Science.gov

Sample records for chirp transform techniques

  1. Adaptive chirp-Fourier transform for chirp estimation with applications in ISAR imaging of maneuvering targets

    NASA Astrophysics Data System (ADS)

    Xia, Xiang-Gen; Wang, Genyuan; Chen, Victor C.

    2001-03-01

    This paper first reviews some basic properties of the discrete chirp-Fourier transform and then present an adaptive chirp- Fourier transform, a generalization of the amplitude and phase estimation of sinusoids (APES) algorithm proposed by Li and Stoica for sinusoidal signals. We finally applied it to the ISAR imaging of maneuvering targets.

  2. Chirp Z-transform spectral zoom optimization with MATLAB.

    SciTech Connect

    Martin, Grant D.

    2005-11-01

    The MATLAB language has become a standard for rapid prototyping throughout all disciplines of engineering because the environment is easy to understand and use. Many of the basic functions included in MATLAB are those operations that are necessary to carry out larger algorithms such as the chirp z-transform spectral zoom. These functions include, but are not limited to mathematical operators, logical operators, array indexing, and the Fast Fourier Transform (FFT). However, despite its ease of use, MATLAB's technical computing language is interpreted and thus is not always capable of the memory management and performance of a compiled language. There are however, several optimizations that can be made within the chirp z-transform spectral zoom algorithm itself, and also to the MATLAB implementation in order to take full advantage of the computing environment and lower processing time and improve memory usage. To that end, this document's purpose is two-fold. The first demonstrates how to perform a chirp z-transform spectral zoom as well as an optimization within the algorithm that improves performance and memory usage. The second demonstrates a minor MATLAB language usage technique that can reduce overhead memory costs and improve performance.

  3. Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power.

    PubMed

    Nguyen, Dat; Piracha, Mohammad Umar; Delfyett, Peter J

    2012-12-01

    A fiber-based chirped-pulse amplification (CPA) system with an active feedback loop for pulse shaping is experimentally demonstrated. A spectral processor is used in conjunction with a frequency-resolved optical gating measurement to produce high-quality pulses. Spectral phase and intensity shaping are utilized to generate a clean, high-contrast, transform-limited pulse with 15 dB pedestal suppression in the pulse wing tails, resulting in a five time increase in peak power of the CPA system. PMID:23202088

  4. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Holland, Daniel B.; Carroll, P. Brandon; Blake, Geoffrey A.

    2013-08-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice for acquiring rotational spectra, due to their high sensitivity, fast acquisition rate, and large bandwidth. Here we present the design and capabilities of a recently constructed CP-FTMW spectrometer using direct digital synthesis (DDS) as a new method for chirped pulse generation, through both a suite of extensive microwave characterizations and deep averaging of the 10-14 GHz spectrum of jet-cooled acetone. The use of DDS is more suited for in situ applications of CP-FTMW spectroscopy, as it reduces the size, weight, and power consumption of the chirp generation segment of the spectrometer all by more than an order of magnitude, while matching the performance of traditional designs. The performance of the instrument was further improved by the use of a high speed digitizer with dedicated signal averaging electronics, which facilitates a data acquisition rate of 2.1 kHz.

  5. Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2012-01-01

    This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.

  6. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum. PMID:26601381

  7. Chirped-Pulse Fourier Transform Microwave Spectroscopy of 3-METHOXYPROPYLAMINE

    NASA Astrophysics Data System (ADS)

    McCabe, Morgan N.; Shipman, Steven; Arnold, Sean; Chewning, J. Chase; Smith, Miranda; Brown, Gordon

    2014-06-01

    The rotational spectrum of 3-methoxypropylamine was collected from 8.0 to 18.5 GHz with the Coker College chirped-pulse FTMW molecular beam spectrometer. Ab initio predictions using the B3LYP-D3 dispersion-corrected density functional gave high quality starting geometries, enabling us to quickly assign the spectrum of the lowest energy conformer, which has a g'gt configuration (moving from the amine end to the methoxy end of the molecule). Attempts were also made to collect the spectrum of this molecule in the room-temperature waveguide instrument at New College, but these attempts were unsuccessful as the molecule rapidly reacts with the copper walls of the waveguide to produce ammonia.

  8. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics

    E-print Network

    Abeysekera, Chamara

    This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave ...

  9. a Study of 4,4-DIMETHYLAMINOBEZONITRILE by Chirped-Pulsed Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bird, Ryan G.; Alstadt, Valerie J.; Pratt, David W.; Neill, Justin L.; Pate, Brooks H.

    2010-06-01

    The ground state rotational spectrum of 4,4-dimethylaminobenzonitrile (DMABN) was studied using chirped-pulsed Fourier transform microwave spectroscopy (CP-FTMW). The rotational spectrum from 6.5 to 18 GHz was collected using a compilation of 250 MHz chirped pulses and pieced together. DMABN is widely known as an important model for excited state twisted intramolecular charge transfer dynamics. It has been previously studied in our group using high resolution electronic spectroscopy, in which a strong coupling between methyl group internal rotation and overall rotation was discovered. We have recently determined that these couplings are not present in the ground state spectrum. The ground state structure and nuclear quadrupole coupling terms will also be discussed.

  10. Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy of Allyl Bromide

    NASA Astrophysics Data System (ADS)

    McCabe, Morgan N.; Shipman, Steven

    2014-06-01

    The rotational spectrum of allyl bromide was recorded from 8.7 to 26.5 GHz at -20 °C with a waveguide chirped-pulse Fourier transform microwave spectrometer. The rotational spectrum of allyl bromide has been previously studied by Niide and coworkers. However, previous assignments of this spectrum only extended to J = 12 and K_a = 1. Newly acquired data from our spectrometer has allowed us to extend the previous work to higher values of J and K_a, leading to significant improvements in the distortion constants in particular. Comparisons between the spectra and conformational preferences of the allyl halides will also be discussed. Y. Niide, M, Takano,T. Satoh, and Y. Sasada J. Mol. Spectrosc., 63, 108(1976) Niide, Yuzuru, J. Sci. Hiroshima Univ., Ser. A, 48, 1(1984)

  11. Solvent Environment Revealed by Positively Chirped Pulses.

    PubMed

    Konar, Arkaprabha; Lozovoy, Vadim V; Dantus, Marcos

    2014-03-01

    The spectroscopy of large organic molecules and biomolecules in solution has been investigated using various time-resolved and frequency-resolved techniques. Of particular interest is the early response of the molecule and the solvent, which is difficult to study due to the ambiguity in assigning and differentiating inter- and intramolecular contributions to the electronic and vibrational populations and coherence. Our measurements compare the yield of fluorescence and stimulated emission for two laser dyes IR144 and IR125 as a function of chirp. While negatively chirped pulses are insensitive to solvent viscosity, positively chirped pulses are found to be uniquely sensitive probes of solvent viscosity. The fluorescence maximum for IR125 is observed near transform-limited pulses; however, for IR144, it is observed for positively chirped pulses once the pulses have been stretched to hundreds of femtoseconds. We conclude that chirped pulse spectroscopy is a simple one-beam method that is sensitive to early solvation dynamics. PMID:26274090

  12. Headspace Analysis of Volatile Compounds Using Segemented Chirped-Pulse Fourier Transform Mm-Wave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Steber, Amanda; Pate, Brooks

    2014-06-01

    A chirped-pulse Fourier transform mm-wave spectrometer has been tested in analytical chemistry applications of headspace analysis of volatile species. A solid-state mm-wave light source (260-290 GHz) provides 30-50 mW of power. This power is sufficient to achieve optimal excitation of individual transitions of molecules with dipole moments larger than about 0.1 D. The chirped-pulse spectrometer has near 100% measurement duty cycle using a high-speed digitizer (4 GS/s) with signal accumulation in an FPGA. The combination of the ability to perform optimal pulse excitation and near 100% measurement duty cycle gives a spectrometer that is fully optimized for trace detection. The performance of the instrument is tested using an EPA sample (EPA VOC Mix 6 - Supelco) that contains a set of molecules that are fast eluting on gas chromatographs and, as a result, present analysis challenges to mass spectrometry. The ability to directly analyze the VOC mixture is tested by acquiring the full bandwidth (260-290 GHz) spectrum in a "high dynamic range" measurement mode that minimizes spurious spectrometer responses. The high-resolution of molecular rotational spectroscopy makes it easy to analyze this mixture without the need for chemical separation. The sensitivity of the instrument for individual molecule detection, where a single transition is polarized by the excitation pulse, is also tested. Detection limits in water will be reported. In the case of chloromethane, the detection limit (0.1 microgram/L), matches the sensitivity reported in the EPA measurement protocol (EPA Method 524) for GC/MS.

  13. Microsolvation of ?-PROPIOLACTONE as Revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.; Pena, I.; Perez, C.; Alonso, J. L.

    2010-06-01

    Microwave spectra of water clusters of ?-propiolactone with up to five water molecules attached are presented. Helium or neon carrier gas with 3 atm of backing pressure is flowed over a room-temperature water reservoir, then over a room-temperature sample of ?-propiolactone before being expanded into a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating between 6.5 and 18.5 GHz. A very dense spectrum, with approximately 2000 lines with a signal to noise ratio of at least 3:1, was observed, of which 800 have been assigned to a total of 20 species, including isotopomers in natural abundance and clusters with the carrier gas. Due to the complexity of the spectrum, after the first few, all other spectra were assigned with the aid of microwave-microwave double resonance experiments, either performed on the CP-FTMW spectrometer or in a Balle-Flygare-type cavity FTMW spectrometer. In the case of an extremely dense spectrum like this in which many species are present, these double resonance measurements are required to successfully analyze the spectrum. Stark effect measurements and assignments of isotopically substituted species are used to determine the structures of these microsolvated complexes.

  14. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    NASA Astrophysics Data System (ADS)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  15. Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based fourier transform microwave spectroscopic study.

    PubMed

    Thomas, Javix; Serrato, Agapito; Lin, Wei; Jäger, Wolfgang; Xu, Yunjie

    2014-05-12

    Rotational spectra of perfluorobutyric acid (PFBA) and its monohydrate were studied with a broadband chirped pulse and a narrow-band cavity based Fourier transform microwave spectrometer, and high-level ab initio calculations. Extensive conformational searches were performed for both the acid and its monohydrate at the MP2/6-311++G(2d,p) level of theory. Two and three conformers were predicted to exist for PFBA and its monohydrate, respectively. One set of rotational transitions was observed and assigned for each, PFBA and its monohydrate. Based on the measured broadband spectra, we confidently conclude that only one dominant conformer exists in each case. The orientation of the hydroxyl group in PFBA was determined by using isotopic analysis. Comparison of the observed transition intensities and the calculated electric dipole moment components allowed us to identify the most stable monohydrate conformation, which takes on an insertion hydrogen-bonding topology. Comparisons to the shorter chain analogues, that is, trifluoroacetic acid, perfluoropropionic acid, and their monohydrates, are made to elucidate the general trend in their conformational preference and binding topologies. PMID:24756992

  16. The Marriage of Spectroscopy and Dynamics: Chirped-Pulse Fourier-Transform Mm-Wave Cp-Ft Spectroscopy in Pulsed Uniform Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Oldham, James M.; Suits, Arthur G.; Park, G. Barratt; Field, Robert W.

    2012-06-01

    A new experimental scheme is presented that combines two powerful emerging technologies: chirped-pulse Fourier-transform mm-Wave spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates, and perform unique spectroscopic, kinetics, and dynamics measurements. Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, pioneered by Pate and coworkers, allows rapid acquisition of broadband microwave spectrum through advancements in waveform generation and oscilloscope technology. This revolutionary approach has successfully been adapted to higher frequencies by the Field group at MIT. Our new apparatus will exploit amplified chirped pulses in the range of 26-40 GHz, in combination with a pulsed uniform supersonic flow from a Laval nozzle. This nozzle source, pioneered by Rowe, Sims, and Smith for low temperature kinetics studies, produces thermalized reactants at high densities and low temperatures perfectly suitable for reaction dynamics experiments studied using the CP-mmW approach. This combination of techniques shall enhance the thousand-fold improvement in data acquisition rate achieved in the CP method by a further 2-3 orders of magnitude. A pulsed flow alleviates the challenges of continuous uniform flow, e.g. large gas loads and reactant consumption rates. In contrast to other pulsed Laval systems currently in use, we will use a fast piezo valve and small chambers to achieve the desired pressures while minimizing the gas load, so that a 10 Hz repetition rate can be achieved with one turbomolecular pump. The proposed technique will be suitable for many diverse fields, including fundamental studies in spectroscopy and reaction dynamics, reaction kinetics, combustion, atmospheric chemistry, and astrochemistry. We expect a significant advancement in the ability to detect absolute populations of complex reaction products under near-nascent conditions, providing the powerful method of reaction dynamics with a universal spectroscopic probe capable of capturing the details of complex chemistry for specific product isomers and conformers.

  17. High range resolution velocity estimation techniques taking into account the frequency chirp in coherent Doppler lidars

    NASA Astrophysics Data System (ADS)

    Gurdev, Ljuan L.; Dreischuh, Tanja N.

    2003-04-01

    Taking into account the sensing-pulse frequency chirp, we have derived generalized algorithms for recovering the non-uniform Doppler-velocity coherent-lidar profiles within the lidar resolution interval conditioned by the pulse length. The laser pulses are assumed to have an exponentially shaped form. The performance and the efficiency of the algorithms obtained are studied and illustrated by computer simulations. It is shown that in the presence of arbitrary, in form and magnitude, but known regular frequency chirp, at some reasonable number of signal realizations and appropriate data processing to suppress the noise effects, the Doppler-velocity profiles can be determined accurately with considerably shorter resolution scale compared with the pulse length.

  18. Chirped Attosecond Photoelectron Spectroscopy

    SciTech Connect

    Yudin, G.L.; Bandrauk, A.D.; Corkum, P.B.

    2006-02-17

    We study analytically the photoionization of a coherent superposition of electronic states and show that chirped pulses can measure attosecond time scale electron dynamics just as effectively as transform-limited attosecond pulses of the same bandwidth. The chirped pulse with a frequency-dependent phase creates the interfering photoelectron amplitudes that measure the electron dynamics. We show that at a given pump-probe time delay the differential asymmetry oscillates as a function of photoelectron energy. Our results suggest that the important parameter for attosecond science is not the pulse duration, but the bandwidth of phased radiation.

  19. Dynamic Chirp Control and Pulse Compression for Attosecond High-Order Harmonic Emission

    SciTech Connect

    Zheng Yinghui; Zeng Zhinan; Zou Pu; Zhang Li; Li Xiaofang; Liu Peng; Li Ruxin; Xu Zhizhan

    2009-07-24

    We propose a scheme to compensate dynamically the intrinsic chirp of the attosecond harmonic pulses. By adding a weak second harmonic laser field to the driving laser field, the chirp compensation can be varied from the negative to the positive continuously by simply adjusting the relative time delay between the two-color pulses. Using this technique, the compensation of the negative chirp in harmonic emission is demonstrated experimentally for the first time and the nearly transform-limited attosecond pulse trains are obtained.

  20. Spectral Taxonomy: a Semi-Automated Combination of Chirped-Pulse and Cavity Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Crabtree, Kyle N.; McCarthy, Michael C.

    2014-06-01

    Chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) has proven to be a powerful tool for broadband spectral surveys in the cm-wave band. In conjunction with a non-specific production source, such as an electrical discharge, new, unexpected molecules can be detected by their rotational spectra provided that they can be disentangled from other species that may be present. As an example, we have recently used a CP-FTMW spectrometer operating in the 8--18 GHz band to detect and identify two new silicon nitrides, HSiNSi and H_3SiNSi, in a discharge of dilute silane and nitrogen, although neither species had been the subject of prior experimental or theoretical study. However, of the ˜100 lines that are observed in this plasma, only ˜20 have been assigned to known species. To further investigate unassigned lines in CP-FTMW spectra, we take advantage of the higher sensitivity of a traditional cavity FTMW spectrometer to rapidly perform follow-up assays in an approach we call "spectral taxonomy." Lines are classified according to whether their intensities are significantly altered by, for instance, turning off the discharge, applying a magnetic field, or removing a precursor gas; lines that show the same behavior for all tests may arise from a common carrier. After taxonometric classification, lines within each group are exhaustively tested with double resonance methods in an attempt to establish linkages which would identify lines arising from a shared quantum state and give clues as to the structure of the carrier. Using newly-designed control software for our cavity spectrometer, this entire procedure can be performed with minimal human intervention.

  1. Chirped-Pulse and Cavity Based Fourier Transform Microwave Spectroscopy of the Methyl Lactate-Ammonia Adduct

    NASA Astrophysics Data System (ADS)

    Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie

    2012-06-01

    The hydrogen bonded complex of ammonia with methyl lactate, a chiral alpha-hydroxyester, has been studied using rotational spectroscopy and high level ab initio calculations. Previous studies showed that methyl lactate can exist in a number of conformers. However, only the most stable one which has an intramolecular hydrogen bonded ring formed with its alcoholic hydroxyl and its carbonyl oxygen atom was detected experimentally An extensive ab initio search has been performed to locate all possible low energy conformers of the methyl lactate-ammonia contact pair. Five lowest energy conformers have been identified at the MP2/6-311++G(d,p) level. The lowest energy conformer favors an insertion arrangement, where ammonia is inserted into the existing intramolecular hydrogen bonded ring in the most stable methyl lactate conformer. Broadband scans for the rotational spectra of possible binary conformers have been carried out using a chirped-pulse Fourier transform microwave (FTMW) instrument. The most stable binary adduct was identified and assigned. The final frequency measurements have been done with a cavity based FTMW instrument. The spectrum observed shows complicated fine and hyperfine splitting patterns, likely due to the internal rotations of the methyl groups of methyl lactate and that of ammonia, as well as the 14N quadrupolar nucleus. The binary adduct with 15NH3 has also been studied to simplify the splitting pattern and to aid the assignments of the extensive splittings. The isotopic data and the fine and hyperfine structures will be discussed in terms of internal rotation dynamics and geometry of the hydrogen bonded adduct.

  2. Monitoring the Reaction Products of Perfluoropropionic Acid and Allyl Phenyl Ether Using Chirped-Pulse Fourier Transform Microwave Cp-Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Frank, Derek S.; Obenchain, Daniel A.; Lin, Wei; Novick, Stewart E.; Cooke, S. A.; Grubbs, G. S., II

    2014-06-01

    The pure rotational spectra of the reaction mixture of perfluoropropionic acid, CF3CF2COOH, and allyl phenyl ether, C6H5OCH2CH=CH2, have been studied by a pulsed nozzle, chirped-pulse Fourier transform microwave spectrometer in the frequency range of 8-14 GHz. Transitions corresponding to multiple species, two of which being starting materials allyl phenyl ether and perfluoropropionic acid, have been observed and analyzed. Determination of the reaction products was carried out by matching observed rotational constants with ab initio quantum chemical calculations of predicted products and will be discussed. Rotational constants, centrifugal distortion constants and the assignment of allyl phenyl ether and reaction products spectra will all be discussed.

  3. a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: Construction and Measurement of the Rotational Spectra of Divinyl Silane and 3,3-DIFLUOROPENTANE

    NASA Astrophysics Data System (ADS)

    Obenchain, Daniel A.; Steber, Amanda L.; Elliott, Ashley A.; Peebles, Rebecca A.; Peebles, Sean A.; Wurrey, Charles J.; Guirgis, Gamil A.

    2010-06-01

    A chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer based on the original Pate design has been constructed to allow analysis of any 480 MHz region in the 7 - 18 GHz range. A 1 ?s chirped-pulse (0 - 240 MHz) from an arbitrary function generator is mixed with output from a microwave synthesizer and used to polarize a supersonic gas expansion; the resulting free induction decay is collected over 20 ?s and Fourier-transformed on a 500 MHz oscilloscope to produce a rotational spectrum. A variety of molecules have now been studied with this instrument and results will be presented for numerous conformers of divinyl silane (predicted ?total = 0.6 - 0.7 D) and the more polar 3,3-difluoropentane (predicted ?total = 2.5 - 2.8 D). Two of the three possible conformers of divinyl silane were assigned (both having a C_1=C_2-Si-C_3 dihedral angle of -120° and a {C_2-Si-C_3=C_4} dihedral of either 0° (C_1 symmetry) or -120° (C_2 symmetry)). For 3,3-difluoropentane, three of the four possible {conformers} were identified: anti-gauche (C_1), gauche-gauche (C_2) and anti-anti (C2v). While rotational spectra for only the silicon isotopologues were observed for divinyl silane, measurement of the 13C spectra of 3,3-difluoropentane allowed heavy atom structure determinations for the anti-gauche and gauche-gauche conformers. Initial assignments of all spectra were made on the CP-FTMW {spectrometer}, and a Balle-Flygare FTMW spectrometer was used to compare frequencies of measured transitions and also to provide Stark effect data. Substitution (r_s) and inertial fit (r_0) structures will be compared with computational data and instrumental details will be presented. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S.T. Shipman, B.H. Pate, Rev. Sci. Instrum., 79, (2008), 053103.

  4. A Study of the Monohydrate and Dihydrate Complexes of Perfluoropropionic Acid Using Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectroscopy.

    PubMed

    Grubbs, G S; Obenchain, Daniel A; Frank, Derek S; Novick, Stewart E; Cooke, S A; Serrato, Agapito; Lin, Wei

    2015-10-22

    This work reports the first known spectroscopic observation of the monohydrate and dihydrate complexes of perfluoropropionic acid (PFPA). The spectra have been observed using a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer in the 7750 to 14250 MHz region. The structures of the species have been confirmed with the aid of ab initio quantum chemical calculations. Rotational constants A, B, and C have been determined and reported for both species along with centrifugal distortion constants ?J, ?JK, ?K, ?J, ?K for H2O-PFPA and ?J, ?JK, and ?J for (H2O)2-PFPA. Effects due to large amplitude motions were not observable in these experiments. Structures of the complexes have been determined using a combination of experimental second moment values and ab initio results. The complexation of the -OH of one or two water molecules has been found to occur in the plane of the carboxylic acid group forming a six- or eight-member ring. PMID:26421936

  5. Chirp Sensing Codes: Deterministic Compressed Sensing Measurements

    E-print Network

    Chirp Sensing Codes: Deterministic Compressed Sensing Measurements for Fast Recovery Lorne Abstract--Compressed sensing is a novel technique to acquire sparse signals with few measurements. Normally, compressed sensing uses random projections as measurements. Here we de- sign deterministic measurements

  6. Fourier Transform Heterodyne Techniques Applied To Astronomy

    NASA Astrophysics Data System (ADS)

    Laubscher, B. E.; Cooke, B. J.; Edwards, B. C.

    1998-12-01

    Fourier Transform Heterodyne (FTH) is a detection process capable of directly imaging the transverse amplitude and phase of coherent electromagnetic fields. Based on coherent detection principles governing conventional heterodyned systems, Fourier Transform Heterodyne (FTH) incorporates transverse spatial encoding of the local oscillator for image capture. Appropriate selection of spatial encoding functions (basis set) allows image retrieval by way of classic Fourier manipulations. Of practical interest: 1) Imaging is accomplished on a single element detector/sensor requiring no additional scanning or moving components. 2) Because detection is governed by heterodyne principles, near quantum limited performance is achievable. 3) The concept is general with the applicable electromagnetic spectrum encompassing the RF through optical. Although FTH is currently in its infancy, we believe this technique will provide new tools and concepts important to the development of future astronomical systems. For example: 1) An FTH-based optical or infrared interferometer (whether ground-based or space-based) can operate in direct analogy to VLBI radio astronomy systems. 2) FTH may be capable of measuring the atmospheric distortions of a target star to guide adaptive optical correction systems. 3) FTH may be used to determine the adjustments required to align a deployed structure in space and can remove aberrations from slight residual misalignments during operation. The work to be presented will include a brief introduction of the underlying principles governing FTH imaging, followed by cursory description of a simple proof-of-concept experiment carried out using a HeNe laser, a 69 element spatial phase modulator, and a 36 term Zernike basis set. Finally, astronomical applications will be discussed.

  7. Image watermarking technique based on the steerable pyramid transform

    E-print Network

    Wolf, Christian

    principles of our method as follow: a host image is first transformed by the steerable pyramid transform technique is robust to JPEG compression, additive noise, and median filtering. Keywords : content based

  8. Intravascular ultrasound chirp imaging

    NASA Astrophysics Data System (ADS)

    Maresca, D.; Jansen, K.; Renaud, G.; van Soest, G.; Li, X.; Zhou, Q.; de Jong, N.; Shung, K. K.; van der Steen, A. F. W.

    2012-01-01

    We demonstrate the feasibility of intravascular ultrasound (IVUS) chirp imaging as well as chirp reversal ultrasound contrast imaging at intravascular ultrasound frequency. Chirp excitations were emitted with a 34 MHz single crystal intravascular transducer and compared to conventional Gaussian-shaped pulses of equal acoustic pressure. The signal to noise ratio of the chirp images was increased by up to 9 dB relative to the conventional images. Imaging of contrast microbubbles was implemented by chirp reversal, achieving a contrast to tissue ratio of 12 dB. The method shows potential for intravascular imaging of structures in and beyond coronary atherosclerotic plaques including vasa vasorum.

  9. Towards Solvation of a Chiral Alpha-Hydroxy Ester: Broadband Chirp and Narrow Band Cavity Fouirier Transform Microwave Spectroscopy of Methyl Lactate-Water Clusters

    NASA Astrophysics Data System (ADS)

    Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie

    2013-06-01

    Methyl lactate (ML), a chiral alpha-hydroxy ester, has attracted much attention as a prototype system in studies of chirality transfer,[1] solvation effects on chiroptical signatures,[2] and chirality recognition.[3] It has multiple functional groups which can serve both as a hydrogen donor and acceptor. By applying rotational spectroscopy and high level ab initio calculations, we examine the delicate competition between inter- and intramolecular hydrogen-bonding in the ML-water clusters. Broadband rotational spectra obtained with a chirp Fourier transform microwave (FTMW) spectrometer, reveal that the insertion conformations are the most favourable ones in the binary and ternary solvated complexes. In the insertion conformations, the water molecule(s) inserts itself (themselves) into the existing intramolecular hydrogen-bonded ring formed between the alcoholic hydroxyl group and the oxygen of the carbonyl group of ML. The final frequency measurements have been carried out using a cavity based FTMW instrument where internal rotation splittings due to the ester methyl group have also been detected. A number of insertion conformers with subtle structural differences for both the binary and ternary complexes have been identified theoretically. The interconversion dynamics of these conformers and the identification of the most favorable conformers will be discussed. 1. C. Merten, Y. Xu, Angew. Chem. Int. Ed., 2013, 52, 2073 -2076. 2. M. Losada, Y. Xu, Phys. Chem. Chem. Phys., 2007, 9, 3127-3135; Y. Liu, G. Yang, M. Losada, Y. Xu, J. Chem. Phys., 2010, 132, 234513/1-11. 3. A. Zehnacker, M. Suhm, Angew. Chem. Int. Ed. 2008, 47, 6970 - 6992.

  10. Submission for Networks Title: Transform Techniques for Parallel Processing Analysis

    E-print Network

    Rushanan, Joe J.

    : Joseph J. Rushanan and Bryant W. York Point of Contact: Joseph J. Rushanan The MITRE Corporation, MS E025Submission for Networks Title: Transform Techniques for Parallel Processing Analysis Authors@linus.mitre.org #12; Transform Techniques for Parallel Processing Analysis Joseph J. Rushanan \\Lambda Bryant W. York y

  11. Design and evaluation of a pulsed-jet chirped-pulse millimeter-wave spectrometer for the 70-102 GHz region

    E-print Network

    Park, Barratt

    Chirped-pulse millimeter-wave (CPmmW) spectroscopy is the first broadband (multi-GHz in each shot) Fourier-transform technique for high-resolution survey spectroscopy in the millimeter-wave region. The design is based on ...

  12. An eigenvalue transformation technique for predicting drug-target interaction.

    PubMed

    Kuang, Qifan; Xu, Xin; Li, Rong; Dong, Yongcheng; Li, Yan; Huang, Ziyan; Li, Yizhou; Li, Menglong

    2015-01-01

    The prediction of drug-target interactions is a key step in the drug discovery process, which serves to identify new drugs or novel targets for existing drugs. However, experimental methods for predicting drug-target interactions are expensive and time-consuming. Therefore, the in silico prediction of drug-target interactions has recently attracted increasing attention. In this study, we propose an eigenvalue transformation technique and apply this technique to two representative algorithms, the Regularized Least Squares classifier (RLS) and the semi-supervised link prediction classifier (SLP), that have been used to predict drug-target interaction. The results of computational experiments with these techniques show that algorithms including eigenvalue transformation achieved better performance on drug-target interaction prediction than did the original algorithms. These findings show that eigenvalue transformation is an efficient technique for improving the performance of methods for predicting drug-target interactions. We further show that, in theory, eigenvalue transformation can be viewed as a feature transformation on the kernel matrix. Accordingly, although we only apply this technique to two algorithms in the current study, eigenvalue transformation also has the potential to be applied to other algorithms based on kernels. PMID:26350590

  13. An eigenvalue transformation technique for predicting drug-target interaction

    PubMed Central

    Kuang, Qifan; Xu, Xin; Li, Rong; Dong, Yongcheng; Li, Yan; Huang, Ziyan; Li, Yizhou; Li, Menglong

    2015-01-01

    The prediction of drug-target interactions is a key step in the drug discovery process, which serves to identify new drugs or novel targets for existing drugs. However, experimental methods for predicting drug-target interactions are expensive and time-consuming. Therefore, the in silico prediction of drug-target interactions has recently attracted increasing attention. In this study, we propose an eigenvalue transformation technique and apply this technique to two representative algorithms, the Regularized Least Squares classifier (RLS) and the semi-supervised link prediction classifier (SLP), that have been used to predict drug-target interaction. The results of computational experiments with these techniques show that algorithms including eigenvalue transformation achieved better performance on drug-target interaction prediction than did the original algorithms. These findings show that eigenvalue transformation is an efficient technique for improving the performance of methods for predicting drug-target interactions. We further show that, in theory, eigenvalue transformation can be viewed as a feature transformation on the kernel matrix. Accordingly, although we only apply this technique to two algorithms in the current study, eigenvalue transformation also has the potential to be applied to other algorithms based on kernels. PMID:26350590

  14. Image watermarking technique based on the steerable pyramid transform

    NASA Astrophysics Data System (ADS)

    Drira, Fadoua; Denis, Florence; Baskurt, Atilla M.

    2004-11-01

    The application of the steerable pyramid transform in image watermarking has many useful properties. In this paper, we will try to address some properties of steerable pyramid transform that are relevant for use in image watermarking; these properties include: (1) invariance properties; (2) multiresolution aspect; (3) capture of multi-scale and multiresolution structures in the image. All the above mentioned properties make this steerable pyramid transform appropriate for the design of a robust watermarking scheme. This paper proposes an image watermarking scheme based on steerable pyramid transform to embed invisible and robust watermark. We can summarize the basic principles of our method as follow: a host image is first transformed by the steerable pyramid transform. The different features are then extracted by thresolding the different subbands. The watermark sequence is inserted into disjoint blocks centered on the extracted feature points. The original host image is needed in watermark detection mainly for extracting the featured coefficients necessary for robust detection and determining the value of one bit of the watermark spread into a block. It has been confirmed by experiments and comparisons with many existing non-blind techniques that the watermark information embedded by the proposed technique is robust to JPEG compression, additive noise, and median filtering.

  15. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  16. SAR image enhancement technique based on morphological wavelet transformation

    NASA Astrophysics Data System (ADS)

    Yan, Jingwen; Lu, Gang; Lu, Hanqing

    2001-09-01

    In this paper, a morphological wavelet principle and a SAR image enhancement technique are introduced, and the image enhancement technique performance based on morphological wavelet transformation is proceeded using SAR image data. In wavelet transformation domain, an image enhancement method of 2D Butterworth filter constructed is applied, good enhancement effects are obtained, and an extraction edge and texture study of applying prewitt operator is taken. Because of morphological wavelet transformation good performance, a high efficiency in image enhancement and texture obtaining is gotten. The research results show that the SAR data with Speckle and Pepper and Salt noise is enhanced very well by nonlinear enhancement processing in morphological wavelet domain, and the ocean target characteristics is clearer, such as ship, ship tail and interalwave.

  17. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  18. Control of Ultracold Collisions with Frequency-Chirped Light

    SciTech Connect

    Wright, M.J.; Gould, P.L.; Gensemer, S.D.; Vala, J.; Kosloff, R.

    2005-08-05

    We report on ultracold atomic collision experiments utilizing frequency-chirped laser light. A rapid chirp below the atomic resonance results in adiabatic excitation to an attractive molecular potential over a wide range of internuclear separation. This leads to a transient inelastic collision rate which is large compared to that obtained with fixed-frequency excitation. The combination of high efficiency and temporal control demonstrates the benefit of applying the techniques of coherent control to the ultracold domain.

  19. A novel signal detection technique based on generalized scale transforms

    NASA Astrophysics Data System (ADS)

    Nickel, Robert M.

    2006-08-01

    We are presenting an extension to the classic multiple signal classification method (MUSIC) developed by Schmidt and Bienvenu in 1979. While the classic MUSIC algorithm is limited to the detection of constant frequency sinusoids in white noise, the proposed new method is capable of detecting signals with a continuously varying instantaneous frequency. The method is based on the development of a discrete-time version of the generalized scale transform (GST) which was introduced by Nickel and Williams in 1999. As a byproduct we obtain techniques for discrete-time warp-shift invariant filtering which can be used in addition to the signal detection to separate signals with different instantaneous frequency contours.

  20. Chirped-pulse four-wave Raman mixing in molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Shitamichi, Osamu; Kida, Yuichiro; Imasaka, Totaro

    2014-07-01

    Four-wave Raman mixing (FWRM) in molecular hydrogen was studied using chirped pump and Stokes pulses emitting at 802 and 1,203 nm, respectively. The group delay dispersion (GDD) of the anti-Stokes pulse was examined employing a frequency-resolved optical gating system at different GDDs of the pump and Stokes pulses (0 or ±1,000 fs2). As a result, the energy and the sign of GDD for the anti-Stokes pulse remained unchanged, when the pump and Stokes pulses had the GDD with the same sign. When the sign was not the same, the energy decreased and only the portion useful for resonant FWRM was converted into a Raman emission. This technique has a potential for use in compensation of dispersion by passing the negatively chirped high-order Raman sidebands through the optics with positive chirps in the spectral region from the deep-ultraviolet to the near-infrared, to generate multiple transform-limited Raman pulses and then to produce an ultrashort optical pulse by a Fourier synthesis of these Raman emissions.

  1. An analysis of spectral transformation techniques on graphs

    NASA Astrophysics Data System (ADS)

    Djurovi?, Igor; Sejdi?, Ervin; Bulatovi?, Nikola; Simeunovi?, Marko

    2015-05-01

    Emerging methods for the spectral analysis of graphs are analyzed in this paper, as graphs are currently used to study interactions in many fields from neuroscience to social networks. There are two main approaches related to the spectral transformation of graphs. The first approach is based on the Laplacian matrix. The graph Fourier transform is defined as an expansion of a graph signal in terms of eigenfunctions of the graph Laplacian. The calculated eigenvalues carry the notion of frequency of graph signals. The second approach is based on the graph weighted adjacency matrix, as it expands the graph signal into a basis of eigenvectors of the adjacency matrix instead of the graph Laplacian. Here, the notion of frequency is then obtained from the eigenvalues of the adjacency matrix or its Jordan decomposition. In this paper, advantages and drawbacks of both approaches are examined. Potential challenges and improvements to graph spectral processing methods are considered as well as the generalization of graph processing techniques in the spectral domain. Its generalization to the time-frequency domain and other potential extensions of classical signal processing concepts to graph datasets are also considered. Lastly, it is given an overview of the compressive sensing on graphs concepts.

  2. Chirped Pulse Adiabatic Passage in CARS for Imaging of Biological Structure and Dynamics

    SciTech Connect

    Malinovskaya, Svetlana A.

    2007-12-26

    We propose the adiabatic passage control scheme implementing chirped femtosecond laser pulses to maximize coherence in a predetermined molecular vibrational mode using two-photon Raman transitions. We investigate vibrational energy relaxation and collisional dephasing as factors of coherence loss, and demonstrate the possibility for preventing decoherence by the chirped pulse train. The proposed method may be used to advance noninvasive biological imaging techniques.

  3. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses

    PubMed Central

    Goswami, Tapas; Karthick Kumar, S.K.; Dutta, Aveek; Goswami, Debabrata

    2009-01-01

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H3+ and C5H5+ in the case of negatively chirped pulses and C6H5+ in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth. PMID:19696899

  4. Improved technique for one-way transformation of information

    DOEpatents

    Cooper, J.A.

    1987-05-11

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two. 9 figs.

  5. Cell Transformations and Physical Design Techniques for 3D Monolithic Integrated Circuits

    E-print Network

    De Micheli, Giovanni

    19 Cell Transformations and Physical Design Techniques for 3D Monolithic Integrated Circuits´ed´erale de Lausanne (EPFL) 3D Monolithic Integration (3DMI), also termed as sequential integration, Performance Additional Key Words and Phrases: 3D integration, 3D monolithic, cell transformation techniques

  6. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  7. The use of chirped pulse millimeter-wave spectroscopy in chemical dynamics and kinetics

    E-print Network

    Shaver, Rachel Glyn

    2013-01-01

    .Chirped-pulse millimeter wave (CPmmW) spectroscopy is a revolutionary technique that has taken advantage of advances in electronics to give high signal to noise broadband rotational spectra in a very short period of time ...

  8. Chirped-pulse millimeter-wave spectroscopy, dynamics, and manipulation of Rydberg-Rydberg Transitions

    E-print Network

    Colombo, Anthony P. (Anthony Paul)

    2013-01-01

    The chirped-pulse millimeter-wave (CPmmW) technique is applied to transitions between Rydberg states, and calcium atoms are used as the initial test system. The unique feature of Rydberg{Rydberg transitions is that they ...

  9. Chirped-pulse millimeter-wave spectroscopy: Spectrum, dynamics, and manipulation of Rydberg–Rydberg transitions

    E-print Network

    Colombo, Anthony P.

    2013-01-01

    We apply the chirped-pulse millimeter-wave (CPmmW) technique to transitions between Rydberg states in calcium atoms. The unique feature of Rydberg–Rydberg transitions is that they have enormous electric dipole transition ...

  10. Application of Model Comparison Techniques to Model Transformation Testing

    E-print Network

    Cordy, James R.

    of model transformation testing (MTT) is relatively new, there already is a consen- sus that model (Stephan and Cordy, 2013). However, there are relatively few that are explicitly intended to facilitate MTT and qualitatively evalu- ate the available model comparison approaches that can be used as part of a MTT oracle

  11. A Signature of Roaming Dynamics in the Thermal Decomposition of Ethyl Nitrite: Chirped-Pulse Rotational Spectroscopy and Kinetic Modeling

    E-print Network

    Prozument, Kirill

    Chirped-pulse (CP) Fourier transform rotational spectroscopy is uniquely suited for near-universal quantitative detection and structural characterization of mixtures that contain multiple molecular and radical species. In ...

  12. Detection algorithm of big bandwidth chirp signals based on STFT

    NASA Astrophysics Data System (ADS)

    Wang, Jinzhen; Wu, Juhong; Su, Shaoying; Chen, Zengping

    2014-10-01

    Aiming at solving the problem of detecting the wideband chirp signals under low Signal-to-Noise Ratio (SNR) condition, an effective signal detection algorithm based on Short-Time-Fourier-Transform (STFT) is proposed. Considering the characteristic of dispersion of noise spectrum and concentration of chirp spectrum, STFT is performed on chirp signals with Gauss window by fixed step, and these frequencies of peak spectrum obtained from every STFT are in correspondence to the time of every stepped window. Then, the frequencies are binarized and the approach similar to mnk method in time domain is used to detect the chirp pulse signal and determine the coarse starting time and ending time. Finally, the data segments, where the former starting time and ending time locate, are subdivided into many segments evenly, on which the STFT is implemented respectively. By that, the precise starting and ending time are attained. Simulations shows that when the SNR is higher than -28dB, the detection probability is not less than 99% and false alarm probability is zero, and also good estimation accuracy of starting and ending time is acquired. The algorithm is easy to realize and surpasses FFT in computation when the width of STFT window and step length are selected properly, so the presented algorithm has good engineering value.

  13. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  14. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses

    SciTech Connect

    Polli, D.; Lanzani, G.; Brida, D.; Cerullo, G.; Mukamel, S.

    2010-11-15

    This paper introduces a general theoretical description of femtosecond pump-probe spectroscopy with chirped pulses whose joint spectral and temporal profile is expressed by Wigner spectrograms. We demonstrate that the actual experimental time resolution intimately depends on the pulse-sample interaction and that the commonly used instrumental response function needs to be replaced by a sample-dependent effective response function. We also show that, using the proper configurations in excitation and/or detection, it is possible to overcome the temporal smearing of the measured dynamics due to chirp-induced pulse broadening and recover the temporal resolution that would be afforded by the transform-limited pulses. We verify these predictions with experiments using broadband chirped pump and probe pulses. Our results allow optimization of the temporal resolution in the common case when the chirp of the pump and/or probe pulse is not corrected and may be extended to a broad range of time-resolved experiments.

  15. Variational formulation of hyperbolic heat conduction problems applying Laplace transform technique

    E-print Network

    Variational formulation of hyperbolic heat conduction problems applying Laplace transform technique In this paper, a non-Fourier heat conduction problem is analyzed by employing newly developed theory-transformed hyperbolic heat conduction equation is developed. The results were used for evaluation of parameters used

  16. Arc Fault Signal Detection -Fourier Transformation vs. Wavelet Decomposition Techniques using Synthesized Data

    E-print Network

    Arc Fault Signal Detection - Fourier Transformation vs. Wavelet Decomposition Techniques using Abstract -- Arc faults are a significant reliability and safety concern for photovoltaic (PV) systems faults in deployed systems are seemingly random and challenging to faithfully create experimentally

  17. Adiabatic excitation of rotational ladder by chirped laser pulses

    SciTech Connect

    Vitanov, N.V.; Girard, B.

    2004-03-01

    We discuss rotational excitation of molecules by a pair of left and right circularly polarized laser pulses with opposite chirps. The pulses are supposed to be short enough (picosecond or femtosecond) to prevent relaxation, sufficiently intense to induce adiabatic evolution, and far-off-resonant, e.g., infrared. This technique has been demonstrated recently by Villeneuve et al. [Phys. Rev. Lett. 85, 542 (2000)] in rotational dissociation of molecules. We analyze the properties of this technique by using the concepts of level crossing and adiabatic evolution, which allow us to derive analytically the conditions for efficient excitation. We analyze both the cases of intuitive (divergent frequencies) and counterintuitive (convergent frequencies) chirps and examine various initial conditions, including a single J state, coherent and incoherent superpositions of J states. We propose a technique, which can create superrotors by applying a pair of appropriately timed narrow pulses.

  18. Incipient fault diagnosis of power transformers using optical spectro-photometric technique

    NASA Astrophysics Data System (ADS)

    Hussain, K.; Karmakar, Subrata

    2015-06-01

    Power transformers are the vital equipment in the network of power generation, transmission and distribution. Mineral oil in oil-filled transformers plays very important role as far as electrical insulation for the winding and cooling of the transformer is concerned. As transformers are always under the influence of electrical and thermal stresses, incipient faults like partial discharge, sparking and arcing take place. As a result, mineral oil deteriorates there by premature failure of the transformer occurs causing huge losses in terms of revenue and assets. Therefore, the transformer health condition has to be monitored continuously. The Dissolved Gas Analysis (DGA) is being extensively used for this purpose, but it has some drawbacks like it needs carrier gas, regular instrument calibration, etc. To overcome these drawbacks, Ultraviolet (UV) -Visible and Fourier Transform Infrared (FTIR) Spectro-photometric techniques are used as diagnostic tools for investigating the degraded transformer oil affected by electrical, mechanical and thermal stresses. The technique has several advantages over the conventional DGA technique.

  19. SAR impulse response with residual chirps.

    SciTech Connect

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  20. levels, the large change in the carrier density results in both large linear as well as large nonlinear chirp. If an appropriate

    E-print Network

    Baker, R. Jacob

    experimentally studied the changes in the pulse width and time bandwidth product of the compressed pulse below its threshold whereas for achieving nearly transform-limited pulses with high peak power, bias in the carrier density at high bias levels, the proportion of the linear chirp in the narrowed chirped spectrum

  1. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  2. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques

    PubMed Central

    2015-01-01

    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634

  3. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.

    PubMed

    Illias, Hazlee Azil; Chai, Xin Rui; Abu Bakar, Ab Halim; Mokhlis, Hazlie

    2015-01-01

    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634

  4. Detection and frequency tracking of chirping signals

    SciTech Connect

    Elliott, G.R.; Stearns, S.D.

    1990-08-01

    This paper discusses several methods to detect the presence of and track the frequency of a chirping signal in broadband noise. The dynamic behavior of each of the methods is described and tracking error bounds are investigated in terms of the chirp rate. Frequency tracking and behavior in the presence of varying levels of noise are illustrated in examples. 11 refs., 29 figs.

  5. Stable genetic transformation of a beneficial arthropod, Metaseiulus occidentalis (Acari: Phytoseiidae), by a microinjection technique.

