Sample records for chitin synthase inhibitor

  1. Discovery of two new inhibitors of Botrytis cinerea chitin synthase by a chemical library screening.

    PubMed

    Magellan, Hervé; Boccara, Martine; Drujon, Thierry; Soulié, Marie-Christine; Guillou, Catherine; Dubois, Joëlle; Becker, Hubert F

    2013-09-01

    Chitin synthases polymerize UDP-GlcNAC to form chitin polymer, a key component of fungal cell wall biosynthesis. Furthermore, chitin synthases are desirable targets for fungicides since chitin is absent in plants and mammals. Two potent Botrytis cinerea chitin synthase inhibitors, 2,3,5-tri-O-benzyl-d-ribose (compound 1) and a 2,5-functionalized imidazole (compound 2) were identified by screening a chemical library. We adapted the wheat germ agglutinin (WGA) test for chitin synthase activity detection to allow miniaturization and robotization of the screen. Both identified compounds inhibited chitin synthases in vitro with IC50 values of 1.8 and 10?M, respectively. Compounds 1 and 2 were evaluated for their antifungal activity and were found to be active against B. cinerea BD90 strain with MIC values of 190 and 100?M, respectively. Finally, we discovered that both compounds confer resistance to plant leaves against the attack of the fungus by reducing the propagation of lesions by 37% and 23%, respectively. Based on the inhibitory properties found in different assays, compounds 1 and 2 can be considered as antifungal hit inhibitors of chitin synthase, allowing further optimization of their pharmacological profile to improve their antifungal properties. PMID:23886809

  2. Modulation of Alternaria infectoria Cell Wall Chitin and Glucan Synthesis by Cell Wall Synthase Inhibitors

    PubMed Central

    Fernandes, Chantal; Anjos, Jorge; Walker, Louise A.; Silva, Branca M. A.; Cortes, Luísa; Mota, Marta; Munro, Carol A.; Gow, Neil A. R.

    2014-01-01

    The present work reports the effects of caspofungin, a ?-1,3-glucan synthase inhibitor, and nikkomycin Z, an inhibitor of chitin synthases, on two strains of Alternaria infectoria, a melanized fungus involved in opportunistic human infections and respiratory allergies. One of the strains tested, IMF006, bore phenotypic traits that conferred advantages in resisting antifungal treatment. First, the resting cell wall chitin content was higher and in response to caspofungin, the chitin level remained constant. In the other strain, IMF001, the chitin content increased upon caspofungin treatment to values similar to basal IMF006 levels. Moreover, upon caspofungin treatment, the FKS1 gene was upregulated in IMF006 and downregulated in IMF001. In addition, the resting ?-glucan content was also different in both strains, with higher levels in IMF001 than in IMF006. However, this did not provide any advantage with respect to echinocandin resistance. We identified eight different chitin synthase genes and studied relative gene expression when the fungus was exposed to the antifungals under study. In both strains, exposure to caspofungin and nikkomycin Z led to modulation of the expression of class V and VII chitin synthase genes, suggesting its importance in the robustness of A. infectoria. The pattern of A. infectoria phagocytosis and activation of murine macrophages by spores was not affected by caspofungin. Monotherapy with nikkomycin Z and caspofungin provided only fungistatic inhibition, while a combination of both led to fungal cell lysis, revealing a strong synergistic action between the chitin synthase inhibitor and the ?-glucan synthase inhibitor against this fungus. PMID:24614372

  3. New monomeric and dimeric uridinyl derivatives as inhibitors of chitin synthase.

    PubMed

    Kral, Katarzyna; Bieg, Tadeusz; Nawrot, Urszula; W?odarczyk, Katarzyna; Lalik, Anna; Hahn, Przemys?aw; Wandzik, Ilona

    2015-08-01

    This study described the synthesis and in vitro evaluation of eight new derivatives of uridine as antifungal agents and inhibitors of chitin synthase. Dimeric uridinyl derivatives synthesized by us did not exhibit significant activity. One of the studied monomeric derivative, 5'-(N-succinyl)-5'-amino-5'-deoxyuridine methyl ester (compound 7) showed activities against several fungal strains (MIC range 0.06-1.00mg/mL) and inhibited chitin synthase from Saccharomyces cerevisiae (IC50=0.8mM). Moreover compound 7 exhibited synergistic interaction with caspofungin against Candida albicans (FIC index=0.28). PMID:26051755

  4. Chitin synthase homologs in three ectomycorrhizal truffles.

    PubMed

    Lanfranco, L; Garnero, L; Delpero, M; Bonfante, P

    1995-12-01

    Degenerate PCR primers were used to amplify a conserved gene portion coding chitin synthase from genomic DNA of six species of ectomycorrhizal truffles. DNA was extracted from both hypogeous fruitbodies and in vitro growing mycelium of Tuber borchii. A single fragment of about 600 bp was amplified for each species. The amplification products from Tuber magnatum, T. borchii and T. ferrugineum were cloned and sequenced, revealing a high degree of identity (91.5%) at the nucleotide level. On the basis of the deduced amino acid sequences these clones were assigned to class II chitin synthase. Southern blot experiments performed on genomic DNA showed that the amplification products derive from a single copy gene. Phylogenetic analysis of the nucleotide sequences of class II chitin synthase genes confirmed the current taxonomic position of the genus Tuber, and suggested a close relationship between T. magnatum and T. uncinatum. PMID:8593947

  5. 2-acylamido analogues of N-acetylglucosamine prime formation of chitin oligosaccharides by yeast chitin synthase 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitin, a polymer of beta-1,4-linked N-acetylglucosamine (GlcNAc), is a key component of the cell walls of fungi and the exoskeletons of arthropods. Chitin synthases (CSs) transfer GlcNAc from UDP-GlcNAc to pre-existing chitin chains in reactions that are typically stimulated by free GlcNAc. The eff...

  6. Characterization of a Chitin Synthase Encoding Gene and Effect of Diflubenzuron in Soybean Aphid, Aphis Glycines

    PubMed Central

    Bansal, Raman; Mian, M. A. Rouf; Mittapalli, Omprakash; Michel, Andy P.

    2012-01-01

    Chitin synthases are critical enzymes for synthesis of chitin and thus for subsequent growth and development in insects. We identified the cDNA of chitin synthase gene (CHS) in Aphis glycines, the soybean aphid, which is a serious pest of soybean. The full-length cDNA of CHS in A. glycines (AyCHS) was 5802 bp long with an open reading frame of 4704 bp that encoded for a 1567 amino acid residues protein. The predicted AyCHS protein had a molecular mass of 180.05 kDa and its amino acid sequence contained all the signature motifs (EDR, QRRRW and TWGTR) of chitin synthases. The quantitative real-time PCR (qPCR) analysis revealed that AyCHS was expressed in all major tissues (gut, fat body and integument); however, it had the highest expression in integument (~3.5 fold compared to gut). Interestingly, the expression of AyCHS in developing embryos was nearly 7 fold higher compared to adult integument, which probably is a reflection of embryonic molts in hemimetabolus insects. Expression analysis in different developmental stages of A. glycines revealed a consistent AyCHS expression in all stages. Further, through leaf dip bioassay, we tested the effect of diflubenzuron (DFB, Dimilin ®), a chitin-synthesis inhibitor, on A. glycines' survival, fecundity and body weight. When fed with soybean leaves previously dipped in 50 ppm DFB solution, A. glycines nymphs suffered significantly higher mortality compared to control. A. glycines nymphs feeding on diflubenzuron treated leaves showed a slightly enhanced expression (1.67 fold) of AyCHS compared to nymphs on untreated leaves. We discussed the potential applications of the current study to develop novel management strategies using chitin-synthesis inhibitors and using RNAi by knocking down AyCHS expression. PMID:23139631

  7. Characterization of a chitin synthase encoding gene and effect of diflubenzuron in soybean aphid, Aphis glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitin synthases are critical enzymes for synthesis of chitin and thus for subsequent growth and development in insects. We have identified and characterized a chitin synthase gene (CHS) from cDNA of Aphis glycines, the soybean aphid, a serious pest of soybean. The full-length cDNA of CHS in A. glyc...

  8. Chitin synthases are required for survival, fecundity and egg-hatch in the red flour beetle, Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of chitin, the Beta-1,4-linked polymer of N-acetylglucosamine, is catalyzed by chitin synthase (CHS). Chitin is essential for the structural integrity of the exoskeletal cuticle and midgut peritrophic membrane (PM) of insects. To study the functions of the two chitin synthase genes, ...

  9. 2-Acylamido Analogues of N-Acetylglucosamine Prime Formation of Chitin Oligosaccharides by Yeast Chitin Synthase 2*

    PubMed Central

    Gyore, Jacob; Parameswar, Archana R.; Hebbard, Carleigh F. F.; Oh, Younghoon; Bi, Erfei; Demchenko, Alexei V.; Price, Neil P.; Orlean, Peter

    2014-01-01

    Chitin, a homopolymer of ?1,4-linked N-acetylglucosamine (GlcNAc) residues, is a key component of the cell walls of fungi and the exoskeletons of arthropods. Chitin synthases transfer GlcNAc from UDP-GlcNAc to preexisting chitin chains in reactions that are typically stimulated by free GlcNAc. The effect of GlcNAc was probed by using a yeast strain expressing a single chitin synthase, Chs2, by examining formation of chitin oligosaccharides (COs) and insoluble chitin, and by replacing GlcNAc with 2-acylamido analogues of GlcNAc. Synthesis of COs was strongly dependent on inclusion of GlcNAc in chitin synthase incubations, and N,N?-diacetylchitobiose (GlcNAc2) was the major reaction product. Formation of both COs and insoluble chitin was also stimulated by GlcNAc2 and by N-propanoyl-, N-butanoyl-, and N-glycolylglucosamine. MALDI analyses of the COs made in the presence of 2-acylamido analogues of GlcNAc showed they that contained a single GlcNAc analogue and one or more additional GlcNAc residues. These results indicate that Chs2 can use certain 2-acylamido analogues of GlcNAc, and likely free GlcNAc and GlcNAc2 as well, as GlcNAc acceptors in a UDP-GlcNAc-dependent glycosyltransfer reaction. Further, formation of modified disaccharides indicates that CSs can transfer single GlcNAc residues. PMID:24619411

  10. Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi

    Microsoft Academic Search

    Elena Fanelli; Mauro Di Vito; John T. Jones; Carla De Giorgi

    2005-01-01

    A single chitin synthase gene is responsible for chitin production in the eggshells of the plant parasitic nematode Meloidogyne artiellia. In this paper we describe a functional analysis of this gene using RNAi as well as further analysis of two similar genes from the free-living nematode Caenorhabditis elegans. The parasitic life-style of M. artiellia required the development of a novel

  11. Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi

    Microsoft Academic Search

    José Ruiz-Herrera; Juan Manuel González-Prieto; Roberto Ruiz-Medrano

    2002-01-01

    Chitin, the structural component that provides rigidity to the cell wall of fungi is the product of chitin synthases (Chs). These enzymes are not restricted to fungi, but are amply distributed in four of the five eukaryotic ‘crown kingdoms’. Dendrograms obtained by multiple alignment of Chs revealed that fungal enzymes can be classified into two divisions that branch into at

  12. [Chitin Synthase 2 (CHS2) gene of Malassezia species].

    PubMed

    Kano, Rui

    2005-01-01

    Malassezia species have been recognized as members of the microbiological flora of human and animal skin; they are also considered to play an important role in the pathogenesis of folliculitis, atopic dermatitis and otitis externa. Therefore, the molecular characteristics were investigated to clarify the epidemiology and the pathogenesis of diseases associated with Malassezia species in human and animals. Molecular investigation was made of 105 clinical isolates of M. pachydermatis from dogs and cats by random amplification of polymorphic DNA (RAPD) and chitin synthase 2 (CHS2) gene sequence analyses. The RAPD analysis and CHS2 gene analysis indicated that clinical isolates of M. pachydermatis were divided into four distinct genetic types (A, B, C and D). Type A was isolated from lesions of atopic dermatitis, flea allergic dermatitis, otitis externa, pyoderma and seborrheic (dermatitidis) in dogs and cats, and might be predominant on this. The phylogenetic analysis of the nucleotide sequences of CHS2 gene fragments of standard strains of 11 Malassezia species showed 11 distinct clusters of this species. PMID:16094288

  13. Fusarium verticillioides chitin synthases CHS5 and CHS7 are required for normal growth and pathogenicity

    Microsoft Academic Search

    Troy M. LarsonDavid; David F. Kendra; Mark Busman; Daren W. Brown

    2011-01-01

    Fusarium verticillioides is both an endophyte and a pathogen of maize and is a health threat in many areas of the world because it can contaminate\\u000a maize with fumonisins, a toxic secondary metabolite. We identified eight putative chitin synthase (CHS) genes in F. verticillioides genomic sequence, and phylogenetic evidence shows that they group into seven established CHS gene classes. We

  14. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases

    PubMed Central

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-01-01

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5?Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes. PMID:26084520

  15. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases.

    PubMed

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-01-01

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5?Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes. PMID:26084520

  16. SEQUENCES OF CDNAS AND EXPRESSION OF GENES ENCODING CHITIN SYNTHASE AND CHITINASE IN THE MIDGUT OF SPODOPTERA FRUGIPERDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of this study was on the characterization and expression of genes encoding enzymes responsible for the synthesis and degradation of chitin, chitin synthase (SfCHSB) and chitinase (SfCHI), respectively, in the midgut of the fall armyworm, Spodoptera frugiperda,. Sequences of cDNAs for SfCHS...

  17. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum.

    PubMed

    Liu, Hui; Zheng, Zhiming; Wang, Peng; Gong, Guohong; Wang, Li; Zhao, Genhai

    2013-04-01

    Chitin synthases catalyze the formation of ?-(1,4)-glycosidic bonds between N-acetylglucosamine residues to form the unbranched polysaccharide chitin, which is the major component of cell walls in most filamentous fungi. Several studies have shown that chitin synthases are structurally and functionally divergent and play crucial roles in the growth and morphogenesis of the genus Aspergillus although little research on this topic has been done in Penicillium chrysogenum. We used BLAST to find the genes encoding chitin synthases in P. chrysogenum related to chitin synthase genes in Aspergillus nidulans. Three homologous sequences coding for a class III chitin synthase CHS4 and two hypothetical proteins in P. chrysogenum were found. The gene which product showed the highest identity and encoded the class III chitin synthase CHS4 was studied in detail. To investigate the role of CHS4 in P. chrysogenum morphogenesis, we developed an RNA interference system to silence the class III chitin synthase gene chs4. After transformation, mutants exhibited a slow growth rate and shorter and more branched hyphae, which were distinct from those of the original strain. The results also showed that the conidiation efficiency of all transformants was reduced sharply and indicated that chs4 is essential in conidia development. The morphologies of all transformants and the original strain in penicillin production were investigated by light microscopy, which showed that changes in chs4 expression led to a completely different morphology during fermentation and eventually caused distinct penicillin yields, especially in the transformants PcRNAi1-17 and PcRNAi2-1 where penicillin production rose by 27 % and 41 %, respectively. PMID:23179625

  18. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds.

    PubMed

    Madrid, Martan P; Di Pietro, Antonio; Roncero, M Isabel G

    2003-01-01

    Chitin, a beta-1,4-linked polysaccharide of N-acetylglucosamine, is a major structural component of fungal cell walls. Fungi have multiple classes of chitin synthases that catalyse N-acetylglucosamine polymerization. Here, we demonstrate the requirement for a class V chitin synthase during host infection by the vascular wilt pathogen Fusarium oxysporum. The chsV gene was identified in an insertional mutagenesis screen for pathogenicity mutants. ChsV has a putative myosin motor and a chitin synthase domain characteristic of class V chitin synthases. The chsV insertional mutant and a gene replacement mutant of F. oxysporum display morphological abnormalities such as hyphal swellings that are indicative of alterations in cell wall structure and can be partially restored by osmotic stabilizer. The mutants are unable to infect and colonize tomato plants or to grow invasively on tomato fruit tissue. They are also hypersensitive to plant antimicrobial defence compounds such as the tomato phytoanticipin alpha-tomatine or H2O2. Reintroduction of a functional chsV copy into the mutant restored the growth phenotype of the wild-type strain. These data suggest that F. oxysporum requires a specific class V chitin synthase for pathogenesis, most probably to protect itself against plant defence mechanisms. PMID:12492869

  19. Bait Matrix for Delivery of Chitin Synthesis Inhibitors to the Formosan Subterranean Termite (Isoptera: Rhinotermitidae)

    Microsoft Academic Search

    M. Guadalupe Rojas; J. A. Morales-Ramos

    2001-01-01

    The efficacy of three chitin synthesis inhibitors, diflubenzuron, hexaflumuron, and chlorfluazuron, incorporated into a novel bait matrix to kill the Formosan subterranean termite, Coptotermes formosanus Shiraki, was evaluated in the laboratory. The bait matrix was significantly preferred by C. formosanus over southern yellow pine wood in a two-choice feeding test. Bait formulations containing 250 ppm of the three chitin synthesis

  20. Chitin Synthases with a Myosin Motor-Like Domain Control the Resistance of Aspergillus fumigatus to Echinocandins

    PubMed Central

    Jiménez-Ortigosa, Cristina; Aimanianda, Vishukumar; Muszkieta, Laetitia; Mouyna, Isabelle; Alsteens, David; Pire, Stéphane; Beau, Remi; Krappmann, Sven; Beauvais, Anne; Dufrêne, Yves F.

    2012-01-01

    Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin content were similar in the mycelium of all of the mutants and the parental strain. In the conidia, chitin content in the ?csmA strain cell wall was less than half the amount found in the parental strain. In contrast, the ?csmB mutant strain and, unexpectedly, the ?csmA/?csmB mutant strain did not show any modification of chitin content in their conidial cell walls. In contrast to the hydrophobic conidia of the parental strain, conidia of all of the csm mutants were hydrophilic due to the presence of an amorphous material covering the hydrophobic surface-rodlet layer. The deletion of CSM genes also resulted in an increased susceptibility of resting and germinating conidia to echinocandins. These results show that the deletion of the CSMA and CSMB genes induced a significant disorganization of the cell wall structure, even though they contribute only weakly to the overall cell wall chitin synthesis. PMID:22964252

  1. Hyaluronan synthase assembles chitin oligomers with -GlcNAc(?1?)UDP at the reducing end.

    PubMed

    Weigel, Paul H; West, Christopher M; Zhao, Peng; Wells, Lance; Baggenstoss, Bruce A; Washburn, Jennifer L

    2015-06-01

    Class I hyaluronan synthases (HASs) assemble a polysaccharide containing the repeating disaccharide [GlcNAc(?1,4)GlcUA(?1,3)]n-UDP and vertebrate HASs also assemble (GlcNAc-?1,4)n homo-oligomers (chitin) in the absence of GlcUA-UDP. This multi-membrane domain CAZy GT2 family glycosyltransferase, which couples HA synthesis and translocation across the cell membrane, is atypical in that monosaccharides are incrementally assembled at the reducing, rather than the non-reducing, end of the growing polymer. Using Escherichia coli membranes containing recombinant Streptococcus equisimilis HAS, we demonstrate that a prokaryotic Class I HAS also synthesizes chitin oligomers (up to 15-mers, based on MS and MS/MS analyses of permethylated products). Furthermore, chitin oligomers were found attached at their reducing end to -4GlcNAc(?1?)UDP [i.e. (GlcNAc?1,4)nGlcNAc(?1?)UDP]. These oligomers, which contained up to at least seven HexNAc residues, consisted of ?4-linked GlcNAc residues, based on the sensitivity of the native products to jack bean ?-N-acetylhexosaminidase. Interestingly, these oligomers exhibited mass defects of -2, or -4 for longer oligomers, that strictly depended on conjugation to UDP, but MS/MS analyses indicate that these species result from chemical dehydrogenations occurring in the gas phase. Identification of (GlcNAc-?1,4)n-GlcNAc(?1?)UDP as HAS reaction products, made in the presence of GlcNAc(?1?)UDP only, provides strong independent confirmation for the reducing terminal addition mechanism. We conclude that chitin oligomer products made by HAS are derived from the cleavage of these novel activated oligo-chitosyl-UDP oligomers. Furthermore, it is possible that these UDP-activated chitin oligomers could serve as self-assembled primers for initiating HA synthesis and ultimately modify the non-reducing terminus of HA with a chitin cap. PMID:25583822

  2. A Bni4Glc7 phosphatase complex that recruits chitin synthase to the site of bud emergence

    Microsoft Academic Search

    Lukasz Kozubowski; Heather Panek; Ashley Rosenthal; Andrew Bloecher; Douglas J. DeMarini; Kelly Tatchell

    2002-01-01

    ABSTRACT Bni4 is a scaffold protein in the yeast Saccharomyces cerevisiaethat tethers chitin synth ase III to the bud neck by interacting with septin neck filaments and with Chs4, a regulatory subunit of chitin synthase III. W e show here that Bni4 is also a limiting determinant for the targeting of the type 1 serine\\/threonine phospha tase (Glc7) to the

  3. Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    PubMed Central

    Farnesi, Luana C.; Brito, José M.; Linss, Jutta G.; Pelajo-Machado, Marcelo; Valle, Denise; Rezende, Gustavo L.

    2012-01-01

    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes. PMID:22291942

  4. Physiological and morphological aspects of Aedes aegypti developing larvae: effects of the chitin synthesis inhibitor novaluron.

    PubMed

    Farnesi, Luana C; Brito, José M; Linss, Jutta G; Pelajo-Machado, Marcelo; Valle, Denise; Rezende, Gustavo L

    2012-01-01

    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes. PMID:22291942

  5. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase.

    PubMed

    Schuster, Martin; Treitschke, Steffi; Kilaru, Sreedhar; Molloy, Justin; Harmer, Nicholas J; Steinberg, Gero

    2012-01-01

    Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall-forming chitin synthases (CHSs) in the corn pathogen Ustilago maydis. We show that peripheral filamentous actin (F-actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin-17 motor domain, is travelling along both MTs and F-actin. This transport is independent of kinesin-3, but mediated by kinesin-1 and myosin-5. Arriving vesicles pause beneath the plasma membrane, but only ~15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1-bound vesicles transiently bind F-actin but show no motility in vitro. Thus, kinesin-1, myosin-5 and dynein mediate bi-directional motility, whereas myosin-17 introduces a symmetry break that allows polarized secretion. PMID:22027862

  6. The Myosin Motor Domain of Fungal Chitin Synthase V Is Dispensable for Vesicle Motility but Required for Virulence of the Maize Pathogen Ustilago maydis[W

    PubMed Central

    Treitschke, Steffi; Doehlemann, Gunther; Schuster, Martin; Steinberg, Gero

    2010-01-01

    Class V chitin synthases are fungal virulence factors required for plant infection. They consist of a myosin motor domain fused to a membrane-spanning chitin synthase region that participates in fungal cell wall formation. The function of the motor domain is unknown, but it might deliver the myosin chitin synthase-attached vesicles to the growth region. Here, we analyze the importance of both domains in Mcs1, the chitin synthase V of the maize smut fungus Ustilago maydis. By quantitative analysis of disease symptoms, tissue colonization, and single-cell morphogenic parameters, we demonstrate that both domains are required for fungal virulence. Fungi carrying mutations in the chitin synthase domain are rapidly recognized and killed by the plant, whereas fungi carrying a deletion of the motor domain show alterations in cell wall composition but can invade host tissue and cause a moderate plant response. We also show that Mcs1-bound vesicles exhibit long-range movement for up to 20 ?m at a velocity of ~1.75 ?m/s. Apical Mcs1 localization depends on F-actin and the motor domain, whereas Mcs1 motility requires microtubules and persists when the Mcs1 motor domain is deleted. Our results suggest that the myosin motor domain of ChsV supports exocytosis but not long-range delivery of transport vesicles. PMID:20663961

  7. A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans.

    PubMed

    Gow, N A; Robbins, P W; Lester, J W; Brown, A J; Fonzi, W A; Chapman, T; Kinsman, O S

    1994-06-21

    In the dimorphic fungus Candida albicans, the CHS2 gene encodes a chitin synthase that is expressed preferentially in the hyphal form. Gene disruption of CHS2 in this diploid asexual fungus was achieved by the "ura-blaster" protocol described for Saccharomyces [Alani, E., Cao, L. & Kleckner, N. (1987) Genetics 116, 541-545]. This involves the sequential disruption of multiple alleles by integrative transformation with URA3 as a single selectable marker. After disrupting the first CHS2 allele, the Ura- phenotype was recovered through cis recombination between repeated hisG sequences that flanked the URA3 marker in the disruption cassette, which was then used again to disrupt further CHS2 alleles. This method of gene disruption is well suited to the mutational analysis of this genetically recalcitrant human pathogen. Three rounds of disruption were required, suggesting that the strain SGY243 is triploid for the CHS2 locus. The resulting homozygous delta chs2::hisG null mutants were viable and made germ tubes with a normal morphology. The germ tubes were formed more slowly than parental strains in serum-containing medium and the germinating cells had a 40% reduction in their chitin content compared to germ tubes of the parent strain. The chitin content of the yeast form was not affected. A prototrophic strain of the chs2 null mutant was not attenuated significantly in its virulence when tested in normal and immunosuppressed mice. PMID:8016141

  8. Transportation of Aspergillus nidulans Class III and V Chitin Synthases to the Hyphal Tips Depends on Conventional Kinesin

    PubMed Central

    Takeshita, Norio; Wernet, Valentin; Tsuizaki, Makusu; Grün, Nathalie; Hoshi, Hiro-omi; Ohta, Akinori; Fischer, Reinhard; Horiuchi, Hiroyuki

    2015-01-01

    Cell wall formation and maintenance are crucial for hyphal morphogenesis. In many filamentous fungi, chitin is one of the main structural components of the cell wall. Aspergillus nidulans ChsB, a chitin synthase, and CsmA, a chitin synthase with a myosin motor-like domain (MMD) at its N-terminus, both localize predominantly at the hyphal tip regions and at forming septa. ChsB and CsmA play crucial roles in polarized hyphal growth in A. nidulans. In this study, we investigated the mechanism by which CsmA and ChsB accumulate at the hyphal tip in living hyphae. Deletion of kinA, a gene encoding conventional kinesin (kinesin-1), impaired the localization of GFP-CsmA and GFP-ChsB at the hyphal tips. The transport frequency of GFP-CsmA and GFP-ChsB in both anterograde and retrograde direction appeared lower in the kinA-deletion strain compared to wild type, although the velocities of the movements were comparable. Co-localization of GFP-ChsB and GFP-CsmA with mRFP1-KinArigor, a KinA mutant that binds to microtubules but does not move along them, was observed in the posterior of the hyphal tip regions. KinA co-immunoprecipitated with ChsB and CsmA. Co-localization and association of CsmA with KinA did not depend on the MMD. These findings indicate that ChsB and CsmA are transported along microtubules to the subapical region by KinA. PMID:25955346

  9. KNR4, a suppressor of Saccharomyces cerevisiae cwh mutants, is involved in the transcriptional control of chitin synthase genes.

    PubMed

    Martin, H; Dagkessamanskaia, A; Satchanska, G; Dallies, N; François, J

    1999-01-01

    The KNR4 gene, originally isolated by complementation of a K9 killer-toxin-resistant mutant displaying reduced levels of both 1,3-beta-glucan and 1,3-beta-glucan synthase activity, was recloned from a YCp50 genomic library as a suppressor of Saccharomyces cerevisiae calcofluor-white-hypersensitive (cwh) mutants. In these mutants, which were characterized by increased chitin levels, the suppressor effect of KNR4 resulted, for some of them, in a lowering of polymer content to close to wild-type level, with no effect on the contents of beta-glucan and mannan. In all cases, this effect was accompanied by a strong reduction in mRNA levels corresponding to CHS1, CHS2 and CHS3, encoding chitin synthases, without affecting expression of FKS1 and RHO1, two genes encoding the catalytic subunit and a regulatory component of 1,3-beta-glucan synthase, respectively. Overexpression of KNR4 also inhibited expression of CHS genes in wild-type strains and in two other cwh mutants, whose sensitivity to calcofluor white was not suppressed by this gene. The physiological relevance of the KNR4 transcriptional effect was addressed in two different ways. In a wild-type strain exposed to alpha-factor, overexpression of this gene inhibited CHS1 induction and delayed shmoo formation, two events which are triggered in response to the pheromone, whereas it did not affect bud formation and cell growth in a chs1 chs2 double mutant. A chimeric protein made by fusing green fluorescent protein to the C terminus of Knr4p which fully complemented a knr4delta mutation was found to localize in patches at presumptive bud sites in unbudded cells and at the incipient bud site during bud emergence. Taken together, these results demonstrate that KNR4 has a regulatory role in chitin deposition and in cell wall assembly. A mechanism by which this gene affects expression of CHS genes is proposed. PMID:10206705

  10. Large-scale phylogenetic classification of fungal chitin synthases and identification of a putative cell-wall metabolism gene cluster in Aspergillus genomes.

    PubMed

    Pacheco-Arjona, Jose Ramon; Ramirez-Prado, Jorge Humberto

    2014-01-01

    The cell wall is a protective and versatile structure distributed in all fungi. The component responsible for its rigidity is chitin, a product of chitin synthase (Chsp) enzymes. There are seven classes of chitin synthase genes (CHS) and the amount and type encoded in fungal genomes varies considerably from one species to another. Previous Chsp sequence analyses focused on their study as individual units, regardless of genomic context. The identification of blocks of conserved genes between genomes can provide important clues about the interactions and localization of chitin synthases. On the present study, we carried out an in silico search of all putative Chsp encoded in 54 full fungal genomes, encompassing 21 orders from five phyla. Phylogenetic studies of these Chsp were able to confidently classify 347 out of the 369 Chsp identified (94%). Patterns in the distribution of Chsp related to taxonomy were identified, the most prominent being related to the type of fungal growth. More importantly, a synteny analysis for genomic blocks centered on class IV Chsp (the most abundant and widely distributed Chsp class) identified a putative cell wall metabolism gene cluster in members of the genus Aspergillus, the first such association reported for any fungal genome. PMID:25148134

  11. Targeting of Chitin Synthase 3 to Polarized Growth Sites in Yeast Requires Chs5p and Myo2p

    PubMed Central

    Santos, Beatriz; Snyder, Michael

    1997-01-01

    Chitin is an essential structural component of the yeast cell wall whose deposition is regulated throughout the yeast life cycle. The temporal and spatial regulation of chitin synthesis was investigated during vegetative growth and mating of Saccharomyces cerevisiae by localization of the putative catalytic subunit of chitin synthase III, Chs3p, and its regulator, Chs5p. Immunolocalization of epitope-tagged Chs3p revealed a novel localization pattern that is cell cycledependent. Chs3p is polarized as a diffuse ring at the incipient bud site and at the neck between the mother and bud in small-budded cells; it is not found at the neck in large-budded cells containing a single nucleus. In large-budded cells undergoing cytokinesis, it reappears as a ring at the neck. In cells responding to mating pheromone, Chs3p is found throughout the projection. The appearance of Chs3p at cortical sites correlates with times that chitin synthesis is expected to occur. In addition to its localization at the incipient bud site and neck, Chs3p is also found in cytoplasmic patches in cells at different stages of the cell cycle. Epitope-tagged Chs5p also localizes to cytoplasmic patches; these patches contain Kex2p, a late Golgi-associated enzyme. Unlike Chs3p, Chs5p does not accumulate at the incipient bud site or neck. Nearly all Chs3p patches contain Chs5p, whereas some Chs5p patches lack detectable Chs3p. In the absence of Chs5p, Chs3p localizes in cytoplasmic patches, but it is no longer found at the neck or the incipient bud site, indicating that Chs5p is required for the polarization of Chs3p. Furthermore, Chs5p localization is not affected either by temperature shift or by the myo2-66 mutation, however, Chs3p polarization is affected by temperature shift and myo2-66. We suggest a model in which Chs3p polarization to cortical sites in yeast is dependent on both Chs5p and the actin cytoskeleton/Myo2p. PMID:9008706

  12. Alendronate Is a Specific, Nanomolar Inhibitor of Farnesyl Diphosphate Synthase

    Microsoft Academic Search

    James D. Bergstrom; Richard G. Bostedor; Patricia J. Masarachia; Alfred A. Reszka; Gideon Rodan

    2000-01-01

    Alendronate, a nitrogen-containing bisphosphonate, is a potent inhibitor of bone resorption used for the treatment and prevention of osteoporosis. Recent findings suggest that alendronate and other N-containing bisphosphonates inhibit the isoprenoid biosynthesis pathway and interfere with protein prenylation, as a result of reduced geranylgeranyl diphosphate levels. This study identified farnesyl disphosphate synthase as the mevalonate pathway enzyme inhibited by bisphosphonates.

