is argued that the Skryme model, and more generally, the picture of the nucleon as a chiral soliton, can give a qualitatively correct picture of pion-nucleon scattering, considering both group-theoretic and more scheme-dependent results. The properties of the nucleon and its excited states in large-N quantum chromodynamics are discussed qualitatively. Then the pion-nucleon S-matrix is reduced. It is found that the model succeeds at the first level of calculation in producing many of the features of pion-nucleon scattering which are revealed by experiment, but that many aspects of the description need to be better understood, including the treatment of nonleading corrections near threshold and the inclusion of inelastic channels. 22 refs., 8 figs. (LEW)

  16. Split of Chiral Degeneracy in Mechanical and Structural Properties of Oligopeptide-Polysaccharide Biomaterials

    SciTech Connect

    Taraban, Marc B.; Hyland, Laura L.; Yu, Y. Bruce

    2013-09-23

    Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy—identical structural characteristics and bulk material properties. The addition of another chiral component, d-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of l-peptides and d-polysaccharides assembles faster, has higher elastic moduli (G'), and is structurally more beneficial as opposed to the alternative d-peptide and d-polysaccharide combination. Chemical modifications of the OH-groups in α-d-glucose units in d-polysaccharides weaken such splitting of chiral degeneracy. These findings form a basis to design novel biomaterials and provide additional insight on why proteins and polysaccharides have oppoiste chirality in the biological world.

  17. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    NASA Astrophysics Data System (ADS)

    Holt, Jeremy W.; Rho, Mannque; Weise, Wolfram

    2016-03-01

    Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme". Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  18. Split of chiral degeneracy in mechanical and structural properties of oligopeptide-polysaccharide biomaterials.

    PubMed

    Taraban, Marc B; Hyland, Laura L; Yu, Y Bruce

    2013-09-01

    Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy--identical structural characteristics and bulk material properties. The addition of another chiral component, D-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of L-peptides and D-polysaccharides assembles faster, has higher elastic moduli (G'), and is structurally more beneficial as opposed to the alternative D-peptide and D-polysaccharide combination. Chemical modifications of the OH-groups in α-D-glucose units in D-polysaccharides weaken such splitting of chiral degeneracy. These findings form a basis to design novel biomaterials and provide additional insight on why proteins and polysaccharides have oppoiste chirality in the biological world. PMID:23879188

  19. Split of Chiral Degeneracy in Mechanical and Structural Properties of Oligopeptide-Polysaccharide Biomaterials

    PubMed Central

    Taraban, Marc B.; Hyland, Laura L.; Yu, Y. Bruce

    2013-01-01

    Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy—identical structural characteristics and bulk material properties. The addition of another chiral component, D-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of L-peptides and D-polysaccharides assembles faster, has higher elastic moduli (G′), and is structurally more beneficial as opposed to D-peptide and D-polysaccharide combination. Chemical modifications of the OH-groups in α-D-glucose units in D-polysaccharides weaken such splitting of chiral degeneracy. All these findings form a basis to design the approaches to novel biomaterials and provide additional insight on the opposite chirality of proteins and polysaccharides in biological world. PMID:23879188

  20. Chiral sensing by nonchiral tetrapyrroles.

    PubMed

    Labuta, Jan; Hill, Jonathan P; Ishihara, Shinsuke; Hanyková, Lenka; Ariga, Katsuhiko

    2015-03-17

    Enantiomeric excess (ee) is a measure of the purity of an enantiomer of a chiral compound with respect to the presence of the complementary enantiomer. It is an important aspect of chemistry, especially in the fields of pharmaceuticals and asymmetric catalysis. Existing methods for determination of enantiomeric excesses using nuclear magnetic resonance (NMR) spectroscopy mostly rely on special chiral reagents (auxiliaries) that form two or more diastereomeric complexes with a chiral compound. As a result of this, the NMR spectrum of each enantiomer is different, allowing the determination of enantiomeric excess. In this Account, we describe a molecular design process that has allowed us to prepare prochiral solvating agents for NMR determination of ee of a wide variety of analyte types. At the outset of this work, we initially encountered the phenomenon of NMR peak splitting in the oxoporphyrinogen (OxP) host component of a supramolecular host-guest complex, where the extent of the splitting is apparently proportional to the guests' ee. Upon closer examination of the mechanism of action, it was found that several complicating factors, including prototropic tautomerism, macrocyclic inversion (ring-flipping), and 1:2 host-guest stoichiometry, obstruct potential applications of OxP as a chiral solvating agent. By considering the molecular conformation of the OxP host, a saddle-shaped calix[4]pyrrole, we moved to study the tetraphenylporphyrin (TPP) dication since it has a similar form, and it was found that it could also be used to probe ee. However, although TPP does not suffer from disadvantageous tautomeric processes, it is still subject to macrocyclic inversion and has the additional serious disadvantage of operating for ee sensing only at depressed temperatures. The intrinsic disadvantages of the OxP and TPP systems were finally overcome by covalently modifying the OxP chromophore by regioselective N-alkylation at one face of the molecule. This procedure yields a

  1. Chiral matrix model of the semi-QGP in QCD

    NASA Astrophysics Data System (ADS)

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-08-01

    Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the

  2. Chiral logarithms in quenched QCD

    SciTech Connect

    Y. Chen; S. J. Dong; T. Draper; I. Horvath; F. X. Lee; K. F. Liu; N. Mathur; and J. B. Zhang

    2004-08-01

    The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as {approx}180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi {approx}500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than {approx}300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT.

  3. Mechanism of chirality conversion by periodic change of temperature: Role of chiral clusters

    NASA Astrophysics Data System (ADS)

    Katsuno, Hiroyasu; Uwaha, Makio

    2016-01-01

    By grinding crystals in a solution, the chirality of crystal structure (and the molecular chirality for the case of chiral molecules as well) can be converted, and the cause of the phenomenon is attributed to crystal growth with chiral clusters. We show that the recently found chirality conversion with a periodic change of temperature can also be explained by crystal growth with chiral clusters. With the use of a generalized Becker-Döring model, which includes enantio-selective incorporation of small chiral clusters to large solid clusters, the change of cluster distribution and the mass flow between clusters are studied. The chiral clusters act as a reservoir to pump out the minority species to the majority, and the exponential amplification of the enantiomeric excess found in the experiment is reproduced in the numerical calculation.

  4. Enantioselective recognition at mesoporous chiral metal surfaces

    PubMed Central

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A.; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-01-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes. PMID:24548992

  5. Asymmetric synthesis using chiral-encoded metal

    PubMed Central

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-01-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity. PMID:27562028

  6. Molecular chirality: language, history, and significance.

    PubMed

    Gal, Joseph

    2013-01-01

    In this chapter some background material concerning molecular chirality and enantiomerism is presented. First some basic chemical-molecular aspects of chirality are reviewed, after which certain relevant terminology whose use in the literature has been problematic is discussed. Then an overview is provided of some of the early discoveries that laid the foundations of the science of molecular chirality in chemistry and biology, including the discovery of the phenomenon of molecular chirality by L. Pasteur, the proposals for the asymmetric carbon atom by J.H. van 't Hoff and J.A. Lebel, Pasteur's discovery of biological enantioselectivity, the discovery of enantioselectivity at biological receptors by A. Piutti, the studies of enzymatic stereoselectivity by E. Fischer, and the work on enantioselectivity in pharmacology by A. Cushny. Finally, the role of molecular chirality in pharmacotherapy and new-drug development, arguably one of the main driving forces for the current intense interest in the phenomenon of molecular chirality, is discussed. PMID:23666078

  7. Stable Pentaquarks from Strange Chiral Multiplets

    SciTech Connect

    Silas Beane

    2004-12-01

    The assumption of strong diquark correlations in the QCD spectrum suggests flavor multiplets of hadrons that are degenerate in the chiral limit. Generally it would be unnatural for there to be degeneracy in the hadron spectrum that is not protected by a QCD symmetry. Here we show--for pentaquarks constructed from diquarks--that these degeneracies can be naturally protected by the full chiral symmetry of QCD. The resulting chiral multiplet structure recovers the ideally-mixed pentaquark mass spectrum of the diquark model, and interestingly, requires that the axial couplings of the pentaquarks to states outside the degenerate multiplets vanish in the chiral limit. This result suggests that if these hadrons exist, they are stable in the chiral limit and therefore have widths that scale as the fourth power of the kaon mass over the chiral symmetry breaking scale. Natural-size widths are of order a few MeV.

  8. Anomalous Maxwell equations for inhomogeneous chiral plasma

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Shovkovy, I. A.; Vilchinskii, S.; Rudenok, I.; Boyarsky, A.; Ruchayskiy, O.

    2016-05-01

    Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohm's current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusionlike terms, we find also new dissipationless terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.

  9. Asymmetric synthesis using chiral-encoded metal.

    PubMed

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-01-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity. PMID:27562028

  10. Coherence specific signal detection via chiral pump-probe spectroscopy.

    PubMed

    Holdaway, David I H; Collini, Elisabetta; Olaya-Castro, Alexandra

    2016-05-21

    We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probe spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system. PMID:27208941

  11. Chirality-dependent flutter of Typha blades in wind

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-07-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles.

  12. Chirality-dependent flutter of Typha blades in wind.

    PubMed

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-01-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles. PMID:27432079

  13. Effective chiral restoration in the ρ' meson in lattice QCD

    NASA Astrophysics Data System (ADS)

    Glozman, L. Ya.; Lang, C. B.; Limmer, Markus

    2010-11-01

    In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2)b. Its angular momentum content is approximately the S13 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with nf=2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ'=ρ(1450) comes from (1/2,1/2)b, in contrast to the ρ. The ρ' wave function contains a significant contribution of the D13 wave which is not consistent with the quark model prediction.

  14. Chirality-dependent flutter of Typha blades in wind

    PubMed Central

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-01-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles. PMID:27432079

  15. Chiral description of massive gravity

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Krasnov, Kirill; Speziale, Simone

    2013-06-01

    We propose and study a new first order version of the ghost-free massive gravity. Instead of metrics or tetrads, it uses a connection together with Plebanski's chiral 2-forms as fundamental variables, rendering the phase space structure similar to that of SU(2) gauge theories. The chiral description simplifies computations of the constraint algebra, and allows us to perform the complete canonical analysis of the system. In particular, we explicitly compute the secondary constraint and carry out the stabilization procedure, thus proving that in general the theory propagates 7 degrees of freedom, consistently with previous claims. Finally, we point out that the description in terms of 2-forms opens the door to an infinite class of ghost-free massive bi-gravity actions. Our results apply directly to Euclidean signature. The reality conditions to be imposed in the Lorentzian signature appear to be more complicated than in the usual gravity case and are left as an open issue.

  16. Bootstrapping N=2 chiral correlators

    NASA Astrophysics Data System (ADS)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  17. On chirality of slime mould.

    PubMed

    Dimonte, Alice; Adamatzky, Andrew; Erokhin, Victor; Levin, Michael

    2016-02-01

    Left-right patterning and lateralised behaviour is an ubiquitous aspect of plants and animals. The mechanisms linking cellular chirality to the large-scale asymmetry of multicellular structures are incompletely understood, and it has been suggested that the chirality of living cells is hardwired in their cytoskeleton. We examined the question of biased asymmetry in a unique organism: the slime mould Physarum polycephalum, which is unicellular yet possesses macroscopic, complex structure and behaviour. In laboratory experiment using a T-shape, we found that Physarum turns right in more than 74% of trials. The results are in agreement with previously published studies on asymmetric movement of muscle cells, neutrophils, liver cells and growing neural filaments, and for the first time reveal the presence of consistently-biased laterality in the fungi kingdom. Exact mechanisms of the slime mould's direction preference remain unknown. PMID:26747637

  18. Microfluidic Separation of Chiral Particles

    NASA Astrophysics Data System (ADS)

    Marcos; Fu, Henry; Powers, Thomas; Stocker, Roman

    2008-11-01

    We present a combined theoretical and experimental investigation of the fluid mechanics of a helix exposed to a shear flow. In addition to classic Jeffery orbits, Resistive Force Theory predicts a drift of the helix across streamlines, perpendicular to the shear plane. The direction of the drift is determined by the direction of the shear and the chirality of the helix. We verify this prediction experimentally using microfluidics, by exposing Leptospira biflexa, a non-motile strain of helical-shaped bacteria, to a plane parabolic flow. As the shear in the top and bottom halves of the microchannel has opposite sign, we predict and observe the bacteria in these two regions to drift in opposite directions. The magnitude of the separation is in good quantitative agreement with theory. This setup can be used to separate microscale chiral objects.

  19. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  20. ENANTIOMERIC RATIOS OF CHIRAL PCB ATROPISOMERS IN RADIODATED SEDIMENT CORES

    EPA Science Inventory

    Enantiomeric ratios (ERs)) of chiral polychlorinated biphenyl (PCB) atropisomers were quantified in radiodated sediment cores of Lake Hartwell SC, a reservoir heavily impacted by PCBS, to study spatial and temporal changes in chirality. A chiral analysis of cores showed accumulat...

  1. Anomalies and Discrete Chiral Symmetries

    SciTech Connect

    Creutz, M.

    2009-09-07

    The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.

  2. Chiral particle separation by a nonchiral microlattice.

    PubMed

    Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter

    2012-09-01

    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow. PMID:23005274

  3. Chiral Particle Separation by a Nonchiral Microlattice

    NASA Astrophysics Data System (ADS)

    Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter

    2012-09-01

    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow.

  4. Chiral anomaly, bosonization, and fractional charge

    SciTech Connect

    Mignaco, J.A.; Monteiro, M.A.R.

    1985-06-15

    We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ..nu.. = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators.