    PubMed Central

    Presnail, J K; Hoy, M A

    1992-01-01

    A microinjection technique has resulted in stable transformation of the western predatory mite Metaseiulus occidentalis. Early preblastoderm eggs within gravid females were microinjected. The needle was inserted through the cuticle of gravid females into the egg, or the tissue immediately surrounding the egg. This maternal injection method resulted in relatively high levels of survival and transformation. Transformation was achieved without the aid of any transposase-producing helper plasmid. The predatory mite was transformed with a plasmid containing the Escherichia coli beta-galactosidase gene (lacZ) regulated by the Drosophila hsp70 heat-shock promoter. Putatively transformed lines were isolated based on beta-galactosidase activity in first-generation larvae. Transformation was confirmed in the sixth generation by polymerase chain reaction amplification of a region spanning the Drosophila/E. coli sequences. Amplification of a nested region, also spanning the interspecific boundary, provided further evidence for stable transformation. Maternal microinjection may be adaptable to other beneficial arthropods, particularly other phytoseiid mites. Genetic transformation of M. occidentalis may improve its efficiency as a biological control agent as well as provide a method for investigating details of its physiology and ecology. Images PMID:1502192

  6. Coherent chirped pulse laser network with Mickelson phase conjugator.

    PubMed

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed. PMID:24787398

  7. Short-range harmonic radar: chirp waveform, electronic targets

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; Gallagher, Kyle A.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2015-05-01

    Radio-frequency (RF) electronic targets, such as man-portable electronics, cannot be detected by traditional linear radar because the radar cross section of those targets is much smaller than that of nearby clutter. One technology that is capable of separating RF electronic targets from naturally-occurring clutter is nonlinear radar. Presented in this paper is the evolution of nonlinear radar at the United States Army Research Laboratory (ARL) and recent results of short-range over-the-air harmonic radar tests there. For the present implementation of ARL's nonlinear radar, the transmit waveform is a chirp which sweeps one frequency at constant amplitude over an ultra-wide bandwidth (UWB). The receiver captures a single harmonic of this entire chirp. From the UWB received harmonic, a nonlinear frequency response of the radar environment is constructed. An inverse Fourier Transform of this nonlinear frequency response reveals the range to the nonlinear target within the environment. The chirped harmonic radar concept is validated experimentally using a wideband horn antenna and commercial off-the-shelf electronic targets.

  8. Chirp optical coherence tomography of layered scattering media

    NASA Astrophysics Data System (ADS)

    Haberland, Udo; Blazek, Vladimir; Schmitt, Hans J.

    1998-07-01

    A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 micrometers is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown.

  9. Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum

    NASA Astrophysics Data System (ADS)

    Gaster, Sydney A.; Hall, Taylor M.; Arnold, Sean; Brown, Gordon G.

    2015-06-01

    The use of chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy as a tool for training undergraduates will be discussed. Coker College's inexpensive, versatile CP-FTMW spectrometer has been applied both in the undergraduate teaching laboratory and the undergraduate research laboratory. In both cases, the education of the students is a central priority of the project. The study of 3-iodopyridine, a project recently completed by Coker undergraduate students, will be discussed. Details of the Coker CP-FTMW spectrometer will also be presented.

  10. Chirped femtosecond pulse scattering by spherical particles

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Woo; Xiao, Gang-Yao; Lee, Tong-Nyong

    1996-05-01

    Generalized Lorentz-Mie formulas are used to study the scattering characteristics when a chirped femtosecond pulse illuminates a spherical particle. For a linear chirped Gaussian pulse with the envelope function g( tau ) = exp[- pi (1 + ib) tau 2], dimensionless parameter b is defined as a chirp. The calculation illustrated that even for pulses with a constant carrier wavelength ( lambda 0 = 0.5 mu m) and pulse-filling coefficient (l0 = 1.98), the efficiencies for extinction and scattering differ very much between the carrier wave and the different chirped pulses. The slowly varying background of the extinction and the scattering curves is damped by the chirp. When the pulse is deeply chirped, the maxima and minima of the background curves reduce to the point where they disappear, and the efficiency curves illustrate a steplike dependence on the sphere size. Another feature is that the only on the amount of chirp (|b|), regardless of upchirp (b greater than 0) or downchirp (b less than 0).

  11. Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges

    USGS Publications Warehouse

    Lemeshewsky, George P.; Schowengerdt, Robert A.

    2000-01-01

    Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.

  12. Ultrashort-attosecond-pulse generation by reducing harmonic chirp with a spatially inhomogeneous electric field

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Chen, Gao; Li, Su-Yu; Ding, Da-Jun; Chen, Ji-Gen; Guo, Fu-Ming; Yang, Yu-Jun

    2015-09-01

    We theoretically study high-order harmonic generation from an inhomogeneous field originated by the interaction between an ultrashort laser pulse and a gold nanostructure and demonstrate that ultrashort isolated attosecond pulses can be generated by reducing the harmonic chirp with the spatially inhomogeneous electric field. It can be found that the instants of ionized electrons coming back to the core are highly concentrated in the case of the spatially inhomogeneous electric field and a broadband supercontinuum harmonic spectrum with less chirp can be produced. Then an isolated 127-as pulse close to the Fourier transform limit can be directly generated without phase compensation.

  13. Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs

    SciTech Connect

    Lee, Chao-Kuei; Lin, Yuan-Yao; Lin, Sung-Hui; Lin, Gong-Ru; Pan, Ci-Ling

    2014-04-28

    Chirped pulse controlled carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs are investigated by degenerate pump-probe technique. Varying the chirped condition of excited pulse from negative to positive increases the carrier relaxation time so as to modify the dispersion and reshape current pulse in time domain. The spectral dependence of carrier dynamics is analytically derived and explained by Shockley-Read Hall model. This observation enables the new feasibility of controlling carrier dynamics in ultrafast optical devices via the chirped pulse excitations.

  14. Fully programmable spectrum sliced chirped microwave photonic filter.

    PubMed

    Leitner, Peter; Yi, Xiaoke; Li, Liwei; Huang, Thomas X H

    2015-02-23

    A novel chirped microwave photonic filter (MPF) capable of achieving a large radio frequency (RF) group delay slope and a single passband response free from high frequency fading is presented. The design is based upon a Fourier domain optical processor (FD-OP) and a single sideband modulator. The FD-OP is utilized to generate both constant time delay to tune the filter and first order dispersion to induce the RF chirp, enabling full software control of the MPF without the need for manual adjustment. An optimized optical parameter region based on a large optical bandwidth >750 GHz and low slicing dispersion < ± 1 ps/nm is introduced, with this technique greatly improving the RF properties including the group delay slope magnitude and passband noise. Experimental results confirm that the structure simultaneously achieves a large in-band RF chirp of -4.2 ns/GHz, centre frequency invariant tuning and independent reconfiguration of the RF amplitude and phase response. Finally, a stochastic study of the device passband noise performance under tuning and reconfiguration is presented, indicating a low passband noise <-120 dB/Hz. PMID:25836442

  15. Application of a Fourier transform based filtering technique to improve signal-to-noise ratio in modulation spectroscopy experiments

    E-print Network

    Ghosh, Sandip

    Application of a Fourier transform based filtering technique to improve signal-to-noise ratio of a fast Fourier transform FFT based simplified filtering procedure to improve S/N ratio, thereby enabling) is the Fourier transform of the above data. The frequency scale has been normalized with respect to the Nyquist

  16. Feature extraction technique based on Hopfield neural network and joint transform correlation

    NASA Astrophysics Data System (ADS)

    Bal, Abdullah; Alam, Mohammad S.

    2004-10-01

    In this paper, a new Hopfield neural network based supervised filtering technique is proposed. The learnable filtering architecture has been developed by modifying the Hopfield network structure using 2D convolution instead of weight-matrix multiplications. This feature offers high speed learning and testing possibility for image feature extraction process. The learning property of the filtering technique is provided by using a recurrent learning algorithm. The proposed technique has been implemented using joint transform correlator. The requirement of non-negative data for optoelectronic implementation is provided by incorporating bias technique to convert the negative data to non-negative data. Simulation results for the proposed technique are reported for feature extraction problems such as edge detection, and vertical line extraction.

  17. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  18. Simplified Homodyne Detection for FM Chirped Lidar

    E-print Network

    Adany, Peter

    2007-12-14

    The investigation of global warming requires more sensitive altimeters to better map the global ice reserves. A homodyne detection scheme for FM chirped lidar is developed in which dechirping is performed in the optical domain, simplifying both...

  19. Chirped-pulse oscillators: a unified standpoint

    E-print Network

    Kalashnikov, V L

    2008-01-01

    A completely analytical and unified approach to the theory of chirped-pulse oscillators is presented. The approach developed is based on the approximate integration of the generalized nonlinear complex Ginzburg-Landau equation and demonstrates that a chirped-pulse oscillator is controlled by only two parameters. It makes it easy to trace spread of the real-world characteristics of both solid-state and fiber oscillators operating in the positive dispersion regime.

  20. Techniques for Handling Channeling in High Resolution Fourier Transform Spectra Recorded with Synchrotron Sources

    SciTech Connect

    Ibrahim, Amr; PredoiCross, Adriana; Teillet, P. M.

    2010-10-29

    Seven different techniques in dealing the problem of channel spectra in Fourier transform Spectroscopy utilizing synchrotron source were examined and compared. Five of these techniques deal with the artifacts (spikes) in the recorded interferogram which in turn result in channel spectra within the spectral domain. Such interferogram editing method include replacing these spikes with zeros, straight line, fitted polynomial curve, rescaled spike and spike reduced with Gauss Function. Another two techniques try to target this issue in the spectral domain instead by either generating a synthetic background simulating the channels or measuring the channels parameters (amplitude, spacing and phase) to use in the spectral fitting program. Results showed spectral domain techniques produces higher quality results in terms of signal to noise and fitting residual. The effect of each method on the line parameters such as position, intensity are air broadening are also measured and discussed.

  1. Fast X-ray microdiffraction techniques for studying irreversible transformations in materials

    PubMed Central

    Kelly, Stephen T.; Trenkle, Jonathan C.; Koerner, Lucas J.; Barron, Sara C.; Walker, Nöel; Pouliquen, Philippe O.; Tate, Mark W.; Gruner, Sol M.; Dufresne, Eric M.; Weihs, Timothy P.; Hufnagel, Todd C.

    2011-01-01

    A pair of techniques have been developed for performing time-resolved X-ray microdiffraction on irreversible phase transformations. In one technique capillary optics are used to focus a high-flux broad-spectrum X-ray beam to a 60?µm spot size and a fast pixel array detector is used to achieve temporal resolution of 55?µs. In the second technique the X-rays are focused with Kirkpatrick–Baez mirrors to achieve a spatial resolution better than 10?µm and a fast shutter is used to provide temporal resolution better than 20?µs while recording the diffraction pattern on a (relatively slow) X-ray CCD camera. Example data from experiments are presented where these techniques are used to study self-propagating high-temperature synthesis reactions in metal laminate foils. PMID:21525656

  2. Efficient Formation of Ultracold Molecules with Chirped Nanosecond Pulses

    E-print Network

    Carini, J L; Kosloff, R; Gould, P L

    2015-01-01

    We describe experiments and associated quantum simulations involving the production of ultracold $^{87}$Rb$_{2}$ molecules with nanosecond pulses of frequency-chirped light. With appropriate chirp parameters, the formation is dominated by coherent processes. For a positive chirp, excited molecules are produced by photoassociation early in the chirp, then transferred into high vibrational levels of the lowest triplet state by stimulated emission later in the chirp. Generally good agreement is seen between the data and the simulations. Shaping of the chirp can lead to a significant enhancement of the formation rate. Further improvements using higher intensities and different intermediate states are predicted.

  3. Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew

    2004-01-01

    Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.

  4. Attenuated total reflectance spectroscopy with chirped-pulse upconversion.

    PubMed

    Shirai, Hideto; Duchesne, Constance; Furutani, Yuji; Fuji, Takao

    2014-12-01

    Chirped-pulse upconversion technique has been applied to attenuated total reflectance (ATR) infrared spectroscopy. An extremely broadband infrared pulse was sent to an ATR diamond prism and the reflected pulse was converted to the visible by using four-wave mixing in krypton gas. Absorption spectra of liquids in the range from 200 to 5500 cm(-1) were measured with a visible spectrometer on a single-shot basis. The system was applied to observe the dynamics of exchanging process of two solvents, water and acetone, which give clear vibrational spectral contrast. We observed that the exchange was finished within ? 10 ms. PMID:25606893

  5. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    SciTech Connect

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Sheng, Y.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  6. Light synthesis with linearly chirped fibre Bragg gratings (FBGs) for optical coherence tomography (OCT) applications

    NASA Astrophysics Data System (ADS)

    Jonathan, Enock

    2005-08-01

    A simple technique of using a combination of linearly chirped fibre Bragg gratings (FBGs) to generate light to enhance depth resolution in optical coherence tomography (OCT) is introduced. A [3 × 3] fused fibre coupler was used to couple and redistribute super luminescent diode (SLD) light to linearly chirped FBGs connected to the fibre output arms of the coupler. Reflected and/or transmitted light from each linearly chirped FBG was collected and combined by the same fibre coupler before being applied to an OCT system. By applying a strain gradient on two of the FBGs the spectrum of the synthesised light was altered resulting in OCT depth resolution enhancement by factor ˜1.5 when compared to a measured depth resolution of around 21 ?m obtained by directly applying the SLD output light.

  7. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Yan, Dong; Zhang, Kai; Hu, Gengkai

    2015-03-01

    A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response.

  8. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

    PubMed Central

    Zhang, Quan; Yan, Dong; Zhang, Kai; Hu, Gengkai

    2015-01-01

    A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response. PMID:25757881

  9. Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening

    NASA Astrophysics Data System (ADS)

    Kamimura, H. A. S.; Wang, S.; Wu, S.-Y.; Karakatsani, M. E.; Acosta, C.; Carneiro, A. A. O.; Konofagou, E. E.

    2015-10-01

    Chirp- and random-based coded excitation methods have been proposed to reduce standing wave formation and improve focusing of transcranial ultrasound. However, no clear evidence has been shown to support the benefits of these ultrasonic excitation sequences in vivo. This study evaluates the chirp and periodic selection of random frequency (PSRF) coded-excitation methods for opening the blood-brain barrier (BBB) in mice. Three groups of mice (n??=??15) were injected with polydisperse microbubbles and sonicated in the caudate putamen using the chirp/PSRF coded (bandwidth: 1.5-1.9 MHz, peak negative pressure: 0.52?MPa, duration: 30 s) or standard ultrasound (frequency: 1.5 MHz, pressure: 0.52?MPa, burst duration: 20?ms, duration: 5?min) sequences. T1-weighted contrast-enhanced MRI scans were performed to quantitatively analyze focused ultrasound induced BBB opening. The mean opening volumes evaluated from the MRI were 9.38+/- 5.71 mm3, 8.91+/- 3.91 mm3and 35.47+/- 5.10 mm3 for the chirp, random and regular sonications, respectively. The mean cavitation levels were 55.40+/- 28.43 V.s, 63.87+/- 29.97 V.s and 356.52+/- 257.15 V.s for the chirp, random and regular sonications, respectively. The chirp and PSRF coded pulsing sequences improved the BBB opening localization by inducing lower cavitation levels and smaller opening volumes compared to results of the regular sonication technique. Larger bandwidths were associated with more focused targeting but were limited by the frequency response of the transducer, the skull attenuation and the microbubbles optimal frequency range. The coded methods could therefore facilitate highly localized drug delivery as well as benefit other transcranial ultrasound techniques that use higher pressure levels and higher precision to induce the necessary bioeffects in a brain region while avoiding damage to the surrounding healthy tissue.

  10. On the potential applicability of auto-regressive spectral estimation to HF chirp sounders

    NASA Astrophysics Data System (ADS)

    Salous, S.

    1997-10-01

    A major limitation of HF chirp sounders is the use of fast Fourier transform (FFT) analysis to resolve the different multipath components. To reduce the effects of spectral leakage associated with the FFT, the signal is usually weighted by a suitable window prior to spectral analysis. For negligible frequency dispersion, multipath resolution including the two magneto-ionic waves is determined by the width of the mainlobe of the window function whereas, for large frequency dispersion, the use of window functions improves the resolution of multipath. Modern spectral estimation techniques such as auto-regressive (AR) modelling offer higher resolution capabilities which are only limited by the signal to noise ratio. This paper discusses the required stages for both FFT analysis and AR analysis. The results of applying both techniques to ionospheric data obtained over a short skywave link in the U.K. are presented. These include distributions for the 6 dB width, group time delay and order of the AR model. The resolution advantage of the AR method is demonstrated by ionograms.

  11. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  12. Fast Fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques

    NASA Astrophysics Data System (ADS)

    Eyben, P.; Bisiaux, P.; Schulze, A.; Nazir, A.; Vandervorst, W.

    2015-09-01

    A new atomic force microscopy (AFM)-based technique named fast Fourier transform scanning spreading-resistance microscopy (FFT-SSRM) has been developed. FFT-SSRM offers the ability to isolate the local spreading resistance (Sr) from the parasitic series resistance (probe, bulk, and back contact). The parasitic series resistance limits the use of classical SSRM in confined volumes and on very highly doped materials, two increasingly important situations in nanoelectronic components. This is realized via a force modulation at controlled frequency (affecting the SR component) and the extraction of the resistance amplitude at the modulation frequency, performing an FFT-based lock-in deconvolution. A systematic evaluation of the FFT-SSRM performances (i.e., resolution, dynamic range, sensitivity, and repeatability) is presented. The impact of various parameters (i.e., modulation frequency and amplitude or cutoff frequency of the current amplifier) on the performances of FFT-SSRM has been evaluated. We demonstrate the possibility to overcome sensitivity losses due to tip saturation in highly doped material and the utility of the technique in two different structures, presenting isolated and confined volumes.

  13. Photodissociation of D2 + induced by linearly chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Csehi, András; Halász, Gábor J.; Cederbaum, Lorenz S.; Vibók, Ágnes

    2015-07-01

    Recently, it has been revealed that so-called light-induced conical intersections (LICIs) can be formed both by standing or by running laser waves even in diatomic molecules. Due to the strong nonadiabatic couplings, the existence of such LICIs has significant impact on the dynamical properties of a molecular system. In our former studies, the photodissociation process of the D2 + molecule was studied initiating the nuclear dynamics both from individual vibrational levels and from the superposition of all the vibrational states produced by ionizing D2. In the present work, linearly chirped laser pulses were used for initiating the dissociation dynamics of D2 + . In contrast to the constant frequency (transform limited) laser fields, the chirped pulses give rise to LICIs with a varying position according to the temporal frequency change. To demonstrate the impact of these LICIs on the dynamical properties of diatomics, the kinetic energy release spectra, the total dissociation probabilities, and the angular distributions of the D2 + photofragments were calculated and discussed.

  14. Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts.

    PubMed

    Santos, Cledir; Fraga, Marcelo E; Kozakiewicz, Zofia; Lima, Nelson

    2010-03-01

    Fourier transform infrared is considered a powerful technique for characterizing chemical compositions of complex probes such as microorganisms. It has successfully been applied to fungal identification. In this paper, the current state of identification and characterization of filamentous fungi and yeasts by Fourier transform infrared is reviewed. PMID:20079832

  15. Fourier transform infrared spectroscopy techniques for the analysis of drugs of abuse

    NASA Astrophysics Data System (ADS)

    Kalasinsky, Kathryn S.; Levine, Barry K.; Smith, Michael L.; Magluilo, Joseph J.; Schaefer, Teresa

    1994-01-01

    Cryogenic deposition techniques for Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) can be successfully employed in urinalysis for drugs of abuse with detection limits comparable to those of the established Gas Chromatography/Mass Spectrometry (GC/MS) technique. The additional confidence of the data that infrared analysis can offer has been helpful in identifying ambiguous results, particularly, in the case of amphetamines where drugs of abuse can be confused with over-the-counter medications or naturally occurring amines. Hair analysis has been important in drug testing when adulteration of urine samples has been a question. Functional group mapping can further assist the analysis and track drug use versus time.

  16. Enhancement of Ultracold Molecule Formation Using Shaped Nanosecond Frequency Chirps.

    PubMed

    Carini, J L; Kallush, S; Kosloff, R; Gould, P L

    2015-10-23

    We demonstrate that judicious shaping of a nanosecond-time-scale frequency chirp can dramatically enhance the formation rate of ultracold ^{87}Rb_{2} molecules. Starting with ultracold ^{87}Rb atoms, we apply pulses of frequency-chirped light to first photoassociate the atoms into excited molecules and then, later in the chirp, deexcite these molecules into a high vibrational level of the lowest triplet state a ^{3}?_{u}^{+}. The enhancing chirp shape passes through the absorption and stimulated emission transitions relatively slowly, thus increasing their adiabaticity, but jumps quickly between them to minimize the effects of spontaneous emission. Comparisons with quantum simulations for various chirp shapes support this enhancement mechanism. PMID:26551111

  17. Chirped Pulse Amplification of Femtosecond Optical Pulses

    NASA Astrophysics Data System (ADS)

    Pessot, Maurice Alfonso

    Chirped Pulse Amplification (CPA) has been instrumental in pushing forward the state of the art in ultrashort pulse amplification. As conceived however, limitations in the methods used for pulse manipulation restrict its utility to regimes in which pulse compression techniques can provide high compression ratios, limiting its use to long pulse (>=q50 psec) oscillators and compressed pulses >=q1 psec. Significantly, this also prevents its use with ultrashort sources where further compression of the pulse is not desired. In this thesis, we develop and demonstrate new methods for optical pulse manipulation enabling us to extend CPA techniques into the femtosecond regime. A generalized diffraction grating pair is shown to be a fully reversible means of expanding femtosecond pulses while providing sufficient positive group velocity dispersion to expand femtosecond pulses by factors >10^3 . A CPA system utilizing these techniques is used for the amplification of 275 fsec pulses from a modelocked dye oscillator. The 275 fsec pulses are expanded to 50 psec and amplified in a multipass regenerative amplifier utilizing the tunable solid-state material alexandrite as the gain medium. The 3 mJ pulses are then compressed to 300 fsec. An analysis of the dispersion properties of the system is shown to lead to limitations in the pulsewidth obtainable from such a system. The presence of dispersive components within the resonator cavity forces the expansion/compression system to be used in a mismatched geometry. The resulting contributions to the cubic phase shift from diffraction gratings and material elements limits the system to pulses of the order of 200 fsec. For amplification and compression of shorter pulses, simultaneous compensation of quadratic and cubic phase shifts becomes necessary. A number of methods for full and partial compensation of cubic phase shifts are examined and one method, based upon a combination of intracavity prisms and external diffraction gratings is implemented. With this and other modifications we show that bandwidths sufficient to support pulses as short as 60 fsec can be amplified to the mJ level. Partial compensation of cubic phase shifts is demonstrated, resulting in pulses of 106 fsec duration with peak powers of nearly 20 GW.

  18. A carrier removal technique for Fourier transform profilometry based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Tao, Tianyang; Hu, Yan

    2015-11-01

    We present a carrier removal method for Fourier transform profilometry using the principal component analysis. The proposed approach is able to decompose the phase map into several principal components, in which the phase of the carrier can be extracted from the first dominant component acquired. It can cope well with the nonlinear carrier problem resulted from the divergent illumination which is commonly adopted in the fringe projection profilometry. It is effective, fully automatic and does not require the estimation for system geometrical parameters or the prior knowledge on the measured object. Further, the influence of the lens distortion is considered thus the carrier can be determined more accurately. The principle of the technique is verified by our experiments, showing that it performs well in both static and dynamic measurements.

  19. Measurements of solar magnetic fields by Fourier transform techniques. II - Saturated and blended lines

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Title, A. M.

    1976-01-01

    Fourier techniques have been exhaustively calibrated using Unno's (1956) results for the absorption profile of a simple Zeeman triplet. If a simple transformation is applied to the normalized line depths, then magnetic-field strengths and inclination angles can be measured very accurately from noisy saturated line profiles. Systematic errors caused by saturation effects can be estimated and reduced by varying one parameter. When a significant fraction of the line profile is unsplit and unpolarized, large errors may be made in measurements of low fields, unless the line is sufficiently weak. For a weak line, a vertical field of 1600 gauss can be measured to 10% accuracy even when 70% of the line profile is stray light. These stray-light errors are troublesome in measuring fields of gaps and pores but not sunspots. Numerical results of the error analysis are presented graphically.

  20. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  1. Extension of high-order harmonic generation cutoff via coherent control of intense few-cycle chirped laser pulses

    SciTech Connect

    Carrera, Juan J.; Chu, Shih-I

    2007-03-15

    We present an ab initio quantum investigation of the high-order harmonic generation (HHG) cutoff extension using intense few-cycle chirped laser pulses. For a few-cycle chirped driving laser pulse, it is shown that significant cutoff extension can be achieved through the optimization of the chirping rate parameters. The HHG power spectrum is calculated by solving accurately and efficiently the time-dependent Schroedinger equation by means of the time-dependent generalized pseudospectral method. The time-frequency characteristics of the HHG power spectrum are analyzed in detail by means of the wavelet transform of the time-dependent induced dipole acceleration. In addition, we perform classical trajectory simulation of the strong-field electron dynamics and electron return map. It is found that the quantum and classical results provide complementary and consistent information regarding the underlying mechanisms responsible for the substantial extension of the cutoff region.

  2. Infrared sequence transformation technique for in situ measurement of thermal diffusivity and monitoring of thermal diffusion

    NASA Astrophysics Data System (ADS)

    Dong, Huilong; Zheng, Boyu; Chen, Feifan

    2015-11-01

    An infrared (IR) sequence transformation technique for visualization of thermal diffusion process and in situ measurement of radial thermal diffusivity is reported. It consists of heating the sample surface instantaneously by an angle-adjustable Gaussian beam and recording the temperature evolution by an IR camera. Compared to common techniques requiring the excitation beam to be fixed approximately perpendicular to the measurement surface, the proposed method allows a dynamic adjustment of the excitation incidence angle according to the actual operating space, which contributes to a fast and efficient in situ measurement approach. To achieve this, a new heat transfer model considering the elliptical distortion of the Gaussian beam caused by tilted incidence is established. Through decoupling analysis it is discovered that the area s surrounded by the maximum temperature curve rTmax (?) grows linearly over time. The thermal diffusivity can be obtained from the growth rate at any incidence angle. Based on this s-time relation, an automatic thermal diffusivity characterization framework which involves extracting the rTmax (?) sequence through a distance regularized level set evolution (DRLSE) formulation is proposed. For verification, samples of 304 stainless steel, titanium and zirconium are measured with the excitation incidence angles ranging from 30 ° to 60 ° , and the relative deviations from the literature values are - 6.28 % to 3.27 %, - 3.22 % to 5.79%, and - 1.61 % to 4.03% respectively. Besides, the thermal diffusion process of two typical printed circuit boards (PCBs) are monitored and analyzed visually with this technique.

  3. Coherent control of ultracold collisions with chirped light: Direction matters

    SciTech Connect

    Wright, M. J.; Pechkis, J. A.; Carini, J. L.; Gould, P. L.; Kallush, S.; Kosloff, R.

    2007-05-15

    We demonstrate the ability to coherently control ultracold atomic Rb collisions using frequency-chirped light on the nanosecond time scale. For certain center frequencies of the chirp, the rate of inelastic trap-loss collisions induced by negatively chirped light is dramatically suppressed compared to the case of a positive chirp. We attribute this to a fundamental asymmetry in the system: an excited wave packet moves inward on the attractive molecular potential. For a positive chirp, the resonance condition moves outward in time, while for a negative chirp, it moves inward, in the same direction as the excited wave packet; this allows multiple interactions between the wave packet and the light, enabling the wave packet to be returned coherently to the ground state. Classical and quantum calculations support this interpretation.

  4. Multiscale Transient Signal Detection: Localizing Transients in Geodetic Data Through Wavelet Transforms and Sparse Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Riel, B.; Simons, M.; Agram, P.

    2012-12-01

    Transients are a class of deformation signals on the Earth's surface that can be described as non-periodic accumulation of strain in the crust. Over seismically and volcanically active regions, these signals are often challenging to detect due to noise and other modes of deformation. Geodetic datasets that provide precise measurements of surface displacement over wide areas are ideal for exploiting both the spatial and temporal coherence of transient signals. We present an extension to the Multiscale InSAR Time Series (MInTS) approach for analyzing geodetic data by combining the localization benefits of wavelet transforms (localizing signals in space) with sparse optimization techniques (localizing signals in time). Our time parameterization approach allows us to reduce geodetic time series to sparse, compressible signals with very few non-zero coefficients corresponding to transient events. We first demonstrate the temporal transient detection by analyzing GPS data over the Long Valley caldera in California and along the San Andreas fault near Parkfield, CA. For Long Valley, we are able to resolve the documented 2002-2003 uplift event with greater temporal precision. Similarly for Parkfield, we model the postseismic deformation by specific integrated basis splines characterized by timescales that are largely consistent with postseismic relaxation times. We then apply our method to ERS and Envisat InSAR datasets consisting of over 200 interferograms for Long Valley and over 100 interferograms for Parkfield. The wavelet transforms reduce the impact of spatially correlated atmospheric noise common in InSAR data since the wavelet coefficients themselves are essentially uncorrelated. The spatial density and extended temporal coverage of the InSAR data allows us to effectively localize ground deformation events in both space and time with greater precision than has been previously accomplished.

  5. Mechanism of electron acceleration by chirped laser pulse

    SciTech Connect

    Wu, X. Y.; Wang, P. X.; Kawata, S.

    2012-05-28

    We studied the mechanism of electron acceleration by a chirped laser pulse. We found that, because of the chirp effect, a region exists where the laser wave phase experienced by the electron varies slowly, so that the electron can be accelerated for a long time. The mechanism of chirped laser acceleration is different to that of the capture and acceleration scenario, although both of them have a main acceleration stage in which the electrons are trapped for long periods.

  6. Analysis of intrapulse chirp in CO2 oscillators

    NASA Technical Reports Server (NTRS)

    Moody, Stephen E.; Berger, Russell G.; Thayer, William J., III

    1987-01-01

    Pulsed single-frequency CO2 laser oscillators are often used as transmitters for coherent lidar applications. These oscillators suffer from intrapulse chirp, or dynamic frequency shifting. If excessive, such chirp can limit the signal-to-noise ratio of the lidar (by generating excess bandwidth), or limit the velocity resolution if the lidar is of the Doppler type. This paper describes a detailed numerical model that considers all known sources of intrapulse chirp. Some typical predictions of the model are shown, and simple design rules to minimize chirp are proposed.

  7. SAR processing with stepped chirps and phased array antennas.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  8. Callback response of dugongs to conspecific chirp playbacks.

    PubMed

    Ichikawa, Kotaro; Akamatsu, Tomonari; Shinke, Tomio; Adulyanukosol, Kanjana; Arai, Nobuaki

    2011-06-01

    Dugongs (Dugong dugon) produce bird-like calls such as chirps and trills. The vocal responses of dugongs to playbacks of several acoustic stimuli were investigated. Animals were exposed to four different playback stimuli: a recorded chirp from a wild dugong, a synthesized down-sweep sound, a synthesized constant-frequency sound, and silence. Wild dugongs vocalized more frequently after playback of broadcast chirps than that after constant-frequency sounds or silence. The down-sweep sound also elicited more vocal responses than did silence. No significant difference was found between the broadcast chirps and the down-sweep sound. The ratio of wild dugong chirps to all calls and the dominant frequencies of the wild dugong calls were significantly higher during playbacks of broadcast chirps, down-sweep sounds, and constant-frequency sounds than during those of silence. The source level and duration of dugong chirps increased significantly as signaling distance increased. No significant correlation was found between signaling distance and the source level of trills. These results show that dugongs vocalize to playbacks of frequency-modulated signals and suggest that the source level of dugong chirps may be manipulated to compensate for transmission loss between the source and receiver. This study provides the first behavioral observations revealing the function of dugong chirps. PMID:21682387

  9. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil

    2015-08-01

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  10. Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating

    SciTech Connect

    Kohler, B.; Yakovlev, V.V.; Wilson, K.R.; Squier, J.; DeLong, K.W.; Trebino, R.

    1995-03-01

    Frequency-resolved optical gating (FROG) measurements were made to characterize pulses from a Ti:sapphire chirped-pulse amplified laser system. By characterizing both the pulse intensity and the phase, the FROG data provided the first direct observation to our knowledge of residual phase distortion in a chirped-pulse amplifier. The FROG technique was also used to measure the regenerative amplifier dispersion and to characterize an amplitude-shaped pulse. The data provide an experimental demonstration of the value of FROG for characterizing complex pulses, including tailored femtosecond pulses for quantum control.

  11. Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube mode-locked fiber laser.

    PubMed

    Woodward, R I; Kelleher, E J R; Runcorn, T H; Loranger, S; Popa, D; Wittwer, V J; Ferrari, A C; Popov, S V; Kashyap, R; Taylor, J R

    2015-02-01

    We demonstrate that the giant chirp of coherent, nanosecond pulses generated in an 846 m long, all-normal dispersion, nanotube mode-locked fiber laser can be compensated using a chirped fiber Bragg grating compressor. Linear compression to 11 ps is reported, corresponding to an extreme compression factor of ?100. Experimental results are supported by numerical modeling, which is also used to probe the limits of this technique. Our results unequivocally conclude that ultra-long cavity fiber lasers can support stable dissipative soliton attractors and highlight the design simplicity for pulse-energy scaling through cavity elongation. PMID:25680054

  12. Optical transformation based image encryption and data embedding techniques using MATLAB

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debalina; Ghosh, Ajay

    2015-06-01

    The proposed work describes optical transformations such as Fourier transformation and Fresnel transformation based encryption and decryption of images using random phase masks (RPMs). The encrypted images have been embedded in some secret cover files of other formats like text files, word files, audio files etc to increase the robustness in the security applications. So, if any one wants to send confidential documents, it will be difficult for the interloper to unhide the secret information. The whole work has been done in MATLAB®

  13. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    SciTech Connect

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  14. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  15. Chirped optical solitons in single-mode birefringent fibers

    NASA Astrophysics Data System (ADS)

    Mahmood, M. F.

    1996-12-01

    The trapping behavior of two chirped solitons forming a bound state in a single-mode birefringent fiber is investigated on the basis of a model of coupled nonlinear Schroedinger equations. The positive initial chirp plays an important role in controlling the threshold amplitude for soliton trapping without causing excessive pulse broadening.

  16. Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers

    E-print Network

    Xie, Xiaoliang Sunney

    Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers Dan Fu, Gary imaging system using chirped femtosecond lasers to achieve rapid Raman spectra acquisition while retaining Information ABSTRACT: Raman microscopy is a quantitative, label-free, and noninvasive optical imaging

  17. Helium in chirped laser fields as a time-asymmetric atomic switch

    SciTech Connect

    Kaprálová-Ž?ánská, Petra Ruth; Moiseyev, Nimrod

    2014-07-07

    Tuning the laser parameters exceptional points in the spectrum of the dressed laser helium atom are obtained. The weak linearly polarized laser couples the ground state and the doubly excited P-states of helium. We show here that for specific chirped laser pulses that encircle an exceptional point one can get the time-asymmetric phenomenon, where for a negative chirped laser pulse the ground state is transformed into the doubly excited auto-ionization state, while for a positive chirped laser pulse the resonance state is not populated and the neutral helium atoms remains in the ground state as the laser pulse is turned off. Moreover, we show that the results are very sensitive to the closed contour we choose. This time-asymmetric state exchange phenomenon can be considered as a time-asymmetric atomic switch. The optimal time-asymmetric switch is obtained when the closed loop that encircles the exceptional point is large, while for the smallest loops, the time-asymmetric phenomenon does not take place. A systematic way for studying the effect of the chosen closed contour that encircles the exceptional point on the time-asymmetric phenomenon is proposed.

  18. Chirped pulse Raman amplification in plasma: high gain measurements

    NASA Astrophysics Data System (ADS)

    Vieux, G.; Yang, X.; Lyachev, A.; Ersfeld, B.; Farmer, J.; Brunetti, E.; Wiggins, M.; Issac, R.; Raj, G.; Jaroszynski, D. A.

    2009-05-01

    High power short pulse lasers are usually based on chirped pulse amplification (CPA), where a frequency chirped and temporarily stretched "seed" pulse is amplified by a broad-bandwidth solid state medium, which is usually pumped by a monochromatic "pump" laser. Here, we demonstrate the feasibility of using chirped pulse Raman amplification (CPRA) as a means of amplifying short pulses in plasma. In this scheme, a short seed pulse is amplified by a stretched and chirped pump pulse through Raman backscattering in a plasma channel. Unlike conventional CPA, each spectral component of the seed is amplified at different longitudinal positions determined by the resonance of the seed, pump and plasma wave, which excites a density echelon that acts as a "chirped" mirror and simultaneously backscatters and compresses the pump. Experimental evidence shows that it has potential as an ultra-broad bandwidth linear amplifier which dispenses with the need for large compressor gratings.

  19. CHIRPED PULSE AMPLIFICATION OF HGHG-FEL FACILITY AT BNL.

    SciTech Connect

    DOYURAN,A.ET AL.

    2003-09-08

    The DUV-FEL facility has been in operation in High Gain Harmonic Generation (HGHG) mode for one year producing 266 nm output from 177 MeV electrons. In this paper we present preliminary results of the Chirped Pulse Amplification (CPA) of HGHG radiation. In the normal HGHG process, a 1 ps electron beam is seeded by chirped 9 ps long 800 nm Ti:Sapphire laser. The electron beam sees only a narrow fraction of the seed laser bandwidth. However, in the CPA case the seed laser pulse length is reduced to 1 ps, and the electron beam sees the full bandwidth. We introduce an energy chirp on electron beam to match the chirp of the seed pulse, enabling the resonant condition for the whole beam. We present measurements of the spectrum bandwidth for various chirp conditions.

  20. Enhancement of Ultracold Molecule Formation Using Shaped Nanosecond Frequency Chirps

    NASA Astrophysics Data System (ADS)

    Carini, J. L.; Kallush, S.; Kosloff, R.; Gould, P. L.

    2015-10-01

    We demonstrate that judicious shaping of a nanosecond-time-scale frequency chirp can dramatically enhance the formation rate of ultracold 87Rb2 molecules. Starting with ultracold Rb 87 atoms, we apply pulses of frequency-chirped light to first photoassociate the atoms into excited molecules and then, later in the chirp, deexcite these molecules into a high vibrational level of the lowest triplet state a ?3 u + . The enhancing chirp shape passes through the absorption and stimulated emission transitions relatively slowly, thus increasing their adiabaticity, but jumps quickly between them to minimize the effects of spontaneous emission. Comparisons with quantum simulations for various chirp shapes support this enhancement mechanism.

  1. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

  2. Impact of modulator chirp in 100 Gbps class optical discrete multi-tone transmission system

    NASA Astrophysics Data System (ADS)

    Nishihara, Masato; Tanaka, Toshiki; Takahara, Tomoo; Li, Lei; Tao, Zhenning; Rasmussen, Jens C.

    2012-12-01

    Discrete multi-tone (DMT) technology is an attractive modulation technique for short reach optical transmission system. One of the main factors that limit the performance of the 1.5-?m band DMT system is the interplay between the chromatic dispersion of the transmission fiber and the chirp characteristic of the transmitter. We experimentally measured and compared the chirp characteristics of various modulator configurations, which are lithium-niobate Mach-Zehnder modulator, directly modulated laser, and electro-absorption modulator, by the frequency discriminator method using MZ interferometer. We also measured and compared the transmission characteristics of the transmitters using above-mentioned modulators and discuss the suitable transmitter configuration for DMT technology.

  3. Applying image transformation and classification techniques to airborne hyperspectral imagery for mapping Ashe juniper infestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ashe juniper (Juniperus ashei Buchholz), in excessive coverage, reduces forage production, interferes with livestock management, and degrades watersheds and wildlife habitat in infested rangelands. The objective of this study was to apply minimum noise fraction (MNF) transformation and different cla...

  4. Chirped fiber Bragg grating detonation velocity sensing

    NASA Astrophysics Data System (ADS)

    Rodriguez, G.; Sandberg, R. L.; McCulloch, Q.; Jackson, S. I.; Vincent, S. W.; Udd, E.

    2013-01-01

    An all optical-fiber-based approach to measuring high explosive detonation front position and velocity is described. By measuring total light return using an incoherent light source reflected from a linearly chirped fiber Bragg grating sensor in contact with the explosive, dynamic mapping of the detonation front position and velocity versus time is obtained. We demonstrate two calibration procedures and provide several examples of detonation front measurements: PBX 9502 cylindrical rate stick, radial detonation front in PBX 9501, and PBX 9501 detonation along curved meridian line. In the cylindrical rate stick measurement, excellent agreement with complementary diagnostics (electrical pins and streak camera imaging) is achieved, demonstrating accuracy in the detonation front velocity to below the 0.3% level when compared to the results from the pin data. Finally, an estimate on the linear spatial and temporal resolution of the system shows that sub-mm and sub-?s levels are attainable with proper consideration of the recording speed, detection sensitivity, spectrum, and chirp properties of the grating.

  5. Time-Frequency Transform Techniques Applied to Ultra-wideband Ground-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Yedlin, M.; Cresp, A.; Dauviganc, J. Y.; Gaffet, S.; Sénéchal, G.; Fortino, N.; Pichot, C.; Aliferis, I.

    2009-04-01

    Background Recently, Dauvignac et al [1] utilized a ground penetrating radar unit consisting of an exponentially tapered slot antenna (ETSA) of the Vivaldi type, connected to an Agilent vector network analyzer to obtain a densely-sampled profile in the anti-blast tunnel of LSBB (Low-Noise inter-Disciplinary Underground Science & Technology Laboratory) located in Rustrel, France. The frequency data, from 150 MHz to 2 GHz, was inverse Fourier-transformed to obtain the time dependent data. Simultaneously, the same profile was obtained using a RAMAC 500 MHz ground-penetrating radar unit. Initial comparison of both data sets was done in the time-domain. Data obtained from the ETSA will be inverted using a constrained least squares algorithm, in order that the depth-dependent permittivity can be inferred. As a quality control, the RAMAC data will also be inverted. The resulting permittivity profiles obtained in both inversions will be used to image water content over a depth of several meters. Proposed Research It is well-known, qualitatively in the ground penetrating radar literature that high frequencies appear at early times, but generally are attenuated at later times, essentially due to the skin effect. However, a signal-processing verification of this well-known result is needed. We propose to use the Stockwell or S transform [2] to determine the temporal location of frequencies in both of the foregoing datasets. The S transform, a short-time Fourier transform with a frequency-dependent window, will be described and applied to synthetic data. Then the application of the S transform to the RAMAC and ETSA data will be presented, after each data set has undergone the same pre-processing. The S transform is completely linear and preserves the phase of the data, which allows for easy interpretation of the operations of filtering, due to the linear inverse of the forward S transform. Thus the S transform is ideal for comparing the temporal distribution of frequency in these two datasets. BIBLIOGRAPHY [1] DAUVIGNAC J.-Y., N. FORTINO, G. SENECHAL, A. CRESP, M. YEDLIN, S. GAFFET, D. ROUSSET, and C. PICHOT, "Ultra-Wideband GPR Imaging of the Vaucluse Karst Aquifer", American Geophysical Union, Fall Meeting 2008, Abstract #NS51A-08. [2] STOCKWELL R. G., L. MANSINHA, R. P. LOWE, "Localization of the complex spectrum: the S transform", IEEE Transactions on Signal Processing, vol.44, n°4, pp 998-1001, April 1996.

  6. Effect of intense chirped pulses on the coherent phonon generation in Te

    NASA Astrophysics Data System (ADS)

    Misochko, O. V.; Dekorsy, T.; Andreev, S. V.; Kompanets, V. O.; Matveets, Yu. A.; Stepanov, A. G.; Chekalin, S. V.

    2007-02-01

    The authors have studied the influence of chirped laser pulses on the coherent phonon generation in single crystal Te. They have shown that the pulse chirp affects the amplitude of coherent phonons with A1 symmetry in the case of intense excitation only. By varying the chirp of an intense exciting pulse, the authors demonstrated that negatively chirped pulses are almost twice more effective in the creation of lattice coherence than positively chirped pulses.

  7. Optimization and characterization of dual-chirped optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Fu, Yuxi; Takahashi, Eiji J.; Zhang, Qingbin; Lu, Peixiang; Midorikawa, Katsumi

    2015-12-01

    We report optimization and characterization of a dual-chirped optical parametric amplification (DC-OPA) scheme (2011 Opt. Express 19 7190). By increasing a pump pulse energy to 100 mJ, a total (signal + idler) output energy exceeding 30 mJ was recorded with higher than 30% conversion efficiency. The feasibility of further increasing the output energy to a higher scale using the DC-OPA scheme was confirmed by a proof-of-principle experiment, in which 30%–40% conversion efficiency was observed. The signal pulse with the center wavelength of 1.4 ?m was compressed to 27 fs (FWHM), which was very close to a transform-limited pulse duration of 25 fs. Since the DC-OPA scheme is efficient for generating high-energy infrared (IR) pulses with excellent scaling ability, the design parameters for obtaining hundred-mJ-level and even joule-level IR pulses are discussed and presented in detail. Invited contribution to the special issue on optical parametric processes.

  8. Ultra-fast dynamic compression technique to study kinetics of phase transformations in Bismuth

    SciTech Connect

    Smith, R F; Kane, J O; Eggert, J H; Saculla, M D; Jankowski, A F; Bastea, M; Hicks, D G; Collins, G W

    2007-12-28

    Pre-heated Bi was ramp compressed within 30 ns to a peak stress of {approx}11 GPa to explore structural phase transformation kinetics under dynamic loading conditions. Under these ultra-fast compression time-scales the equilibrium Bi I-II phase boundary is overpressurized by {Delta}P {approx} 0.8 GPa. {Delta}P is observed to increase logarithmically with strain rate, {var_epsilon}, above 10{sup 6} s{sup -1}. Estimates from a kinetics model predict that the Bi I phase is fully transformed within 3 ns.

  9. Highly depth-resolved chirped pulse photothermal radar for bone diagnostics

    NASA Astrophysics Data System (ADS)

    Kaiplavil, Sreekumar; Mandelis, Andreas

    2011-07-01

    A novel chirped pulse photothermal (PT) radiometric radar with improved sensitivity over the conventional harmonically modulated thermal-wave radar technique and alternative pulsed laser photothermal radiometry is introduced for the diagnosis of biological samples, especially bones with tissue and skin overlayers. The constraints imposed by the laser safety (maximum permissible exposure) ceiling on pump laser energy and the strong attenuation of thermal-wave signals in tissues significantly limit the photothermally active depth in most biological specimens to a level which is normally insufficient for practical applications (a few mm below the skin surface). A theoretical approach for improvement of signal-to-noise ratio (SNR), minimizing the static (dc) component of the photothermal signal and making use of the photothermal radiometric nonlinearity has been introduced and verified by comparing the SNR of four distinct excitation wave forms (sine-wave, square-wave, constant-width and constant duty-cycle pulses) for chirping the pump laser, under constant exposure energy. At low frequencies fixed-pulsewidth chirps of large peak power were found to be superior to all other equal-energy modalities, with an SNR improvement up to two orders of magnitude. Distinct thickness-dependent characteristic delay times in a goat bone were obtained, establishing an active depth resolution range of ˜2.8 mm in a layered skin-fat-bone structure, a favorable result compared to the maximum reported pulsed photothermal radiometric depth resolution <1 mm in turbid biological media.