  13. Larvicidal Activity of Novaluron, a Chitin Synthesis Inhibitor, Against the Housefly, Musca domestica

    PubMed Central

    Cetin, Huseyin; Erler, Fedai; Yanikoglu, Atila

    2006-01-01

    A chitin synthesis inhibitor, novaluron, was evaluated under laboratory conditions for its larvicidal activity against a field population of the housefly, Musca domestica L. (Diptera: Muscidae), by feeding and dipping methods. The concentrations used were 1, 2.5, 5, 10 and 20 mg a.i./kg in both methods. The product caused >80% larval mortality at 10 and 20 mg a.i./kg. Of the two methods, feeding was more effective for larvicidal activity at doses above 2.5 mg a.i./kg. After 72 hours, the LC50 and LC90 values were 1.66 and 8.25 mg a.i./kg, respectively, with the feeding method; and 2.72 and 17.88 mg a.i./kg, respectively, using the dipping method. The results showed that the product provided good control of housefly larvae and would greatly reduce adult emergence.

  14. Inhibitors of glycogen synthase 3 kinase

    SciTech Connect

    Schultz, Peter (Oakland, CA); Ring, David B. (Palo Alto, CA); Harrison, Stephen D. (Berkeley, CA); Bray, Andrew M. (Victoria, AU)

    2000-01-01

    Compounds of formula 1: ##STR1## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0-3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amnino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  15. Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity.

    PubMed

    Munro, C A; Winter, K; Buchan, A; Henry, K; Becker, J M; Brown, A J; Bulawa, C E; Gow, N A

    2001-03-01

    CaCHS1 of the fungal pathogen Candida albicans encodes an essential chitin synthase that is required for septum formation, viability, cell shape and integrity. The CaCHS1 gene was inactivated by first disrupting one allele using the ura-blaster protocol, then placing the remaining allele under the control of the maltose-inducible, glucose-repressible MRP1 promoter. Under repressing conditions, yeast cell growth continued temporarily, but daughter buds failed to detach from parents, resulting in septumless chains of cells with constrictions defining contiguous compartments. After several generations, a proportion of the distal compartments lysed. The conditional Deltachs1 mutant also failed to form primary septa in hyphae; after several generations, growth stopped, and hyphae developed swollen balloon-like features or lysed at one of a number of sites including the hyphal apex and other locations that would not normally be associated with septum formation. CHS1 therefore synthesizes the septum of both yeast and hyphae and also maintains the integrity of the lateral cell wall. The conditional mutant was avirulent under repressing conditions in an experimental model of systemic infection. Because this gene is essential in vitro and in vivo and is not present in humans, it represents an attractive target for the development of antifungal compounds. PMID:11251855

  16. The Syntaxin Tlg1p Mediates Trafficking of Chitin Synthase III to Polarized Growth Sites in Yeast

    PubMed Central

    Holthuis, Joost C. M.; Nichols, Benjamin J.; Pelham, Hugh R. B.

    1998-01-01

    Tlg1p and Tlg2p, members of the syntaxin family of SNAREs in yeast, have been implicated in both endocytosis and the retention of late Golgi markers. We have investigated the functions of these and the other endocytic syntaxins Pep12p and Vam3p. Remarkably, growth is possible in the absence of all four proteins. In the absence of the others, Pep12p and Tlg1p can each create endosomes accessible to the endocytic tracer dye FM4-64. However, although Pep12p is required for the ligand-induced internalization of the ? factor receptor and its passage via Pep12p-containing membranes to the vacuole, Tlg1p is not. In contrast, Tlg1p is required for the efficient localization of the catalytic subunit of chitin synthase III (Chs3p) to the bud neck, a process that involves endocytosis and polarized delivery of Chs3p. In wild-type cells, internalized Chs3p cofractionates with Tlg1p and Tlg2p, and in a strain lacking the other endocytic syntaxins, either Tlg1p or Tlg2p is sufficient for correct localization of the enzyme. Pep12p is neither necessary nor sufficient for this process. We conclude that there are two endocytic routes in yeast that can operate independently and that Tlg1p is located at the junction of one of these with the polarized exocytic pathway. PMID:9843576

  17. CsmA, a Class V Chitin Synthase with a Myosin Motor-like Domain, Is Localized through Direct Interaction with the Actin Cytoskeleton in Aspergillus nidulans

    PubMed Central

    Takeshita, Norio; Ohta, Akinori; Horiuchi, Hiroyuki

    2005-01-01

    One of the essential features of fungal morphogenesis is the polarized synthesis of cell wall components such as chitin. The actin cytoskeleton provides the structural basis for cell polarity in Aspergillus nidulans, as well as in most other eukaryotes. A class V chitin synthase, CsmA, which contains a myosin motor-like domain (MMD), is conserved among most filamentous fungi. The ?csmA null mutant showed remarkable abnormalities with respect to cell wall integrity and the establishment of polarity. In this study, we demonstrated that CsmA tagged with 9× HA epitopes localized near actin structures at the hyphal tips and septation sites and that its MMD was able to bind to actin. Characterization of mutants bearing a point mutation or deletion in the MMD suggests that the interaction between the MMD and actin is not only necessary for the proper localization of CsmA, but also for CsmA function. Thus, the finding of a direct interaction between the chitin synthase and the actin cytoskeleton provides new insight into the mechanisms of polarized cell wall synthesis and fungal morphogenesis. PMID:15703213

  18. Farnesyl diphosphate synthase inhibitors with unique ligand-binding geometries.

    PubMed

    Liu, Yi-Liang; Cao, Rong; Wang, Yang; Oldfield, Eric

    2015-03-12

    Farnesyl diphosphate synthase (FPPS) is an important drug target for bone resorption, cancer, and some infectious diseases. Here, we report five new structures including two having unique bound ligand geometries. The diamidine inhibitor 7 binds to human FPPS close to the homoallylic (S2) and allosteric (S3) sites and extends into a new site, here called S4. With the bisphosphonate inhibitor 8, two molecules bind to Trypanosoma brucei FPPS, one molecule in the allylic site (S1) and the other close to S2, the first observation of two bisphosphonate molecules bound to FPPS. We also report the structures of apo-FPPS from T. brucei, together with two more bisphosphonate-bound structures (2,9), for purposes of comparison. The diamidine structure is of particular interest because 7 could represent a new lead for lipophilic FPPS inhibitors, while 8 has low micromolar activity against T. brucei, the causative agent of human African trypanosomiasis. PMID:25815158

  19. A class Vb chitin synthase in Colletotrichum graminicola is localized in the growing tips of multiple cell types, in nascent septa, and during septum conversion to an end wall after hyphal breakage

    Microsoft Academic Search

    A. Amnuaykanjanasin; L. Epstein

    2006-01-01

    Summary.  Previous complementation of a chitin synthase class Vb null mutant (Colletotrichum graminicola chsA) indicated that the encoded protein is responsible for approximately 30% of the conidial chitin, is essential for conidial\\u000a wall strength in media with high water potential, and contributes to strength of hyphal tips. We complemented a chsA null mutant with chsA fused to the green-fluorescent protein (sgfp)

  20. Inhibitor Bound Crystal Structures of Bacterial Nitric Oxide Synthase.

    PubMed

    Holden, Jeffrey K; Dejam, Dillon; Lewis, Matthew C; Huang, He; Kang, Soosung; Jing, Qing; Xue, Fengtian; Silverman, Richard B; Poulos, Thomas L

    2015-07-01

    Nitric oxide generated by bacterial nitric oxide synthase (NOS) increases the susceptibility of Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis to oxidative stress, including antibiotic-induced oxidative stress. Not surprisingly, NOS inhibitors also improve the effectiveness of antimicrobials. Development of potent and selective bacterial NOS inhibitors is complicated by the high active site sequence and structural conservation shared with the mammalian NOS isoforms. To exploit bacterial NOS for the development of new therapeutics, recognition of alternative NOS surfaces and pharmacophores suitable for drug binding is required. Here, we report on a wide number of inhibitor-bound bacterial NOS crystal structures to identify several compounds that interact with surfaces unique to the bacterial NOS. Although binding studies indicate that these inhibitors weakly interact with the NOS active site, many of the inhibitors reported here provide a revised structural framework for the development of new antimicrobials that target bacterial NOS. In addition, mutagenesis studies reveal several key residues that unlock access to bacterial NOS surfaces that could provide the selectivity required to develop potent bacterial NOS inhibitors. PMID:26062720

  1. Structure-based design of bacterial nitric oxide synthase inhibitors.

    PubMed

    Holden, Jeffrey K; Kang, Soosung; Hollingsworth, Scott A; Li, Huiying; Lim, Nathan; Chen, Steven; Huang, He; Xue, Fengtian; Tang, Wei; Silverman, Richard B; Poulos, Thomas L

    2015-01-22

    Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial ( Holden , , Proc. Natl. Acad. Sci. U.S.A. 2013 , 110 , 18127 ). Here we present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Together, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors. PMID:25522110

  2. Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase

    SciTech Connect

    Hevener, Kirk E.; Yun, Mi-Kyung; Qi, Jianjun; Kerr, Iain D.; Babaoglu, Kerim; Hurdle, Julian G.; Balakrishna, Kanya; White, Stephan W.; Lee, Richard E. (Tennessee-HSC); (SJCH)

    2010-01-12

    Dihydropteroate synthase (DHPS) is a key enzyme in bacterial folate synthesis and the target of the sulfonamide class of antibacterials. Resistance and toxicities associated with sulfonamides have led to a decrease in their clinical use. Compounds that bind to the pterin binding site of DHPS, as opposed to the p-amino benzoic acid (pABA) binding site targeted by the sulfonamide agents, are anticipated to bypass sulfonamide resistance. To identify such inhibitors and map the pterin binding pocket, we have performed virtual screening, synthetic, and structural studies using Bacillus anthracis DHPS. Several compounds with inhibitory activity have been identified, and crystal structures have been determined that show how the compounds engage the pterin site. The structural studies identify the key binding elements and have been used to generate a structure-activity based pharmacophore map that will facilitate the development of the next generation of DHPS inhibitors which specifically target the pterin site.

  3. Inhibitors to Polyhydroxyalkanoate (PHA) Synthases: Synthesis, Molecular Docking, and Implications

    PubMed Central

    Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered as an ideal alternative to nonbiodegradable synthetic plastics. However, study of PhaC has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty along with lack of a structure has become the main hurdle to understand and engineer PhaCs for economical PHA production. Here we reported the synthesis of two carbadethia CoA analogs, sT-CH2-CoA 26a and sTet-CH2-CoA 26b as well as sT-aldehyde 29 as new PhaC inhibitors. Study of these analogs with PhaECAv revealed that 26a/b and 29 are competitive and mixed inhibitors, respectively. It was observed that CoA moiety and PHA chain extension can increase binding affinity, which is consistent with the docking study. Estimation from Kic of 26a/b predicts that a CoA analog attached with an octameric-HB chain may facilitate the formation of a kinetically well-behaved synthase. PMID:25394180

  4. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments.

    PubMed

    King, Margaret K; Pardo, Marta; Cheng, Yuyan; Downey, Kimberlee; Jope, Richard S; Beurel, Eléonore

    2014-01-01

    Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions. PMID:23916593

  5. Cell Wall Polysaccharide Synthases Are Located in Detergent-Resistant Membrane Microdomains in Oomycetes

    Microsoft Academic Search

    Anne Briolay; Jamel Bouzenzana; Michel Guichardant; Christian Deshayes; Nicolas Sindt; Laurence Bessueille; Vincent Bulone

    2009-01-01

    The pathways responsible for cell wall polysaccharide biosynthesis are vital in eukaryotic microorganisms. The corresponding synthases are potential targets of inhibitors such as fungicides. Despite their fundamental and economical importance, most polysaccharide synthases are not well characterized, and their molecular mechanisms are poorly understood. With the example of Saprolegnia monoica as a model organism, we show that chitin and (133)--D-glucan

  6. Synthesis in vitro of crystalline chitin by a solubilized enzyme from the cellulosic fungus Saprolegnia monoica

    Microsoft Academic Search

    L. Gay; H. Chanzy; V. Bulone; V. Girard; M. Fevre

    1993-01-01

    Enriched preparations of chitin synthase were obtained from cell homogenates from Supvolegnia monoica. Chitin synthase was solubilized from a mixed membrane fraction by two successive digitonin treatments. Glycerol gradient centrifugation of the solubilized proteins separated the chitin synthase activity from the majority of proteins and from 8-1,3 and p-1,4 glucan synthases. The properties of chitin synthase from this Oomycete fungus

  7. Stimulation of Chitin Synthesis Rescues Candida albicans from Echinocandins

    PubMed Central

    de Bruijn, Irene; Lenardon, Megan D.; McKinnon, Alastair; Gow, Neil A. R.

    2008-01-01

    Echinocandins are a new generation of novel antifungal agent that inhibit cell wall ?(1,3)-glucan synthesis and are normally cidal for the human pathogen Candida albicans. Treatment of C. albicans with low levels of echinocandins stimulated chitin synthase (CHS) gene expression, increased Chs activity, elevated chitin content and reduced efficacy of these drugs. Elevation of chitin synthesis was mediated via the PKC, HOG, and Ca2+-calcineurin signalling pathways. Stimulation of Chs2p and Chs8p by activators of these pathways enabled cells to survive otherwise lethal concentrations of echinocandins, even in the absence of Chs3p and the normally essential Chs1p, which synthesize the chitinous septal ring and primary septum of the fungus. Under such conditions, a novel proximally offset septum was synthesized that restored the capacity for cell division, sustained the viability of the cell, and abrogated morphological and growth defects associated with echinocandin treatment and the chs mutations. These findings anticipate potential resistance mechanisms to echinocandins. However, echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for combination therapies with greatly enhanced cidal activity. PMID:18389063

  8. Isolation and structural determination of squalene synthase inhibitor from Prunus mume fruit.

    PubMed

    Choi, Sung-Won; Hur, Nam-Yoon; Ahn, Soon-Cheol; Kim, Dong-Seob; Lee, Jae-Kwon; Kim, Dae-Ok; Park, Seung-Kook; Kim, Byung-Yong; Baik, Moo-Yeol

    2007-12-01

    Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of C16H18O9 based on UV spectrophotometry, 1H and 13C NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an IC50 level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia. PMID:18167444

  9. Sensitivity of Aspergillus nidulans to the Cellulose Synthase Inhibitor Dichlobenil: Insights from Wall-Related Genes’ Expression and Ultrastructural Hyphal Morphologies

    PubMed Central

    Obersriebnig, Michael; Salerno, Marco; Pum, Dietmar; Strauss, Joseph

    2013-01-01

    The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely ?-, ?-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage ?-1,3;1,4 glucan synthase celA together with the ?-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis. PMID:24312197

  10. Short Communication The nitric oxide synthase inhibitor l-NAME suppresses androgen-induced

    E-print Network

    Crews, David

    Short Communication The nitric oxide synthase inhibitor l-NAME suppresses androgen-induced male July 2005 Abstract The synthesis of nitric oxide by the enzyme nitric oxide synthase (NOS) is involved, suggesting that the central role of nitric oxide synthesis is conserved in this species. The deficit

  11. Antibiotic tetaine--a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans.

    PubMed

    Milewski, S; Chmara, H; Borowski, E

    1986-08-01

    The antibiotic tetaine inhibits in Candida albicans the biosynthesis of two important cell wall constituents, chitin and mannoprotein. This effect is a consequence of inactivation of the enzyme glucosamine-6-phosphate synthetase. Due to the lack of glucosamine-6-phosphate the effective secretion of mannoprotein enzymes, acid phosphatase and invertase, by Candida albicans spheroplasts is inhibited. In the presence of tetaine, probably a modified mannoprotein, lacking a branched polymannan, is synthesized. The antibiotic action decreases the viability of Candida albicans cells, especially that of mycelial forms of this fungus. PMID:3532988

  12. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site. PMID:17062013

  13. Inhibitors of nitric oxide synthase in human skin.

    PubMed

    Goldsmith, P C; Leslie, T A; Hayes, N A; Levell, N J; Dowd, P M; Foreman, J C

    1996-01-01

    The aim of this study was to investigate in human skin in vivo the role of nitric oxide in maintaining resting vascular tone, in the vasodilatation caused by local warming and by ultraviolet B light exposure, and in the response to exogenous calcitonin gene-related peptide (CGRP). Cutaneous blood flow was assessed by planimetry of the visible erythema or pallor and by laser Doppler flowmetry. Intradermal injection of the inhibitor of nitric oxide synthase, NG-nitro-L-arginine methyl ester (L-NAME; 25 nmol), into forearm skin produced a visible pallor and a reduction of blood flow at a controlled ambient temperature of 21 degrees C. The control, NG-nitro-D-arginine methyl ester (D-NAME; 25 nmol) or NG-monomethyl-L-arginine (L-NMMA; 25 nmol) did not cause pallor or reduce blood flow. L-NAME and L-NMMA caused dose- and time-dependent increases in pallor, and reductions in cutaneous blood flow in skin that had been locally warmed by immersion in water at 45 degrees C and in skin that had been exposed to ultraviolet B light. D-NAME and D-NMMA at comparable concentrations did not have the effects on skin blood flow observed with the L forms. L-NAME and L-NMMA both inhibited the increased blood flow in human skin caused by the intradermal injection of CGRP (12.5 or 25 pmol). The reduction of CGRP-induced increase of blood flow by L-NAME was reversed by L-arginine. Neither D-NAME nor D-NMMA inhibited the increase in blood flow caused by CGRP. Neither L-NAME nor L-NMMA inhibited the increase in blood flow in human skin caused by the intradermal injection of prostaglandin E2 (63 pmol). The data show that nitric oxide is involved in the maintenance of resting blood flow in human skin and also in the cutaneous vasodilator responses to local warming, ultraviolet B irradiation, or injection of CGRP. PMID:8592060

  14. Reviewing Ligand-Based Rational Drug Design: The Search for an ATP Synthase Inhibitor

    PubMed Central

    Lee, Chia-Hsien; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2011-01-01

    Following major advances in the field of medicinal chemistry, novel drugs can now be designed systematically, instead of relying on old trial and error approaches. Current drug design strategies can be classified as being either ligand- or structure-based depending on the design process. In this paper, by describing the search for an ATP synthase inhibitor, we review two frequently used approaches in ligand-based drug design: The pharmacophore model and the quantitative structure-activity relationship (QSAR) method. Moreover, since ATP synthase ligands are potentially useful drugs in cancer therapy, pharmacophore models were constructed to pave the way for novel inhibitor designs. PMID:21954360

  15. The efficacy of a chitin synthesis inhibitor against field populations of organophosphate-resistant Aedes aegypti in Brazil.

    PubMed

    Fontoura, Nathalia Giglio; Bellinato, Diogo Fernandes; Valle, Denise; Lima, José Bento Pereira

    2012-05-01

    The mosquito Aedes aegypti is the main focus of dengue control campaigns. Because of widespread resistance against conventional chemical insecticides, chitin synthesis inhibitors (CSIs) are considered control alternatives. We evaluated the resistance status of four Brazilian Ae. aegypti populations to both the organophosphate temephos and the pyrethroid deltamethrin, which are used in Brazil to control larvae and adults, respectively. All vector populations exhibited high levels of temephos resistance and varying rates of alterations in their susceptibility to pyrethroids. The effect of the CSI novaluron on these populations was also investigated. Novaluron was effective against all populations under laboratory conditions. Field-simulated assays with partial water replacement were conducted to evaluate novaluron persistence. Bioassays were continued until an adult emergence inhibition of at least 70% was attained. We found a residual effect of eight weeks under indoor conditions and novaluron persisted for five-six weeks in assays conducted in an external area. Our data show that novaluron is effective against the Ae. aegypti populations tested, regardless of their resistance to conventional chemical insecticides. PMID:22510835

  16. Squalene synthase inhibitors suppress triglyceride biosynthesis through the farnesol pathway in rat hepatocytes

    Microsoft Academic Search

    Hironobu Hiyoshi; Mamoru Yanagimachi; Masashi Ito; Nobuyuki Yasuda; Toshimi Okada; Hironori Ikuta; Daisuke Shinmyo; Keigo Tanaka; Nobuyuki Kurusu; Ichiro Yoshida; Shinya Abe; Takao Saeki; Hiroshi Tanaka

    2003-01-01

    We recently demonstrated that squalene synthase (SQS) inhibitors reduce plasma triglyceride through an LDL receptor-independent mechanism in Watanabe herita- ble hyperlipidemic rabbits (Hiyoshi et al. 2001. Eur. J. Phar- macol. 431: 345-352). The present study deals with the mechanism of the inhibition of triglyceride biosynthesis by the SQS inhibitors ER-27856 and RPR-107393 in rat pri- mary cultured hepatocytes. Atorvastatin, an

  17. Detection of resistance to acetohydroxyacid synthase inhibitors in Amaranthus sp. using DNA polymorphisms

    Microsoft Academic Search

    Cheryl-Ann L. Corbett; François J. Tardif

    2008-01-01

    Resistance to acetohydroxyacid synthase inhibitors is very widespread worldwide and is generally due to various point mutations in the gene coding for the target enzyme. Rapid resistance confirmation is key for the proper management of resistance. We aimed at determining whether two DNA-based tests, PCR-RFLP and PCR amplification of specific alleles (PASA), could reliably identify common AHAS mutations in Amaranthus

  18. MULTI-ANALYTE CHEMISTRY METHODS FOR PESTICIDES WHICH ARE ACETOLACTATE SYNTHASE (ALS) INHIBITORS IN SOIL

    EPA Science Inventory

    A joint EPA/state/industry working group has developed several multi-analyte methods to analyze soils for low ppb (parts per billion) levels of herbicides (such as sulfonylureas, imidazolinones, and sulfonamides) that are acetolactate synthase (ALS) inhibitors and may cause phyto...

  19. Nitric oxide synthase inhibitors for the treatment of chronic tension-type headache.

    PubMed

    Ashina, Messoud

    2002-04-01

    Chronic tension-type headache may be caused by prolonged painful input from pericranial myofacial tissues, for example tender points, resulting in central sensitisation (increased excitability of neurons in the central nervous system). Animal studies have shown that sensitisation of pain pathways may be caused by or associated with the activation of neuronal nitric oxide synthase and the generation of nitric oxide. Furthermore, it has been shown that nitric oxide synthase inhibitors reduce central sensitisation in animal models of persistent pain. On the basis of this information, the analgesic effect of the nitric oxide synthase inhibitor L-N(G) methyl arginine hydrochloride was investigated. This drug significantly reduced headache and myofacial factors in patients with chronic tension-type headache. These studies show that nitric oxide plays a crucial role in the pathophysiology of tension-type headache. The analgesic effect of nitric oxide synthase inhibition in patients with chronic tension-type headache is probably due to a reduction in central sensitisation at the level of the spinal dorsal horn, trigeminal nucleus or both. Furthermore, inhibition of nitric oxide synthase may become a novel principle in the future treatment of chronic headache. PMID:11934342

  20. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations

    PubMed Central

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  1. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness

    Microsoft Academic Search

    Terry K. Smith; Benjamin L. Young; Helen Denton; David L. Hughes; Gerd K. Wagner

    2009-01-01

    Drug-like molecules with activity against Trypanosoma brucei are urgently required as potential therapeutics for the treatment of African sleeping sickness. Starting from known inhibitors of other glycosyltransferases, we have developed the first small molecular inhibitors of dolicholphosphate mannose synthase (DPMS), a mannosyltransferase critically involved in glycoconjugate biosynthesis in T. brucei. We show that these DPMS inhibitors prevent the biosynthesis of

  2. Cyclopropyl- and Methyl-Containing Inhibitors of Neuronal Nitric Oxide Synthase

    PubMed Central

    Li, Huiying; Xue, Fengtian; Kraus, James M.; Ji, Haitao; Labby, Kristin Jansen; Mataka, Jan; Delker, Silvia L.; Martásek, Pavel; Roman, Linda J.; Poulos, Thomas L.; Silverman, Richard B.

    2013-01-01

    Inhibitors of neuronal nitric oxide synthase have been proposed as therapeutics for the treatment of different types of neurological disorders. On the basis of a cis-3,4-pyrrolidine scaffold, a series of trans-cyclopropyl- and methyl-containing nNOS inhibitors have been synthesized. The insertion of a rigid electron-withdrawing cyclopropyl ring decreases the basicity of the adjacent amino group, which resulted in decreased inhibitory activity of these inhibitors compared to the parent compound. Nonetheless, three of them exhibited double-digit nanomolar inhibition with high nNOS selectivity on the basis of in vitro enzyme assays. Crystal structures of nNOS and eNOS with these inhibitors bound provide a basis for detailed structure-activity relationship (SAR) studies. The conclusions from these studies will be used as a guide in the future development of selective NOS inhibitors. PMID:23352768

  3. Intramolecular Hydrogen Bonding: A Potential Strategy for More Bioavailable Inhibitors of Neuronal Nitric Oxide Synthase

    PubMed Central

    Labby, Kristin Jansen; Xue, Fengtian; Kraus, James M.; Ji, Haitao; Mataka, Jan; Li, Huiying; Martásek, Pavel; Roman, Linda J.; Poulos, Thomas L.; Silverman, Richard B.

    2012-01-01

    Selective neuronal nitric oxide synthase (nNOS) inhibitors have therapeutic applications in the treatment of numerous neurodegenerative diseases. Here we report the synthesis and evaluation of a series of inhibitors designed to have increased cell membrane permeability via intramolecular hydrogen bonding. Their potencies were examined in both purified enzyme and cell-based assays; a comparison of these results demonstrates that two of the new inhibitors display significantly increased membrane permeability over previous analogs. NMR spectroscopy provides evidence of intramolecular hydrogen bonding under physiological conditions in two of the inhibitors. Crystal structures of the inhibitors in the nNOS active site confirm the predicted non-intramolecular hydrogen bonded binding mode. Intramolecular hydrogen bonding may be an effective approach for increasing cell membrane permeability without affecting target protein binding. PMID:22370337

  4. Modulation of Both Endogenous Folates and Thymidine Enhance the Therapeutic Efficacy of Thymidylate Synthase Inhibitors1

    Microsoft Academic Search

    Clasina L. van der Wilt; Harold H. J. Backus; Kees Smid; Lizzy Comijn; Gijsbert Veerman; Dorine Wouters; Daphne A. Voorn; David G. Priest; Marlene A. Bunni; Fraser Mitchell; Ann L. Jackman; Gerrit Jansen; Godefridus J. Peters

    Plasma levels of folates and thymidine in mice are about 10-fold higher than in humans and may influence the therapeutic efficacy of thymidylate synthase (TS) inhibitors, such as 5-fluorouracil (5FU) and the antifolates pemetrexed (MTA) and raltitrexed (RTX). Therefore, we tested their therapeutic efficacy in various murine tumor models, grown in mice on a normal and a folate-depleted diet, with

  5. Upregulation of Endothelial Nitric Oxide Synthase by HMG CoA Reductase Inhibitors

    Microsoft Academic Search

    Ulrich Laufs; Vito La Fata; Jorge Plutzky; James K. Liao

    Background—Oxidized low-density lipoprotein (ox-LDL) causes endothelial dysfunction in part by decreasing the availability of endothelial nitric oxide (NO). Although HMG CoA reductase inhibitors restore endothelial function by reducing serum cholesterol levels, it is not known whether they can also directly upregulate endothelial NO synthase (ecNOS) activity. Methods and Results—Human saphenous vein endothelial cells were treated with ox-LDL (50 mg\\/mL thiobarbituric

  6. Effect of Nitric Oxide Synthase Inhibitor on Diaphragmatic Function after Resistive Loading

    Microsoft Academic Search

    Teresa Bisnett; Antonio Anzueto; Francisco H Andrade; George G Rodney Jr.; William R Napier; Stephanie M Levine; Leo C Maxwell; Patient Mureeba; Stephen D Derdak; Matthew B Grisham; Stephen G Jenkinson

    1998-01-01

    We studied the effect of a nitric oxide synthase inhibitor, N?-Nitro-l-arginine-methyl-ester (l-NAME), on in vitro diaphragmatic function both at rest (control) or after inspiratory resistive loading (IRL). Sprague-Dawley rats were anesthetized, instrumented, and then the following experimental groups: (1) controls; (2) l-NAME (100 mg\\/kg\\/body weight intravenously alone); (3) IRL alone; and (4) l-NAME + IRL. The IRL protocol consisted of

  7. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    SciTech Connect

    Morgunova, Ekaterina [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden); Illarionov, Boris; Saller, Sabine [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Popov, Aleksander [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 09 (France); Sambaiah, Thota [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Bacher, Adelbert [Chemistry Department, Technical University of Munich, 85747 Garching (Germany); Cushman, Mark [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Fischer, Markus [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ladenstein, Rudolf, E-mail: rudolf.ladenstein@ki.se [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden)

    2010-09-01

    Crystallographic studies of lumazine synthase, the penultimate enzyme of the riboflavin-biosynthetic pathway in B. anthracis, provide a structural framework for the design of antibiotic inhibitors, together with calorimetric and kinetic investigations of inhibitor binding. The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R{sub cryst} = 23.7% (R{sub free} = 28.4%) at a resolution of 3.5 Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis.