  5. Transverse charge and magnetization densities in the nucleon's chiral periphery

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.

  6. Creation and manipulation of topological states in chiral nematic microspheres

    PubMed Central

    Orlova, Tetiana; Aßhoff, Sarah Jane; Yamaguchi, Tadatsugu; Katsonis, Nathalie; Brasselet, Etienne

    2015-01-01

    Topology is a universal concept that is encountered in daily life and is known to determine many static and dynamical properties of matter. Taming and controlling the topology of materials therefore constitutes a contemporary interdisciplinary challenge. Building on the controllable spatial properties of soft matter appears as a relevant strategy to address the challenge, in particular, because it may lead to paradigmatic model systems that allow checking theories experimentally. Here we report experimentally on a wealth of complex free-standing metastable topological architectures at the micron scale, in frustrated chiral nematic droplets. These results support recent works predicting the formation of free-standing knotted and linked disclination structures in confined chiral nematic fluids. We also demonstrate that various kinds of external fields (thermal, electrical and optical) can be used to achieve topological remote control. All this may foster the development of new devices based on topologically structured soft media. PMID:26145716

  7. Chiral Bosonic Phases on the Haldane Honeycomb Lattice

    NASA Astrophysics Data System (ADS)

    Vasic, Ivana; Petrescu, Alexandru; Le Hur, Karyn; Hofstetter, Walter; Collaboration Collaboration

    2015-03-01

    Motivated by its recent realization in an ultracold atom experiment, we investigate the honeycomb lattice tight-binding model introduced by Haldane, for bosons with local interactions at the average filling of one boson per site. We uncover in the ground state phase diagram three phases: a uniform superfluid (SF), a chiral superfluid (CSF) and a plaquette Mott insulator with local current loops (PMI). Nearest-neighbor and next-nearest neighbor currents distinguish CSF from SF, and the phase transition between them is first order. We apply bosonic dynamical mean field theory and exact diagonalization to obtain the zero temperature phase diagram, complementing numerics with calculations of excitation spectra in strong and weak coupling perturbation theory. Furthermore, we explore the possibility of chiral Mott insulating phases at the average filling of one boson every two sites. The characteristic density fluctuations, current correlation functions, and excitation spectra are measurable in ultracold atom experiments.

  8. Chiral plasmonic DNA nanostructures with switchable circular dichroism

    NASA Astrophysics Data System (ADS)

    Schreiber, Robert; Luong, Ngoc; Fan, Zhiyuan; Kuzyk, Anton; Nickels, Philipp C.; Zhang, Tao; Smith, David M.; Yurke, Bernard; Kuang, Wan; Govorov, Alexander O.; Liedl, Tim

    2013-12-01

    Circular dichroism spectra of naturally occurring molecules and also of synthetic chiral arrangements of plasmonic particles often exhibit characteristic bisignate shapes. Such spectra consist of peaks next to dips (or vice versa) and result from the superposition of signals originating from many individual chiral objects oriented randomly in solution. Here we show that by first aligning and then toggling the orientation of DNA-origami-scaffolded nanoparticle helices attached to a substrate, we are able to reversibly switch the optical response between two distinct circular dichroism spectra corresponding to either perpendicular or parallel helix orientation with respect to the light beam. The observed directional circular dichroism of our switchable plasmonic material is in good agreement with predictions based on dipole approximation theory. Such dynamic metamaterials introduce functionality into soft matter-based optical devices and may enable novel data storage schemes or signal modulators.

  9. Creation and manipulation of topological states in chiral nematic microspheres

    NASA Astrophysics Data System (ADS)

    Orlova, Tetiana; Aßhoff, Sarah Jane; Yamaguchi, Tadatsugu; Katsonis, Nathalie; Brasselet, Etienne

    2015-07-01

    Topology is a universal concept that is encountered in daily life and is known to determine many static and dynamical properties of matter. Taming and controlling the topology of materials therefore constitutes a contemporary interdisciplinary challenge. Building on the controllable spatial properties of soft matter appears as a relevant strategy to address the challenge, in particular, because it may lead to paradigmatic model systems that allow checking theories experimentally. Here we report experimentally on a wealth of complex free-standing metastable topological architectures at the micron scale, in frustrated chiral nematic droplets. These results support recent works predicting the formation of free-standing knotted and linked disclination structures in confined chiral nematic fluids. We also demonstrate that various kinds of external fields (thermal, electrical and optical) can be used to achieve topological remote control. All this may foster the development of new devices based on topologically structured soft media.

  10. Two-flavor QCD simulation with exact chiral symmetry

    SciTech Connect

    Aoki, S.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Ishikawa, K-I.; Okawa, M.; Kanaya, K.; Matsufuru, H.; Okamoto, M.; Onogi, T.; Ukawa, A; Yoshie, T.

    2008-07-01

    We perform numerical simulations of lattice QCD with two flavors of dynamical overlap quarks, which have exact chiral symmetry on the lattice. While this fermion discretization is computationally demanding, we demonstrate the feasibility to simulate reasonably large and fine lattices by a careful choice of the lattice action and algorithmic improvements. Our production runs are carried out on a 16{sup 3}x32 lattice at a single lattice spacing around 0.12 fm. We explore the sea quark mass region down to m{sub s}/6, where m{sub s} is the physical strange quark mass, for a good control of the chiral extrapolation in future calculations of physical observables. We describe in detail our setup and algorithmic properties of the production simulations and present results for the static quark potential to fix the lattice scale and the locality of the overlap operator.

  11. Phase chirality and stereo-selective swelling of cholesteric elastomers

    NASA Astrophysics Data System (ADS)

    Courty, S.; Tajbakhsh, A. R.; Terentjev, E. M.

    2003-12-01

    Cholesteric elastomers possess a macroscopic “phase chirality” as the director n rotates in a helical fashion along an optical axis z and can be described by a chiral order parameter α. This parameter can be tuned by changing the helix pitch p and the elastic properties of the network at formation. The cholesterics also possess a local nematic order, changing with temperature or during solvent swelling. In this paper, by measuring the power of optical rotation d Psi/d z, we discover how these two parameters vary as functions of temperature or solvent adsorbed by the network. The main result is a finding of pronounced stereo-selectivity of cholesteric elastomers, demonstrating itself in the retention of the “correct” chirality component of a racemic solvent. It has been possible to quantify the amount of such stereo-separation, and the basic dynamics of the effect.

  12. Objects of Maximum Electromagnetic Chirality

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Fruhnert, Martin; Rockstuhl, Carsten

    2016-07-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. Reciprocal objects attain the upper bound if and only if they are transparent for all the fields of one polarization handedness (helicity). Additionally, electromagnetic duality symmetry, i.e., helicity preservation upon interaction, turns out to be a necessary condition for reciprocal objects to attain the upper bound. We use these results to provide requirements for the design of such extremal objects. The requirements can be formulated as constraints on the polarizability tensors for dipolar objects or on the material constitutive relations for continuous media. We also outline two applications for objects of maximum electromagnetic chirality: a twofold resonantly enhanced and background-free circular dichroism measurement setup, and angle-independent helicity filtering glasses. Finally, we use the theoretically obtained requirements to guide the design of a specific structure, which we then analyze numerically and discuss its performance with respect to maximal electromagnetic chirality.

  13. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  14. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  15. Sperm Trajectories Form Chiral Ribbons

    PubMed Central

    Su, Ting-Wei; Choi, Inkyum; Feng, Jiawen; Huang, Kalvin; McLeod, Euan; Ozcan, Aydogan

    2013-01-01

    We report the discovery of an entirely new three-dimensional (3D) swimming pattern observed in human and horse sperms. This motion is in the form of ‘chiral ribbons’, where the planar swing of the sperm head occurs on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. The latter, i.e., the twisted ribbon trajectory, also defines a minimal surface, exhibiting zero mean curvature for all the points on its surface. These chiral ribbon swimming patterns cannot be represented or understood by already known patterns of sperms or other micro-swimmers. The discovery of these unique patterns is enabled by holographic on-chip imaging of >33,700 sperm trajectories at >90–140 frames/sec, which revealed that only ~1.7% of human sperms exhibit chiral ribbons, whereas it increases to ~27.3% for horse sperms. These results might shed more light onto the statistics and biophysics of various micro-swimmers' 3D motion. PMID:23588811

  16. Chiral selection on inorganic crystalline surfaces

    NASA Technical Reports Server (NTRS)

    Hazen, Robert M.; Sholl, David S.

    2003-01-01

    From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces - periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces - research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.

  17. Lateral chirality-sorting optical forces

    PubMed Central

    Hayat, Amaury; Mueller, J. P. Balthasar; Capasso, Federico

    2015-01-01

    The transverse component of the spin angular momentum of evanescent waves gives rise to lateral optical forces on chiral particles, which have the unusual property of acting in a direction in which there is neither a field gradient nor wave propagation. Because their direction and strength depends on the chiral polarizability of the particle, they act as chirality-sorting and may offer a mechanism for passive chirality spectroscopy. The absolute strength of the forces also substantially exceeds that of other recently predicted sideways optical forces. PMID:26453555

  18. Chiral mass-gap in curved space.

    PubMed

    Flachi, Antonino; Fukushima, Kenji

    2014-08-29

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum, a mass-gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass-gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition. PMID:25215970

  19. Generation of a Chiral Giant Micelle.

    PubMed

    Ito, Thiago H; Salles, Airton G; Priebe, Jacks P; Miranda, Paulo C M L; Morgon, Nelson H; Danino, Dganit; Mancini, Giovanna; Sabadini, Edvaldo

    2016-08-23

    Over the past few years, chiral supramolecular assemblies have been successfully used for recognition, sensing and enantioselective transformations. Several approaches are available to control chirality of discrete assemblies (e.g., cages and capsules), but few are efficient in assuring chirality for micellar aggregates. Optically active amino acid-derived surfactants are commonly used to generate chiral spherical micelles. To circumvent this limitation, we benefited from the uniaxial growth of spherical micelles into long cylindrical micelles usually called wormlike or giant micelles, upon the addition of cosolutes. This paper describes the unprecedented formation of chiral giant micelles in aqueous solutions of cetyltrimethylammonium bromide (CTAB) upon increasing addition of enantiopure sodium salt of 1,1'-bi-2-naphthol (Na-binaphtholate) as a cosolute. Depending on the concentrations of CTAB and Na-binaphtholate, chiral gel-like systems are obtained. The transition from spherical to giant micellar structures was probed using rheology, cryo-transmission electron microscopy, polarimetry, and electronic circular dichroism (CD). CD can be effectively used to monitor the incorporation of Na-binaphtholate into the micelle palisade as well as to determine its transition to giant micellar structures. Our approach expands the scope for chirality induction in micellar aggregates bringing the possibility to generate "smart" chiral systems and an alternative asymmetric chiral environment to perform enantioselective transformations. PMID:27499127

  20. Inherently Chiral Spider-Like Oligothiophenes.

    PubMed

    Sannicolò, Francesco; Mussini, Patrizia R; Benincori, Tiziana; Martinazzo, Rocco; Arnaboldi, Serena; Appoloni, Giulio; Panigati, Monica; Quartapelle Procopio, Elsa; Marino, Valentina; Cirilli, Roberto; Casolo, Simone; Kutner, Wlodzimierz; Noworyta, Krzysztof; Pietrzyk-Le, Agnieszka; Iskierko, Zofia; Bartold, Katarzyna

    2016-07-25

    The racemate of an inherently chiral "spider-like" octathiophene monomer T83 , in which chirality is generated by torsion in its backbone, was synthesized. The racemate was resolved into configurationally stable antipodes by HPLC on a chiral stationary phase. Electrooxidation of the enantiomers resulted in materials displaying high enantiorecognition ability towards the antipodes of some chiral probes. Moreover, the T83 racemate demonstrated great aptitude to stimulate formation of 3D rigid architectures if used as a cross-linking monomer for molecular imprinting. This feature was exploited to devise a molecularly imprinted polymer-based chemosensor selective for a thymine-adenine oligonucleotide. PMID:27321902

  1. Advances in enantioselective analysis of chiral brominated flame retardants. Current status, limitations and future perspectives.

    PubMed

    Badea, Silviu-Laurentiu; Niculescu, Violeta Carolina; Ionete, Roxana-Elena; Eljarrat, Ethel

    2016-10-01

    Enantioselective analysis is a powerful tool for the discrimination of biotic and abiotic transformation processes of chiral environmental contaminants because their environmental biodegradation is mostly stereospecific. However, it is challenging when applied to new contaminants since enantioselective analysis methods are currently available only for a limited number of compounds. The enantioselective analysis of chiral novel brominated flame retardants (NBFRs) either using gas chromatography (GC) or liquid chromatography (LC) with various chiral stationary phases (CSP) coupled with various mass spectrometric techniques was extensively discussed. The elution order of hexabromocyclododecane (HBCD) enantiomers in chiral LC was reviewed using the experimental LC data combined also with predictions from a multi-mode Hamiltonian dynamics simulation model based on interaction energies of HBCD enantiomers with β-permethylated cyclodextrin. The further development of analytical methodologies for new chiral BFRs using advanced hyphenated analytical techniques, but also the next generation mass spectrometer analyzers (i.e. GC-Qrbitrap MS-MS, LC-Qrbitrap MS-MS), will contribute to a better characterization of the transformation pathways of chiral BFRs. PMID:27265736

  2. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    PubMed

    Tschierske, Carsten; Ungar, Goran

    2016-01-01

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. PMID:26416335

  3. Opportunities for chiral discrimination using high harmonic generation in tailored laser fields

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga; Mairesse, Yann; Patchkovskii, Serguei

    2015-12-01

    Chiral discrimination with high harmonic generation (cHHG method) has been introduced in the recent work by R Cireasa et al (2015 Nat. Phys. 11 654-8). In its original implementation, the cHHG method works by detecting high harmonic emission from randomly oriented ensemble of chiral molecules driven by elliptically polarized field, as a function of ellipticity. Here we discuss future perspectives in the development of this novel method, the ways of increasing chiral dichroism using tailored laser pulses, new detection schemes involving high harmonic phase measurements, and concentration-independent approaches. Using the example of the epoxypropane molecule CH3CHCH2O (also known as 1,2-propylene oxide), we show theoretically that application of two-color counter-rotating elliptically polarized laser fields yields an order of magnitude enhancement of chiral dichroism compared to single color elliptical fields. We also describe how one can introduce a new functionality to cHHG: concentration-independent measurement of the enatiomeric excess in a mixture of randomly oriented left-handed and right-handed molecules. Finally, for arbitrary configurations of laser fields, we connect the observables of the cHHG method to the amplitude and phase of chiral response, providing a basis for reconstructing wide range of chiral dynamics from cHHG measurements, with femtosecond to sub-femtosecond temporal resolution.