  10. Chirped-Superlattice, Blocked-Intersubband QWIP

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Ting, David; Bandara, Sumith

    2004-01-01

    An Al(x)Ga(1-x)As/GaAs quantum-well infrared photodetector (QWIP) of the blocked-intersubband-detector (BID) type, now undergoing development, features a chirped (that is, aperiodic) superlattice. The purpose of the chirped superlattice is to increase the quantum efficiency of the device. A somewhat lengthy background discussion is necessary to give meaning to a brief description of the present developmental QWIP. A BID QWIP was described in "MQW Based Block Intersubband Detector for Low-Background Operation" (NPO-21073), NASA Tech Briefs Vol. 25, No. 7 (July 2001), page 46. To recapitulate: The BID design was conceived in response to the deleterious effects of operation of a QWIP at low temperature under low background radiation. These effects can be summarized as a buildup of space charge and an associated high impedance and diminution of responsivity with increasing modulation frequency. The BID design, which reduces these deleterious effects, calls for a heavily doped multiple-quantum-well (MQW) emitter section with barriers that are thinner than in prior MQW devices. The thinning of the barriers results in a large overlap of sublevel wave functions, thereby creating a miniband. Because of sequential resonant quantum-mechanical tunneling of electrons from the negative ohmic contact to and between wells, any space charge is quickly neutralized. At the same time, what would otherwise be a large component of dark current attributable to tunneling current through the whole device is suppressed by placing a relatively thick, undoped, impurity-free AlxGa1 x As blocking barrier layer between the MQW emitter section and the positive ohmic contact. [This layer is similar to the thick, undoped Al(x)Ga(1-x)As layers used in photodetectors of the blocked-impurity-band (BIB) type.] Notwithstanding the aforementioned advantage afforded by the BID design, the responsivity of a BID QWIP is very low because of low collection efficiency, which, in turn, is a result of low electrostatic- potential drop across the superlattice emitter. Because the emitter must be electrically conductive to prevent the buildup of space charge in depleted quantum wells, most of the externally applied bias voltage drop occurs across the blocking-barrier layer. This completes the background discussion. In the developmental QWIP, the periodic superlattice of the prior BID design is to be replaced with the chirped superlattice, which is expected to provide a built-in electric field. As a result, the efficiency of collection of photoexcited charge carriers (and, hence, the net quantum efficiency and thus responsivity) should increase significantly.

  11. A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications

    NASA Technical Reports Server (NTRS)

    Berger, B. S.; Duangudom, S.

    1973-01-01

    A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.

  12. Dispersion compensation in chirped pulse amplification systems

    DOEpatents

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  13. Design and Fabrication of Chirped Mirror

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Zhi; Shao, Jian-Da; Dong, Hong-Cheng; Zhang, Wei-Li; Cui, Yun; He, Hong-Bo; Fan, Zheng-Xiu

    2009-09-01

    Chirped mirrors (CMs) are designed and manufactured. The optimized CM provides a group delay dispersion (GDD) of around -60 fs2 and average reflectivity of 99.4% with bandwidth 200 nm at a central wavelength of 800 nm. The CM structure consists of 52 layers of alternating high refractive index Ta2O5 and low refractive index SiO2. Measurement results show that the control of CM manufacturing accuracy can meet our requirement through time control with ion beam sputtering. Because the GDD of CMs is highly sensitive to small discrepancies between the layer thickness of calculated design and those of the manufactured mirror, we analyze the error sources which result in thickness errors and refractive index inhomogeneities in film manufacture.

  14. Quantum Fluctuations in the Chirped Pendulum

    E-print Network

    K. W. Murch; R. Vijay; I. Barth; O. Naaman; J. Aumentado; L. Friedland; I. Siddiqi

    2010-08-26

    An anharmonic oscillator when driven with a fast, frequency chirped voltage pulse can oscillate with either small or large amplitude depending on whether the drive voltage is below or above a critical value-a well studied classical phenomenon known as autoresonance. Using a 6 GHz superconducting resonator embedded with a Josephson tunnel junction, we have studied for the first time the role of noise in this non-equilibrium system and find that the width of the threshold for capture into autoresonance decreases as the square root of T, and saturates below 150 mK due to zero point motion of the oscillator. This unique scaling results from the non-equilibrium excitation where fluctuations, both quantum and classical, only determine the initial oscillator motion and not its subsequent dynamics. We have investigated this paradigm in an electrical circuit but our findings are applicable to all out of equilibrium nonlinear oscillators.

  15. Chirp Parameter in Strained Coupled Quantum Well Electroabsorption Modulators

    NASA Astrophysics Data System (ADS)

    Arashmehr, Armin; Zavvari, Mahdi

    2014-12-01

    Dependence of chirp parameter of a coupled double quantum well electroabsorption modulator at wavelength 1.55 µm on the structural parameters such as wells widths and strain of wells is studied. For this purpose, we calculate the absorption of structure under applied electric fields and then solve the Kramers-Kronig relation to obtain field-induced refractive index changes. Results show that the chirp parameter is strongly dependent on the first well width and strain variation. The wider well with the compressive strain results in reduction of chirp parameter. The second well parameters effect is weaker than that of the first well. Results show that by proper design of absorption region, all negative chirp can be achieved.

  16. Fractional Fourier transform based image multiplexing and encryption technique for four-color images using input images as keys

    NASA Astrophysics Data System (ADS)

    Joshi, Madhusudan; Shakher, Chandra; Singh, Kehar

    2010-06-01

    A digital technique for multiplexing and encryption of four RGB images has been proposed using the fractional Fourier transform (FRT). The four input RGB images are first converted into their indexed image formats and subsequently multiplexed into a single image through elementary mathematical steps prior to the encryption. The encryption algorithm uses two random phase masks in the input- and the FRT domain, respectively. These random phase masks are especially designed using the input images. As the encryption is carried out through a single channel, the technique is more compact and faster as compared to the multichannel techniques. Different fractional orders, the random masks in input-, and FRT domain are the keys for decryption as well as de-multiplexing. The algorithms to implement the proposed multiplexing-, and encryption scheme are discussed, and results of digital simulation are presented. Simulation results show that the technique is free from cross-talk. The performance of the proposed technique has also been analyzed against occlusion, noise, and attacks using partial windows of the correct random phase keys. The robustness of the technique against known-, and chosen plain-text attacks has also been explained.

  17. Evaluation of Stress Using Ultrasonic Technique Based on Hilbert-Huang Transform

    NASA Astrophysics Data System (ADS)

    He, Q.; Zhang, H. J.; Zhou, H. L.

    2006-10-01

    Pressures vessel are widely used in the modern industry. It is important to measure pressure of vessels. It has been proved that the change of ultrasonic velocity can be used to detect the stress of the material, and the velocity change can be obtained by estimating the time delay of two ultrasonic pulses. In this paper, the Rayleigh wave is selected as the ultrasonic pulse. Because the Rayleigh wave usually contains noise which deteriorates the estimation precision of the time delay, a signal processing method has to be used. Compared with the continuous wavelet transform, the correlative time estimation method based on the Hilbert-Huang Transform is presented in order to calculate the transit time difference. The experiments results show that this method can improve the accuracy of the time estimation.

  18. Development and Experimental Validation of a Numerical Tool for Structural Health and Usage Monitoring Systems Based on Chirped Grating Sensors

    PubMed Central

    Bettini, Paolo; Guerreschi, Erika; Sala, Giuseppe

    2015-01-01

    The interest of the aerospace industries in structural health and usage monitoring systems is continuously increasing. Among the techniques available in literature those based on Fibre Bragg Grating sensors are much promising thanks to their peculiarities. Different Chirped Bragg Grating sensor configurations have been investigated in this paper. Starting from a numerical model capable of simulating the spectral response of a grating subjected to a generic strain profile (direct problem), a new code has been developed, allowing strain reconstruction from the experimental validation of the program, carried out through different loading cases applied on a chirped grating. The wavelength of the reflection spectrum for a chirped FBG has a one-to-one correspondence to the position along the gauge section, thus allowing strain reconstruction over the entire sensor length. Tests conducted on chirped FBGs also evidenced their potential for SHM applications, if coupled with appropriate numerical strain reconstructions tools. Finally, a new class of sensors—Draw Tower Grating arrays—has been studied. These sensors are applicable to distributed sensing and load reconstruction over large structures, thanks to their greater length. Three configurations have been evaluated, having different spatial and spectral characteristics, in order to explore possible applications of such sensors to SHM systems. PMID:25587979

  19. Development and experimental validation of a numerical tool for structural health and usage monitoring systems based on chirped grating sensors.

    PubMed

    Bettini, Paolo; Guerreschi, Erika; Sala, Giuseppe

    2015-01-01

    The interest of the aerospace industries in structural health and usage monitoring systems is continuously increasing. Among the techniques available in literature those based on Fibre Bragg Grating sensors are much promising thanks to their peculiarities. Different Chirped Bragg Grating sensor configurations have been investigated in this paper. Starting from a numerical model capable of simulating the spectral response of a grating subjected to a generic strain profile (direct problem), a new code has been developed, allowing strain reconstruction from the experimental validation of the program, carried out through different loading cases applied on a chirped grating. The wavelength of the reflection spectrum for a chirped FBG has a one-to-one correspondence to the position along the gauge section, thus allowing strain reconstruction over the entire sensor length. Tests conducted on chirped FBGs also evidenced their potential for SHM applications, if coupled with appropriate numerical strain reconstructions tools. Finally, a new class of sensors-Draw Tower Grating arrays-has been studied. These sensors are applicable to distributed sensing and load reconstruction over large structures, thanks to their greater length. Three configurations have been evaluated, having different spatial and spectral characteristics, in order to explore possible applications of such sensors to SHM systems. PMID:25587979

  20. Single attosecond pulse generation from multicycle nonlinear chirped pulses

    SciTech Connect

    Niu Yueping; Qi Yihong; Gong Shangqing; Xiang Yang

    2009-12-15

    We present a method of producing single attosecond pulses by high-order harmonic generation with multicycle nonlinear chirped driver laser pulses. The symmetry of the laser field in several optical cycles near the pulse center is broken, and then the photons near the cutoff burst only in half optical cycle. By selecting out the harmonics near the cutoff, an isolated attosecond pulse could be obtained. The results are almost independent of the length and chirp form of the driver laser pulse.

  1. Technique for gray-scale visual light and infrared image fusion based on non-subsampled shearlet transform

    NASA Astrophysics Data System (ADS)

    Kong, Weiwei

    2014-03-01

    A novel image fusion technique based on NSST (non-subsampled shearlet transform) is presented, aiming at resolving the fusion problem of spatially gray-scale visual light and infrared images. NSST, as a new member of MGA (multi-scale geometric analysis) tools, possesses not only flexible direction features and optimal shift-invariance, but much better fusion performance and lower computational costs compared with several current popular MGA tools such as NSCT (non-subsampled contourlet transform). We specifically propose new rules for the fusion of low and high frequency sub-band coefficients of source images in the second step of the NSST-based image fusion algorithm. First, the source images are decomposed into different scales and directions using NSST. Then, the model of region average energy (RAE) is proposed and adopted to fuse the low frequency sub-band coefficients of the gray-scale visual light and infrared images. Third, the model of local directional contrast (LDC) is given and utilized to fuse the corresponding high frequency sub-band coefficients. Finally, the final fused image is obtained by using inverse NSST to all fused sub-images. In order to verify the effectiveness of the proposed technique, several current popular ones are compared over three different publicly available image sets using four evaluation metrics, and the experimental results demonstrate that the proposed technique performs better in both subjective and objective qualities.

  2. Photonic generation of microwave waveforms with wide chirp tuning range

    NASA Astrophysics Data System (ADS)

    Wong, Jia Haur; Liu, Huan Huan; Lam, Huy Quoc; Aditya, Sheel; Zhou, Junqiang; Lim, Peng Huei; Lee, Kenneth Eng Kian; Wu, Kan; Chow, Kin Kee; Shum, Perry Ping

    2013-09-01

    We show analytically as well as demonstrate experimentally an approach to generate microwave waveforms with wide chirp tuning range. The approach is based on the interference of two temporally-stretched pulses which are time-delayed with respect to each other and having different frequency chirp. This approach is realized by an unbalanced Mach Zehnder Interferometer (MZI) incorporating a linearly-chirped fiber-Bragg-grating (LCFBG) whose group-delay-dispersion (GDD) can be tuned across a wide range. In general, tuning the GDD of the LCFBG changes the chirp rate of the generated microwave waveform and tuning the relative time-delay between the interferometer arms changes the center frequency of the generated microwave waveform. Balanced photodetection is also implemented to obtain DC-free microwave waveforms. Based on this approach, we demonstrate the generation of microwave waveforms with different center frequencies and with the chirp rates ranging from˜-126.7 GHz/ns to ˜+120.8 GHz/ns, including the zero-chirp case.

  3. Propagation effects of isolated attosecond pulse generation with a multicycle chirped and chirped-free two-color field

    SciTech Connect

    Du Hongchuan; Hu Bitao

    2011-08-15

    We present a theoretical study of isolated attosecond pulse generation with a multicycle chirped and chirped-free two-color field. We show that the bandwidth of the extreme ultraviolet supercontinuum can be extended by combining a multicycle chirped pulse and a multicycle chirped-free pulse. Also, the broadband supercontinuum can still be generated when the macroscopic effects are included. Furthermore, the macroscopic effects can ameliorate the temporal characteristic of the broadband supercontinuum of the single atom, and eliminate the modulations of the broadband supercontinuum. Thus a very smooth broadband supercontinuum and a pure isolated 102-as pulse can be directly obtained. Moreover, the structure of the broadband supercontinuum can be steadily maintained for a relative long distance after a certain distance.

  4. Filtering in the joint time/chirp-rate domain for separation of quadratic and cubic phase chirp signals

    NASA Astrophysics Data System (ADS)

    Özgen, Mehmet Tankut

    2012-12-01

    This article investigates the possibility and convenience of a filtering operation in the joint time/chirp-rate (TCR) domain, and proposes a novel linear TCR filter for decomposing multicomponent signals into their quadratic and/or cubic phase chirp components with monotonic instantaneous chirp-rate (ICR) laws only. The TCR domain mask of the filter is selected on a display of a TCR representation of an input signal to isolate the desired chirp component. Projecting the input signal onto the phase signal associated with the TCR mask and approximating the phase difference in this projection operation in terms of ICR values result in the proposed TCR filter that recovers the selected component. Simulations illustrate the proposed filtering in recovery of undersampled cubic phase signals and in resolving back-to-back objects from in-line holograms for which cases it is easier to design filter masks in the TCR domain than in the time-frequency domain.

  5. Slippage effect on energy modulation in seeded free-electron lasers with frequency chirped seed laser pulses

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Deng, Haixiao; Wang, Guanglei; Wang, Dong; Zhao, Zhentang; Xiang, Dao

    2013-06-01

    Free-electron lasers (FELs) seeded with external lasers hold great promise for generating high power radiation with nearly transform-limited bandwidth in the soft x-ray region. However, it has been pointed out that the initial seed laser phase error will be amplified by the frequency up-conversion process, which may degrade the quality of the output radiation produced by a harmonic generation scheme. In this paper, theoretical and simulation studies on frequency chirp amplification in seeded FEL schemes with slippage effect taken into account are presented. It is found that the seed laser imperfection experienced by the electron beam can be significantly smoothed by the slippage effect in the modulator when the slippage length is comparable to the seed laser pulse length. This smoothing effect allows one to preserve the excellent temporal coherence of seeded FELs in the presence of large frequency chirp in the seed laser. Our studies show that the tolerance on frequency chirp in the seed laser for generating nearly transform-limited soft x-ray pulses in seeded FELs is much looser than previously thought and fully coherent radiation at nanometer wavelength may be reached with current technologies.

  6. Ultrashort pulses from an all-fiber ring laser incorporating a pair of chirped fiber Bragg gratings.

    PubMed

    Duval, Simon; Olivier, Michel; Bernier, Martin; Vallée, Réal; Piché, Michel

    2014-02-15

    By incorporating two linearly chirped ultrabroadband fiber Bragg gratings of opposite dispersion in an all-fiber ring laser, we demonstrate a mode-locking regime in which a femtosecond pulse evolving in the normal dispersion gain segment is locally transformed into a highly chirped picosecond pulse that propagates in the remaining section of the cavity. By minimizing nonlinear effects and avoiding soliton pulse shaping in this anomalous-dispersion section, low repetition rate fiber lasers can be made to produce high-energy ultrashort pulses. Using this approach, 98 fs pulses with 0.96 nJ of energy are obtained from an erbium-doped fiber laser operated in the highly anomalous dispersion regime at a repetition rate of 9.4 MHz. PMID:24562259

  7. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.

    PubMed

    Amin, Hafeez Ullah; Malik, Aamir Saeed; Ahmad, Rana Fayyaz; Badruddin, Nasreen; Kamel, Nidal; Hussain, Muhammad; Chooi, Weng-Tink

    2015-03-01

    This paper describes a discrete wavelet transform-based feature extraction scheme for the classification of EEG signals. In this scheme, the discrete wavelet transform is applied on EEG signals and the relative wavelet energy is calculated in terms of detailed coefficients and the approximation coefficients of the last decomposition level. The extracted relative wavelet energy features are passed to classifiers for the classification purpose. The EEG dataset employed for the validation of the proposed method consisted of two classes: (1) the EEG signals recorded during the complex cognitive task--Raven's advance progressive metric test and (2) the EEG signals recorded in rest condition--eyes open. The performance of four different classifiers was evaluated with four performance measures, i.e., accuracy, sensitivity, specificity and precision values. The accuracy was achieved above 98 % by the support vector machine, multi-layer perceptron and the K-nearest neighbor classifiers with approximation (A4) and detailed coefficients (D4), which represent the frequency range of 0.53-3.06 and 3.06-6.12 Hz, respectively. The findings of this study demonstrated that the proposed feature extraction approach has the potential to classify the EEG signals recorded during a complex cognitive task by achieving a high accuracy rate. PMID:25649845

  8. Detection and evaluation of droplet and bubble fringe patterns in images of planar interferometric measurement techniques using the wavelet transform

    NASA Astrophysics Data System (ADS)

    Hardalupas, Y.; Taylor, A. M. K. P.; Zarogoulidis, K.

    2014-08-01

    The acquired images of interferometric particle sizing techniques are characterized by intense fringe pattern overlapping in dense droplet and bubble areas, which hinders the image processing process and subsequent information extraction. Methods employed, such as thresholding and the Hough transform and template cross-correlation, exhibit weaknesses when processing such dense areas of interest. We investigate the viability of applying the wavelet transform (WT) for the detection of the fringe pattern centers and the evaluation of the particle size. We present the basics of the WT using the Mexican hat, which exhibits excellent localization properties and present two different alternatives routes in detecting the fringe patterns in the compressed and uncompressed fringe pattern cases. We found that in comparison to the most reported methods for image evaluation, such as intensity thresholding and plain cross-correlation, the WT is a very efficient tool for detecting the patterns, even in images with high-number fringe pattern areas. The usage of the WT for the sizing of the imaged droplets and bubbles is also examined, in comparison to the Fast Fourier Transform (FFT).

  9. Nanowire humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Pérez-Herrera, R.; Lopez-Aldaba, A.; López Bautista, M. C.; Esteban, O.; López-Amo, M.

    2015-09-01

    In this paper, a new sensor system for relative humidity measurements based on its interaction with the evanescent field of a nanowire is presented. The interrogation of the sensing head is carried out by monitoring the fast Fourier transform phase variations of one of the nanowire interference frequencies. This method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a wide humidity range (20%-70% relative humidity) with a maximum sensitivity achieved of 0.14rad/% relative humidity. Finally, due to the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  10. Deterministic implementations of quantum gates with circuit QEDs via Stark-chirped rapid adiabatic passages

    NASA Astrophysics Data System (ADS)

    Chen, Jingwei; Wei, L. F.

    2015-10-01

    We show that a set of universal quantum gates could be implemented robustly in a circuit QED system by using Stark-chirped rapid adiabatic passage (SCRAP) technique. Under the adiabatic limit we find that the population transfers could be deterministically passaged from one selected quantum states to the others, and thus the desired quantum gates can be implemented. The proposed SCRAP-based gates are insensitive to the details of the operations and thus relax the designs of the applied pulses, operational imperfections, and the decoherence of the system.

  11. Stark-Chirped Rapid Adiabatic Passage in Presence of Dissipation for Quantum Computation

    NASA Astrophysics Data System (ADS)

    Shi, Xuan; C. H., Oh; Wei, Lian-Fu

    2014-02-01

    Stark-chirped rapid adiabatic passage (SCRAP) is an important technique used for coherent quantum controls. In this paper we investigate how the practically-existing dissipation of the system influences on the efficiency of the passage, and thus the fidelities of the SCRAP-based quantum gates. With flux-biased Josephson qubits as a specifical example, our results show clearly that the efficiency of the logic gates implemented by SCRAP are robust against the weak dissipation. The influence due to the non-adiabtic transitions between the adiabatic passages is comparatively significantly small. Therefore, the SCRAP-based logic gates should be feasible for the realistic physical systems with noises.

  12. Carrier-envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system.

    PubMed

    Jullien, Aurélie; Ricci, Aurélien; Böhle, Frederik; Rousseau, Jean-Philippe; Grabielle, Stéphanie; Forget, Nicolas; Jacqmin, Hermance; Mercier, Brigitte; Lopez-Martens, Rodrigo

    2014-07-01

    We present the first carrier-envelope-phase stable chirped-pulse amplifier (CPA) featuring high temporal contrast for relativistic intensity laser-plasma interactions at 1 kHz repetition rate. The laser is based on a double-CPA architecture including cross-polarized wave (XPW) filtering technique and a high-energy grism-based compressor. The 8 mJ, 22 fs pulses feature 10?¹¹ temporal contrast at -20??ps and a carrier-envelope-phase drift of 240 mrad root mean square. PMID:24978734

  13. ISAR imaging of maneuvering targets based on the range centroid Doppler technique.

    PubMed

    Lv, Xiaolei; Xing, Mengdao; Wan, Chunru; Zhang, Shouhong

    2010-01-01

    A new inverse synthetic aperture radar (ISAR) imaging approach is presented for application in situations where the maneuverability of noncooperative target is not too severe and the Doppler variation of subechoes from scatterers can be approximated as a first-order polynomial. The proposed algorithm is referred to as the range centroid Doppler (RCD) ISAR imaging technique and is based on the stretch Keystone-Wigner transform (SKWT). The SKWT introduces a stretch weight factor containing a range of chirp rate into the autocorrelation function of each cross-range profile and uses a 1-D interpolation of the phase history which we call stretch keystone formatting. The processing simultaneously eliminates the effects of linear frequency migration for all signal components regardless of their unknown chirp rate in time-frequency plane, but not for the noise or for the cross terms. By utilizing this novel technique, clear ISAR imaging can be achieved for maneuvering targets without an exhaustive search procedure for the motion parameters. Performance comparison is carried out to evaluate the improvement of the RCD technique versus other methods such as the conventional range Doppler (RD) technique, the range instantaneous Doppler (RID) technique, and adaptive joint time-frequency (AJTF) technique. Examples provided demonstrate the effectiveness of the RCD technique with both simulated and experimental ISAR data. PMID:19775968

  14. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2015-08-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  15. Experimental investigation of chirp properties induced by signal amplification in quantum-dot semiconductor optical amplifiers.

    PubMed

    Matsuura, Motoharu; Ohta, Hiroaki; Seki, Ryota

    2015-03-15

    We experimentally show the dynamic frequency chirp properties induced by signal amplification in a quantum-dot semiconductor optical amplifier (QD-SOA) for the first time. We also compare the red and blue chirp peak values and temporal chirp changes while changing the gain and injected signal powers of the QD-SOA with those of a common SOA. PMID:25768145

  16. Technique for infrared and visible image fusion based on non-subsampled shearlet transform and spiking cortical model

    NASA Astrophysics Data System (ADS)

    Kong, Weiwei; Wang, Binghe; Lei, Yang

    2015-07-01

    Fusion of infrared and visible images is an active research area in image processing, and a variety of relevant algorithms have been developed. However, the existing techniques commonly cannot gain good fusion performance and acceptable computational complexity simultaneously. This paper proposes a novel image fusion approach that integrates the non-subsampled shearlet transform (NSST) with spiking cortical model (SCM) to overcome the above drawbacks. On the one hand, using NSST to conduct the decompositions and reconstruction not only consists with human vision characteristics, but also effectively decreases the computational complexity compared with the current popular multi-resolution analysis tools such as non-subsampled contourlet transform (NSCT). On the other hand, SCM, which has been considered to be an optimal neuron network model recently, is responsible for the fusion of sub-images from different scales and directions. Experimental results indicate that the proposed method is promising, and it does significantly improve the fusion quality in both aspects of subjective visual performance and objective comparisons compared with other current popular ones.

  17. Measuring the hypnotic depth of anaesthesia based on the EEG signal using combined wavelet transform, eigenvector and normalisation techniques.

    PubMed

    Nguyen-Ky, Tai; Wen, Peng; Li, Yan; Malan, Mel

    2012-06-01

    This paper presents a new index to measure the hypnotic depth of anaesthesia (DoA) using EEG signals. This index is derived from applying combined Wavelet transform, eigenvector and normalisation techniques. The eigenvector method is first applied to build a feature function for six levels of coefficients in a discrete wavelet transform (DWT). The best Daubechies wavelet and their ranking value p are optimally determined to identify different states of anaesthesia. A statistic normalisation process is then carried out to re-scale data and compute the hypnotic depth of anaesthesia. Finally, a new function ZDoA is proposed to compute a DoA index which corresponds one of the five depths of anaesthesia states to very deep anaesthesia, deep anaesthesia, moderate anaesthesia, light anaesthesia and awake. Simulation results based on real anaesthetised EEGs demonstrate that the new index generally parallels the BIS index. In particular, the ZDoA index is often faster than the BIS index to react to the transition period between consciousness and unconsciousness for this data set. A Bland-Altman plot indicates a 95.23% agreement between the ZDoA and BIS indices. The ZDoA trend is responsive, and its movement is consistent with the clinically observed and recorded changes of the patients. PMID:22575174

  18. Simultaneous 3D position sensing by means of large-scale spherical aberration of lens and Hough transform technique

    NASA Astrophysics Data System (ADS)

    Seko, Yasuji; Saguchi, Yasuyuki; Yamaguchi, Yoshinori; Hotta, Hiroyuki; Murai, Kazumasa; Miyazaki, Jun; Koshimizu, Hiroyasu

    2005-12-01

    We demonstrate a real time 3D position sensing of multiple light sources by capturing their ring images that are transformed by the molecular lens system with large spherical aberration. The ring images change in diameter in accordance with the distance to the light sources, and the ring center positions determine the directions toward them. Therefore, the 3D positions of light sources are calculated by detecting the diameters and center positions of the circles. This time we succeeded to measure 3D positions of multiple light sources simultaneously in real time by extracting and tracking the circle patterns individually. Each circle is extracted by the Hough transform technique that uses not-closely-distributing three edge points to search the primal votes more than threshold, and is tracked by predicting the successive positions by Kalman filter. These processes make it possible to measure the 3D positions of light sources even in the case of overlapped plural circles. In the experiment, we could track several circle patterns measuring the center positions and diameters, namely, measuring the 3D positions of LEDs in real space. Measurement error of 3D positions for a LED was 6.8mm in average for 150 sampling points ranging from 450mm to 950mm in distance.

  19. Excitation of Chirping Whistler Waves in a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.

    2015-06-01

    Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified.

  20. Excitation of Chirping Whistler Waves in a Laboratory Plasma.

    PubMed

    Van Compernolle, B; An, X; Bortnik, J; Thorne, R M; Pribyl, P; Gekelman, W

    2015-06-19

    Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified. PMID:26196981

  1. Effects of collisions on energetic particle-driven chirping bursts

    SciTech Connect

    Lesur, M.

    2013-05-15

    In the presence of an energetic particle population in a dissipative plasma, self-trapped structures in phase-space (holes and clumps) emerge from nonlinear wave-particle interactions. Their dynamics can lead to a nonlinear continuous shifting of the wave frequency (chirping). The effects of collisions on chirping characteristics are investigated, with a one-dimensional kinetic model. Existing analytic theory is extended to account for Krook-like collisions, which quantitatively explains a significant departure from widely accepted square-root time dependency. Relaxation oscillations, associated with chirping bursts, are investigated in the presence of dynamical friction and velocity-diffusion. The period increases with decreasing drag and weakly increases with decreasing diffusion. The mechanism is clarified with a simple semi-analytic model of hole/clump pair, which satisfies a Fokker-Planck equation. The model shows that the linear growth rate cannot be obtained simply by fitting an exponential to the amplitude time-series.

  2. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V. (Dublin, CA); Baldis, Hector A. (Pleasanton, CA); Landahl, Eric C. (Walnut Creek, CA)

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  3. Thomson scattering in high-intensity chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Holkundkar, Amol R.; Harvey, Chris; Marklund, Mattias

    2015-10-01

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  4. Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    NASA Astrophysics Data System (ADS)

    Yang, X.; Vieux, G.; Brunetti, E.; Ersfeld, B.; Farmer, J. P.; Hur, M. S.; Issac, R. C.; Raj, G.; Wiggins, S. M.; Welsh, G. H.; Yoffe, S. R.; Jaroszynski, D. A.

    2015-08-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10’s - 100’s fs for 250?ps, 800?nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.

  5. Experimental verification and analysis of wavelength effect on pulse stretching and compressing in mid-IR chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Zhong, Haizhe; Yuan, Peng; Zhao, Kun; Zhang, Lifu; Ma, Jingui; Li, Ying; Fan, Dianyuan

    2016-02-01

    As a consequence of the general experimental challenge to detect signals in mid-IR range, taking dispersive chirped near-IR laser pulses as the injected signal source seems to be an artistic route avoiding the daunting mid-IR stretcher and constantly was applied in moderate energy mid-IR optical parametric chirped-pulse amplifications (OPCPA) systems. In this paper we study the wavelength effect on pulse stretching and compressing in detail. Beginning with the theoretical analysis on each dispersion term of grating pairs, we evaluate the residual dispersions when pulse stretcher and compressor work at distinct wavelengths, which shows that this wavelength effect will result in poorly compressed pulses far from transform-limited. Via proof-of-principle experiments based on mid-IR OPCPAs and corresponding numerical simulations, we show that this artful configuration led to un-compressible pulses of ?2 ps with a time-bandwidth product of ? 10 when the chirped-pulse duration is ?400 ps. To overcome this effect, we demonstrate a simple design of pulse stretcher and compressor. The presented design consisted of a reflection grism-pair compressor can simultaneously cancel the quadric and cubic dispersions of conventional grating based stretcher, showing a potential ability of supporting high-contrast, sub-100-fs pulse-duration and 10,000× of pulse expansion.

  6. Learning-based computing techniques in geoid modeling for precise height transformation

    NASA Astrophysics Data System (ADS)

    Erol, B.; Erol, S.

    2013-03-01

    Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.

  7. Broadband absorption bleaching in chirped InGaAs quantum dot semiconductor optical amplifier operating at 1211-1285 nm

    NASA Astrophysics Data System (ADS)

    Jelmakas, E.; Tomaši?nas, R.; Vengris, M.; Rafailov, E.; Krestnikov, I.

    2013-10-01

    We report on photoinduced absorption bleaching of InAs/InGaAs chirped quantum dot semiconductor optical amplifier (QD SOA) waveguide devices investigated by the traditional femtosecond pump-probe technique applied for a waveguide configuration. To gain broader spectra for the device a chirped QD structure including three groups of quantum dots each dedicated to a ground state transition at wavelength 1285, 1243 and 1211 nm was designed. Photoinduced transmission spectra consisting of ground state transition for the groups of QD's involved showed coincidence with the electroluminescence spectra and even more exceeded to longer wavelength. From photoinduced transmission kinetics absorption recovery in the range of picoseconds was considered. For comparison a device with typical high photoinduced absorption demonstrating large suppression of absorption bleaching was shown and interpreted.

  8. Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent

    2010-06-15

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  9. Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent (Livermore, CA)

    2011-11-22

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  10. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy: An analytical technique to understand therapeutic responses at the molecular level

    PubMed Central

    Kalmodia, Sushma; Parameswaran, Sowmya; Yang, Wenrong; Barrow, Colin J.; Krishnakumar, Subramanian

    2015-01-01

    Rapid monitoring of the response to treatment in cancer patients is essential to predict the outcome of the therapeutic regimen early in the course of the treatment. The conventional methods are laborious, time-consuming, subjective and lack the ability to study different biomolecules and their interactions, simultaneously. Since; mechanisms of cancer and its response to therapy is dependent on molecular interactions and not on single biomolecules, an assay capable of studying molecular interactions as a whole, is preferred. Fourier Transform Infrared (FTIR) spectroscopy has become a popular technique in the field of cancer therapy with an ability to elucidate molecular interactions. The aim of this study, was to explore the utility of the FTIR technique along with multivariate analysis to understand whether the method has the resolution to identify the differences in the mechanism of therapeutic response. Towards achieving the aim, we utilized the mouse xenograft model of retinoblastoma and nanoparticle mediated targeted therapy. The results indicate that the mechanism underlying the response differed between the treated and untreated group which can be elucidated by unique spectral signatures generated by each group. The study establishes the efficiency of non-invasive, label-free and rapid FTIR method in assessing the interactions of nanoparticles with cellular macromolecules towards monitoring the response to cancer therapeutics. PMID:26568521

  11. Experimental and numerical study on chirped transient stimulated Raman scattering in dispersive medium

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyang; Leng, Yuxin; Li, Yanyan; Zou, Xiao; Lu, Jun; Li, Wenkai; Lu, Xiaoming; Xu, Yi; Liu, Yanqi; Li, Ruxin

    2015-09-01

    Experimental and numerical study on chirped transient stimulated Raman scattering in ethanol have been performed. Negatively chirped pump pulses yielded much higher conversion efficiency than positively chirped pump pulses. The calculated results reveal that the group velocity mismatch between the pump and Stokes pulses can rapidly degrade the conversion efficiency when the pump laser generates chirped pulses. However, the combined effects of group velocity dispersion and self-phase modulation offset the negative chirps during propagation, yielding higher conversion efficiency. This is a novel mechanism for controlling transient stimulated Raman scattering and is likely to be of importance for various applications.

  12. Injection and acceleration of electron bunch in a plasma wakefield produced by a chirped laser pulse

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-06-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wakefield which can trap and accelerate charged particles up to GeV. One-dimensional analysis of electron injection, trapping, and acceleration by different chirped pulses propagating in plasma is investigated numerically. In this paper, we inject electron bunches in front of the chirped pulses. It is indicated that periodical chirped laser pulse can trap electrons earlier than other pulses. It is shown that periodical chirped laser pulses lead to decrease the minimum momentum necessary to trap the electrons. This is due to the fact that periodical chirped laser pulses are globally much efficient than nonchirped pulses in the wakefield generation. It is found that chirped laser pulses could lead to much larger electron energy than that of nonchirped pulses. Relative energy spread has a lower value in the case of periodical chirped laser pulses.

  13. Fuzzy Hough Transform and an MLP with Fuzzy Input/Output for Character Recognition A neuro-fuzzy system for character recognition using a fuzzy Hough transform technique is

    E-print Network

    Sural, Shamik

    -fuzzy system for character recognition using a fuzzy Hough transform technique is presented in this paper #12;1 1. INTRODUCTION Recognition of characters from scanned documents is a key step in document image processing. Many methods have been suggested for solving the problem of optical character recognition (OCR

  14. The Theta Laser A Low Noise Chirped Pulse Laser

    E-print Network

    Van Stryland, Eric

    The Theta Laser A Low Noise Chirped Pulse Laser Dimitrios Mandridis dmandrid@creol.ucf.edu April 29, 2011 CREOL Affiliates Day 2011 #12;2 Objective: Frequency Swept (FM) Mode-locked Laser · Develop a frequency swept laser, · linear f-sweep, · uniform-intensity, · low noise, · with long-term stability

  15. The direct evaluation of attosecond chirp from a streaking measurement

    E-print Network

    Justin Gagnon; Vladislav S. Yakovlev

    2010-12-07

    We derive an analytical expression, from classical electron trajectories in a laser field, that relates the breadth of a streaked photoelectron spectrum to the group-delay dispersion of an isolated attosecond pulse. Based on this analytical expression, we introduce a simple, efficient and robust procedure to instantly extract the attosecond pulse's chirp from the streaking measurement.

  16. Continuously Tunable Chirped Microwave Waveform Generation Using a Tilted Fiber

    E-print Network

    Yao, Jianping

    to implement a photonic microwave delay-line filter with increasing or decreasing tap spacing. If an ultranarrow pulse is sent to the photonic microwave delay-line filter, a pulse burst with increasing by a two-tap Sagnac loop filter Vol. 4, No. 3, June 2012 Page 765 IEEE Photonics Journal Chirped Microwave

  17. Driven chirped vorticity holes M. A. Borich1,2

    E-print Network

    Friedland, Lazar

    -fold symmetric vorticity hole structures in a two-dimensional vortex patch with a line vortex core is studied vortex patch to an m-fold symmetric, oscillating, chirped frequency straining flow. The theory uses adiabatic invariants associated with the boundaries of the patch and describes all stages of evolution

  18. Chirped frequency transfer: a tool for synchronization and time transfer.

    PubMed

    Raupach, Sebastian M F; Grosche, Gesine

    2014-06-01

    We propose and demonstrate the phase-stabilized transfer of a chirped frequency as a tool for synchronization and time transfer. Technically, this is done by evaluating remote measurements of the transferred, chirped frequency. The gates of the frequency counters, here driven by a 10-MHz oscillation derived from a hydrogen maser, play a role analogous to the 1-pulse per second (PPS) signals usually employed for time transfer. In general, for time transfer, the gates consequently must be related to the external clock. Synchronizing observations based on frequency measurements, on the other hand, only requires a stable oscillator driving the frequency counters. In a proof of principle, we demonstrate the suppression of symmetrical delays, such as the geometrical path delay. We transfer an optical frequency chirped by around 240 kHz/s over a fiber link of around 149 km. We observe an accuracy and simultaneity, as well as a precision (Allan deviation, 18,000 s averaging interval) of the transferred frequency of around 2 × 10(-19). We apply chirped frequency transfer to remote measurements of the synchronization between two counters' gate intervals. Here, we find a precision of around 200 ps at an estimated overall uncertainty of around 500 ps. The measurement results agree with those obtained from reference measurements, being well within the uncertainty. In the present setup, timing offsets up to 4 min can be measured unambiguously. We indicate how this range can be extended further. PMID:24859656

  19. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W. (Albuquerque, NM)

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  20. Electron heating enhancement by frequency-chirped laser pulses

    SciTech Connect

    Yazdani, E.; Afarideh, H.; Sadighi-Bonabi, R.; Riazi, Z.; Hora, H.

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a?=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}?6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  1. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    PubMed

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)OPEXFF1094-408710.1364/OE.19.007190]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 ?m was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy. PMID:26512524

  2. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum. PMID:26233121

  3. Monolithic fiber chirped pulse amplification system for millijoule femtosecond pulse generation at 1.55 µm.

    PubMed

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2014-02-10

    A monolithic fiber chirped pulse amplification system that generates sub-500 fs pulses with 913 µJ pulse energy and 4.4 W average power at 1.55 µm wavelength has recently been demonstrated. The estimated peak power for the system output approached 1.9 GW. The pulses were near diffraction-limited and near transform-limited, benefiting from the straight and short length of the booster amplifier as well as adaptive phase shaping for the overall mitigation of the nonlinear phase accumulation. The booster amplifier employs an Er(3+)-doped large mode area high efficiency media fiber just 28 cm in length with a fundamental mode (LP(01)) diameter of 54 µm and a corresponding effective mode area of 2290 µm(2). PMID:24663537

  4. Hadamard transform spectrometry: A new analytical technique; Progress report, Second year, March 15, 1992--November 15, 1992

    SciTech Connect

    Fateley, W.G.; Hammaker, R.M.

    1992-11-15

    The document is divided into 4 parts: Hadamard transform photoacoustic spectrometry and depth profiling; Hadamard transform imaging with a 2D Hadamard encoding mask (Raman image using pararosaniline hydrochloride); Hadamard transform Raman spectrometry; and work on the growth of VO{sub 2}(s) crystals for Hadamard masking material. 13 figs, refs.

  5. Spin-wave storage using chirped control fields in atomic frequency comb-based quantum memory

    NASA Astrophysics Data System (ADS)

    Miná?, Ji?í; Sangouard, Nicolas; Afzelius, Mikael; de Riedmatten, Hugues; Gisin, Nicolas

    2010-10-01

    It has been shown that an inhomogeneously broadened optical transition shaped into an atomic frequency comb can store a large number of temporal modes of the electromagnetic field at the single-photon level without the need to increase the optical depth of the storage material. The readout of light modes is made efficient thanks to the rephasing of the optical-wavelength coherence similar to photon-echo-type techniques, and the reemission time is given by the comb structure. For on-demand readout and long storage times, two control fields are used to transfer the optical coherence back and forth into a spin wave. Here, we present a detailed analysis of the spin-wave storage based on chirped adiabatic control fields. In particular, we verify that chirped fields require significantly weaker intensities than ? pulses. The price to pay is a reduction of the multimode storage capacity that we quantify for realistic material parameters associated with solids doped with rare-earth-metal ions.

  6. Spin Wave Storage using Chirped Control Fields in Atomic Frequency Comb based Quantum Memory

    E-print Network

    Ji?í Miná?; Nicolas Sangouard; Mikael Afzelius; Hugues de Riedmatten; Nicolas Gisin

    2010-08-13

    It has been shown that an inhomogeneously broadened optical transition shaped into an atomic frequency comb can store a large number of temporal modes of the electromagnetic field at the single photon level without the need to increase the optical depth of the storage material. The readout of light modes is made efficient thanks to the rephasing of the optical-wavelength coherence similarly to photon echo-type techniques and the re-emission time is given by the comb structure. For on-demand readout and long storage times, two control fields are used to transfer back and forth the optical coherence into a spin wave. Here, we present a detailed analysis of the spin wave storage based on chirped adiabatic control fields. In particular, we verify that chirped fields require significantly weaker intensities than $\\pi$-pulses. The price to pay is a reduction of the multimode storage capacity that we quantify for realistic material parameters associated with solids doped with rare-earth-metal ions.

  7. Study of dynamic chirp in direct modulated DFB laser for C-OFDR application

    NASA Astrophysics Data System (ADS)

    Boukari, O.; Hassine, L.; Bouchriha, H.; Ketata, M.

    2010-05-01

    A description of the chirp induced by direct modulated DFB laser is presented. Two approaches are considered: the first one is based on a resolution of laser rate equations; the second, on a simulation with a commercial software. We compare results of the two approaches, we demonstrate that the optical frequency can be controlled via the injected current. We also characterize the linear variation of the optical frequency in time (for triangular and sawtooth modulation), in order to choose the appropriate values of laser and modulation parameters for a perfect linearity of the chirp in time. This study will be very helpful to validate the use of direct linear modulated DFB laser as a tunable source in Coherent Optical Frequency Domain Reflectometry technique C-OFDR. We present a simulation result of Mach-Zehnder delay time measurement based on C-OFDR system using a direct modulated semiconductor laser source. The obtained results are very important because it depicts the beat frequencies relating to each delay time, with respect to the modulation format used. This is very encouraging for the implementation of an experimental C-OFDR.

  8. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  9. Fourier transform infrared spectroscopy as a suitable technique in the study of the materials used in waterproofing of archaeological amphorae.

    PubMed

    Font, J; Salvadó, N; Butí, S; Enrich, J

    2007-08-13

    The resinous materials from the interior surfaces of two Roman and one Iberian amphora were studied with Fourier transform infrared (FTIR) spectroscopy. The results were then compared with those obtained by synchrotron radiation-FTIR, scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS). The FTIR spectra obtained by the technique of KBr micropellets, prepared directly with the materials scraped from the amphora without any further sample preparation, provided enough information to establish their diterpenoic nature, and even to differentiate between the two main materials employed for waterproofing purposes, pitch and wood tar. Methyl dehydroabietic acid (DHAM) is the main chemical marker that allows a distinction to be made between these two materials. Pitch and wood tar were prepared in the laboratory heating pine resin and resinous pine wood, respectively. These resinous waterproofing materials were compared with the coatings extracted from the amphorae. The samples whose direct FTIR spectra showed a signal at approximately 1740 cm(-1), attributed to a carbonyl group of methyl ester, presented as well a peak of DHAM in the GC-MS chromatogram of the neutral fraction of their extract. Samples without this signal in their spectra did not present DHAM in their chromatogram. This work studies, for the first time, waterproofing of an amphora attributed to the Iberian culture. PMID:17693315

  10. Measuring Temperature-Dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO-AIA Channels and Surfing Transform Technique

    NASA Technical Reports Server (NTRS)

    Uritskiy, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of sub visual coronal motions with low signal-to-noise ratios of the order of 0.1. The technique operates with a set of one-dimensional surfing signals extracted from position-timeplots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  11. Measuring temperature - dependent propagating disturbances in coronal fan loops using multiple SDO/AIA channels and surfing transform technique

    E-print Network

    Uritsky, Vadim M; Viall, Nicholeen M; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of subvisual coronal motions with low signal-to-noise ratios of the order of 0.1 %. The technique operates with a set of one-dimensional "surfing" signals extracted from position-time plots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the c...

  12. Use of time history speckle pattern and pulsed photoacoustic techniques to detect the self-accommodating transformation in a Cu-Al-Ni shape memory alloy

    SciTech Connect

    Sanchez-Arevalo, F.M.; Aldama-Reyna, W.; Lara-Rodriguez, A.G.; Garcia-Fernandez, T.; Pulos, G.; Trivi, M.; Villagran-Muniz, M.