  8. Identification and Evaluation of Novel Acetolactate Synthase Inhibitors as Antifungal Agents

    PubMed Central

    Richie, Daryl L.; Thompson, Katherine V.; Studer, Christian; Prindle, Vivian C.; Aust, Thomas; Riedl, Ralph; Estoppey, David; Tao, Jianshi; Sexton, Jessica A.; Zabawa, Thomas; Drumm, Joseph; Cotesta, Simona; Eichenberger, Jürg; Schuierer, Sven; Hartmann, Nicole; Movva, N. Rao; Tallarico, John A.

    2013-01-01

    High-throughput phenotypic screening against the yeast Saccharomyces cerevisiae revealed a series of triazolopyrimidine-sulfonamide compounds with broad-spectrum antifungal activity, no significant cytotoxicity, and low protein binding. To elucidate the target of this series, we have applied a chemogenomic profiling approach using the S. cerevisiae deletion collection. All compounds of the series yielded highly similar profiles that suggested acetolactate synthase (Ilv2p, which catalyzes the first common step in branched-chain amino acid biosynthesis) as a possible target. The high correlation with profiles of known Ilv2p inhibitors like chlorimuron-ethyl provided further evidence for a similar mechanism of action. Genome-wide mutagenesis in S. cerevisiae identified 13 resistant clones with 3 different mutations in the catalytic subunit of acetolactate synthase that also conferred cross-resistance to established Ilv2p inhibitors. Mapping of the mutations into the published Ilv2p crystal structure outlined the chlorimuron-ethyl binding cavity, and it was possible to dock the triazolopyrimidine-sulfonamide compound into this pocket in silico. However, fungal growth inhibition could be bypassed through supplementation with exogenous branched-chain amino acids or by the addition of serum to the medium in all of the fungal organisms tested except for Aspergillus fumigatus. Thus, these data support the identification of the triazolopyrimidine-sulfonamide compounds as inhibitors of acetolactate synthase but suggest that targeting may be compromised due to the possibility of nutrient bypass in vivo. PMID:23478965

  9. Identification, mRNA Expression, and Functional Analysis of Chitin Synthase 1 Gene and Its Two Alternative Splicing Variants in Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    Yang, Wen-Jia; Xu, Kang-Kang; Cong, Lin; Wang, Jin-Jun

    2013-01-01

    Two alternative splicing variants of chitin synthase 1 gene (BdCHS1) were cloned and characterized from the oriental fruit fly, Bactrocera dorsalis (Hendel). The cDNA of both variants (BdCHS1a and BdCHS1b) consisted of 5,552 nucleotides (nt), with an open reading frame (ORF) of 4,776 nt, encoding a protein of 1,592 amino acid residues, plus 685- and 88-nt of 5?- and 3?-noncoding regions, respectively. The alternative splicing site was located between positions 3,784-3,960 and formed a pair of mutually exclusive exons (a/b) that were same in size (177 nt), but showed only 65% identity at the nucleotide level. During B. dorsalis growth and development, BdCHS1 and BdCHS1a were both mainly expressed during the larval-pupal and pupal-adult transitions, while BdCHS1b was mainly expressed during pupal-adult metamorphosis and in the middle of the pupal stage. BdCHS1a was predominately expressed in the integument whereas BdCHS1b was mainly expressed in the trachea. The 20-hydroxyecdysone (20E) induced the expression of BdCHS1 and its variants. Injection of dsRNA of BdCHS1, BdCHS1a, and BdCHS1b into third-instar larvae significantly reduced the expression levels of the corresponding variants, generated phenotypic defects, and killed most of the treated larvae. Furthermore, silencing of BdCHS1 and BdCHS1a had a similar result in that the larva was trapped in old cuticle and died without tanning completely, while silencing of BdCHS1b has no effect on insect morphology. These results demonstrated that BdCHS1 plays an important role in the larval-pupal transition and the expression of BdCHS1 in B. dorsalis is regulated by 20E. PMID:23569438

  10. Arginine-Based Inhibitors of Nitric Oxide Synthase: Therapeutic Potential and Challenges

    PubMed Central

    Víte?ek, Jan; Lojek, Antonín; Valacchi, Giuseppe; Kubala, Lukáš

    2012-01-01

    In the past three decades, nitric oxide has been well established as an important bioactive molecule implicated in regulation of cardiovascular, nervous, and immune systems. Therefore, it is not surprising that much effort has been made to find specific inhibitors of nitric oxide synthases (NOS), the enzymes responsible for production of nitric oxide. Among the many NOS inhibitors developed to date, inhibitors based on derivatives and analogues of arginine are of special interest, as this category includes a relatively high number of compounds with good potential for experimental as well as clinical application. Though this group of inhibitors covers early nonspecific compounds, modern drug design strategies such as biochemical screening and computer-aided drug design have provided NOS-isoform-specific inhibitors. With an emphasis on major advances in this field, a comprehensive list of inhibitors based on their structural characteristics is discussed in this paper. We provide a summary of their biochemical properties as well as their observed effects both in vitro and in vivo. Furthermore, we focus in particular on their pharmacology and use in recent clinical studies. The potential of newly designed specific NOS inhibitors developed by means of modern drug development strategies is highlighted. PMID:22988346

  11. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges.

    PubMed

    Víte?ek, Jan; Lojek, Antonín; Valacchi, Giuseppe; Kubala, Lukáš

    2012-01-01

    In the past three decades, nitric oxide has been well established as an important bioactive molecule implicated in regulation of cardiovascular, nervous, and immune systems. Therefore, it is not surprising that much effort has been made to find specific inhibitors of nitric oxide synthases (NOS), the enzymes responsible for production of nitric oxide. Among the many NOS inhibitors developed to date, inhibitors based on derivatives and analogues of arginine are of special interest, as this category includes a relatively high number of compounds with good potential for experimental as well as clinical application. Though this group of inhibitors covers early nonspecific compounds, modern drug design strategies such as biochemical screening and computer-aided drug design have provided NOS-isoform-specific inhibitors. With an emphasis on major advances in this field, a comprehensive list of inhibitors based on their structural characteristics is discussed in this paper. We provide a summary of their biochemical properties as well as their observed effects both in vitro and in vivo. Furthermore, we focus in particular on their pharmacology and use in recent clinical studies. The potential of newly designed specific NOS inhibitors developed by means of modern drug development strategies is highlighted. PMID:22988346

  12. Geranyl and Neryl Triazole Bisphosphonates as Inhibitors of Geranylgeranyl Diphosphate Synthase

    PubMed Central

    Zhou, Xiang; Ferree, Sarah D.; Wills, Veronica S.; Born, Ella J.; Tong, Huaxiang; Holstein, Sarah A.

    2014-01-01

    When inhibitors of enzymes that utilize isoprenoid pyrophosphates are based on the natural substrates, a significant challenge can be to achieve selective inhibition of a specific enzyme. One element in the design process is the stereochemistry of the isoprenoid olefins. We recently reported preparation of a series of isoprenoid triazoles as potential inhibitors of geranylgeranyl transferase II but these compounds were obtained as a mixture of olefin isomers. We now have accomplished the stereoselective synthesis of these triazoles through the use of epoxy azides for the cycloaddition reaction followed by regeneration of the desired olefin. Both geranyl and neryl derivatives have been prepared as single olefin isomers through parallel reaction sequences. The products were assayed against multiple enzymes as well as in cell culture studies and surprisingly a Z-olefin isomer was found to be a potent and selective inhibitor of geranylgeranyl diphosphate synthase. PMID:24726306

  13. ATP Synthase and the Actions of Inhibitors Utilized To Study Its Roles in Human Health, Disease, and Other Scientific Areas

    PubMed Central

    Hong, Sangjin; Pedersen, Peter L.

    2008-01-01

    Summary: ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and Pi, the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology. PMID:19052322

  14. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas.

    PubMed

    Hong, Sangjin; Pedersen, Peter L

    2008-12-01

    ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and P(i), the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology. PMID:19052322

  15. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    PubMed Central

    Morgunova, Ekaterina; Illarionov, Boris; Saller, Sabine; Popov, Aleksander; Sambaiah, Thota; Bacher, Adelbert; Cushman, Mark; Fischer, Markus; Ladenstein, Rudolf

    2010-01-01

    The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R cryst = 23.7% (R free = 28.4%) at a resolution of 3.5?Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis. PMID:20823551

  16. Comparative pharmacological study of free radical scavenger, nitric oxide synthase inhibitor, nitric oxide synthase activator and cyclooxygenase inhibitor against MPTP neurotoxicity in mice.

    PubMed

    Yokoyama, Hironori; Yano, Ryohei; Aoki, Eriko; Kato, Hiroyuki; Araki, Tsutomu

    2008-09-01

    The biochemical and cellular changes that occur following the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are remarkably similar to that seen in idiopathic Parkinson's disease(PD). There is growing evidence indicating that reactive oxygen species (ROS), reactive nitrogen species (RNS) and inflammation are a major contributor to the pathogenesis and progression of PD. Hence, we investigated whether 7-nitroindazole [neuronal nitric oxide synthase (nNOS) inhibitor], edaravone (free radical scavenger), minocycline [inducible NOS (iNOS) inhibitor], fluvastatin [endothelial NOS (eNOS) activator], pitavastatin (eNOS activator), etodolac [cyclooxygenase-2 (COX-2) inhibitor] and indomethacin (COX inhibitor) can protect against MPTP neurotoxicity in mice under the same conditions. For the evaluation of each drug, the levels of dopamine, DOPAC and HVA were quantified using HPLC with an electrochemical detector. Four administrations of MPTP at 1-h intervals to mice produced marked depletion of dopamine, DOPAC (3,4-dihydroxyphenylacetic acid) and HVA (homovanilic acid) in the striatum after 5 days. 7-Nitroindazole prevented dose-dependently a significant reduction in dopamine contents of the striatum 5 days after MPTP treatment. In contrast, edaravone, minocycline, fluvastatin, pitavastatin, etodolac and indomethacin did not show the neuroprotective effect on MPTP-induced striatal dopamine, DOPAC and HVA depletions after 5 days. The present study demonstrates that the overexpression of nNOS may play a major role in the neurotoxic processes of MPTP, as compared with the production of ROS, the overexpression of iNOS, the modulation of eNOS and the involvement of inflammatory response. Thus our pharmacological findings provide further information for progressive neurodegeneration of the nigrostriatal dopaminergic neuronal pathway. PMID:18648914

  17. Massive Production of Farnesol-Derived Dicarboxylic Acids in Mice Treated with the Squalene Synthase Inhibitor Zaragozic Acid A

    Microsoft Academic Search

    Sanskruti Vaidya; Richard Bostedor; Marc M. Kurtz; James D. Bergstrom; Vinay S. Bansal

    1998-01-01

    The zaragozic acids are potent inhibitors of squalene synthase.In vivostudies in mice confirmed our earlier observations that inhibition of squalene synthase by zaragozic acid A was accompanied by an increase in the incorporation of label from [3H]mevalonate into farnesyl-diphosphate (FPP)-derived isoprenoic acids (J. D. Bergstromet al.,1993,Proc. Natl. Acad. Sci. USA90, 80–84). Farnesyl-diphosphate-derived metabolites appear transiently in the liver. We were

  18. Potent, Highly Selective, and Orally Bioavailable Gem-Difluorinated Monocationic Inhibitors of Neuronal Nitric Oxide Synthase

    PubMed Central

    Xue, Fengtian; Li, Huiying; Delker, Silvia L.; Fang, Jianguo; Martásek, Pavel; Roman, Linda J.; Poulos, Thomas L.; Silverman, Richard B.

    2010-01-01

    In our efforts to discover neuronal isoform selective nitric oxide synthase (NOS) inhibitors we have developed a series of compounds containing a pyrrolidine ring with two stereogenic centers. The enantiomerically pure compounds, (S,S) vs. (R,R), exhibited two different binding orientations, with (R,R) inhibitors showing much better potency and selectivity. To improve the bioavailability of these inhibitors we have introduced a CF2 moiety geminal to an amino group in the long tail of one of these inhibitors, which reduced its basicity, resulting in compounds with monocationic character under physiological pH conditions. Biological evaluations have led to a nNOS inhibitor with a Ki of 36 nM and high selectivity for nNOS over eNOS (3800-fold) and iNOS (1400-fold). MM-PBSA calculations indicated that the low pKa NH is, at least, partially protonated when bound to the active site. A comparison of rat oral bioavailability of the difluorinated compound to the parent molecule shows 22% for the difluorinated compound versus essentially no oral bioavailability for the parent compound. This indicates that the goal of this research to make compounds with only one protonated nitrogen atom at physiological pH to allow for membrane permeability, but which can become protonated when bound to NOS, has been accomplished. PMID:20843082

  19. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis

    PubMed Central

    Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052

  20. Localized deposition of chitin on the yeast cell surface in response to mating pheromone

    PubMed Central

    Schekman, Randy; Brawley, Vicki

    1979-01-01

    Treatment of a mating-type Saccharomyces cerevisiae cells with the pheromone ?-factor (secreted by ? mating-type cells) induces the synthesis of chitin. Small daughter cells, which start with no detectable chitin, make 3 times more chitin when grown in the presence of ?-factor than do untreated exponentially growing cells. Budding cells accumulate chitin in the nascent division septum [Cabib, E. & Bowers, B. (1975) J. Bacteriol. 124, 1586), as detected by staining with the fluorescent dye primulin. In the absence of a division septum, ?-factor-treated cells accumulate chitin in the area of pheromone-stimulated growth. Enzymatic lysis of budding and pheromone-treated cells allows the separation of membrane-bound chitin synthase (UDP-2-acetamido-2-deoxy-D-glucose: chitin 4-?-acetamidodeoxyglucosyltransferase, EC 2.4.1.16) activity from a dense particulate fraction containing chitin. Chitin synthase activity is associated with both the plasma membrane and small intracellular particles. During pheromone treatment, the levels of chitin synthase in the plasma membrane and in intracellular particle fractions increase 11- and 4-fold, respectively. Although chitin synthase is made as zymogen that requires proteolytic activation, the plasma membrane of pheromone-treated cells shows a significant fraction of preactivated enzyme; intracellular membrane-bound synthase is found exclusively in the zymogen form. Images PMID:16592617

  1. Conformationally-Restricted Dipeptide Amides as Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors

    PubMed Central

    Ji, Haitao; Gómez-Vidal, José A.; Martásek, Pavel; Roman, Linda J.; Silverman, Richard B.

    2008-01-01

    Four new conformationally-restricted analogues of the potent and selective neuronal nitric oxide synthase inhibitor, L-nitroargininyl-L-2,4-diaminobutyramide (1), have been synthesized. N?-Methyl and N?-benzyl derivatives (3 and 4, respectively) of 4N-(L-ArgNO2)-trans-4-amino-L-prolineamide (2) are also selective inhibitors, but the potency and selectivity of 3 are weak. Analogue 4 has only one-third the potency and one-half to one-third the selectivity of 2 against iNOS and eNOS, respectively. 3-N-(L-ArgNO2)-trans-3-amino-L-prolineamide (6) is as potent an inhibitor of nNOS as is 2; selectivity for nNOS over iNOS is half of that for 2 but the selectivity for nNOS over eNOS is almost double that for 2. The corresponding cis-isomer (5) is a weak inhibitor of nNOS. These results are supported by computer modeling. PMID:17034131

  2. Increase of 20-HETE synthase after brain ischemia in rats revealed by PET study with 11C-labeled 20-HETE synthase-specific inhibitor

    PubMed Central

    Kawasaki, Toshiyuki; Marumo, Toshiyuki; Shirakami, Keiko; Mori, Tomoko; Doi, Hisashi; Suzuki, Masaaki; Watanabe, Yasuyoshi; Chaki, Shigeyuki; Nakazato, Atsuro; Ago, Yukio; Hashimoto, Hitoshi; Matsuda, Toshio; Baba, Akemichi; Onoe, Hirotaka

    2012-01-01

    20-Hydroxyeicosatetraenoic acid (20-HETE), an arachidonic acid metabolite known to be produced after cerebral ischemia, has been implicated in ischemic and reperfusion injury by mediating vasoconstriction. To develop a positron emission tomography (PET) probe for 20-HETE synthase imaging, which might be useful for monitoring vasoconstrictive processes in patients with brain ischemia, we synthesized a 11C-labeled specific 20-HETE synthase inhibitor, N?(4-dimethylaminohexyloxy)phenyl imidazole ([11C]TROA). Autoradiographic study showed that [11C]TROA has high-specific binding in the kidney and liver consistent with the previously reported distribution of 20-HETE synthase. Using transient middle cerebral artery occlusion in rats, PET study showed significant increases in the binding of [11C]TROA in the ipsilateral hemisphere of rat brains after 7 and 10 days, which was blocked by co-injection of excess amounts of TROA (10?mg/kg). The increased [11C]TROA binding on the ipsilateral side returned to basal levels within 14 days. In addition, quantitative real-time PCR revealed that increased expression of 20-HETE synthase was only shown on the ipsilateral side on day 7. These results indicate that [11C]TROA might be a useful PET probe for imaging of 20-HETE synthase in patients with cerebral ischemia. PMID:22669478

  3. Chitin Research Revisited

    PubMed Central

    Khoushab, Feisal; Yamabhai, Montarop

    2010-01-01

    Two centuries after the discovery of chitin, it is widely accepted that this biopolymer is an important biomaterial in many aspects. Numerous studies on chitin have focused on its biomedical applications. In this review, various aspects of chitin research including sources, structure, biosynthesis, chitinolytic enzyme, chitin binding protein, genetic engineering approach to produce chitin, chitin and evolution, and a wide range of applications in bio- and nanotechnology will be dealt with. PMID:20714419

  4. Stroke Protection by 3-hydroxy-3-methylglutaryl (HMG)CoA Reductase Inhibitors Mediated by Endothelial Nitric Oxide Synthase

    Microsoft Academic Search

    Matthias Endres; Ulrich Laufs; Zhihong Huang; Tadashi Nakamura; Paul Huang; Michael A. Moskowitz; James K. Liao

    1998-01-01

    The treatment of ischemic strokes is limited to prophylactic agents that block the coagulation cascade. Here, we show that cholesterol-lowering agents, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors, protect against cerebral injury by a previously unidentified mechanism involving the selective up-regulation of endothelial NO synthase (eNOS). Prophylactic treatment with HMG-CoA reductase inhibitors augments cerebral blood flow, reduces cerebral infarct size, and improves neurological

  5. Pyrrole alkanoic acid derivatives as nuisance inhibitors of microsomal prostaglandin E2 synthase-1.

    PubMed

    Wiegard, Andrea; Hanekamp, Walburga; Griessbach, Klaus; Fabian, Jörg; Lehr, Matthias

    2012-02-01

    Microsomal prostaglandin E(2) synthase-1 (mPGES-1) is an enzyme, which is induced during the inflammatory response. Therefore, inhibitors of this enzyme are considered to be potential anti-inflammatory drugs. We have identified 3-(4-dodecanoyl-1,3,5-trimethylpyrrol-2-yl)propionic acid (12) as submicromolar inhibitor of mPGES-1. Surprisingly, structural variations made around this lead only resulted in a relatively small change of enzyme inhibitory potency. Such flat structure-activity relationships are reported to be typical for so called nuisance inhibitors, which exert their action not by directly binding to the enzyme, but by forming colloid-like aggregates at micromolar and sometimes submicromolar concentrations, which somehow sequester and inhibit enzyme targets without specificity. Since aggregate-based inhibition is highly sensitive to non-ionic detergents such as Triton X-100, we investigated some of our compounds for inhibition of human recombinant mPGES-1 also in presence of this detergent. The pyrrole derivatives 12, 67 and 81, which exhibited IC(50) values in absence of Triton X-100 in the range of 0.1 and 1?M, were virtually inactive at the highest test concentration of 10?M when 0.1% of the detergent was added. In the same way, the published mPGES-1 inhibitor 2-[(4-{[(1,1'-biphenyl)-4-ylmethyl]amino}-6-chloropyrimidin-2-yl)thio]octanoic acid (Cay10589) (6) totally lost its activity under these conditions. Therefore, these compounds have to be judged as nuisance inhibitors of the enzyme. In contrast, the known indole derivative 3-[3-(tert-butylthio)-1-(4-chlorobenzyl)-5-isopropylindol-2-yl]-2,2-dimethylpropionic acid (MK-886) (2) showed a considerable activity (75% inhibition at 10?M) also in the presence of Triton X-100. PMID:22209272

  6. Multiple resistance of acetolactate synthase and protoporphyrinogen oxidase inhibitors in Euphorbia heterophylla biotypes.

    PubMed

    Trezzi, Michelangelo M; Felippi, C L; Mattei, D; Silva, H L; Nunes, A L; Debastiani, C; Vidal, R A; Marques, A

    2005-01-01

    Resistance to acetolactate synthase (ALS)-inhibiting herbicides in Brazil has been documented for six species. The probability to select biotypes of Euphorbia heterophylla (EPPHL) with multiple resistance increases in the same order of magnitude as the use of other herbicides belonging to only one mechanism of action. The objectives of this work were to evaluate the distribution of resistant populations (R) in the states of the Parana and Santa Catarina; to determine the existence of populations of EPHHL with multiple resistance to ALS and PROTOX inhibitors, and to confirm the occurrence of cross resistance to compounds of these mechanisms of action. Seeds of EPHHL of areas with suspected resistance had been sampled in 97 places during 2003. In the greenhouse experiment samples of each population were sprayed with imazethapyr or fomesafen, at only one rate. To identify the resistant ones they were sprayed with different levels of the herbicides imazethapyr and fomesafen. Later they were sprayed with diverse herbicides of the same mechanisms of action to confirm the multiple/cross resistance. There is widespread distribution in the region of populations with resistance to ALS inhibitors. Some biotypes demonstrated resistance to herbicides from the two mechanisms of action. The resistance factor (FR), or the relation of resistance between R and susceptible biotypes, confirms the existence of two biotypes of EPHHL with cross resistance to several herbicides inhibitors of ALS and PROTOX. PMID:15656167

  7. Improvement of Dolichol-linked Oligosaccharide Biosynthesis by the Squalene Synthase Inhibitor Zaragozic Acid*

    PubMed Central

    Haeuptle, Micha A.; Welti, Michael; Troxler, Heinz; Hülsmeier, Andreas J.; Imbach, Timo; Hennet, Thierry

    2011-01-01

    The majority of congenital disorders of glycosylation (CDG) are caused by defects of dolichol (Dol)-linked oligosaccharide assembly, which lead to under-occupancy of N-glycosylation sites. Most mutations encountered in CDG are hypomorphic, thus leaving residual activity to the affected biosynthetic enzymes. We hypothesized that increased cellular levels of Dol-linked substrates might compensate for the low biosynthetic activity and thereby improve the output of protein N-glycosylation in CDG. To this end, we investigated the potential of the squalene synthase inhibitor zaragozic acid A to redirect the flow of the polyisoprene pathway toward Dol by lowering cholesterol biosynthesis. The addition of zaragozic acid A to CDG fibroblasts with a Dol-P-Man synthase defect led to the formation of longer Dol-P species and to increased Dol-P-Man levels. This treatment was shown to decrease the pathologic accumulation of incomplete Dol pyrophosphate-GlcNAc2Man5 in Dol-P-Man synthase-deficient fibroblasts. Zaragozic acid A treatment also decreased the amount of truncated protein N-linked oligosaccharides in these CDG fibroblasts. The increased cellular levels of Dol-P-Man and possibly the decreased cholesterol levels in zaragozic acid A-treated cells also led to increased availability of the glycosylphosphatidylinositol anchor as shown by the elevated cell-surface expression of the CD59 protein. This study shows that manipulation of the cellular Dol pool, as achieved by zaragozic acid A addition, may represent a valuable approach to improve N-linked glycosylation in CDG cells. PMID:21183681

  8. Thiolactomycin-based ?-Ketoacyl-AcpM Synthase A (KasA) Inhibitors

    PubMed Central

    Kapilashrami, Kanishk; Bommineni, Gopal R.; Machutta, Carl A.; Kim, Pilho; Lai, Cheng-Tsung; Simmerling, Carlos; Picart, Francis; Tonge, Peter J.

    2013-01-01

    Thiolactomycin (TLM) is a natural product inhibitor of KasA, the ?-ketoacyl synthase A from Mycobacterium tuberculosis. To improve the affinity of TLM for KasA, a series of TLM analogs have been synthesized based on interligand NOEs between TLM and a pantetheine analog when both are bound simultaneously to the enzyme. Kinetic binding data reveal that position 3 of the thiolactone ring is a suitable position for elaboration of the TLM scaffold, and the structure-activity relationship studies provide information on the molecular features that govern time-dependent inhibition in this enzyme system. These experiments also exemplify the utility of transient one-dimensional NOE spectroscopy for obtaining interligand NOEs compared with traditional steady state two-dimensional NOESY spectroscopy. PMID:23306195

  9. HQSAR study of beta-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors.

    PubMed

    Ashek, Ali; San Juan, Amor A; Cho, Seung J

    2007-02-01

    The enzyme FabH catalyzes the initial step of fatty acid biosynthesis via a type II fatty acid synthase. The pivotal role of this essential enzyme combined with its unique structural features and ubiquitous occurrence in bacteria has made it an attractive new target for the development of antibacterial and antiparasitic compounds. Predictive hologram quantitative structure activity relationship (HQSAR) model was developed for a series of benzoylamino benzoic acid derivatives acting as FabH inhibitor. The best HQSAR model was generated using atoms and bond types as fragment distinction and 4-7 as fragment size showing cross-validated q2 value of 0.678 and conventional r2 value of 0.920. The predictive ability of the model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.82. The contribution maps obtained from this model were used to explain the individual atomic contributions to the overall activity. It was confirmed from the contribution map that both ring A and ring C play a vital role for activity. Moreover hydroxyl substitution in the ortho position of ring A is favorable for better inhibitory activity. Therefore the information derived from the contribution map can be used to design potent FabH inhibitors. PMID:17373541

  10. Discovery of Highly Potent and Selective Inhibitors of Neuronal Nitric Oxide Synthase by Fragment Hopping

    PubMed Central

    Ji, Haitao; Li, Huiying; Martásek, Pavel; Roman, Linda J.; Poulos, Thomas L.; Silverman, Richard B.

    2009-01-01

    Selective inhibition of neuronal nitric oxide synthase (nNOS) has been shown to prevent brain injury and is important for the treatment of various neurodegenerative disorders. This study shows that not only greater inhibitory potency and isozyme selectivity, but more drug-like properties can be achieved by fragment hopping. Based on the structure of lead molecule 6, fragment hopping effectively extracted the minimal pharmacophoric elements in the active site of nNOS for ligand hydrophobic and steric interactions and generated appropriate lipophilic fragments for lead optimization. More potent and selective inhibitors with better drug-like properties were obtained within the design of 20 derivatives (compounds 7-26). Our structure-based inhibitor design for nNOS and SAR analysis reveal the robustness and efficiency of fragment hopping in lead discovery and structural optimization, which implicates a broad application of this approach to many other therapeutic targets for which known drug-like small-molecule modulators are still limited. PMID:19125620

  11. Novel pyridyl- or isoquinolinyl-substituted indolines and indoles as potent and selective aldosterone synthase inhibitors.

    PubMed

    Yin, Lina; Hu, Qingzhong; Emmerich, Juliette; Lo, Michael Man-Chu; Metzger, Edward; Ali, Amjad; Hartmann, Rolf W

    2014-06-26

    Pathologically, high levels of aldosterone are associated with severe cardiovascular diseases such as congestive heart failure, hypertension, and myocardial fibrosis. The inhibition of aldosterone synthase (CYP11B2) to reduce aldosterone levels has been proposed as a promising treatment for diseases related to CYP11B2 because it is the crucial enzyme in the biosynthesis of aldosterone. A series of novel pyridyl- or isoquinolinyl-substituted indolines and indoles was designed via a ligand-based approach. The synthesized compounds were tested and found to be strong CYP11B2 inhibitors. The most potent ones showed IC50 values of less than 3 nM, being similarly potent as fadrozole and LCI699. Among them, compounds 14 and 23 showed good selectivity over the highly homologous CYP11B1, with selectivity factors (SF = IC50 CYP11B1/IC50 CYP11B2) around 170; thus, they are superior to fadrozole and LCI699 (SFs < 15). These potent CYP11B2 inhibitors exhibited no inhibition (IC50 > 50 ?M) of a panel of hepatic CYP enzymes including CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 and the crucial steroidogenic enzymes, CYP17 and CYP19. Because of these advantageous profiles, compounds 14 and 23 are considered to be candidates for further in vivo evaluation. PMID:24899257

  12. Polymorphic human prostaglandin H synthase-2 proteins and their interactions with cyclooxygenase substrates and inhibitors

    PubMed Central

    Liu, W; Poole, EM; Ulrich, CM; Kulmacz, RJ

    2015-01-01

    The cyclooxygenase (COX) activity of prostaglandin H synthase-2 (PGHS-2) is implicated in colorectal cancer and is targeted by nonsteroidal anti-inflammatory drugs (NSAIDs) and dietary n – 3 fatty acids. We used purified, recombinant proteins to evaluate the functional impacts of the R228H, E488G, V511A and G587R PGHS-2 polymorphisms on COX activity, fatty acid selectivity and NSAID actions. Compared to wild-type PGHS-2, COX activity with arachidonate was ~20% lower in 488G and ~20% higher in 511A. All variants showed time-dependent inhibition by the COX-2-specific inhibitor (coxib) nimesulide, but 488G and 511A had 30–60% higher residual COX activity; 511A also showed up to 70% higher residual activity with other time-dependent inhibitors. In addition, 488G and 511A differed significantly from wild type in Vmax values with the two fatty acids: 488G showed ~20% less and 511A showed ~20% more discrimination against eicosapentaenoic acid. The Vmax value for eicosapentaenoate was not affected in 228H or 587R, nor were the Km values or the COX activation efficiency (with arachidonate) significantly altered in any variant. Thus, the E488G and V511A PGHS-2 polymorphisms may predict who will most likely benefit from interventions with some NSAIDs or n – 3 fatty acids. PMID:20548327

  13. Effect of Inhibitors of Pyridoxal5?-Phosphate-Dependent Enzymes on Cysteine Synthase in Echinochloa crus-galli L

    Microsoft Academic Search

    Kangetsu Hirase; William T. Molin

    2001-01-01

    The effect of inhibitors of pyridoxal-5?-phosphate-dependent enzymes (IPEs) on cysteine synthase (CS; EC 4.2.99.8), which synthesizes cysteine from O-acetylserine and sulfide, was examined. CS was extracted from the leaves of Echinochloa crus-galli L., fractionated with 30–70% ammonium sulfate, and then used for the enzyme assay with seven IPEs. When substrates of CS and 10 mM IPEs were added simultaneously, dl-allylglycine,

  14. The effect of the nitric oxide synthase inhibitor N-?-nitro- l-argine methyl ester on hypoxic pulmonary vasoconstriction

    Microsoft Academic Search

    Richard D Jones; Alyn H Morice

    2000-01-01

    We studied the role of nitric oxide in the regulation of pulmonary arterial tone and hypoxic pulmonary vasoconstriction. Rat pulmonary arteries (n=65, diameter=440±12 ?m) were loaded to 17.5 mm Hg in a wire myograph and incubated with the nitric oxide synthase inhibitor N-?-nitro-l-argine methyl ester (l-NAME; 1, 10 or 100 ?M) or distilled water (50 ?l) prior to preconstriction with

  15. Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from Mycobacterium tuberculosis.