  4. Inherently Chiral Calixarenes: Synthesis, Optical Resolution, Chiral Recognition and Asymmetric Catalysis

    PubMed Central

    Li, Shao-Yong; Xu, Yao-Wei; Liu, Jun-Min; Su, Cheng-Yong

    2011-01-01

    Inherently chiral calixarenes, whose chirality is based on the absence of a planar symmetry or an inversion center in the molecules as a whole through the asymmetric array of several achiral groups upon the three-dimensional calix-skeletons, are challenging and attractive chiral molecules, because of their potential in supramolecular chemistry. The synthesis and optical resolution of all varieties of inherently chiral calixarenes are systematically discussed and classified, and their applications in chiral recognition and asymmetric catalysis are thoroughly illustrated in this review. PMID:21339996

  5. Chirally-modified metal surfaces: energetics of interaction with chiral molecules.

    PubMed

    Dementyev, Petr; Peter, Matthias; Adamovsky, Sergey; Schauermann, Swetlana

    2015-09-21

    Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for the production of enantiopure pharmaceuticals. One of the major current challenges in heterogeneous chiral catalysis is the fundamental-level understanding of how such chirally-modified surfaces interact with chiral and prochiral molecules to induce their enantioselective transformations. Herein we report the first direct calorimetric measurement of the adsorption energy of chiral molecules onto well-defined chirally-modified surfaces. Two model modifiers 1-(1-naphthyl)ethylamine and 2-methylbutanoic acid were used to impart chirality to Pt(111) and their interaction with propylene oxide was investigated by means of single-crystal adsorption calorimetry. Differential adsorption energies and absolute surface uptakes were obtained for the R- and S-enantiomers of propylene oxide under clean ultrahigh vacuum conditions. Two types of adsorption behavior were observed for different chiral modifiers, pointing to different mechanisms of imparting chirality to metal surfaces. The results are analyzed and discussed in view of previously reported stereoselectivity of adsorption processes. PMID:26256836

  6. Hydrodynamics of Liquids of Chiral Molecules and Suspensions Containing Chiral Particles

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Son, D. T.; Spivak, B.

    2010-05-01

    We obtain hydrodynamic equations describing a fluid consisting of chiral molecules or a suspension of chiral particles in a Newtonian fluid. The hydrodynamic velocity and stresses arising in a flowing chiral liquid have components that are forbidden by symmetry in a Newtonian liquid. For example, a chiral liquid in a Poiseuille flow between parallel plates exerts forces on the plates, which are perpendicular to the flow. A generic flow results in spatial separation of particles of different chirality. Thus even a racemic suspension will exhibit chiral properties in a generic flow. A suspension of particles of random shape in a Newtonian liquid is described by equations which are similar to those describing a racemic mixture of chiral particles in a liquid.

  7. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition.

    PubMed

    Lv, T T; Li, Y X; Ma, H F; Zhu, Z; Li, Z P; Guan, C Y; Shi, J H; Zhang, H; Cui, T J

    2016-01-01

    Polarization manipulations of electromagnetic waves can be obtained by chiral and anisotropic metamaterials routinely, but the dynamic and high-efficiency modulations of chiral properties still remain challenging at the terahertz range. Here, we theoretically demonstrate a new scheme for realizing thermal-controlled chirality using a hybrid terahertz metamaterial with embedded vanadium dioxide (VO2) films. The phase transition of VO2 films in 90° twisted E-shaped resonators enables high-efficiency thermal modulation of linear polarization conversion. The asymmetric transmission of linearly polarized wave and circular dichroism simultaneously exhibit a pronounced switching effect dictated by temperature-controlled conductivity of VO2 inclusions. The proposed hybrid metamaterial design opens exciting possibilities to achieve dynamic modulation of terahertz waves and further develop tunable terahertz polarization devices. PMID:27000427

  8. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition

    NASA Astrophysics Data System (ADS)

    Lv, T. T.; Li, Y. X.; Ma, H. F.; Zhu, Z.; Li, Z. P.; Guan, C. Y.; Shi, J. H.; Zhang, H.; Cui, T. J.

    2016-03-01

    Polarization manipulations of electromagnetic waves can be obtained by chiral and anisotropic metamaterials routinely, but the dynamic and high-efficiency modulations of chiral properties still remain challenging at the terahertz range. Here, we theoretically demonstrate a new scheme for realizing thermal-controlled chirality using a hybrid terahertz metamaterial with embedded vanadium dioxide (VO2) films. The phase transition of VO2 films in 90° twisted E-shaped resonators enables high-efficiency thermal modulation of linear polarization conversion. The asymmetric transmission of linearly polarized wave and circular dichroism simultaneously exhibit a pronounced switching effect dictated by temperature-controlled conductivity of VO2 inclusions. The proposed hybrid metamaterial design opens exciting possibilities to achieve dynamic modulation of terahertz waves and further develop tunable terahertz polarization devices.

  9. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition

    PubMed Central

    Lv, T. T.; Li, Y. X.; Ma, H. F.; Zhu, Z.; Li, Z. P.; Guan, C. Y.; Shi, J. H.; Zhang, H.; Cui, T. J.

    2016-01-01

    Polarization manipulations of electromagnetic waves can be obtained by chiral and anisotropic metamaterials routinely, but the dynamic and high-efficiency modulations of chiral properties still remain challenging at the terahertz range. Here, we theoretically demonstrate a new scheme for realizing thermal-controlled chirality using a hybrid terahertz metamaterial with embedded vanadium dioxide (VO2) films. The phase transition of VO2 films in 90° twisted E-shaped resonators enables high-efficiency thermal modulation of linear polarization conversion. The asymmetric transmission of linearly polarized wave and circular dichroism simultaneously exhibit a pronounced switching effect dictated by temperature-controlled conductivity of VO2 inclusions. The proposed hybrid metamaterial design opens exciting possibilities to achieve dynamic modulation of terahertz waves and further develop tunable terahertz polarization devices. PMID:27000427

  10. Light chiral dark sector

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Nomura, Yasunori

    2016-08-01

    An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U (1 ) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo-Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, S U (N ) , and a U (1 ) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling of the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and the stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimental and cosmological constraints. In a corner of the parameter space, the discrepancy of the muon g -2 between experiments and the standard model prediction can also be ameliorated due to a loop contribution of the dark photon. Smoking-gun signatures of the model include a monophoton signal from the e+e- collision into a photon and a "dark rho meson." Observation of two processes in e+e- collision—the mode into the dark photon and that into the dark rho meson—would provide strong evidence for the model.

  11. Chiral plasmonic nanostructures on achiral nanopillars.

    PubMed

    Yeom, Bongjun; Zhang, Huanan; Zhang, Hui; Park, Jai Il; Kim, Kyoungwon; Govorov, Alexander O; Kotov, Nicholas A

    2013-11-13

    Chirality of plasmonic films can be strongly enhanced by three-dimensional (3D) out-of-plane geometries. The complexity of lithographic methods currently used to produce such structures and other methods utilizing chiral templates impose limitations on spectral windows of chiroptical effects, the size of substrates, and hence, further research on chiral plasmonics. Here we demonstrate 3D chiral plasmonic nanostructures (CPNs) with high optical activity in the visible spectral range based on initially achiral nanopillars from ZnO. We made asymmetric gold nanoshells on the nanopillars by vacuum evaporation at different inclination and rotation angles to achieve controlled symmetry breaking and obtained both left- and right-rotating isomers. The attribution of chiral optical effects to monolithic enantiomers made in this process was confirmed by theoretical calculations based on their geometry established from scanning electron microscope (SEM) images. The chirality of the nanoshells is retained upon the release from the substrate into a stable dispersion. Deviation of the incident angle of light from normal results in increase of polarization rotation and chiral g-factor as high as -0.3. This general approach for preparation of abiological nanoscale chiral materials can be extended to other out-of plane 3D nanostructures. The large area films made on achiral nanopillars are convenient for sensors, optical devices, and catalysis. PMID:24111695

  12. Orientation-Dependent Handedness and Chiral Design

    NASA Astrophysics Data System (ADS)

    Efrati, Efi; Irvine, William T. M.

    2014-01-01

    Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.

  13. Chiral gravity, log gravity, and extremal CFT

    SciTech Connect

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-03-15

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  14. Partially Quenched Chiral Perturbation Theory to NNLO

    SciTech Connect

    Laehde, Timo; Bijnens, Johan; Danielsson, Niclas

    2006-07-11

    This paper summarizes the recent calculations of the masses and decay constants of the pseudoscalar mesons at the two-loop level, or NNLO, in Partially Quenched Chiral Perturbation theory (PQ{chi}PT). Possible applications include chiral extrapolations of Lattice QCD, as well as the determination of the low-energy constants (LEC:s) of QCD.

  15. A lattice formulation of chiral gauge theories

    SciTech Connect

    Bodwin, G.T.

    1996-08-01

    We present a method for implementing gauge theories of chiral fermions on the lattice. Discussed topics include: the lattice as a UV regulator, a chiral QED model, modification of the fermion determinant, large gauge-field momenta, and a non-perturbative problem.

  16. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles.

    PubMed

    Zhou, Yunlong; Marson, Ryan L; van Anders, Greg; Zhu, Jian; Ma, Guanxiang; Ercius, Peter; Sun, Kai; Yeom, Bongjun; Glotzer, Sharon C; Kotov, Nicholas A

    2016-03-22

    Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. Here, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. D-/L-Form of the amino acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. The helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions. PMID:26900920

  17. Polarized Water Wires under Confinement in Chiral Channels.

    PubMed

    Barboiu, Mihail; Cazade, Pierre-André; Le Duc, Yann; Legrand, Yves-Marie; van der Lee, Arie; Coasne, Benoit

    2015-07-16

    The alignment of water molecules along chiral pores may activate proton/ion conduction along dipolar hydrophilic pathways. Here we show that a simple synthetic "T-channel" forms a directional pore with its carbonyl moieties solvated by chiral helical water wires. Atom-scale simulations and experimental crystallographic assays reveal a dynamical structure of water and electrolyte solutions (alkali metal chlorides) confined in these organic T-channels. Oscillations in the dipole orientation, which correspond to alternative ordering (dipole up-dipole down) of the water molecules with a period of about 4.2 Å (imposed by the distance between two successive carbonyl groups) are observed. When ions are added to the system, despite the strong Coulombic water/ion interaction, confined water remains significantly ordered in the T-channel and still exhibits surface-induced polarization. Cation permeation can be achieved through alternated hydration-dehydration occurring along strongly oriented water wires. The T-channel, which exhibits chirality with strong water orientation, provides an opportunity to unravel novel water-channel systems that share many interesting properties of biomolecular systems. PMID:26090910

  18. A liquid crystalline chirality balance for vapours

    NASA Astrophysics Data System (ADS)

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-04-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a topological line defect of a zigzag form with equal lengths of ‘zig’ and ‘zag.’ We find that a tiny amount of vapour of chiral molecules injected onto the liquid crystal induces the imbalance of ‘zig’ and ‘zag’ depending on its enantiomeric excess within a few seconds. Our liquid-crystal-based ‘chirality balance’ offers a simple, quick and versatile chirality-sensing/-screening method for gas-phase analysis (for example, for odours, environmental chemicals or drugs).

  19. Spontaneous Chiral Symmetry Breaking for Finite Systems.

    PubMed

    Boscheto, Emerson; López-Castillo, Alejandro

    2015-12-01

    Theoretical clues are desirable to help uncover the origin of bio-homochirality in life, as well as the mechanisms for the asymmetric production of functional chiral substances. Here, an open-to-matter reaction network based on a model proposed by Plasson et al. is studied. In the extended model, the statistical fluctuations lead the system to break chiral symmetry autonomously, that is, without any initial enantiomeric excess or external influence. In the stability diagrams, we observe regions of parameter space that correspond to racemic, homochiral, chiral oscillatory, and, to our knowledge, for the first time in a chiral model, chaotic regimes. The dependencies of the final concentrations of chiral substances on the parameters are determined analytically and discussed for both the racemic and homochiral regimes. PMID:26395183

  20. Enantioselective environmental toxicology of chiral pesticides.

    PubMed

    Ye, Jing; Zhao, Meirong; Niu, Lili; Liu, Weiping

    2015-03-16

    The enantioselective environmental toxic effect of chiral pesticides is becoming more important. As the industry develops, increasing numbers of chiral insecticides and herbicides will be introduced into use, potentially posing toxic effects on nontarget living beings. Chiral pesticides, including herbicides such as acylanilides, phenoxypropanoic acids, and imidazolinones, and insecticides such as synthetic pyrethroids, organophosphates, and DDT often behave enantioselectively during agricultural use. These compounds also pose unpredictable enantioselective ecological threats to nontarget living beings and/or humans, affecting the food chain and entire ecosystems. Thus, to investigate the enantioselective toxic effects of chiral insecticides and herbicides is necessary during environmental protection. The environmental toxicology of chiral pesticides, especially the findings obtained from studies conducted in our laboratory during the past 10 years, is reviewed. PMID:25643169

  1. Chiral Extensions of the Mssm

    NASA Astrophysics Data System (ADS)

    Ferretti, Gabriele; Karateev, Denis

    2013-03-01

    We present a class of extensions of the MSSM characterized by a fully chiral field content (no μ-terms) and no baryon or lepton number violating term in the superpotential due to an extra U‧(1) gauge symmetry. The minimal model consists of the usual matter sector with family dependent U‧(1) charges, six Higgs weak doublets, and three singlets required to give masses to the Higgsinos and cancel anomalies. We discuss its main features such as the tree level mass spectrum and the constraints on flavor changing processes.