    2010-05-15

    Continuous and pulsed electromagnetic radiation was used to detect the self-accommodation mechanism on a polycrystalline Cu-13.83 wt.%Al-2.34 wt.%Ni shape memory alloy. Rectangular samples of this alloy were mechanically polished to observe the austenite and martensite phases. The samples were cooled in liquid nitrogen prior to the experiments to obtain the martensite phase. Using a dynamic speckle technique with a continuous wave laser we obtained the time history of the speckle pattern image and monitored the surface changes caused by the self-accommodation mechanism during the inverse (martensitic to austenitic) transformation. Using a photoacoustic technique based on a pulsed laser source it was also possible to detect the self-accommodation phenomena in a bulk sample. For comparison purposes, we used differential scanning calorimetry (DSC) to detect the critical temperatures of transformation and use these as reference to evaluate the performance of the optical and photoacoustical techniques. In all cases, the same range of temperature was obtained during the inverse transformation. From these results, we conclude that time history speckle pattern (THSP) and pulsed photoacoustic are complementary techniques; they are non-destructive and useful to detect surface and bulk martensitic transformation induced by a temperature change.

  13. 2908 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 11, NOVEMBER 2010 Micro-Coaxial Impedance Transformers

    E-print Network

    Popovic, Zoya

    -in- dependent characteristics was first introduced in 1944 by Guanella [1]. These devices transform current class that uses only one transmission line and thus is considerably smaller than the Guanella. (a) Transmission line model of 4:1 Guanella transformer. (b) Cross sec- tion of the five-layer line

  14. Study of chirped pulse amplification based on Raman backscattering

    NASA Astrophysics Data System (ADS)

    Yang, X.; Vieux, G.; Lyachev, A.; Farmer, J.; Raj, G.; Ersfeld, B.; Brunetti, E.; Wiggins, M.; Issac, R.; Jaroszynski, D. A.

    2009-05-01

    Raman backscattering (RBS) in plasma is an attractive source of intense, ultrashort laser pulses, which has the potential asa basic for a new generation of laser amplifiers.1 Taking advantage of plasma, which can withstand extremely high power densities and can offer high efficiencies over short distances, Raman amplification in plasma could lead to significant reductions in both size and cost of high power laser systems. Chirped laser pulse amplification through RBS could be an effective way to transfer energy from a long pump pulse to a resonant counter propagating short probe pulse. The probe pulse is spectrally broadened in a controlled manner through self-phase modulation. Mechanism of chirped pulse Raman amplification has been studied, and features of supperradiant growth associated with the nonlinear stage are observed in the linear regime. Gain measurements are briefly summarized. The experimental measurements are in qualitative agreement with simulations and theoretical predictions.

  15. Excitation of the Morse oscillator by an ultrashort chirped pulse

    SciTech Connect

    Astapenko, V. A. Romadanovskii, M. S.

    2010-03-15

    The excitation of the classic Morse oscillator by an ultrashort electromagnetic pulse with a linear frequency chirp is studied theoretically. Formulas are derived for the oscillation amplitude and the radiation power averaged over a period as functions of the excitation energy for free oscillations of the Morse oscillator. Analytical expressions for describing the oscillator motion after the end of the pulse are obtained in the harmonic limit. In the general case of arbitrary parameters of the problem, the specific features of an excited Morse oscillator are analyzed numerically. Prominence is given to the effect of chirp on the excitation energy. The consideration is performed in terms of dimensionless variables, which makes it possible to apply the results obtained to a wide range of molecular systems and exciting-pulse parameters.

  16. Interaction of strongly chirped pulses with two-level atoms

    SciTech Connect

    Ibanez, S.; Peralta Conde, A.; Muga, J. G.; Guery-Odelin, D.

    2011-07-15

    We study the effect of ultrachirped pulses on the population inversion of two-level atoms. Ultrachirped pulses are defined as those for which the frequency chirp is of the order of the transition frequency of the two-level atom. When the chirp is large enough, the resonance may be crossed twice, for positive and negative frequencies. In fact the decomposition of the field into amplitude and phase factors, and the corresponding definition of the instantaneous frequency, are not unique. The interaction pictures for different decomposition are strictly equivalent, but only as long as approximations are not applied. The domain of validity of the formal rotating wave approximation is dramatically enhanced by a suitable choice, the so-called analytic signal representation.

  17. Chirping a two-photon transition in a multistate ladder

    SciTech Connect

    Merkel, Wolfgang; Mack, Holger; Schleich, Wolfgang P.; Lutz, Eric; Paulus, Gerhard G.; Girard, Bertrand

    2007-08-15

    We consider a two-photon transition in a specific ladder system driven by a chirped laser pulse. In the weak field limit, we find that the excited state probability amplitude arises due to interference of multiple quantum paths which are weighted by quadratic phase factors. The excited state population has the form of a Gauss sum which plays a prominent role in number theory.

  18. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOEpatents

    Barty, Christopher P. J. (Hayward, CA)

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  19. The Optoelectronic Swept-Frequency Laser and Its Applications in Ranging, Three-Dimensional Imaging, and Coherent Beam Combining of Chirped-Seed Amplifiers

    NASA Astrophysics Data System (ADS)

    Vasilyev, Arseny

    This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 1016 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL. We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns. We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten. We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*1014 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

  20. Cooling of relativistic electron beams in chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Yoffe, Samuel R.; Noble, Adam; Kravets, Yevgen; Jaroszynski, Dino A.

    2015-05-01

    The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau-Lifshitz theory. Results indicate that even large chirps introduce a significantly smaller change to final state predictions than going from a classical to quantum model for radiation reaction, the nature of which can be intuitively understood.

  1. Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    PubMed Central

    Yang, X.; Vieux, G.; Brunetti, E.; Ersfeld, B.; Farmer, J. P.; Hur, M. S.; Issac, R. C.; Raj, G.; Wiggins, S. M.; Welsh, G. H.; Yoffe, S. R.; Jaroszynski, D. A.

    2015-01-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10’s – 100’s fs for 250?ps, 800?nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153

  2. Chirped pulse Raman amplification in warm plasma: towards controlling saturation.

    PubMed

    Yang, X; Vieux, G; Brunetti, E; Ersfeld, B; Farmer, J P; Hur, M S; Issac, R C; Raj, G; Wiggins, S M; Welsh, G H; Yoffe, S R; Jaroszynski, D A

    2015-01-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250?ps, 800?nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153

  3. Compression and collisions of chirped pulses in a dense two-level medium

    NASA Astrophysics Data System (ADS)

    Novitsky, Denis V.

    2016-01-01

    Using numerical simulations, we study propagation of linearly-chirped optical pulses in a homogeneously broadened two-level medium. We pay attention to the three main topics - validity of the rotating-wave approximation (RWA), pulse compression, and collisions of counter-propagating pulses. The cases of long and single-cycle pulses are considered and compared with each other. We show that the RWA does not give a correct description of chirped pulse interaction with the medium. The compression of the chirp-free single-cycle pulse is stronger than of the chirped one, while the opposite is true for long pulses. We demonstrate that the influence of chirp on the collisions of the long pulses allows us to control the state of the transmitted radiation: the transmission of the chirp-free pulse can be dramatically changed under collision with the chirped counter-propagating one, in sharp contrast to the case when both pulses are chirped. On the other hand, the collisions of the chirped single-cycle pulses can be used for precise control of medium excitation in a narrow spatial region.

  4. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.

    PubMed

    Nikodem, Michal; Wysocki, Gerard

    2012-01-01

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 ?m quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389

  5. Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing

    PubMed Central

    Nikodem, Michal; Wysocki, Gerard

    2012-01-01

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 ?m quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389

  6. Chirped Probe Pulse Femtosecond Coherent Anti-Stokes Raman Scattering for Turbulent Combustion Diagnostics

    NASA Astrophysics Data System (ADS)

    Fineman, Claresta N.; Lucht, Robert P.

    2014-06-01

    Chirped probe pulse (CPP) femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) thermometry at 5 kHz has been successfully applied for single-laser-shot flame temperature measurements in a mildly turbulent hydrogen-air jet diffusion flame, sooting methane-air jet diffusion flame, and most recently a turbulent combustor of practical interest. Measurements were performed at various heights and radial locations within each flame and resulted in temperatures ranging from 300 K to 2400 K. In the turbulent combustor every laser shot produced some resonant CARS signal; no loss of signal due to beam steering, pressure fluctuations, or shear layer density gradients was noticeable. Furthermore, the measurement volume spatial resolution is better than has previously been reported for other CARS experiments. Flame temperature measurements compare well with those previously reported in similar flames. These results indicate high repetition rate CPP fs-CARS is an excellent technique for the study of turbulent combustion.

  7. Chirped InGaAs quantum dot molecules for broadband applications

    PubMed Central

    2012-01-01

    Lateral InGaAs quantum dot molecules (QDMs) formed by partial-cap and regrowth technique exhibit two ground-state (GS) peaks controllable via the thicknesses of InAs seed quantum dots (x), GaAs cap (y), and InAs regrowth (z). By adjusting x/y/z in a stacked QDM bilayer, the GS peaks from the two layers can be offset to straddle, stagger, or join up with each other, resulting in multi-GS or broadband spectra. A non-optimized QDM bilayer with a 170-meV full-width at half-maximum is demonstrated. The temperature dependencies of the emission peak energies and intensities from the chirped QDM bilayers are well explained by Varshni's equation and thermal activation of carriers out of constituent quantum dots. PMID:22480323

  8. Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform.

    PubMed

    Wang, Yiping; Zhang, Jiejun; Coutinho, Olympio; Yao, Jianping

    2015-11-01

    An approach to the interrogation of a linearly chirped fiber Bragg grating (LCFBG) sensor using a linearly frequency-modulated (or chirped) optical waveform (LFMOW) with a high resolution is proposed and experimentally demonstrated. An LFMOW is generated at a laser diode through linear frequency modulation. The generated LFMOW is then launched into an LCFBG pair consisting of two identical LCFBGs, with one serving as a sensing LCFBG and the other as a reference LCFBG. The reflection of the LFMOW from the two LCFBGs would lead to two time delayed LFMOWs. By beating the LFMOWs at a photodetector, a microwave signal with a beat frequency that is proportional to the time delay difference between the two reflected LFMOWs is generated. By measuring the frequency change of the beat signal, the strain applied to the sensing LCFBG is estimated. The proposed approach is experimentally evaluated. An LCFBG sensor with a resolution of 0.25 ?? is experimentally demonstrated. PMID:26512484

  9. A new technique for computing the spectral density of sunset-type diagrams: integral transformation in configuration space

    E-print Network

    S. Groote; J. G. Körner; A. A. Pivovarov

    2000-04-05

    We present a new method to investigate a class of diagrams which generalizes the sunset topology to any number of massive internal lines. Our attention is focused on the computation of the spectral density of these diagrams which is related to many-body phase space in $D$ dimensional space-time. The spectral density is determined by the inverse $K$-transform of the product of propagators in configuration space. The inverse $K$-transform reduces to the inverse Laplace transform in any odd number of space-time dimensions for which we present an explicit analytical result.

  10. Generating nonlinear FM chirp waveforms for radar.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.

  11. Generation of two-color ultra-short radiation pulses from two electron bunches and a chirped seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Wang, Zhen; Wang, Xingtao; Huang, Dazhang

    2016-01-01

    In this paper we describe a new method for the realization of two-color femtosecond radiation pulses in a seeded free-electron laser (FEL). The two-color pulses are obtained from two electron bunches and a chirped seeding laser. Compared to the previous methods based on seeded FELs, our method has the advantages of producing two-color FEL pulses with more flexible tunability both in the pulse durations and separations. Numerical simulations for the Dalian Coherent Light Source confirm that femtosecond XUV pulses with variable pulse durations and time delay can be directly generated from a chirped seed laser at 250 nm by using this technique. We also show the possibility of performing a proof-of-principle experiment of this technique based on the Shanghai Deep-Ultraviolet FEL facility.

  12. Efficient broadband 400??nm noncollinear second-harmonic generation of chirped femtosecond laser pulses in BBO and LBO.

    PubMed

    Gobert, O; Mennerat, G; Maksimenka, R; Fedorov, N; Perdrix, M; Guillaumet, D; Ramond, C; Habib, J; Prigent, C; Vernhet, D; Oksenhendler, T; Comte, M

    2014-04-20

    We report on 400 nm broadband type I frequency doubling in a noncollinear geometry with pulse-front-tilted and chirped femtosecond pulses (? =800??nm; Fourier transform limited pulse duration, 45 fs). With moderate power densities (2 to 10??GW/cm2) thus avoiding higher-order nonlinear phenomena, the energy conversion efficiency was up to 65%. Second-harmonic pulses of Fourier transform limited pulse duration shorter than the fundamental wave were generated, exhibiting good beam quality and no pulse-front tilt. High energy (20 mJ/pulse) was produced in a 40 mm diameter and 6 mm thick LBO crystal. To the best of our knowledge, this is the first demonstration of this optical configuration with sub-100-fs pulses. Good agreement between experimental results and simulations is obtained. PMID:24787591

  13. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  14. Robust Volume Assessment of Brain Tissues for 3-Dimensional Fourier Transformation MRI via a Novel Multispectral Technique

    PubMed Central

    Chai, Jyh-Wen; Chen, Clayton C.; Wu, Yi-Ying; Chen, Hung-Chieh; Tsai, Yi-Hsin; Chen, Hsian-Min; Lan, Tsuo-Hung; Ouyang, Yen-Chieh; Lee, San-Kan

    2015-01-01

    A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising in cross-sectional and longitudinal studies of different subject groups. PMID:25710499

  15. Robust volume assessment of brain tissues for 3-dimensional fourier transformation MRI via a novel multispectral technique.

    PubMed

    Chai, Jyh-Wen; Chen, Clayton C; Wu, Yi-Ying; Chen, Hung-Chieh; Tsai, Yi-Hsin; Chen, Hsian-Min; Lan, Tsuo-Hung; Ouyang, Yen-Chieh; Lee, San-Kan

    2015-01-01

    A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising in cross-sectional and longitudinal studies of different subject groups. PMID:25710499

  16. Gd(III)-Gd(III) distance measurements with chirp pump pulses.

    PubMed

    Doll, Andrin; Qi, Mian; Wili, Nino; Pribitzer, Stephan; Godt, Adelheid; Jeschke, Gunnar

    2015-10-01

    The broad EPR spectrum of Gd(III) spin labels restricts the dipolar modulation depth in distance measurements between Gd(III) pairs to a few percent. To overcome this limitation, frequency-swept chirp pulses are utilized as pump pulses in the DEER experiment. Using a model system with 3.4 nm Gd-Gd distance, application of one single chirp pump pulse at Q-band frequencies leads to modulation depths beyond 10%. However, the larger modulation depth is counteracted by a reduction of the absolute echo intensity due to the pump pulse. As supported by spin dynamics simulations, this effect is primarily driven by signal loss to double-quantum coherence and specific to the Gd(III) high spin state of S=7/2. In order to balance modulation depth and echo intensity for optimum sensitivity, a simple experimental procedure is proposed. An additional improvement by 25% in DEER sensitivity is achieved with two consecutive chirp pump pulses. These pulses pump the Gd(III) spectrum symmetrically around the observation position, therefore mutually compensating for dynamical Bloch-Siegert phase shifts at the observer spins. The improved sensitivity of the DEER data with modulation depths on the order of 20% is due to mitigation of the echo reduction effects by the consecutive pump pulses. In particular, the second pump pulse does not lead to additional signal loss if perfect inversion is assumed. Moreover, the compensation of the dynamical Bloch-Siegert phase prevents signal loss due to spatial dependence of the dynamical phase, which is caused by inhomogeneities in the driving field. The new methodology is combined with pre-polarization techniques to measure long distances up to 8.6 nm, where signal intensity and modulation depth become attenuated by long dipolar evolution windows. In addition, the influence of the zero-field splitting parameters on the echo intensity is studied with simulations. Herein, larger sensitivity is anticipated for Gd(III) complexes with zero-field splitting that is smaller than for the employed Gd-PyMTA complex. PMID:26340436

  17. Gd(III)-Gd(III) distance measurements with chirp pump pulses

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Qi, Mian; Wili, Nino; Pribitzer, Stephan; Godt, Adelheid; Jeschke, Gunnar

    2015-10-01

    The broad EPR spectrum of Gd(III) spin labels restricts the dipolar modulation depth in distance measurements between Gd(III) pairs to a few percent. To overcome this limitation, frequency-swept chirp pulses are utilized as pump pulses in the DEER experiment. Using a model system with 3.4 nm Gd-Gd distance, application of one single chirp pump pulse at Q-band frequencies leads to modulation depths beyond 10%. However, the larger modulation depth is counteracted by a reduction of the absolute echo intensity due to the pump pulse. As supported by spin dynamics simulations, this effect is primarily driven by signal loss to double-quantum coherence and specific to the Gd(III) high spin state of S = 7/2. In order to balance modulation depth and echo intensity for optimum sensitivity, a simple experimental procedure is proposed. An additional improvement by 25% in DEER sensitivity is achieved with two consecutive chirp pump pulses. These pulses pump the Gd(III) spectrum symmetrically around the observation position, therefore mutually compensating for dynamical Bloch-Siegert phase shifts at the observer spins. The improved sensitivity of the DEER data with modulation depths on the order of 20% is due to mitigation of the echo reduction effects by the consecutive pump pulses. In particular, the second pump pulse does not lead to additional signal loss if perfect inversion is assumed. Moreover, the compensation of the dynamical Bloch-Siegert phase prevents signal loss due to spatial dependence of the dynamical phase, which is caused by inhomogeneities in the driving field. The new methodology is combined with pre-polarization techniques to measure long distances up to 8.6 nm, where signal intensity and modulation depth become attenuated by long dipolar evolution windows. In addition, the influence of the zero-field splitting parameters on the echo intensity is studied with simulations. Herein, larger sensitivity is anticipated for Gd(III) complexes with zero-field splitting that is smaller than for the employed Gd-PyMTA complex.

  18. Chirp excitation of ultrasonic probes and algorithm for filtering transit times in high-rangeability gas flow metering.

    PubMed

    Folkestad, T; Mylvaganam, K S

    1993-01-01

    The signal processing used in an ultrasonic high-rangeability gas flow meter using times of flight is presented. The flow meter under discussion uses a combination of continuous wave and chirp signals to measure at low flow velocities, below 20 m/s, and chirp signals alone to measure high flow velocities, above 20 m/s. Because of the need for a pulse compression technique in the signal waveform design the technique of pulse compression and the choice of signal waveforms are discussed. The advantages and disadvantages of amplitude weighting vis-a-vis frequency domain manipulations of the waveforms are also discussed. To eliminate spurious times of flight, a special filtering technique is used, based on assessing the gradient of ascendingly ordered time series of time-of-flight measurements. A summary of user experience with high-rangeability gas flow meters in use on different offshore platforms and in refineries is given. Long-term tests that examined the accuracy of the high-rangeability flow meter are also described. PMID:18263174

  19. Chirped CPMG for well-logging NMR applications Leah B. Casabianca a

    E-print Network

    Frydman, Lucio

    Chirped CPMG for well-logging NMR applications Leah B. Casabianca a , Daniel Mohr a , Soumyajit Available online 12 March 2014 Keywords: Well-logging NMR Chirped pulses CPMG Sensitivity enhancement Ex situ NMR a b s t r a c t In NMR well-logging, the measurement apparatus typically consists

  20. Chirped-microwave assisted magnetization reversal Zihui Wang and Mingzhong Wua

    E-print Network

    Chirped-microwave assisted magnetization reversal Zihui Wang and Mingzhong Wua Department 22 March 2009; published online 1 May 2009 This paper reports simulation results on microwave-fixed microwaves, frequency-chirped microwaves have higher efficiency in pumping magnetization precession and

  1. Frequency chirp and pulse shape effects in self-modulated laser wakefield acceleratorsa...

    E-print Network

    Geddes, Cameron Guy Robinson

    Frequency chirp and pulse shape effects in self-modulated laser wakefield acceleratorsa... C. B excitation in a self-modulated laser wakefield accelerator is examined. Laser pulse shape and frequency chirp laser pulse shapes with fast rise times ( plasma period are shown to generate larger wakes compared

  2. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    NASA Astrophysics Data System (ADS)

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    2015-09-01

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process. First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.

  3. 314 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 23, NO. 5, MARCH 1, 2011 Tilted Fiber Bragg Grating for Chirped Microwave

    E-print Network

    Yao, Jianping

    -WTT system for a chirped microwave waveform generation is the spectral filter, which should have a spectrum for Chirped Microwave Waveform Generation Ming Li, Member, IEEE, Li-Yang Shao, Jacques Albert, Member, IEEE shaper to generate a chirped microwave waveform in a spectral-shaping and wavelength-to-time (SS

  4. Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a formal exact solution of the linear advection-diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection-diffusion equation into an exclusively diffusive equation. ...

  5. From the Unity of Truth to Technique and Back Again: The Transformation of Curriculum and Professionalism within Higher Education

    ERIC Educational Resources Information Center

    Nguyen, Roselynn H.; Null, J. Wesley

    2008-01-01

    Upon reviewing the story of higher education from the early eighteenth to the late twentieth century, the authors are able to evaluate the ideals of knowledge and how they have been transformed during this time period. Considering the implications education has on the training of students who become leaders in society, individuals should pay…

  6. Control of Brillouin short-pulse seed amplification by chirping the pump pulse

    SciTech Connect

    Lehmann, G.; Spatschek, K. H.

    2015-04-15

    Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of the seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.

  7. Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism

    NASA Astrophysics Data System (ADS)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Yazdani, E.

    2015-07-01

    The transition from hole-boring to light-sail regime of radiation pressure acceleration by frequency-chirped laser pulses is studied using particle-in-cell simulation. The penetration depth of laser into the plasma with ramped density profile increases when a negatively chirped laser pulse is applied. Because of this induced transparency, the laser reflection layer moves deeper into the target and the hole-boring stage would smoothly transit into the light-sail stage. An optimum chirp parameter which satisfies the laser transparency condition, a 0 ? ? n e l / n c ? , is obtained for each ramp scale length. Moreover, the efficiency of conversion of laser energy into the kinetic energy of particles is maximized at the obtained optimum condition. A relatively narrow proton energy spectrum with peak enhancement by a factor of 2 is achieved using a negatively chirped pulse compared with the un-chirped pulse.

  8. Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse

    SciTech Connect

    Pronin, E. A.; Starace, Anthony F.; Peng Liangyou

    2011-07-15

    The angular distribution of electrons ionized from an atom by a chirped few-cycle attosecond pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. The dependence of the asymmetry in the ionized electron distributions on both the chirp and the carrier-envelope phase (CEP) of the pulse are explained using a simple analytical formula that approximates the exact PT result. This approximate formula (in which the chirp dependence is explicit) reproduces reasonably well the chirp-dependent oscillations of the electron angular distribution asymmetries found numerically by Peng et al. [Phys. Rev. A 80, 013407 (2009)]. It can also be used to determine the chirp rate of the attosecond pulse from the measured electron angular distribution asymmetry.

  9. Isolated short attosecond pulse generation in an orthogonally polarized multicycle chirped laser field

    SciTech Connect

    Xu Junjie

    2011-03-15

    We theoretically demonstrate the generation of a high-order harmonic and isolated attosecond pulse in an orthogonally polarized laser field, which is synthesized by an 800-nm chirped laser pulse and an 800-nm chirp-free laser pulse. Owing to the instantaneous frequency increasingly reducing close to the center of the driving pulse, the extreme ultraviolet supercontinuum for the chirped synthesized field is even broader than that for an orthogonal chirp-free two-color laser field. It is found that the broadband supercontinuum spectrum can be achieved for the driving pulse with ten and above optical cycles. After phase compensation an isolated attosecond pulse with a duration of {approx}16 as is produced. Furthermore, the optimization of the chirping rate parameters is investigated to achieve cutoff extension and an isolated short attosecond pulse.

  10. Backward Raman amplification in plasmas with chirped wideband pump and seed pulses

    NASA Astrophysics Data System (ADS)

    Wu, Zhao-Hui; Wei, Xiao-Feng; Zuo, Yan-Lei; Liu, Lan-Qin; Zhang, Zhi-Meng; Li, Min; Zhou, Yu-Liang; Su, Jing-Qin

    2015-01-01

    Chirped wideband pump and seed pulses are usually considered for backward Raman amplification (BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a chirped pump or a chirped seed. In this paper, modified three-wave coupling equations are proposed for the BRA in the plasmas with both chirped wideband pump and seed. The simulation results can more precisely describe the experiments, such as the Princeton University experiment. The optimized chirp and bandwidth are determined based on the simulation to enhance the output intensity and efficiency. Project supported by the National Natural Science Foundation of China (Grant No. 11305157) and the Development Foundation of China Academy of Engineering Physics Laboratory (CAEPL) (Grant No. 2013A0401019).

  11. Control of Brillouin short-pulse seed amplification by chirping the pump pulse

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2015-04-01

    Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of the seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.

  12. Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-08-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.

  13. Data reflection algorithm for spectral enhancement in Fourier transform ICR and NMR spectroscopies

    SciTech Connect

    Gorshkov, M.V.; Kouzes, R.T.

    1995-10-01

    The use of a data reflection algorithm in which the signal acquired in real time is juxtaposed with the same signal reflected relatively to zero time axis through exact phase matching is considered. Because of the additional information provided by a knowledge of the exact initial phase of the signal, the resulting Fourier transform (FT) spectra have a higher resolution and signal-to-noise ratio. This algorithm was applied to ion cyclotron resonance and nuclear magnetic resonance time-domain signals. In both cases, the method improved the FT spectra compared with the original ones. It was found that artifacts may result from the time delay between the end of the excitation event and the beginning of the acquisition period, as well as from time-dependent excitation wave forms such as chirp excitation. Possible ways to decrease or eliminate the artifacts are considered. Comparison to other spectral enhancement techniques is made. 18 refs., 11 figs.

  14. Supercontinuum generation with a chirped-pulse oscillator.

    PubMed

    Fuerbach, A; Miese, C; Koehler, W; Geissler, M

    2009-03-30

    We demonstrate the generation of a high power ultrabroadband supercontinuum by coupling the uncompressed pulses from a Ti:Sapphire Chirped-pulse oscillator into a photonic crystal fibre that exhibits a highly anomalous dispersion at the centre wavelength of the laser. Our simulations show that the pulses first undergo quasi-linear compression before the actual supercontinuum is generated by soliton fission dynamics. This two-step process results in an optical spectrum that is remarkably independent on the input pulse energy. Moreover, the reduced peak intensity at the input facet of the fibre mitigates damage problems and allows the generation of high power white-light radiation. PMID:19333361

  15. A zero-crossing technique for the multidetermination of thiamine HCl and pyridoxine HCl in their mixture by using one-dimensional wavelet transform.

    PubMed

    Dinç, Erdal; Baleanu, Dumitru

    2003-04-01

    A new zero-crossing technique based on one-dimensional wavelet transform (WT) was developed and applied on a commercial vitamin product and binary mixtures containing thiamine HCl and pyridoxine HCl in the presence of the interference of the analysed signals. We selected from the data of the UV-Vis absorption spectra a signal consisting of 1150 points corresponding to the concentration range 8-32 mg/ml for both vitamins and we subjected it to one-dimensional continuous WT Mexican (MEXICAN) and Meyer (MEYER). Since the peaks of the transformed signals were bigger than original ones a zero crossing technique was applied to obtain the regression equations. The validity of Beer-Lambert law was assumed for the transformed signals. An appropriate scale setting was choosing to obtain an alternative calibration for each method. The basic concepts about wavelet method were briefly explained and MATLAB 6.5 software was used for one-dimensional wavelet analysis. The obtained results were successfully compared among each other and with those obtained by other literature methods. The developed method is rapid, easy to apply, not expensive and suitable for analysing of the overlapping signals of compounds in their mixtures without any chemical pre-treatment. PMID:12684109

  16. Chirped CPMG for well-logging NMR applications.

    PubMed

    Casabianca, Leah B; Mohr, Daniel; Mandal, Soumyajit; Song, Yi-Qiao; Frydman, Lucio

    2014-05-01

    In NMR well-logging, the measurement apparatus typically consists of a permanent magnet which is inserted into a bore, and the sample is the rock surrounding the borehole. When compared to the conditions of standard NMR experiments, this application is thus challenged by relatively weak and invariably inhomogeneous B0 and B1 fields. Chemical shift information is not generally obtained in these measurements. Instead, diffusivity, porosity and permeability information is collected from multi-echo decay measurements - most often using a Carr-Purcell Meiboom-Gill (CPMG) pulse sequence to enhance the experiment's limited sensitivity. In this work, we explore the consequences of replacing the hard square pulses used in a typical CPMG sequence with chirped pulses sweeping a range of frequencies. The greater bandwidths that for a maximum B1 level can be excited by chirped pulses translates into marked expansion of the detection volume, and thus significant signal-to-noise improvements when compared to standard CPMG acquisitions using hard pulses. This improvement, usually amounting to signal enhancements ?3, can be used to reduce the experimental time of NMR well-logging measurements, for measuring T2 even when B0 and B1 inhomogenieties complicate the measurements, and opening new opportunities in the determination of diffusional properties. PMID:24674888

  17. Cooling of relativistic electron beams in chirped laser pulses

    E-print Network

    Yoffe, Samuel R; Kravets, Yevgen; Jaroszynski, Dino A

    2015-01-01

    The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau--Lifshitz theory. Results indicate that even la...

  18. Low voltage integrated optics electro-optical modulator applied to optical voltage transformer based on WLI technique

    NASA Astrophysics Data System (ADS)

    Santos, J. C.; Rubini, J.; Silva, L. P. C.; Caetano, R. E.

    2015-09-01

    The use of two electro-optical modulators linked in series, one for sensing and one for recovering signals, was formerly presented by some of the authors as a solution for interrogation of optical fiber sensor systems based on WLI method. A key feature required from such systems is that half-wave voltage (V?) of recovering modulator must be as small as possible. Aiming at meeting this requirement, in this paper it is presented the use of an unbalanced Michelson Interferometer implemented using an integrated optics component as recover interferometer in an optical voltage transformer intended for high voltage measurements.

  19. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    SciTech Connect

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-05-15

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame.

  20. Pulse chirp increasing pulse compression followed by positive resonant radiation in fibers

    E-print Network

    McLenaghan, Joanna

    2016-01-01

    Pulse self-compression followed by the generation of resonant radiation is a well known phenomenon in non-linear optics. Resonant radiation is important as it allows for efficient and tunable wavelength conversion. We vary the chirp of the initial pulse and find in simulations and experiments that a small positive chirp enhances the pulse compression and strongly increases the generation of resonant radiation. This result corroborates previously published simulation results indicating an improved degree of pulse compression for a small positive chirp [1]. It also demonstrates how pulse evolution can be studied without cutting back the fiber.

  1. Influence of Initial Pulse Chirp on Rainbow-Like Supercontinuum Generation from Filamentation in Air

    NASA Astrophysics Data System (ADS)

    Hao, Zuo-Qiang; Zhang, Jie; Zhang, Zhe; Lu, Xin; Jin, Zhan; Zhong, Jia-Yong; Liu, Yun-Quan; Wang, Zhao-Hua

    2008-04-01

    Supercontinuum (SC) generation from laser filamentation in air is found to depend strongly on the pulse duration. Rainbow-like SC generation is observed only for a pulse of appropriate negative chirp that agrees with the predictions put forward by Golubtsov et al. [Quantum Electron. 33 (2003) 525]. The conversion efficiency of an 800-nm laser light to rainbow-like SC is found to be the highest for 257 fs pulses with an initial negative chirp. A larger chirp will lead to filamentation surviving at longer distance.

  2. Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer

    NASA Astrophysics Data System (ADS)

    Tao, Juan-Juan; Zhou, Min-Kang; Zhang, Qiao-Zhen; Cui, Jia-Feng; Duan, Xiao-Chun; Shao, Cheng-Gang; Hu, Zhong-Kun

    2015-09-01

    During gravity measurements with Raman type atom interferometry, the frequency of the laser used to drive Raman transition is scanned by chirping the frequency of a direct digital synthesizer (DDS), and the local gravity is determined by precisely measuring the chip rate ? of DDS. We present an effective method that can directly evaluate the frequency chirp rate stability of our DDS. By mixing a pair of synchronous linear sweeping signals, the chirp rate fluctuation is precisely measured with a frequency counter. The measurement result shows that the relative ? instability can reach 5.7 × 10-11 in 1 s, which is neglectable in a 10-9 g level atom interferometry gravimeter.

  3. A PAPR reduction technique using Hadamard transform combined with clipping and filtering based on DCT/IDCT for IM/DD optical OFDM systems

    NASA Astrophysics Data System (ADS)

    Mangone, Fall; He, Jing; Tang, Jin; Xiao, Jiangnan; Chen, Ming; Li, Fan; Chen, Lin

    2014-08-01

    In Intensity Modulator/Direct Detection (IM/DD) optical OFDM systems, the high peak-to-power average ratio (PAPR) will cause signal impairments through the nonlinearity of modulator and fiber. In this paper, a joint PAPR reduction technique based on Hadamard transformation and clipping and filtering using DCT/IDCT transform has been proposed for mitigating the impairments in IM/DD optical OFDM system. We then experimentally evaluated the effect of PAPR reduction on the bit error rate (BER) performance and the results show the effectiveness of the proposed technique. At a bit error rate (BER) of 1 × 10-3, the receiver sensitivity of the proposed 2.5 Gb/s IM/DD optical OFDM system after 100-km standard single-mode fiber transmission has been improved by 0.8 dB, 1.3 dB and 3.1 dB for a launch power of 6.4 dBm, 8 dBm and 10 dBm respectively when compared with the classical system.

  4. Landscapes of transformation

    E-print Network

    Ambs, Emily (Emily Kiersten)

    2007-01-01

    This thesis aims to examine the cultural effect of transformation through the lens of procedural techniques applied to the human body and architecture. The body and architecture both operate as landscapes of transformation. ...

  5. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost

    NASA Astrophysics Data System (ADS)

    Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  6. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung. PMID:23998948

  7. Femtosecond Chirp-Free Transient Absorption Method And Apparatus

    DOEpatents

    McBranch, Duncan W. (Santa Fe, NM); Klimov, Victor I. (White Rock, NM)

    2001-02-20

    A method and apparatus for femtosecond transient absorption comprising phase-sensitive detection, spectral scanning and simultaneous controlling of a translation stage to obtain TA spectra information having at least a sensitivity two orders of magnitude higher than that for single-shot methods, with direct, simultaneous compensation for chirp as the data is acquired. The present invention includes a amplified delay translation stage which generates a splittable frequency-doubled laser signal at a predetermined frequency f, a controllable means for synchronously modulating one of the laser signals at a repetition rate of f/2, applying the laser signals to a material to be sample, and acquiring data from the excited sample while simultaneously controlling the controllable means for synchronously modulating.

  8. Experimental demonstration of fiber optical parametric chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Cheung, Kim K. Y.; Chui, P. C.; Wong, Kenneth K. Y.

    2010-02-01

    A fiber optical parametric chirped-pulse amplifier (FOPCPA) is experimentally demonstrated. A 1.76 ps signal at 1542 nm with a peak power of 20 mW is broadened to 40 ps, and then amplified by a 100-ps pulsed pump at 1560 nm. The corresponding idler at 1578 nm is generated as the FOPCPA output. The same medium used to stretch the signal is deployed to compress the idler to 3.8 ps, and another spool of fiber is deployed to further compress the idler to 1.87 ps. The peak power of the compressed idler is 2 W, which corresponds to a gain of 20 dB.

  9. Synchronously pumped femtosecond optical parametric oscillator with broadband chirped mirrors

    NASA Astrophysics Data System (ADS)

    Stankevi?i?te, Karolina; Melnikas, Simas; Ki?as, Simonas; Trišauskas, Lukas; Vengelis, Julius; Grigonis, Rimantas; Vengris, Mikas; Sirutkaitis, Valdas

    2015-05-01

    We present results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) with broadband complementary chirped mirror pairs (CMP). The SPOPO based on ?-BBO nonlinear crystal is pumped by second harmonic of femtosecond Yb:KGW laser and provides signal pulses tunable over spectral range from 625 to 980 nm. More than 500 mW are generated in the signal beam, giving up to 27 % pump power to signal power conversion efficiency. The plane SPOPO cavity mirror pairs were specially designed to provide 99 % reflection in broad spectral range corresponding to signal wavelength tuning (630-1030 nm) and to suppress group delay dispersion (GDD) oscillations down to +/-10 fs2. Dispersion properties of designed mirrors were tested with white light interferometer (WLI) and attributed to the SPOPO tuning behaviour.

  10. Active stabilization for optically synchronized optical parametric chirped pulse amplification.

    PubMed

    Schwarz, Alexander; Ueffing, Moritz; Deng, Yunpei; Gu, Xun; Fattahi, Hanieh; Metzger, Thomas; Ossiander, Marcus; Krausz, Ferenc; Kienberger, Reinhard

    2012-02-27

    The development of new high power laser sources tends toward optical parametric chirped pulse amplification (OPCPA) in recent years. One of the difficulties in OPCPA is the the temporal overlap between pump and seed pulses. In this work we characterize our timing jitter on a single-shot basis using spectrally resolved cross-correlation in combination with a position sensitive detector. A commercial beam stabilization is adapted to actively enhance temporal overlap. This delay-stabilizer reduces the RMS jitter from ? = 127 fs down to ? = 24 fs. The enhanced temporal overlap is demonstrated in our frontend and we propose the scheme to be applicable in many optically synchronized high-repetition-rate OPCPA systems. PMID:22418362

  11. Reconstruction of chirp mass in searches for gravitational wave transients

    NASA Astrophysics Data System (ADS)

    Tiwari, V.; Klimenko, S.; Necula, V.; Mitselmakher, G.

    2016-01-01

    The excess energy method is used in searches for gravitational waves (GWs) produced by sources with poorly modeled characteristics. It identifies GW events by searching for coincident excess energy in a GW detector network. While it is sensitive to a wide range of signal morphologies, the energy outliers can be populated by background noise events (background), thereby reducing the statistical confidence of a true signal. However, if the physics of the source is partially understood, weak model-dependent constraints can be imposed to suppress the background. This letter presents the novel idea of using the reconstructed chirp mass along with two goodness of fit parameters for suppressing background when a search is focused on GWs produced from the compact binary coalescence.

  12. Chirped rectilinear core longitudinally-graded optical fibers

    NASA Astrophysics Data System (ADS)

    Evert, A.; Hawkins, T.; Stolen, R.; Dragic, P.; Rice, R.; Ballato, J.

    2013-10-01

    Reported here is a straight-forward and flexible method to fabricate silica optical fibers of circular cladding cross-section and rectilinear cores whose aspect ratio and refractive index profile changes with position along the fiber in a deterministic way. Specifically, a modification to the process recently developed to produce longitudinally-graded optical fibers, LGFs [Opt. Express 20 (2012) 17394-17402], was employed. Herein reported are MCVD-derived germanosilicate fibers with rectangular cores where the aspect ratio changes by nearly 200% and the average refractive index changed by about 5%. Fiber losses were measured to be about 50 dB/km. Such rectangular core fibers are useful for a variety of telecommunication and biomedical applications and the dimensional and optical chirp provides a deterministic way to control further the modal properties of the fiber.

  13. Reconstruction of Chirp Mass in the Search of Compact Binaries

    E-print Network

    Tiwari, Vaibhav; Necula, Valentin; Mitselmakher, Guenakh

    2015-01-01

    Excess energy method is used in searches of gravitational waves (GWs) produced from sources with poorly modeled characteristics. It identifies GW events by searching for coincidence appearance of excess energy in a GW detector network. While it is sensitive to a wide range of signal morphologies, the energy outliers in signal amplitude can be populated by background noise induced events (background), thereby reducing the statistical confidence of a true signal. However, if the spectral characteristics of the source is partially understood, weak model dependent constraints can be imposed to suppress the background. This letter presents a novel idea of using the reconstructed chirp mass along with two goodness of fit parameters for suppressing background when search is focused on GW produced from the compact binary coalescence.

  14. Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions

    SciTech Connect

    Peng Liangyou; Tan Fang; Gong Qihuang; Pronin, Evgeny A.; Starace, Anthony F.

    2009-07-15

    The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger the number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.

  15. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression

    E-print Network

    Moses, Jeffrey

    We present a 9 GW peak power, three-cycle, 2.2 ?m optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent ...

  16. All-Fiber-Based Ultrashort Pulse Generation and Chirped Pulse Amplification Through Parametric Processes

    E-print Network

    Zhou, Yue

    We experimentally demonstrate, for the first time to the best of our knowledge, the use of optical fiber for optical parametric chirped pulse amplification to amplify subpicosecond pulses. We use this system to amplify a ...

  17. Variable-chirped microwave waveform generator based on reconfigurable microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Chen, Dalei; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jiling; Wei, Zhihu; Xiong, Jintian

    2014-09-01

    An optical approach to generating chirped microwave signal using a photonic microwave delay-line filter (PMDLF) with a quadratic phase response is proposed and demonstrated. In this scheme, a narrow band Gaussian pulse is used as the original signal. In order to eliminate the need for a wideband original microwave chirped-free signal, a mixer and a radio frequency signal are used to up-convert the spectrum of the original signal and the dispersion curve is tuned to minimize the attenuation caused by the fiber dispersion. Then the required frequency response can be reconstructed by a nonuniformly spaced PMDLF. Since the majority of the power of the original signal can bypass the filter, the power of the generated chirped microwave signal will be increased. A reconstruction example of a desired frequency response with a central frequency of 10 GHz is provided, and the generation of the corresponding chirped microwave signal is demonstrated by numerical simulations.

  18. Assessment of nitrous oxide emission from cement plants: real data measured with both Fourier transform infrared and nondispersive infrared techniques.

    PubMed

    Mosca, Silvia; Benedetti, Paolo; Guerriero, Ettore; Rotatori, Mauro

    2014-11-01

    Nitrous oxide (N2O) is the third most important greenhouse gas after carbon dioxide and methane, and contributes about 6% to the greenhouse effect. Nitrous oxide is a minor component of the atmosphere, and it is a thousand times less than carbon dioxide (CO2). Nevertheless, it is much more potent than CO2 and methane, owing to its long stay in the atmosphere of approximately 120 yr and the high global warmingpotential (GWP) of298 times that of CO2. Although greenhouse gases are natural in the atmosphere, human activities have changed the atmospheric concentrations. Most of the values of emission of nitrous oxide are still obtained by means ofemission factors and not actually measured; the lack ofreal data may result in an underestimation ofcurrent emissions. The emission factors used for the calculation of N2O can be obtained from the "Guidelines for the implementation of the national inventory of emissions" of the Intergovernmental Panel on Climate Change, which refer to all nations for the realization of their inventory. This study will present real data, measured in several Italian cement plants with different characteristics. The work also shows a comparison between N2O concentration measured with in situ-Fourier transform IR (FTIR) and the reference method EN ISO 21258 based on nondispersive IR (NDIR), in order to investigate the interfering compounds in the measurement with NDIR. PMID:25509548

  19. Numerical investigation of the influence of laser chirp on electron yield in laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Trines, R. M. G. M.; Kamp, L. P. J.; Schep, T. J.; Leemans, W. P.; Esarey, E. H.

    2001-10-01

    An important phenomenon in laser wakefield acceleration is the production of fast electrons by intense laser pulses. In recent experiments [1], an influence of the laser chirp on the fast electron yield has been observed. For the same peak power, the electron yield of a positively chirped pulse was significantly higher than that of a negatively chirped pulse. Numerical simulations have been performed using the particle-in-cell code XOOPIC [2] to investigate this influence and to reveal the mechanism behind it. Parametric studies of the dependence of the growth of plasma waves through the Raman forward and backward scattering, and the yield of accelerated electrons on the amount of chirp will be presented. These simulations indicate that enhanced excitation of fast and slow phase velocity plasma waves does indeed occur when using positively chirped laser pulses, in agreement with the experiments. Negatively chirped pulses could be used to suppress instabilities for intense pulses propagating through dense plasmas. [1] W.P. Leemans et al., Phys. Plasmas 8, 2510 (2001); W. P. Leemans et al., in preparation [2] J.P. Verboncoeur, A.B. Langdon and N.T. Gladd, Comp. Phys. Comm. 87, 199 (1995)

  20. Coherent control of ultracold {sup 85}Rb trap-loss collisions with nonlinearly frequency-chirped light

    SciTech Connect

    Pechkis, J. A.; Carini, J. L.; Rogers, C. E. III; Gould, P. L.; Kallush, S.; Kosloff, R.

    2011-06-15

    We present results on coherent control of ultracold trap-loss collisions using 40-ns pulses of nonlinearly frequency-chirped light. The chirps, either positive or negative, sweep {approx}1 GHz in 100 ns and are centered at various detunings below the D{sub 2} line of {sup 85}Rb. At each center detuning, we compare the collisional rate constant {beta} for chirps that are linear in time, concave-down, and concave-up. For positive chirps, we find that {beta} generally depends very little on the shape of the chirp. For negative chirps, however, we find that {beta} can be enhanced by up to 50(20)% for the case of the concave-down shape. This occurs at detunings where the evolution of the wave packet is expected to be coherent. An enhancement at these detunings is also seen in quantum-mechanical simulations of the collisional process.

  1. Statistical study of TIDs using HF radar ground backscatter data and chirp sounding network MUF data

    NASA Astrophysics Data System (ADS)

    Oinats, Alexey; Kurkin, Vladimir; Nishitani, Nozomu; Ratovsky, Konstantin; Ivanova, Vera; Berngardt, Oleg

    We present statistical characteristics of traveling ionospheric disturbances (TIDs) revealed from the data of ground mid-latitude high frequency (HF) facilities that cover a wide longitudinal sector. Firstly, we analyzed an extensive dataset collected by SuperDARN Hokkaido HF radar since the late 2006 until 2014. A technique based on the cross-correlation analysis of minimal group range variations was used. We discuss diurnal and seasonal dependencies of predominant TIDs azimuth and apparent horizontal velocity as well as its solar and geomagnetic activity dependence. Further, we compare these statistical results with the same obtained using the first Russian SuperDARN Ekaterinburg HF radar data during 2013. In addition, we analyzed maximum usable frequency (MUF) series obtained by Russian oblique chirp sounding network. The network includes transmitters in Magadan, Norilsk, Khabarovsk and receiver in Tory (Irkutsk) and allow us to reveal large-scale TIDs characteristics in 2010-2011. This work was done under financial support of the Russian Foundation for Basic Research (grants 14-05-00259-a, 12-05-00865-a and 14-05-00588-a).

  2. Spectrum transformation for divergent iterations

    NASA Technical Reports Server (NTRS)

    Gupta, Murli M.

    1991-01-01

    Certain spectrum transformation techniques are described that can be used to transform a diverging iteration into a converging one. Two techniques are considered called spectrum scaling and spectrum enveloping and how to obtain the optimum values of the transformation parameters is discussed. Numerical examples are given to show how this technique can be used to transform diverging iterations into converging ones; this technique can also be used to accelerate the convergence of otherwise convergent iterations.