    PubMed

    Liu, Zheng; Liu, Feng; Aldrich, Courtney C

    2015-07-01

    Mycobactins are small-molecule iron chelators (siderophores) produced by Mycobacterium tuberculosis (Mtb) for iron mobilization. The bifunctional salicylate synthase MbtI catalyzes the first step of mycobactin biosynthesis through the conversion of the primary metabolite chorismate into salicylic acid via isochorismate. We report the design, synthesis, and biochemical evaluation of an inhibitor based on the putative transition state (TS) for the isochorismatase partial reaction of MbtI. The inhibitor mimics the hypothesized charge buildup at C-4 of chorismate in the TS as well as C-O bond formation at C-6. Another important design element of the inhibitor is replacement of the labile pyruvate side chain in chorismate with a stable C-linked propionate isostere. We developed a stereocontrolled synthesis of the highly functionalized cyclohexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselective Grignard addition to a tert-butanesulfinyl aldimine, and ring closing olefin metathesis as key steps. PMID:26035083

  16. Effects of L-canavanine, an inhibitor of inducible nitric oxide synthase, on endotoxin mediated shock in rats.

    PubMed

    Fatehi-Hassanabad, Z; Burns, H; Aughey, E A; Paul, A; Plevin, R; Parratt, J R; Furman, B L

    1996-09-01

    The effects of L-canavanine, an inhibitor of nitric oxide synthase, on endotoxin-induced shock was investigated in the pentobarbitone anesthetized rat. Endotoxin infusion (2.5 mg kg-1 h-1 over 6 h) produced progressive and marked hypotension and hypoglycemia. Electron microscopy showed marked changes in the kidney, comprising severe endothelial cell disruption and the accumulation of platelets in the blood vessels. In the lung, there was marked accumulation of polymorphonuclear leukocytes in small blood vessels and endothelial disruption. Treatment with L-canavanine (10 mg kg-1 by bolus injection each hour starting 70 min after endotoxin or saline infusion) significantly reduced endotoxin-induced hypotension, without any effect on the hypoglycemia. This treatment markedly reduced the endotoxin-induced electron microscopical changes in the kidneys and lungs. Although L-canavanine, like L-NAME, inhibited both cerebellar constitute and splenic inducible nitric oxide synthase in vitro, in contrast to L-NAME it did not modify either arterial blood pressure or carotid artery blood flow in control rats. The data are consistent with L-canavanine being a selective inhibitor of inducible nitric oxide synthase, at least in vivo, and suggest that inhibitors of this enzyme may be beneficial in endotoxin-induced shock. PMID:8885085

  17. Stimulation by nitric oxide synthase inhibitors of gastric and duodenal HCO3- secretion in rats.

    PubMed

    Takeuchi, K; Ohuchi, T; Miyake, H; Okabe, S

    1993-09-01

    The role of nitric oxide (NO) in the regulation of gastroduodenal HCO3- secretion was investigated in anesthetized rats using the NO biosynthesis inhibitor NG-nitro-L-arginine methyl ester (L-NAME). HCO3- secretion was measured at pH 7.0 using a pH-stat method in the chambered stomach in the presence of omeprazole or in the proximal duodenum. Intravenous administration of L-NAME (1-5 mg/kg) increased HCO3- secretion in a dose-dependent manner in both the stomach and duodenum, with a concomitant elevation of arterial blood pressure. The stimulatory effect of L-NAME on HCO3- secretion was mimicked by another NO synthase inhibitor, NG-monomethyl-L-arginine (50 mg/kg), but not by the enantiomer NG-nitro-D-arginine methyl ester, and was significantly antagonized by concurrent administration of L-arginine, but not D-arginine, at 200 mg/kg. The exogenous NO donor nitroprusside (4 mg/kg) by itself decreased the rate of HCO3- secretion and significantly antagonized the HCO3- stimulatory action of L-NAME. Furthermore, the increased HCO3- secretion caused by L-NAME was significantly attenuated by prior administration of atropine (1 mg/kg, s.c.) or indomethacin (5 mg/kg, s.c.) and by bilateral vagotomy but was not influenced by sensory deafferentation after capsaicin pretreatment, though none of the treatments had any effect on the changes in blood pressure induced by L-NAME. These results suggest that L-NAME stimulates HCO3- secretion in the gastroduodenal mucosa. This action is associated with the inhibition of NO biosynthesis and may be partly dependent on vagal-cholinergic innervation and mediated by endogenous prostaglandins. PMID:7690403

  18. Identification of a Glycogen Synthase Kinase-3[beta] Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice

    SciTech Connect

    Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara (Psychogenics); (Purdue); (UIC); (UTSMC)

    2012-05-02

    Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called 'mood-stabilizing drugs', such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3{beta} (GSK-3{beta}) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3{beta}. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC{sub 50} values in the range of 4 to 680 nM against human GSK-3{beta}. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mg kg{sup -1} resulted in the attenuation of hyperactivity in amphetamine/chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mg kg{sup -1}) and the antipsychotic haloperidol (1 mg kg{sup -1}). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3{beta} in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3{beta} as a relevant therapeutic target in the identification of new therapies for bipolar patients.

  19. Blockade of tolerance to morphine but not to kappa opioids by a nitric oxide synthase inhibitor.

    PubMed Central

    Kolesnikov, Y A; Pick, C G; Ciszewska, G; Pasternak, G W

    1993-01-01

    The nitric oxide synthase inhibitor NG-nitro-L-arginine (NO2Arg) blocks morphine tolerance in mice. After implantation of morphine pellets the analgesic response decreases from 100% on the first day to 0% on the third. Coadministration of NO2Arg along with the pellets markedly retards the development of tolerance; 60% of mice are analgesic after 3 days, and 50% of mice are analgesic after 5 days. In a daily injection paradigm the analgesic response to morphine is reduced from 60% to 0% by 5 days. Concomitant administration of morphine along with NO2Arg at doses of 2 mg/kg per day prevents tolerance for 4 weeks. A single NO2Arg dose retards morphine tolerance for several days, and dosing every 4 days is almost as effective as daily NO2Arg. NO2Arg slowly reverses preexisting tolerance over 5 days despite the continued administration of morphine along with NO2Arg. NO2Arg also reduces dependence and reverses previously established dependence. NO2Arg does not prevent tolerance to analgesia mediated by the kappa 1 agonist trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolindinyl)cyclohexyl]- benzene-acetamide (U50,488H) or the kappa 3 agent naloxone benzoylhydrazone, indicating a selective action of NO in the mechanisms of mu tolerance and dependence. PMID:7685116

  20. Structural analysis of a fungal methionine synthase with substrates and inhibitors.

    PubMed

    Ubhi, Devinder; Kago, Grace; Monzingo, Arthur F; Robertus, Jon D

    2014-04-17

    The cobalamin-independent methionine synthase from Candida albicans, known as Met6p, is a 90-kDa enzyme that consists of two (??)8 barrels. The active site is located between the two domains and has binding sites for a zinc ion and substrates L-homocysteine and 5-methyl-tetrahydrofolate-glutamate3. Met6p catalyzes transfer of the methyl group of 5-methyl-tetrahydrofolate-glutamate3 to the L-homocysteine thiolate to generate methionine. Met6p is essential for fungal growth, and we currently pursue it as an antifungal drug design target. Here we report the binding of L-homocysteine, methionine, and several folate analogs. We show that binding of L-homocysteine or methionine results in conformational rearrangements at the amino acid binding pocket, moving the catalytic zinc into position to activate the thiol group. We also map the folate binding pocket and identify specific binding residues, like Asn126, whose mutation eliminates catalytic activity. We also report the development of a robust fluorescence-based activity assay suitable for high-throughput screening. We use this assay and an X-ray structure to characterize methotrexate as a weak inhibitor of fungal Met6p. PMID:24524835

  1. Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice.

    PubMed Central

    Cross, A H; Misko, T P; Lin, R F; Hickey, W F; Trotter, J L; Tilton, R G

    1994-01-01

    Previous work from our laboratory localized nitric oxide to the affected spinal cords of mice with experimental autoimmune encephalomyelitis, a prime model for the human disease multiple sclerosis. The present study shows that activated lymphocytes sensitized to the central nervous system encephalitogen, myelin basic protein, can induce nitric oxide production by a murine macrophage cell line. Induction was inhibited by amino-guanidine, a preferential inhibitor of the inducible nitric oxide synthase isoform, and by NG-monomethyl-L-arginine. Aminoguanidine, when administered to mice sensitized to develop experimental autoimmune encephalomyelitis, inhibited disease expression in a dose-related manner. At 400 mg aminoguanidine/kg per day, disease onset was delayed and the mean maximum clinical score was 0.9 +/- 1.2 in aminoguanidine versus 3.9 +/- 0.9 in placebo-treated mice. Histologic scoring of the spinal cords for inflammation, demyelination, and axonal necrosis revealed significantly less pathology in the aminoguanidine-treated group. The present study implicates excessive nitric oxide production in the pathogenesis of murine inflammatory central nervous system demyelination, and perhaps in the human disease multiple sclerosis. Images PMID:7515395

  2. The Interaction of Hydroxymandelate Synthase with the 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor: NTBC.

    PubMed

    Conrad, John A; Moran, Graham R

    2008-03-01

    Hydroxymandelate synthase (HMS) catalyzes the committed step in the formation of para-hydroxyphenylglycine, a recurrent substructure of polycyclic non-ribosomal peptide antibiotics such as vancomycin. HMS uses the same substrates as 4-hydroxyphenylpyruvate dioxygenase (HPPD), 4-hydroxyphenylpyruvate (HPP) and O(2), and also conducts a dioxygenation reaction. The difference between the two lies in the insertion of the second oxygen atom, HMS directing this atom onto the benzylic carbon of the substrate while HPPD hydroxylates the aromatic C1 carbon. We have shown that HMS will bind NTBC, a herbicide/therapeutic whose mode of action is based on the inhibition of HPPD. This occurs despite the difference in residues at the active site of HMS from those known to contact the inhibitor in HPPD. Moreover, the minimal kinetic mechanism for association of NTBC to HMS differs only slightly from that observed with HPPD. The primary difference is that three charge-transfer species are observed to accumulate during association. The first reversible complex forms with a weak dissociation constant of 520 microM, the subsequent two charge-transfer complexes form with rate constants of 2.7 s(-1) and 0.67 s(-1). As was the case for HPPD, the final complex has the most intense charge-transfer, is not observed to dissociate, and is unreactive towards dioxygen. PMID:18496607

  3. Interaction between Nitric Oxide Synthase Inhibitor Induced Oscillations and the Activation Flow Coupling Response

    PubMed Central

    Ances, Beau M.; Greenberg, Joel. H.; Detre, John A.

    2009-01-01

    The role of nitric oxide (NO) in the activation-flow coupling (AFC) response to periodic electrical forepaw stimulation was investigated using signal averaged laser Doppler (LD) flowmetry. LD measures of calculated cerebral blood flow (CBF) were obtained both prior and after intra-peritoneal administration of the non-selective nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NNA) (40 mg/kg). Characteristic baseline low frequency vasomotion oscillations (0.17 Hz) were observed after L-NNA administration. These LDCBF oscillations were synchronous within but not between hemispheres. L-NNA reduced the magnitude of the AFC response (p< 0.05) for longer stimuli (1 minute) with longer inter-stimulus intervals (2 minutes). In contrast, the magnitude of the AFC response for short duration stimuli (4 seconds) with short inter-stimulus intervals (20 seconds) was augmented (p < 0.05) after L-NNA. An interaction occurred between L-NNA induced vasomotion oscillations and the AFC response with the greatest increase occurring at the stimulus harmonic closest to the oscillatory frequency. Nitric oxide may therefore modulate the effects of other vasodilators involved in vasomotion oscillations and the AFC response. PMID:19900416

  4. A glucosylceramide synthase inhibitor protects rats against the cytotoxic effects of shiga toxin 2.

    PubMed

    Silberstein, Claudia; Lucero, María S; Zotta, Elsa; Copeland, Diane P; Lingyun, Li; Repetto, Horacio A; Ibarra, Cristina

    2011-05-01

    Postdiarrhea hemolytic uremic syndrome is the most common cause of acute renal failure in children in Argentina. Renal damage has been strongly associated with Shiga toxin (Stx), which binds to the globotriaosylceramide (Gb3) receptor on the plasma membrane of target cells. The purpose of the study was to evaluate the in vivo effects of C-9, a potent inhibitor of glucosylceramide synthase and Gb3 synthesis, on kidney and colon in an experimental model of hemolytic uremic syndrome in rats. Rats were i.p. injected with supernatant from recombinant Escherichia coli expressing Stx2 (sStx2). A group of these rats were orally treated with C-9 during 6 d, from 2 d prior until 4 d after sStx2 injection. The injection of sStx2 caused renal damage as well as a loss of goblet cells in colonic mucosa. Oral treatment with C-9 significantly decreased rat mortality to 50% and reduced the extension of renal and intestinal injuries in the surviving rats. The C-9 also decreased Gb3 and glucosylceramide expression levels in rat kidneys. It is particularly interesting that an improvement was seen when C-9 was administered 2 d before challenge, which makes it potentially useful for prophylaxis. PMID:21270676

  5. Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura.

    PubMed

    Zhu, Qiqi; He, Yuan; Yao, Jing; Liu, Yinzhao; Tao, Liming; Huang, Qingchun

    2012-01-01

    The effects of sublethal concentrations 0.1, 0.5, and 1.2 µg mL(-1)of the chitin synthesis inhibitor, hexaflumuron, on larval growth and development, the count and proportion of hemocytes, and carbohydrate content (trehalose and glyceride) in hemolymph were investigated in the cutworm, Spodoptera litura (Fabricious) (Lepidoptera: Noctuidae). When 3(rd) instar larvae were subjected to the sublethal concentrations, there were dose-dependent effects on larval weight and length of each instar larvae, percent pupation and the duration of development. Most of the larvae died during the molting process at all concentrations. Few individuals from 0.5 and 1.2 µg mL(-1)concentrations could develop to the 6(th) instar, while the pupae emerging from the 0.1 µg mL(-1)concentrations did not exceed 16% of the number of the initial larvae. In 5(th)instar S. litura, the total number of hemocytes was significantly increased at 24 hours post-treatment, whereas the proliferation of hemocytes was inhibited, plasmatocyte pseudopodia contracted, and granulocyte expanded at 96 hours post-treatment. The increases of plasmatocyte count and the decreases of granulocyte count were dose-dependent. The longer treatment time of the sublethal concentrations increased the content of total carbohydrate and trehalose in hematoplasma, and was dose-dependent in hemocytes. The content of glyceride in hemolymph was significantly higher at 24 hours post-treatment, but gradually returned to normal levels at 96 hours post-treatment as compared with the control. The results suggested that sublethal concentrations of hexaflumuron reduced S. litura larval survival and interfered with hemolymph physiological balances. PMID:22958164

  6. An EPSP synthase inhibitor joining shikimate 3-phosphate with glyphosate: synthesis and ligand binding studies.

    PubMed

    Marzabadi, M R; Gruys, K J; Pansegrau, P D; Walker, M C; Yuen, H K; Sikorski, J A

    1996-04-01

    A novel EPSP synthase inhibitor 4 has been designed and synthesized to probe the configurational details of glyphosate recognition in its herbicidal ternary complex with enzyme and shikimate 3-phosphate (S3P). A kinetic evaluation of the new 3-dephospho analog 12, as well as calorimetric and (31)P NMR spectroscopic studies of enzyme-bound 4, now provides a more precise quantitative definition for the molecular interactions of 4 with this enzyme. The very poor binding, relative to 4, displayed by the 3-dephospho analog 12 is indicative that 4 has a specific interaction with the S3P site. A comparison of Ki(calc) for 12 versus the Ki(app) for 4 indicates that the 3-phosphate group in 4 contributes about 4.8 kcal/mol to binding. This compares well with the 5.2 kcal/mol which the 3-phosphate group in S3P contributes to binding. Isothermal titration calorimetry demonstrates that 4 binds to free enzyme with an observed Kd of 0.53 +/- 0.04 microM. As such, 4 binds only 3-fold weaker than glyphosate and about 150-fold better than N-methylglyphosate. Consequently, 4 represents the most potent N-alkylglyphosate derivative identified to date. However, the resulting thermodynamic binding parameters clearly demonstrate that the formation of EPSPS x 4 is entropy driven like S3P. The binding characteristics of 4 are fully consistent with a primary interaction localized at the S3P subsite. Furthermore, (31)P NMR studies of enzyme-bound 4 confirm the expected interaction at the shikimate 3-phosphate site. However, the chemical shift observed for the phosphonate signal of EPSPS x 4 is in the opposite direction than that observed previously when glyphosate binds with enzyme and S3P. Therefore, when 4 occupies the S3P binding site, there is incomplete overlap at the glyphosate phosphonate subsite. As a glyphosate analog inhibitor, the potency of 4 most likely arises from predominant interactions which occur outside the normal glyphosate binding site. Consequently, 4 is best described as an S3P-based substrate-analog inhibitor. These combined results corroborate the previous kinetic model [Gruys, K. J., Marzabadi, M. R., Pansegrau, P. D., & Sikorski, J. A. (1993) Arch. Biochem. Biophys. 304, 345-351], which suggested that 4 interacts well with the S3P subsite but has little, if any, interaction at the expected glyphosate phosphonate or phosphoenolpyruvate-Pi subsites. PMID:8672456

  7. Nitric oxide synthase inhibitors exert differential time-dependent effects on LPS-induced uveitis.

    PubMed

    Allen, J B; McGahan, M C; Ferrell, J B; Adler, K B; Fleisher, L N

    1996-01-01

    Nitric oxide (NO) is a highly reactive radical which plays an integral role in physiological and pathophysiological processes. NO is produced endogenously in small amounts by a constitutive NO synthase (cNOS) as a regulator of vascular tone and neurotransmission. NO can also be produced in large amounts by an inducible NOS (iNOS) in response to endotoxin and cytokines, and has been reported to be a mediator of lipopolysaccharide (LPS)-induced uveitis in rats. The purpose of the present study was to investigate the effects of NOS inhibitors with different NOS isoform specificities in the rabbit model of endotoxin-induced ocular inflammation. LPS and/or inhibitors of NOS. NG-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG), were injected intravitreally and the eyes observed by slit lamp for 24 hr. Coinjection of LPS with L-NAME inhibited anterior inflammation in rabbits. Iridal hyperemia (IH) and aqueous flare (AF) were completely abolished in eight out of nine rabbits in a dose-dependent manner. In addition, total cell counts were significantly suppressed (7393 +/- 697 vs. 325 +/- 188, P < 0.05) and aqueous protein levels were reduced to near control levels (25 +/- 0.75 vs. 1.72 +/- 0.36, P < 0.05). Similar suppression was seen with AG (cell counts = 351 +/- 246 and proteins = 3.1 +/- 1.2). Administration of L-NAME 0.5 hr after LPS injection suppressed inflammation to a lesser extent than coinjection. In contrast, administration of L-NAME 6 hr after LPS injection was not inhibitory, and in fact significantly increased cellular infiltration. However, AG given 6 hr after LPS had a remarkably different effect, since it significantly decreased both protein extravasation and cellular infiltration into the aqueous humor. In fact, our results suggest that cNOS may play a greater role in the earlier stages of this developing inflammatory response. These results extend others' observations that NO is a key mediator in uveitis, that induction of iNOS plays a critical role in experimental uveitis, and suggest that NO has a complex role in the ocular inflammatory process. Inhibitors of NOS can abort the LPS-induced inflammatory response if administered early enough, but could potentially exacerbate an established inflammatory episode. PMID:8674509

  8. Structure-guided Discovery of Phenyl diketo-acids as Potent Inhibitors of M. tuberculosis Malate Synthase

    PubMed Central

    Krieger, Inna V.; Freundlich, Joel S.; Gawandi, Vijay B.; Roberts, Justin P.; Gawandi, Vidyadhar B.; Sun, Qingan; Owen, Joshua L.; Fraile, Maria T.; Huss, Sofia I.; Lavandera, Jose-Luis; Ioerger, Thomas R.; Sacchettini, James C.

    2012-01-01

    Summary The glyoxylate shunt plays an important role in fatty-acid metabolism, and has been shown to be critical to survival of several pathogens involved in chronic infections. For Mycobacterium tuberculosis (Mtb), a strain with a defective glyoxylate shunt was previously shown to be unable to establish infection in a mouse model. We report the development of novel phenyl-diketo acid (PDKA) inhibitors of malate synthase (GlcB), one of two glyoxylate shunt enzymes, using structure-based methods. PDKA inhibitors were active against Mtb grown on acetate, and over-expression of GlcB ameliorated this inhibition. Crystal structures of complexes of GlcB with PDKA inhibitors were used to guide optimization of potency. A selected PDKA compound demonstrated efficacy in a mouse model of tuberculosis. The discovery of these PDKA derivatives provides chemical validation of GlcB as an attractive target for tuberculosis therapeutics. PMID:23261599

  9. The genetic complexity of chitin synthesis in fungi.

    PubMed

    Roncero, Cesar

    2002-09-01

    Chitin synthesis is a process maintained across the fungal kingdom that, thanks to the power of genetic manipulation of yeast cells, is now beginning to be understood. Chitin synthesis is based on the regulation of distinct chitin synthase isoenzymes whose number ranges from one in Schizosaccharomyces pombe to seven in some filamentous fungi, such as Aspergillus fumigatus. This high diversity makes it difficult to find a unique model of regulation. However, the results available suggest common themes in regulation. The arrival of the genomic era, together with the development of fungal genetic technology should allow experimental approaches to this process. PMID:12228806

  10. Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate Synthase Inhibitors: An X-ray and NMR Investigation

    PubMed Central

    Zhang, Yonghui; Cao, Rong; Yin, Fenglin; Hudock, Michael P.; Guo, Rey-Ting; Krysiak, Kilannin; Mukherjee, Sujoy; Gao, Yi-Gui; Robinson, Howard; Song, Yongcheng; No, Joo Hwan; Bergan, Kyle; Leon, Annette; Cass, Lauren; Goddard, Amanda; Chang, Ting-Kai; Lin, Fu-Yang; Van Beek, Ermond; Papapoulos, Socrates; Wang, Andrew H.-J.; Kubo, Tadahiko; Ochi, Mitsuo; Mukkamala, Dushyant; Oldfield, Eric

    2009-01-01

    Considerable effort has focused on the development of selective protein farnesyl transferase (FTase) and protein geranylgeranyl transferase (GGTase) inhibitors as cancer chemotherapeutics. Here, we report a new strategy for anti-cancer therapeutic agents involving inhibition of farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS), the two enzymes upstream of FTase and GGTase, by lipophilic bisphosphonates. Due to dual site targeting and decreased polarity, the compounds have activities far greater than do current bisphosphonate drugs in inhibiting tumor cell growth and invasiveness, both in vitro and in vivo. We explore how these compounds inhibit cell growth, how cell activity can be predicted based on enzyme inhibition data, and, using x-ray diffraction, solid state NMR and isothermal titration calorimetry, we show how these compounds bind to FPPS and/or GGPPS. PMID:19309137

  11. Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate Synthase Inhibitors: An X-ray and NMR Investigation

    SciTech Connect

    Zhang, Y.; Cao, R; Yin, F; Hudock, M; Guo, R; Song, Y; No, J; Bergan, K; Leon, A; et al,

    2009-01-01

    Considerable effort has focused on the development of selective protein farnesyl transferase (FTase) and protein geranylgeranyl transferase (GGTase) inhibitors as cancer chemotherapeutics. Here, we report a new strategy for anticancer therapeutic agents involving inhibition of farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS), the two enzymes upstream of FTase and GGTase, by lipophilic bisphosphonates. Due to dual site targeting and decreased polarity, the compounds have activities far greater than do current bisphosphonate drugs in inhibiting tumor cell growth and invasiveness, both in vitro and in vivo. We explore how these compounds inhibit cell growth and how cell activity can be predicted based on enzyme inhibition data, and using X-ray diffraction, solid state NMR, and isothermal titration calorimetry, we show how these compounds bind to FPPS and/or GGPPS.

  12. In vitro studies in a myelogenous leukemia cell line suggest an organized binding of geranylgeranyl diphosphate synthase inhibitors.

    PubMed

    Reilly, Jacqueline E; Zhou, Xiang; Tong, Huaxiang; Kuder, Craig H; Wiemer, David F; Hohl, Raymond J

    2015-07-15

    A small set of isoprenoid bisphosphonates ethers has been tested in the K562 chronic myelogenous leukemia cell line to determine their impact on isoprenoid biosynthesis. Five of these compounds inhibit geranylgeranyl diphosphate synthase (GGDPS) with IC50 values below 1?M in enzyme assays, but in cells their apparent activity is more varied. In particular, the isomeric C-geranyl-O-prenyl and C-prenyl-O-geranyl bisphosphonates are quite different in their activity with the former consistently demonstrating greater impairment of geranylgeranylation in cells but the latter showing greater impact in the enzyme assays with GGDPS. Together, these findings suggest an organized binding of these inhibitors in the two hydrophobic channels of the geranylgeranyl diphosphate synthase enzyme. PMID:25952057

  13. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation.

    PubMed

    Jin, Shuangxia; Singh, Nameirakpam D; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-04-01

    In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/?g total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. PMID:25782349

  14. Enzymatic degradation of chitins and partially deacetylated chitins.

    PubMed

    Shigemasa, Y; Saito, K; Sashiwa, H; Saimoto, H

    1994-02-01

    The enzymatic (lysozyme, chitinase etc.) digestibility of chitins obtained from squid pen and shrimp shell, and of partially deacetylated chitins (DA-chitins) was investigated. The digestibility of various chitins by the chitinase from Bacillus sp. PI-7S was much higher than that by lysozyme, and beta-chitin was digested more smoothly than alpha-chitin. DA-chitin deacetylated under homogeneous conditions (DAC) was hydrolysed by lysozyme more rapidly than that deacetylated under heterogeneous conditions (DAC). DACs from shrimp shell and squid pen showed the same degree of digestibility by lysozyme in spite of a difference in the crystal structure of the original chitins. The crystal structure of chitin and the degree of N-acetyl group aggregation among DA-chitin molecules affect the enzymatic digestibility of chitin and DA-chitin, respectively. PMID:8180144

  15. Comparative pharmacological study of free radical scavenger, nitric oxide synthase inhibitor, nitric oxide synthase activator and cyclooxygenase inhibitor against MPTP neurotoxicity in mice

    Microsoft Academic Search

    Hironori Yokoyama; Ryohei Yano; Eriko Aoki; Hiroyuki Kato; Tsutomu Araki

    2008-01-01

    The biochemical and cellular changes that occur following the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine\\u000a (MPTP) are remarkably similar to that seen in idiopathic Parkinson’s disease(PD). There is growing evidence indicating that\\u000a reactive oxygen species (ROS), reactive nitrogen species (RNS) and inflammation are a major contributor to the pathogenesis\\u000a and progression of PD. Hence, we investigated whether 7-nitroindazole [neuronal nitric oxide synthase (nNOS)

  16. Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors.

    PubMed

    Capasso, Clemente; Supuran, Claudiu T

    2014-06-01

    Recent advances in microbial genomics, synthetic organic chemistry and X-ray crystallography provided opportunities to identify novel antibacterial targets for the development of new classes of antibiotics and to design more potent antimicrobial compounds derived from existing antibiotics in clinical use for decades. The antimetabolites, sulfa drugs and trimethoprim (TMP)-like agents, are inhibitors of three families of enzymes. One family belongs to the carbonic anhydrases, which catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. The other two enzyme families are involved in the synthesis of tetrahydrofolate (THF), i.e. dihydropteroate synthase (DHPS) and dihydrofolate reductase. The antibacterial agents belonging to the THF and DHPS inhibitors were developed decades ago and present significant bacterial resistance problems. However, the molecular mechanisms of drug resistance both to sulfa drugs and TMP-like inhibitors were understood in detail only recently, when several X-ray crystal structures of such enzymes in complex with their inhibitors were reported. Here, we revue the state of the art in the field of antibacterials based on inhibitors of these three enzyme families. PMID:23627736

  17. Biological adhesive based on carboxymethyl chitin derivatives and chitin nanofibers.

    PubMed

    Azuma, Kazuo; Nishihara, Masahiro; Shimizu, Haruki; Itoh, Yoshiki; Takashima, Osamu; Osaki, Tomohiro; Itoh, Norihiko; Imagawa, Tomohiro; Murahata, Yusuke; Tsuka, Takeshi; Izawa, Hironori; Ifuku, Shinsuke; Minami, Saburo; Saimoto, Hiroyuki; Okamoto, Yoshiharu; Morimoto, Minoru

    2015-02-01

    Novel biological adhesives made from chitin derivatives were prepared and evaluated for their adhesive properties and biocompatibility. Chitin derivatives with acrylic groups, such as 2-hydroxy-3-methacryloyloxypropylated carboxymethyl chitin (HMA-CM-chitin), were synthesized and cured by the addition of an aqueous hydrogen peroxide solution as a radical initiator. The adhesive strength of HMA-CM-chitin increased when it was blended with chitin nanofibers (CNFs) or surface-deacetylated chitin nanofibers (S-DACNFs). HMA-CM-chitin/CNFs or HMA-CM-chitin/S-DACNFs have almost equal adhesive strength compared to that of a commercial cyanoacrylate adhesive. Moreover, quick adhesion and induction of inflammatory cells migration were observed in HMA-CM-chitin/CNF and HMA-CM-chitin/S-DACNF. These findings indicate that the composites prepared in this study are promising materials as new biological adhesives. PMID:25542790

  18. L-NAME, a nitric oxide synthase inhibitor, as a potential countermeasure to post-suspension hypotension in rats

    NASA Technical Reports Server (NTRS)

    Bayorh, M. A.; Socci, R. R.; Watts, S.; Wang, M.; Eatman, D.; Emmett, N.; Thierry-Palmer, M.