  2. Chirality and the Quark Model

    SciTech Connect

    Eric S. Swanson; Adam P. Szczepaniak

    2002-06-07

    The relationship of the quark model to the known chiral properties of QCD is a long-standing problem in the interpretation of low energy QCD. In particular, how can the pion be viewed as both a collective Goldstone boson quasiparticle and as a valence quark antiquark bound state? A comparison of the many-body solution of a simplified model of QCD to the constituent quark model demonstrates that the quark model is sufficiently flexible to describe meson hyperfine splitting provided proper renormalization conditions and correct degrees of freedom are employed consistently.

  3. Synthesis and characterization of mixed ligand chiral nanoclusters.

    PubMed

    Guven, Zekiye P; Ustbas, Burcin; Harkness, Kellen M; Coskun, Hikmet; Joshi, Chakra P; Besong, Tabot M D; Stellacci, Francesco; Bakr, Osman M; Akbulut, Ozge

    2016-07-28

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. PMID:27362744

  4. Chiral magnetism at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Randeria, Mohit

    2014-03-01

    There are tantalizing hints of magnetism at the n-type LaAlO3/SrTiO3 interface, but the experimental evidence remains controversial in view of some of the differences between different samples and probes. I will argue that if magnetism exists at interfaces, symmetry arguments imply chiral interactions that lead to a spiral ground state in zero external field and skyrmion crystals for H ≠ 0 . I will next present a microscopic model that provides a possible mechanism for the formation of local moments. I will show that the coupling of these moments to itinerant electrons leads to ferromagnetic double exchange together with Dzyaloshinskii-Moriya (DM) interactions and an easy-plane ``compass'' anisotropy, which arise from Rashba spin-orbit coupling (SOC) due to the lack of inversion symmetry at the interface. The compass term, often ignored in the literature on chiral magnetism, is shown to play a crucial role in determining the magnetic ground state. I will compare our results with existing torque magnetometry data on LAO/STO and try to reconcile it with scanning SQUID magnetometry. Finally, I will present the phase diagram in a field and show that easy-plane anisotropy stabilizes an unexpectedly large skyrmion crystal phase and describe its properties. (Work done in collaboration with Sumilan Banerjee, Onur Erten, Daniel Kestner and James Rowland). Supported by DOE-BES DE-SC0005035, NSF-DMR-1006532 and NSF MRSEC DMR-0820414.

  5. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  6. Hierarchical chirality transfer in the growth of Towel Gourd tendrils

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-10-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties.

  7. Hierarchical chirality transfer in the growth of Towel Gourd tendrils.

    PubMed

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-01-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties. PMID:24173107

  8. Chiral symmetry breaking revisited: the gap equation with lattice ingredients

    SciTech Connect

    Aguilar, Arlene C.

    2011-05-23

    We study chiral symmetry breaking in QCD, using as ingredients in the quark gap equation recent lattice results for the gluon and ghost propagators. The Ansatz employed for the quark-gluon vertex is purely non-Abelian, introducing a crucial dependence on the ghost dressing function and the quark-ghost scattering amplitude. The numerical impact of these quantities is considerable: the need to invoke confinement explicitly is avoided, and the dynamical quark masses generated are of the order of 300 MeV. In addition, the pion decay constant and the quark condensate are computed, and are found to be in good agreement with phenomenology.

  9. Angular dependence of current-driven chiral walls

    NASA Astrophysics Data System (ADS)

    Martinez, Eduardo; Alejos, Oscar; Auxiliadora Hernandez, Maria; Raposo, Victor; Sanchez-Tejerina, Luis; Moretti, Simone

    2016-06-01

    The current-driven dynamics of chiral domain walls is theoretically studied by means of realistic micromagnetic simulations. Trains of current pulses flowing through the heavy metal underneath the ferromagnetic layer are injected with different directions with respect to the ferromagnetic strip axis. The wall displacement is highly sensitive to the wall configuration and to the angle between the current and the longitudinal axis of the strip. These simulations can account for the experimental behavior at large currents, but preliminary results at lower current density point towards incompatibilities between the model and the experiment that need further experimental and theoretical efforts.

  10. Atroposelective Synthesis of Axially Chiral Thiohydantoin Derivatives.

    PubMed

    Sarigul, Sevgi; Dogan, Ilknur

    2016-07-15

    Nonracemic axially chiral thiohydantoins were synthesized atroposelectively by the reaction of o-aryl isothiocyanates with amino acid ester salts in the presence of triethylamine (TEA). The synthesis of the nonaxially chiral derivatives, however, gave thiohydantoins racemized at C-5 of the heterocyclic ring. The micropreparatively resolved enantiomers of the nonaxially chiral derivatives from the racemic products were found to be optically stable under neutral conditions. On formation of the 5-methyl-3-arylthiohydantoin ring, bulky o-aryl substituents at N3 were found to suppress the C-5 racemization and in this way enabled the transfer of chirality from the α-amino acid to the products. The corresponding 5-isopropylthiohydantoins turned out to be more prone to racemization at C-5 during the ring formation. The isomer compositions of the synthesized axially chiral thiohydantoins have been determined through HPLC analyses with chiral stationary phases. In most cases a high prevalence of the P isomers over the M isomers has been obtained. The barriers to rotation determined around the Nsp(2)-Caryl chiral axis were found to be dependent upon the size of the o-halo aryl substituents. PMID:27322739

  11. Spontaneous Planar Chiral Symmetry Breaking in Cells

    NASA Astrophysics Data System (ADS)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  12. Chirally symmetric but confining dense, cold matter

    SciTech Connect

    Glozman, L. Ya.; Wagenbrunn, R. F.

    2008-03-01

    The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential {mu} and obtain a clear chiral restoration phase transition at the critical value {mu}{sub cr}. Below this value the spectrum is similar to the previously obtained one at {mu}=0. At {mu}>{mu}{sub cr} the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.

  13. Chirally symmetric but confining dense, cold matter

    NASA Astrophysics Data System (ADS)

    Glozman, L. Ya.; Wagenbrunn, R. F.

    2008-03-01

    The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential μ and obtain a clear chiral restoration phase transition at the critical value μcr. Below this value the spectrum is similar to the previously obtained one at μ=0. At μ>μcr the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.

  14. Chiral Alfvén Wave in Anomalous Hydrodynamics.

    PubMed

    Yamamoto, Naoki

    2015-10-01

    We study the hydrodynamic regime of chiral plasmas at high temperature. We find a new type of gapless collective excitation induced by chiral effects in an external magnetic field. This is a transverse wave, and it is present even in incompressible fluids, unlike the chiral magnetic and chiral vortical waves. The velocity is proportional to the coefficient of the gravitational anomaly. We briefly discuss the possible relevance of this "chiral Alfvén wave" in physical systems. PMID:26551804

  15. Hidden chirality in superficially racemic patchy silver films.

    PubMed

    Larsen, George K; He, Yizhuo; Ingram, Whitney; Zhao, Yiping

    2013-01-01

    Chiral patchy particle films where morphological enantiomers exist in equal proportion are found to have significant circular dichroism. It is determined that the rotation direction during glancing angle deposition breaks the racemic symmetry, resulting in a distribution of material which enhances the chirality of one set of enantiomers relative to the other. Microscopic analysis and geometric chirality calculations reveal that the chirality of the bulk film results from incomplete cancellations of even stronger local chiralities. PMID:24256449

  16. Elastic waves in structurally chiral composites

    SciTech Connect

    Yang, Shiuhkuang.

    1990-01-01

    Elastic wave propagation through structurally chiral (handed) media was studied. The primary objectives are to construct structurally chiral composites and to characterize their properties. Structurally chiral composites are constructed by stacking identical uniaxial plates, whose consecutive symmetric axes describe either a right- or a left-handed spiral. A matrix representation method is used to solve the elastic wave propagation in such layered composites. Numerical computation of the plane wave reflection and transmission characteristics for chiral arrangements are compared with those for the non-chiral one. It is concluded that the co-polarized characteristics are unaffected by the structural chirality, while the cross-polarized reflected and transmitted fields are greatly influenced by it. Numerical modeling is also applied for the real samples. The polarization ellipse of the transmitted field of each sample is calculated. To verify the form chirality, four glass-reinforced chiral and non-chiral composite samples are made from helix tape, molded, debulked, and cured individually under identical temperature and pressure histories. The spiral composites are characterized using shear and longitudinal wave transducers in ultrasonic experiments. Both the material properties and the polarization ellipse of the transmitted field of each sample are measured. It is proved conclusively that left and right handedness in the microstructures of a material rotates the plane of polarization of a propagating shear wave in the opposite directions. Thus it is now possible to say that by reducing the length scale of the handed microstructures tone more appropriate to its propagating wavelength, a medium is obtained that gives rise to effects similar to optical radar and optical dichroism.

  17. Chiral symmetry breaking with lattice propagators

    SciTech Connect

    Aguilar, A. C.; Papavassiliou, J.

    2011-01-01

    We study chiral symmetry breaking using the standard gap equation, supplemented with the infrared-finite gluon propagator and ghost dressing function obtained from large-volume lattice simulations. One of the most important ingredients of this analysis is the non-Abelian quark-gluon vertex, which controls the way the ghost sector enters into the gap equation. Specifically, this vertex introduces a numerically crucial dependence on the ghost dressing function and the quark-ghost scattering amplitude. This latter quantity satisfies its own, previously unexplored, dynamical equation, which may be decomposed into individual integral equations for its various form factors. In particular, the scalar form factor is obtained from an approximate version of the 'one-loop dressed' integral equation, and its numerical impact turns out to be rather considerable. The detailed numerical analysis of the resulting gap equation reveals that the constituent quark mass obtained is about 300 MeV, while fermions in the adjoint representation acquire a mass in the range of (750-962) MeV.

  18. Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance

    NASA Astrophysics Data System (ADS)

    Kondratov, A. V.; Gorkunov, M. V.; Darinskii, A. N.; Gainutdinov, R. V.; Rogov, O. Y.; Ezhov, A. A.; Artemov, V. V.

    2016-05-01

    We study the physical origin of extreme optical chirality of subwavelength arrays of chiral holes in metal. We reconstruct the nanoscale relief of the hole arrays by the atomic-force microscopy and post-process the data to acquire an average unit-cell shape clear of noise and defects. For this shape, we perform the electromagnetic finite difference time domain simulations that reproduce all important features observed by the light-transmission experiments, including the notably strong circular dichroism and optical activity covering the whole range of possible values. To interpret the simulation results, we develop a chiral coupled-mode model which yields analytical expressions that fit accurately the numerical data in a broad wavelength range. Our conclusions undoubtedly link the extreme optical chirality to the plasmon resonances of chiral holes and the associated chiral Fano-type transmission resonance.

  19. Chiral gravitomagnetic effect in topological superconductors and superfluids

    NASA Astrophysics Data System (ADS)

    Sekine, Akihiko

    2016-03-01

    We perform a theoretical search for dynamical cross-correlated responses of three-dimensional topological superconductors and superfluids. It has been suggested that a gravitational topological term, which is analogous to the θ term in topological insulators, can be derived in three-dimensional time-reversal invariant topological superconductors and superfluids, and that the dynamical gravitational axion field can be realized by the fluctuation of the relative phase, i.e., by the Leggett mode between topological p -wave pairing and conventional s -wave pairing. In the presence of the dynamical gravitational axion field, we propose the emergence of the "chiral gravitomagnetic effect," a thermal current generation by gravitomagnetic fields, i.e., by mechanical rotations. This effect can be regarded as a thermal counterpart of the chiral magnetic effect, which has been studied mainly in Weyl semimetals. We also show the occurrence of the anomalous thermal Hall effect in the bulk. We discuss a possible application of our study to the thermal responses of Weyl superconductors.

  20. Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment

    NASA Astrophysics Data System (ADS)

    Kröner, Dominik; Shibl, Mohamed F.; González, Leticia

    2003-04-01

    Quantum dynamical simulations based on ab initio potentials show that a single linearly polarized laser pulse (infrared or ultraviolet) can selectively excite one enantiomer from a racemic mixture. The degeneracy of the chiral pair is broken and a sequential reaction can distinguish between the two enantiomers based on energetic criteria. For instance, the undesired enantiomer can be photodestructed and the products can be probed using mass spectroscopy. The proposed scheme is applied to H 2POSD, which has a low interconversion barrier and to a chiral olefin possessing stable enantiomers.