  3. Optimizational 6-bit all-optical quantization with positive or negative pre-chirp based on photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Li, Sha; Wang, Jianping; Kang, Zhe; Yu, Chongxiu

    2015-10-01

    In this paper, we optimize a proposed 6-bit all-optical quantization approach based on soliton self-frequency shift (SSFS) and spectral compression techniques. A 10 m-long high nonlinear photonic crystal fiber (PCF) is still used as an SSFS medium relevant to the power of the sampled optical pulses. Furthermore, a 10 m-long dispersion flattened hybrid cladding hexagonal-octagonal PCF (6/8-PCF) is utilized as a spectral compression medium to realize resolution enhancement after positive or negative pre-chirp process. Simulation results show that the 6-bit quantization is still obtained when a 100 m-long dispersion-increasing fiber (DIF) is replaced by a hybrid cladding 6/8-PCF in spectral compression module.

  4. Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach.

    PubMed

    Chandrasekaran, A; Ravisankar, R; Rajalakshmi, A; Eswaran, P; Vijayagopal, P; Venkatraman, B

    2014-10-28

    Gamma Ray and Fourier Transform Infrared (FTIR) spectroscopic techniques were used to evaluate the natural radioactivity due to natural radionuclides and mineralogical characterization in soils of Yelagiri hills, Tamilnadu, India. Various radiological parameters were calculated to assess the radiation hazards associated with the soil. The distribution pattern of activity due to natural radionuclides is explained by Kriging method of mapping. Using FTIR spectroscopic technique the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, montmorillonite, illite, and organic carbon were identified and characterized. The extinction coefficient values were calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index was calculated to know the crystalline nature of quartz. The result indicates that the presence of disordered crystalline quartz in soils. The relation between minerals and radioactivity was assessed by multivariate statistical analysis (Pearson's correlation and cluster analysis). The statistical analysis confirms that the clay mineral kaolinite and non-clay mineral quartz is the major factor than other major minerals to induce the important radioactivity variables and concentrations of uranium and thorium. PMID:25467664

  5. Time-domain measurement of a self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering

    SciTech Connect

    Marcus, G.; Rosenzweig, J. B.; Artioli, M.; Ciocci, F.; Del Franco, M.; Giannessi, L.; Petralia, A.; Quattromini, M.; Bacci, A.; Bellaveglia, M.; Chiadroni, E.; Di Pirro, G.; Ferrario, M.; Filippetto, D.; Gatti, G.; Rossi, A. R.; Cianchi, A.; Labat, M.; Mostacci, A.; Petrillo, V.; and others

    2012-09-24

    We report, with an unequivocal time-domain measurement, that an appropriately chosen undulator taper can compensate for an electron beam longitudinal energy-chirp in a free-electron laser amplifier, leading to the generation of single-spike radiation close to the Fourier limit. The measurements were taken using the frequency-resolved optical gating technique by employing an advanced transient-grating diagnostic geometry. The reconstructed longitudinal radiation characteristics are compared in detail to prediction from time-dependent three-dimensional simulations.

  6. Chirped and divided-pulse Sagnac fiber amplifier

    NASA Astrophysics Data System (ADS)

    Guichard, Florent; Zaouter, Yoann; Hanna, Marc; Mai, Khanh-Lin; Morin, Franck; Hönninger, Clemens; Mottay, Eric; Georges, Patrick

    2015-03-01

    Femtosecond fiber chirped pulse amplifiers have numerous advantages, but are limited in energy because of the small interaction area with the fiber core. In this contribution, we create two orthogonally-polarized stretched pulse replicas in the time domain, following the divided-pulse amplification (DPA) principle. This beam is subsequently separated into two counter-propagating beams in a Sagnac interferometer to finally generate four pulse replicas. These pulses are amplified in two state-of-the-art large mode area rod-type fiber amplifiers in series, before final coherent combination and compression. Because the stretched-pulse duration is of the order of hundreds of picoseconds, the DPA delay is induced using a freespace interferometer with reasonable arm lengths of few tens of centimeters. The use of a common interferometer to divide and recombine temporal pulse replicas, together with the Sagnac geometry, results in an identical optical path for all four replicas. Therefore, the whole spatio-temporal combining architecture is passive, avoiding the need for active electronic stabilization systems. Because we only use two temporal replicas, the system is immune to differential saturation levels or B-integrals between successive pulses: this is compensated by controlling the amplitude of both pulses at the input of the amplifying setup. This setup allows the generation of 1 mJ, 300 fs compressed pulses at 50 kHz repetition rate, corresponding to 50 W output average power, with a combining efficiency above 90% at all power levels.

  7. Mismatch characteristics of optical parametric chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Novák, O.; Tur?i?ová, H.; Divoký, M.; Huynh, J.; Straka, P.

    2014-02-01

    The stability of an optical parametric chirped pulse amplifier (OPCPA) is influenced by time and the angular matching of the input beams. We derived the Gaussian dependence of the monochromatic signal gain on the small mismatch between the signal and pump beams. Gain characteristics were also calculated for polychromatic amplification and the impact of different beam mismatches and interaction geometries was explained. The asymmetry of the energy gain, and the square root dependence of the phase matched wavelength on beam angles were found. The predicted dependences were verified in a noncollinear OPCPA system with LBO and KDP crystal amplifying pulses of a Ti:sapphire laser around a central wavelength of 800 nm, pumped by the third harmonic frequency of an iodine gas laser at a wavelength of 438 nm. The widths of the gain curves in the dependence on both the pump-signal or the phase matching angles varied from several tenths to a few milliradians. The gain curve widths dependent on the pump-signal pulse delay were about two thirds of the pump pulse width for moderate pumping and about a half of the pump pulse width for pumping on the order of GW cm-2. A stable gain output is achieved if angular and temporal fluctuations are fractions of the measured gain curve widths, and when the signal direction is between the pump and the crystal principal axis (i.e. in the psz geometry).

  8. The Chirped Pulse and Cavity Fourier Transform Microwave Cp-Ftmw and Ftmw) Spectrum of Bromoperfluoroacetone

    NASA Astrophysics Data System (ADS)

    Force, Nicholas; Gillcrist, David Joseph; Hurley, Cassandra C.; Marshall, Frank E.; Payton, Nicholas A.; Persinger, Thomas D.; Shreve, N. E.; Grubbs, G. S., II

    2014-06-01

    The microwave spectrum of the molecule bromoperfluoroacetone has been measured on a newly constructed CP-FTMW spectrometer along with a FTMW spectrometer relocated from Oxford University to Missouri S&T. Rotational constants, centrifugal distortion parameters, and nuclear quadrupole coupling constants will be discussed. Comparisons to the previously studied halogen analogues perfluoroacetone and chloroperfluoroacetone will be discussed. J.-U. Grabow, N. Heineking, and W. Stahl, Z. Naturforsch. 46a (1991) 229. G. Kadiwar, C. T. Dewberry, G. S. Grubbs II and S. A. Cooke, Talk RH11, 65th International Symposium on Molecular Spectroscopy (2010).

  9. Phase retrieval with unknown sampling factors via the two-dimensional chirp z-transform

    E-print Network

    Fienup, James R.

    in fine phasing of the James Webb Space Telescope (JWST) [4]. These algorithms work by modeling the system wavefront sensing and no such hardware is available; the classic case of the Hubble Space Telescope. Jurling and James R. Fienup* Institute of Optics, University of Rochester, Rochester, New York 14627, USA

  10. Order-disorder phase transformations in quaternary pyrochlore oxide system: Investigated by X-ray diffraction, transmission electron microscopy and Raman spectroscopic techniques

    SciTech Connect

    Radhakrishnan, A.N.; Prabhakar Rao, P.; Sibi, K.S.; Deepa, M.; Koshy, Peter

    2009-08-15

    Order-disorder transformations in a quaternary pyrochlore oxide system, Ca-Y-Zr-Ta-O, were studied by powder X-ray diffraction (XRD) method, transmission electron microscope (TEM) and FT-NIR Raman spectroscopic techniques. The solid solutions in different ratios, 4:1, 2:1, 1:1, 1:2, 1:4, 1:6, of CaTaO{sub 3.5} and YZrO{sub 3.5} were prepared by the conventional high temperature ceramic route. The XRD results and Rietveld analysis revealed that the crystal structure changed from an ordered pyrochlore structure to a disordered defect fluorite structure as the ratios of the solid solutions of CaTaO{sub 3.5} and YZrO{sub 3.5} were changed from 4:1 to 1:4. This structural transformation in the present system is attributed to the lowering of the average cation radius ratio, r{sub A}/r{sub B} as a result of progressive and simultaneous substitution of larger cation Ca{sup 2+} for Y{sup 3+} at A sites and smaller cation Ta{sup 5+} for Zr{sup 4+} at B sites. Raman spectroscopy and TEM analysis corroborated the XRD results. - Graphical abstract: Selected area electron diffraction (SAED) patterns showed highly ordered diffraction maxima with characteristic superlattice weak diffraction spots of the pyrochlore structure for (a) Ca{sub 0.6}7Y{sub 1.33}Zr{sub 1.33}Ta{sub 0.33}O{sub 7} (C2YZT2) and bright diffraction maxima arranged in a ring pattern of the fluorite structure for (b) Ca{sub 0.29}7Y{sub 1.71}Zr{sub 1.71}Ta{sub 0.29}O{sub 7} (CY6Z6T).

  11. Chirped-pulse millimeter-wave spectroscopy: Spectrum, dynamics, and manipulation of Rydberg-Rydberg transitions

    SciTech Connect

    Colombo, Anthony P.; Zhou Yan; Prozument, Kirill; Coy, Stephen L.; Field, Robert W.

    2013-01-07

    We apply the chirped-pulse millimeter-wave (CPmmW) technique to transitions between Rydberg states in calcium atoms. The unique feature of Rydberg-Rydberg transitions is that they have enormous electric dipole transition moments ({approx}5 kiloDebye at n*{approx} 40, where n* is the effective principal quantum number), so they interact strongly with the mm-wave radiation. After polarization by a mm-wave pulse in the 70-84 GHz frequency region, the excited transitions re-radiate free induction decay (FID) at their resonant frequencies, and the FID is heterodyne-detected by the CPmmW spectrometer. Data collection and averaging are performed in the time domain. The spectral resolution is {approx}100 kHz. Because of the large transition dipole moments, the available mm-wave power is sufficient to polarize the entire bandwidth of the spectrometer (12 GHz) in each pulse, and high-resolution survey spectra may be collected. Both absorptive and emissive transitions are observed, and they are distinguished by the phase of their FID relative to that of the excitation pulse. With the combination of the large transition dipole moments and direct monitoring of transitions, we observe dynamics, such as transient nutations from the interference of the excitation pulse with the polarization that it induces in the sample. Since the waveform produced by the mm-wave source may be precisely controlled, we can populate states with high angular momentum by a sequence of pulses while recording the results of these manipulations in the time domain. We also probe the superradiant decay of the Rydberg sample using photon echoes. The application of the CPmmW technique to transitions between Rydberg states of molecules is discussed.

  12. Chirped-pulse millimeter-wave spectroscopy: spectrum, dynamics, and manipulation of Rydberg-Rydberg transitions.

    PubMed

    Colombo, Anthony P; Zhou, Yan; Prozument, Kirill; Coy, Stephen L; Field, Robert W

    2013-01-01

    We apply the chirped-pulse millimeter-wave (CPmmW) technique to transitions between Rydberg states in calcium atoms. The unique feature of Rydberg-Rydberg transitions is that they have enormous electric dipole transition moments (~5 kiloDebye at n* ~ 40, where n* is the effective principal quantum number), so they interact strongly with the mm-wave radiation. After polarization by a mm-wave pulse in the 70-84 GHz frequency region, the excited transitions re-radiate free induction decay (FID) at their resonant frequencies, and the FID is heterodyne-detected by the CPmmW spectrometer. Data collection and averaging are performed in the time domain. The spectral resolution is ~100 kHz. Because of the large transition dipole moments, the available mm-wave power is sufficient to polarize the entire bandwidth of the spectrometer (12 GHz) in each pulse, and high-resolution survey spectra may be collected. Both absorptive and emissive transitions are observed, and they are distinguished by the phase of their FID relative to that of the excitation pulse. With the combination of the large transition dipole moments and direct monitoring of transitions, we observe dynamics, such as transient nutations from the interference of the excitation pulse with the polarization that it induces in the sample. Since the waveform produced by the mm-wave source may be precisely controlled, we can populate states with high angular momentum by a sequence of pulses while recording the results of these manipulations in the time domain. We also probe the superradiant decay of the Rydberg sample using photon echoes. The application of the CPmmW technique to transitions between Rydberg states of molecules is discussed. PMID:23298035

  13. Seed Laser Chirping for Enhanced Backward Raman Amplification in Plasmas Z. Toroker, V. M. Malkin, and N. J. Fisch

    E-print Network

    Seed Laser Chirping for Enhanced Backward Raman Amplification in Plasmas Z. Toroker, V. M. Malkin is that, by chirping the seed pulse, the group velocity dispersion may in fact be used advantageously elements will likely have to be replaced by plasma. In a plasma, a short counter-propagating seed pulse

  14. UTILIZING A CHIRP SONAR TO ACCURATELY CHARACTERIZE NEWLY DEPOSITED MATERIAL AT THE CALCASIEU OCEAN DREDGED MATERIAL DISPOSAL SITE, LOUISIANA

    EPA Science Inventory

    The distribution of dredged sediments is measured at the Calcasieu Ocean Dredged Material Disposal Site (ODMDS) using a chirp sonar immediately after disposal and two months later. ubbottom reflection data, generated by a chirp sonar transmitting a 4 to 20 kHz FM sweep, is proces...

  15. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 21, NO. 9, MAY 1, 2009 569 Chirped Microwave Pulse Generation Using a

    E-print Network

    Yao, Jianping

    Generation Using a Photonic Microwave Delay-Line Filter With a Quadratic Phase Response Yitang Dai pulses using a photonic microwave delay-line filter (PMDLF) with a quadratic phase response. If a chirp-free broadband microwave pulse is inputted into the filter, a chirped microwave pulse is generated thanks

  16. 882 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 11, JUNE 1, 2008 Photonic Generation of Chirped Microwave Pulses

    E-print Network

    Yao, Jianping

    Microwave Pulses Using Superimposed Chirped Fiber Bragg Gratings Chao Wang, Student Member, IEEE, and Jianping Yao, Senior Member, IEEE Abstract--A novel approach to generating linearly chirped microwave by a mode-locked fiber laser is spec- trum-shaped by an optical filter that consists of two superimposed

  17. Enhanced transmission of light through periodic and chirped lattices of nanoholes Alexander Minovich a,*, Haroldo T. Hattori b,c

    E-print Network

    Enhanced transmission of light through periodic and chirped lattices of nanoholes Alexander t We study experimentally the transmission of light through periodic and chirped lattices of nanoholes of square nanoholes with varying hole size or lattice periodicity. Ó 2009 Elsevier B.V. All rights reserved

  18. 1282 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 10, MAY 15, 2008 Chirped RF Pulse Generation Based on Optical

    E-print Network

    Yao, Jianping

    resolution. Instead of transmitting sinusoidal radio-frequency (RF) pulses, in a pulse compression radar1282 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 10, MAY 15, 2008 Chirped RF Pulse Generation Grating Hao Chi and Jianping Yao, Senior Member, IEEE, Member, OSA Abstract--Chirped radio-frequency (RF

  19. Analysis of the reduced thermal conductivity in InGaAs/GaAs quantum dot lasers from chirp characteristics

    E-print Network

    Klotzkin, David

    Analysis of the reduced thermal conductivity in InGaAs/GaAs quantum dot lasers from chirp; published online 21 September 2006 The thermal conductivity of self-organized quantum dot QD active regions chirps is used to estimate the thermal conductivity of the QD active region. With this model, the thermal

  20. Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization.

    PubMed

    Lim, Jinkang; Chen, Hung-Wen; Chang, Guoqing; Kärtner, Franz X

    2013-02-25

    Laser frequency combs are normally based on mode-locked oscillators emitting ultrashort pulses of ~100-fs or shorter. In this paper, we present a self-referenced frequency comb based on a narrowband (5-nm bandwidth corresponding to 415-fs transform-limited pulses) Yb-fiber oscillator with a repetition rate of 280 MHz. We employ a nonlinear Yb-fiber amplifier to both amplify the narrowband pulses and broaden their optical spectrum. To optimize the carrier envelope offset frequency (fCEO), we optimize the nonlinear pulse amplification by pre-chirping the pulses at the amplifier input. An optimum negative pre-chirp exists, which produces a signal-to-noise ratio of 35 dB (100 kHz resolution bandwidth) for the detected fCEO. We phase stabilize the fCEO using a feed-forward method, resulting in 0.64-rad (integrated from 1 Hz to 10 MHz) phase noise for the in-loop error signal. This work demonstrates the feasibility of implementing frequency combs from a narrowband oscillator, which is of particular importance for realizing large line-spacing frequency combs based on multi-GHz oscillators usually emitting long (>200 fs) pulses. PMID:23481986

  1. Self-deflecting plasmonic lattice solitons and surface modes in chirped plasmonic arrays.

    PubMed

    Li, Chunyan; Cui, Ran; Ye, Fangwei; Kartashov, Yaroslav V; Torner, Lluis; Chen, Xianfeng

    2015-03-15

    We show that chirped metal-dielectric waveguide arrays with focusing cubic nonlinearity can support plasmonic lattice solitons that undergo self-deflection in the transverse plane. Such lattice solitons are deeply subwavelength self-sustained excitations, although they cover several periods of the array. Upon propagation, the excitations accelerate in the transverse plane and follow trajectories curved in the direction in which the separation between neighboring metallic layers decreases, a phenomenon that yields considerable deflection angles. The deflection angle can be controlled by varying the array chirp. We also reveal the existence of surface modes at the boundary of truncated plasmonic chirped array that form even in the absence of nonlinearity. PMID:25768141

  2. Diffraction management and soliton dynamics in frequency-chirped ?T symmetric lattices.

    PubMed

    Gu, Linlin; Guo, Dengchu; Dong, Liangwei

    2015-05-01

    We address two closely related problems: diffraction management and soliton dynamics in parity-time ( ?T) symmetric lattices with a quadratic frequency modulation. The normal, anomalous, or zero diffraction is possible for narrow beams with a broad band of spatial frequencies. The frequency band of nondiffraction beams can be enlarged by increasing the chirp rate of lattices. Counter-intuitively, the gain-loss component plays the same role as the real part of lattice on the suppression of diffraction, which leads to an effective reduction of critical lattice depth for nondiffraction beams. Additionally, we reveal the existence of a novel type of "bright" solitons in defocusing Kerr media modulated by chirped ?T lattices. We also demonstrate that lattice chirp can be utilized to suppress the instability of solitons. Our results expand the concept of ?T symmetry in both linear and nonlinear regimes, and may find interesting optical applications. PMID:25969329

  3. Attosecond XUV sources generation from polarized gating two-color chirped pulse

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Hang; Chu, Tianshu

    2015-07-01

    A promising method to generate the attosecond XUV sources from the high-order harmonic has been theoretically presented by controlling the polarized gating two-color chirped pulse. The results show that with the introduction of the chirps, the harmonic has been remarkably extended. Moreover, the harmonic interferences are very sensitive to the polarization angle between the two lasers. Particularly, when the polarization angle is equal to 0.2?, the supercontinuum with a single quantum path contribution is achieved, and a series of isolated attosecond pulses with the duration of 33 as are directly obtained. Further, by testing the influences of other laser parameters on the supercontinuum, we found that this polarized two-color chirped scheme can also be achieved in the multi-cycle pulse region, which is much better for experimental realization.

  4. Frequency chirped light at large detuning with an injection-locked diode laser.

    PubMed

    Teng, K; Disla, M; Dellatto, J; Limani, A; Kaufman, B; Wright, M J

    2015-04-01

    We have developed a laser system to generate frequency-chirped light at rapid modulation speeds (?100 MHz) with a large frequency offset. Light from an external cavity diode laser with its frequency locked to an atomic resonance is passed through a lithium niobate electro-optical phase modulator. The phase modulator is driven by a ?6 GHz signal whose frequency is itself modulated with a RF MHz signal (<200 MHz). A second injection locked diode laser is used to filter out all of the light except the frequency-chirped ±1 order by more than 30 dB. Using this system, it is possible to generate a 1 GHz frequency chirp in 5 ns. PMID:25933848

  5. Low chirp and high-speed operation of transverse coupled cavity VCSEL

    NASA Astrophysics Data System (ADS)

    Hu, Shanting; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2015-09-01

    We present the modeling on the modulation bandwidth and frequency chirp of transverse-coupled-cavity vertical-cavity surface-emitting lasers (VCSELs), which enable us to tailor the transfer function of intensity and frequency modulations thanks to an optical feedback effect. The simulation shows the 3-dB-modulation bandwidth can be doubled and the chirp can be reduced by a factor of more than three. These improvements could be explained by an increase in differential net gain in coupled cavities. The result shows a possibility of high-speed and low-chirp operations of transverse coupled cavity VCSELs for higher data rates and longer link lengths of single-mode fiber transmissions.

  6. First results of a deep tow CHIRP sonar seafloor imaging system

    USGS Publications Warehouse

    Parent, M.; Fang, Changle; O'Brien, Thomas F.; Danforth, William W.

    1993-01-01

    The latest and most innovative technology has been applied towards the development of a full-ocean depth multi-sensor sonar system using linear swept-FM (Chirp) technology. The seafloor imaging system (SIS- 7000) described herein uses Chirp sidescan sonar to provide high resolution imagery at long range, and Chirp subbottom sonar to provide high resolution profiles in both the near bottom and deeper subbottom. The tow vehicle contains a suite of full-ocean depth instrumentation for measuring various oceanographic parameters and for monitoring vehicle status. Top side systems include a sonar display and data logging system as well as real-time sensor status display and tow vehicle control system. This paper will present an overview of this system, describe its technology and capabilities, and present some initial results. 

  7. Chirp-scaling-based true amplitude imaging for synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Yarman, Can Evren; Yazici, Birsen

    2009-05-01

    The Chirp-Scaling Algorithm (CSA) is one of the most widely used synthetic aperture radar (SAR) image reconstruction method. However, its applicability is limited to straight flight trajectories and monostatic SAR. We present a new mathematical treatment of the CSA from the perspective of Fourier Integral Operators theory. Our treatment leads to a chirp-scaling-based true amplitude imaging algorithm, which places the visible edges of the scene at the correct locations and directions with the correct strength. Furthermore, it provides a framework for the extension of the chirp-scaling based approach to non-ideal imaging scenarios as well as other SAR imaging modalities such as bistatic-SAR and hitchhiker-SAR.

  8. Generation of an isolated sub-40-as pulse using two-color laser pulses: Combined chirp effects

    SciTech Connect

    Feng, Liqiang; Chu, Tianshu

    2011-11-15

    In this paper, we theoretically discuss the combined chirp effects on the isolated attosecond generation when a model Ar is exposed to an intense 5-fs, 800-nm fundamental chirped pulse combined with a weak 10-fs, 1200-nm controlling chirped pulse. It shows that for the case of the chirp parameters {beta}{sub 1} = 6.1 (corresponding to the 800-nm field) and {beta}{sub 2} = 4.0 (corresponding to the 1200-nm field), both the harmonic cutoff energy and the supercontinuum can be remarkably extended resulting in a 663-eV bandwidth. Moreover, due to the introduction of the chirps, the short quantum path is selected to contribute to the harmonic spectrum. Finally, by superposing a properly selected harmonic spectrum in the supercontinuum region, an isolated pulse as short as 31 as (5 as) is generated without (with) phase compensation.

  9. Measuring Temperature-dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO/AIA Channels and the Surfing Transform Technique

    NASA Astrophysics Data System (ADS)

    Uritsky, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-11-01

    A set of co-aligned high-resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling a quantitative description of subvisual coronal motions with low signal-to-noise ratios of the order of 0.1%. The technique operates with a set of one-dimensional "surfing" signals extracted from position-time plots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency-velocity space that exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square-root dependence predicted for slow mode magneto-acoustic waves which seem to be the dominating wave mode in the loop structures studied. This result extends recent observations by Kiddie et al. to a more general class of fan loop system not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  10. Measuring temperature-dependent propagating disturbances in coronal fan loops using multiple SDO/AIA channels and the surfing transform technique

    SciTech Connect

    Uritsky, Vadim M.; Ofman, Leon; Davila, Joseph M.; Viall, Nicholeen M.

    2013-11-20

    A set of co-aligned high-resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling a quantitative description of subvisual coronal motions with low signal-to-noise ratios of the order of 0.1%. The technique operates with a set of one-dimensional 'surfing' signals extracted from position-time plots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency-velocity space that exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square-root dependence predicted for slow mode magneto-acoustic waves which seem to be the dominating wave mode in the loop structures studied. This result extends recent observations by Kiddie et al. to a more general class of fan loop system not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  11. An Approach to Compress Information of Computer-Synthesis Hologram with Shape Adaptive Binary Tree Predictive Coding and Fast Fourier Transform Technique

    NASA Astrophysics Data System (ADS)

    Yang, Guanglin; Xie, Haiyan

    A new system of Computer Synthesis Hologram (CSH) compressed and transmitted and reconstructed has been established with Shape Adaptive Binary Tree Predictive Coding (SA-BTPC) and Fast Fourier Transform (FFT) technique. In this system, the photographs can be directly calculated into the digital hologram using the holographic principle of D. Gabor. In coding, SA-BTPC algorithm adapts a non-causal, shape-adaptive predictor to decompose a digital hologram into a binary tree of prediction errors and zero blocks. Thus its coding speed is faster than JPEG baseline processing for loss compression scheme. In experiments, when its compression ratio is achieved to 0.4683% for "lossy" compression, the image lineament shape of processed CSH still can be effectively reconstructed by FFT. Moreover, the reasons have been explained why the shape adaptive predictive coding algorithm is chosen to process CSH. And the reconstructed image information of processed CSH has been compared with the reconstructed image information of original CSH. Finally, Compression ratio (R), Mean squared error (MSE) and Pear signal to noise ratio (PSNR) have been precisely calculated and analyzed to evaluate the reconstructed images variation of processed CSH. The better predictive coding model for processing digital hologram can be determined by the distortion measure.

  12. Evaluation of chirp reversal power modulation sequence for contrast agent imaging

    NASA Astrophysics Data System (ADS)

    Novell, A.; Sennoga, CA; Escoffre, JM; Chaline, J.; Bouakaz, A.

    2014-09-01

    Over the last decade, significant research effort has been focused on the use of chirp for contrast agent imaging because chirps are known to significantly increase imaging contrast-to-noise ratio (CNR). New imaging schemes, such as chirp reversal (CR), have been developed to improve contrast detection by increasing non-linear microbubble responses. In this study we evaluated the contrast enhancement efficiency of various chirped imaging sequences in combination with well-established imaging schemes such as power modulation (PM) and pulse inversion (PI). The imaging schemes tested were implemented on a fully programmable open scanner and evaluated by ultrasonically scanning (excitation frequency of 2.5?MHz amplitude of 350?kPa) a tissue-mimicking flow phantom comprising a 4?mm diameter tube through which aqueous dispersions (dilution fraction of 1/2000) of the commercial ultrasound contrast agent, SonoVue® were continuously circulated. The recovery of non-linear microbubble responses after chirp compression requires the development and the optimization of a specific filter. A compression filter was therefore designed and used to compress and extract several non-linear components from the received microbubble responses. The results showed that using chirps increased the image CNR by approximately 10?dB, as compared to conventional Gaussian apodized sine burst excitation but degraded the axial resolution by a factor of 1.4, at -3?dB. We demonstrated that the highest CNR and contrast-to-noise ratio (CTR) were achievable when CR was combined with PM as compared to other imaging schemes such as PI.

  13. Reflectivity of linear and nonlinear gamma radiated apodized chirped Bragg grating under ocean

    SciTech Connect

    Hamdalla, Taymour A.

    2012-09-06

    In this paper, the effect Co{sup 60} gamma radiation is investigated on the effective refractive index of apodized chirped Bragg grating. Nine apodization profiles are considered. Comparison between the reflectivity of the gamma radiated and non radiated fiber Bragg grating has been carried out. The electric field of signals propagating through the apodized chirped fiber Bragg grating (ACFBG) is first calculated from which, new values for the refractive index are determined. The nonlinear effects appear on the ACFBG reflectivity. The effect of nonlinearity and undersea temperature and pressure on the grating is also studied.

  14. Dual-Chirped Optical Parametric Amplification for Generating High-Power Infrared Pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Takahashi, E. J.; Mücke, O. D.; Lu, P.; Midorikawa, K.

    We propose and calculate a novel OPA method for obtaining an ultrafast high-power infrared pulse source, called dual-chirped OPA (DC-OPA), based on a Ti:sapphire laser system in a collinear configuration. By chirping both pump and seed pulses in an optimized way, high-energy pump pulses can be utilized for a DC-OPA process without exceeding the damage threshold of BBO crystals, and broadband signal and idler pulses can be generated with a total conversion efficiency approaching 40%. Furthermore, the few-cycle idler pulses with a passively stabilized carrier-envelope phase (CEP) can be generated by the difference frequency generation (DFG) process.

  15. Some refractometric features of dual-core chirped microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    Velasquez-Botero, Fabian; Reyes-Vera, Erick; Torres, Pedro

    2015-09-01

    Refractometric features of dual-core transversally chirped microstructured optical fibers (MOF) are evaluated. It is shown from numerical results that the chirped MOF could act as a structure with decoupled cores, forming a Mach- Zehnder interferometer in which the analyte directly modulates the device transmittance by its differential influence on the effective refractive index of each core mode. We investigate the influence of the MOF parameters and the analyte refractive index on sensor performance. This novel structure is suitable for measuring refractive indices in the 1.33-1.44 range.

  16. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 21, NO. 19, OCTOBER 1, 2009 1375 Fourier Transform Ultrashort Optical Pulse Shaping

    E-print Network

    Yao, Jianping

    Ultrashort Optical Pulse Shaping Using a Single Chirped Fiber Bragg Grating Chao Wang, Student Member, IEEE, and Jianping Yao, Senior Member, IEEE Abstract--Fourier transform ultrashort optical pulse shaping using pulse, shaping the pulse spectrum, and temporally compressing the spectrum-shaped pulse. The impulse

  17. Chirped coherent anti-Stokes Raman scattering as a high-spectral-and spatial-resolution

    E-print Network

    Cohen, Ronald C.

    Chirped coherent anti-Stokes Raman scattering as a high-spectral- and spatial-resolution microscopy 84419); published September 27, 2007 Coherent anti-Stokes Raman scattering (CARS) microscopy is a promising tool for chemically selective im- aging based on molecular vibrations. While CARS is currently

  18. Ultrafast ellipsometric pump-probe diagnostic of liquid metal surface with chirped continuum probe pulses.

    PubMed

    Shikne, Rakesh; Yoneda, Hitoki

    2015-08-10

    We describe our ellipsometric pump-probe experiment to study materials at extreme conditions. To demonstrate the performance, liquid bismuth surface is pumped by intense 25 fs pulse and subsequent evolution of non-equilibrium bismuth plasma is probed by chirped continuum pulse. The shift in the origin-time at continuum spectral component is precisely corrected by comparing chirp behavior estimated from induced phase modulation (IPM) in fused silica to one from liquid bismuth reflectivity measurement. From IPM measurements, it was found that the time resolution of a chirped pulse depends on group delay dispersion at corresponding continuum spectral components. Moreover, due to explicit relation between time and frequency of a chirped probe pulse, pump induced rapid changes are projected onto different probe wavelengths. Using these properties, we investigated polarization dependent reflection dynamics of non-equilibrium bismuth plasma with sub-100 fs temporal resolution and a broader wavelength response. These ultrafast measurements will be useful to study exotic phase transitions at extreme states of matter. PMID:26367946

  19. Linear compression of chirped pulses in optical fibre with large step-index mode area

    E-print Network

    Kobtsev, Sergei M.

    lasers for a frequency comb at 1560 nm (Cuvillier, 2006). 12. D. Deng, L. Zhan, Z. Gu, Y. Gu, and Y. Xia compression based on enhanced frequency chirping," Appl. Phys. Lett. 41(1), 1­3 (1982). 8. J. M. Wiesenfeld fibers," Appl. Phys. Lett. 42(1), 1­2 (1983). 14. M. F. Ferreira, Nonlinear effects in optical fibers

  20. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide

    E-print Network

    Baba, Toshihiko

    Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide Daisuke Mori coupled waveguide, which allows more robust slow light with lower loss. For this device, unique photonic, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends

  1. Making ultracold molecules in a two-color pump-dump photoassociation scheme using chirped pulses

    E-print Network

    Koch, Christiane

    Making ultracold molecules in a two-color pump-dump photoassociation scheme using chirped pulses by a second dump pulse. By appropriately choosing the dump pulse parameters and time delay with respect state. We discuss i broad-bandwidth dump pulses which maximize the probability to form molecules while

  2. Optical multi-coset sampling of GHz-band chirped signals

    NASA Astrophysics Data System (ADS)

    Valley, George C.; Sefler, George A.; Shaw, T. J.; Smith, Stephen L.

    2015-03-01

    Direct digitization of long, wideband chirped RF signals in the GHz band requires power hungry ADCs and produces large data sets. Here we present an optical scheme to perform multi-coset sampling of such signals with reduced power consumption and smaller data sets. In our scheme a repetitively pulsed femtosecond laser is dispersed to the interpulse time, the RF is modulated on the optical field, and the field is directed to a pair of wavelength-division demultiplexers (WDM). The channels of the WDM are attenuated with a pseudo-random sequence to form a coset pattern that repeats at the laser repetition rate. After a photodiode, the photocurrent is integrated for the duration of the dispersed optical pulse so that the coset pattern non-uniformly samples the RF signal. Since the laser repetition rate is uncorrelated with the RF, each coset provides an independent measurement of the RF. Experimental and numerical results show that 4 properties of the RF chirp pulse can be determined from the multiple coset samples: carrier frequency, chirp rate, start time, and pulse duration. Results are presented for a 20MHz chirp on a 13 microsecond pulse at a carrier of 2.473 GHz.

  3. Time Reversed Transmission with Chirp Signaling for UWB Communications and Its Application in

    E-print Network

    Qiu, Robert Caiming

    are studied by Felsen [1], from a transient radar cross section. An ultrawideband (UWB) system [2]- [5 for this purpose. Periodically modulated radar returns from jet engines can be modeled as a chirp [6]. This view advantages such as low cost, low transmission power (long range), low battery power, anti-jamming, easy

  4. Planetary Radar Astronomy with Linear FM (chirp) Waveforms J.L. Margot

    E-print Network

    Planetary Radar Astronomy with Linear FM (chirp) Waveforms J.L. Margot May 8, 2001 1 Introduction Binary phase-coded waveforms have been used with great success in planetary radar experiments. This class images of dozens of solar system objects. While planetary radars have used coded waveforms almost

  5. A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP GENERATOR USING DUAL COMPENSATION

    E-print Network

    Gomez-Garcia Alvestegui, Daniel

    2011-12-31

    Ultra-Wideband (UWB) chirp generators are used on Frequency Modulated Continuous Wave (FMCW) radar systems for high-resolution and high-accuracy range measurements. At the Center for Remote Sensing of Ice Sheets (CReSIS), we have developed two UWB...

  6. The monitoring and multiplexing of fiber optic sensors using chirped laser sources 

    E-print Network

    Wan, Xiaoke

    2004-09-30

    A wide band linearly chirped erbium-doped fiber laser has been developed. The erbium-doped fiber laser using a rotating mirror/grating combination as one of the reflectors in a Fabry-Perot laser cavity has been tuned over a 46 nm spectral range...

  7. Wavelet-modified maximum average correlation height filter for rotation invariance that uses chirp encoding in a hybrid digital-optical correlator.

    PubMed

    Goyal, Shilpi; Nishchal, Naveen K; Beri, Vinod K; Gupta, Arun K

    2006-07-10

    We discuss and implement a wavelet-modified maximum average correlation height (MACH) filter for 0 degrees -360 degrees in-plane rotations in a hybrid digital-optical correlator. Use of a wavelet transform improves the performance of the MACH filter by reducing the number of filters that are required to identify a target rotated at any angle between 0 degrees and 360 degrees in-plane rotations and enhances the autocorrelation peak intensity significantly. The output of a hybrid digital-optical correlator contains two autocorrelation peaks and a strong dc. Using a chirp function with the wavelet-modified MACH filter, the correlation signals are focused in three different planes. Thus placing a peak-capturing CCD camera at a particular plane, only one autocorrelation peak is recorded, discarding the strong dc and other autocorrelation peaks. A signal-to-noise ratio has been calculated as a metric of goodness of the proposed wavelet-modified MACH filter. PMID:16807591

  8. Multi-resonance effects within a single chirp in broadband rotational spectroscopy: The rapid adiabatic passage regime for benzonitrile

    NASA Astrophysics Data System (ADS)

    Schmitz, David; Alvin Shubert, V.; Betz, Thomas; Schnell, Melanie

    2012-10-01

    We report here pronounced, stepwise multi-resonance excitations in benzonitrile arising from a single 1 ?s broadband 2-8.3 GHz microwave chirp, observed with our new chirped-pulse broadband rotational spectrometer, COMPACT. Such multi-resonance excitations significantly alter the relative intensity patterns and are a strong indication that, for the given experimental conditions and using benzonitrile as a polar test molecule (?A = 4.5152 D), the rapid adiabatic passage (RAP) regime for strong coupling must be applied. This finding is contrary to previous discussions of chirped-pulse rotational spectroscopy, where the linear fast passage regime of weak coupling has been assumed.

  9. Direct DPSK modulation of chirp-managed laser as cost-effective downstream transmitter for symmetrical 10-Gbit/s WDM PONs.

    PubMed

    Le, Quang Trung; Emsia, Ali; Briggmann, Dieter; Küppers, Franko

    2012-12-10

    This paper proposes the use of chirp-managed lasers (CML) as cost-effective downstream (DS) transmitters for next generation access networks. As the laser bandwidth is as high as 10 GHz, the CML could be directly modulated at 10 Gbit/s for downstream transmission in future wavelength division multiplexing passive optical networks (WDM PON). The laser adiabatic chirp, which is the main drawback limiting the transmission performance of directly modulated lasers, is now utilized to generate phase-shift keying (PSK) modulation format by direct modulation. At the user premise, the wavelength reuse technique based on reflective colorless upstream transmitter is applied. The optical network unit (ONU) reflects and orthogonally remodulates the received light with upstream data. A full-duplex transmission with symmetrical 10-Gbit/s bandwidth is demonstrated. Bit-error-rate measurement showed that optical power budgets of 29 dB at BER of 10(-9) or of 36 dB at BER of 10(-3) could be obtained with direct phase-shift-keying modulation of CML which proves that the proposed solution is a viable candidate for future WDM-PONs. PMID:23262890

  10. Cardinal Interpolation Technique for Nearly Minimum Redundant Matched Filter Bank Detection of Unknown Inspiraling Binary Chirps

    NASA Astrophysics Data System (ADS)

    Croce, R. P.; Demma, Th.; Pierro, V.; Pinto, I. M.

    2002-12-01

    The problem of detecting gravitational waves from coalescing binary star systems with unknown parameters by ground based interferometers 1, and the related detection/estimation problems, is computationally quite demanding, though not formidable 2. All GW data analysis groups have been steadily looking for data analysis economization strategies...

  11. Conclusive Evidence of an Attosecond Pulse Train Observed with the Mode-Resolved Autocorrelation Technique

    SciTech Connect

    Nabekawa, Yasuo; Shimizu, Toshihiko; Furusawa, Kentaro; Hasegawa, Hirokazu; Midorikawa, Katsumi; Okino, Tomoya; Yamanouchi, Kaoru

    2006-03-03

    We report on the direct observation of an attosecond pulse train with a mode-resolved autocorrelation technique. The chirp among the three harmonic fields is specified by analyzing two-photon above-threshold ionization spectra of electrons, resulting in a pulse duration that should be shorter than 450 as, which is, to our knowledge, the first determination of the chirp in the attosecond pulse train with an autocorrelation technique. These results will open the way to full characterization of an attosecond pulse train with its envelope.

  12. Deriving Criteria-supporting Benchmark Values from Empirical Response Relationships: Comparison of Statistical Techniques and Effect of Log-transforming the Nutrient Variable

    EPA Science Inventory

    In analyses supporting the development of numeric nutrient criteria, multiple statistical techniques can be used to extract critical values from stressor response relationships. However there is little guidance for choosing among techniques, and the extent to which log-transfor...

  13. Ultrafast chirped optical waveform recorder using a time microscope

    DOEpatents

    Bennett, Corey Vincent

    2015-04-21

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  14. Appell Transformation and Canonical Transforms

    NASA Astrophysics Data System (ADS)

    Torre, Amalia

    2011-07-01

    The interpretation of the optical Appell transformation, as previously elaborated in relation to the free-space paraxial propagation under both a rectangular and a circular cylindrical symmetry, is reviewed. Then, the caloric Appell transformation, well known in the theory of heat equation, is shown to be amenable for a similar interpretation involving the Laplace transform rather than the Fourier transform, when dealing with the 1D heat equation. Accordingly, when considering the radial heat equation, suitably defined Hankel-type transforms come to be involved in the inherent Appell transformation. The analysis is aimed at outlining the link between the Appell transformation and the canonical transforms.

  15. Study on the influence of dispersion and chirp on femtosecond Airy pulse propagation in Kerr media

    NASA Astrophysics Data System (ADS)

    Song, Zhenming; Lin, Yuxian

    2015-05-01

    We present the influence of second order dispersion(GVD), third-order dispersion(TOD), and initial chirp on femtosecond Airy pulse propagation in Kerr media by solving the Nonlinear Schrodinger Equation with the split-step Fourier Method. In the time duration of femtosecond pulse, the effect of TOD should not be neglected. TOD can lead to waveform distortion and lower the quality of optical pulses. We also study the propagation of femtoscond Airy pulse in anomalous dispersion Kerr media. According to the numerical results, we show that when the parameter of the TOD and the propagation distance are selected as some typical values, the pulses will broadening first and then appear a process of compression. Finally, we discussed the influence of the initial pulse chirp on the propagation of the pulse profile and broadening factor.

  16. Anomalous autoresonance threshold for chirped-driven Korteweg-de-Vries waves.

    PubMed

    Friedland, L; Shagalov, A G; Batalov, S V

    2015-10-01

    Large amplitude traveling waves of the Korteweg-de-Vries (KdV) equation can be excited and controlled by a chirped frequency driving perturbation. The process involves capturing the wave into autoresonance (a continuous nonlinear synchronization) with the drive by passage through the linear resonance in the problem. The transition to autoresonance has a sharp threshold on the driving amplitude. In all previously studied autoresonant problems the threshold was found via a weakly nonlinear theory and scaled as ?^{3/4},? being the driving frequency chirp rate. It is shown that this scaling is violated in a long wavelength KdV limit because of the increased role of the nonlinearity in the problem. A fully nonlinear theory describing the phenomenon and applicable to all wavelengths is developed. PMID:26565321

  17. Two-photon adiabatic passage in ultracold Rb interacting with a single nanosecond, chirped pulse

    NASA Astrophysics Data System (ADS)

    Liu, Gengyuan; Malinovskaya, Svetlana A.

    2015-10-01

    A semiclassical, four-level model of a nanosecond, chirped pulse interacting with all optically accessible hyperfine states in an ultracold alkali atom, e.g., the 85Rb, is analyzed aiming at population inversion within 5S1/2 electronic state. The nature of two-photon adiabatic passage performed by a single pulse having the bandwidth prior to chirping significantly narrower than the hyperfine splitting of 5S1/2 state is investigated in the framework of the dressed state picture. It is shown that two dressed states are involved in the adiabatic dynamics of population inversion. The excited state manifold appeared to play an important mediating role in the mechanism of population transfer.

  18. Coherent control of broadband isolated attosecond pulses in a chirped two-color laser field

    SciTech Connect

    Zou Pu; Zeng Zhinan; Zheng Yinghui; Lu Yingying; Liu Peng; Li Ruxin; Xu Zhizhan

    2010-03-15

    A theoretical investigation is presented that uses a strong two-color laser field composed of a linearly chirped fundamental (900 nm) and its subharmonic (1800-nm) laser pulses to control coherently the broadband isolated attosecond pulses in high-order harmonic generations. After the subharmonic field is added, the intrinsic chirp of harmonic emission can be reduced significantly, and consequently, the temporal synchronization of harmonic emission with different photon energies at the level of the single-atom response can be realized. In addition, the scheme is robust against the carrier envelope phase variation to produce a twin pulse of stable sub-100-as duration, and the relative intensity of the twin pulses can be changed just by adjusting the relative time delay of the two driving pulses, which is of benefit in general pump-probe experiments.

  19. Anomalous autoresonance threshold for chirped-driven Korteweg-de-Vries waves

    NASA Astrophysics Data System (ADS)

    Friedland, L.; Shagalov, A. G.; Batalov, S. V.

    2015-10-01

    Large amplitude traveling waves of the Korteweg-de-Vries (KdV) equation can be excited and controlled by a chirped frequency driving perturbation. The process involves capturing the wave into autoresonance (a continuous nonlinear synchronization) with the drive by passage through the linear resonance in the problem. The transition to autoresonance has a sharp threshold on the driving amplitude. In all previously studied autoresonant problems the threshold was found via a weakly nonlinear theory and scaled as ?3 /4,? being the driving frequency chirp rate. It is shown that this scaling is violated in a long wavelength KdV limit because of the increased role of the nonlinearity in the problem. A fully nonlinear theory describing the phenomenon and applicable to all wavelengths is developed.

  20. Making ultracold molecules in a two color pump-dump photoassociation scheme using chirped pulses

    E-print Network

    Christiane P. Koch; Eliane Luc-Koenig; Françoise Masnou-Seeuws

    2005-08-14

    This theoretical paper investigates the formation of ground state molecules from ultracold cesium atoms in a two-color scheme. Following previous work on photoassociation with chirped picosecond pulses [Luc-Koenig et al., Phys. Rev. A {\\bf 70}, 033414 (2004)], we investigate stabilization by a second (dump) pulse. By appropriately choosing the dump pulse parameters and time delay with respect to the photoassociation pulse, we show that a large number of deeply bound molecules are created in the ground triplet state. We discuss (i) broad-bandwidth dump pulses which maximize the probability to form molecules while creating a broad vibrational distribution as well as (ii) narrow-bandwidth pulses populating a single vibrational ground state level, bound by 113 cm$^{-1}$. The use of chirped pulses makes the two-color scheme robust, simple and efficient.