    2001-01-01

    A large number of astronauts returning from spaceflight experience orthostatic hypotension. This hypotension may be due to overproduction of vasodilatory mediators, such as nitric oxide (NO) and prostaglandins. To evaluate the role of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) as a countermeasure against the post-suspension reduction in mean arterial pressure (MAP), we assessed the cardiovascular responses and vascular reactivity to 7-day 30 degrees tail-suspension and a subsequent 6 hr post-suspension period in conscious rats. After a pre-suspension reading, direct MAP and heart rate (HR) were measured daily and every 2 hrs post-suspension. The NO synthase inhibitor L-NAME (20 mg/kg, i.v.), or saline, were administered after the 7th day reading prior to release from suspension and at 2 and 4 hrs post-suspension. At 6 hrs post-suspension, vascular reactivity was assessed. While MAP did not change during the suspension period, it was reduced post-suspension. Heart rate was not significantly altered. L-NAME administration reversed the post-suspension reduction in MAP. In addition, the baroreflex sensitivity for heart rate was modified by L-NAME. Thus, the post-suspension reduction in MAP may be due to overproduction of NO and altered baroreflex activity.

  19. Structure-based discovery and in-parallel optimization of novelcompetitive inhibitors of thymidylate synthase

    Microsoft Academic Search

    Donatella Tondi; Ursula Slomczynska; M. Paola Costi; D. Martin Watterson; Stefano Ghelli; Brian K. Shoichet

    1999-01-01

    Background:The substrate sites of enzymes are attractive targets for structurebased inhibitor design. Two difficulties hinder efforts to discover and elaborate new (nonsubstrate-like) inhibitors for these sites. First, novel inhibitors often bind at nonsubstrate sites. Second, a novel scaffold introduces chemistry that is frequently unfamiliar, making synthetic elaboration challenging.

  20. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with ?-Opioid Agonist Activity

    PubMed Central

    2012-01-01

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the ?-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the ?-opioid GPCR was predicated on the modulatory role of nitric oxide on ?-opioid receptor function. Structure–activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 ?M), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent ?-opioid binding affinity, Ki = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 ?M). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

  1. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with ?-Opioid Agonist Activity.

    PubMed

    Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

    2012-03-01

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the ?-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the ?-opioid GPCR was predicated on the modulatory role of nitric oxide on ?-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 ?M), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent ?-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 ?M). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

  2. DOI: 10.1002/cmdc.201100589 Dual Dehydrosqualene/Squalene Synthase Inhibitors: Leads for Innate

    E-print Network

    Nizet, Victor

    Staphylococcus aureus infections than die from human immunodeficiency virus (HIV)/acquired immunodeficiency syn. The Glide Gscore and Ki values against dehydrosqualene synthase (CrtM) are given for these screening hits in Glide,[6] and screened 2372 compounds from a commercially available antibacterial library (Life

  3. [Effects of dimilin, a chitin inhibitor 1 (4 chlorophenyl) 3 (2-6 difluorobenzoyl) urea on the oenocytes and molting in the processionary caterpillar (Thaumetopoea pityocampa Schiff.) (Lepidoptera) (author's transl)].

    PubMed

    Denneulin, J C; Lamy, M

    1977-01-01

    Te oenocytes of the processionary caterpillar show histophysiological variations during their developing cycle. Grafting experiments and culture in vitro, have not so far allowed us to reveal the least participation of the oenocytes in the determinism of molting and in the transformation of cholesterol into ecdysone. On the other hand, histochemical studies of the oenocytes during the last period of their larval state, reveal, just before nymphosis, the existence of polysaccharides which probably correspond to the synthesis of pre-cuticular substance. When the caterpillars are treated with a chitin inhibitor (pH - 60-40 = Dimilin), the polysaccharides are not longer to be seen in the oenocytes. This deficiency in cuticular material could well be the consequence of one of the most spectacular effects of this product that is a profound perturbation in the formation of the cuticle that leads to the death of animals when molting. PMID:565611

  4. Iminosugar-based inhibitors of glucosylceramide synthase increase brain glycosphingolipids and survival in a mouse model of Sandhoff disease.

    PubMed

    Ashe, Karen M; Bangari, Dinesh; Li, Lingyun; Cabrera-Salazar, Mario A; Bercury, Scott D; Nietupski, Jennifer B; Cooper, Christopher G F; Aerts, Johannes M F G; Lee, Edward R; Copeland, Diane P; Cheng, Seng H; Scheule, Ronald K; Marshall, John

    2011-01-01

    The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects. PMID:21738789

  5. Thiolactomycin-based ?-ketoacyl-AcpM synthase A (KasA) inhibitors: fragment-based inhibitor discovery using transient one-dimensional nuclear overhauser effect NMR spectroscopy.

    PubMed

    Kapilashrami, Kanishk; Bommineni, Gopal R; Machutta, Carl A; Kim, Pilho; Lai, Cheng-Tsung; Simmerling, Carlos; Picart, Francis; Tonge, Peter J

    2013-03-01

    Thiolactomycin (TLM) is a natural product inhibitor of KasA, the ?-ketoacyl synthase A from Mycobacterium tuberculosis. To improve the affinity of TLM for KasA, a series of TLM analogs have been synthesized based on interligand NOEs between TLM and a pantetheine analog when both are bound simultaneously to the enzyme. Kinetic binding data reveal that position 3 of the thiolactone ring is a suitable position for elaboration of the TLM scaffold, and the structure-activity relationship studies provide information on the molecular features that govern time-dependent inhibition in this enzyme system. These experiments also exemplify the utility of transient one-dimensional NOE spectroscopy for obtaining interligand NOEs compared with traditional steady state two-dimensional NOESY spectroscopy. PMID:23306195

  6. Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut.

    PubMed

    Kelkenberg, Marco; Odman-Naresh, Jothini; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2015-01-01

    In most insects, the peritrophic matrix (PM) partitions the midgut into different digestive compartments, and functions as a protective barrier against abrasive particles and microbial infections. In a previous study we demonstrated that certain PM proteins are essential in maintaining the PM's barrier function and establishing a gradient of PM permeability from the anterior to the posterior part of the midgut which facilitates digestion (Agrawal et al., 2014). In this study, we focused on the effects of a reduction in chitin content on PM permeability in larvae of the red flour beetle, Tribolium castaneum. Oral administration of the chitin synthesis inhibitor diflubenzuron (DFB) only partially reduced chitin content of the larval PM even at high concentrations. We observed no nutritional effects, as larval growth was unaffected and neutral lipids were not depleted from the fat body. However, the metamorphic molt was disrupted and the insects died at the pharate pupal stage, presumably due to DFB's effect on cuticle formation. RNAi to knock-down expression of the gene encoding chitin synthase 2 in T. castaneum (TcCHS-2) caused a complete loss of chitin in the PM. Larval growth was significantly reduced, and the fat body was depleted of neutral lipids. In situ PM permeability assays monitoring the distribution of FITC dextrans after DFB exposure or RNAi for TcCHS-2 revealed that PM permeability was increased in both cases. RNAi for TcCHS-2, however, led to a higher permeation of the PM by FITC dextrans than DFB treatment even at high doses. Similar effects were observed when the chitin content was reduced by feeding DFB to adult yellow fever mosquitos, Aedes aegypti. We demonstrate that the presence of chitin is necessary for maintaining the PM's barrier function in insects. It seems that the insecticidal effects of DFB are mediated by the disruption of cuticle synthesis during the metamorphic molt rather than by interfering with larval nutrition. However, as DFB clearly affects PM permeability, it may be suitable to increase the efficiency of pesticides targeting the midgut. PMID:25449129

  7. Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression.

    PubMed

    Tetreau, Guillaume; Cao, Xiaolong; Chen, Yun-Ru; Muthukrishnan, Subbaratnam; Jiang, Haobo; Blissard, Gary W; Kanost, Michael R; Wang, Ping

    2015-07-01

    Chitin is one of the most abundant biomaterials in nature. The biosynthesis and degradation of chitin in insects are complex and dynamically regulated to cope with insect growth and development. Chitin metabolism in insects is known to involve numerous enzymes, including chitin synthases (synthesis of chitin), chitin deacetylases (modification of chitin by deacetylation) and chitinases (degradation of chitin by hydrolysis). In this study, we conducted a genome-wide search and analysis of genes encoding these chitin metabolism enzymes in Manduca sexta. Our analysis confirmed that only two chitin synthases are present in M. sexta as in most other arthropods. Eleven chitin deacetylases (encoded by nine genes) were identified, with at least one representative in each of the five phylogenetic groups that have been described for chitin deacetylases to date. Eleven genes encoding for family 18 chitinases (GH18) were found in the M. sexta genome. Based on the presence of conserved sequence motifs in the catalytic sequences and phylogenetic relationships, two of the M. sexta chitinases did not cluster with any of the current eight phylogenetic groups of chitinases: two new groups were created (groups IX and X) and their characteristics are described. The result of the analysis of the Lepidoptera-specific chitinase-h (group h) is consistent with its proposed bacterial origin. By analyzing chitinases from fourteen species that belong to seven different phylogenetic groups, we reveal that the chitinase genes appear to have evolved sequentially in the arthropod lineage to achieve the current high level of diversity observed in M. sexta. Based on the sequence conservation of the catalytic domains and on their developmental stage- and tissue-specific expression, we propose putative functions for each group in each category of enzymes. PMID:25616108

  8. Flavin-Dependent Thymidylate Synthase as a Drug Target for Deadly Microbes: Mutational Study and a Strategy for Inhibitor Design

    PubMed Central

    Mathews, Irimpan I

    2014-01-01

    The identification of flavin-dependent thymidylate synthase (FDTS) as an essential enzyme and its occurrence in several pathogenic microbes opens opportunities for using FDTS enzyme as an excellent target for new antimicrobial drug discovery. In contrast to the human thymidylate synthase enzyme that utilizes methylene-tetrahydrofolate (CH2H4 folate) for the conversion of dUMP to dTMP, the microbial enzymes utilize an additional non-covalently bound FAD molecule for the hydride transfer from NAD(P)H. The structural and mechanistic differences between the human and microbial enzymes present an attractive opportunity for the design of antimicrobial compounds specific for the pathogens. We have determined the crystal structure of FDTS enzyme in complex with the methyl donor, CH2H4 folate. We describe here the structure of a FDTS mutant and compare it with other FDTS complex structures, including a FDTS-CH2H4 folate complex. We identified a conformational change essential for substrate binding and propose a strategy for the design of FDTS specific inhibitors. PMID:24563811

  9. The occurrence of chitin in the hemocytes of invertebrates

    PubMed Central

    Heath-Heckman, Elizabeth A.C.; McFall-Ngai, Margaret J.

    2011-01-01

    The light-organ symbiosis of Euprymna scolopes, the Hawaiian bobtail squid, is a useful model for the study of animal–microbe interactions. Recent analyses have demonstrated that chitin breakdown products play a role in communication between E. scolopes and its bacterial symbiont Vibrio fischeri. In this study, we sought to determine the source of chitin in the symbiotic organ. We used a commercially available chitin-binding protein (CBP) conjugated to fluorescein to label the polymeric chitin in host tissues. Confocal microscopy revealed that the only cells in contact with the symbionts that labeled with the probe were the macrophage-like hemocytes, which traffic into the light-organ crypts where the bacteria reside. Labeling of extracted hemocytes by CBP was markedly decreased following treatment with purified chitinase, providing further evidence that the labeled molecule is polymeric chitin. Further, CBP-positive areas co-localized with both a halide peroxidase antibody and Lysotracker, a lysosomal marker, suggesting that the chitin-like biomolecule occurs in the lysosome or acidic vacuoles. Reverse transcriptase polymerase chain reaction (PCR) of hemocytes revealed mRNA coding for a chitin synthase, suggesting that the hemocytes synthesize chitin de novo. Finally, upon surveying blood cells from other invertebrate species, we observed CBP-positive regions in all granular blood cells examined, suggesting that this feature is a shared character among the invertebrates; the vertebrate blood cells that we sampled did not label with CBP. Although the function of the chitin-like material remains undetermined, its presence and subcellular location in invertebrate hemocytes suggests a conserved role for this polysaccharide in the immune system of diverse animals. PMID:21723107

  10. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription

    Microsoft Academic Search

    Matthew P Coghlan; Ainsley A Culbert; Darren AE Cross; Stacey L Corcoran; John W Yates; Nigel J Pearce; Oliver L Rausch; Gregory J Murphy; Paul S Carter; Lynne Roxbee Cox; David Mills; Murray J Brown; David Haigh; Robert W Ward; David G Smith; Kenneth J Murray; Alastair D Reith; Julie C Holder

    2000-01-01

    Background: Glycogen synthase kinase-3 (GSK-3) is a serine\\/threonine protein kinase, the activity of which is inhibited by a variety of extracellular stimuli including insulin, growth factors, cell specification factors and cell adhesion. Consequently, inhibition of GSK-3 activity has been proposed to play a role in the regulation of numerous signalling pathways that elicit pleiotropic cellular responses. This report describes the

  11. Transport of nitric oxide synthase inhibitors through cationic amino acid carriers in human erythrocytes

    Microsoft Academic Search

    M. Inés Forray; Sylvia Angelo; C. A. R. Boyd; Rosa Devés

    1995-01-01

    The interaction of arginine analogues, which are known to inhibit nitric oxide synthase, with two cationic amino acid transporters of human erythrocytes (systems y+ and y+L) was studied. Arginine and relevant analogues [NG-monomethyl-L-arginine (L-NMMA); NG-monomethyl-D-arginine (D-NMMA) and NG-nitro-L-arginine (L-NOARG)] were found to inhibit labeled lysine influx into intact erythrocytes. As expected, the pattern of inhibition reflected the contribution of the

  12. The interaction of hydroxymandelate synthase with the 4-hydroxyphenylpyruvate dioxygenase inhibitor: NTBC

    Microsoft Academic Search

    John A. Conrad; Graham R. Moran

    2008-01-01

    Hydroxymandelate synthase (HMS) catalyzes the committed step in the formation of para-hydroxyphenylglycine, a recurrent substructure of polycyclic non-ribosomal peptide antibiotics such as vancomycin. HMS uses the same substrates as 4-hydroxyphenylpyruvate dioxygenase (HPPD), 4-hydroxyphenylpyruvate (HPP) and O2, and also conducts a dioxygenation reaction. The difference between the two lies in the insertion of the second oxygen atom, HMS directing this atom

  13. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization

    Microsoft Academic Search

    J. L. Boucher; C. Moali; J. P. Tenu

    1999-01-01

    .   Nitric oxide (NO) is a recently discovered mediator produced by mammalian cells. It plays a key role in neurotransmission,\\u000a control of blood pressure, and cellular defense mechanisms. Nitric oxide synthases (NOSs) catalyze the oxidation of L-arginine\\u000a to NO and L-citrulline. NOSs are unique enzymes in that they possess on the same polypeptidic chain a reductase domain and\\u000a an oxygenase

  14. Chitin and carbon aerogels from chitin alcogels

    Microsoft Academic Search

    Costas Tsioptsias; Chrysoula Michailof; George Stauropoulos; Costas Panayiotou

    2009-01-01

    Supercritical point drying of gels is a common technique for the production of a specific category of nano-porous materials called aerogels. We have successfully prepared chitin aerogels by extracting the solvent from the alcogels (gels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. The produced nano-porous materials exhibit the typical properties of aerogels such as high

  15. Developing dual and specific inhibitors of dimethylarginine dimethylaminohydrolase-1 and nitric oxide synthase: Toward a targeted polypharmacology to control nitric oxide†

    PubMed Central

    Wang, Yun; Monzingo, Arthur F.; Hu, Shougang; Schaller, Tera H.; Robertus, Jon D.; Fast, Walter

    2009-01-01

    Molecules that block nitric oxide's (NO) biosynthesis are of significant interest. For example, nitric oxide synthase (NOS) inhibitors have been suggested as anti-tumor therapeutics, as have inhibitors of dimethylarginine dimethylaminohydrolase (DDAH), an enzyme that catabolizes endogenous NOS inhibitors. Dual-targeted inhibitors hold promise as more effective reagents to block NO biosynthesis than single-targeted compounds. In this study, a small set of known NOS inhibitors are surveyed as inhibitors of recombinant human DDAH-1. From these, an alkylamidine scaffold is selected for homologation. Stepwise lengthening of one substituent converts an NOS-selective inhibitor into a dual-targeted NOS/DDAH-1 inhibitor and then into a DDAH-1 selective inhibitor, as seen in the inhibition constants of N5-(1-iminoethyl)-, N5-(1-iminopropyl)-, N5-(1-iminopentyl)- and N5-(1-iminohexyl)-l-ornithine for neuronal NOS (1.7, 3, 20, >1,900 ?M, respectively) and DDAH-1 (990, 52, 7.5, 110 ?M, respectively). A 1.9Å X-ray crystal structure of the N5-(1-iminopropyl)-l-ornithine : DDAH-1 complex indicates covalent bond formation between the inhibitor's amidino carbon and the active-site Cys274, and solution studies show reversible competitive inhibition, consistent with a reversible covalent mode of DDAH inhibition by alkylamidine inhibitors. These represent a versatile scaffold for the development of a targeted polypharmacological approach to control NO biosynthesis. PMID:19663506

  16. A small molecule deubiquitinase inhibitor increases localization of inducible nitric oxide synthase to the macrophage phagosome and enhances bacterial killing.

    PubMed

    Burkholder, Kristin M; Perry, Jeffrey W; Wobus, Christiane E; Donato, Nicholas J; Showalter, Hollis D; Kapuria, Vaibhav; O'Riordan, Mary X D

    2011-12-01

    Macrophages are key mediators of antimicrobial defense and innate immunity. Innate intracellular defense mechanisms can be rapidly regulated at the posttranslational level by the coordinated addition and removal of ubiquitin by ubiquitin ligases and deubiquitinases (DUBs). While ubiquitin ligases have been extensively studied, the contribution of DUBs to macrophage innate immune function is incompletely defined. We therefore employed a small molecule DUB inhibitor, WP1130, to probe the role of DUBs in the macrophage response to bacterial infection. Treatment of activated bone marrow-derived macrophages (BMM) with WP1130 significantly augmented killing of the intracellular bacterial pathogen Listeria monocytogenes. WP1130 also induced killing of phagosome-restricted bacteria, implicating a bactericidal mechanism associated with the phagosome, such as the inducible nitric oxide synthase (iNOS). WP1130 had a minimal antimicrobial effect in macrophages lacking iNOS, indicating that iNOS is an effector mechanism for WP1130-mediated bacterial killing. Although overall iNOS levels were not notably different, we found that WP1130 significantly increased colocalization of iNOS with the Listeria-containing phagosome during infection. Taken together, our data indicate that the deubiquitinase inhibitor WP1130 increases bacterial killing in macrophages by enhancing iNOS localization to the phagosome and suggest a potential role for ubiquitin regulation in iNOS trafficking. PMID:21911458

  17. A Small Molecule Deubiquitinase Inhibitor Increases Localization of Inducible Nitric Oxide Synthase to the Macrophage Phagosome and Enhances Bacterial Killing?†

    PubMed Central

    Burkholder, Kristin M.; Perry, Jeffrey W.; Wobus, Christiane E.; Donato, Nicholas J.; Showalter, Hollis D.; Kapuria, Vaibhav; O'Riordan, Mary X. D.

    2011-01-01

    Macrophages are key mediators of antimicrobial defense and innate immunity. Innate intracellular defense mechanisms can be rapidly regulated at the posttranslational level by the coordinated addition and removal of ubiquitin by ubiquitin ligases and deubiquitinases (DUBs). While ubiquitin ligases have been extensively studied, the contribution of DUBs to macrophage innate immune function is incompletely defined. We therefore employed a small molecule DUB inhibitor, WP1130, to probe the role of DUBs in the macrophage response to bacterial infection. Treatment of activated bone marrow-derived macrophages (BMM) with WP1130 significantly augmented killing of the intracellular bacterial pathogen Listeria monocytogenes. WP1130 also induced killing of phagosome-restricted bacteria, implicating a bactericidal mechanism associated with the phagosome, such as the inducible nitric oxide synthase (iNOS). WP1130 had a minimal antimicrobial effect in macrophages lacking iNOS, indicating that iNOS is an effector mechanism for WP1130-mediated bacterial killing. Although overall iNOS levels were not notably different, we found that WP1130 significantly increased colocalization of iNOS with the Listeria-containing phagosome during infection. Taken together, our data indicate that the deubiquitinase inhibitor WP1130 increases bacterial killing in macrophages by enhancing iNOS localization to the phagosome and suggest a potential role for ubiquitin regulation in iNOS trafficking. PMID:21911458

  18. Pharmacophore Modeling and Virtual Screening for Novel Acidic Inhibitors of Microsomal Prostaglandin E2 Synthase-1 (mPGES-1)

    PubMed Central

    2011-01-01

    Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes prostaglandin E2 formation and is considered as a potential anti-inflammatory pharmacological target. To identify novel chemical scaffolds active on this enzyme, two pharmacophore models for acidic mPGES-1 inhibitors were developed and theoretically validated using information on mPGES-1 inhibitors from literature. The models were used to screen chemical databases supplied from the National Cancer Institute (NCI) and the Specs. Out of 29 compounds selected for biological evaluation, nine chemically diverse compounds caused concentration-dependent inhibition of mPGES-1 activity in a cell-free assay with IC50 values between 0.4 and 7.9 ?M, respectively. Further pharmacological characterization revealed that also 5-lipoxygenase (5-LO) was inhibited by most of these active compounds in cell-free and cell-based assays with IC50 values in the low micromolar range. Together, nine novel chemical scaffolds inhibiting mPGES-1 are presented that may possess anti-inflammatory properties based on the interference with eicosanoid biosynthesis. PMID:21466167

  19. Proteolytic digestive enzymes and peritrophic membranes during the development of Plodia interpunctella (Lepidoptera: Piralidae): targets for the action of soybean trypsin inhibitor (SBTI) and chitin-binding vicilin (EvV).

    PubMed

    Amorim, Ticiana M L; Macedo, Leonardo L P; Uchoa, Adriana F; Oliveira, Adeliana S; Pitanga, Joelma C M; Macedo, Francisco P; Santos, Elizeu A; de Sales, Mauricio P

    2008-09-10

    The digestive system of P. interpunctella was characterized during its larval development to determine possible targets for the action of proteinaceous enzyme inhibitors and chitin-binding proteins. High proteolytic activities using azocasein at pH 9.5 as substrate were found. These specific enzymatic activities (AU/mg protein) showed an increase in the homogenate of third instar larvae, and when analyzed by individual larvae (AU/gut), the increase was in sixth instar larvae. Zymograms showed two bands corresponding to those enzymatic activities, which were inhibited by TLCK and SBTI, indicating that the larvae mainly used serine proteinases at pH 9.5 in their digestive process. The presence of a peritrophic membrane in the larvae was confirmed by chemical testing and light microscopy. In a bioassay, P. interpunctella was not susceptible to the soybean trypsin inhibitor, which did not affect larval mass and mortality, likely due to the weak association with its target digestive enzyme. EvV (Erythrina velutina vicilin), when added to the diet, affected mortality (LD50 0.23%) and larval mass (ED50 0.27%). This effect was associated with EvV-binding to the peritrophic membrane, as seen by immunolocalization. EvV was susceptible to gut enzymes and after the digestion process, released an immunoreactive fragment that was bound to the peritrophic matrix, which probably was responsible for the action of EvV. PMID:18693741

  20. The Combined Inducible Nitric Oxide Synthase Inhibitor and Free Radical Scavenger Guanidinoethyldisulfide Prevents Multiple Low-Dose StreptozotocinInduced Diabetes In Vivo and Interleukin1??Induced Suppression of Islet Insulin Secretion In Vitro

    Microsoft Academic Search

    Jon G. Mabley; Gary J. Southan; Andrew L. Salzman

    2004-01-01

    Inhibition of inducible nitric oxide synthase has been shown to be antiinflammatory in a variety of disease states. Type I diabetes is an autoimmune disease resulting from the specific destruc- tion of the insulin-producing pancreatic cells. Here we demonstrate that guanidinoethyldisulfide (GED), a combined inducible nitric ox- ide synthase inhibitor and peroxynitrite\\/reactive oxygen species scav- enger reduces the hyperglycemia and

  1. A phase I study of the lipophilic thymidylate synthase inhibitor Thymitaq™ (nolatrexed dihydrochloride) given by 10-day oral administration

    PubMed Central

    Jodrell, D I; Bowman, A; Rye, R; Byrne, B; Boddy, A; Rafi, I; Taylor, G A; Johnston, A; Clendeninn, N J

    1999-01-01

    2-Amino-3,4-dihydro-6-methyl-4-oxo-5-(4-pyridylthio)-quinazoline dihydrochloride (nolatrexed dihydrochloride, Thymitaq, AG337), a specific inhibitor of thymidylate synthase, was developed using protein structure-based drug design. Intravenously administered nolatrexed is active clinically. As oral bioavailability is high (70–100%), nolatrexed was administered orally, 6 hourly for 10 days, at 3-week intervals, and dose escalated from 80 to 572 mg m?2day?1in 23 patients. Common toxicity criteria (CTC) grade 3 toxicities included nausea, vomiting, stomatitis and liver function test (LFT) abnormalities. Thrombocytopenia (grade 1 or 2) occurred at doses ? 318 mg m?2day?1and neutropenia (grade 2) at 429 and 572 mg m?2day?1. An erythematous maculopapular rash occurred at dosages ? 318 mg m?2day?1(7 out of 19 patients). LFT abnormalities occurred in two out of six patients (grade 3 or 4 bilirubin and grade 3 alanine transaminase) at 572 mg m?2day?1. Nolatrexed plasma concentrations 1 h after dosing were 6–16 ?g ml?1, and trough 3–8 ?g ml?1, at 572 mg m?2day?1. Inhibition of thymidylate synthase was demonstrated by elevation of plasma deoxyuridine. Six-hourly oral nolatrexed for 10 days was associated with antiproliferative effects, but nausea and vomiting was dose limiting at 572 mg m?2day?1. Nine patients were treated at 429 mg m?2day?1; three out of nine experienced grade 3 nausea, but 17 out of 22 treatment courses were completed (with the co-administration of prophylactic antiemetics) and this dose level could be considered for phase II testing. 1999 Cancer Research Campaign PMID:10070890

  2. Glycogen Synthase Kinase 3 Inhibitors in the Next Horizon for Alzheimer's Disease Treatment

    PubMed Central

    Martinez, Ana; Gil, Carmen; Perez, Daniel I.

    2011-01-01

    Glycogen synthase kinase 3 (GSK-3), a proline/serine protein kinase ubiquitously expressed and involved in many cellular signaling pathways, plays a key role in the pathogenesis of Alzheimer's disease (AD) being probably the link between ?-amyloid and tau pathology. A great effort has recently been done in the discovery and development of different new molecules, of synthetic and natural origin, able to inhibit this enzyme, and several kinetics mechanisms of binding have been described. The small molecule called tideglusib belonging to the thiadiazolidindione family is currently on phase IIb clinical trials for AD. The potential risks and benefits of this new kind of disease modifying drugs for the future therapy of AD are discussed in this paper. PMID:21760986

  3. The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the alpha-glucosidase inhibitor acarbose.

    PubMed

    Stratmann, A; Mahmud, T; Lee, S; Distler, J; Floss, H G; Piepersberg, W

    1999-04-16

    The putative biosynthetic gene cluster for the alpha-glucosidase inhibitor acarbose was identified in the producer Actinoplanes sp. 50/110 by cloning a DNA segment containing the conserved gene for dTDP-D-glucose 4,6-dehydratase, acbB. The two flanking genes were acbA (dTDP-D-glucose synthase) and acbC, encoding a protein with significant similarity to 3-dehydroquinate synthases (AroB proteins). The acbC gene was overexpressed heterologously in Streptomyces lividans 66, and the product was shown to be a C7-cyclitol synthase using sedo-heptulose 7-phosphate, but not ido-heptulose 7-phosphate, as its substrate. The cyclization product, 2-epi-5-epi-valiolone ((2S,3S,4S,5R)-5-(hydroxymethyl)cyclohexanon-2,3,4,5-tetrol), is a precursor of the valienamine moiety of acarbose. A possible five-step reaction mechanism is proposed for the cyclization reaction catalyzed by AcbC based on the recent analysis of the three-dimensional structure of a eukaryotic 3-dehydroquinate synthase domain (Carpenter, E. P., Hawkins, A. R., Frost, J. W., and Brown, K. A. (1998) Nature 394, 299-302). PMID:10196166

  4. PHYSIOLOGY, ENDOCRINOLOGY, AND REPRODUCTION Influence of Aminoguanidine, an Inhibitor of Inducible Nitric Oxide Synthase, on the Pulmonary Hypertensive Response to Microparticle Injections in Broilers1

    Microsoft Academic Search

    R. F. Wideman; O. T. Bowen; G. F. Erf; M. E. Chapman

    The pulmonary hypertensive response to pulmonary vascular obstruction caused by intravenously injected microparticles is amplified by pretreatment with N?nitro-L-arginine methyl ester (L-NAME). The L-NAME prevents the synthesis of the potent vasodilator nitric oxide (NO) by inhibiting both the constitutive (endothe- lial NO synthase (eNOS or NOS-3)) and inducible (induc- ibleNOsynthase(iNOSorNOS-2))formsofNOsynthase. In the present study we used the selective iNOS inhibitor

  5. N-(3-(Aminomethyl)benzyl)acetamidine, an inducible nitric oxide synthase inhibitor, decreases colonic inflammation induced by trinitrobenzene sulphonic acid in rats

    Microsoft Academic Search

    Luis A. Menchén; Arturo L. Colón; Mar??a A. Moro; Juan C. Leza; Ignacio Lizasoain; Pedro Menchén; Emilio Alvarez; Pedro Lorenzo

    2001-01-01

    Gastrointestinal inflammation has been associated with an increased generation of nitric oxide (NO) and the expression of the inducible NO synthase (iNOS). Using an experimental model of colitis induced by trinitrobenzene sulphonic acid (TNBS), we sought to determine whether the administration of N-(3-(Aminomethyl)benzyl)acetamidine (1400W), a specific inhibitor of iNOS, has a beneficial action on the colonic injury. 1400W (0.4 and

  6. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer

    PubMed Central

    Sadowski, Martin C.; Pouwer, Rebecca H.; Gunter, Jennifer H.; Lubik, Amy A.; Quinn, Ronald J.; Nelson, Colleen C.