  1. The Macromolecular Route to Chiral Amplification.

    PubMed

    Green; Park; Sato; Teramoto; Lifson; Selinger; Selinger

    1999-11-01

    Cooperative phenomena, described by one-dimensional statistical physical methods, are observed between the enantiomeric characteristics of monomeric materials and the polymers they produce. The effect of minute energies associated with this amplified chirality, although currently not interpretable, can be easily measured. Nonlinear relationships between enantiomeric excess or enantiomeric content and polymer properties may offer the possibility of developing chiral catalysts and chiral chromatographic materials in which the burden of large enantiomeric excess or content may be considerably alleviated. New approaches to information and sensor technology may become possible. PMID:10556885

  2. The convoluted evolution of snail chirality

    NASA Astrophysics Data System (ADS)

    Schilthuizen, M.; Davison, A.

    2005-11-01

    The direction that a snail (Mollusca: Gastropoda) coils, whether dextral (right-handed) or sinistral (left-handed), originates in early development but is most easily observed in the shell form of the adult. Here, we review recent progress in understanding snail chirality from genetic, developmental and ecological perspectives. In the few species that have been characterized, chirality is determined by a single genetic locus with delayed inheritance, which means that the genotype is expressed in the mother's offspring. Although research lags behind the studies of asymmetry in the mouse and nematode, attempts to isolate the loci involved in snail chirality have begun, with the final aim of understanding how the axis of left-right asymmetry is established. In nature, most snail taxa (>90%) are dextral, but sinistrality is known from mutant individuals, populations within dextral species, entirely sinistral species, genera and even families. Ordinarily, it is expected that strong frequency-dependent selection should act against the establishment of new chiral types because the chiral minority have difficulty finding a suitable mating partner (their genitalia are on the ‘wrong’ side). Mixed populations should therefore not persist. Intriguingly, however, a very few land snail species, notably the subgenus Amphidromus sensu stricto, not only appear to mate randomly between different chiral types, but also have a stable, within-population chiral dimorphism, which suggests the involvement of a balancing factor. At the other end of the spectrum, in many species, different chiral types are unable to mate and so could be reproductively isolated from one another. However, while empirical data, models and simulations have indicated that chiral reversal must sometimes occur, it is rarely likely to lead to so-called ‘single-gene’ speciation. Nevertheless, chiral reversal could still be a contributing factor to speciation (or to divergence after speciation) when

  3. Controlled chiral supramolecular assemblies of water soluble achiral porphyrins induced by chiral counterions.

    PubMed

    Rananaware, Anushri; La, Duong Duc; Al Kobaisi, Mohammad; Bhosale, Rajesh S; Bhosale, Sidhanath V; Bhosale, Sheshanath V

    2016-08-11

    We demonstrate a controlled chiral supramolecular assembly of achiral porphyrins induced by chiral d- and l-arginine (Arg) in water. Induction of chirality was confirmed by circular dichroism. TEM and SEM images confirm that these twisted ribbons are indeed formed by right- and left-handed helices with d- and l-Arg in water, respectively. The chiral assembly pathways described here are hierarchical, opening up the possibility that simple changes on microscopic (nm) length scales can be used to control structures on macroscopic (mm) length scales. PMID:27464524

  4. Chiral supramolecular polymers consisting of planar-chiral pillar[5]arene enantiomers.

    PubMed

    Ogoshi, Tomoki; Furuta, Takuya; Yamagishi, Tada-Aki

    2016-09-14

    Supramolecular polymers with diverse chiralities were constructed by supramolecular polymerization of planar-chiral host-guest conjugates in pS and pR forms. Hetero-chiral supramolecular polymerization using a racemic mixture of host-guest conjugates with pS and pR forms afforded a supramolecular polymer with a larger hydrodynamic radius than that obtained through homo-chiral supramolecular polymerization of host-guest conjugates with either pS or pR forms alone. PMID:27510359

  5. Characteristics of surface plasmon polaritons in a dielectrically chiral-metal-chiral waveguiding structure.

    PubMed

    Zhang, Qiang; Li, Junqing

    2016-07-15

    We demonstrate theoretically the characteristics of surface plasmon polaritons (SPPs) with an asymmetric chiral-metal-chiral (CMC) waveguide structure, under realistic frequency dependencies of the permittivity and chirality parameters. Generalized dispersion relations are derived which can be applied to the nonchiral SPPs. We find that the existence of cutoffs in different modes for the CMC structures may facilitate the design of mode-selective surface plasmon waveguides. CMC-SPPs also exhibit an interesting dependence of the polarization on the chiral strength. These novel characteristics of CMC-SPPs provide new possibilities for the design of more compact nanophotonic devices. PMID:27420505

  6. Deformations in chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Reddy, Kathryn; Bateman, Daniel; Iljin, Andrey

    2014-03-01

    Deformations and their relaxation in chiral liquid crystals are studied experimentally and theoretically in planar geometry for liquid crystalline mixtures of varying viscosities. It is shown by both methods that shear deformation in liquid crystals results in the inclination and extension of cholesteric helix in samples with high viscosity. Stretching deformation results in shrinking cholesteric helix. This leads to a possibility of detecting deformations on a nanometer scale by observing changes in selective reflection spectra. Theoretical model takes into account elastic strain of physical network formed by the entanglements between components of liquid crystalline mixture, viscosity of the matrix and elasticity of the liquid crystalline subsystem. This allows to model mechanical response of the matrix with different viscosities to stretching and shear of various amplitudes. It is shown that relaxation of the cholesteric helix takes much shorter time than mechanical relaxation of the mixtures. The model perfectly agrees with experimental data. The model is compared with theoretical model describing behavior of elastomers.

  7. Shape-induced chiral ordering in two-dimensional packing of snowmanlike dimeric particles

    NASA Astrophysics Data System (ADS)

    Han, Youngkyu; Lee, Juncheol; Choi, Siyoung Q.; Choi, Myung Chul; Kim, Mahn Won

    2013-10-01

    Understanding the distinctive phase behaviors in random packing due to particle shapes is an important issue in condensed matter physics. In this paper, we investigate the random packing structure of two-dimensional (2D) snowmen via wax-snowman packing experiments and Brownian dynamics simulations. Both experiments and simulations reveal that neighboring snowmen have a strong short-range orientational correlation and consequently locally form particular conformations. A chiral conformation is dominant for high area fractions near the jamming condition (φ>0.8), and the proportion of the chiral conformation increases with γ. We also found that the attractive interaction does not have a significant impact on the results. The geometry of chirally ordered snowmen causes a mismatch with 2D crystalline symmetries and thus inhibits the development of long-range spatial order, despite the strong orientational correlation between neighbors.

  8. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons

    NASA Astrophysics Data System (ADS)

    Mancini, M.; Pagano, G.; Cappellini, G.; Livi, L.; Rider, M.; Catani, J.; Sias, C.; Zoller, P.; Inguscio, M.; Dalmonte, M.; Fallani, L.

    2015-09-01

    Chiral edge states are a hallmark of quantum Hall physics. In electronic systems, they appear as a macroscopic consequence of the cyclotron orbits induced by a magnetic field, which are naturally truncated at the physical boundary of the sample. Here we report on the experimental realization of chiral edge states in a ribbon geometry with an ultracold gas of neutral fermions subjected to an artificial gauge field. By imaging individual sites along a synthetic dimension, encoded in the nuclear spin of the atoms, we detect the existence of the edge states and observe the edge-cyclotron orbits induced during quench dynamics. The realization of fermionic chiral edge states opens the door for edge state interferometry and the study of non-Abelian anyons in atomic systems.

  9. Chiral spin waves in Fermi liquids with spin-orbit coupling.

    PubMed

    Ashrafi, Ali; Maslov, Dmitrii L

    2012-11-30

    We predict the existence of chiral spin waves-collective modes in a two-dimensional Fermi liquid with the Rashba or Dresselhaus spin-orbit coupling. Starting from the phenomenological Landau theory, we show that the long-wavelength dynamics of magnetization is governed by the Klein-Gordon equations. The standing-wave solutions of these equations describe ''particles" with effective masses, whose magnitudes and signs depend on the strength of the electron-electron interaction. The spectrum of the spin-chiral modes for arbitrary wavelengths is determined from the Dyson equation for the interaction vertex. We propose to observe spin-chiral modes via microwave absorption by standing waves confined by an in-plane profile of the spin-orbit splitting. PMID:23368155

  10. Simulating net particle production and chiral magnetic current in a C P -odd domain

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji

    2015-09-01

    To address a question of whether the chiral magnetic current is a static polarization or a genuine flow of charged particles, we elucidate the numerical formulation to simulate the net production of right-handed particles and anomalous currents with C P -breaking background fields which cause an imbalance between particles and antiparticles. For a concrete demonstration we numerically impose pulsed electric and magnetic fields to confirm our answer to the question that the produced net particles flow in the dynamical chiral magnetic effect. The rate for the particle production and the chiral magnetic current generation is quantitatively consistent with the axial anomaly, while they appear with a finite response time. We emphasize the importance to quantify the response time that would suppress observable effects of the anomalous current.

  11. Enantiopure Functional Molecular Motors Obtained by a Switchable Chiral-Resolution Process.

    PubMed

    van Leeuwen, Thomas; Gan, Jefri; Kistemaker, Jos C M; Pizzolato, Stefano F; Chang, Mu-Chieh; Feringa, Ben L

    2016-05-17

    Molecular switches, rotors, and motors play an important role in the development of nano-machines and devices, as well as responsive and adaptive functional materials. For unidirectional rotors based on chiral overcrowded alkenes, their stereochemical homogeneity is of crucial importance. Herein, a method to obtain new and functionalizable overcrowded alkenes in enantiopure form is presented. The procedure involves a short synthesis of three steps and a solvent-switchable chiral resolution by using a readily available resolving agent. X-ray crystallography revealed the mode of binding of the motor with the resolving agent, as well as the absolute configuration of the motor. (1) H NMR and UV/Vis spectroscopy techniques were used to determine the dynamic behavior of this molecular motor. This method provides rapid access to ample amounts of enantiopure molecular motors, which will greatly facilitate the further development of responsive molecular systems based on chiral overcrowded alkenes. PMID:27072290

  12. Determination of the Chiral Condensate from (2+1)-Flavor Lattice QCD

    SciTech Connect

    Fukaya, H.; Aoki, S.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Noaki, J.; Onogi, T.

    2010-03-26

    We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16{sup 3}x48 lattice at a lattice spacing {approx}0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the {epsilon} regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in (2+1)-flavor QCD with strange quark mass fixed at its physical value as {Sigma}{sup MS}(2 GeV)=[242(04)((+19/-18)) MeV]{sup 3} where the errors are statistical and systematic, respectively.

  13. Enantioseparation of Mandelic Acid Enantiomers With Magnetic Nano-Sorbent Modified by a Chiral Selector.

    PubMed

    Tarhan, Tuba; Tural, Bilsen; Tural, Servet; Topal, Giray

    2015-11-01

    In this study, R(+)-α-methylbenzylamine-modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo-second-order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g(-1). The magnetic chiral sorbent has a greater affinity for (S)-(+)-mandelic acid compared to (R)-(-)-mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD-H column. PMID:26370608

  14. Numerical study of chiral plasma instability within the classical statistical field theory approach

    NASA Astrophysics Data System (ADS)

    Buividovich, P. V.; Ulybyshev, M. V.

    2016-07-01

    We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.

  15. Chiral Pesticide Pharmacokinetics: A Range of Values

    EPA Science Inventory

    Approximately 30% of pesticides are chiral and used as mixtures of two or more stereoisomers. In biological systems, these stereoisomers can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination). In spite of these differences, th...

  16. Electronic circular dichroism behavior of chiral Phthiobuzone

    PubMed Central

    Li, Li; Wang, Lin; Si, Yikang

    2014-01-01

    Phthiobuzone is a bis(thiosemicarbazone) derivative with a single chiral center which has been used as a racemate in the clinical treatment of herpes and trachoma diseases. In this study, its two enantiomers were prepared from chiral amino acids and their absolute configurations were investigated by electronic circular dichroism (ECD) combined with modern quantum-chemical calculations using time-dependent density functional theory. It was found that solvation changed both the conformational distribution and the ECD spectrum of each conformer. The theoretical ECD spectra of the two enantiomers were in good agreement with the experimentally determined spectra of the corresponding isomers in dimethyl sulfoxide. The ECD behavior of the bis(thiosemicarbazone) chromophore in a chiral environment is also discussed. Our results indicate that ECD spectroscopy may be a useful tool for the stereochemical evaluation of chiral drugs. PMID:26579380

  17. How center vortices break chiral symmetry

    NASA Astrophysics Data System (ADS)

    Faber, Manfried; Höllwieser, Roman

    2016-01-01

    We investigate the chiral properties of near-zero modes for thick classical center vortices in SU(2) lattice gauge theory as examples of the phenomena which may arise in a vortex vacuum. In particular we analyze the creation of near-zero modes from would-be zero modes of various topological charge contributions from center vortices. We show that classical colorful spherical vortex and instanton ensembles have almost identical Dirac spectra and the low-lying eigenmodes from spherical vortices show all characteristic properties for chiral symmetry breaking. We further show that also vortex intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry breaking via the Banks-Casher formula. We discuss the mechanism by which center vortex fluxes contribute to chiral symmetry breaking.

  18. Controlling and imaging chiral spin textures

    NASA Astrophysics Data System (ADS)

    Chen, Gong

    Chirality in magnetic materials is fundamentally interesting and holds potential for logic and memory applications. Using spin-polarized low-energy electron microscopy at National Center for Electron Microscopy, we recently observed chiral domain walls in thin films. We developed ways to tailor the Dzyaloshinskii-Moriya interaction, which drives the chirality, by interface engineering and by forming ternary superlattices. We find that spin-textures can be switched between left-handed, right-handed, cycloidal, helical and mixed domain wall structures by controlling uniaxial strain in magnetic films. We also demonstrate an experimental approach to stabilize skyrmions in magnetic multilayers without external magnetic field. These results exemplify the rich physics of chirality associated with interfaces of magnetic materials

  19. Drag suppression in anomalous chiral media

    NASA Astrophysics Data System (ADS)

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a nondissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon—the motion of the heavy impurity is frictionless, in analogy to the case of a superfluid. We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.