  1. FEMTOSECOND X-RAY PULSES FROM A FREQUENCY CHIRPED SASE FEL.

    SciTech Connect

    KRINSKY,S.HUANG,Z.

    2004-01-07

    We discuss the temporal and spectral properties of self-amplified spontaneous emission (SASE) utilizing an energy-chirped electron beam. A short temporal pulse is generated by using a monochromator to select a narrow radiation bandwidth from the frequency chirped SASE. For the filtered radiation, the minimum pulse length is limited by the intrinsic SASE bandwidth, while the number of modes and the energy fluctuation can be controlled through the monochromator bandwidth. Two cases are considered: (1) placing the monochromator at the end of a single long undulator; (2) placing the monochromator after an initial undulator and amplifying the short-duration output in a second undulator. We analyze these cases and show that tens of femtosecond x-ray pulses may be generated for the linac coherent light source.

  2. Making ultracold molecules in a two-color pump-dump photoassociation scheme using chirped pulses

    SciTech Connect

    Koch, Christiane P.; Luc-Koenig, Eliane; Masnou-Seeuws, Francoise

    2006-03-15

    This theoretical paper investigates the formation of ground state molecules from ultracold cesium atoms in a two-color scheme. Following previous work on photoassociation with chirped picosecond pulses [Luc-Koenig et al., Phys. Rev. A, 70, 033414 (2004)], we investigate stabilization by a second (dump) pulse. By appropriately choosing the dump pulse parameters and time delay with respect to the photoassociation pulse, we show that a large number of deeply bound molecules are created in the ground triplet state. We discuss (i) broad-bandwidth dump pulses which maximize the probability to form molecules while creating a broad vibrational distribution as well as (ii) narrow-bandwidth pulses populating a single vibrational ground state level, bound by 113 cm{sup -1}. The use of chirped pulses makes the two-color scheme robust, simple, and efficient.

  3. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    SciTech Connect

    Rui Li

    2006-01-04

    The curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of a particle in the electron distribution is derived from the Hamiltonian of the particle in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions.

  4. CSR Interaction for a 2D Energy-Chirped Bunch on a General Orbit

    SciTech Connect

    Rui Li

    2009-05-01

    When an electron bunch with initial linear energy chirp traverses a bunch compression chicane, the bunch interacts with itself via coherent synchrotron radiation (CSR) and space charge force. The effective longitudinal CSR force for such kind of 2D bunch on a circular orbit has been analyzed earlier [1]. In this paper, we present the analytical results of the effective longitudinal CSR force for a 2D energy-chirped bunch going through a general orbit, which includes the entrance and exit of a circular orbit. In particular, we will show the behavior of the force in the last bend of a chicane when the bunch is under extreme compression. This is the condition when bifurcation of bunch phase space occurs in many CSR measurements. [1] R. Li, Phys. Rev. ST Accel. Beams 11, 024401 (2008)

  5. Fourier Transform Infrared (FTIR) Spectroscopy

    E-print Network

    Gerwert, Klaus

    Fourier Transform Infrared (FTIR) Spectroscopy Klaus Gerwert, Lehrstuhl fu¨r Biophysik, Ruhr, Germany Based in part on the previous version of this Encyclopedia of Life Sciences (ELS) article, Fourier Transform IR by Johannes Orphal. Fourier transform infrared (FTIR) spectroscopy is an experimental technique

  6. Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp

    NASA Astrophysics Data System (ADS)

    Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2011-06-01

    Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.

  7. New stretcher scheme for a parametric amplifier of chirped pulses with frequency conversion

    SciTech Connect

    Freidman, Gennadii I; Yakovlev, I V

    2007-02-28

    The properties of hybrid prism-grating dispersion systems are studied. The scheme of a prism-grating stretcher matched to a standard compressor in the phase dispersion up to the fourth order inclusive is developed for a petawatt laser complex based on the optical parametric chirped-pulse amplification. The stretcher was used to obtain the {approx}200-TW peak power of laser radiation. (control of laser radiation parameters)

  8. Two and Three Beam Pumped Optical Parametric Amplifier of Chirped Pulses

    NASA Astrophysics Data System (ADS)

    Ališauskas, S.; Butkus, R.; Pyragait?, V.; Smilgevi?ius, V.; Stabinis, A.; Piskarskas, A.

    2010-04-01

    We present two and three beam pumped optical parametric amplifier of broadband chirped pulses. The seed pulses from Ti:sapphire oscillator were stretched and amplified in a non-collinear geometry pumping with up to three beams derived from independent laser amplifiers. The signal with ˜90 nm bandwidth was amplified up to 0.72 mJ. The conversion efficiency dependence on intersection angles of pump beams is also revealed.

  9. A Two Dimensional Overlapped Subaperture Polar Format Algorithm Based on Stepped-chirp Signal

    PubMed Central

    Mao, Xinhua; Zhu, Daiyin; Nie, Xin; Zhu, Zhaoda

    2008-01-01

    In this work, a 2-D subaperture polar format algorithm (PFA) based on stepped-chirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has validated the presented algorithm.

  10. Chirp-pulse-compression three-dimensional lidar imager with fiber optics.

    PubMed

    Pearson, Guy N; Ridley, Kevin D; Willetts, David V

    2005-01-10

    A coherent three-dimensional (angle-angle-range) lidar imager using a master-oscillator-power-amplifier concept and operating at a wavelength of 1.5 microm with chirp-pulse compression is described. A fiber-optic delay line in the local oscillator path enables a single continuous-wave semiconductor laser source with a modulated drive waveform to generate both the constant-frequency local oscillator and the frequency chirp. A portion of this chirp is gated out and amplified by a two-stage fiber amplifier. The digitized return signal was compressed by cross correlating it with a sample of the outgoing pulse. In this way a 350-ns, 10-microJ pulse with a 250-MHz frequency sweep is compressed to a width of approximately 8 ns. With a 25-mm output aperture, the lidar has been used to produce three-dimensional images of hard targets out to a range of approximately 2 km with near-diffraction-limited angular resolution and submeter range resolution. PMID:15678779

  11. Trends in ultrashort and ultrahigh power laser pulses based on optical parametric chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Yu, Liang-Hong; Chu, Yu-Xi; Gan, Ze-Biao; Liang, Xiao-Yan; Li, Ru-Xin; Xu, Zhi-Zhan

    2015-01-01

    Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification (OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of few-optical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively. Project supported by the National Natural Science Foundation of China (Grant Nos. 61378030 and 11127901), the National Basic Research Program of China(Grant No. 2011CB808101), and the International S&T Cooperation Program of China (Grant No. 2011DFA11300).

  12. Chirp-pulse-compression three-dimensional lidar imager with fiber optics

    NASA Astrophysics Data System (ADS)

    Pearson, Guy N.; Ridley, Kevin D.; Willetts, David V.

    2005-01-01

    A coherent three-dimensional (angle-angle-range) lidar imager using a master-oscillator-power-amplifier concept and operating at a wavelength of 1.5 ?m with chirp-pulse compression is described. A fiber-optic delay line in the local oscillator path enables a single continuous-wave semiconductor laser source with a modulated drive waveform to generate both the constant-frequency local oscillator and the frequency chirp. A portion of this chirp is gated out and amplified by a two-stage fiber amplifier. The digitized return signal was compressed by cross correlating it with a sample of the outgoing pulse. In this way a 350-ns, 10-?J pulse with a 250-MHz frequency sweep is compressed to a width of approximately 8 ns. With a 25-mm output aperture, the lidar has been used to produce three-dimensional images of hard targets out to a range of approximately 2 km with near-diffraction-limited angular resolution and submeter range resolution.

  13. Full-Field Spectroscopy at Megahertz-frame-rates: Application of Coherent Time-Stretch Transform

    NASA Astrophysics Data System (ADS)

    DeVore, Peter Thomas Setsuda

    Outliers or rogue events are found extensively in our world and have incredible effects. Also called rare events, they arise in the distribution of wealth (e.g., Pareto index), finance, network traffic, ocean waves, and e-commerce (selling less of more). Interest in rare optical events exploded after the sighting of optical rogue waves in laboratory experiments at UCLA. Detecting such tail events in fast streams of information necessitates real-time measurements. The Coherent Time-Stretch Transform chirps a pulsed source of radiation so that its temporal envelope matches its spectral profile (analogous to the far field regime of spatial diffraction), and the mapped spectral electric field is slow enough to be captured by a real-time digitizer. Combining this technique with spectral encoding, the time stretch technique has enabled a new class of ultra-high performance spectrometers and cameras (30+ MHz), and analog-to-digital converters that have led to the discovery of optical rogue waves and detection of cancer cells in blood with one in a million sensitivity. Conventionally, the Coherent Time-Stretch Transform maps the spectrum into the temporal electric field, but the time-dilation process along with inherent fiber losses results in reduction of peak power and loss of sensitivity, a problem exacerbated by extremely narrow molecular linewidths. The loss issue notwithstanding, in many cases the requisite dispersive optical device is not available. By extending the Coherent Time-Stretch Transform to the temporal near field, I have demonstrated, for the first time, phase-sensitive absorption spectroscopy of a gaseous sample at millions of frames per second. As the Coherent Time-Stretch Transform may capture both near and far field optical waves, it is a complete spectro-temporal optical characterization tool. This is manifested as an amplitude-dependent chirp, which implies the ability to measure the complex refractive index dispersion at megahertz frame rates. This technique is not only four orders of magnitude faster than even the fastest (kHz) spectrometers, but will also enable capture of real-time complex dielectric function dynamics of plasmas and chemical reactions (e.g. combustion). It also has applications in high-energy physics, biology, and monitoring fast high-throughput industrial processes. Adding an electro-optic modulator to the Time-Stretch Transform yields time-to-time mapping of electrical waveforms. Known as TiSER, it is an analog slow-motion processor that uses light to reduce the bandwidth of broadband RF signals for capture by high-sensitivity analog-to-digital converters (ADC). However, the electro-optic modulator limits the electrical bandwidth of TiSER. To solve this, I introduced Optical Sideband-only Amplification, wherein electro-optically generated modulation (containing the RF information) is amplified at the expense of the carrier, addressing the two most important problems plaguing electro-optic modulators: (1) low RF bandwidth and (2) high required RF drive voltages. I demonstrated drive voltage reductions of 5x at 10 GHz and 10x at 50 GHz, while simultaneously increasing the RF bandwidth.

  14. Using a surface-sensitive chemical probe and a bulk structure technique to monitor the ?- to ?-Al2O3 phase transformation

    SciTech Connect

    Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos

    2011-06-30

    In this work, we investigated the phase transformation of ? Al2O3 to ? Al2O3 by ethanol TPD and XRD. Ethanol TPD showed remarkable sensitivity toward the surface structures of the aluminas studied. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225°C, 245°C and 320°C over ?-, ?-, and ?-Al2O3, respectively. Ethanol TPD over a ? Al2O3 sample calcined at 800 °C clearly show that the surface of the resulting material possesses ?-alumina characteristics, even though only the ?-alumina phase was detected by XRD. These results strongly suggest that the ?-to-? phase transformation of alumina initiates at oxide particle surfaces. The results obtained are also consistent with our previous finding that the presence of penta-coordinated Al3+ sites, formed on the (100) facets of the alumina surface, are strongly correlated with the thermal stability of ?-alumina.

  15. Quantum-inspired interferometry with chirped laser pulses

    E-print Network

    Loss, Daniel

    interferometer. Our interferometer shows a high-visibility (>85% measured) phase-insensitive interference dip and classical theories of light, enabling the most precise measurements of a wide range of physical quantities for new measurement techniques and enhanced precision3,4 . Advantages stem from several phenomena

  16. Energy and angular differential probabilities for photoionization of He using chirped attosecond soft-x-ray pulses

    SciTech Connect

    Lee, Teck-Ghee; Pindzola, M. S.; Robicheaux, F.

    2009-05-15

    Based on the time-dependent close-coupling method, energy and angular differential probabilities for various ionization processes of He atoms subjected to intense attosecond soft-x-ray pulses with a photon energy of 91.6 eV and a peak intensity of 10{sup 15} W/cm{sup 2} are calculated to explore their dependence on the duration and the chirp of the pulse. It is found that the single and the double electron energy distributions for two-photon double ionization are rather sensitive to chirps. That is, both the magnitudes and locations of the sequential peaks in the single electron energy distributions vary strongly with chirps and the two-electron energy distributions being broadened and stretched along the equal energy sharing direction as opposed to the usual total excess energy direction for the case of zero chirp. In addition, our calculation also reveals an unexpected structure formed between the two sequential peaks. In order to better understand the chirp effects on both independent-electron and correlated electron emissions and their relations to the origin of the structure, we analyzed the corresponding probability differential in energy and angle.

  17. Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression using a Sagnac loop interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Weilin; Yao, Jianping

    2011-08-01

    A novel approach to interrogating in real time a linearly chirped fiber Bragg grating (LCFBG) sensor based on chirped pulse compression using a Sagnac loop interferometer (SLI) with improved pulse compression performance is proposed and experimentally demonstrated. The proposed system consists of a mode-locked laser (MLL), a SLI incorporating an LCFBG, which makes the SLI have a spectral response with an increasing or decreasing free spectral range (FSR), a dispersive element and a photodetector. The significance of using an SLI incorporating an LCFBG is its capability of providing equal dispersion for two pulses traveling along the clockwise and counter-clockwise paths, which would effectively avoid a non-complete temporal interference, and improves the pulse compression performance. When the fiber sensor is experiencing a strain, the strain information would be conveyed to a wavelength shift caused by the Bragg wavelength change, which is further transferred to the change of the FSR. An ultra-short pulse train generated by the MLL would be spectrum shaped by the SLI, and the shaped spectrum would contain the information of the wavelength change. The demodulation is performed in the time domain by mapping the spectrally shaped waveform to the temporal domain using a dispersion compensating fiber (DCF) as the dispersive element. The generated temporal waveform is then correlated with a special reference waveform, with the location of the correlation peak indicating the wavelength change which reflects the strain or temperature change. A theoretical analysis is carried out, which is validated by an experiment. The experimental results show that the proposed system can provide an interrogation resolution as high as 0.22 ?? at a speed of 48.6 MHz with a correlation peak to sidelobe ratio of 2.5.

  18. J. Phys. B: At. Mol. Phys. 19 (1986) 2247-2266. Printed in Great Britain The influence of the pulse shape and chirp on the multipeak

    E-print Network

    Zakrzewski, Kuba

    1986-01-01

    August 1985, in final form 12 December 1985 Abstract. The influence of the pulse shape and/or chirpJ. Phys. B: At. Mol. Phys. 19 (1986) 2247-2266. Printed in Great Britain The influence of the pulse shape and chirp on the multipeak spectra in near-resonant Raman scattering and in autoionisation Jakub

  19. Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all-optical switches

    NASA Astrophysics Data System (ADS)

    Chen, Ligong; Lu, Rongguo; Zhang, Shangjian; Li, Jianfeng; Liu, Yong

    2013-03-01

    The chirp properties of semiconductor optical amplifiers in all-optical switches are numerically investigated using a field propagation model. The chirp dynamics in the blue-shift and red-shift sideband are analyzed under the injection of random optical pump pulses. We also analyze the impact of the blue-detuned filtering scheme that is used to eliminate the pattern effect and enhance the operating speed of the optical switching. The reason for overshoots in eye diagrams in the blue-detuned filtering scheme is explained. We find that overshoots result from the ultrafast blue chirp induced by carrier heating and two-phonon absorption. These results are very useful for semiconductor optical amplifier-based ultrafast all-optical signal processing.

  20. Isolated few-cycle radiation from chirped-pulse compression of a superradiant free-electron laser

    NASA Astrophysics Data System (ADS)

    Huang, Yen-Chieh; Zhang, Zhen; Chen, Chia-Hsiang; Wu, Ming-Hsiung

    2015-08-01

    When a short electron bunch traverses an undulator to radiate a wavelength longer than the bunch length, intense superradiance from the electron bunch can quickly deplete the electron's kinetic energy and lead to generation of an isolated chirped radiation pulse. Here, we develop a theory to describe this novel chirped pulse radiation in a superradiant free-electron laser and show the opportunity to generate isolated few-cycle high-power radiation through chirped-pulse compression after the undulator. The theory is completely characterized by how fast the electron energy is depleted for a given length of an undulator. We further present two design examples at the THz and extreme-ultraviolet wavelengths and numerically generate isolated three- and nine-cycle radiation pulses, respectively.

  1. Generation of green frequency comb from chirped ?{sup (2)} nonlinear photonic crystals

    SciTech Connect

    Lai, C.-M.; Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H.; Yu, N. E.; Boudrioua, A.; Kung, A. H.

    2014-12-01

    Spectrally broad frequency comb generation over 510–555?nm range was reported on chirped quasi-phase-matching (QPM) ?{sup (2)} nonlinear photonic crystals of 12?mm length with periodicity stepwise increased from 5.9??m to 7.1??m. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040?nm to 1090?nm wavelength range, the 520?nm to 545?nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450?GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040?nm) and the idler (1090–1110?nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520?nm and the 545–555?nm spectral regime. Additional 530–535?nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ?10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  2. Generation of green frequency comb from chirped ?(2) nonlinear photonic crystals

    NASA Astrophysics Data System (ADS)

    Lai, C.-M.; Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Yu, N. E.; Boudrioua, A.; Kung, A. H.; Peng, L.-H.

    2014-12-01

    Spectrally broad frequency comb generation over 510-555 nm range was reported on chirped quasi-phase-matching (QPM) ?(2) nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 ?m to 7.1 ?m. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020-1040 nm) and the idler (1090-1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510-520 nm and the 545-555 nm spectral regime. Additional 530-535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ˜10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  3. Electron Acceleration by a Bichromatic Chirped Laser Pulse in Underdense Plasmas

    E-print Network

    Pocsai, Mihály András; Varró, Sándor

    2015-01-01

    A theoretical study of laser and plasma based electron acceleration is presented. An effective model has been used, in which the presence of an underdense plasma has been taken account via its index of refraction $n_{m}$. In the confines of this model, the basic phenomena can be studied by numerically solving the classical relativistic equations of motion. The key idea of this paper is the application of chirped, bichromatic laser fields. We investigated the advantages and disadvantages of mixing the second harmonic to the original $\\lambda = 800 \\, \\mathrm{nm}$ wavelength pulse. We performed calculations both for plane wave and Gaussian pulses.

  4. Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser

    SciTech Connect

    Hangauer, Andreas Nikodem, Michal; Wysocki, Gerard; Spinner, Georg; Institute for Quantum Electronics, ETH Zurich, 8093 Zurich

    2013-11-04

    Chirped laser dispersion spectroscopy (CLaDS) utilizing direct modulation of a quantum cascade laser (QCL) is presented. By controlling the laser bias nearly single- and dual-sideband CLaDS operation can be realized in an extremely simplified optical setup with no external optical modulators. Capability of direct single-sideband modulation is a unique feature of QCLs that exhibit a low linewidth enhancement factor. The developed analytical model shows excellent agreement with the experimental, directly modulated CLaDS spectra. This method overcomes major technical limitations of mid-infrared CLaDS systems by allowing significantly higher modulation frequencies and eliminating optical fringes introduced by external modulators.

  5. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal. PMID:24690803

  6. The Mystery of the Ramsey Fringe that Didn't Chirp

    E-print Network

    D. M. Harber; H. J. Lewandowski; J. M. McGuirk; E. A. Cornell

    2002-09-10

    We use precision microwave spectroscopy of magnetically trapped, ultra-cold 87Rb to characterize intra- and inter-state density correlations. The cold collision shifts for both normal and condensed clouds are measured. The results verify the presence of the sometimes controversial "factors of two", in normal-cloud mean-field energies, both within a particular state and between two distinct spin species. One might expect that as two spin species decohere, the inter-state factor of two would revert to unity, but the associated frequency chirp one naively expects from such a trend is not observed in our data.

  7. Optical Parametric Chirped-Pulse-Amplification Contrast Enhancement by Regenerative Pump Spectral Filtering

    SciTech Connect

    Dorrer, C.; Okishev, A.V.; Begishev, I.A.; Zuegel, J.D.; Smirnov, V.I.; Glebov, L.B.

    2007-08-17

    We demonstrate an approach to fundamentally improve the contrast of optical parametric chirped-pulse amplifiers (OPCPA). The instantaneous parametric gain couples the temporal variations of the pump-pulse intensity to spectral variations of the intensity of the stretched signal pulse being amplified, which significantly degrade the temporal contrast of the amplified pulse after recompression. Simple and efficient pump-intensity noise reduction in an OPCPA system using a volume Bragg grating in a regenerative amplifier demonstrates contrast improvements up to 30 dB.

  8. High-energy noncollinear optical parametric-chirped pulse amplification in LBO at 800 nm.

    PubMed

    Xu, Lu; Yu, Lianghong; Liang, Xiaoyan; Chu, Yuxi; Hu, Zhanggui; Ma, Lin; Xu, Yi; Wang, Cheng; Lu, Xiaoming; Lu, Haihe; Yue, Yinchao; Zhao, Ying; Fan, Feidi; Tu, Heng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-11-15

    The optical parametric-chirped pulse amplification (OPCPA) based on large-aperture nonlinear optical crystals is promising for implementation of an ultrahigh peak-power laser system of 10 PW and beyond. We demonstrated the highest energy broadband OPCPA at 800 nm, to the best of our knowledge, by using an 80 mm in diameter LiB(3)O(5)(LBO) amplifier, with an output energy of 28.68 J, a bandwidth of 80 nm (FWHM), and conversion efficiency of 25.38%. After compression, a peak power of 0.61 PW with 33.8 fs pulse duration is produced. PMID:24322145

  9. Symmetrical fully-etched and chirped beam splitter based on a subwavelength binary blazed grating

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Zhang, Hua-liang; Yang, Jun-bo; Yang, Jun-cai

    2012-05-01

    A novel symmetrical chirped beam splitter based on a binary blazed grating is proposed, which adopts the fully-etched grating structure compatible with the current fabrication facilities for CMOS technology and convenient for integration and manufacture process. This structure can realize nearly equal-power splitting operation under the condition of TE polarization incidence. When the absolutely normal incidence occurs at the wavelength of 1580 nm, the coupling efficiencies of the left and the right branches are 43.627% and 43.753%, respectively. Moreover, this structure has the tolerances of 20 nm in etched depth and 3° in incident angle, which is rather convenient to manufacture facility.

  10. Inducing changes in the bond length of diatomic molecules by time-symmetric chirped pulses

    SciTech Connect

    Chang, Bo Y.; Shin, Seokmin; Sola, Ignacio R.

    2010-12-15

    We show numerically that it is possible to change the structure of a simple molecule, that is, a diatomic molecule, where the bond length is modified at a precise timing with symmetrically chirped laser pulses. In the adiabatic regime, the process is fully time reversible, making it possible to design slow vibrations with large bond elongations. The scheme relies on the preparation of a separable state of both nuclear and electronic degrees of freedom with predominant amplitude on the dissociative (antibonding) electronic wave function. Shorter laser pulses can be used to dynamically induce larger bond elongations, preparing a highly excited vibrational wave packet in the ground potential as the laser is switched off.

  11. Effects of Detuning on Control of Intersubband Quantum Well Transitions with Chirped Electromagnetic Pulses

    SciTech Connect

    Blekos, Konstantinos; Terzis, Andreas F.; Simserides, Constantinos; Paspalakis, Emmanuel

    2010-11-10

    We study the interaction of a chirped electromagnetic pulse with intersubband transitions of a double semiconductor quantum well. We specifically consider the interaction of the ground and first excited subbands with the electromagnetic field and use the nonlinear density matrix equations for the description of the system dynamics. These equations are solved numerically for various values of the electron sheet density for a realistic double GaAs/AlGaAs quantum well, and the efficiency of population transfer is discussed with emphasis given to the effects of the detuning of the central frequency of the electromagnetic field from resonance.

  12. Optical NRZ-to-RZ format conversion based on frequency chirp linearization and spectrum slicing

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huo, Li; Chen, Xin; Jiang, Xiangyu; Lou, Caiyun

    2015-12-01

    A flexible optical NRZ-to-RZ format converter based on a time lens followed by optical filtering is proposed and demonstrated experimentally. After frequency chirp linearization, 9-tone ultra-flat optical frequency comb of 25-GHz frequency spacing within 1 dB power variation is obtained. By changing the shape of the following optical band-pass filter, 3.4-ps Nyquist-shaped RZ signal and 3.7-ps Gaussian-shaped RZ signal are both achieved. The sensitivity improvements at a bit error rate of 10-9 are 3.3 dB and 1.7 dB, respectively.

  13. Label-free biosensor based on a dual-core transversally chirped microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Reyes-Vera, Erick; Gá½¹mez-Cardona, Nelson; Torres, Pedro

    2014-05-01

    We present a novel sensing architecture consisting of a two-core transversally chirped microstructured optical fiber (MOF) suitable for label-free detection of molecules. The air holes of rings surrounding one core of the structure are functionalized for antibody detection by immobilization of an antigen sensor layer onto the walls of the holes. The change of the layer thickness of biomolecules can then be detected as a change in the device transmittance. Numerical calculations indicate that this novel structure can achieve acceptable level of sensitivity whereas the biosensor is mm long.

  14. Fourier Transform-Based Continuous Phase-Plate Design Technique: A High-Pass Phase-Plate Design as an Application for OMEGA and the National Ignition Facility

    SciTech Connect

    Marozas, J.A.

    2007-01-24

    A technique capable of calculating near-field, continuous-phase diffractive optics (or phase plates) without phase dislocations and with optional far-field, speckle-spectrum control is introduced. The design technique improves upon a standard phase-retrieval method by adding convergence enhancements, phase continuity control, and far-field, speckle-spectrum control. The convergence enhancements improve the algorithm’s efficiency. Phase continuity control eliminates phase dislocations and mitigates damaging retroreflections and transmissions. Specifying an optional constraint controls the far-field speckle-spectrum. Application of these phase plates on the OMEGA and National Ignition Facility laser systems would produce well-controlled far-field spot shapes. High-pass phase plate designs are compared to designs where the far-field spectrum is not controlled.

  15. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    SciTech Connect

    Xu, Tong; Chen, Min Li, Fei-Yu; Yu, Lu-Le; Sheng, Zheng-Ming; SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG ; Zhang, Jie; Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

  16. 2-?m wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA.

    PubMed

    Hemmer, M; Sánchez, D; Jelínek, M; Smirnov, Vadim; Jelinkova, H; Kube?ek, V; Biegert, J

    2015-02-15

    A 2-?m wavelength laser delivering up to 39-mJ energy, ?10??ps duration pulses at 100-Hz repetition rate is reported. The system relies on chirped pulse amplification (CPA): a modelocked Er:Tm:Ho fiber-seeder is followed by a Ho:YLF-based regenerative amplifier and a cryogenically cooled Ho:YLF single pass amplifier. Stretching and compressing are performed with large aperture chirped volume Bragg gratings (CVBG). At a peak power of 3.3 GW, the stability was <1%??rms over 1 h, confirming high suitability for OPCPA and extreme nonlinear optics applications. PMID:25680122

  17. Four-wave mixing of a chirped signal with bandwidth-limited pump waves in a resonant medium

    SciTech Connect

    Kabanov, V V

    1998-07-31

    An investigation is reported of the characteristic features of four-wave interaction of a chirped signal with bandwidth-limited pump waves in a resonant medium modelled by a two-level scheme. Analytic estimates are obtained and a numerical analysis is made of the combined influence of various mechanisms (spatial phase matching, a finite nonlinear response time, and phase cross-modulation) on the spectral composition and on the temporal behaviour of the fourth pulse. Conditions are found for achieving, with practically undetectable distortions, phase conjugation of a chirped signal accompanied by shortening of the pulse envelope and narrowing of the spectrum of the phase-conjugate wave. (nonlinear optical phenomena)

  18. 3D-printed slit nozzles for Fourier transform microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Mackenzie, Rebecca B.; Green, Susan; Leopold, Kenneth R.

    2015-06-01

    3D printing is a new technology whose applications are only beginning to be explored. In this report, we describe the application of 3D printing to the design and construction of supersonic nozzles. Nozzles can be created for 0.50 or less, and the ease and low cost can facilitate the optimization of nozzle performance for the needs of any particular experiment. The efficacy of a variety of designs is assessed by examining rotational spectra of OCS (carbonyl sulfide) and Ar-OCS using a Fourier transform microwave spectrometer with tandem cavity and chirped-pulse capabilities. A slit geometry which, to the best of our knowledge has not been used in conjunction with Fourier transform microwave spectrometers, was found to increase the signal-to-noise ratio for the J = 1?0 transition of OCS, by a factor of three to four compared with that obtained using our standard circular nozzle. Corresponding gains for the Ar-OCS complex were marginal, at best, but further optimization of nozzle geometry should be possible. The spectrometer itself is designed to allow rapid switching between cavity and chirped-pulse modes of operation without the need to break vacuum. This feature, as well as the newly incorporated chirped-pulse capability, is described in detail.

  19. Application of multivariate chemometric techniques for simultaneous determination of five parameters of cottonseed oil by single bounce attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Talpur, M Younis; Kara, Huseyin; Sherazi, S T H; Ayyildiz, H Filiz; Topkafa, Mustafa; Arslan, Fatma Nur; Naz, Saba; Durmaz, Fatih; Sirajuddin

    2014-11-01

    Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer?s law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170°C. Good regression coefficients (R(2)) were achieved for FFA, PV, IV, CD and CT with value of >0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. PMID:25127621

  20. On a Chirplet Transform Based Method for Co-channel Voice Separation

    NASA Astrophysics Data System (ADS)

    Dugnol, B.; Fernández, C.; Galiano, G.; Velasco, J.

    We use signal and image theory based algorithms to produce estimations of the number of wolves emitting howls or barks in a given field recording as an individuals counting alternative to the traditional trace collecting methodologies. We proceed in two steps. Firstly, we clean and enhance the signal by using PDE based image processing algorithms applied to the signal spectrogram. Secondly, assuming that the wolves chorus may be modelled as an addition of nonlinear chirps, we use the quadratic energy distribution corresponding to the Chirplet Transform of the signal to produce estimates of the corresponding instantaneous frequencies, chirp-rates and amplitudes at each instant of the recording. We finally establish suitable criteria to decide how such estimates are connected in time.

  1. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis:Advantages and Limitations

    SciTech Connect

    A Frenkel; Q Wang; N Marinkovic; J Chen; L Barrio; R Si; A Lopez Camara; A Estella; J Rodriquez; J Hanson

    2011-12-31

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  2. Estimation of chirp rates of music-adapted prolate spheroidal atoms using reassignment

    NASA Astrophysics Data System (ADS)

    Mesz, Bruno; Serrano, Eduardo

    2007-09-01

    We introduce a modified Matching Pursuit algorithm for estimating frequency and frequency slope of FM-modulated music signals. The use of Matching Pursuit with constant frequency atoms provides coarse estimates which could be improved with chirped atoms, more suited in principle to this kind of signals. Application of the reassignment method is suggested by its good localization properties for chirps. We start considering a family of atoms generated by modulation and scaling of a prolate spheroidal wave function. These functions are concentrated in frequency on intervals of a semitone centered at the frequencies of the well-tempered scale. At each stage of the pursuit, we search the atom most correlated with the signal. We then consider the spectral peaks at each frame of the spectrogram and calculate a modified frequency and frequency slope using the derivatives of the reassignment operators; this is then used to estimate the parameters of a cubic interpolation polynomial that models local pitch fluctuations. We apply the method both to synthetic and music signals.

  3. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses.

    PubMed

    Zhang, Qingbin; Takahashi, Eiji J; Mücke, Oliver D; Lu, Peixiang; Midorikawa, Katsumi

    2011-04-11

    An ultrafast high-power infrared pulse source employing a dual-chirped optical parametric amplification (DC-OPA) scheme based on a Ti:sapphire pump laser system is theoretically investigated. By chirping both pump and seed pulses in an optimized way, high-energy pump pulses can be utilized for a DC-OPA process without exceeding the damage threshold of BBO crystals, and broadband signal and idler pulses at 1.4 ?m and 1.87 ?m can be generated with a total conversion efficiency approaching 40%. Furthermore, few-cycle idler pulses with a passively stabilized carrier-envelope phase (CEP) can be generated by the difference frequency generation process in a collinear configuration. DC-OPA, a BBO-OPA scheme pumped by a Ti:sapphire laser, is efficient and scalable in output energy of the infrared pulses, which provides us with the design parameters of an ultrafast infrared laser system with an energy up to a few hundred mJ. PMID:21503032

  4. Radio Crickets: Chirping Jets from Black Hole Binaries Entering their Gravitational Wave Inspiral

    E-print Network

    Kulkarni, Girish

    2015-01-01

    We study a novel electromagnetic signature of supermassive black hole binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disk in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond scale wiggles, and the conical surface of jet precession is twisted due to apparant superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a "chirp." This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 10^7--10^10 Msun at redshifts z<0.5, monitoring these features in current and archival data wi...

  5. High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier.

    PubMed

    Chang, Chun-Lin; Krogen, Peter; Hong, Kyung-Han; Zapata, Luis E; Moses, Jeffrey; Calendron, Anne-Laure; Liang, Houkun; Lai, Chien-Jen; Stein, Gregory J; Keathley, Phillip D; Laurent, Guillaume; Kärtner, Franz X

    2015-04-20

    We report on a diode-pumped, hybrid Yb-doped chirped-pulse amplification (CPA) laser system with a compact pulse stretcher and compressor, consisting of Yb-doped fiber preamplifiers, a room-temperature Yb:KYW regenerative amplifier (RGA), and cryogenic Yb:YAG multi-pass amplifiers. The RGA provides a relatively broad amplification bandwidth and thereby a long pulse duration to mitigate B-integral in the CPA chain. The ~1030-nm laser pulses are amplified up to 70 mJ at 1-kHz repetition rate, currently limited by available optics apertures, and then compressed to ~6 ps with high efficiency. The near-diffraction-limited beam focusing quality is demonstrated with M(x)(2) = 1.1 and M(y)(2) = 1.2. The shot-to-shot energy fluctuation is as low as ~1% (rms), and the long-term energy drift and beam pointing stability for over 8 hours measurement are ~3.5% and <6 ?rad (rms), respectively. To the best of our knowledge, this hybrid laser system produces the most energetic picosecond pulses at kHz repetition rates among rod-type laser amplifiers. With an optically synchronized Ti:sapphire seed laser, it provides a versatile platform optimized for pumping optical parametric chirped-pulse amplification systems as well as driving inverse Compton scattered X-rays. PMID:25969056

  6. Power limitations and pulse distortions in an Yb : KGW chirped-pulse amplification laser system

    SciTech Connect

    Kim, G H; Yang, J; Kulik, A V; Sall, E G; Chizhov, S A; Kang, U; Yashin, V E

    2013-08-31

    We have studied self-action effects (self-focusing and self-phase modulation) and stimulated Raman scattering in an Yb : KGW chirped-pulse amplification laser system. The results demonstrate that self-focusing in combination with thermal lensing may significantly limit the chirped pulse energy in this system (down to 200 ?J) even at a relatively long pulse duration (50 ps). Nonlinear lenses in the laser crystals in combination with thermal lenses bring the regenerative amplifier cavity in the laser system to the instability zone and limit the average output power at pulse repetition rates under 50 kHz. Self-phase modulation, a manifestation of self-action, may significantly distort a recompressed femtosecond pulse at energies near the self-focusing threshold. Stimulated Raman scattering in such a laser has a weaker effect on output parameters than do self-focusing and thermal lensing, and Raman spectra are only observed in the case of pulse energy instability. (nonlinear optical phenomena)

  7. Transforming Schools.

    ERIC Educational Resources Information Center

    Goens, George A.; Clover, Sharon I. R.

    1992-01-01

    Transforming the school as an organization requires change in all its components. More important, transformation connects the technical components with the human elements to create fundamental changes in the ways people perceive, think, and behave. With the community, a Wisconsin school board adopted a school district value statement to be used as…

  8. Reading Transformation

    ERIC Educational Resources Information Center

    Reeves, Melinda

    2006-01-01

    The parents of students who attend Decatur High School thought that there was little hope of their kids going on to college. After a year or so in Decatur's reading program, their sons and daughters were both transformed and college bound. In this article, the author describes how Decatur was able to successfully transform their students. Seven…

  9. Transformational leadership.

    PubMed

    Luzinski, Craig

    2011-12-01

    This month, the director of the Magnet Recognition Program® takes an in-depth look at the Magnet® model component transformational leadership. The author examines the expectations for Magnet organizations around this component. What are the qualities that make a nursing leader truly transformational, and what is the best approach to successfully lead a healthcare organization through today's volatile healthcare environment? PMID:22094611

  10. 10Gb/s direct modulation of widely tunable V-cavity-laser with chirp managed laser technology

    NASA Astrophysics Data System (ADS)

    Meng, Jianjun; Wang, Lei; He, Jian-Jun

    2015-03-01

    We report direct modulation results in a simple and compact widely tunable V-cavity laser. Chirp managed laser technology has been successfully applied to the V-cavity laser with an optical spectrum reshaping filter. The tunable V-cavity-laser employs a half-wave coupler to obtain single-mode operation with high side-mode suppression ratio and the Vernier effect to extend its tuning range. It does not require any grating structure and regrowth steps. In this experiment, we achieved single-electrode controlled wavelength tuning of about 18 channels at 100GHz spacing with a fixed temperature, and 32 channels using 2 temperature settings. Well-open eye diagrams with extinction ratio above 4.3dB in all channels are observed when the laser is directly modulated at 2.5Gb/s. Although the measured small-signal frequency response is only about 5.7GHz, more than 6.7dB extinction ratio under 10Gb/s modulation rate is achieved by using the chirp managed laser technology with an optical spectrum reshaping filter placed after the output of the laser to convert the frequency chirp accompanying the direct modulation to amplitude modulation. The advantages of compactness, fabrication simplicity, easy wavelength control algorithm, and simple direct modulation offer great potential for the chirped managed V-cavity laser to be used in low-cost WDM links.

  11. PHYSICAL REVIEW A 87, 053420 (2013) Two-photon ladder climbing and transition to autoresonance in a chirped oscillator

    E-print Network

    Friedland, Lazar

    2013-01-01

    PHYSICAL REVIEW A 87, 053420 (2013) Two-photon ladder climbing and transition to autoresonance (successive two-photon Landau-Zener-type transitions) in a chirped quantum nonlinear oscillator and its is the ladder climb- ing (LC), characterized by continuing successive two-level Landau-Zener [23] transitions

  12. PUBLISHED ONLINE: 19 DECEMBER 2010 | DOI: 10.1038/NPHYS1867 Quantum fluctuations in the chirped pendulum

    E-print Network

    Friedland, Lazar

    in the chirped pendulum K. W. Murch1 *, R. Vijay1 , I. Barth2 , O. Naaman1 , J. Aumentado3 , L. Friedland2 and I. Siddiqi1 Anharmonic oscillators, such as the pendulum, are widely used for precision measurement1 is the electron charge. This system is analogous to a mechanical pendulum with angular coordinate = (Fig. 1a

  13. Direct Excitation of High-Amplitude Chirped Bucket-BGK Modes W. Bertsche, J. Fajans,* and L. Friedland

    E-print Network

    Friedland, Lazar

    Direct Excitation of High-Amplitude Chirped Bucket-BGK Modes W. Bertsche, J. Fajans,* and L (up to 100 000) Bernstein, Greene, and Kruskal modes have been controllably excited in a plasma. The modes are created by sweeping an excitation voltage downwards in frequency, thereby dragging a phase

  14. A Comparison of FTNMR and FTIR Techniques.

    ERIC Educational Resources Information Center

    Ahn, Myong-Ku

    1989-01-01

    Nuclear magnetic resonance and infrared are two spectroscopic methods that commonly use the Fourier transform technique. Discussed are the similarities and differences in the use of the Fourier transform in these two spectroscopic techniques. (CW)

  15. Novel Applications of Chirp Managed Laser in Optical Fiber Communication Systems

    NASA Astrophysics Data System (ADS)

    Jia, Wei

    Nowadays, with the dramatically growing bandwidth requirement of Internet, the number of wavelength division multiplexing (WDM) channels of the optical fiber communication systems is increasing rapidly. Hence, optical transmitters with cost effectiveness, high power efficiency, and excellent transmission performance are necessary. Especially, for access and metropolitan applications, simple configuration is the essential factor. The conventional optical transmitter is composed of a laser as continuous-wave (CW) source and one or more external modulators for modulation. However, the high insertion loss, large driving voltage, and extra cost of external modulator make it relatively bulky and power-hungry. Chirp managed laser (CML), comprising a directly modulated semiconductor laser (DML) and a passive optical filter, is an alternative promising transmitter candidate. It has the merits of smaller device size, lower cost, less power consumption, and higher fiber chromatic dispersion (CD) tolerance, compared with that based on external modulator. In this thesis, we have investigated several novel applications of CML in optical fiber communication systems, taking advantage of its unique phase modulating and spectral reshaping properties. These topics include optical return-to-zero (RZ) pulses generation using CML, M-ary RZ differential phase-shift-keying (RZ-DPSK) signals generation using CML, and enhanced CD tolerance of CML with pre-emphasis. These CML-based designs consume low power for less electrical pre-coding, require reduced or no external modulator, and show notable transmission performances. Optical RZ pulses generation using CML: RZ pulses have been widely used in optical fiber communication systems together with on-off-keying (OOK) and DPSK modulation formats, for its high robustness towards inter symbol interference (ISI) and nonlinear distortions. In this thesis, we propose and experimentally demonstrate the technique of 10-Gb/s optical RZ pulses generation using CML. No external modulator is used for pulse carving. The frequency of the sinusoidal driving signal is half the output RZ pulse rate. 70-km and 50-km error-free SSMF transmissions have been achieved for the 10-Gb/s 33%-duty-cycle and 67%-duty-cycle CML-RZ- pulses based RZ-DPSK signals, respectively. Later, we extend to demonstrate the scheme of 20-Gb/s RZ pulses generation using CML driven at one-fourth the output pulse rate and investigate the transmission performance of the 20-Gb/s CML-RZ-pulses based RZ-OOK signal. M-ary RZ-DPSK signals generation using CML: M-ary RZ-DPSK is an attractive modulation format in optical fiber long-haul transmission systems, due to the advantages of high receiver sensitivity, increased spectral efficiency, and strong robustness against fiber nonlinearities. In this thesis, we propose and experimentally demonstrate the techniques of RZ-DPSK, ¾-RZ-DQPSK, and RZ-DQPSK signals generation using CML. First, we generate the 10-Gb/s RZ-DPSK signal using CML and pulse carver. It does not require any differential encoder or phase modulator (PM). The CML-based RZ-DPSK signal shows 3-dB higher receiver sensitivity after 70-km SSMF transmission without dispersion compensation and comparable nonlinear tolerance performance, compared with that generated by PM. Next, this proposal is generalized to generate the 10-Gbaud RZ-DQPSK signal using CML and pulse carver. Compared with the complex pre-coding required for the MZM-based RZ-DQPSK transmitter, only a simple exclusive-or (XOR) encoder is needed for that based on CML. Later, we demonstrate the scheme of 10-Gbaud ¾-RZ-DQPSK signal generation using single CML, without the need for external pulse carver. In this new signal format, the symbols with a differential phase shift of 0 remain non-return-to-zero (NRZ), while those with differential phase shifts of 0.5pi, pi, and 1.5pi are RZ. Error-free transmission is realized over 60-km SSMF without optical signal-noise-ratio (OSNR) penalty. Finally, we demonstrate the technique of 10.709-Gbaud RZ-DQPSK signal generation using single CML, w

  16. Lightweight transformer

    SciTech Connect

    Swallom, D.W.; Enos, G.

    1990-05-01

    The technical effort described in this report relates to the program that was performed to design, fabricate, and test a lightweight transformer for Strategic Defense Initiative Organization (SDIO) mission requirements. The objectives of this program were two-fold: (1) design and fabricate a lightweight transformer using liquid hydrogen as the coolant; and (2) test the completed transformer assembly with a low voltage, dc power source. Although the full power testing with liquid helium was not completed, the program demonstrated the viability of the design approach. The lightweight transformer was designed and fabricated, and low and moderate power testing was completed. The transformer is a liquid hydrogen cooled air core transformer that uses thin copper for its primary and secondary windings. The winding mass was approximately 12 kg, or 0.03 kg/kW. Further refinements of the design to a partial air core transformer could potentially reduce the winding mass to as low as 4 or 5 kg, or 0.0125 kg/kW. No attempt was made on this program to reduce the mass of the related structural components or cryogenic container. 8 refs., 39 figs., 2 tabs.

  17. New harmonic generation microscopy techniques based on focal volume modelling

    NASA Astrophysics Data System (ADS)

    Sandkuijl, Daaf

    Nonlinear microscopy has become an indispensable tool in the study of biological systems. It includes many nonlinear contrast mechanisms, each sensitive to different biological structures. However, interpretation of the images generated in nonlinear microscopy is a complex matter due to factors such as the structural complexity of the sample, phase relationships between the excitation beam and the detected signal and the nonlinear interactions in the focal volume of the microscope. This thesis contains a new theoretical and numerical framework that describes the focusing of an excitation beam in a nonlinear microscope, the nonlinear optical interactions with the material in the focal volume, and the resulting nonlinear optical signal in the far field. The framework is the first to include reflection and refraction of the excitation beam and nonlinear signals by an arbitrary number of interfaces in the focal volume, which is especially significant for the interpretation of third harmonic generation (THG). It also uses the chirp-z transform to speed up calculations by orders of magnitude compared to numerical integration techniques. The framework is used to investigate second harmonic generation (SHG) by collagen. Focusing effects alter polarization-dependent SHG measurements of collagen properties compared to the plane wave approximation, and this is verified experimentally. Furthermore, a technique of imaging the far field SHG radiation from collagen fibres is proposed, which can be used to extract the orientation of collagen fibres unambiguously. The framework is then applied to analyze the influence of interfaces on THG. Reflection effects at interfaces significantly affect THG, which leads to the development of a new super-resolution THG imaging technique based on backward-propagating THG. This super-resolution technique is experimentally demonstrated by imaging surface profiles with tens of nanometers resolution, which is the first time that such resolution is obtained in coherent nonlinear microscopy. Therefore, this imaging technique shows promise to become an important tool in high-resolution imaging of (biological) samples. The theoretical and numerical framework provides a foundation for future research on the origin of nonlinear microscopy signals. The new imaging techniques based on this framework have great potential in quantifying fibrillar structures and interfaces in biological samples.