    2014-01-01

    Inhibition of FASN has emerged as a promising therapeutic target in cancer, and numerous inhibitors have been investigated. However, severe pharmacological limitations have challenged their clinical testing. The synthetic FASN inhibitor triclosan, which was initially developed as a topical antibacterial agent, is merely affected by these pharmacological limitations. Yet, little is known about its mechanism in inhibiting the growth of cancer cells. Here we compared the cellular and molecular effects of triclosan in a panel of eight malignant and non-malignant prostate cell lines to the well-known FASN inhibitors C75 and orlistat, which target different partial catalytic activities of FASN. Triclosan displayed a superior cytotoxic profile with a several-fold lower IC50 than C75 or orlistat. Structure-function analysis revealed that alcohol functionality of the parent phenol is critical for inhibitory action. Rescue experiments confirmed that end product starvation was a major cause of cytotoxicity. Importantly, triclosan, C75 and orlistat induced distinct changes to morphology, cell cycle, lipid content and the expression of key enzymes of lipid metabolism, demonstrating that inhibition of different partial catalytic activities of FASN activates different metabolic pathways. These finding combined with its well-documented pharmacological safety profile make triclosan a promising drug candidate for the treatment of prostate cancer. PMID:25313139

  7. The chsDand chsEGenes of Aspergillus nidulansand Their Roles in Chitin Synthesis

    Microsoft Academic Search

    Charles A. Specht; Yilun Liu; Phillips W. Robbins; Christine E. Bulawa; Natalia Iartchouk; Kenneth R. Winter; Perry J. Riggle; Judith C. Rhodes; Carol L. Dodge; David W. Culp; Peter T. Borgia

    1996-01-01

    Specht, C. A., Liu, Y., Robbins, P. W., Bulawa, C. E., Iartchouk, N., Winter, K. R., Riggle, P. J., Rhodes, J. C., Dodge, C. L., Culp, D. W., and Borgia, P. T. 1996. ThechsDandchsEgenes ofAspergillus nidulansand their roles in chitin synthesis.Fungal Genetics and Biology20,153–167. Two chitin synthase genes,chsDandchsE,were identified from the filamentous ascomyceteAspergillus nidulans.In a region that is conserved among

  8. Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase.

    PubMed

    Choudhury, Chinmayee; Priyakumar, U Deva; Sastry, G Narahari

    2015-04-27

    The therapeutic challenges in the treatment of tuberculosis demand multidisciplinary approaches for the identification of potential drug targets as well as fast and accurate techniques to screen huge chemical libraries. Mycobacterial cyclopropane synthase (CmaA1) has been shown to be essential for the survival of the bacteria due to its critical role in the synthesis of mycolic acids. The present study proposes pharmacophore models based on the structure of CmaA1 taking into account its various states in the cyclopropanation process, and their dynamic nature as assessed using molecular dynamics (MD) simulations. The qualities of these pharmacophore models were validated by mapping 23 molecules that have been previously reported to exhibit inhibitory activities on CmaA1. Additionally, 1398 compounds that have been shown to be inactive for tuberculosis were collected from the ChEMBL database and were screened against the models for validation. The models were further validated by comparing the results from pharmacophore mapping with the results obtained from docking these molecules with the respective protein structures. The best models are suggested by validating all the models based on their screening abilities and by comparing with docking results. The models generated from the MD trajectories were found to perform better than the one generated based on the crystal structure demonstrating the importance of incorporating receptor flexibility in drug design. PMID:25751016

  9. Bcl2L13 is a ceramide synthase inhibitor in glioblastoma.

    PubMed

    Jensen, Samuel A; Calvert, Andrea E; Volpert, Giora; Kouri, Fotini M; Hurley, Lisa A; Luciano, Janina P; Wu, Yongfei; Chalastanis, Alexandra; Futerman, Anthony H; Stegh, Alexander H

    2014-04-15

    Therapy resistance is a major limitation to the successful treatment of cancer. Here, we identify Bcl2-like 13 (Bcl2L13), an atypical member of the Bcl-2 family, as a therapy susceptibility gene with elevated expression in solid and blood cancers, including glioblastoma (GBM). We demonstrate that mitochondria-associated Bcl2L13 inhibits apoptosis induced by a wide spectrum of chemo- and targeted therapies upstream of Bcl2-associated X protein activation and mitochondrial outer membrane permeabilization in vitro and promotes GBM tumor growth in vivo. Mechanistically, Bcl2L13 binds to proapoptotic ceramide synthases 2 (CerS2) and 6 (CerS6) via a unique C-terminal 250-aa sequence located between its Bcl-2 homology and membrane anchor domains and blocks homo- and heteromeric CerS2/6 complex formation and activity. Correspondingly, CerS2/6 activity and Bcl2L13 abundance are inversely correlated in GBM tumors. Thus, our genetic and functional studies identify Bcl2L13 as a regulator of therapy susceptibility and point to the Bcl2L13-CerS axis as a promising target to enhance responses of therapy-refractory cancers toward conventional and targeted regimens currently in clinical use. PMID:24706805

  10. Pharmacological profile of FR260330, a novel orally active inducible nitric oxide synthase inhibitor.

    PubMed

    Chida, Noboru; Hirasawa, Yoshimi; Ohkawa, Takehiko; Ishii, Yoshinori; Sudo, Yuji; Tamura, Kouichi; Mutoh, Seitaro

    2005-02-10

    In this study, we examined effects of a newly synthesized chemical compound, FR260330, (2E)-3-(4-chlorophenyl)-N-[(1S)-2-oxo-2-{[2-oxo-2-(4-{[6-(trifluoromethyl)-4-pyrimidinyl]oxy}-1-piperidinyl)ethyl]amino}-1-(2-pyridinylmethyl)ethyl]acrylamide on nitric oxide (NO) production in rat splenocytes and human colon cancer cell line, DLD-1 cells. FR260330 inhibited NOx production dose dependently in both cells. In lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) treated murine macrophage cell line, RAW264.7, Western blot analysis with gel filtration chromatography revealed FR260330 might prevent dimerization of inducible nitric oxide synthase (iNOS), but had no effect on the expression of iNOS protein. Furthermore, oral administration of FR260330 reduced NOx production dose dependently in plasma from rats exposed to LPS (IC50=1.6 mg/kg). Meanwhile, higher dose (100 mg/kg) of oral administration of FR260330 did not change mean arterial blood pressure in rats. These results suggest that FR260330 might be a useful therapeutical approach to various inflammatory diseases, in which superoxide or peroxynitrite formed from iNOS-derived NO are involved. PMID:15713431

  11. A Fatal Combination: A Thymidylate Synthase Inhibitor with DNA Damaging Activity

    PubMed Central

    Ligasová, Anna; Strunin, Dmytro; Friedecký, David; Adam, Tomáš; Koberna, Karel

    2015-01-01

    2?-deoxy-5-ethynyluridine (EdU) has been previously shown to be a cell poison whose toxicity depends on the particular cell line. The reason is not known. Our data indicates that different efficiency of EdU incorporation plays an important role. The EdU-mediated toxicity was elevated by the inhibition of 2?-deoxythymidine 5?-monophosphate synthesis. EdU incorporation resulted in abnormalities of the cell cycle including the slowdown of the S phase and a decrease in DNA synthesis. The slowdown but not the cessation of the first cell division after EdU administration was observed in all of the tested cell lines. In HeLa cells, a 10 ?M EdU concentration led to the cell death in the 100% of cells probably due to the activation of an intra S phase checkpoint in the subsequent S phase. Our data also indicates that this EdU concentration induces interstrand DNA crosslinks in HeLa cells. We suppose that these crosslinks are the primary DNA damage resulting in cell death. According to our results, the EdU-mediated toxicity is further increased by the inhibition of thymidylate synthase by EdU itself at its higher concentrations. PMID:25671308

  12. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor

    PubMed Central

    Korolev, Sergey; Ikeguchi, Yoshihiko; Skarina, Tatiana; Beasley, Steven; Arrowsmith, Cheryl; Edwards, Aled; Joachimiak, Andrzej; Pegg, Anthony E.; Savchenko, Alexei

    2009-01-01

    Polyamines are essential in all branches of life. Spermidine synthase (putrescine aminopropyltransferase, PAPT) catalyzes the biosynthesis of spermidine, a ubiquitous polyamine. The crystal structure of the PAPT from Thermotoga maritima (TmPAPT) has been solved to 1.5 Å resolution in the presence and absence of AdoDATO (S-adenosyl-1,8-diamino-3-thiooctane), a compound containing both substrate and product moieties. This, the first structure of an aminopropyltransferase, reveals deep cavities for binding substrate and cofactor, and a loop that envelops the active site. The AdoDATO binding site is lined with residues conserved in PAPT enzymes from bacteria to humans, suggesting a universal catalytic mechanism. Other conserved residues act sterically to provide a structural basis for polyamine specificity. The enzyme is tetrameric; each monomer consists of a C-terminal domain with a Rossmann-like fold and an N-terminal ?-stranded domain. The tetramer is assembled using a novel barrel-type oligomerization motif. PMID:11731804

  13. Influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation, regulation and organisation of photosynthesis in Solanum nigrum.

    PubMed

    Riethmuller-Haage, Ingrid; Bastiaans, Lammert; Harbinson, Jeremy; Kempenaar, Corné; Kropff, Martin J

    2006-06-01

    The influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation of the photosynthetic apparatus was examined on 4-weeks-old climate chamber-grown Solanum nigrum plant. To have an indication on the relative performance of the photosynthetic apparatus of ALS-treated plants, the level of carbon dioxide (CO(2)) fixation, the relative quantum efficiency of photosystem I (Phi(PSI)) or photosystem II (Phi(PSII)) electron transport and leaf chlorophyll content were assessed for both control and treated plants at 2, 4 and 7 days after application of the herbicide. Results indicated a progressive inhibition of the level of CO(2) fixation, the relative quantum efficiency of photosystem I (Phi(PSI)) and II (Phi(PSII)) electron transport and the leaf chlorophyll content already 2 days after application of the herbicide. The linear relationship between the photosystem I and II was unaltered by herbicidal treatment and was sustained under conditions where large changes in pigment composition of the leaves occurred. It appears that the stress-induced loss of leaf chlorophyll is not a catastrophic process but rather is the consequence of a well-organised breakdown of components. Under photorespiratory and non-photorespiratory conditions, the relationship between the index of electron transport flow through photosystem I and II and the rate of CO(2) fixation is altered so that electron transport becomes less efficient at driving CO(2) fixation. PMID:16691366

  14. Nitric Oxide Synthase Inhibitors That Interact with Both Heme Propionate and Tetrahydrobiopterin Show High Isoform Selectivity

    PubMed Central

    2015-01-01

    Overproduction of NO by nNOS is implicated in the pathogenesis of diverse neuronal disorders. Since NO signaling is involved in diverse physiological functions, selective inhibition of nNOS over other isoforms is essential to minimize side effects. A series of ?-amino functionalized aminopyridine derivatives (3–8) were designed to probe the structure–activity relationship between ligand, heme propionate, and H4B. Compound 8R was identified as the most potent and selective molecule of this study, exhibiting a Ki of 24 nM for nNOS, with 273-fold and 2822-fold selectivity against iNOS and eNOS, respectively. Although crystal structures of 8R complexed with nNOS and eNOS revealed a similar binding mode, the selectivity stems from the distinct electrostatic environments in two isoforms that result in much lower inhibitor binding free energy in nNOS than in eNOS. These findings provide a basis for further development of simple, but even more selective and potent, nNOS inhibitors. PMID:24758147

  15. Characterization of Maleimide-Based Glycogen Synthase Kinase-3 (GSK-3) Inhibitors as Stimulators of Steroidogenesis

    PubMed Central

    Gunosewoyo, Hendra; Midzak, Andrew; Gaisina, Irina N.; Sabath, Emily V.; Fedolak, Allison; Hanania, Taleen; Brunner, Dani; Papadopoulos, Vassilios; Kozikowski, Alan P.

    2013-01-01

    Inhibition of GSK-3? has been well documented to account for the behavioral actions of the mood stabilizer lithium in various animal models of mood disorders. Recent studies have showed that genetic or pharmacological inhibition of GSK-3? resulted in anxiolytic-like and pro-social behavior. In our ongoing efforts to develop GSK-3? inhibitors for the treatment of mood disorders, SAR studies on maleimide-based compounds were undertaken. We present herein for the first time that some of these GSK-3? inhibitors, in particular analogs 1 and 9, were able to stimulate progesterone production in the MA-10 mouse tumor Leydig cell model of steroidogenesis without any significant toxicity. These two compounds were tested in the SmartCube® behavioral assay and showed anxiolytic-like signatures following daily dose administration (50 mg/kg, i.p.) for 13 days. Taken together, these results support the hypothesis that GSK-3? inhibition could influence neuroactive steroid production thereby mediating the modulation of anxiety-like behavior in vivo. PMID:23725591

  16. Identification of indole inhibitors of human hematopoietic prostaglandin D2 synthase (hH-PGDS).

    PubMed

    Edfeldt, Fredrik; Evenäs, Johan; Lepistö, Matti; Ward, Alison; Petersen, Jens; Wissler, Lisa; Rohman, Mattias; Sivars, Ulf; Svensson, Karin; Perry, Matthew; Feierberg, Isabella; Zhou, Xiao-Hong; Hansson, Thomas; Narjes, Frank

    2015-06-15

    Human H-PGDS has shown promise as a potential target for anti-allergic and anti-inflammatory drugs. Here we describe the discovery of a novel class of indole inhibitors, identified through focused screening of 42,000 compounds and evaluated using a series of hit validation assays that included fluorescence polarization binding, 1D NMR, ITC and chromogenic enzymatic assays. Compounds with low nanomolar potency, favorable physico-chemical properties and inhibitory activity in human mast cells have been identified. In addition, our studies suggest that the active site of hH-PGDS can accommodate larger structural diversity than previously thought, such as the introduction of polar groups in the inner part of the binding pocket. PMID:25978964

  17. Impact of the prostaglandin-synthase 2 inhibitor celecoxib on ovulation and luteal events in women

    PubMed Central

    Edelman, A.B.; Jensen, J.T.; Doom, C; Hennebold, J.D.

    2014-01-01

    Background Ovarian prostaglandins are critical in normal ovulation processes, thus their inhibition may provide contraceptive benefits. This study was performed to determine the effect of the cyclooxygenase-2 (COX2) inhibitor, celecoxib, on ovulation and luteal events in women. Study design Randomized double-blind crossover design. Ovulatory reproductive-aged women underwent ovarian ultrasound and serum hormone monitoring during four menstrual cycles (control cycle, treatment cycle 1, washout cycle, treatment cycle 2). Subjects received study drug (oral celecoxib 400 mg or placebo) either 1) once daily starting on cycle day 8 and continuing until follicle rupture or the onset of next menses if follicle rupture did not occur (pre-LH surge dosing) or 2) once daily beginning with the LH surge and continued for 6 days (post-LH surge dosing). Subjects were randomly assigned to one of the above treatment schemes and received the other in the subsequent treatment cycle. The main outcomes were evidence of ovulatory and luteal dysfunction as determined by inhibited/delayed follicle rupture and reduced luteal progesterone synthesis or lifespan, respectively. Results A total of 20 women enrolled and completed the study (Group 1 = 10, Group 2 = 10) with similar demographics between groups. Nineteen subjects exhibited normal ovulation in the control cycle (one had a blunted LH peak). In comparison to control cycles, treatment cycles resulted in a significant increase in ovulatory dysfunction [pre-LH treatment: 30% (6/20), p = 0.04; post-LH treatment: 25% (5/20), p = 0.04]. Peak progesterone, estradiol, and LH levels and luteal phase length did not differ significantly between control and either treatment cycles. Conclusions Although treatment with celecoxib before or after the LH surge increases the rate of ovulatory dysfunction, most women ovulate normally. Thus, this selective COX2 inhibitor appears to be of limited usefulness as a potential emergency contraceptive. PMID:22902348

  18. Chitin Biotechnology Applications

    Microsoft Academic Search

    Shigehiro Hirano

    1996-01-01

    This review article describes the current status of the production and consumption of chitin and chitosan, and their current practical applications in biotechnology with some attempted uses. The applications include: 1) cationic agents for polluted waste-water treatment, 2) agricultural materials, 3) food and feed additives, 4) hypocholesterolemic agents, 5) biomedical and pharmaceutical materials, 6) wound-healing materials, 7) blood anticoagulant, antithrombogenic

  19. Plant availability and phytotoxicity of soil bound residues of herbicide ZJ0273, a novel acetolactate synthase potential inhibitor.

    PubMed

    Han, Ailiang; Yue, Ling; Li, Zheng; Wang, Haiyan; Wang, Yue; Ye, Qingfu; Lu, Long; Gan, Jay

    2009-11-01

    The plant availability and phytotoxicity of soil bound residues (BR) of herbicide ZJ0273, a novel acetolactate synthase (ALS) potential inhibitor, to rice (Oryza sativa L.) and corn (Zea mays L.) was investigated in three different soils including a Fluvio-marine yellow loamy soil (S(1)), a Red clayey soil (S(2)), and a Coastal saline soil (S(3)), using (14)C-labeling tracer and bioassay techniques. When soils were amended with BR at 0.6, 1.2 and 1.8 nmol g(-1), dose-dependent and significant inhibition was observed for rice seedlings within 14d after treatment, but no significant inhibition occurred to corn seedlings in the same treatment. Radioactive analysis of soil extracts following sequential extractions showed that the (14)C labeled residues of ZJ0273 were released from the amended soil BR upon planting. For example, when amended with 1.8 nmol g(-1), about 68.3%, 57.0%, and 61.1%, respectively, of the added BR were released in S(1), S(2), and S(3) planted with rice seedlings, whereas 38.9%, 32.7% and 32.6% became available for uptake in the corresponding soils planted with corn seedlings. The released compounds were identified as ZJ0273 and its degradation products M1 and M2, with M2 as the primary component. Bioassay on rice showed that concentration for 50% inhibition (IC(50)) of ZJ0273, M1, and M2 were 33.16, 1.93 and 0.49 microM, respectively. Therefore, BR formed after application of ZJ0273 may become available for plant uptake during rice cultivation and lead to phytotoxic effects, and the phytotoxicity is mainly caused by the release of the biologically active metabolite M2. This knowledge is valuable for designing crop rotation practices so that crop injury and yield losses due to carry-over herbicide phytotoxicity may be avoided. PMID:19732936

  20. The effect of a selective neuronal nitric oxide synthase inhibitor 3-bromo 7-nitroindazole on spatial learning and memory in rats.

    PubMed

    Gocmez, Semil Selcen; Yazir, Yusufhan; Sahin, Deniz; Karadenizli, Sabriye; Utkan, Tijen

    2015-04-01

    Since the discovery of nitric oxide (NO) as a neuronal messenger, its way to modulate learning and memory functions is subject of intense research. NO is an intercellular messenger in the central nervous system and is formed on demand through the conversion of L-arginine to L-citrulline via the enzyme nitric oxide synthase (NOS). Neuronal form of nitric oxide synthase may play an important role in a wide range of physiological and pathological conditions. Therefore the aim of this study was to investigate the effects of chronic 3-bromo 7-nitroindazole (3-Br 7-NI), specific neuronal nitric oxide synthase (nNOS) inhibitor, administration on spatial learning and memory performance in rats using the Morris water maze (MWM) paradigm. Male rats received either 3-Br 7-NI (20mg/kg/day) or saline via intraperitoneal injection for 5days. Daily administration of the specific neuronal nitric oxide synthase (nNOS) inhibitor, 3-Br 7-NI impaired the acquisition of the MWM task. 3-Br 7-NI also impaired the probe trial. The MWM training was associated with a significant increase in the brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus. BDNF mRNA expression in the hippocampus did not change after 3-Br 7-NI treatment. L-arginine significantly reversed behavioural parameters, and the effect of 3-Br 7-NI was found to be NO-dependent. There were no differences in locomotor activity and blood pressure in 3-Br 7-NI treated rats. Our results may suggest that nNOS plays a key role in spatial memory formation in rats. PMID:25636602

  1. CESA TRAFFICKING INHIBITOR Inhibits Cellulose Deposition and Interferes with the Trafficking of Cellulose Synthase Complexes and Their Associated Proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN11[OPEN

    PubMed Central

    Wilkop, Thomas E.; Esteve, Victor Esteva; Jeannotte, Richard; Lathe, Rahul; Vernhettes, Samantha; Weimer, Bart; Hicks, Glenn; Alonso, Jose; Labavitch, John; Persson, Staffan; Ehrhardt, David; Drakakaki, Georgia

    2015-01-01

    Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls. PMID:25535279

  2. CESA TRAFFICKING INHIBITOR inhibits cellulose deposition and interferes with the trafficking of cellulose synthase complexes and their associated proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1.

    PubMed

    Worden, Natasha; Wilkop, Thomas E; Esteve, Victor Esteva; Jeannotte, Richard; Lathe, Rahul; Vernhettes, Samantha; Weimer, Bart; Hicks, Glenn; Alonso, Jose; Labavitch, John; Persson, Staffan; Ehrhardt, David; Drakakaki, Georgia

    2015-02-01

    Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls. PMID:25535279

  3. Septins, under Cla4p Regulation, and the Chitin Ring Are Required for Neck Integrity in Budding Yeast

    PubMed Central

    Schmidt, Martin; Varma, Archana; Drgon, Tomás; Bowers, Blair; Cabib, Enrico

    2003-01-01

    CLA4, encoding a protein kinase of the PAK type, and CDC11, encoding a septin, were isolated in a screen for synthetic lethality with CHS3, which encodes the chitin synthase III catalytic moiety. Although Ste20p shares some essential function with Cla4p, it did not show synthetic lethality with Chs3p. cla4 and cdc11 mutants exhibited similar morphological and septin localization defects, including aberrant and ectopic septa. Myo1p, which requires septins for localization, formed abnormally wide rings in cla4 mutants. In cultures started with unbudded cells, an inhibitor of Chs3p activity, nikkomycin Z, aggravated the abnormalities of cla4 and cdc11 mutants and gave rise to enlarged necks at the mother-bud junction, leading to cell death. It is concluded that Cla4p is required for the correct localization and/or assembly of the septin ring and that both the septin ring and the Chs3p-requiring chitin ring at the mother-bud neck cooperate in maintaining the neck constricted throughout the cell cycle, a vital function in budding yeast. PMID:12802080

  4. Phenolic glycosides as inhibitors of inducible nitric oxide synthase from Populus davidiana in LPS-activated RAW 264.7 murine macrophages.

    PubMed

    Lee, Hwa Jin; Kim, Ji Sun; Kim, Young-Kyoon; Ryu, Jae-Ha

    2012-10-01

    Nitric oxide (NO) produced in large amounts by inducible nitric oxide synthase (i-NOS) is known to be responsible for the vasodilation and hypotension observed in septic shock and inflammation. Inhibitors of i-NOS, thus, may be useful candidates for the treatment of inflammatory diseases that accompany the overproduction of NO. Two phenolic glycosides, salicortin (1) and salicortin-6'-benzoate (2), were purified as active principles from the extracts of Populus davidiana by activity-guided purification procedures. They showed dose dependent inhibition of NO production in lipopolysaccharide (LPS)-activated RAW 264.7 cells. The IC50 values of salicortin (1) and salicortin-6'-benzoate (2) was 15 microM and over 50 microM, respectively. In immunoblot analysis, salicortin inhibited the expression of i-NOS. These new inhibitors of overproduction of NO may have potentials for the treatment of inflammation. PMID:23136723

  5. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  6. Interactions between inducible isoforms of nitric oxide synthase and cyclo-oxygenase in vivo: investigations using the selective inhibitors, 1400W and celecoxib

    PubMed Central

    Hamilton, Lorna C; Warner, Timothy D

    1998-01-01

    Exposure of tissues to endotoxin (LPS) and/or cytokines leads to the induction of both inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2). It has previously been reported that there is `cross-talk' between these two systems. However, such previous studies have been limited by the availability of highly selective inhibitors. Here we have investigated the interactions between iNOS and COX-2 in vivo using 1400W, an iNOS-selective inhibitor, and celecoxib, a COX-2-selective inhibitor.Infusion of LPS to rats for 6?h caused a time-dependent increase in the plasma concentrations of 6 keto-prostaglandin F1? (6 keto-PGF1?) and nitrite/nitrate (NO2/NO3), consistent with the induction of iNOS and COX-2. Bolus injection of arachidonic acid (AA) at t=6?h resulted in a further increase of circulating levels of 6 keto-PGF1? in LPS-treated animals.Treatment of rats with 1400W or the non-selective NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) inhibited the increase in plasma NO2/NO3 but were both without effect on the plasma concentration of 6 keto-PGF1? before or after AA.Treatment with the non-steroidal anti-inflammatory drugs (NSAIDs), A771726 or diclofenac, or with celecoxib significantly reduced the increase in circulating 6 keto-PGF1? caused by LPS, and the large increase in 6 keto-PGF1? following injection of AA. None of the COX inhibitors affected the increase in plasma NO2/NO3. Dexamethasone, however, significantly inhibited both the increase in 6 keto-PGF1? and the increase in NO2/NO3.In conclusion, the use of selective inhibitors does not support the concept of cross talk in vivo between iNOS and COX-2. PMID:9786506

  7. Food applications of chitin and chitosans

    Microsoft Academic Search

    Fereidoon Shahidi; Janak Kamil Vidana Arachchi; You-Jin Jeon

    1999-01-01

    Chitin is the second most abundant natural biopolymer after cellulose. The chemical structure of chitin is similar to that of cellulose with 2-acetamido-2-deoxy-?-d-glucose (NAG) monomers attached via ?(1?4) linkages. Chitosan is the deacetylated (to varying degrees) form of chitin, which, unlike chitin, is soluble in acidic solutions. Application of chitinous products in foods and pharmaceuticals as well as processing aids

  8. Nitric oxide synthase inhibitors appear to improve wound healing in endotoxemic rats: An investigator-blinded, controlled, experimental study

    PubMed Central

    Karamercan, Ahmet; Ercan, Sevim; Bozkurt, Sukru

    2006-01-01

    Background: Although inflammation is a normal part of wound healing, if the inflammatory response is excessive the repair process might be prolonged. Nitric oxide (NO) has been implicated in healing inflammation and wounds. Objective: Endotoxins and cytokines associated with sepsis induce NO synthesis in the tissues. This study used tensile strength and tissue hydroxyproline levels as proxies for wound healing to determine whether wound healing in the presence of endotoxemia is improved when NO synthase is inhibited by N-nitro-l-arginine methyl ester (L-NAME) or N5-(1-Imino-methyl)-l-ornithine (L-NIO). Methods: In this investigator-blinded, controlled, experimental study, male Wistar albino rats (275–300 g) were divided into 4 groups. The first group received an intraperitoneal (IP) injection of Escherichia coli endotoxin 10 mg/kg and an SC injection of 0.9% sodium cloride (NaCl). The second group received IP E coli 10 mg/kg and SC L-NAME 2 mg/kg. The third group received IP E coli 10 mg/kg and L-NIO 10 mg/kg. The control group was administered an IP and an SC injection of 0.9% NaCl. Each group received both injections at 24 and 16 hours before surgery. All rats underwent a 3-cm dorsal midline incision, which was subsequently closed. Five days after surgery, all rats were euthanized and skin from the healing wound was excised. Hydroxyproline levels and tensile strength were then measured. Results: Forty-four male rats (mean age, 16 weeks; mean [SD] weight, 284 [16] g) were included in the study. Each of the groups receiving endotoxin (endotoxin, L-NAME, and L-NIO groups) had 12 rats; the control group consisted of 8 rats. All the groups that received endotoxin showed significant declines in hydroxyproline levels versus controls (P < 0.001, P = 0.001, and P = 0.002, respectively). Compared with the control group, the endotoxin-only group had a significant reduction in both mean (SD) hydroxyproline levels and mean (SD) wound tensile strength (298.27 [17.66] vs 175.82 [18.73] g/cm2 and 7.16 [0.51] vs 4.01 [0.29] ?g/mg wet tissue; both, P < 0.001). Compared with the endotoxin- only group, rats that received L-NIO had significantly greater mean (SD) hydroxyproline levels and mean (SD) wound tensile strength (6.44 [0.34] vs 4.01 [0.29] ?g/mg wet tissue and 280.12 [14.38] vs 175.82 [18.73] g/cm2; both, P < 0.001). Wound tensile strength in the L-NIO group was not significantly different from that in the control group. A significant difference was observed between the L-NIO and L-NAME groups in wound tensile strength (280.12 [14.38] vs 241.38 [20.69] g/cm2; P = 0.001), but not in tissue hydroxyproline levels. Conclusion: Inhibition of NO synthesis might improve wound tensile strength, which suggests a possible role for NO inhibitors in improved wound healing in the presence of endotoxemia. PMID:24678110

  9. Effect of an inhibitor of inducible NO-synthase on the indices of free radical-mediated processes in rats with different lateralization profiles under conditions of impaired cerebral blood flow

    Microsoft Academic Search

    A. M. Mendzheritskii; G. V. Karantysh; Yu. V. Kosenko

    2008-01-01

    The effects of an inhibitor of inducible NO-synthase (AR-R 17477) on the indices of free radical process have been investigated\\u000a in the cerebral structures of rats with different lateralization profiles. The inhibitor was injected into the rats prior\\u000a to bilateral occlusion of the common carotid arteries. After occlusion of the common carotid arteries, TBA-reactive products\\u000a accumulated predominantly in the right

  10. Evidence that the neuronal nitric oxide synthase inhibitor 7-nitroindazole inhibits monoamine oxidase in the rat: in vivo effects on extracellular striatal dopamine and 3,4-dihydroxyphenylacetic acid

    Microsoft Academic Search

    Christophe Desvignes; Lionel Bert; Laurent Vinet; Luc Denoroy; Bernard Renaud; Laura Lambás-Señas

    1999-01-01

    The present study investigated in vivo the kinetic of the changes in rat striatal extracellular concentrations of dopamine (DA), and its monoamine oxidase (MAO)-derived metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), following administration either of nitric oxide (NO) synthase (NOS) inhibitors 7-nitroindazole (7-NI) and N?-nitro-l-arginine methyl ester (L-NAME) or of the widely used MAO inhibitor pargyline. DA and DOPAC concentrations were determined every

  11. Evidence that the neuronal nitric oxide synthase inhibitor 7 -nitroindazole inhibits monoamine oxidase in the rat: in vivo effects on extracellular striatal dopamine and 3,4-dihydroxyphenylacetic acid

    Microsoft Academic Search

    Christophe Desvignes; Lionel Bert; Laurent Vinet; Luc Denoroy; Bernard Renaud; Laura Lambás-Señas

    1999-01-01

    The present study investigated in vivo the kinetics of the changes in rat striatal extracellular concentrations of dopamine (DA), and its monoamine oxidase (MAO)-derived metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), following administration either of nitric oxide (NO) synthase inhibitors 7-nitroindazole (7-NI) and N?-nitro-l-arginine methyl ester (l-NAME) or of the widely used MAO inhibitor pargyline. DA and DOPAC concentrations were determined every 4

  12. Cardiopulmonary Effects of Chronic Administration of the NO Synthase Inhibitor L-NAME in the Chick Embryo

    Microsoft Academic Search

    Eduardo Villamor; Carolina G. A. Kessels; Robert J. van Suylen; Jo G. R. De Mey; Carlos E. Blanco

    2005-01-01

    Background: Experimental observations in mammalian models suggest that endothelial nitric oxide (NO) synthase (NOS) content and activity are decreased in persistent pulmonary hypertension of the newborn. Objectives: To test the hypothesis that disruption of NO signaling in the developing chick embryo lung may contribute to pulmonary hypertension. Methods: We analyzed pulmonary arterial reactivity and structure and heart morphology of 19-day

  13. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo.