  20. Chiral chemistry of metal-camphorate frameworks.

    PubMed

    Gu, Zhi-Gang; Zhan, Caihong; Zhang, Jian; Bu, Xianhui

    2016-06-01

    This critical review presents the various synthetic approaches and chiral chemistry of metal-camphorate frameworks (MCamFs), which are homochiral metal-organic frameworks (MOFs) constructed from a camphorate ligand. The interest in this unique subset of homochiral MOFs is derived from the many interesting chiral features for both materials and life sciences, such as asymmetrical synthesis or crystallization, homochiral structural design, chiral induction, absolute helical control and ligand handedness. Additionally, we discuss the potential applications of homochiral MCamFs. This review will be of interest to researchers attempting to design other homochiral MOFs and those engaged in the extension of MOFs for applications such as chiral recognition, enantiomer separation, asymmetric catalysis, nonlinear sensors and devices. PMID:27021070

  1. Personal recollections on chiral symmetry breaking

    NASA Astrophysics Data System (ADS)

    Kobayashi, Makoto

    2016-07-01

    The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.

  2. Optically active particles of chiral polymers.

    PubMed

    Song, Ci; Liu, Xuan; Liu, Dong; Ren, Chonglei; Yang, Wantai; Deng, Jianping

    2013-09-01

    Particles constructed by chiral polymers (defined as PCPs) have emerged as a rapidly expanding research field in recent years because of their potentially wide-ranging applications in asymmetric catalysis, enantioselective crystallization, enantioselective release, amongst many others. The particles show considerable optical activity, due to the chirality of the corresponding polymers from which the particles are derived. This review article presents an overview on PCPs with emphasis on our group's recent achievements in the preparation of PCPs derived from optically active helical polymers and their applications. PCPs can be prepared via emulsion polymerization, precipitation polymerization, and suspension polymerization by starting from monomers. Emulsification of preformed chiral polymers and self-assembly approaches also can lead to PCPs. Chiral polymer-based core/shell particles, hollow particles, and magnetic particles are also covered because of their remarkable properties and significant potential applications. PMID:24030962

  3. DH(*) in chiral smectics under electric field.

    PubMed

    Meyer, C; Rabette, C; Gisse, P; Antonova, K; Dozov, I

    2016-07-01

    The behavior of double helices (DH(*) formed in the temperature interval N(*) -SmA(*) in compounds of non-chiral liquid crystals doped with chiral molecules was investigated. Two different systems presenting left-handed and right-handed chirality were studied. A statistics of the handedness of the DH(*) revealed a correlation with the mixture chirality, as predicted theoretically in C. Meyer, Yu. A. Nastishin, M. Kleman, Phys. Rev. E 82, 031704 (2010). By applying a gradually increasing AC electric field, one can observe the shrinking of the cylinder circumscribing the DH(*) . This shrink is accompanied by a reduction of the DH(*) 's pitch. This effect was similar to the one produced by the decrease of temperature in the absence of the field. PMID:27465656

  4. Chiral extrapolation of SU(3) amplitudes

    SciTech Connect

    Ecker, Gerhard

    2011-05-23

    Approximations of chiral SU(3) amplitudes at NNLO are proposed to facilitate the extrapolation of lattice data to the physical meson masses. Inclusion of NNLO terms is essential for investigating convergence properties of chiral SU(3) and for determining low-energy constants in a controllable fashion. The approximations are tested with recent lattice data for the ratio of decay constants F{sub K}/F{sub {pi}}.

  5. Tests of Chiral Perturbation Theory with COMPASS

    SciTech Connect

    Friedrich, Jan

    2010-12-28

    The COMPASS experiment at CERN studies with high precision pion-photon induced reactions on nuclear targets via the Primakoff effect. This offers the possibility to test chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the longstanding question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.

  6. Control of normal chirality at hexagonal interfaces

    SciTech Connect

    Haraldsen, Jason T; Fishman, Randy Scott

    2010-01-01

    We study the net chirality created by the Dzyaloshinkii-Moriya interaction (DMI) at the boundary between hexagonal layers of magnetic and non-magnetic materials. It is shown that another mechanism besides elastic torsion is required to understand the change in chirality observed in Dy/Y multilayers during field-cooling. The paper shows that due to the overlap between magnetic and non-magnetic atoms, interfacial steps may produce a DMI normal to the interface in magnetic heterostructures.

  7. Microbial production and applications of chiral hydroxyalkanoates.

    PubMed

    Chen, Guo-Qiang; Wu, Qiong

    2005-06-01

    Polyhydroxyalkanoates (PHA) are a family of polyesters consisting of over 150 chiral hydroxyalkanoic acids (HA). This paper reviews the physiological functions of (R)-3-hydroxybutyric acid (3HB) and (R)-4-hydroxybutyric acid and summarizes the technologies developed to produce various HA [3HB, (R)-3-hydroxyoctanoic acid, (R)-3-hydroxydecanoic acid, etc.] and the applications of chiral HA. Their outlooks and perspectives are discussed. PMID:15700123

  8. Nondipole Photoemission from Chiral Enantiomers of Camphor

    NASA Astrophysics Data System (ADS)

    Bowen, K. P.; Stolte, W. C.; Young, J. A.; Demchenko, I. N.; Guillemin, R.; Hemmers, O.; Piancastelli, M. N.; Lindle, D. W.

    2010-03-01

    K-shell photoemission from the carbonyl carbon in the chiral molecule camphor has been studied in the region just above the core-shell ionization threshold. Differences between angular distributions of emitted photoelectrons from the two enantiomers are attributed to the influence of chirality combined with nondipole effects in the photoemission process, despite the fact the measurements were taken using linearly polarized x-rays. The results suggest the possibility of a new form of linear dichroism.

  9. Interference and isospin of disoriented chiral condensates

    SciTech Connect

    Suzuki, M.

    1995-09-01

    If coherent states describe the disoriented chiral condensates (DCC`s), many states of different chiral orientations should equally contribute to a given hadronic process. However, in the classical field description, we ignore the interference between the different DCC amplitudes. It results in a disregard of isospin invariance. We examine quantitatively how good this approximation is for the DCC`s of a typical size.

  10. Analysis of rainbow scattering by a chiral sphere.

    PubMed

    Shang, Qing-Chao; Wu, Zhen-Sen; Qu, Tan; Li, Zheng-Jun; Bai, Lu; Gong, Lei

    2013-09-23

    Based on the scattering theory of a chiral sphere, rainbow phenomenon of a chiral sphere is numerically analyzed in this paper. For chiral spheres illuminated by a linearly polarized wave, there are three first-order rainbows, with whose rainbow angles varying with the chirality parameter. The spectrum of each rainbow structure is presented and the ripple frequencies are found associated with the size and refractive indices of the chiral sphere. Only two rainbow structures remain when the chiral sphere is illuminated by a circularly polarized plane wave. Finally, the rainbows of chiral spheres with slight chirality parameters are found appearing alternately in E-plane and H-plane with the variation of the chirality. PMID:24104080

  11. A Molecular Model for Chiral Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo

    In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.

  12. Unified Description of Li 6 Structure and Deuterium-He 4 Dynamics with Chiral Two- and Three-Nucleon Forces

    NASA Astrophysics Data System (ADS)

    Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr

    2015-05-01

    We provide a unified ab initio description of the Li 6 ground state and elastic scattering of deuterium (d ) on He 4 (α ) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of Li 6 . The calculation reproduces the empirical binding energy of Li 6 , yielding an asymptotic D - to S -state ratio of the Li 6 wave function in the d +α configuration of -0.027 , in agreement with a determination from Li 6 -He 4 elastic scattering, but overestimates the excitation energy of the 3+ state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the H 2 (α ,γ )Li 6 radiative capture, responsible for the big-bang nucleosynthesis of Li 6 .

  13. Reaching the Chiral Limit in Many Flavor Systems

    NASA Astrophysics Data System (ADS)

    Hasenfratz, Anna; Cheng, Anqi; Petropoulos, Gregory; Schaich, David

    We present a brief overview of our recent lattice studies of SU(3) gauge theory with Nf = 8 and 12 fundamental fermions, including some new and yet-unpublished results. To explore relatively unfamiliar systems beyond lattice QCD, we carry out a wide variety of investigations with the goal of synthesizing the results to better understand the non-perturbative dynamics of these systems. All our findings are consistent with conformal infrared dynamics in the 12-flavor system, but with 8 flavors we observe puzzling behavior that requires further investigation. Our new Monte Carlo renormalization group technique exploits the Wilson flow to obtain more direct predictions of a 12-flavor IR fixed point. Studies of Nf = 12 bulk and finite-temperature transitions also indicate IR conformality, while our current results for the 8-flavor phase diagram do not yet provide clear signs of spontaneous chiral symmetry breaking. From the Dirac eigenvalue spectrum we extract the mass anomalous dimension γm, and predict γ*m = 0:32(3) at the 12-flavor fixed point. The Nf = 8 system again shows interesting behavior, with a large anomalous dimension across a wide range of energy scales. We use the eigenvalue density to predict the chiral condensate, and compare this approach with direct and partially-quenched < overline ψ ψ rangle measurements.

  14. The Soliton-Soliton Interaction in the Chiral Dilaton Model

    NASA Astrophysics Data System (ADS)

    Mantovani-Sarti, Valentina; Park, Byung-Yoon; Vento, Vicente

    2013-10-01

    We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the π and σ fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.

  15. Chiral symmetry breaking and confinement beyond rainbow-ladder truncation

    NASA Astrophysics Data System (ADS)

    Bashir, Adnan; Raya, Alfredo; Sánchez-Madrigal, Saúl

    2011-08-01

    A nonperturbative construction of the 3-point fermion-boson vertex which obeys its Ward-Takahashi or Slavnov-Taylor identity, ensures the massless fermion and boson propagators transform according to their local gauge covariance relations, reproduces perturbation theory in the weak coupling regime and provides a gauge independent description for dynamical chiral symmetry breaking and confinement has been a long-standing goal in physically relevant gauge theories such as quantum electrodynamics (QED) and quantum chromodynamics. In this paper, we demonstrate that the same simple and practical form of the vertex can achieve these objectives not only in 4-dimensional quenched QED but also in its 3-dimensional counterpart. Employing this convenient form of the vertex ansatz into the Schwinger-Dyson equation for the fermion propagator, we observe that it renders the critical coupling in 4-dimensional quenched QED markedly gauge independent in contrast with the bare vertex and improves on the well-known Curtis-Pennington construction. Furthermore, our proposal yields gauge independent order parameters for confinement and dynamical chiral symmetry breaking in 3-dimensional quenched QED.

  16. A study of steric chirality: the chiral nematic phase of a system of chiral two-site HGO molecules

    NASA Astrophysics Data System (ADS)

    Varga, Szabolcs; Jackson, George

    2011-03-01

    The liquid crystalline phase behaviour of a chiral two-site hard Gaussian overlap fluid is examined using the well-known Parsons-Lee extension of the theory of Onsager. The hard-core model is constructed such that the vector connecting the centers of two hard Gaussian segments is perpendicular to the long axes of both segments. The microscopic chirality of the particle can be controlled with the dihedral angle between the long axes of the hard Gaussian segments, the distance between the two segments, and the length-to-breath ratios of each segment. In the framework of the Parsons-Lee approach three different types of phases are considered, namely, the isotropic liquid state, and the nematic and the chiral nematic (cholesteric) liquid crystalline states. For simplicity, the orientation of the particles is restricted to the plane perpendicular to the twist axis, and the particles do not have internal freedom to rotate around their main symmetry axes. The geometric condition for the formation of a chiral nematic phase, the properties of the helical structure, and the phase boundary of the ordering transition are determined by means of a free energy minimization. It is shown that steric (shape) chirality always gives rise to a helical structure in the nematic phase, and that the low density chiral systems can undergo a transition from an isotropic liquid to a twisted nematic phase on increasing the density. Analytical expressions are obtained for the twist period (pitch) in the limit of parallel stacking of the rod-like segments in layers normal to the helical axis, which are only valid for systems characterized by weak chiral strengths. A key finding of the numerical calculations is that the pitch is very sensitive to the segment separation, but not to the density or aspect ratio. It is interesting to note that the inverse of the pitch is predicted to depend linearly on the dihedral angle in all of the cases studied.

  17. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui

    2010-04-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  18. Chiral polymerization in open systems from chiral-selective reaction rates.

    PubMed

    Gleiser, Marcelo; Nelson, Bradley J; Walker, Sara Imari

    2012-08-01

    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates. PMID:22610131

  19. Integration of inherent and induced chirality into subphthalocyanine analogue

    NASA Astrophysics Data System (ADS)

    Zhao, Luyang; Qi, Dongdong; Wang, Kang; Wang, Tianyu; Han, Bing; Tang, Zhiyong; Jiang, Jianzhuang

    2016-06-01

    Conventional conjugated systems are characteristic of only either inherent or induced chirality because of synthetic challenge in combination of chiral segment into the main chromophore. In this work, chiral binaphthyl segment is directly fused into the central chromophore of a subphthalocyanine skeleton, resulting in a novel type of chiral subphthalocyanine analogue (R/S)-1 of integrated inherent and induced chirality. Impressively, an obviously enhanced optical activity is discerned for (R/S)-1 molecules, and corresponding enhancement mechanism is elucidated in detail. The synthesis strategy based on rational molecular design will open the door towards fabrication of chiral materials with giant optical activity, which will have great potential in chiroptical devices.