  18. A real-time chirp-coded imaging system with tissue attenuation compensation.

    PubMed

    Ramalli, A; Guidi, F; Boni, E; Tortoli, P

    2015-07-01

    In ultrasound imaging, pulse compression methods based on the transmission (TX) of long coded pulses and matched receive filtering can be used to improve the penetration depth while preserving the axial resolution (coded-imaging). The performance of most of these methods is affected by the frequency dependent attenuation of tissue, which causes mismatch of the receiver filter. This, together with the involved additional computational load, has probably so far limited the implementation of pulse compression methods in real-time imaging systems. In this paper, a real-time low-computational-cost coded-imaging system operating on the beamformed and demodulated data received by a linear array probe is presented. The system has been implemented by extending the firmware and the software of the ULA-OP research platform. In particular, pulse compression is performed by exploiting the computational resources of a single digital signal processor. Each image line is produced in less than 20 ?s, so that, e.g., 192-line frames can be generated at up to 200 fps. Although the system may work with a large class of codes, this paper has been focused on the test of linear frequency modulated chirps. The new system has been used to experimentally investigate the effects of tissue attenuation so that the design of the receive compression filter can be accordingly guided. Tests made with different chirp signals confirm that, although the attainable compression gain in attenuating media is lower than the theoretical value expected for a given TX Time-Bandwidth product (BT), good SNR gains can be obtained. For example, by using a chirp signal having BT=19, a 13 dB compression gain has been measured. By adapting the frequency band of the receiver to the band of the received echo, the signal-to-noise ratio and the penetration depth have been further increased, as shown by real-time tests conducted on phantoms and in vivo. In particular, a 2.7 dB SNR increase has been measured through a novel attenuation compensation scheme, which only requires to shift the demodulation frequency by 1 MHz. The proposed method characterizes for its simplicity and easy implementation. PMID:25749529

  19. Organelle transformation.

    PubMed

    Bhattacharya, Anjanabha; Kumar, Anish; Desai, Nirali; Parikh, Seema

    2012-01-01

    The source of genetic information in a plant cell is contained in nucleus, plastids, and mitochondria. Organelle transformation is getting a lot of attention nowadays because of its superior performance over the conventional and most commonly used nuclear transformation for obtaining transgenic lines. Absence of gene silencing, strong predictable transgene expression, and its application in molecular pharming, both in pharmaceutical and nutraceuticals, are some of many advantages. Other important benefits of utilizing this technology include the absence of transgene flow, as organelles are maternally inherited. This may increase the acceptability of organelle transformation technology in the development of transgenic crops in a wider scale all over the globe. As the need for crop productivity and therapeutic compounds increases, organelle transformation may be able to bridge the gap, thereby having a definite promise for the future. PMID:22610643

  20. Transformative copy

    E-print Network

    Offenhuber, Dietmar

    2008-01-01

    The ability to create an unlimited number of identical copies is a privilege of digital documents. What if that would not be the case, if each copy of a digital file would go along with some sort of transformation? This ...

  1. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGESBeta

    Höppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore »hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  2. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  3. Second Stokes component generation in the SRS of chirped laser pulses

    SciTech Connect

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-05-31

    An experimental investigation was made of optical schemes for the generation of the second Stokes component in the SRS of broadband chirped laser pulses in high-pressure gases. Measurements were made of the energy conversion efficiency and the spatial characteristics of the light beam of the second Stokes component for one- and two-fold focusing of the pump radiation into the gas-filled cell as well as in schemes involving a quartz capillary and two gas-filled cells. The highest energy efficiency of conversion to the second Stokes component was attained in the case of cascade generation in the optical scheme with two pressurised-gas cells. In the SRS in hydrogen in this scheme, the Ti:sapphire laser radiation with a wavelength of 0.79 {mu}m was converted to the 2.3-{mu}m second Stokes component with an efficiency of 8.5%. (nonlinear-optics phenomena)

  4. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    PubMed

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed. PMID:25089381

  5. Short ring cavity swept source based on a highly reflective chirped FBG

    NASA Astrophysics Data System (ADS)

    Stancu, Radu-Florin; Podoleanu, Adrian

    2015-09-01

    An optical akinetic swept source (AKSS) at 1060 nm, comprising a 5 m length fiber ring cavity, a semiconductor optical amplifier (SOA) as gain medium, and a 98% reflective chirped fiber Bragg grating as a dispersive element, is described. Active mode-locking was achieved by directly modulating the current of the SOA with sinusoidal signal of frequency equal to 10 times and 20 times the cavity resonance frequency. In the static regime, linewidths as narrow as 60 pm and a tuning bandwidth of 30 nm were achieved, while a 2 mW output power, without any optical booster, was measured dynamically at a sweep speed of 100 kHz. The axial range of the AKSS was evaluated by scanning through the channeled spectrum of a Mach-Zehnder interferometer.

  6. The Effective CSR Forces on an Energy-Chirped Bunch under Magnetic Compression

    SciTech Connect

    Rui Li

    2007-06-25

    Following our earlier formulation of the coherent synchrotron radiation (CSR) effect on bunch dynamics in magnetic bends, here we investigate the behavior of the effective CSR forces for an energy-chirped Gaussian bunch in the bending plane around full compression, with special care being taken in the incorporation of the retardation relation. Our results show clearly a delayed response of the CSR forces to the compression or lengthening of the bunch length. In addition, around full compression, our results reveal sensitivity of the effective CSR forces on the particles' transverse position, as a consequence of the geometry of particle interaction and retardation in this regime. These results can serve as benchmarks to the numerical simulation of the CSR effects.

  7. Design considerations for a high power, ultrabroadband optical parametric chirped-pulse amplifier.

    PubMed

    Prandolini, M J; Riedel, R; Schulz, M; Hage, A; Höppner, H; Tavella, F

    2014-01-27

    A conceptual design of a high power, ultrabroadband optical parametric chirped-pulse amplifier (OPCPA) was carried out comparing nonlinear crystals (LBO and BBO) for 810 nm centered, sub-7.0 fs pulses with energies above 1 mJ. These amplifiers are only possible with a parallel development of kilowatt-level OPCPA-pump amplifiers. It is therefore important to know good strategies to use the available OPCPA-pump energy efficiently. Numerical simulations, including self- and cross-phase modulation, were used to investigate the critical parameters to achieve sufficient spectral and spatial quality. At high output powers, thermal absorption in the nonlinear crystals starts to degrade the output beam quality. Strategies to minimize thermal effects and limits to the maximum average power are discussed. PMID:24515165

  8. Single grating mirror intracavity stretcher design for chirped pulse regenerative amplification

    NASA Astrophysics Data System (ADS)

    Caracciolo, E.; Kemnitzer, M.; Rumpel, M.; Guandalini, A.; Kienle, F.; Pirzio, F.; Graf, T.; Abdou Ahmed, M.; Agnesi, A.; Aus-der-Au, J.

    2015-02-01

    We demonstrated for the first time, to the best of our knowledge a new intracavity pulse stretching design, employing a single grating-mirror based on a leaky-mode grating-waveguide design. The extremely compact and flexible layout allows for femtosecond pulses to be easily stretched up to nanosecond durations. The stretcher was implemented in a diode-pumped Yb:CALGO regenerative amplifier followed by a standard transmission grating compressor. We demonstrated sub-200 fs long pulses (stretched pulses ? 110 ps) with a maximum energy of 205 ?J at 20 kHz repetition rate. As a proof of the robustness and potential energy scaling of leaky-mode grating-waveguide intracavity stretcher, energies up to 700 ?J and 400 ps long pulses before compression at a lower repetition rate of 10 kHz, have been achieved. A simple model is proposed to investigate the cavity behavior in presence of induced spatial chirp.

  9. Complex, aperiodic random signal modulation on pulse-LFM chirp radar waveform

    NASA Astrophysics Data System (ADS)

    Govoni, Mark A.; Li, Hongbin

    2010-04-01

    In an effort to enhance the security of radar, the plausibility of using a complex, aperiodic random signal to modulate a pulse linear frequency modulation (LFM) or "chirp" radar waveform across both its fast-time and slow-time samples is investigated. A non-conventional threat is considered when illustrating the effectiveness of the proposed waveform as an electronic counter-countermeasure (ECCM). Results are derived using stretch processing and are assessed using the receiver cross-correlation function with a consideration for the unmodulated case as a basis for comparison. A tailored radar ambiguity function is also included in the analysis, and is used to demonstrate how the proposed waveform possesses an ideal characteristic suitable for combating today's electronic warfare (EW) threats while preserving its inherent functionality to detect targets.

  10. Population transfer in the Na s-p Rydberg ladder by a chirped microwave pulse

    SciTech Connect

    Maeda, H.; Gurian, J. H.; Gallagher, T. F.

    2011-12-15

    While quantum defects of nl Rydberg states of Na with l{>=}2 are nearly equal to zero, the quantum defects of ns and np states of Na are quite large due to the finite size of its ionic core. Since the Na ns and np states are energetically isolated from the higher angular momentum states of the same n, we can think of the Na ns and np Rydberg states as a specific example of a simple multilevel ladder system consisting of only alternating s and p angular momentum states. Here we report that population transfer in the Na s-p Rydberg ladder can be effectively achieved using a frequency-chirped microwave pulse, which couples only s and p states under suitable conditions.

  11. Direct Digital Synthesis Chirped Pulse Microwave Spectrometers for the Classroom and Research

    NASA Astrophysics Data System (ADS)

    Blake, Geoffrey; Carroll, Brandon; Finneran, Ian A.

    2015-06-01

    By combining the rapid development in direct digital synthesis circuitry and Field Programmable Gate Arrays (FPGAs) coupled to fast A/D samplers, it is possible to construct high performance chirped pulse microwave spectrometers suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The technology is highly tailorable, and sufficiently robust that extensive experimentation is feasible in the teaching environment. The time domain nature of the experiment has strong ties to concepts in Nuclear Magnetic Resonance (NMR) widely discussed in undergraduate curricula, and the software environment for the instrument control and spectral assignment can be integrated with ab initio quantum chemistry predictions of molecular structure and dynamics.

  12. A chirped-pulse regenerative-amplifier FEL for the gamma-gamma collider

    SciTech Connect

    Chan, K.C.D.; Goldstein, J.C.; Nguyen, D.C.; Takeda, H.

    1995-05-01

    During a Workshop on Gamma-Gamma Colliders in Lawrence Berkeley Laboratory, it was pointed out that an 1-{mu}m laser that can produce 1-J, 1-ps pulses at a few hundred hertz is required. With high-power scalability and ease of formatting, an FEL can be a promising candidate for such a laser. The authors propose an FEL scheme based on chirped-pulsed regenerative amplification to achieve this high peak-power laser. The 1-ps pulse of a solid-state laser will be stretched, amplified, and recompressed to achieve the high peak power. The system is relatively simple and consists of mostly components that have already been demonstrated. This paper will describe the proposal and the important issues of such a scheme.

  13. Analysis of 808nm centered optical parametric chirped pulse amplifier based on DKDP crystals

    NASA Astrophysics Data System (ADS)

    Sun, Meizhi; Cui, Zijian; Kang, Jun; Zhang, Yanli; Zhang, Junyong; Cui, Ying; Xie, Xinglong; Liu, Cheng; Liu, Dean; Zhu, Jianqiang; Lin, Zunqi

    2015-08-01

    The non-collinear phase-matching in Potassium Dideuterium Phosphate (DKDP) crystal is analyzed in detail with signal pulse of center wavelength at 808 nm and pump pulse of wavelength at 526.5 nm. By numerical analysis, parametric bandwidths for various DKDP crystals of different deuteration level are presented. In particularly for DKDP crystals of 95% deuteration level, the optimal non-collinear angles, phase-matching angles, parametric bandwidths, walk-off angles, acceptance angles, efficiency coefficients, gain and gain bandwidths are provided based on the parameter concepts. Optical parametric chirped pulse amplifier based on DKDP crystal is designed and the output characteristics are simulated by OPA coupled wave equations for further discuss. It is concluded that DKDP crystals higher than 90% deuteration level can be utilized in ultra-short high power laser systems with compressed pulses broader than 30fs. The disadvantage is that the acceptance angles are small, increasing the difficulty of engineering regulation.

  14. Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation.

    PubMed

    Ochi, Yoshihiro; Nagashima, Keisuke; Maruyama, Momoko; Tsubouchi, Masaaki; Yoshida, Fumiko; Kohno, Nanase; Mori, Michiaki; Sugiyama, Akira

    2015-06-01

    We have developed a 1 kHz repetition picosecond laser system dedicated for intense terahertz (THz) pulse generation. The system comprises a chirped pulse amplification laser equipped with a Yb:YAG thin-disk amplifier. At room temperature, the Yb:YAG thin-disk regenerative amplifier provides pulses having energy of over 10 mJ and spectral bandwidth of 1.2 nm. The pulse duration achieved after passage through a diffraction grating pair compressor was 1.3 ps. By employing this picosecond laser as a pump source, THz pulses having a peak frequency of 0.3 THz and 4 µJ of energy were generated by means of optical rectification in an Mg-doped LiNbO3 crystal. PMID:26072862

  15. A Web Architecture to Geographically Interrogate CHIRPS Rainfall and eMODIS NDVI for Landuse Change

    NASA Astrophysics Data System (ADS)

    Burks, J. E.; Limaye, A. S.

    2014-12-01

    Monitoring of rainfall and vegetation over the continent of Africa is important for assessing the status of crop health and agriculture, along with long-term changes in land use change. These issues can be addressed through examination of long-term precipitation (rainfall) data sets and remote sensing of land surface vegetation and land use types. Two products have been used previously to address these goals: the Climate Hazard Group Infrared Precipitation with Stations (CHIRPS) rainfall data, and multi-day composites of Normalized Difference Vegetation Index (NDVI) from the FEWS NET's eMODIS product. Combined, these are very large data sets that require unique tools and architecture to facilitate a variety of data analysis methods or data exploration by the end user community. To address these needs, a web-enabled system has been developed to allow end-users to interrogate CHIRPS rainfall and eMODIS NDVI data over the continent of Africa. The architecture allows end-users to use custom defined geometries, or the use of predefined political boundaries in their interrogation of the data. The massive amount of data interrogated by the system allows the end-users with only a web browser to extract vital information in order to investigate land use change and its causes. The system can be used to generate daily, monthly and yearly averages over a geographical area and range of dates of interest to the user. It also provides analysis of trends in precipitation or vegetation change for times of interest. The data provided back to the end-user is displayed in graphical form and can be exported for use in other, external tools. The development of this tool has significantly decreased the investment and requirements for end-users to use these two important datasets, while also allowing the flexibility to the end-user to limit the search to the area of interest.

  16. Wave Effects in Gravitational Lensing of Gravitational Waves from Chirping Binaries

    E-print Network

    Ryuichi Takahashi; Takashi Nakamura

    2003-06-11

    In the gravitational lensing of gravitational waves, the wave optics should be used instead of the geometrical optics when the wavelength $\\lambda$ of the gravitational waves is longer than the Schwarzschild radius of the lens mass $M_L$. For the gravitational lensing of the chirp signals from the coalescence of the super massive black holes at the redshift $z_S\\sim 1$ relevant to LISA, the wave effects become important for the lens mass smaller than $\\sim 10^8 M_{\\odot}$. For such cases, we compute how accurately we can extract the mass of the lens and the source position from the lensed signal. We consider two simple lens models: the point mass lens and the SIS (Singular Isothermal Sphere). We find that the lens mass and the source position can be determined within $\\sim 0.1% [(S/N)/10^3]^{-1}$ for the lens mass larger than $10^8 M_{\\odot}$ and $\\gsim 10% [(S/N)/10^3]^{-1}$ for the lens mass smaller than $10^7 M_{\\odot}$ due to the diffraction effect, where $(S/N)$ is the signal to noise ratio of the unlensed chirp signals. For the SIS model, if the source position is outside the Einstein radius, only a single image exists in the geometrical optics approximation so that the lens parameters can not be determined. While in the wave optics cases we find that the lens mass can be determined even for $M_L < 10^8 M_{\\odot}$. For the point mass lens, one can extract the lens parameters even if the source position is far outside the Einstein radius. As a result, the lensing cross section is an order of magnitude larger than that for the usual strong lensing of light.

  17. Ultrafast tunable chirped phase-change metamaterial with a low power.

    PubMed

    Cao, Tun; Wei, Chenwei; Mao, Libang

    2015-02-23

    We numerically demonstrate an all-optical tunable dual-band double negative (DNG) index chirped metamaterial (MM) in the mid-infrared (M-IR) region. This MM possesses an ultrafast and significant tunability under low pump light power, realized by combining phase change material (PCM). It has a configuration of elliptical nanohole array (ENA) penetrating through metal/PCM/metal (Au-Ge(2)Sb(2)Te(5)-Au) films. Here, we consider the case when the chirp is introduced by displacing the positions of the ENA along the short axis of the elliptical apertures inside the primitive cell, which can achieve multiple internal surface-plasmon polariton (SPP) modes at the inner metal-dielectric interfaces of the structure and thus providing a dual-band negative index with simultaneous negative permittivity and permeability. The influence of amorphous and crystalline states of Ge(2)Sb(2)Te(5) on the effective optical parameters of the structure is analyzed. Switching between these states provides a large wavelength shift of the structure's effective optical parameters. A photothermal model is used to study the temporal variation of the temperature of the Ge(2)Sb(2)Te(5) layer to show a potential to switch the phase of Ge(2)Sb(2)Te(5) by optical heating. Generation of the tunable dual-band DNG index presents clear advantages as it possesses a fast tuning time of 0.4 ns, a low pump light intensity of 7.3?W/?m(2), and a large tunable wavelength range of 978 nm. We expect that our design may have potential applications in actively tunable multi-band nanodevices. PMID:25836447

  18. Signal Processing Techniques for a Planetary Subsurface Radar Onboard Satellite

    NASA Astrophysics Data System (ADS)

    Yagitani, S.; Ishikawa, T.; Nagano, I.; Kojima, H.; Matsumoto, H.

    2001-12-01

    We are developing a satellite-borne HF ( ~ 10 MHz) radar system to be used to investigate planetary subsurface layered structures. Before deciding the design of a high-performance subsurface radar system, in this study we calculate the propagation and reflection characteristics of various HF radar pulses through subsurface layer models, in order to examine the wave forms and frequencies of the radar pulses suitable to discriminate and pick up weak subsurface echoes buried in stronger surface reflection and scattering echoes. In the numerical calculations the wave form of a transmitted radar pulse is first Fourier-transformed into a number of elementary plane waves having different frequencies, for each of which the propagation and reflection characteristics through subsurface layer models are calculated by a full wave analysis. Then the wave form of the reflected radar echo is constructed by synthesizing all of the elementary plane waves. As the transmitted pulses, we use several different types of wave form modulation to realize the radar pulse compression to improve the signal-to-noise (S/N) ratio and time resolution of the subsurface echoes: the linear FM chirp (conventional), the M (maximal-length) sequence and the complementary sequences. We will discuss the characteristics of these pulse compression techniques, such as the improvement in the S/N ratio and the time resolution to identify the subsurface echoes. We will also present the possibility of applying the Multiple Signal Classification (MUSIC) method to further improve both the S/N ratio and time resolution to extract the weaker subsurface echoes.

  19. Transformation based endorsement systems

    NASA Technical Reports Server (NTRS)

    Sudkamp, Thomas

    1988-01-01

    Evidential reasoning techniques classically represent support for a hypothesis by a numeric value or an evidential interval. The combination of support is performed by an arithmetic rule which often requires restrictions to be placed on the set of possibilities. These assumptions usually require the hypotheses to be exhausitive and mutually exclusive. Endorsement based classification systems represent support for the alternatives symbolically rather than numerically. A framework for constructing endorsement systems is presented in which transformations are defined to generate and update the knowledge base. The interaction of the knowledge base and transformations produces a non-monotonic reasoning system. Two endorsement based reasoning systems are presented to demonstrate the flexibility of the transformational approach for reasoning with ambiguous and inconsistent information.

  20. Efficient implementation of hough transform on multiprocessors 

    E-print Network

    Datta, Abhijit

    1994-01-01

    The Hough Transform (HT) is known to be a powerful technique in shape recognition and motion analysis. On shared-memory multi-processors, Image Partitioning and Parameter Partitioning are data partitioning techniques which give rise to two different...

  1. Fourier Transform Pairs The Fourier transform transforms a function of

    E-print Network

    Masci, Frank

    Fourier Transform Pairs The Fourier transform transforms a function of time, f(t), into a function of frequency, F(s): F {f(t)}(s) = F(s) = Z - f(t)e- j2st dt. The inverse Fourier transform transforms a func. The inverse Fourier transform of the Fourier trans- form is the identity transform: f(t) = Z - Z - f()e- j2s

  2. Steganograpic image transformation

    NASA Astrophysics Data System (ADS)

    Takano, Shuichi; Tanaka, Kiyoshi; Sugimura, Tatsuo

    1999-04-01

    Due to the drastic development of Internet, it has recently been a critical problem to secure multimedia contents against illegal use. In order to solve this problem, data hiding has drawn great attention as a promising method that plays a complementary role to conventional cryptographic techniques. The idea of this approach is found in ancient Greek literature as 'Steganography,' which means a 'covered writing' for special secret communication. This paper presents a new method for steganographic image transformation, which is different from conventional data hiding techniques. The transformation is achieved in frequency domain and the concept of Fourier filtering method is used. An input image is transformed into a fractal image, which can be used in Computer Graphic (CG) applications. Unauthorized users will not notice the 'secret' original image behind the fractal image, but even if they know that there is a hidden image it will be difficult for them to estimate the original image from the transformed image. Only authorized users who know the proper keys can regenerate the original image. The proposed method is applicable not only as a security tool for multimedia contents on web pages but also as a steganographic secret communication method through fractal images.

  3. Microbial transformation of benzosampangine.

    PubMed

    Orabi, K Y; Clark, A M; Hufford, C D

    2000-03-01

    Microbial transformation studies of the synthetic antifungal alkaloid benzosampangine (1) have revealed that 1 is metabolized by a number of microorganisms. Using a standard two-stage fermentation technique Absidia glauca (ATCC 22752), Cunninghamella blakesleeana (ATCC 8688a), Cunninghamella species (NRRL 5695), Fusarium solani f. sp. cucurbitae (CSIH #C-5), and Rhizopogon species (ATCC 36060) each produced a beta-glucopyranose conjugate of benzosampangine (2). The identity of 2 was established on the basis of spectroscopic data. PMID:10757729

  4. Hadamard transform imaging

    SciTech Connect

    Morris, M.D.

    1992-01-01

    We have constructed a Hadamard transform Raman microscopic imaging system, and have developed it to a high definition (64K pixel) technique. We have demonstrated multispectral Raman imaging and developed the first three-dimensional (digital confocal) Raman imaging. We have explored the systematic errors in Hadamard multiplexing techniques and developed corrections. We have used our Raman microscope techniques to explore defect distributions on graphite electrodes and damage effects on SERS-activated silver electrodes. We have used the microprobe capabilities of our instrument to investigate the kinetics of polyacrylamide formation in electrolysis capabilities. We have worked closely with a manufacture of holographic displays to develop and incorporate holographic filters and holographic beam splitters into Raman spectrographs and microscopes. Finally, we have developed Hadamard multiplexing techniques for densitometric measurements of protein or nucleic acid blots.

  5. A Primer of Fourier Transform NMR.

    ERIC Educational Resources Information Center

    Macomber, Roger S.

    1985-01-01

    Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)

  6. On Oblique Quasi-Procrustean Factor Transformation.

    ERIC Educational Resources Information Center

    Hakstian, A. Ralph

    A new general approach to the problem of oblique factor transformation is identified and presented as an alternative to the common "blind" transformation techniques currently available. In addition, techniques for implementing such an approach are developed. The first section of the paper contains a brief review of the procrustes problem. The next…

  7. Transformative Assessment

    ERIC Educational Resources Information Center

    Popham, W. James

    2008-01-01

    If you're at all skeptical that "formative assessment" is just another buzzword, then here's a book that will change the way you think about the role that formative assessment can play in transforming education into a more powerful and positive process. Renowned expert W. James Popham clarifies what formative assessment really is, why it's right…

  8. Transformation & Metamorphosis

    ERIC Educational Resources Information Center

    Lott, Debra

    2009-01-01

    The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…

  9. High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures.

    PubMed

    Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana

    2014-09-22

    A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density. PMID:25321756

  10. Chirped dissipative ion-cyclotron solitons in the Earth's low-altitude ionospheric plasma with two ion species

    SciTech Connect

    Kovaleva, I. Kh.

    2013-03-15

    Conditions for the excitation of small-scale nonlinear ion-cyclotron gradient-drift dissipative structures in cold ionospheric plasma are considered. The solution for the wave electric field in this structure in the form of a chirped soliton satisfying the equation of the Ginzburg-Landau type is derived in the electrostatic approach. The dissipative structure as a whole represents the chirped soliton accompanied by the comoving quasineutral plasma hump. The possibility of the excitation of two modes of this type (the high- and low-frequency ones) in plasma containing light and heavy ion impurities is considered. The role of electromagnetic corrections and the possible contribution introduced by these structures to the transport processes in the ionosphere are discussed.

  11. Development of a hybrid monitoring strategy to the deposition of chirped mirrors by plasma-ion assisted electron evaporation

    NASA Astrophysics Data System (ADS)

    Stenzel, Olaf; Wilbrandt, Steffen; Kaiser, Norbert; Fasold, Dieter

    2008-09-01

    We report on a hybrid monitoring strategy, which makes use of quartz crystal monitoring and broadband optical monitoring data in application to the deposition of chirped mirrors for the near infrared spectral region. We present a short description of the basic monitoring concept, the experimental setup, and the data elaboration facilities of the developed optical monitoring system OptiMon. Although being flexible enough to be implemented into different types of deposition system, we focus here on the application of our monitoring system for coating preparation with Advanced Plasma Source (APS) assisted electron beam evaporation. Chirped mirrors have been prepared using SiO2 and Ta2O5 as low and high index materials, respectively. The layers are characterized by in-situ transmission spectroscopy, ex-situ transmission and reflection spectroscopy, and white light interferometry to determine the group delay dispersion GDD. Basing on characterization results, we demonstrate and discuss the relative benefits of the developed monitoring strategy.

  12. Robust quantum storage and retrieval in a hybrid system by controllable Stark-chirped rapid adiabatic passages

    NASA Astrophysics Data System (ADS)

    Yu, Long-Bao; Feng, Jun-Sheng; Dong, Ping; Li, Da-Chuang; Cao, Zhuo-Liang

    2015-09-01

    Quantum memory is one of the basic building blocks in large-scale quantum computers. In the paper, we propose a scheme to realize a quantum memory in a hybrid system by controllable Stark-chirped rapid adiabatic passages. In the hybrid system, by taking advantage of long coherence times in microscopic system, which is a two-level system naturally embedded in a current-biased Josephson junction, individual two-level system can be regarded as a quantum memory. The scheme of storage and retrieval is realized by Stark-chirped rapid adiabatic passages, which is insensitive to the details of the applied adiabatic pulses. In numerical investigation of the storage process using adiabatic master equations, we demonstrate that high-fidelity quantum memory can be achieved under practical noises. Finally, the experimental feasibility and performance are discussed based on the current experimental status.

  13. Direct observation of ligand transfer and bond formation in cytochrome c oxidase by using mid-infrared chirped-pulse upconversion

    PubMed Central

    Treuffet, Johanne; Kubarych, Kevin J.; Lambry, Jean-Christophe; Pilet, Eric; Masson, Jean-Baptiste; Martin, Jean-Louis; Vos, Marten H.; Joffre, Manuel; Alexandrou, Antigoni

    2007-01-01

    We have implemented the recently demonstrated technique of chirped-pulse upconversion of midinfrared femtosecond pulses into the visible in a visible pump–midinfrared probe experiment for high-resolution, high-sensitivity measurements over a broad spectral range. We have succeeded in time-resolving the CO ligand transfer process from the heme Fe to the neighboring CuB atom in the bimetallic active site of mammalian cytochrome c oxidase, which was known to proceed in <1 ps, using the full CO vibrational signature of Fe–CO bond breaking and CuB–CO bond formation. Our differential transmission results show a delayed onset of the appearance of the CuB-bound species (200 fs), followed by a 450-fs exponential rise. Trajectories calculated by using molecular-dynamics simulations with a Morse potential for the CuB–C interaction display a similar behavior. Both experimental and calculated data strongly suggest a ballistic contribution to the transfer process. PMID:17895387

  14. Hybrid digital-optical correlation employing a chirp-encoded simulated-annealing-based rotation-invariant and distortion-tolerant filter.

    PubMed

    Munshi, Soumika; Beri, V K; Gupta, A K

    2007-07-10

    The simulated annealing (SA) algorithm based on entropy optimization is a technique of synthesizing distortion-invariant matched filters capable of discriminating very similar images. The synthesis of rotation-invariant filters using modified SA-based filter equations and their tolerance to distortions are studied. The filters are trained with true class images rotated in-plane at 3 degrees intervals between 0 degrees and 360 degrees . A total of seven filters are required over the whole range for both CCD or thermal images. Optical correlation in a hybrid digital-optical correlator results in an unwanted zero-order dc along with two first-order (+/-1) correlation peaks. A chirp function multiplied with the filter separates out the three peaks to three different planes, and only one peak in focus is captured in a camera. The performance of the modified SA-based filter has been studied in comparison to the conventional SA filter as well as with other filters. PMID:17579686

  15. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using Fourier transform infrared spectroscopy and small-angle X-ray scattering techniques

    SciTech Connect

    Chang, C.L.; Fogler, H.S. )

    1994-06-01

    In the preceding paper in this issue, the influence of the chemical structure of a series of alkylbenzene-derived amphiphiles on the stabilization of asphaltenes was described. In this paper, we present the results of using Fourier transform infrared (FTIR) spectroscopy and small-angle X-ray scattering (SAXS) techniques to study the interaction between asphaltenes and two alkylbenzene-derived amphiphiles, p-alkylphenol and p-alkylbenzenesulfonic acid. FTIR spectroscopy was used to characterize and quantify the acid-base interactions between asphaltenes and amphiphiles. It was found that asphaltenes could hydrogen-bond to p-dodecylphenol amphiphiles. The hydrogen-bonding capacity of asphaltenes was estimated to be 1.6-2.0 mmol/g of asphaltene. On the other hand, the FTIR spectroscopic study indicated that asphaltenes had a complicated acid-base interaction with p-dodecylbenzenesulfonic acid (DBSA) amphiphiles with a stoichiometry of about 1.8 mmol of DBSA/g of asphaltene. The UV/vis spectroscopic study suggested that asphaltenes and DBSA could associate into large electronic conjugated complexes. Physical evidence of the association between asphaltenes and amphiphiles was obtained by SAXS measurements. 27 refs., 10 figs.

  16. All-fibre high-energy chirped-pulse laser in the 1 {mu}m range

    SciTech Connect

    Kotov, L V; Likhachev, M E; Bubnov, M M; Lipatov, D S; Gur'yanov, Aleksei N

    2013-03-31

    We report an all-fibre 1030-nm ultrashort (100 ps with the possibility of compression to 430 fs) chirped pulse laser configuration based on a seed oscillator that includes a semiconductor saturable absorber mirror, and demonstrate amplification of its pulses to an energy of 0.6 {mu}J, with the possibility of pulse compression to 650 fs. (extreme light fields and their applications)

  17. Dissipative ion-cyclotron oscillitons in a form of solitons with chirp in Earth's low-altitude ionosphere

    SciTech Connect

    Kovaleva, I. Kh.

    2012-10-15

    In this paper, we consider theoretically nonlinear ion-cyclotron gradient-drift dissipative structures (oscillitons) in low ionospheric plasmas. Similar to Nonlinear Optics and Condensed Matter Physics, the Ginzburg-Landau equation for the envelope of electric wave fields is derived, and solutions for oscillitons in the form of solitons with chirp are examined. The whole dissipative structure constitutes a soliton with a moving charge-neutral density hump. Conditions for excitation and properties of the structures are considered.

  18. Rainbow Fourier Transform

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.

    2012-01-01

    We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).

  19. 496 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 2, FEBRUARY 2009 Chirped Microwave Pulse Compression Using

    E-print Network

    Yao, Jianping

    Microwave Pulse Compression Using a Photonic Microwave Filter With a Nonlinear Phase Response Chao Wang using a pho- tonic microwave filter with nonlinear phase response to implement matched filtering detection. A detailed theoret- ical analysis on the photonic microwave filter design and the lin- early

  20. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    USGS Publications Warehouse

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  1. Optimization of detonation velocity measurements using a chirped fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Barbarin, Y.; Lefrançois, A.; Zaniolo, G.; Chuzeville, V.; Jacquet, L.; Magne, S.; Luc, J.; Osmont, A.

    2015-05-01

    Dynamic measurements of detonation velocity profiles are performed using long Chirped Fiber Bragg Gratings (CFBGs). Such thin probes, with a diameter of typically 150 ?m, are inserted directly into a high explosive sample or simply positioned laterally. During the detonation, the width of the reflected optical spectrum is continuously reduced by the propagation of the wave-front, which physically shortens the CFBG. The reflected optical intensity delivers a ramp down signal type, which is directly related to the detonation velocity profile. Experimental detonation velocity measurements were performed on the side of three different high explosives (TNT, B2238 and V401) in a bare cylindrical stick configuration (diameter: 2 inches, height: 10 inches). The detonation velocity range covered was 6800 to 9000 m/s. The extraction of the detonation velocity profiles requires a careful calibration of the system and of the CFBG used. A calibration procedure was developed, with the support of optical simulations, to cancel out the optical spectrum distortions from the different optical components and to determine the wavelength-position transfer function of the CFBG in a reproducible way. The 40-mm long CFBGs were positioned within the second half of the three high explosive cylinders. The excellent linearity of the computed position-time diagram confirms that the detonation was established for the three high explosives. The fitted slopes of the position-time diagram give detonation velocity values which are in very good agreement with the classical measurements obtained from discrete electrical shorting pins.

  2. Design of the chirped multilayer mirrors in extreme ultraviolet region for ultrafast applications

    NASA Astrophysics Data System (ADS)

    Wang, Fengli; Liu, Lei; Zhu, Jingtao; Zhang, Zhong; Li, Wenbin; Wang, Zhanshan; Chen, Lingyan

    2010-10-01

    Chirped Mo/Si multilayer mirrors used in 13-17nm region have been designed using analytical approach based on the combination of genetic algorithm and simplex algorithm. The Cauchy equation and the polynomial expression were used to fit the real part and the imaginary part of the optical constants of Mo and Si in the wavelength region of 12.8-17.2nm, respectively. The reflectivity, reflective phase, group delay and group delay dispersion of the multilayer were calculated based on the Fresnel iterative equations. The initial structure of the multilayer was obtained by using the genetic algorithm, and the final structure of the mirror was optimized by using the simplex algorithm. We got the different multilayer mirrors for the target GDD of -2800 as2, -3600 as2, and -6500 as2. For these three multilayer mirrors, the average reflectivities in the wavelength range of 13-17 nm are 7.00+/- 0.08 %, 5.99 +/-0.05 %, and 6.00+/-0.05 %, respectively. And the average GDD in the same wavelength range are -2793.22+/-104.00 as2,-3597.44+/-79.06 as2, and - 6498.13+/-59.96 as2. In addition, the effects of the interface roughness on the reflectivity and the phase were discussed. It is found that the reflectivity is sensitive to the interface roughness, but the phase is insensitive.

  3. Design of the chirped multilayer mirrors in extreme ultraviolet region for ultrafast applications

    NASA Astrophysics Data System (ADS)

    Wang, Fengli; Liu, Lei; Zhu, Jingtao; Zhang, Zhong; Li, Wenbin; Wang, Zhanshan; Chen, Lingyan

    2011-02-01

    Chirped Mo/Si multilayer mirrors used in 13-17nm region have been designed using analytical approach based on the combination of genetic algorithm and simplex algorithm. The Cauchy equation and the polynomial expression were used to fit the real part and the imaginary part of the optical constants of Mo and Si in the wavelength region of 12.8-17.2nm, respectively. The reflectivity, reflective phase, group delay and group delay dispersion of the multilayer were calculated based on the Fresnel iterative equations. The initial structure of the multilayer was obtained by using the genetic algorithm, and the final structure of the mirror was optimized by using the simplex algorithm. We got the different multilayer mirrors for the target GDD of -2800 as2, -3600 as2, and -6500 as2. For these three multilayer mirrors, the average reflectivities in the wavelength range of 13-17 nm are 7.00+/- 0.08 %, 5.99 +/-0.05 %, and 6.00+/-0.05 %, respectively. And the average GDD in the same wavelength range are -2793.22+/-104.00 as2,-3597.44+/-79.06 as2, and - 6498.13+/-59.96 as2. In addition, the effects of the interface roughness on the reflectivity and the phase were discussed. It is found that the reflectivity is sensitive to the interface roughness, but the phase is insensitive.

  4. Single-grating-mirror intracavity stretcher design for chirped pulse regenerative amplification.

    PubMed

    Caracciolo, E; Kemnitzer, M; Rumpel, M; Guandalini, A; Pirzio, F; Kienle, F; Graf, T; Abdou Ahmed, M; Aus der Au, J; Agnesi, A

    2015-04-01

    We report for the first time, to the best of our knowledge, an innovative design concept for intracavity pulse stretching in a regenerative amplifier, employing a single "grating-mirror" based on a leaky-mode grating-waveguide design. The very compact and flexible layout allows for femtosecond pulses to be in principle easily stretched up to nanosecond durations. The design has been tested in a diode-pumped Yb:CALGO regenerative amplifier followed by a standard transmission grating compressor. Sub-200-fs pulses (stretched pulses ?110??ps) with 205-?J energy at 20-kHz repetition rate have been demonstrated. In order to prove the robustness and potential for energy scaling of leaky-mode grating-waveguide intracavity stretcher, we generated stretched pulses with energies of up to ?700???J (400-ps long) at a lower repetition rate of 10 kHz. A simple model is proposed for the study of the cavity in presence of induced spatial chirp. PMID:25831377

  5. Hamlet's Transformation.

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    1997-12-01

    William Shakespeare's Hamlet has much evidence to suggest that the Bard was aware of the cosmological models of his time, specifically the geocentric bounded Ptolemaic and Tychonic models, and the infinite Diggesian. Moreover, Shakespeare describes how the Ptolemaic model is to be transformed to the Diggesian. Hamlet's "transformation" is the reason that Claudius, who personifies the Ptolemaic model, summons Rosencrantz and Guildenstern, who personify the Tychonic. Pantometria, written by Leonard Digges and his son Thomas in 1571, contains the first technical use of the word "transformation." At age thirty, Thomas Digges went on to propose his Perfit Description, as alluded to in Act Five where Hamlet's age is given as thirty. In Act Five as well, the words "bore" and "arms" refer to Thomas' vocation as muster-master and his scientific interest in ballistics. England's leading astronomer was also the father of the poet whose encomium introduced the First Folio of 1623. His oldest child Dudley became a member of the Virginia Company and facilitated the writing of The Tempest. Taken as a whole, such manifold connections to Thomas Digges support Hotson's contention that Shakespeare knew the Digges family. Rosencrantz and Guildenstern in Hamlet bear Danish names because they personify the Danish model, while the king's name is latinized like that of Claudius Ptolemaeus. The reason Shakespeare anglicized "Amleth" to "Hamlet" was because he saw a parallel between Book Three of Saxo Grammaticus and the eventual triumph of the Diggesian model. But Shakespeare eschewed Book Four, creating this particular ending from an infinity of other possibilities because it "suited his purpose," viz. to celebrate the concept of a boundless universe of stars like the Sun.

  6. Transforming the optical landscape

    NASA Astrophysics Data System (ADS)

    Pendry, J. B.; Luo, Yu; Zhao, Rongkuo

    2015-05-01

    Electromagnetism provides us with some of the most powerful tools in science, encompassing lasers, optical microscopes, magnetic resonance imaging scanners, radar, and a host of other techniques. To understand and develop the technology requires more than a set of formal equations. Scientists and engineers have to form a vivid picture that fires their imaginations and enables intuition to play a full role in the process of invention. It is to this end that transformation optics has been developed, exploiting Faraday’s picture of electric and magnetic fields as lines of force, which can be manipulated by the electrical permittivity and magnetic permeability of surrounding materials. Transformation optics says what has to be done to place the lines of force where we want them to be.

  7. Rotary Transformer

    NASA Technical Reports Server (NTRS)

    McLyman, Colonel Wm. T.

    1996-01-01

    None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.

  8. Molecular Structure and Chirality Detection by Fourier Transform Microwave Spectroscopy.

    PubMed

    Lobsiger, Simon; Perez, Cristobal; Evangelisti, Luca; Lehmann, Kevin K; Pate, Brooks H

    2015-01-01

    We describe a three-wave mixing experiment using time-separated microwave pulses to detect the enantiomer-specific emission signal of the chiral molecule using Fourier transform microwave (FTMW) spectroscopy. A chirped-pulse FTMW spectrometer operating in the 2-8 GHz frequency range is used to determine the heavy-atom substitution structure of solketal (2,2-dimethyl-1,3-dioxolan-4-yl-methanol) through analysis of the singly substituted (13)C and (18)O isotopologue rotational spectra in natural abundance. A second set of microwave horn antennas is added to the instrument design to permit three-wave mixing experiments where an enantiomer-specific phase of the signal is observed. Using samples of R-, S-, and racemic solketal, the properties of the three-wave mixing experiment are presented, including the measurement of the corresponding nutation curves to demonstrate the optimal pulse sequence. PMID:26263113

  9. Nonlinear Transformations and Filtering Theory for Space Operations 

    E-print Network

    Weisman, Ryan Michael 1984-

    2012-11-19

    function is not Gaussian or cannot be completely characterized by the rst two statistical moments, the debiased solution could lead to a biased estimate. The transformation of variables technique [2] allows for exact mapping of the probability density... Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Transformation of Variables Technique . . . . . . . . . . . . . . . . . 47 vii 3.4.1 Transformation of Variables Procedure . . . . . . . . . . . . . 50 3.4.2 Comparison...

  10. Transformational leadership.

    PubMed

    Marlow, D L

    1996-01-01

    In these uncertain times in the healthcare industry, administrators are asked to do more with less time and resources. Because of the extended roles they are playing in today's organizations, radiology administrators are looked upon as agents of change. What leadership skills do they need in this turbulent and uncertain healthcare environment? What are the trait's of tomorrow's leaders? The transformational leader is the one who will guide us through this changing healthcare environment. Several behavioral patterns emerge as important traits for tomorrow's leaders to have-individual consideration, intellectual stimulation and charisma. Tomorrow's leader must view each person as an individual, showing genuine concern and belief in each person's ability to perform. Transformational leaders stimulate others by encouraging them to be curious and try new ideas. The final characteristic, charisma, is the ability to inspire others. Luckily, leaders are made, not born: today's leaders can learn to be responsive, to draw out new ideas from employees, and to communicate self-esteem, energy and enthusiasm. PMID:10163135

  11. Control of the high-order harmonics cutoff and attosecond pulse generation through the combination of a chirped fundamental laser and a subharmonic laser field

    SciTech Connect

    Wu Jie; Zhang Gangtai; Xia Changlong; Liu Xueshen

    2010-07-15

    We propose a method to generate an isolated attosecond (as) pulse in combination with a chirped fundamental laser field (5 fs, 800 nm) and a subharmonic laser field (12 fs, 1600 nm). It is shown that, for the case of the chirped parameter {beta}=0.25, not only is the efficiency of the extended harmonics enhanced, but also an ultrabroad supercontinuum is formed in the second plateau. For the case of {beta}=0.65, an ultrabroad supercontinuum spectrum with the width of about 1670 eV can be observed. Furthermore, due to the introduction of chirped pulse, the short quantum trajectory is enhanced, and the long one is suppressed. By superposing a properly selected range of the harmonic spectrum in the continuum region, an intense isolated 38-as pulse is generated.

  12. Flat-top picosecond pulses generated by chirped spectral modulation from a Nd:YLF regenerative amplifier for pumping few-cycle optical parametric amplifiers.

    PubMed

    Mecseki, Katalin; Bigourd, Damien; Patankar, Siddharth; Stuart, Nicholas H; Smith, Roland A

    2014-04-01

    In this paper we present an optically synchronized Nd:YLF regenerative amplifier optimized for use as a preamplifier in a few-cycle optical parametric chirped pulse amplification pump laser. In the pump amplification process we employ a combination of spectral modulation and chirping in order to control and optimize the temporal shape of the pulses. We report on a comparative study of two methods for generating near-flat-top or custom real-time variable-shaped pump pulses using either controlled chirp and shaping of the spectrum of the pulses seeding a regenerative amplifier or intracavity spectral filtering to broaden the gain bandwidth of the system. We show that in addition to minimizing gain narrowing and B-integral, the efficiency of the cascaded nonlinear processes of the parametric amplifiers can be increased. PMID:24787185

  13. Bone-demineralization diagnosis in a bone-tissue-skin matrix using the pulsed-chirped photothermal radar

    NASA Astrophysics Data System (ADS)

    Kaiplavil, Sreekumar; Mandelis, Andreas

    2012-02-01

    A chirped pulsed photothermal radiometric radar is introduced for the diagnosis of biological samples, especially bones with tissue and skin overlayers. The constraints imposed by the laser safety (maximum permissible exposure, MPE) ceiling on pump laser energy and the strong attenuation of thermal-wave signals in tissues significantly limit the photothermally active depth in most biological specimens to a level which is normally insufficient for practical applications (approx. 1 mm below the skin surface). A theoretical approach for improvement of signal-to-noise ratio (SNR), minimizing the static (dc) component of the photothermal signal and making use of the photothermal radiometric nonlinearity has been introduced and verified by comparing the SNR of four distinct excitation wave forms (sine-wave, square-wave, constant- width and constant duty-cycle pulses) for chirping the pump laser, under constant exposure energy. At low frequencies fixed-pulsewidth chirps of large peak power were found to be superior to all other equal-energy modalities, with an SNR improvement up to two orders of magnitude. Distinct thickness-dependent characteristic delay times in a goat bone were obtained, establishing an active depth resolution range of ca. 2.8 mm in a layered skin-fat- bone structure, a favorable result compared to the maximum reported pulsed photothermal radiometric depth resolution < 1 mm in turbid biological media. Compared to radar peak delay and amplitude, the long-delayed radar output amplitude is found to be more sensitive to subsurface conditions. Two-dimensional spatial plots of this parameter depicting the back surface conditions of bones with and without fat-tissue overlayers are presented.