    PubMed

    Garvey, E P; Oplinger, J A; Furfine, E S; Kiff, R J; Laszlo, F; Whittle, B J; Knowles, R G

    1997-02-21

    N-(3-(Aminomethyl)benzyl)acetamidine (1400W) was a slow, tight binding inhibitor of human inducible nitric- oxide synthase (iNOS). The slow onset of inhibition by 1400W showed saturation kinetics with a maximal rate constant of 0.028 s-1 and a binding constant of 2.0 microM. Inhibition was dependent on the cofactor NADPH. L-Arginine was a competitive inhibitor of 1400W binding with a Ks value of 3.0 microM. Inhibited enzyme did not recover activity after 2 h. Thus, 1400W was either an irreversible inhibitor or an extremely slowly reversible inhibitor of human iNOS with a Kd value inhibitor. PMID:9030556

  14. The Antifungal Protein AFP from Aspergillus giganteus Inhibits Chitin Synthesis in Sensitive Fungi?

    PubMed Central

    Hagen, Silke; Marx, Florentine; Ram, Arthur F.; Meyer, Vera

    2007-01-01

    The antifungal protein AFP from Aspergillus giganteus is highly effective in restricting the growth of major human- and plant-pathogenic filamentous fungi. However, a fundamental prerequisite for the use of AFP as an antifungal drug is a complete understanding of its mode of action. In this study, we performed several analyses focusing on the assumption that the chitin biosynthesis of sensitive fungi is targeted by AFP. Here we show that the N-terminal domain of AFP (amino acids 1 to 33) is sufficient for efficient binding of AFP to chitin but is not adequate for inhibition of the growth of sensitive fungi. AFP susceptibility tests and SYTOX Green uptake experiments with class III and class V chitin synthase mutants of Fusarium oxysporum and Aspergillus oryzae showed that deletions made the fungi less sensitive to AFP and its membrane permeabilization effect. In situ chitin synthase activity assays revealed that chitin synthesis is specifically inhibited by AFP in sensitive fungi, indicating that AFP causes cell wall stress and disturbs cell integrity. Further evidence that there was AFP-induced cell wall stress was obtained by using an Aspergillus niger reporter strain in which the cell wall integrity pathway was strongly induced by AFP. PMID:17277210

  15. Glycogen synthase kinase 3 inhibitors induce the canonical WNT/?-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma

    PubMed Central

    Chen, Eleanor Y.; DeRan, Michael T.; Ignatius, Myron S.; Grandinetti, Kathryn Brooke; Clagg, Ryan; McCarthy, Karin M.; Lobbardi, Riadh M.; Brockmann, Jillian; Keller, Charles; Wu, Xu; Langenau, David M.

    2014-01-01

    Embryonal rhabdomyosarcoma (ERMS) is a common pediatric malignancy of muscle, with relapse being the major clinical challenge. Self-renewing tumor-propagating cells (TPCs) drive cancer relapse and are confined to a molecularly definable subset of ERMS cells. To identify drugs that suppress ERMS self-renewal and induce differentiation of TPCs, a large-scale chemical screen was completed. Glycogen synthase kinase 3 (GSK3) inhibitors were identified as potent suppressors of ERMS growth through inhibiting proliferation and inducing terminal differentiation of TPCs into myosin-expressing cells. In support of GSK3 inhibitors functioning through activation of the canonical WNT/?-catenin pathway, recombinant WNT3A and stabilized ?-catenin also enhanced terminal differentiation of human ERMS cells. Treatment of ERMS-bearing zebrafish with GSK3 inhibitors activated the WNT/?-catenin pathway, resulting in suppressed ERMS growth, depleted TPCs, and diminished self-renewal capacity in vivo. Activation of the canonical WNT/?-catenin pathway also significantly reduced self-renewal of human ERMS, indicating a conserved function for this pathway in modulating ERMS self-renewal. In total, we have identified an unconventional tumor suppressive role for the canonical WNT/?-catenin pathway in regulating self-renewal of ERMS and revealed therapeutic strategies to target differentiation of TPCs in ERMS. PMID:24706870

  16. Biochemical, functional, and pharmacological characterization of AT-56, an orally active and selective inhibitor of lipocalin-type prostaglandin D synthase.

    PubMed

    Irikura, Daisuke; Aritake, Kosuke; Nagata, Nanae; Maruyama, Toshihiko; Shimamoto, Shigeru; Urade, Yoshihiro

    2009-03-20

    We report here that 4-dibenzo[a,d]cyclohepten-5-ylidene-1-[4-(2H-tetrazol-5-yl)-butyl]-piperidine (AT-56) is an orally active and selective inhibitor of lipocalin-type prostaglandin (PG) D synthase (L-PGDS). AT-56 inhibited human and mouse L-PGDSs in a concentration (3-250 microm)-dependent manner but did not affect the activities of hematopoietic PGD synthase (H-PGDS), cyclooxygenase-1 and -2, and microsomal PGE synthase-1. AT-56 inhibited the L-PGDS activity in a competitive manner against the substrate PGH(2) (K(m) = 14 microm) with a K(i) value of 75 microm but did not inhibit the binding of 13-cis-retinoic acid, a nonsubstrate lipophilic ligand, to L-PGDS. NMR titration analysis revealed that AT-56 occupied the catalytic pocket, but not the retinoid-binding pocket, of L-PGDS. AT-56 inhibited the production of PGD(2) by L-PGDS-expressing human TE-671 cells after stimulation with Ca(2+) ionophore (5 microm A23187) with an IC(50) value of about 3 microm without affecting their production of PGE(2) and PGF(2alpha) but had no effect on the PGD(2) production by H-PGDS-expressing human megakaryocytes. Orally administered AT-56 (<30 mg/kg body weight) decreased the PGD(2) production to 40% in the brain of H-PGDS-deficient mice after a stab wound injury in a dose-dependent manner without affecting the production of PGE(2) and PGF(2alpha) and also suppressed the accumulation of eosinophils and monocytes in the bronco-alveolar lavage fluid from the antigen-induced lung inflammation model of human L-PGDS-transgenic mice. PMID:19131342

  17. MICROBIOLOGY: Chitin, Cholera, and Competence

    NSDL National Science Digital Library

    Douglas H. Bartlett (cripps Institution of Oceanography, University of California; Marine Biology Research Division)

    2005-12-16

    Access to the article is free, however registration and sign-in are required. Vibrio cholerae, a human pathogen, inhabits aquatic environments and is often associated with chitin-containing organisms. In their Perspective, Bartlett and Azam discuss the findings of Meibom et al. in the same issue of chitin-mediated natural DNA transformation in V. cholerae. This finding opens a new window for understanding conditions that influence the evolution of this bacterium in aquatic habitats.

  18. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    SciTech Connect

    Petri, Marcelo H. [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)] [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Tellier, Céline; Michiels, Carine [NARILIS, URBC, University of Namur, Namur (Belgium)] [NARILIS, URBC, University of Namur, Namur (Belgium); Ellertsen, Ingvill [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)] [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Dogné, Jean-Michel [Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur (Belgium)] [Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur (Belgium); Bäck, Magnus, E-mail: Magnus.Back@ki.se [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)] [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)

    2013-11-15

    Highlights: •EV-077 reduced TNF-? induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNF? incubation, whereas concentrations of 6-keto PGF1? in supernatants of endothelial cells incubated with TNF? were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNF?-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  19. Cross-linking of the endogenous inhibitor protein (IF1) with rotor (gamma, epsilon) and stator (alpha) subunits of the mitochondrial ATP synthase.

    PubMed

    Minauro-Sanmiguel, Fernando; Bravo, Concepción; García, José J

    2002-12-01

    The location of the endogenous inhibitor protein (IF1) in the rotor/stator architecture of the bovine mitochondrial ATP synthase was studied by reversible cross-linking with dithiobis(succinimidylpropionate) in soluble F1I and intact F1F0I complexes of submitochondrial particles. Reducing two-dimensional electrophoresis, Western blotting, and fluorescent cysteine labeling showed formation of alpha-IF1, IF1-IF1, gamma-IF1, and epsilon-IF1 cross-linkages in soluble F1I and in native F1F0I complexes. Cross-linking blocked the release of IF1 from its inhibitory site and therefore the activation of F1I and F1F0I complexes in a dithiothreitol-sensitive process. These results show that the endogenous IF1 is at a distance < or = 12 angstroms to gamma and epsilon subunits of the central rotor of the native mitochondrial ATP synthase. This finding strongly suggests that, without excluding the classical assumption that IF1 inhibits conformational changes of the catalytic beta subunits, the inhibitory mechanism of IF1 may involve the interference with rotation of the central stalk. PMID:12678435

  20. Radiosynthesis and preliminary PET evaluation of glycogen synthase kinase 3? (GSK-3?) inhibitors containing [(11)C]methylsulfanyl, [(11)C]methylsulfinyl or [(11)C]methylsulfonyl groups.

    PubMed

    Kumata, Katsushi; Yui, Joji; Xie, Lin; Zhang, Yiding; Nengaki, Nobuki; Fujinaga, Masayuki; Yamasaki, Tomoteru; Shimoda, Yoko; Zhang, Ming-Rong

    2015-08-15

    Three compounds 1-3 containing methyl-sufanyl, sufinyl, or sulfonyl groups are strong inhibitors of glycogen synthase kinase 3? (GSK-3?), an enzyme associated with Alzheimer's disease. We labeled 1-3 with (11)C for a positron emission tomography (PET) brain imaging study. A novel thiophenol precursor 4 for radiosynthesis was prepared by reacting sulfoxide 2 with trifluoroacetic anhydride. [(11)C]1 was synthesized by reacting 4 with [(11)C]methyl iodide in 52±5% radiochemical yield (n=5, based on [(11)C]CO2, corrected for decay). Oxidation of [(11)C]1 with Oxone® produced [(11)C]2 and [(11)C]3, respectively. PET with [(11)C]1 and [(11)C]3 showed 2 fold higher brain uptake of radioactivity in a mouse model of cold water stress in which GSK-3? expression was increased, than in the controls. PMID:26067173

  1. Inhibition of prostaglandin D2 clearance in rat hepatocytes by the thromboxane receptor antagonists daltroban and ifetroban and the thromboxane synthase inhibitor furegrelate.

    PubMed

    Pestel, Sabine; Nath, Annegret; Jungermann, Kurt; Schieferdecker, Henrike L

    2003-08-15

    Prostanoids, i.e. prostaglandins and thromboxane, regulate liver-specific functions both in homeostasis and during defense reactions. For example, prostanoids are released from Kupffer cells, the resident liver macrophages, in response to the inflammatory mediator anaphylatoxin C5a, and mediate an enhanced glucose output from hepatocytes as energy supply. In perfused rat livers, the thromboxane receptor antagonist daltroban enhanced C5a-induced prostanoid overflow and reduced glucose output. It was the aim of this study to elucidate whether daltroban interfered with prostanoid release from Kupffer cells or prostanoid clearance by hepatocytes, and/or whether it directly influenced prostanoid-dependent glucose metabolism in these cells. In perfused rat livers, daltroban enhanced prostaglandin (PG)D(2) overflow not only after infusion of C5a (15-fold), but also after PGD(2) (10-fold). Neither daltroban nor another receptor antagonist, ifetroban, or the thromboxane synthase inhibitor furegrelate enhanced prostanoid release from Kupffer cells. In contrast, all inhibitors reduced clearance, i.e. uptake and degradation, of PGD(2) by hepatocytes: within 5 min uptake of 1 nmol/L PGD(2) was reduced from 43+/-5 fmol (controls) to 22+/-6 fmol (daltroban), 24+/-6 fmol (ifetroban) and 21+/-6 fmol (furegrelate). PGD(2) in the medium was reduced to 39+/-7% in the controls, but remained at 93+/-9%, 93+/-11% and 60+/-3% in the presence of the inhibitors. PGD(2)-dependent glucose output in the perfused liver or activation of glycogen phosphorylase in isolated hepatocytes remained unaffected by daltroban. These data clearly demonstrate that the thromboxane-inhibitors reduced PGD(2) clearance by hepatocytes, presumably by inhibition of prostanoid transport into the cells. In contrast, they did not interfere with PGD(2)-dependent glucose metabolism, suggesting an independent mechanism for the inhibition of glucose output from the liver. PMID:12906929

  2. Microbial enantioselective ester hydrolysis for the preparation of optically active 4,1-benzoxazepine-3-acetic acid derivatives as squalene synthase inhibitors.

    PubMed

    Tarui, Naoki; Nakahama, Kazuo; Nagano, Yoichi; Izawa, Motowo; Matsumoto, Kiyoharu; Kori, Masakuni; Nagata, Toshiaki; Miki, Takashi; Yukimasa, Hidefumi

    2002-01-01

    Microbial enantioselective ester hydrolysis for the preparation of optically active (3R,5S)-(-)-5-phenyl-4,1-benzoxazepine-3-acetic acid derivatives as potent squalene synthase inhibitors was investigated. Pseudomonas diminuta and Pseudomonas taetrolens hydrolyzed the racemic ethyl ester of the 5-(2-chlorophenyl) analogue to yield the (-)-carboxylic acid with excellent enantiomeric excess (>99% ee). We found that the (-)-enantiomer was an active inhibitor. Bulkiness of the ester moiety did not affect the enantioselectivity but did affect reactivity. The racemic ethyl ester of the 5-(2-methoxyphenyl) analogue, 5-(2,3-dimethoxyphenyl) analogue and 5-(2,4-dimethoxyphenyl) analogue were also hydrolyzed with Pseudomonas taetrolens to afford enantiomerically pure (-)-carboxylic acids in large scale. As another route to (3R,5S)-(-)-7-chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid [(-)-1c], the earlier intermediate (-)-2-amino-5-chloro-alpha-(2,3-dimethoxyphenyl)benzyl alcohol [(-)-12] was successfully obtained by asymmetric hydrolysis of (+/-)-5-chloro-alpha-(2,3-dimethoxyphenyl)-2-pivaloylaminobenzyl acetate with Pseudomonas sp. S-13 with >99% ee in kilogram scale followed by alkaline treatment. The product (-)-12 was converted to (-)-1c without racemization. PMID:11824586

  3. Structure-Based Design of Novel Pyrimido[4,5-c]pyridazine Derivatives as Dihydropteroate Synthase Inhibitors with Increased Affinity

    SciTech Connect

    Zhao, Ying; Hammoudeh, Dalia; Yun, Mi-Kyung; Qi, Jianjun; White, Stephen W.; Lee, Richard E. (Tennessee-HSC); (SJCH)

    2012-05-29

    Dihydropteroate synthase (DHPS) is the validated drug target for sulfonamide antimicrobial therapy. However, due to widespread drug resistance and poor tolerance, the use of sulfonamide antibiotics is now limited. The pterin binding pocket in DHPS is highly conserved and is distinct from the sulfonamide binding site. It therefore represents an attractive alternative target for the design of novel antibacterial agents. We previously carried out the structural characterization of a known pyridazine inhibitor in the Bacillus anthracis DHPS pterin site and identified a number of unfavorable interactions that appear to compromise binding. With this structural information, a series of 4,5-dioxo-1,4,5,6-tetrahydropyrimido[4,5-c]pyridazines were designed to improve binding affinity. Most importantly, the N-methyl ring substitution was removed to improve binding within the pterin pocket, and the length of the side chain carboxylic acid was optimized to fully engage the pyrophosphate binding site. These inhibitors were synthesized and evaluated by an enzyme activity assay, X-ray crystallography, isothermal calorimetry, and surface plasmon resonance to obtain a comprehensive understanding of the binding interactions from structural, kinetic, and thermodynamic perspectives. This study clearly demonstrates that compounds lacking the N-methyl substitution exhibit increased inhibition of DHPS, but the beneficial effects of optimizing the side chain length are less apparent.

  4. Anti-diabetic efficacy of KICG1338, a novel glycogen synthase kinase-3? inhibitor, and its molecular characterization in animal models of type 2 diabetes and insulin resistance.

    PubMed

    Kim, Kyoung Min; Lee, Kuy-Sook; Lee, Gha Young; Jin, Hyunjin; Durrance, Eunice Sung; Park, Ho Seon; Choi, Sung Hee; Park, Kyong Soo; Kim, Young-Bum; Jang, Hak Chul; Lim, Soo

    2015-07-01

    Selective inhibition of glycogen synthase kinase-3 (GSK3) has been targeted as a novel therapeutic strategy for diabetes mellitus. We investigated the anti-diabetic efficacy and molecular mechanisms of KICG1338 (2-(4-fluoro-phenyl)-3H-imidazo[4,5-b]pyridine-7-carboxylic acid(4-methyl-pyridin-3-yl)-amide), a GSK3? inhibitor, in three animal models: Otsuka Long-Evans Tokushima Fatty (OLETF) rats, leptin receptors-deficient db/db mice, and diet-induced obese (DIO) mice. Biochemical parameters including glucose tolerance tests and gene expressions associated with glucose metabolism were investigated. Glucose excursion decreased significantly by KICG1338-treated OLETF rats, accompanied by increase in insulin receptor substrate-1 and glucose transporter (GLUT)-4 expressions in muscle and decreased GLUT-2 expression in liver. Glucose-lowering effects were similarly observed in KICG1338-treated db/db and DIO mice. KICG1338 treatment increased adiponectin levels and decreased TNF-? levels. KICG1338 therapy also led to greater ?-cell preservation and less hepatic fat infiltration with decreased expressions of genes involved in inflammation and endoplasmic reticulum stress. These data demonstrate anti-diabetic efficacy of KICG1338, a novel GSK3? inhibitor. PMID:25802191

  5. Lenticular mitoprotection. Part A: Monitoring mitochondrial depolarization with JC-1 and artifactual fluorescence by the glycogen synthase kinase-3? inhibitor, SB216763

    PubMed Central

    Brooks, Morgan M.; Neelam, Sudha; Fudala, Rafal; Gryczynski, Ignacy

    2013-01-01

    Purpose Dissipation of the electrochemical gradient across the inner mitochondrial membrane results in mitochondrial membrane permeability transition (mMPT), a potential early marker for the onset of apoptosis. In this study, we demonstrate a role for glycogen synthase kinase-3? (GSK-3?) in regulating mMPT. Using direct inhibition of GSK-3? with the GSK-3? inhibitor SB216763, mitochondria may be prevented from depolarizing (hereafter referred to as mitoprotection). Cells treated with SB216763 showed an artifact of fluorescence similar to the green emission spectrum of the JC-1 dye. We demonstrate the novel use of spectral deconvolution to negate the interfering contributing fluorescence by SB216763, thus allowing an unfettered analysis of the JC-1 dye to determine the mitochondrial membrane potential. Methods Secondary cultures of virally transfected human lens epithelial cells (HLE-B3) were exposed to acute hypoxic conditions (approximately 1% O2) followed by exposure to atmospheric oxygen (approximately 21% O2). The fluorescent dye JC-1 was used to monitor the extent of mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Annexin V-fluorescein isothiocyanate/propidium iodide staining was implemented to determine cell viability. Results Treatment of HLE-B3 cells with SB216763 (12 µM), when challenged by oxidative stress, suppressed mitochondrial depolarization relative to control cells as demonstrated with JC-1 fluorescent dye analysis. Neither the control nor the SB216763-treated HLE-B3 cells tested positive with annexin V-fluorescein isothiocyanate/propidium iodide staining under the conditions of the experiment. Conclusions Inhibition of GSK-3? activity by SB216763 blocked mMPT relative to the slow but consistent depolarization observed with the control cells. We conclude that inhibition of GSK-3? activity by the GSK-3? inhibitor SB216763 provides positive protection against mitochondrial depolarization. PMID:23825920

  6. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure?activity relationships with Trypanosoma brucei GSK-3

    SciTech Connect

    Ojo, Kayode K.; Arakaki, Tracy L.; Napuli, Alberto J.; Inampudi, Krishna K.; Keyloun, Katelyn R.; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A.; Van Voorhis, Wesley C. (UWASH)

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18{_}V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 {angstrom} resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3{beta} (HsGSK-3{beta}) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  7. Iminosugar-based inhibitors of glucosylceramide synthase prolong survival but paradoxically increase brain glucosylceramide levels in Niemann-Pick C mice.

    PubMed

    Nietupski, Jennifer B; Pacheco, Joshua J; Chuang, Wei-Lien; Maratea, Kimberly; Li, Lingyun; Foley, Joseph; Ashe, Karen M; Cooper, Christopher G F; Aerts, Johannes M F G; Copeland, Diane P; Scheule, Ronald K; Cheng, Seng H; Marshall, John

    2012-04-01

    Niemann Pick type C (NPC) disease is a progressive neurodegenerative disease caused by mutations in NPC1 or NPC2, the gene products of which are involved in cholesterol transport in late endosomes. NPC is characterized by an accumulation of cholesterol, sphingomyelin and glycosphingolipids in the visceral organs, primarily the liver and spleen. In the brain, there is a redistribution of unesterified cholesterol and a concomitant accumulation of glycosphingolipids. It has been suggested that reducing the aberrant lysosomal storage of glycosphingolipids in the brain by a substrate reduction therapy (SRT) approach may prove beneficial. Inhibiting glucosylceramide synthase (GCS) using the iminosugar-based inhibitor miglustat (NB-DNJ) has been reported to increase the survival of NPC mice. Here, we tested the effects of Genz-529468, a more potent iminosugar-based inhibitor of GCS, in the NPC mouse. Oral administration of Genz-529468 or NB-DNJ to NPC mice improved their motor function, reduced CNS inflammation, and increased their longevity. However, Genz-529468 offered a wider therapeutic window and better therapeutic index than NB-DNJ. Analysis of the glycolipids in the CNS of the iminosugar-treated NPC mouse revealed that the glucosylceramide (GL1) but not the ganglioside levels were highly elevated. This increase in GL1 was likely caused by the off-target inhibition of the murine non-lysosomal glucosylceramidase, Gba2. Hence, the basis for the observed effects of these inhibitors in NPC mice might be related to their inhibition of Gba2 or another unintended target rather than a result of substrate reduction. PMID:22366055

  8. Cytochrome P450 CYP81A12 and CYP81A21 Are Associated with Resistance to Two Acetolactate Synthase Inhibitors in Echinochloa phyllopogon1[W

    PubMed Central

    Iwakami, Satoshi; Endo, Masaki; Saika, Hiroaki; Okuno, Junichi; Nakamura, Naoki; Yokoyama, Masao; Watanabe, Hiroaki; Toki, Seiichi; Uchino, Akira; Inamura, Tatsuya

    2014-01-01

    Previous studies have demonstrated multiple herbicide resistance in California populations of Echinochloa phyllopogon, a noxious weed in rice (Oryza sativa) fields. It was suggested that the resistance to two classes of acetolactate synthase-inhibiting herbicides, bensulfuron-methyl (BSM) and penoxsulam (PX), may be caused by enhanced activities of herbicide-metabolizing cytochrome P450. We investigated BSM metabolism in the resistant (R) and susceptible (S) lines of E. phyllopogon, which were originally collected from different areas in California. R plants metabolized BSM through O-demethylation more rapidly than S plants. Based on available information about BSM tolerance in rice, we isolated and analyzed P450 genes of the CYP81A subfamily in E. phyllopogon. Two genes, CYP81A12 and CYP81A21, were more actively transcribed in R plants compared with S plants. Transgenic Arabidopsis (Arabidopsis thaliana) expressing either of the two genes survived in media containing BSM or PX at levels at which the wild type stopped growing. Segregation of resistances in the F2 generation from crosses of R and S plants suggested that the resistance to BSM and PX were each under the control of a single regulatory element. In F6 recombinant inbred lines, BSM and PX resistances cosegregated with increased transcript levels of CYP81A12 and CYP81A21. Heterologously produced CYP81A12 and CYP81A21 proteins in yeast (Saccharomyces cerevisiae) metabolized BSM through O-demethylation. Our results suggest that overexpression of the two P450 genes confers resistance to two classes of acetolactate synthase inhibitors to E. phyllopogon. The overexpression of the two genes could be regulated simultaneously by a single trans-acting element in the R line of E. phyllopogon. PMID:24760819

  9. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    SciTech Connect

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O'Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/?CT imaging. GSK-3 inhibitors caused ?-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/?CT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and mineralisation produced by GSK-3 inhibition. • In rats, 3 GSK-3 inhibitors produced a unique serum bone turnover biomarker profile. • Enhanced bone formation was seen within 7 to 14 days of compound treatment in rats.

  10. 2-amino-4-oxo-5-substituted-pyrrolo[2,3-d]pyrimidines as nonclassical antifolate inhibitors of thymidylate synthase.

    PubMed

    Gangjee, A; Mavandadi, F; Kisliuk, R L; McGuire, J J; Queener, S F

    1996-11-01

    Six novel 2-amino-4-oxo-5-[(substituted phenyl)sulfanyl]pyrrolo[2,3-d]pyrimidines 7-12 were synthesized as potential inhibitors of thymidylate synthase (TS) and as antitumor and/or antibacterial agents. The analogues contain a 5-thio substituent with a phenyl, 4'-chlorophenyl, 3',4'-dichlorophenyl, 4'-nitrophenyl, 3',4'-dimethoxyphenyl, and 2'-naphthyl on the sulfur, and were synthesized from the key intermediate 2-(pivaloylamino)-4-oxo-6-methylpyrrolo[2,3-d]-pyrimidine, 17. Appropriately substituted aryl thiols were appended to the 5-position of 17 via an oxidative addition reaction using iodine, ethanol, and water under conditions which also resulted in the deprotection of the 2-amino group. The compounds were evaluated against human, Lactobacillus casei, Escherichia coli, Streptococcus faecium, and Pneumocystis carinii (pc) TSs and against human, rat liver (rl), pc, and Toxoplasma gondii (tg) DHFRs. The nonclassical analogues with the 3',4'-dichloro and the 4'-nitro substituents in the side chain (9 and 10) were more potent than N-[4-[N-[(2-amino-3,4-dihydro-4-oxo-6-quinazolinyl)methyl]-N-prop- 2-ynylamino]benzoyl]-L-glutamic acid (PDDF, 1) and N-[5-[N-[(3,4-dihydro-2-methyl-4-oxo-6-quinazolinyl)methyl]-N- methylamino]-2-thenoyl]-L-glutamic acid (ZD1694,2) against human TS. Analogues with the 4'-chloro, 3',4'-dimethoxy, and naphthyl side chains (8, 11 and 12) were more potent than the unsubstituted phenyl analogue (7) but less than 2, 9, and 10 by 1 order of magnitude. They were all poor inhibitors of human, rl, and pc DHFRs (IC50 = 10(-5) M) but moderate inhibitors (IC50 = 10(-6) M) of tg DHFR. The 4-nitro analogue, 10 (EC50 1.5 microM), was comparable to PDDF in its potency as an inhibitor of the growth of the FaDu human squamous cell carcinoma cell line. PMID:8917644

  11. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle

    PubMed Central

    Rezende, Gustavo Lazzaro; Martins, Ademir Jesus; Gentile, Carla; Farnesi, Luana Cristina; Pelajo-Machado, Marcelo; Peixoto, Alexandre Afrânio; Valle, Denise

    2008-01-01

    Background One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing. Results We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1) possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed. Conclusion In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle. PMID:18789161

  12. Experiments with nitric oxide synthase inhibitors in spinal nerve ligated rats provide no evidence of a role for nitric oxide in neuropathic mechanical allodynia.

    PubMed

    Lee, Doo H; Singh, Jai Pal; Lodge, David

    2005-09-16

    We have investigated the effect of treatment with N(omega)-nitro-l-arginine methylester (l-NAME), a non-selective nitric oxide synthase inhibitor (NOS), both before and after the induction of mechanical allodynia by tight ligation of the left L5 and L6 spinal nerves in rats (SNL rats). The degree of mechanical allodynia was measured by tactile threshold for paw flinching with von Frey filaments. Intraperitoneal (i.p.) administration of l-NAME (3-30 mg/kg) 1 week after the spinal nerve ligation produced a dose-dependent reduction of the behavioral signs of mechanical allodynia, but the effect was not reversed by pretreatment with l-arginine (300 mg/kg). N(omega)-Nitro-l-arginine (l-NNA, i.p., 30 mg/kg), aminoguanidine (AG, i.p., 30 mg/kg) and a potent neuronal NOS inhibitor (LY457963, i.p., 30 mg/kg) did not reduce mechanical sensitivity in the SNL rats. Furthermore, using an ex vivo NOS activity assay, l-NAME partially inhibited the spinal NOS activity, whereas LY457963 almost completely inhibited the spinal NOS activity. Prior administration of l-NAME (i.p., 30 mg/kg) or of MK-801 (0.5 mg/kg), an NMDA antagonist, 30 min before the spinal nerve ligation significantly prevented the development of mechanical allodynia after spinal nerve ligation for an extended period of time. High doses of l-arginine (100 mg/kg or 300 mg/kg, i.p.), however, did not reverse the preemptive effect of l-NAME. These results suggest that neither the anti-allodynic nor the preemptive effects of l-NAME are mediated by NOS inhibition. PMID:15964141

  13. Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines.