  20. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures.

    PubMed

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  1. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    PubMed Central

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  2. Structure of Boron Nitride Nanotubes: Tube Closing Vs. Chirality

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu

    1998-01-01

    The structure of boron nitride nanotubes is investigated using a generalized tight-binding molecular dynamics method. It is shown that dynamic relaxation results in a wavelike or "rippled" surface in which the B atoms rotate inward and the N atoms move outward, reminiscent of the surface relaxation of the III-V semiconductors. More importantly, the three different morphologies of the tube closing with flat, conical and amorphous ends, as observed in experiments, are shown to be directly related to the tube chiralities. The abundance of flat end tubes observed in experiments is, thus, shown to be an indication of the greater stability of "zig-zag" BN tubes over the "arm-chair" tubes under experimental conditions.

  3. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    PubMed

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed. PMID:23215387

  4. Chiral pesticides: identification, description, and environmental implications.

    PubMed

    Ulrich, Elin M; Morrison, Candice N; Goldsmith, Michael R; Foreman, William T

    2012-01-01

    Of the 1,693 pesticides considered in this review, 1,594 are organic chemicals, 47 are inorganic chemicals, 53 are of biological origin (largely non chemical; insect,fungus, bacteria, virus, etc.), and 2 have an undetermined structure. Considering that the EPA's Office of Pesticide Programs found 1,252 pesticide active ingredients(EPA Pesticides Customer Service 2011), we consider this dataset to be comprehensive; however, no direct comparison of the compound lists was undertaken. Of all pesticides reviewed, 482 (28%) are chiral; 30% are chiral when considering only the organic chemical pesticides. A graph of this distribution is shown in Fig. 7a. Each pesticide is classified with up to three pesticidal utilities (e.g., fungicide, plant growth regulator, rodenticide, etc.), taken first from the Pesticide Manual as a primary source, and the Compendium of Common Pesticide Names website as a secondary source. Of the chiral pesticides, 195 (34%) are insecticides (including attractants, pheromones, and repellents), 150 (27%) are herbicides (including plant growth regulators and herbicide safeners), 104 (18%) are fungicides, and 55 (10%)are acaricides. The distribution of chiral pesticides by utility is shown in Fig. 7b,including categories of pesticides that make up 3%t or less of the usage categories.Figure 7c shows a similar distribution of non chiral pesticide usage categories. Of the chiral pesticides, 270 (56%) have one chiral feature, 105 (22%) have two chiral features, 30 (6.2%) have three chiral features, and 29 (6.0%) have ten or more chiral features.Chiral chemicals pose many difficulties in stereospecific synthesis, characterization, and analysis. When these compounds are purposely put into the environment,even more interesting complications arise in tracking, monitoring, and predicting their fate and risks. More than 475 pesticides are chiral, as are other chiral contaminants such as pharmaceuticals, polychlorinated biphenyls, brominated flame retardants

  5. Chiral Properties in ^134Pr

    NASA Astrophysics Data System (ADS)

    Starosta, K.; Chiara, C. J.; Fossan, D. B.; Koike, T.; Beausang, C. W.; Hecht, A. A.; Boston, A. J.; Chantler, H. J.; Paul, E. S.; Scraggs, H. C.; Simons, A.; Wadsworth, R.; Clark, R. M.

    2001-04-01

    The πh_11/2νh_11/2 doublet bands in ^134Pr, which represent the best evidence to date for chiral symmetry breaking in odd-odd nuclei [1], were investigated with the GAMMASPHERE array using the ^116Cd(^23Na,5n) reaction at 115 MeV. From thin-target data, the nearly degenerate ΔI=1 side band was extended from a 9^+ bandhead up to a spin of 24^+ with E2 crossovers, a total of 15 units of spin, while the main yrast band was observed from an 8^+ bandhead to 24^+. Measured γ-ray intensities suggest a staggering of the B(M1)/B(E2) ratios in the main band with the ratio smaller for even-spin initial states; these compare well with those of other N=75 isotones. Relative transition rates for γ-rays linking the doublet bands have also been extracted. Analysis of backed-target data aimed at absolute transition rates is underway. The results will be compared to calculations with particle-hole triaxial-rotor and 3-D TAC models. [1mm] [1] C.M.Petrache, et al., Nucl.Phys.A597(1996)106; V.I.Dimitrov, et al., PRL 84(2000)5732; K. Starosta, et al., PRL 86(2001).

  6. Light-driven supramolecular chiral materials: photoinduced control of liquid-crystalline helical structures and non-destructive erasable molecular memory for photonic applications

    NASA Astrophysics Data System (ADS)

    Kawamoto, Masuki; Shiga, Natsuki; Takaishi, Kazuto; Sassa, Takafumi; Yamashita, Takashi; Ito, Yoshihiro

    2013-09-01

    Light-driven supramolecular chiral materials containing an azobenzene moiety as a photoresponsive part and binaphthyl moiety as a chiral part were designed. We found that the dynamic molecular twisting motion of the binaphthyl moiety could be achieved by irradiation of UV or visible light to cause photoisomerization of the azobenzene moiety. The twisting motion induced by the photochromic reaction gave rise to large change in the molecular structure and the value of optical rotation. The chiral materials were demonstrated to behave uniquely as photomodulation of liquid-crystalline helical structures and non-destructive erasable chiroptical memory through photoinduced switching of the dihedral angle of the binaphthyl moiety.

  7. Emergent universe supported by chiral cosmological fields in 5D Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Chervon, S. V.; Maharaj, S. D.; Beesham, Aroonkumar; Kubasov, A. S.

    2014-07-01

    We propose the application of the chiral cosmological model (CCM) for the Einstein--Gauss--Bonnet (EGB) theory of gravitation with the aim of finding new models of the Emergent Universe (EmU) scenario. We analysed the EmU supported by two chiral cosmological fields for a spatially flat universe, while we have used three chiral fields when we investigated open and closed universes. To prove the validity of the EmU scenario we fixed the scale factor and found the exact solution by decomposition of EGB equations and solving the chiral field dynamics equation. To this end, we suggested the decomposition of the EGB equations in such a way that the first chiral field is responsible for the Einstein part of the model, while the second field, together with kinetic interaction term, is connected with the Gauss--Bonnet part of the theory. We proved that both fields are phantom ones under this decomposition, and that the model has a solution if the kinetic interaction between the fields equals a constant. We have presented the exact solution in terms of cosmic time. This was done for a spatially flat universe. In the case of open and closed universes we introduced the third chiral field (canonical for closed and phantom for open universe) which is responsible for the EGB and curvature parts. The solution of the third field equation is obtained in quadratures. Thus we have proved that the CCM is able to support EmU scenario in EGB gravity for spatially flat, open and closed universes.

  8. Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-05-01

    One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.

  9. Macroscopic chirality of a liquid crystal from nonchiral molecules

    NASA Astrophysics Data System (ADS)

    Jákli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.

    2001-06-01

    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment.

  10. METHODS DEVELOPMENT FOR THE ANALYSIS OF CHIRAL PESTICIDES

    EPA Science Inventory

    Chiral compounds exist as a pair of nonsuperimposable mirror images called enantiomers. Enantiomers have identical physical-chemical properties, but their interactions with other chiral molecules, toxicity, biodegradation, and fate are often different. Many pharmaceutical com...

  11. PESTICIDE EXPOSURE AND CHIRAL CHEMISTRY: THE PYRETHROID FAMILY

    EPA Science Inventory

    Advances in chiral chromatography significantly advanced the ability to analyze individual enantiomers of chiral compounds. These techniques are being employed at the U.S. EPA for human exposure and ecological research studies. Enantiomer fractions (EFs) were measured for cisp...

  12. Nucleon-nucleon scattering from dispersion relations: Next-to-next-to-leading order study

    NASA Astrophysics Data System (ADS)

    Oller, J. A.

    2016-02-01

    Nucleon-nucleon (NN ) scattering is studied by applying an approach based on the N /D method and chiral perturbation theory (ChPT), whose dynamical input per partial wave consists of the imaginary part of the NN partial-wave amplitude along the left-hand cut. The latter is calculated in one-loop ChPT up to and including next-to-next-to-leading order (NNLO). A power counting for the subtraction constants is established, which is appropriate for those subtractions attached to both the left- and the right-hand cuts. A quite good reproduction of the Nijmegen partial-wave analysis phase shifts and mixing angles results, which implies a steady improvement in the accurateness achieved by increasing the chiral order in the calculation of the dynamical input. I discuss that it is not necessary to fine tune the chiral counterterms ci determined from pion-nucleon scattering to agree with NN data, but instead one should perform the iteration of two-nucleon intermediate states in a well-defined way so as to keep proper unitarity and analyticity. It is also confirmed at NNLO the long-range correlations between the NN S -wave effective ranges and scattering lengths, when employing only once-subtracted dispersion relations, that hold up to around 10% when compared with experimental values.

  13. On the chiral imbalance and Weibel instabilities

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Kaw, P. K.

    2016-06-01

    We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter ξ and the angle (θn) between the propagation vector and the anisotropy direction. It has maximum growth rate at θn = 0 while θn = π / 2 corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when θn = 0, only for a very small values of the anisotropic parameter ξ ∼ξc, growth rates of the both instabilities are comparable. For the cases ξc < ξ ≪ 1 or ξ ≳ 1 at θn = 0, the Weibel modes dominate over the chiral-imbalance instability if μ5 / T ≤ 1. However, when μ5 / T ≥ 1, it is possible to have dominance of the chiral-imbalance modes at certain values of θn for an arbitrary ξ.

  14. Chiral density wave in nuclear matter

    NASA Astrophysics Data System (ADS)

    Heinz, Achim; Giacosa, Francesco; Rischke, Dirk H.

    2015-01-01

    Inspired by recent work on inhomogeneous chiral condensation in cold, dense quark matter within models featuring quark degrees of freedom, we investigate the chiral density-wave solution in nuclear matter at zero temperature and nonvanishing baryon number density in the framework of the so-called extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction based on the global chiral symmetry of quantum chromodynamics (QCD). It contains scalar, pseudoscalar, vector, and axial-vector mesons as well as baryons. In the latter sector, the nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The eLSM simultaneously provides a good description of hadrons in vacuum as well as nuclear matter ground-state properties. We find that an inhomogeneous phase in the form of a chiral density wave is realized, but only for densities larger than 2.4ρ0, where ρ0 is the nuclear matter ground-state density.

  15. Ratchet transport powered by chiral active particles

    PubMed Central

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  16. Chirality dependent spin polarization of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Jiang, Wanrun; Wang, Bo; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-02-01

    The spin polarization of carbon nanotubes (CNTs) offers a tunable building block for spintronic devices and is also crucial for realizing carbon-based electronics. However, the effect of chiral CNTs is still unclear. In this paper, we use the density functional theory (DFT) method to investigate the spin polarization of a series of typical finite-length chiral CNTs (9, m). The results show that the spin density of chiral CNTs (9, m) decreases gradually with the increase in m and vanishes altogether when m is larger than or equal to 6. The armchair edge units on both ends of the (9, m) CNTs exhibit a clear inhibition of spin polarization, allowing control of the spin density of (9, m) CNTs by adjusting the number of armchair edge units on the tube end. Furthermore, analysis of the orbitals shows that the spin of the ground state for (9, m) CNTs mainly comes from the contributions of the frontier molecular orbitals (MOs), and the energy gap decreases gradually with the spin density for chiral CNTs. Our work further develops the study of the spin polarization of CNTs and provides a strategy for controlling the spin polarization of functional molecular devices through chiral vector adjustment.

  17. Chiral effects in uniformly loaded rods

    NASA Astrophysics Data System (ADS)

    Ieşan, D.

    2010-09-01

    Examples of chiral materials include some auxetic materials, bones, some honeycomb structures, as well as composites with inclusions. The chiral effects cannot be described within classical elasticity. In the context of the linear theory of Cosserat elastic solids, we investigate the deformation of a chiral rod subjected to tractions on the lateral surface, to body loads, and to resultant forces and moments on the ends. The work is motivated by the recent interest in the using of the Cosserat elastic solid as model for auxetic composites, carbon nanotubes and bones. The three-dimensional problem is reduced to the study of some generalized plane strain problems. New chiral effects are presented. In the case of cylinders of arbitrary cross-section, the flexure produced by a transversal force, in contrast with the case of achiral materials, is accompanied by extension and bending by terminal couples. The body loads and the tractions on the lateral surface produce extension, flexure, torsion, bending by terminal couples and a plane strain. It is shown that a uniform pressure acting on the lateral surface of a chiral circular cylinder does not produce bending effects.

  18. Ratchet transport powered by chiral active particles

    NASA Astrophysics Data System (ADS)

    Ai, Bao-Quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles.

  19. Ratchet transport powered by chiral active particles.

    PubMed

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a 'sea' of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  20. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya; Yamamoto, Arata

    2015-05-01

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  1. Asymmetric Autocatalysis Induced by Chiral Crystals of Achiral Tetraphenylethylenes

    NASA Astrophysics Data System (ADS)

    Kawasaki, Tsuneomi; Nakaoda, Mai; Kaito, Nobuhiro; Sasagawa, Taisuke; Soai, Kenso

    2010-02-01

    The achiral hydrocarbon tetraphenylethylene crystallizes in enantiomorphous forms (chiral space group: P21) to afford right- and left-handed hemihedral crystals, which can be recognized by solid-state circular dichroism spectroscopic analysis. Chiral organic crystals of tetraphenylethylene mediated enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde to give, in conjunction with asymmetric autocatalysis with amplification of chirality, almost enantiomerically pure ( S)- and ( R)-5-pyrimidyl alkanols whose absolute configurations were controlled efficiently by the crystalline chirality of the tetraphenylethylene substrate. Tetrakis( p-chlorophenyl)ethylene and tetrakis( p-bromophenyl)ethylene also show chirality in the crystalline state, which can also act as a chiral substrate and induce enantioselectivity of diisopropylzinc addition to pyrimidine-5-carbaldehyde in asymmetric autocatalysis to give enantiomerically enriched 5-pyrimidyl alkanols with the absolute configuration correlated with that of the chiral crystals. Highly enantioselective synthesis has been achieved using chiral crystals composed of achiral hydrocarbons, tetraphenylethylenes, as chiral inducers. This chemical system enables significant amplification of the amount of chirality using spontaneously formed chiral crystals of achiral organic compounds as the seed for the chirality of asymmetric autocatalysis.