  14. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression technique could bring significant impact on future radar development. The novel feature of this innovation is the non-linear FM (NLFM) waveform design. The traditional linear FM has the limit (-20 log BT -3 dB) for achieving ultra-low-range sidelobe in pulse compression. For this study, a different combination of 20- or 40-microsecond chirp pulse width and 2- or 4-MHz chirp bandwidth was used. These are typical operational parameters for airborne or spaceborne weather radars. The NLFM waveform design was then implemented on a FPGA board to generate a real chirp signal, which was then sent to the radar transceiver simulator. The final results have shown significant improvement on sidelobe performance compared to that obtained using a traditional linear FM chirp.

  15. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) Dataset: Quasi-Global Precipitation Estimates for Drought Monitoring and Trend Analysis

    NASA Astrophysics Data System (ADS)

    Peterson, P.; Funk, C. C.; Landsfeld, M. F.; Husak, G. J.; Pedreros, D. H.; Verdin, J. P.; Rowland, J.; Shukla, S.; McNally, A.; Michaelsen, J.; Verdin, A.

    2014-12-01

    A high quality, long-term, high-resolution precipitation dataset is a key requirement for supporting drought monitoring and long term trend analysis. In this presentation we introduce a new dataset: the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS), developed by scientists at the University of California, Santa Barbara and the U.S. Geological Survey Earth Resources Observation and Science Center. This new quasi-global precipitation product is available at daily to seasonal time scales, with a spatial resolution of 0.05°, and a 1981 to near real-time period of record. The three main types of information used in the CHIRPS are: (1) global 0.05° precipitation climatologies, (2) time-varying grids of infrared cold cloud duration (CCD) precipitation estimates, and (3) in situ precipitation observations. The CHG has developed an extensive database of in situ daily, pentadal and monthly precipitation totals with over a billion daily observations worldwide. Most of these observations come from four sets: the monthly Global Historical Climate Network version 2, the daily Global Historical Climate Network, the Global Summary of the Day (GSOD), and the daily Global Telecommunication System (GTS) provided by NOAA's Climate Prediction Center (CPC). A screening procedure was developed to remove suspected "false zeros" from the daily GTS and GSOD data, since these data can artificially suppress rainfall totals. We compare CHIRPS and ARC2, CFS-Reanalysis, CHIRP, CMORPH, CPC-Unified, ECMWF, PERSIANNE, RFE2, TAMSAT, TRMM-RT7, TRMM-V7 to GPCC. The CHIRPS is shown to have high correlation, low systematic errors (bias) and low mean absolute errors. The CHIRPS performance is similar to research quality products like the GPCC and GPCP, but with higher resolution and lower latency. Cross validation results for over 100 countries and comparisons with alternate algorithms will be presented.

  16. Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses

    SciTech Connect

    Potemkin, A K; Katin, E V; Kirsanov, Aleksei V; Luchinin, G A; Mal'shakov, A N; Mart'yanov, M A; Matveev, A Z; Palashov, O V; Khazanov, E A; Shaikin, A A

    2005-04-30

    A five-stage neodymium phosphate glass amplifier producing 1-1.5-ns radiation pulses of energy up to 110 J is described. The use of a multistage spatial filter based on an aperture line provides efficient extraction of the stored energy. The exit aperture filling factor is 0.65 and the output radiation divergence is equal to three times the diffraction-limited divergence. The energy efficiency of radiation conversion to the second harmonic is 60%. The amplifier is intended for pumping a chirped-pulse optical parametric amplifier. (lasers)

  17. CSO/CTB performance improvement by using chirped fiber grating and large effective area fiber in a bidirectional DWDM system

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Han; Tsai, Wen-Xing

    2002-07-01

    We proposed and demonstrated a bi-directional dense-wavelength-division-multiplexing (DWDM) CATV system which used chirped fiber grating (CFG) and large effective area fiber (LEAF) as dispersion compensation devices to reduce the dispersion and cross-phase modulation (XPM)-induced crosstalk. By comparing with the system link with a transmission length of 50 km single-mode fiber (SMF) without CFG, good performances of carrier-to-noise ratio (CNR) >50 dB, composite second order (CSO) >69 dB and composite triple beat (CTB) >66 dB were obtained in our proposed system over a 50-km LEAF transport.

  18. Polarization-encoded chirped pulse amplification in Ti:sapphire: a way toward few-cycle petawatt lasers.

    PubMed

    Kalashnikov, Mikhail; Cao, Huabao; Osvay, Károly; Chvykov, Vladimir

    2016-01-01

    The bandwidth of titanium sapphire (Ti:Sa) laser amplifiers can be greatly broadened with shaping the spectral gain via engineering the spectral polarization of amplified pulses and using both ?- and ?-cross-sections. In a proof-of-principle experiment, an amplification bandwidth exceeding 85 nm at a gain of 200 was demonstrated. The accompanying computer modeling revealed that a polarization-encoded chirped pulse amplification scheme can be scaled to higher energies and thus can produce multijoule pulses with bandwidth close to 200 nm, making few-cycle petawatt Ti:Sa systems feasible. PMID:26696149

  19. Near-infrared resonance-mediated chirp control of a coherently generated broadband deep-ultraviolet spectrum

    SciTech Connect

    Rybak, Leonid; Chuntonov, Lev; Gandman, Andrey; Shakour, Naser; Amitay, Zohar

    2011-09-15

    We investigate the use of shaped near-infrared (NIR) femtosecond pulses to control the generation of coherent broadband deep-ultraviolet (DUV) radiation in an atomic resonance-mediated (2+1) three-photon excitation to a broad far-from-resonance continuum. Previously, we have shown control over the total emitted DUV yield. Here, we experimentally demonstrate phase control over the spectral characteristics (central frequency and bandwidth) of the emitted broadband DUV radiation. It is achieved by tuning the linear chirp applied to the exciting NIR femtosecond pulse. The study is conducted with Na vapor.

  20. High peak-power monolithic femtosecond ytterbium fiber chirped pulse amplifier with a spliced-on hollow core fiber compressor.

    PubMed

    Verhoef, A J; Jespersen, K; Andersen, T V; Grüner-Nielsen, L; Flöry, T; Zhu, L; Baltuška, A; Fernández, A

    2014-07-14

    We demonstrate a monolithic Yb-fiber chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor. For an output energy of 77 nJ, 220 fs pulses with 92% of the energy contained in the main pulse, can be obtained with minimal nonlinearities in the system. 135 nJ pulses are obtained with 226 fs duration and 82 percent of the energy in the main pulse. Due to the good dispersion match of the stretcher to the hollow core photonic bandgap fiber compressor, the duration of the output pulses is within 10% of the Fourier limited duration. PMID:25090494

  1. Transform coding for space applications

    NASA Technical Reports Server (NTRS)

    Glover, Daniel

    1993-01-01

    Data compression coding requirements for aerospace applications differ somewhat from the compression requirements for entertainment systems. On the one hand, entertainment applications are bit rate driven with the goal of getting the best quality possible with a given bandwidth. Science applications are quality driven with the goal of getting the lowest bit rate for a given level of reconstruction quality. In the past, the required quality level has been nothing less than perfect allowing only the use of lossless compression methods (if that). With the advent of better, faster, cheaper missions, an opportunity has arisen for lossy data compression methods to find a use in science applications as requirements for perfect quality reconstruction runs into cost constraints. This paper presents a review of the data compression problem from the space application perspective. Transform coding techniques are described and some simple, integer transforms are presented. The application of these transforms to space-based data compression problems is discussed. Integer transforms have an advantage over conventional transforms in computational complexity. Space applications are different from broadcast or entertainment in that it is desirable to have a simple encoder (in space) and tolerate a more complicated decoder (on the ground) rather than vice versa. Energy compaction with new transforms are compared with the Walsh-Hadamard (WHT), Discrete Cosine (DCT), and Integer Cosine (ICT) transforms.

  2. nBn and pBp infrared detectors with graded barrier layer, graded absorption layer, or chirped strained layer super lattice absorption layer

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor)

    2010-01-01

    An nBn detector is described where for some embodiments the barrier layer has a concentration gradient, for some embodiments the absorption layer has a concentration gradient, and for some embodiments the absorption layer is a chirped strained layer super lattice. The use of a graded barrier or absorption layer, or the use of a chirped strained layer super lattice for the absorption layer, allows for design of the energy bands so that the valence band may be aligned across the device. Other embodiments are described and claimed.

  3. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    SciTech Connect

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue; Chai, Lu E-mail: yanfengli@tju.edu.cn; Liu, Bowen; Hu, Minglie; Li, Yanfeng E-mail: yanfengli@tju.edu.cn; Fedotov, Andrey B.; Zheltikov, Aleksei M.

    2014-01-20

    A chirp-tunable femtosecond 10?W, 42?MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040?nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources.

  4. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    PubMed Central

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  5. Image Matching Using Generalized Hough Transforms

    NASA Technical Reports Server (NTRS)

    Davis, L. S.; Hu, F. P.; Hwang, V.; Kitchen, L.

    1983-01-01

    An image matching system specifically designed to match dissimilar images is described. A set of blobs and ribbons is first extracted from each image, and then generalized Hough transform techniques are used to match these sets and compute the transformation that best registers the image. An example of the application of the approach to one pair of remotely sensed images is presented.

  6. Transforming Research Management Systems at Mayo Clinic

    ERIC Educational Resources Information Center

    Smith, Steven C.; Gronseth, Darren L.

    2011-01-01

    In order for research programs at academic medical centers and universities to survive and thrive in the increasingly challenging economic, political and regulatory environment, successful transformation is extremely important. Transformation and quality management techniques are increasingly well established in medical practice organizations. In…

  7. Split Coil Forms for Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  8. Biometric template transformation: a security analysis

    NASA Astrophysics Data System (ADS)

    Nagar, Abhishek; Nandakumar, Karthik; Jain, Anil K.

    2010-01-01

    One of the critical steps in designing a secure biometric system is protecting the templates of the users that are stored either in a central database or on smart cards. If a biometric template is compromised, it leads to serious security and privacy threats because unlike passwords, it is not possible for a legitimate user to revoke his biometric identifiers and switch to another set of uncompromised identifiers. One methodology for biometric template protection is the template transformation approach, where the template, consisting of the features extracted from the biometric trait, is transformed using parameters derived from a user specific password or key. Only the transformed template is stored and matching is performed directly in the transformed domain. In this paper, we formally investigate the security strength of template transformation techniques and define six metrics that facilitate a holistic security evaluation. Furthermore, we analyze the security of two wellknown template transformation techniques, namely, Biohashing and cancelable fingerprint templates based on the proposed metrics. Our analysis indicates that both these schemes are vulnerable to intrusion and linkage attacks because it is relatively easy to obtain either a close approximation of the original template (Biohashing) or a pre-image of the transformed template (cancelable fingerprints). We argue that the security strength of template transformation techniques must consider also consider the computational complexity of obtaining a complete pre-image of the transformed template in addition to the complexity of recovering the original biometric template.

  9. A non-destructive transformer oil tester

    E-print Network

    Cargol, Timothy L. (Timothy Lawrence), 1976-

    2000-01-01

    A new non-destructive test of transformer oil dielectric strength is a promising technique to automate and make more reliable a diagnostic that presently involves intensive manual efforts. This thesis focuses some of the ...

  10. Transforming giants.

    PubMed

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big. PMID:18271317

  11. Dynamics and structure of the vertical ionospheric disturbances caused by Tohoku earthquake according to Irkutsk bistatic CHIRP-sounding

    NASA Astrophysics Data System (ADS)

    Berngardt, Oleg; Kotovich, Galina; Podlesnyi, Alexey

    In the work we present results of observation of the mid-scale vertical ionospheric irregularities caused by Tohoku earthquake with 1 minute temporary resolution. Their spatial and temporary dynamics is also investigated. The main instrument used in the analysis is bistatic CHIRP-sounder of own development of ISTP SB RAS. The CHIRP-sounder provides frequency change speed up to 1000 kHz/sec, and provides 1 minute temporal resolution, comparable with SuperDARN radars and GPS receivers network. The receiver and the transmitter of the sounder are located close to Irkutsk (52N,104E) at distance 120 km between each other. Synchronization of time and frequency is provided by GPS. As showed the analysis of the experimental data, the main response of the ionosphere was observed at Irkutsk from 06:10 to 07:00UT. Short-term variations of the electron density profile were also observed from 06:00UT. This corresponds to the main horizontal speed of disturbances about 2500 m/s and below. The vertical scale of the irregularities was 10-20 km. Irregularities practically weren't observed at heights above 200km. The obtained data don't contradict the data obtained by other researchers. Work was done under financial support of IV.12.2 OFN Russian Academy of Sciences program.

  12. Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion

    SciTech Connect

    Chen Liezun; Wang Youwen; Wen Shuangchun; Fan Dianyuan; Qian Liejia

    2010-10-15

    Based on the full two-dimensional characteristics of the quasi-phase-matched fan-out periodically poled crystal, a scalable and engineerable scheme for ultrabroadband optical parametric chirped-pulse amplification is proposed, which can significantly broaden the gain bandwidth by the spatial separation of different frequency components of the signal pulse and manipulation of the distribution of the pump beam along the fan-out direction of the crystal. The theoretical analysis shows that the signal pulse can be amplified with minimal spectrum narrowing, and the initial spectrum can be broadened considerably if needed. Based on this scheme, using a fan-out periodically poled 5% mol MgO-doped congruent lithium niobate with a configuration of 5x0.5x5 mm{sup 3} and two pump beams, the 3.3-{mu}m middle-infrared ultrabroadband optical parametric chirped-pulse amplifier is designed. The numerical computation results confirm that the -3 dB gain bandwidth of this amplifier exceeds 320 nm and can be further broadened.

  13. Immersed surfaces and membranes transformations

    NASA Astrophysics Data System (ADS)

    Kats, E. I.; Monastyrsky, M. I.

    2015-06-01

    Physical and biological observation methods provide a variety of bilayer membranes’ shapes and their transformations. Besides, the topological and geometrical methods allow us to deduce a classification of all possible membrane surfaces. This double-sided approach leads to a deeper insight into membranes properties. Our goal is to apply an appropriate mathematical technique for classifying vesicles (closed surfaces in mathematical terminology) and for their transformation ways. The problem turned out to be an intricate one, and to our knowledge no mathematical techniques have been applied to its solution. We find that all vesicles can be decomposed in a small number of universality classes generated by a few ‘bricks’: a torus, a screwed torus, and the real projective plane. We consider several ways of transforming membrane surfaces, bearing in mind that they possess an additional extremal property. Our method exploits different constructions of minimal surfaces in S3. We estimate energetic barrier for transformation of minimal membrane surfaces using the so-called doubling procedure. This problem is far from being a pure theoretical exercise. For instance, almost all cells’ biological functions, or tumor progression, are accompanied by apparently singular cell membrane transformations.

  14. Transforming America's Energy Economy Transforming America's

    E-print Network

    #12;Transforming America's Energy Economy Transforming America's Energy Economy This document was prepared by the Chief Research Officers of the U.S. Department of Energy national laboratories Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory National Energy Technology

  15. Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a 4-level system

    E-print Network

    Liu, G; Collins, T; Gould, P; Malinovskaya, S A

    2015-01-01

    We implement a 4-level semiclassical model of a single pulse interacting with the hyperfine structure in ultracold rubidium aimed at control of population dynamics and quantum state preparation. We discuss a method based on pulse chirping to achieve population inversion between hyperfine states of the 5S shell. The results may prove useful for quantum operations with ultracold atoms.

  16. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  17. Integral Transforms Roe Goodman

    E-print Network

    Goodman, Roe

    Integral Transforms Roe Goodman Introduction to Math at Rutgers August 29, 2010 Roe Goodman operators Solution: Use characters of G and Fourier transform Roe Goodman Integral Transforms #12;Fourier)(p) Roe Goodman Integral Transforms #12;Diagonalization of Translation Invariant Operators Theorem Let G

  18. Comment on ``fourier transform coherent Raman spectroscopy''

    NASA Astrophysics Data System (ADS)

    Van Exter, Martin; Lagendijk, Ad

    1988-05-01

    Recently Felker and Hartland introduced an interesting non-linear optical CARS technique which they referred to as Fourier transform coherent Raman spectroscopy (FTCRS). We compare their approach with a time-resolved stimulated Raman technique that yields similar information. In this Comment we also extend the qualitative description of FTCRS beyond the region of pulse overlap between all the pulses involved.

  19. Coherent population transfer and optical dipole force by chirped Gaussian femtosecond pulses in four level {sup 87}Rb

    SciTech Connect

    Chakraborty, Subhadeep Sarma, Amarendra K.

    2014-10-15

    We report coherent population transfer(CPT) in a four level atomic system, coupled by three chirped Gaussian femtosecond pulses. CPT is studied under two specific conditions beyond the RWA. It is observed that nearly complete population transfer to the states |3> and |4> can be achieved by maintaining proper resonance condition and judiciously choosing the laser parameters. In addition to this, the transverse optical dipole force on the four-level atomic system is numerically studied. The transverse force provides an acceleration to an atom which is eight order of magnitude higher than earth’s gravitational acceleration g. The force changes from a focusing force to a defocusing one as the initial population changes from the ground states to the excited states.

  20. Investigating pluggable transceivers' laser linewidth, chirp, and stimulated Brillouin scattering effects on data transmission in different kinds of optical fibers

    NASA Astrophysics Data System (ADS)

    Atieh, Ahmad; Terekov, Serge; Shankar, Rathy; Almuhtadi, Wahab; Kemp, Josh

    2009-06-01

    Pluggable transceivers; either small form factor (SFP) that operates up to 2.5Gbps or XFPs that operates at 9.95Gbps, transmitter's laser characteristics are investigated experimentally. The laser linewidth and chirp in addition to stimulated Brillouin scattering (SBS) threshold for different transceivers are measured over many kinds of optical fiber. The measured transceiver's parameters are correlated and used to explain different system performance penalties encountered during data transmission over different kinds of optical fiber. This knowledge is valuable to system engineers as it is not available and not provided by transceivers' vendors. System performance penalties for different kind of fibers with positive and negative accumulative dispersion are measured experimentally at OC-192 and OC-48 modulated signals for different XFPs and SFPs, respectively.

  1. Chirp seismic-reflection data from the Baltimore, Washington, and Norfolk Canyons, U.S. mid-Atlantic margin

    USGS Publications Warehouse

    Obelcz, Jeffrey B.; Brothers, Daniel S.; ten Brink, Uri S.; Chaytor, Jason D.; Worley, Charles R.; Moore, Eric M.

    2014-01-01

    A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV near three United States mid-Atlantic margin submarine canyons. These data can be used to further our understanding of passive continental margin processes during the Holocene, as well as providing valuable information regarding potential submarine geohazards.

  2. Analysis and demonstration of atmospheric methane monitoring by mid-infrared open-path chirped laser dispersion spectroscopy.

    PubMed

    Daghestani, Nart S; Brownsword, Richard; Weidmann, Damien

    2014-12-15

    Atmospheric methane concentration levels were detected using a custom built laser dispersion spectrometer in a long open-path beam configuration. The instrument is driven by a chirped distributed feedback mid-infrared quantum cascade laser centered at ~1283.46 cm-1 and covers intense rotational-vibrational transitions from the fundamental ?4 band of methane. A full forward model simulating molecular absorption and dispersion profiles, as well as instrumental noise, is demonstrated. The instrument's analytical model is validated and used for quantitative instrumental optimization. The temporal evolution of atmospheric methane mixing ratios is retrieved using a fitting algorithm based on the model. Full error propagation analysis on precision gives a normalized sensitivity of ~3 ppm.m.Hz-0.5 for atmospheric methane. PMID:25607487

  3. Cryogenic VCSEL`s with chirped multiple quantum wells for a very wide temperature range of CW operation

    SciTech Connect

    Ortiz, G.G.; Hains, C.P.; Sun, S.Z.; Cheng, J.; Lu, B.; Zolper, J.C.

    1996-11-01

    Cryogenic optical data links require an efficient optical source with temperature-insensitive continuous-wave (CW) operation at low temperatures. Also, to simplify optical alignment, it is desirable to obtain CW operation over a broad temperature range that spans both the low and high temperatures. By the use of vertical-cavity surface-emitting lasers (VSEL`s) with chirped (nonuniform) multiple quantum wells (MWQ`s) to broaden the optical gain spectrum, CW operation has been achieved from 5--350 K, with improved characteristics in both the high- and low-temperature regimes. In particular, temperature-insensitive, submilliampere threshold current was achieved at temperatures from 5--50 K, with a threshold current density of 350 A/cm{sup 2}, and a threshold voltage that is below 3 V.

  4. Optical parametric chirped pulse amplification and spectral shaping of a continuum generated in a photonic band gap fiber.

    PubMed

    Hugonnot, E; Somekh, M; Villate, D; Salin, F; Freysz, E

    2004-05-31

    A chirped pulse, spectrally broadened in a photonic bandgap optical fiber by 120 fs Ti:Sapphire laser pulses, is parametrically amplified in a BBO crystal pumped by a frequency doubled nanosecond Nd:YAG laser pulse. Without changing the frequency of the Ti:Sapphire, a spectral tunability of the amplified pulses is demonstrated. The possibility to achieve broader spectral range amplification is confirmed for a non-collinear pump-signal interaction geometry. For optimal non-collinear interaction geometry, the pulse duration of the original and amplified pulse are similar. Finally, we demonstrate that the combination of two BBO crystals makes it possible to spectrally shape the amplified pulses. PMID:19475076

  5. Multikilohertz optical parametric chirped pulse amplification in periodically poled stoichiometric LiTaO3 at 1235 nm.

    PubMed

    Cho, W B; Kim, K; Lim, H; Lee, J; Kurimura, S; Rotermund, F

    2007-10-01

    We demonstrate, for the first time to our knowledge, multikilohertz operation of a double-stage optical parametric chirped pulse amplifier with periodically poled stoichiometric LiTaO3 crystals, seeded by a homemade Cr:forsterite oscillator operating at 1235 nm. The repetition rate of the amplifier could easily be tuned without the use of electro-optic modulators by using a repetition-rate-tunable kilohertz pump laser operating at 532 nm and a time-synchronization unit. Amplified total (signal+idler) energies of 55.9 and 36.2 microJ were achieved at 1 and 5 kHz, respectively. After recompression, the pulse width of amplified idler pulses at 1235 nm amounted to 530 fs. PMID:17909587

  6. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: A theoretical feasibility analysis

    PubMed Central

    Piao, Daqing; Towner, Rheal A.; Smith, Nataliya; Chen, Wei R.

    2013-01-01

    Purpose: To propose an alternative method of thermoacoustic wave generation based on heating of magnetic nanoparticles (MNPs) using alternating magnetic field (AMF). Methods: The feasibility of thermoacoustic wave generation from MNPs by applying a short-burst of AMF or a frequency-modulated AMF is theoretically analyzed. As the relaxation of MNPs is strongly dependent upon the amplitude and frequency of AMF, either an amplitude modulated, fixed frequency AMF (termed time-domain AMF) or a frequency modulated, constant amplitude AMF (termed frequency-domain AMF) will result in time-varying heat dissipation from MNPs, which has the potential to generate thermoacoustic waves. Following Rosensweig's model of specific power loss of MNPs in a steady-state AMF, the time-resolved heat dissipations of MNPs of superparamagnetic size when exposed to a short bursting of AMF and/or to a linearly frequency chirped AMF are derived, and the resulted acoustic propagation is presented. Based on experimentally measured temperature-rise characteristics of a superparamagnetic iron-oxide nanoparticle (SPION) matrix in a steady-state AMF of various frequencies, the heat dissipations of the SPION under time-domain and frequency-domain AMF configurations that could have practical utility for thermoacoustic wave generation are estimated. Results: The initial rates of the temperature-rise of the SPION matrix were measured at an iron-weight concentration of 0.8 mg/ml and an AMF frequency of 88.8 kHz to 1.105 MHz. The measured initial rates of temperature-rise were modeled by Rosensweig's theory, and projected to 10 MHz AMF frequency, at which a 1 ?s bursting corresponding to a 1.55 mm axial resolution of acoustic detection could contain 10 complete cycles of AMF oscillation and the power dissipation is approximately 84 times of that at 1 MHz. Exposing the SPION matrix to a 1 ?s bursting of AMF at 10 MHz frequency and 100 Oe field intensity would produce a volumetric heat dissipation of 7.7 ?J/cm3 over the microsecond duration of the AMF burst. If the SPION matrix is exposed to a 1 ms long AMF train at 100 Oe field intensity that chirps linearly from 1 to 10 MHz, the volumetric heat dissipation produced over each 2? phase change of the AMF oscillation is estimated to increase from 0.15 to 1.1 ?J/cm3 within the millisecond duration of the chirping of AMF. Conclusions: The heat dissipations upon SPION (?1 mg/ml iron-weight concentration) by a 1 ?s bursting of 100 Oe AMF at 10 MHz and a 1 ms train of 100 Oe AMF that chirps linearly from 1 to 10 MHz were estimated to determine the potential of thermal-acoustic wave generation. Although thermoacoustic wave generation from MNPs by time- or frequency-domain AMF applications is predicted, the experimental generation of such a wave remains challenging. PMID:23718611

  7. Chirped-Pulsed Ftmw Spectrum of 4-FLUOROBENZYL Alcohol. Structure and Torsional Motions in the Ground Electronic State Phase

    NASA Astrophysics Data System (ADS)

    Bird, Ryan G.; Pratt, David W.; Neill, Justin L.; Pate, Brooks H.

    2010-06-01

    Previous studies of 4-fluorobenzyl alcohol (4FBA) in the gas phase have revealed the existence of tunneling splittings in its high resolution electronic spectrum. These could be attributed either to the ground S0 state, or the excited S1 state, or both. Motivated by this finding, we report here a study of the CP-FTMW spectrum of 4FBA. Its pure rotational spectrum was collected using a series of 250 MHz chirped pulses, over the frequency range of 6.5-18 GHz. Analysis of this data shows that 4FBA has a gauche structure and yields the V2 barrier for CH2OH torsion, from which the predicted tunneling splittings in the ground state have been extracted.

  8. Archive of digital Chirp subbottom profile data collected during USGS cruise 08CCT01, Mississippi Gulf Islands, July 2008

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Worley, Charles R.

    2011-01-01

    In July of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, Mississippi, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. Funding was provided through the Geologic Framework and Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php); this project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  9. A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors

    NASA Astrophysics Data System (ADS)

    Stenzel, O.; Wilbrandt, S.; Fasold, D.; Kaiser, N.

    2008-08-01

    A new optical monitoring strategy for interference coating deposition has been developed that combines in situ optical broadband transmission spectroscopy with quartz crystal thickness monitoring. We present a short description of the basic monitoring concept, the experimental set-up, and the data elaboration facilities of the developed optical monitoring system, OptiMon. Although it is flexible enough to be implemented into different types of deposition systems, we focus here on the application of our monitoring system for coating preparation with advanced plasma source assisted electron beam evaporation. Chirped mirrors have been prepared using SiO2 and Ta2O5 as low and high index materials, respectively. The layers are characterized by in situ transmission spectroscopy, ex situ transmission and reflection spectroscopy, and white light interferometry to determine the group delay dispersion, GDD. Based on the characterization results, we demonstrate and discuss the relative benefits of the developed monitoring strategy.

  10. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic mechanism(s) of radiogenic transformation of human epithelial cells.

  11. Numerical grid generation techniques. [conference

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The state of the art in topology and flow geometry is presented. Solution techniques for partial differential equations are reviewed and included developments in coordinate transformations, conformal mapping, and invariant imbeddings. Applications of these techniques in fluid mechanics, flow geometry, boundary value problems, and fluidics are presented.

  12. A Web Architecture to Geographically Interrogate CHIRPS Rainfall and eMODIS NDVI for Land Use Change

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Limaye, Ashutosh

    2014-01-01

    Monitoring of rainfall and vegetation over the continent of Africa is important for assessing the status of crop health and agriculture, along with long-term changes in land use change. These issues can be addressed through examination of long-term precipitation (rainfall) data sets and remote sensing of land surface vegetation and land use types. Two products have been used previously to address these goals: the Climate Hazard Group Infrared Precipitation with Stations (CHIRPS) rainfall data, and multi-day composites of Normalized Difference Vegetation Index (NDVI) from the USGS eMODIS product. Combined, these are very large data sets that require unique tools and architecture to facilitate a variety of data analysis methods or data exploration by the end user community. To address these needs, a web-enabled system has been developed to allow end-users to interrogate CHIRPS rainfall and eMODIS NDVI data over the continent of Africa. The architecture allows end-users to use custom defined geometries, or the use of predefined political boundaries in their interrogation of the data. The massive amount of data interrogated by the system allows the end-users with only a web browser to extract vital information in order to investigate land use change and its causes. The system can be used to generate daily, monthly and yearly averages over a geographical area and range of dates of interest to the user. It also provides analysis of trends in precipitation or vegetation change for times of interest. The data provided back to the end-user is displayed in graphical form and can be exported for use in other, external tools. The development of this tool has significantly decreased the investment and requirements for end-users to use these two important datasets, while also allowing the flexibility to the end-user to limit the search to the area of interest.

  13. Two-dimensional phase transformation probed by second harmonic generation: Oscillatory transformation of the K/Al(111) system

    SciTech Connect

    Ying, Z.C.; Plummer, E.W. |

    1995-12-31

    The technique of optical second harmonic generation is used to study phase transformations at two-dimensional surfaces and interfaces. Examples are given to illustrate that changes in surface symmetry, adsorption configuration, and electronic structure can be detected by this nonlinear optical technique. An oscillatory phase transformation of potassium adsorbed atoms on Al(111) probed by second harmonic generation is analyzed in detail.

  14. Full three-dimensional isotropic transformation media

    NASA Astrophysics Data System (ADS)

    García-Meca, C.; Ortuño, R.; Martí, J.; Martínez, A.

    2014-02-01

    We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends.

  15. Time-domain analysis of a dynamically tuned signal recycled interferometer for the detection of chirp gravitational waves from coalescing compact binaries

    E-print Network

    D. A. Simakov

    2015-04-28

    In this article we study a particular method of detection of chirp signals from coalescing compact binary stars -- the so-called dynamical tuning, i.e. amplification of the signal via tracking of its instantaneous frequency by the tuning of the signal-recycled detector. A time-domain consideration developed for signal-recycled interferometers, in particular GEO 600, describes the signal and noise evolution in the non-stationary detector. Its non-stationarity is caused by motion of the signal recycling mirror, whose position defines the tuning of the detector. We prove that the shot noise from the dark port and optical losses remains white. The analysis of the transient effects shows that during the perfect tracking of the chirp frequency only transients from amplitude changes arise. The signal-to-noise-ratio gain, calculated in this paper, is ~ 16 for a shot-noise limited detector and ~ 4 for a detector with thermal noise.

  16. A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating

    NASA Astrophysics Data System (ADS)

    Thilmann, N.; Jacobsson, B.; Canalias, C.; Pasiskevicius, V.; Laurell, F.

    2011-11-01

    An efficient nanosecond optical parametric oscillator (OPO) with output energies of 0.75 mJ using a periodically poled KTiOPO4 crystal pumped at 532 nm and generating narrowband output continuously tunable over the range of 6.8 THz, between 1053 nm and 1075 nm, is demonstrated by employing a transversely-chirped volume Bragg grating. The tunable reflectivity spectrum of the chirped volume Bragg grating allowed a smooth transition between singly-resonant and doubly-resonant operation of the OPO without cavity rearrangement. This gave a unique possibility to experimentally verify theoretical predictions regarding the efficiency of type-I and type-0 phase matched degenerate OPOs pumped by multimode Q-switched lasers.

  17. The curvelet transform for image denoising.

    PubMed

    Starck, Jean-Luc; Candès, Emmanuel J; Donoho, David L

    2002-01-01

    We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a; trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement. PMID:18244665

  18. Chemical Transformation Simulator

    EPA Science Inventory

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  19. Transforming F0 Contours 

    E-print Network

    Gillett, Ben; King, Simon

    2003-01-01

    Voice transformation is the process of transforming the characteristics of speech uttered by a source speaker, such that a listener would believe the speech was uttered by a target speaker. Training F0 contour generation ...

  20. Transforming Voice Quality 

    E-print Network

    Gillett, Ben; King, Simon

    2003-01-01

    Voice transformation is the process of transforming the characteristics of speech uttered by a source speaker, such that a listener would believe the speech was uttered by a target speaker. In this paper we address the ...

  1. The Patch Transform

    E-print Network

    Avidan, Shai

    The patch transform represents an image as a bag of overlapping patches sampled on a regular grid. This representation allows users to manipulate images in the patch domain, which then seeds the inverse patch transform to ...

  2. Fourier Transform Infrared Spectroscopy

    E-print Network

    Nizkorodov, Sergey

    FTIR - 1 Fourier Transform Infrared Spectroscopy FTIR DETERMINATION OF MTBE IN GASOLINE AND ETHANOL IN VODKA AND MOUTHWASH Last updated: June 17, 2014 #12;FTIR - 2 Fourier Transform Infrared Spectroscopy

  3. LAPPED TRANSFORMS COMPRESSION

    E-print Network

    de Queiroz, Ricardo L.

    will describe the principles of a block transform and its corresponding transform matrix along with its to compression applications. In Sec. 6.11, image compression systems are briefly introduced, including JPEG

  4. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  5. Equations For Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  6. Metrics for enterprise transformation

    E-print Network

    Blackburn, Craig D. (Craig David), S. M. Massachusetts Institute of Technology

    2009-01-01

    The objective of this thesis is to depict the role of metrics in the evolving journey of enterprise transformation. To this end, three propositions are explored: (i) metrics and measurement systems drive transformation, ...

  7. Probabilistically Accurate Program Transformations

    E-print Network

    Misailovic, Sasa

    The standard approach to program transformation involves the use of discrete logical reasoning to prove that the transformation does not change the observable semantics of the program. We propose a new approach that, in ...

  8. Design of efficient single stage chirped pulse difference frequency generation at 7 {\\mu}m driven by a dual wavelength Ti:sapphire laser

    E-print Network

    Erny, Christian

    2013-01-01

    We present a design for a high-energy single stage mid-IR difference frequency generation adapted to a two-color Ti:sapphire amplifier system. The optimized mixing process is based on chirped pulse difference frequency generation (CP-DFG), allowing for a higher conversion efficiency, larger bandwidth and reduced two photon absorption losses. The numerical start-to-end simulations include stretching, chirped pulse difference frequency generation and pulse compression. Realistic design parameters for commercially available non linear crystals (GaSe, AgGaS2, LiInSe2, LiGaSe2) are considered. Compared to conventional un-chirped DFG directly pumped by Ti:sapphire technology we report a threefold increase of the quantum efficiency. Our CP-DFG scheme provides up to 340 {\\mu}J pulse energy directly at 7.2 {\\mu}m when pumped with 3 mJ and supports a bandwidth of up to 350 nm. The resulting 240 fs mid-IR pulses are inherently phase stable.

  9. Transformed Auto-correlation

    NASA Astrophysics Data System (ADS)

    Zhou, Jianfeng; Gao, Yang

    2014-05-01

    A transformed auto-correlation method is presented here, where a received signal is transformed based on a priori reflecting model, and then the transformed signal is cross-correlated to its original one. If the model is correct, after transformation, the reflected signal will be coherent to the transmitted signal, with zero delay. A map of transformed auto-correlation function with zero delay can be generated in a given parametric space. The significant peaks in the map may indicate the possible reflectors nearby the central transmitter. The true values of the parameters of reflectors can be estimated at the same time.

  10. Generalized Jordan-Wigner Transformations

    E-print Network

    C. D. Batista; G. Ortiz

    2000-08-25

    We introduce a new spin-fermion mapping, for arbitrary spin $S$ generating the SU(2) group algebra, that constitutes a natural generalization of the Jordan-Wigner transformation for $S=1/2$. The mapping, valid for regular lattices in any spatial dimension $d$, serves to unravel hidden symmetries in one representation that are manifest in the other. We illustrate the power of the transformation by finding exact solutions to lattice models previously unsolved by standard techniques. We also present a proof of the existence of the Haldane gap in $S=$1 bilinear nearest-neighbors Heisenberg spin chains and discuss the relevance of the mapping to models of strongly correlated electrons. Moreover, we present a general spin-anyon mapping for the case $d \\leq 2$.

  11. Chirped Pulse and Cavity Fourier Transform Microwave Cp-Ftmw and Ftmw) Investigations Into 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; a Molecule of Atmospheric Interest

    NASA Astrophysics Data System (ADS)

    Force, Nicholas; Gillcrist, David Joseph; Hurley, Cassandra C.; Marshall, Frank E.; Payton, Nicholas A.; Persinger, Thomas D.; Shreve, N. E.; Grubbs, G. S., II

    2014-06-01

    The microwave spectrum of the molecule 3-bromo-1,1,1,2,2-pentafluoropropane has been measured on a newly constructed CP-FTMW spectrometer along with a FTMW spectrometer relocated from Oxford University to Missouri S&T. 3-bromo-1,1,1,2,2-pentafluoropropane has been cited as a possible safer alternative for replacing CFCs as refrigerants and this is the first of a series of studies to understand the chemistry of 3-bromo-1,1,1,2,2-pentafluoropropane with other atmospheric cleaning agents. Rotational constants, centrifugal distortion parameters, and nuclear quadrupole coupling constants will be discussed. The CP-FTMW utilized in this experiment will be discussed in great detail. The new machine has been assembled to directly create and digitize up to 18 GHz signals without the need of mixing on the broadcast or detection side of the experiment allowing for the elimination of many microwave components typically needed in both CP-FTMW and FTMW experiments.

  12. New inversion methods for the Lorentz Integral Transform

    E-print Network

    Diego Andreasi; Winfried Leidemann; Christoph Reiss; Michael Schwamb

    2005-03-11

    The Lorentz Integral Transform approach allows microscopic calculations of electromagnetic reaction cross sections without explicit knowledge of final state wave functions. The necessary inversion of the transform has to be treated with great care, since it constitutes a so-called ill-posed problem. In this work new inversion techniques for the Lorentz Integral Transform are introduced. It is shown that they all contain a regularization scheme, which is necessary to overcome the ill-posed problem. In addition it is illustrated that the new techniques have a much broader range of application than the present standard inversion method of the Lorentz Integral Transform.

  13. High-Efficiency, Low-Weight Power Transformer

    NASA Technical Reports Server (NTRS)

    Welsh, J. P.

    1986-01-01

    Technology for design and fabrication of radically new type of conductioncooled high-power (25 kVA) lightweight transformer having outstanding thermal and electrical characteristics. Fulfills longstanding need for conduction-cooled transformers and magnetics with low internal thermal resistances. Development techniques limited to conductive heat transfer, since other techniques such as liquid cooling, forced liquid cooling, and evaporative cooling of transformers impractical in zero-gravity space environment. Transformer uniquely designed: mechanical structure also serves as thermal paths for conduction cooling of magnetic core and windings.

  14. Teaching Techniques 

    E-print Network

    Howard, Jeff W.

    2005-05-10

    that you know each member. Teaching Techniques Several teaching techniques are available: lecture, illus- trated talk, discussion, question and answer, demonstra- tion, work session or practical exercise, experimentation, tours and home visits..., and exhibits. Experience in the use of these techniques comes only with practice. 1. Lecture For this technique, the teacher usually speaks to groups from prepared notes without visual aids or opportunity for group questions. This method is useful when new...

  15. Real Time in Flight Detection of Methane, Nitrous Oxide, Carbon Dioxide and Nitric Oxide Using a Chirped QC Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Hay, K. G.; Duxbury, G.; Langford, N.

    2009-06-01

    Frequency down-chirped long pulse quantum cascade laser spectrometers have proved to be useful tools for measuring trace levels of atmospheric gases. In this contribution we show that a resolution of ca. 0.005 cm^{-1} may be achieved using a pulsed laser. We also demonstrate the sensitivity of these instruments via two examples of the use of these spectrometers for in flight measurements of trace concentrations. These comprise two series of low level flights in the small NERC Dornier aircraft over the South Wales peninsula in the UK. The recent results obtained in February 2009 using a three channel instrument designed by Cascade Technologies are compared with those made using our single channel instrument in 2007. One of the main changes made in the current instrument is the replacement of the fast liquid nitrogen cooled MCT detector used in the earlier flights by an even greater bandwidth, Peltier cooled, MCT detector, which has proved to give better detectivity as well as better resolution. It also eliminates the reliance on liquid nitrogen.The altitudes of the flights ranged from about 500 to 800 m. The gases detected in the original flights were methane, nitrous oxide and water.The wavelength micro-windows chosen for the flight in February 2009 were set to detect nitrous oxide, nitric oxide and carbon dioxide. K. G. Hay, S. Wright, G. Duxbury and N. Langford App. Phys. B, 329 2008.

  16. Dense wavelength-division multiplexing dispersion compensators based on chirped and apodized Fibonacci structures: CA-FC(j,n).

    PubMed

    Golmohammadi, Saeed; Moravvej-Farshi, Mohammad Kazem; Rostami, Ali; Zarifkar, Abbas

    2008-12-10

    Chromatic dispersion compensation is an essential feature of high speed dense wavelength-division multiplexing (DWDM) systems. We propose a dispersion compensator structure whose characteristics meet the optical DWDM system requirements. The proposed structure is based on Fibonacci quasi-periodic multilayer structures composed of layers with large index differences. Studying the dispersive properties of Fibonacci structures with generation numbers j=3 and 4, and calculating group delay (GD) and group velocity dispersion (GVD) of their reflection bands, we have demonstrated that to have a smooth GD and almost a constant GVD in each band of a DWDM system, one needs not only to suitably chirp the structure refractive index profile, but also must properly apodize it. We also demonstrate the possibility of achieving high slope GDs and large GVDs by means of high order Fibonacci structures with thicker layers. Finally, by varying the layer dimensions and refractive indices as well as Fibonacci's order, one can design DWDM dispersion compensators suitable for distances as long as 220 km. PMID:19079453

  17. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Akou, H.; Hamedi, M.

    2015-10-01

    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 ?m electron bunch with about MeV initial energy becomes a 20 ?m electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.

  18. Vibrational Population Distribution in Formaldehyde Expanding from Chen Pyrolysis Nozzle Measured by Chirped Pulse Millimeter Wave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuyanov-Prozument, Kirill; Vasiliou, Angayle; Park, G. Barratt; Muenter, John S.; Stanton, John F.; Ellison, G. Barney; Field, Robert W.

    2011-06-01

    Knowing the vibrational population distribution of unimolecular fragmentation reaction products can reveal the reaction mechanism. Here, we applied Chirped Pulse Millimeter Wave (CPmmW) spectroscopy, invented by Brooks Pate and co-workers, to detect the vibrational population distribution of formaldehyde produced by pyrolysis of methyl nitrite (CH_3ONO) or ethyl nitrite (CH_3CH_2ONO). The pure rotational spectrum contains information about vibrational populations via the known vibration dependence of the rotational constants, which is easily observed in the millimeter-wave spectrum. Only two of six vibrational modes of formaldehyde are significantly populated in both pyrolysis decomposition reactions and in an expansion of pure formaldehyde, suggesting that it is the collisional energy transfer that primarily determines the vibrational population distribution. The non-Boltzmann population distribution among the observed vibrational modes demonstrates non-statistical vibrational energy transfer in formaldehyde. It is in sharp contrast with the equilibrated population distribution measured in OCS and the almost complete vibrational relaxation observed in acetaldehyde. This work is supported by grants from the US Department of Energy and the ACS Petroleum Research Fund, and the National Science Foundation grant "Organic Radicals in Biomass Decomposition: Mechanisms & Dynamics," (CHE-0848606) G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 053103 (1995).

  19. Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays.

    PubMed

    Tiess, Tobias; Chojetzki, Christoph; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2015-07-27

    We present a novel method to discretely tune the emission wavelength of pulsed fiber-integrated lasers. As spectral filter, a step-chirped fiber Bragg grating (FBG) array is employed combining a monolithic structure with an unrivaled design freedom enabling large tuning bandwidths as well as tailored spectral characteristics towards fingerprint tuning features. Together with an electrical control mechanism ensuring programmable operation, this tuning method promotes fiber-integrated lasers to access new fields of applications e.g. in biophotonics and distributed sensing. The potential of this tuning concept is investigated based on an Ytterbium-doped fiber laser. The system shows superb emission properties including excellent wavelength stability, high spectral signal contrast (up to 50dB) and narrow linewidth (15GHz) as well as adjustable pulse durations in the nanosecond range with peak powers up to 100W. Additionally, the unique spectral potential of this method is demonstrated by realizing filter designs enabling e.g. a record tuning range of 74nm for fiber-integrated lasers. PMID:26367621

  20. Simultaneous DPSK demodulation and chirp management using delay interferometer in symmetric 40-Gb/s capability TWDM-PON system.

    PubMed

    Bi, Meihua; Xiao, Shilin; He, Hao; Yi, Lilin; Li, Zhengxuan; Li, Jun; Yang, Xuelin; Hu, Weisheng

    2013-07-15

    We propose a symmetric 40-Gb/s aggregate rate time and wavelength division multiplexed passive optical network (TWDM-PON) system with the capability of simultaneous downstream differential phase shift keying (DPSK) signal demodulation and upstream signal chirp management based on delay interferometer (DI). With the bi-pass characteristic of DI, we experimentally demonstrate the bidirectional transmission of signals at 10-Gb/s per wavelength, and achieve negligible power penalties after 50-km single mode fiber (SMF). For the uplink transmission with DI, a ~11-dB optical power budget improvement at a bit error ratio of 1e-3 is obtained and the extinction ratio (ER) of signal is also improved from 3.4 dB to 13.75 dB. Owing to this high ER, the upstream burst-mode transmitting is successfully presented in term of time-division multiplexing. Moreover, in our experiment, a ~38-dB power budget is obtained to support 256 users with 50-km SMF transmission. PMID:23938503