  2. Chirality Change by Grinding Crystals in Solution

    SciTech Connect

    Viedma, Cristobal

    2010-07-22

    One of the greatest unsolved problems in chemistry is the origin of homochirality in the biosphere, that is, the fact that l-amino acids and d-sugars dominate in biology, while laboratory experiments with stereoselective reactions only produce racemic mixtures. Several models have been proposed to address the question of how enantiomerically pure solutions or crystalline phases could have emerged from a presumably racemic prebiotic world. Here we show that two populations of amino acid crystals of 'left' and 'right' hand cannot coexist in solution: one of the chiral populations disappears in an irreversible autocatalytic process that nurtures the other one. Final and complete chiral purity seems to be an inexorable fate in our systems, under grinding, in the course of the common process of growth-dissolution. This unexpected chiral symmetry breaking has become firmly established but the underlying mechanism is being debated and we have no definitive answer.

  3. Spontaneous chiral symmetry breaking in metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Powell, David A.; Shadrivov, Ilya V.; Lapine, Mikhail; Kivshar, Yuri S.

    2014-07-01

    Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.

  4. Heterogeneous chiral catalysis: Past, present, and future

    SciTech Connect

    Brenner, J.R.

    1996-12-31

    In order to improve the scalability of the synthesis of chiral compounds, considerable effort has been devoted to the design of heterogeneous chiral catalysts. The attachment of {open_quotes}curved{close_quotes} chiral ligands, such as cinchona alkaloids, to supported metal complexes has permitted enantioselectivities approaching those in homogeneous solution. While the nature of the support has received less attention, the increased pore structure control gained during the gradual shift from polymeric supports to pillared clays, and finally to mesoporous zeolites and controlled pore glasses will hopefully allow better molecular size and shape control. Future work in this area likely will entail the use of polymeric templates as molecular imprints for protein synthesis and for antibody delivery systems.

  5. Berry Curvature and Chiral Plasmons in Massive Dirac Materials

    NASA Astrophysics Data System (ADS)

    Song, Justin; Rudner, Mark

    2015-03-01

    In the semiclassical model of carrier dynamics, quasiparticles are described as nearly free electrons with modified characteristics modified characteristics such as effective masses which may differ significantly from those of an electron in vacuum. In addition to being influenced by external electric and magnetic fields, the trajectories of electrons in topological materials are also affected by the presence of an interesting quantum mechanical field - the Berry curvature - which is responsible for a number of anomalous transport phenomena recently observed in Dirac materials including G/hBN, and MoS2. Here we discuss how Berry curvature can affect the collective behavior of electrons in these systems. In particular, we show that the collective electronic excitations in metallic massive Dirac materials can feature a chirality even in the absence of an applied magnetic field. The chirality of these plasmons arises from the Berry curvature of the massive Dirac bands. The corresponding dispersion is split between left- and right-handed modes. We also discuss experimental manifestations.

  6. Interaction of Two Filament Channels of Different Chiralities

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Filippov, Boris; Schmieder, Brigitte; Magara, Tetsuya; moon, Young-Jae; Uddin, Wahab

    2016-07-01

    We present observations of the interactions between the two filament channels of different chiralities and associated dynamics that occurred during 2014 April 18–20. While two flux ropes of different helicity with parallel axial magnetic fields can only undergo a bounce interaction when they are brought together, the observations at first glance show that the heated plasma is moving from one filament channel to the other. The SDO/AIA 171 Å observations and the potential-field source-surface magnetic field extrapolation reveal the presence of a fan-spine magnetic configuration over the filament channels with a null point located above them. Three different events of filament activations, partial eruptions, and associated filament channel interactions have been observed. The activation initiated in one filament channel seems to propagate along the neighboring filament channel. We believe that the activation and partial eruption of the filaments brings the field lines of flux ropes containing them closer to the null point and triggers the magnetic reconnection between them and the fan-spine magnetic configuration. As a result, the hot plasma moves along the outer spine line toward the remote point. Utilizing the present observations, for the first time we have discussed how two different-chirality filament channels can interact and show interrelation.

  7. Understanding the structure of d*(2380) in chiral quark model

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Shen, PengNian; Dong, YuBing; Zhang, ZongYe

    2016-02-01

    The structure and decay properties of d* have been detailedly investigated in both the chiral SU(3) quark model and the extended chiral SU(3) quark model that describe the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. By performing a dynamical coupled-channels study of the system of ΔΔ and hidden-color channel (CC) with quantum numbers I( J P ) = 0(3+) in the framework of the resonating group method (RGM), we find that the d* has a mass of about 2.38-2.42 GeV and a root-mean-square radius (RMS) of about 0.76-0.88 fm. The channel wave function is extracted by a projection of the RGM wave function onto the physical basis, and the fraction of CC component in the d* is found to be about 66%-68%, which indicates that the d* is a hexaquark-dominated exotic state. Based on this scenario the partial decay widths of d* → d π 0 π 0 and d∗ → d π + π - are further explicitly evaluated and the total width is then obtained by use of the branching ratios extracted from the measured cross sections of other possible decay channels. Both the mass and the decay width of d* calculated in this work are compatible with the data ( M ≈ 2380 MeV, Γ ≈ 70 MeV) reported by WASA-at-COSY Collaboration.

  8. A semiclassical formulation of the chiral magnetic effect and chiral anomaly in even d + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.; Elbistan, Mahmut

    2016-05-01

    In terms of the matrix valued Berry gauge field strength for the Weyl Hamiltonian in any even space-time dimensions a symplectic form whose elements are matrices in spin indices is introduced. Definition of the volume form is modified appropriately. A simple method of finding the path integral measure and the chiral current in the presence of external electromagnetic fields is presented. It is shown that within this new approach the chiral magnetic effect as well as the chiral anomaly in even d + 1 dimensions are accomplished straightforwardly.

  9. Enantioselective synthesis of chiral heterocycles containing both chroman and pyrazolone derivatives catalysed by a chiral squaramide.

    PubMed

    Li, Jun-Hua; Du, Da-Ming

    2015-05-28

    An efficient chiral squaramide-catalysed enantioselective Michael addition of pyrazolin-5-ones to 3-nitro-2H-chromenes for the synthesis of chiral heterocyclic systems containing both chroman and pyrazolone derivatives has been developed. This reaction afforded the desired products in high to excellent yields (up to 98%) with high enantioselectivities (up to 96%) and excellent diastereoselectivities (up to 99 : 1) under very low catalyst loading (0.2 mol%). This catalytic asymmetric reaction provides an efficient route toward the synthesis of chiral heterocyclic systems containing both chroman and pyrazolone derivatives, which possess potential pharmaceutical activities. PMID:25882378

  10. Chiral Molecules Revisited by Broadband Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie

    2014-06-01

    Chiral molecules have fascinated chemists for more than 150 years. While their physical properties are to a very good approximation identical, the two enantiomers of a chiral molecule can have completely different (bio)chemical activities. For example, the right-handed enantiomer of carvone smells of spearmint while the left-handed one smells of caraway. In addition, the active components of many drugs are of one specific handedness, such as in the case of ibuprofen. However, in nature as well as in pharmaceutical applications, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) remains a challenging task for analytical chemistry, despite its importance for modern drug development. We present here a new method of differentiating enantiomers of chiral molecules in the gas phase based on broadband rotational spectroscopy. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the combined quantity, μ_a μ_b μ_c, which is of opposite sign between enantiomers. It thus also provides information on the absolute configuration of the particular enantiomer. Furthermore, the signal amplitude is proportional to the ee. A significant advantage of our technique is its inherent mixture compatibility due to the fingerprint-like character of rotational spectra. In this contribution, we will introduce the technique and present our latest results on chiral molecule spectroscopy and enantiomer differentiation. D. Patterson, M. Schnell, J.M. Doyle, Nature 497 (2013) 475-477 V.A. Shubert, D. Schmitz, D. Patterson, J.M. Doyle, M. Schnell, Angewandte Chemie International Edition 53 (2014) 1152-1155

  11. Possible chiral bands in {sup 194}Tl

    SciTech Connect

    Masiteng, P. L.; Ramashidzha, T. M.; Maliage, S. M.; Sharpey-Schafer, J. F.; Vymers, P. A.; Lawrie, E. A.; Lawrie, J. J.; Bark, R. A.; Mullins, S. M.; Murray, S. H. T.; Kau, J.; Komati, F.; Lindsay, R.; Matamba, I.; Mutshena, P.; Zhang, Y.

    2011-10-28

    High spin states in {sup 194}Tl, excited through the {sup 181}Ta({sup 18}O,5n) fusion evaporation reaction, were studied using the AFRODITE array at iThemba LABS. Candidate chiral bands built on the {pi}h{sub 9/2} x {nu}i{sub 13/2}{sup 1} configuration were found. Furthermore these bands were observed through a band crossing caused by the excitation of a {nu}i{sub 13/2} pair. Above the band crossing the excitation energies remain close, suggesting that chirality may persist for the four quasiparticle configuration too.

  12. Asymmetric petasis reactions catalyzed by chiral biphenols.

    PubMed

    Lou, Sha; Schaus, Scott E

    2008-06-01

    Chiral biphenols catalyze the enantioselective Petasis reaction of alkenyl boronates, secondary amines, and ethyl glyoxylate. The reaction requires the use of 15 mol % of (S)-VAPOL as the catalyst, alkenyl boronates as nucleophiles, ethyl glyoxylate as the aldehyde component, and 3 A molecular sieves as an additive. The chiral alpha-amino ester products are obtained in good yields (71-92%) and high enantiomeric ratios (89:11-98:2). Mechanistic investigations indicate single ligand exchange of acyclic boronate with VAPOL and tetracoordinate boronate intermediates. PMID:18459782

  13. Chiral pesticides: Identification, description, and environmental implications

    USGS Publications Warehouse

    Ulrich, Elin M.; Morrison, Candice N.; Goldsmith, Michael R.; Foreman, William T.

    2012-01-01

    Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless, pesticide exposure can pose risks to humans and the environment, so various mitigation strategies are exercised to make them safer, minimize their use, and reduce their unintended environment effects. One strategy that may help achieve these goals relies on the unique properties of chirality or molecular asymmetry. Some common terms related to chirality are defined in Table 1.

  14. Steering Chiral Swimmers along Noisy Helical Paths

    NASA Astrophysics Data System (ADS)

    Friedrich, Benjamin M.; Jülicher, Frank

    2009-08-01

    Chemotaxis along helical paths towards a target releasing a chemoattractant is found in sperm cells and many microorganisms. We discuss the stochastic differential geometry of the noisy helical swimming path of a chiral swimmer. A chiral swimmer equipped with a simple feedback system can navigate in a concentration gradient of chemoattractant. We derive an effective equation for the alignment of helical paths with a concentration gradient which is related to the alignment of a dipole in an external field and discuss the chemotaxis index.

  15. A multichannel magneto-chiral dichroism spectrometer

    NASA Astrophysics Data System (ADS)

    Kopnov, G.; Rikken, G. L. J. A.

    2014-05-01

    In this work, we describe a multichannel magneto-chiral dichroism spectrometer for the visible and near infrared wavelength ranges. The optical signal acquisition is based on commercially available Czerny-Turner spectrograph systems equipped with solid state detector arrays. The signal analysis method is based on post-processing phase sensitive detection, where the optical properties of the sample are modulated by an alternating external magnetic field. As an illustration of the performance of this spectrometer, magneto-chiral dichroism was measured in crystals of α - NiSO4 . 6H2O and good agreement with literature results was obtained.

  16. Chiral Thermoelectrics with Quantum Hall Edge States

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2015-04-01

    The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.

  17. Phenomenology of chiral damping in noncentrosymmetric magnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurélien

    2016-06-01

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective "s-d" Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  18. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  19. Band Structure Controlled by Chiral Imprinting

    NASA Astrophysics Data System (ADS)

    Reyes Cervantes, Adrian; Castro-Garay, P.; Ramos-Garcia, Ruben

    2008-03-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, we find the solution of the boundary--value problem for the reflection and transmission of incident optical waves due to the elastomer. We show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested bandgaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  20. Terahertz wave emission from plasmonic chiral metasurfaces

    NASA Astrophysics Data System (ADS)

    Matsui, Takahiro; Tomita, Satoshi; Asai, Motoki; Tadokoro, Yuzuru; Takano, Keisuke; Nakajima, Makoto; Hangyo, Masanori; Yanagi, Hisao

    2016-03-01

    Plasmonic chiral metasurfaces with pinwheel-like structures are fabricated on silver films using a focused ion-beam milling technique. In time-domain spectroscopy, we observe terahertz (THz) wave emission from metasurfaces irradiated by a near-infrared Ti:sapphire ultrashort pulsed laser. The origin of the THz wave generation is likely to be tunnelling ionization accompanied with photoelectron acceleration by ponderomotive force. Numerical simulation is carried out toward improvement of the chiral metasurfaces for better emission of circularly polarized THz waves.