    PubMed

    van Triest, B; Pinedo, H M; van Hensbergen, Y; Smid, K; Telleman, F; Schoenmakers, P S; van der Wilt, C L; van Laar, J A; Noordhuis, P; Jansen, G; Peters, G J

    1999-03-01

    Thymidylate synthase (TS), a critical enzyme in the de novo synthesis of thymidylate, is an important target for fluoropyrimidines and folate-based TS inhibitors. In a panel of 13 nonselected human colon cancer cell lines, we evaluated the role of TS levels in sensitivity to 5-fluorouracil (5FU) and four folate-based TS inhibitors that have been introduced recently into the clinic: ZD1694 (Tomudex, Raltitrexed, TDX), GW1843U89 (GW), LY231514 (LY), and AG337 (Thymitaq, AG). Because the latter compounds have different transport and polyglutamylation characteristics, we also related these parameters with drug sensitivity, measured by the sulforhodamine B assay after 72 h of drug exposure. For 5FU, the IC50s varied from 0.8 to 43.0 microM. Leucovorin (LV) potentiated the activity of 5FU in only 4 of 13 cell lines. Sensitivity to folate-based TS inhibitors was variable; IC50s were in the range of: 5.3-59.0 nM TDX; 11.0-1570 nM LY; and 0.5-8.9 nM GW. Eleven of 13 cell lines had an IC50 for AG between 1.3 and 5.3 microM. Two cell lines were resistant to AG, Colo201 and SW1116, with IC50s of 27 and 29 microM, respectively. TS catalytic activity (conversion of dUMP to dTMP) varied from 62 to 777 pmol/h/10(6) cells. The number of FdUMP binding sites varied from 32 to 231 fmol/10(6) cells. Regression analysis showed a significant relation between TS catalytic activity and IC50s for 5FU and 5FU/LV. Kis for FdUMP showed a significant Spearman rank correlation with the IC50s of AG and GW. The role of antifolate transport, accumulation, and polyglutamylation was determined with [3H]methotrexate (MTX) as a reference compound. [3H]MTX influx via the reduced folate carrier varied from 18.6 to 150 fmol/10(6) cells/min. Folylpolyglutamate synthetase (FPGS) activity showed a range from 47 to 429 pmol/10(6) cells/h. A total of 24 h of [3H]MTX accumulation showed a 20-fold variation, from 1.2 to 21.8 pmol/10(6) cells. FPGS levels showed a Spearman rank positive correlation with cytotoxicity to TDX. In conclusion, in a heterogeneous nonselected human colon cancer cell line panel, the best predictor for sensitivity to 5FU and 5FU/LV was TS activity. Multiple sensitivity determinants were of importance for antifolate TS inhibitors, including FPGS activity and TS enzyme kinetics. PMID:10100718

  14. Chitin nanofibers: preparations, modifications, and applications

    NASA Astrophysics Data System (ADS)

    Ifuku, Shinsuke; Saimoto, Hiroyuki

    2012-05-01

    Chitin nanofibers are prepared from the exoskeletons of crabs and prawns by a simple mechanical treatment after the removal of proteins and minerals. The obtained nanofibers have fine nanofiber networks with a uniform width of approximately 10-20 nm and a high aspect ratio. The method used for chitin-nanofiber isolation is also successfully applied to the cell walls of mushrooms. They form a complex with glucans on the fiber surface. A grinder, a Star Burst atomization system, and a high speed blender are all used in the mechanical treatment to convert chitin to nanofibers. Mechanical treatment under acidic conditions is the key to facilitate fibrillation. At pH 3-4, the cationization of amino groups on the fiber surface assists nano-fibrillation by electrostatic repulsive force. By applying this finding, we also prepared chitin nanofibers from dry chitin powder. Chitin nanofibers are acetylated to modify their surfaces. The acetyl DS can be controlled from 1 to 3 by changing the reaction time. An acetyl group is introduced heterogeneously from the surface to the core. Nanofiber morphology is maintained even in the case of high acetyl DS. Optically transparent chitin nanofiber composites are prepared with 11 different types of acrylic resins. Due to the nano-sized structure, all of the composites are highly transparent. Chitin nanofibers significantly increase the Young's moduli and the tensile strengths and decrease the thermal expansion of all acrylic resins due to the reinforcement effect of chitin nanofibers. Chitin nanofibers show chiral separation ability. The chitin nanofiber membrane transports the d-isomer of glutamic acid, phenylalanine, and lysine from the corresponding racemic amino acid mixtures faster than the corresponding l-isomer. The chitin nanofibers improve clinical symptoms and suppress ulcerative colitis in a DSS-induced mouse model of acute ulcerative colitis. Moreover, chitin nanofibers suppress myeloperoxidase activation in the colon and decrease serum interleukin-6 concentrations.

  15. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    SciTech Connect

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)] [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States)] [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)] [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)] [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States)] [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ? Nitrogen mustard (NM) induces acute lung injury and fibrosis. ? Pulmonary toxicity is associated with increased expression of iNOS. ? Transient inhibition of iNOS attenuates acute lung injury induced by NM.

  16. Studies of inhibition of rat spermidine synthase and spermine synthase

    PubMed Central

    Hibasami, Hiroshige; Borchardt, Ronald T.; Chen, Shiang Yuan; Coward, James K.; Pegg, Anthony E.

    1980-01-01

    1. S-Adenosyl-l-methionine, S-adenosyl-l-homocysteine, 5?-methylthioadenosine and a number of analogues having changes in the base, sugar or amino acid portions of the molecule were tested as potential inhibitors of spermidine synthase and spermine synthase from rat ventral prostate. 2. S-Adenosyl-l-methionine was inhibitory to these reactions, as were other nucleosides containing a sulphonium centre. The most active of these were S-adenosyl-l-ethionine, S-adenosyl-4-methylthiobutyric acid, S-adenosyl-d-methionine and S-tubercidinylmethionine, which were all comparable in activity with S-adenosylmethionine itself, producing 70–98% inhibition at 1mm concentrations. Spermine synthase was somewhat more sensitive than spermidine synthase. 3. 5?-Methylthioadenosine, 5?-ethylthioadenosine and 5?-methylthiotubercidin were all powerful inhibitors of both enzymes, giving 50% inhibition of spermine synthase at 10–15?m and 50% inhibition of spermidine synthase at 30–45?m. 4. S-Adenosyl-l-homocysteine was a weak inhibitor of spermine synthase and practically inactive against spermidine synthase. Analogues of S-adenosylhomocysteine lacking either the carboxy or the amino group of the amino acid portion were somewhat more active, as were derivatives in which the ribose ring had been opened by oxidation. The sulphoxide and sulphone derivatives of decarboxylated S-adenosyl-l-homocysteine and the sulphone of S-adenosyl-l-homocysteine were quite potent inhibitors and were particularly active against spermidine synthase (giving 50% inhibition at 380, 50 and 20?m respectively). 5. These results are discussed in terms of the possible regulation of polyamine synthesis by endogenous nucleosides and the possible value of some of the inhibitory substances in experimental manipulations of polyamine concentrations. It is suggested that 5?-methylthiotubercidin and the sulphone of S-adenosylhomocysteine or of S-adenosyl-3-thiopropylamine may be particularly valuable in this respect. PMID:7396856

  17. Visualization of ?-Chitin with a Specific Chitin-Binding Protein (CHB1) from Streptomyces olivaceoviridis

    Microsoft Academic Search

    Andris Zeltins; Hildgund Schrempf

    1995-01-01

    Recently we identified a so far unique protein (CHB1) which interacts specifically with crystalline ?-chitin. Having optimized the binding conditions for CHB1 coupled with fluorescein isothiocyanate (FITC), we succeeded in developing a highly sensitive assay to detect ?-chitin. CHB1–FITC interacted neither with ?- or colloidal chitin nor with chitooligomers or cellulose. With the help of fluorescence or confocal laser microscopy,

  18. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    PubMed

    Kaya, Murat; Lelešius, Evaldas; Nagrockait?, Radvil?; Sargin, Idris; Arslan, Gulsin; Mol, Abbas; Baran, Talat; Can, Esra; Bitim, Betul

    2015-01-01

    In this study, we used Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females). In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%. PMID:25635814

  19. Differentiations of Chitin Content and Surface Morphologies of Chitins Extracted from Male and Female Grasshopper Species

    PubMed Central

    Kaya, Murat; Lelešius, Evaldas; Nagrockait?, Radvil?; Sargin, Idris; Arslan, Gulsin; Mol, Abbas; Baran, Talat; Can, Esra; Bitim, Betul

    2015-01-01

    In this study, we used Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25 – 90nm wide nanofibers and 90 – 250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females). In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers’ chitins; 88.45–95.48% and for commercial chitin; 94.95%. PMID:25635814

  20. A Septin-based Hierarchy of Proteins Required for Localized Deposition of Chitin in the Saccharomyces cerevisiae Cell Wall

    PubMed Central

    DeMarini, Douglas J.; Adams, Alison E.M.; Fares, Hanna; Virgilio, Claudio De; Valle, Giorgio; Chuang, John S.; Pringle, John R.

    1997-01-01

    Just before bud emergence, a Saccharomyces cerevisiae cell forms a ring of chitin in its cell wall; this ring remains at the base of the bud as the bud grows and ultimately forms part of the bud scar marking the division site on the mother cell. The chitin ring seems to be formed largely or entirely by chitin synthase III, one of the three known chitin synthases in S. cerevisiae. The chitin ring does not form normally in temperature-sensitive mutants defective in any of four septins, a family of proteins that are constituents of the “neck filaments” that lie immediately subjacent to the plasma membrane in the mother-bud neck. In addition, a synthetic-lethal interaction was found between cdc12-5, a temperature-sensitive septin mutation, and a mutant allele of CHS4, which encodes an activator of chitin synthase III. Two-hybrid analysis revealed no direct interaction between the septins and Chs4p but identified a novel gene, BNI4, whose product interacts both with Chs4p and Cdc10p and with one of the septins, Cdc10p; this analysis also revealed an interaction between Chs4p and Chs3p, the catalytic subunit of chitin synthase III. Bni4p has no known homologues; it contains a predicted coiled-coil domain, but no other recognizable motifs. Deletion of BNI4 is not lethal, but causes delocalization of chitin deposition and aberrant cellular morphology. Overexpression of Bni4p also causes delocalization of chitin deposition and produces a cellular morphology similar to that of septin mutants. Immunolocalization experiments show that Bni4p localizes to a ring at the mother-bud neck that lies predominantly on the mother-cell side (corresponding to the predominant site of chitin deposition). This localization depends on the septins but not on Chs4p or Chs3p. A GFP-Chs4p fusion protein also localizes to a ring at the mother-bud neck on the mother-cell side. This localization is dependent on the septins, Bni4p, and Chs3p. Chs3p, whose normal localization is similar to that of Chs4p, does not localize properly in bni4, chs4, or septin mutant strains or in strains that accumulate excess Bni4p. In contrast, localization of the septins is essentially normal in bni4, chs4, and chs3 mutant strains and in strains that accumulate excess Bni4p. Taken together, these results suggest that the normal localization of chitin synthase III activity is achieved by assembly of a complex in which Chs3p is linked to the septins via Chs4p and Bni4p. PMID:9314530

  1. From a Natural Product Lead to the Identification of Potent and Selective Benzofuran-3-yl-(indol-3-yl)maleimides as Glycogen Synthase Kinase 3? Inhibitors that Suppress Proliferation and Survival of Pancreatic Cancer Cells

    PubMed Central

    Gaisina, Irina N.; Gallier, Franck; Ougolkov, Andrei V.; Kim, Ki H.; Kurome, Toru; Guo, Songpo; Holzle, Denise; Luchini, Doris N.; Blond, Sylvie Y.; Billadeau, Daniel D.; Kozikowski, Alan P.

    2009-01-01

    Recent studies have demonstrated that Glycogen Synthase Kinase 3? (GSK-3?) is overexpressed in human colon and pancreatic carcinomas contributing to cancer cell proliferation and survival. Here, we report the design, synthesis, and biological evaluation of benzofuran-3-yl-(indol-3-yl)maleimides, potent GSK-3? inhibitors. Some of these compounds show picomolar inhibitory activity toward GSK-3? and an enhanced selectivity against Cyclin-dependent Kinase 2 (CDK-2). Selected GSK-3? inhibitors were tested in the pancreatic cancer cell lines MiaPaCa-2, BXPC-3, and HupT3. We determined that some of these compounds, namely compounds 5, 6, 11, 20 and 26, demonstrate antiproliferative activity against some or all of the pancreatic cancer cells at low micromolar to nanomolar concentrations. We found that the treatment of pancreatic cancer cells with GSK-3? inhibitors 5 and 26 resulted in suppression of GSK-3? activity and a distinct decrease of the X-linked Inhibitor of Apoptosis (XIAP) expression leading to significant apoptosis. The present data suggest a possible role for GSK-3? inhibitors in cancer therapy, in addition to their more prominent applications in CNS disorders. PMID:19338355

  2. Effects of the nitric oxide synthase inhibitor L-NMMA on cerebrovascular and cardiovascular responses to hypoxia and hypercapnia in humans

    PubMed Central

    Ide, Kojiro; Worthley, Matthew; Anderson, Todd; Poulin, Marc J

    2007-01-01

    Cerebral blood flow is highly sensitive to alterations in the partial pressures of O2 and CO2 (PO2 and PCO2, respectively) in the arterial blood. In humans, the extent to which nitric oxide (NO) is involved in this regulation is unclear. We hypothesized that the NO synthase (NOS) inhibitor NG-monomethyl-l-arginine (l-NMMA), attenuates the sensitivity of middle cerebral artery blood velocity () to isocapnic hypoxia (end-tidal PO2 = 50 Torr) and euoxic hypercapnia (end-tidal PCO2 =+9 Torr above resting values) in 10 volunteers (age, 28.7 ± 1.3 years; height, 179.2 ± 2.4 cm; weight, 78.0 ± 3.7 kg; mean ±s.e.m.). The techniques of transcranial Doppler ultrasound and dynamic end-tidal forcing were used to measure , and control end-tidal PO2 and end-tidal PCO2, respectively. At baseline (isocapnic euoxia), following intravenous administration of l-NMMA, mean arterial blood pressure (MAP) increased (76.3 ± 7.3 to 86.2 ± 9.4 mmHg) and heart rate (HR) decreased (59.5 ± 9.0 to 55.2 ± 9.5 beats min?1) but was unchanged. Hypoxia-induced increases in MAP, HR and were similar with and without l-NMMA (5.0 ± 0.7 versus 7.1 ± 1.0 mmHg, 11.5 ± 1.4 versus 12.4 ± 1.5 beats min?1, 6.5 ± 0.8 versus 6.6 ± 0.8 cm s?1 for ?MAP, ?HR and ?, respectively). Hypercapnia-induced increases in MAP, HR and were similar with and without l-NMMA (7.4 ± 3.1 versus 8.1 ± 2.2 mmHg, 10.4 ± 4.6 versus 10.0 ± 4.2 beats min?1, 16.5 ± 1.5 versus 17.6 ± 1.5 cm s?1 for ?MAP, ?HR and ?, respectively) but the sensitivity of the response at the removal of hypercapnia was attenuated with l-NMMA. In young healthy humans, pharmacological blockade of nitric oxide synthesis does not affect the increases in cerebral blood flow with hypoxia and hypercapnia, suggesting that nitric oxide is not required for the cerbrovascular responses to hypoxia and hypercapnia. PMID:17673507

  3. Fabrication of optically transparent chitin nanocomposites

    NASA Astrophysics Data System (ADS)

    Shams, M. Iftekhar; Ifuku, Shinsuke; Nogi, Masaya; Oku, Takeshi; Yano, Hiroyuki

    2011-02-01

    This paper demonstrates the preparation of chitin nanofibers from crab shells using a simple mechanical treatment. The nanofibers are small enough to retain the transparency of neat acrylic resin. Possessing hydroxyl and amine/ N-acetyl functionalities, water suspension of chitin nanofibers was vacuum-filtered 9 times faster than cellulose nanofibers to prepare a nanofiber sheet of 90 mm in diameter. This is a prominent advantage of chitin nanofibers over cellulose nanofibers in terms of commercial application. Interestingly, chitin acrylic resin films exhibited much higher transparency than cellulose acrylic resin films owing to the close affinity between less hydrophilic chitin and hydrophobic resin. Furthermore, the incorporation of chitin nanofibers contributes to the significant improvement of the thermal expansion and mechanical properties of the neat acrylic resin. The properties of high light transmittance and low thermal expansion make chitin nanocomposites promising candidates for the substrate in a continuous roll-to-roll process in the manufacturing of various optoelectronic devices such as flat panel displays, bendable displays, and solar cells.

  4. N-Acetyl Glucosamine Obtained from Chitin by Chitin Degrading Factors in Chitinbacter tainanesis

    PubMed Central

    Chen, Jeen-Kuan; Shen, Chia-Rui; Yeh, Chao-Hsien; Fang, Bing-Shiun; Huang, Tung-Li; Liu, Chao-Lin

    2011-01-01

    A novel chitin-degrading aerobe, Chitinibacter tainanensis, was isolated from a soil sample from southern Taiwan, and was proved to produce N-acetyl glucosamine (NAG). Chitin degrading factors (CDFs) were proposed to be the critical factors to degrade chitin in this work. When C. tainanensis was incubated with chitin, CDFs were induced and chitin was converted to NAG. CDFs were found to be located on the surface of C. tainanensis. N-Acetylglucosaminidase (NAGase) and endochitinase activities were found in the debris, and the activity of NAGase was much higher than that of endochitinase. The optimum pH of the enzymatic activity was about 7.0, while that of NAG production by the debris was 5.3. These results suggested that some factors in the debris, in addition to NAGase and endochitinase, were crucial for chitin degradation. PMID:21541052

  5. Candida albicans mutants in the BNI4 gene have reduced cell-wall chitin and alterations in morphogenesis.

    PubMed

    Rowbottom, Lynn; Munro, Carol A; Gow, Neil A R

    2004-10-01

    The Candida albicans BNI4 gene was identified by homology to the Saccharomyces cerevisiae orthologue and encodes a predicted 1655 amino acid protein. In S. cerevisiae most cell-wall chitin is associated with primary septum formation and Bni4p is involved in tethering the Chs3p chitin synthase enzyme to the mother-bud neck by forming a bridge between a regulatory protein Chs4p and the septin Cdc10p. CaBni4p shows 20 % overall identity to the ScBni4p, with 73 % identity over the C-terminal 63 amino acids, which includes a putative protein phosphatase type 1 (PP1) binding domain. Northern blot analysis revealed a transcript of the expected size that was expressed in both yeast and hyphal growth forms. C. albicans has more chitin in its cell wall than S. cerevisiae, and again most chitin is synthesized by CaChs3p. The function of CaBNI4 was investigated by performing a targeted gene disruption using the 'Ura-blaster' method to delete amino acids 1120-1611 that are essential for function. The resulting Cabni4Delta/Cabni4Delta null mutants formed lemon-shaped yeast cells and had a 30 % reduction in cell-wall chitin, reduced hyphal formation on solid serum-containing medium and increased sensitivity to SDS and increased resistance to Calcofluor White. The Cabni4Delta/Cabni4Delta null mutants were unaffected in chitin ring formation, but often exhibited displaced bud sites with more obvious but flattened birth scars. Therefore, unlike in S. cerevisiae, the Cabni4 mutant apparently alters chitin distribution throughout the cell wall and not exclusively at the bud-neck region. PMID:15470104

  6. Direct compression properties of chitin and chitosan.

    PubMed

    Mir, Viviana García; Heinämäki, Jyrki; Antikainen, Osmo; Revoredo, Ofelia Bilbao; Colarte, Antonio Iraizoz; Nieto, Olga Maria; Yliruusi, Jouko

    2008-08-01

    Deformation and compaction properties of native amino poly-saccharides chitin and chitosan were studied and compared with those obtained with established pharmaceutical direct compression excipients. An instrumented single-punch tablet machine was used for tablet compaction. The following compression parameters were evaluated: a ratio of crushing strength and compression pressure, plasticity and elasticity factor (PF and EF), tensile strength and R-value. Chitin and chitosan were found to have a marked tendency to plastic deformation, and both showed a good compression behaviour compared with the other direct compression excipients including microcrystalline cellulose. It is concluded that chitin and chitosan are potential co-excipients for direct compression applications. PMID:18406116

  7. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    PubMed Central

    Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200?°C. The results show very hot and compressed water is needed to make mushrooms mushy. PMID:26148792

  8. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions.

    PubMed

    Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200?°C. The results show very hot and compressed water is needed to make mushrooms mushy. PMID:26148792

  9. Direct compression properties of chitin and chitosan

    Microsoft Academic Search

    Viviana García Mir; Jyrki Heinämäki; Osmo Antikainen; Ofelia Bilbao Revoredo; Antonio Iraizoz Colarte; Olga Maria Nieto; Jouko Yliruusi

    2008-01-01

    Deformation and compaction properties of native amino poly-saccharides chitin and chitosan were studied and compared with those obtained with established pharmaceutical direct compression excipients. An instrumented single-punch tablet machine was used for tablet compaction. The following compression parameters were evaluated: a ratio of crushing strength and compression pressure, plasticity and elasticity factor (PF and EF), tensile strength and R-value. Chitin

  10. Spermine synthase

    PubMed Central

    Michael, Anthony J.

    2010-01-01

    Spermine is present in many organisms including animals, plants, some fungi, some archaea, and some bacteria. It is synthesized by spermine synthase, a highly specific aminopropyltransferase. This review describes spermine synthase structure, genetics, and function. Structural and biochemical studies reveal that human spermine synthase is an obligate dimer. Each monomer contains a C-terminal domain where the active site is located, a central linking domain that also forms the lid of the catalytic domain, and an N-terminal domain that is structurally very similar to S-adenosylmethionine decarboxylase. Gyro mice, which have an X-chromosomal deletion including the spermine synthase (SMS) gene, lack all spermine and have a greatly reduced size, sterility, deafness, neurological abnormalities, and a tendency to sudden death. Mutations in the human SMS lead to a rise in spermidine and reduction of spermine causing Snyder-Robinson syndrome, an X-linked recessive condition characterized by mental retardation, skeletal defects, hypotonia, and movement disorders. PMID:19859664

  11. Bacterial chitin utilization at halophilic conditions.

    PubMed

    Sorokin, D Y; Kolganova, T V

    2014-03-01

    Chitin is a dominant structural polymer produced in large amounts by brine shrimp Artemia in hypersaline lakes. Microbiological analysis of chitin utilization as a growth substrate in hypersaline chloride-sulfate lakes in the south Kulunda Steppe (Altai, Russia) revealed two groups of bacteria able to grow on chitin at moderate salinity. Under aerobic conditions, an enrichment culture was obtained at 2 M NaCl. Further purification resulted in the isolation of strains HCh1 and strain HCh2, identified as representatives of the genera Saccharospirillum and Arhodomonas (both in the Gammaproteobacteria). The chitin-utilizing potential has not been previously recognized in these genera. The Saccharospirillum sp. strain HCh1 grew on chitin within the salinity range from 0.5 to 3.25 M NaCl (optimum at 1 M), while Arhodomonas sp. strain HCh2 grew up to 2.5 M NaCl but had a higher salt optimum at 1.5 M. Anaerobic enrichments grew with chitin at 2 and 4 M NaCl, but growth in the latter was extremely slow and the culture eventually lost viability. The enrichment at 2 M NaCl resulted in the isolation of strain HCh-An1, identified as a distant new species of the genus Orenia in the clostridial order Halanaerobiales. It was able to grow on chitin within a salinity range from 1.0 to 2.5 M NaCl (optimum at 1.5 M). The strain is proposed as a new species of the genus Orenia-O. chitinitropha. PMID:24306781

  12. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    SciTech Connect

    Horst, M.N. (Mercer Univ., Macon, GA (USA))

    1990-12-01

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.

  13. Chitin nanofibrils\\/chitosan glycolate composites as wound medicaments

    Microsoft Academic Search

    Riccardo A. A. Muzzarelli; Pierfrancesco Morganti; Gianluca Morganti; Paolo Palombo; Marco Palombo; Graziella Biagini; Monica Mattioli Belmonte; Federica Giantomassi; Fiorenza Orlandi; Corrado Muzzarelli

    2007-01-01

    Highly crystalline chitin nanofibrils were isolated from crustacean chitin and characterized by X-ray diffraction and FT-infrared spectrometry. A novel formulation including chitin nanofibrils, chitosan glycolate, and chlorhexidine was manufactured in three presentations: spray, gel, and gauze. The latter included non-woven dibutyryl chitin as a biocompatible support. The products were tested in murine wound models, with phytostimuline-medicated wounds as controls, in

  14. Polyphosphoester-based cationic nanoparticles serendipitously release integral biologically-active components to serve as novel degradable inducible nitric oxide synthase inhibitors.

    PubMed

    Shen, Yuefei; Zhang, Shiyi; Zhang, Fuwu; Loftis, Alexander; Pavía-Sanders, Adriana; Zou, Jiong; Fan, Jingwei; Taylor, John-Stephen A; Wooley, Karen L

    2013-10-18

    A degradable polyphosphoester (PPE)-based cationic nanoparticle (cSCK), which is integrated constructed as a novel degradable drug device, demonstrates surprisingly efficient inhibition of inducible nitric oxide synthase (iNOS) transcription, and eventually inhibits nitric oxide (NO) over-production, without loading of any specific therapeutic drugs. This system may serve as a promising anti-inflammatory agent toward the treatment of acute lung injury. PMID:23999874

  15. Heterodera glycines: eggshell ultrastructure and histochemical localization of chitinous components

    Microsoft Academic Search

    B. Burgwyn; B. Nagel; J. Ryerse; R. I. Bolla

    2003-01-01

    The eggshell in most nematodes consists of an outer vitelline layer, a middle chitinous and an inner lipid layer. Earlier work with eggs of Heterodera glycines suggests the presence of two chitinous layers but the vitelline layer was not observed. From our observation the outer chitin layer described in past literature is actually a vitelline layer. Histochemical analysis has demonstrated

  16. Biodegradation of the chitin-protein complex in crustacean cuticle

    USGS Publications Warehouse

    Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.

    1998-01-01

    Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests, that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.

  17. Stabilizing oil-in-water emulsions with regenerated chitin nanofibers.

    PubMed

    Zhang, Ying; Chen, Zhigang; Bian, Wenyang; Feng, Li; Wu, Zongwei; Wang, Peng; Zeng, Xiaoxiong; Wu, Tao

    2015-09-15

    Natural chitin is a highly crystalline biopolymer with poor aqueous solubility. Thus direct application of chitin is rather limited unless chemical modifications are made to improve its solubility in aqueous media. Through a simple dissolution and regeneration process, we have successfully prepared chitin nanofibers with diameters around 50nm, which form a stable suspension at concentrations higher than 0.50% and a self-supporting gel at concentrations higher than 1.00%. Additionally, these nanofibers can stabilize oil-in-water emulsions with oil fraction more than 0.50 at chitin usage level of 0.01g/g oil. The droplet sizes of the resulting emulsions decrease with increasing chitin concentrations and decreasing oil fraction. Confocal laser scanning micrographs demonstrate the adsorption of chitin nanofibers on the emulsion droplet surface, which indicates the emulsion stabilization is through a Pickering mechanism. Our findings allow the direct application of chitin in the food industry without chemical modifications. PMID:25863618

  18. Chitin: 'Forgotten' Source of Nitrogen: From Modern Chitin to Thermally Mature Kerogen: Lessons from Nitrogen Isotope Ratios

    USGS Publications Warehouse

    Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.

    1998-01-01

    Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may partly result from reaction with ammonium-containing pore waters.

  19. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-06-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms. PMID:25839341

  20. Benzalacetone Synthase

    PubMed Central

    Shimokawa, Yoshihiko; Morita, Hiroyuki; Abe, Ikuro

    2012-01-01

    Benzalacetone synthase, from the medicinal plant Rheum palmatum (RpBAS), is a plant-specific chalcone synthase (CHS) superfamily of type III polyketide synthase (PKS). RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6–C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site “gatekeeper” Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes. PMID:22645592

  1. Comparison of chitin structures isolated from seven Orthoptera species.

    PubMed

    Kaya, Murat; Erdogan, Sevil; Mol, Abbas; Baran, Talat

    2015-01-01

    Differences in the physichochemical properties of the chitin structure of the exoskeleton of seven species from four genera were investigated in this study. The same method was used to isolate the chitin structure of the seven species. The physicochemical properties of the isolated chitins were revealed by ESEM, FTIR, TGA and XRD analyses. The FTIR, TGA and XRD results from the chitin samples were similar. The surface morphologies of the chitins were investigated by ESEM and interesting results were noted. While the surface morphologies of the chitins isolated from two species within the same genus were quite different, the surface morphologies of chitins isolated from species belonging to different genera showed similarity. It was determined that the dry weight chitin contents of the grasshopper species varied between 5.3% and 8.9%. The results of molecular analysis showed that the chitins from seven Orthoptera species (between 5.2 and 6.8 kDa) have low molecular weights. Considering that these invasive and harmful species are killed with insecticides and go to waste in large amounts, this study suggests that they should be collected and evaluated as an alternative chitin source. PMID:25290985

  2. Preparation and biomedical applications of chitin and chitosan nanofibers.

    PubMed

    Azuma, Kazuo; Ifuku, Shinsuke; Osaki, Tomohiro; Okamoto, Yoshiharu; Minami, Saburo

    2014-10-01

    Chitin (?-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. Chitin occurs in nature as ordered macrofibrils. It is the major structural component in the exoskeleton of crab and shrimp shells and the cell wall of fungi and yeast. As chitin is not readily dissolved in common solvents, it is often converted to its more deacetylated derivative, chitosan. Chitin, chitosan, and its derivatives are widely used in tissue engineering, wound healing, and as functional foods. Recently, easy methods for the preparation of chitin and chitosan nanofibers have been developed, and studies on biomedical applications of chitin and chitosan nanofibers are ongoing. Chitin and chitosan nanofibers are considered to have great potential for various biomedical applications, because they have several useful properties such as high specific surface area and high porosity. This review summarizes methods for the preparation of chitin and chitosan nanofibers. Further, biomedical applications of chitin and chitosan nanofibers in (i) tissue engineering, (ii) wound dressing, (iii) cosmetic and skin health, (iv) stem cell technology, (v) anti-cancer treatments and drug delivery, (vi) anti-inflammatory treatments, and (vii) obesity treatment are summarized. Many studies indicate that chitin and chitosan nanofibers are suitable materials for various biomedical applications. PMID:25992423

  3. The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma

    E-print Network

    Schnaufer, Achim

    sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier-ATP synthase (respiratory complex V). It has a complete respiratory chain that oxidizes the reduced

  4. Ligand modulation of glial activation: cell permeable, small molecule inhibitors of serine-threonine protein kinases can block induction of interleukin 1? and nitric oxide synthase II

    Microsoft Academic Search

    D. Martin Watterson; Salida Mirzoeva; Ling Guo; Authrine Whyte; Jean-Jacques Bourguignon; Marcel Hibert; Jacques Haiech; Linda J Van Eldik

    2001-01-01

    Activated glia (astrocytes and microglia) and their associated neuroinflammatory sequelae have been linked to the disease progression of several neurodegenerative disorders, including Alzheimer's disease. We found that the experimental anti-inflammatory drug K252a, an inhibitor of calmodulin regulated protein kinases (CaMKs), can block induction of both the oxidative stress related enzyme iNOS and the proinflammatory cytokine IL-1? in primary cortical glial

  5. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    PubMed Central

    Badwan, Adnan A.; Rashid, Iyad; Al Omari, Mahmoud M.H.; Darras, Fouad H.

    2015-01-01

    Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC) excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications. PMID:25810109

  6. Concomitant treatment with a 5-lipoxygenase inhibitor improves the anti-inflammatory effect of the inhibition of nitric oxide synthase during the early phase of endotoxin-induced uveitis in the rabbit.

    PubMed

    Bellot, J L; Palmero, M; Alcoriza, N; Blanco, A; García-Cabanes, C; Hariton, C; Orts, A

    1997-01-01

    Nitric oxide (NO) synthase inhibitors, such as NG-nitro-L-arginine methyl ester (L-NAME), have been shown to attenuate endotoxin-induced uveitis (EIU) but they could increase leukocyte adhesion to the vascular endothelium. We hypothesize that a concomitant treatment with the 5-lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) in 50% dimethylsulfoxide (DMSO, a hydroxyl radical scavenger) could improve the anti-inflammatory activity of L-NAME. EIU was induced in albino rabbits by intravitreal injection of 100 ng lipopolysaccharide. Animals were treated with multiple intraperitoneal injections of 50% DMSO in phosphate-buffered saline (PBS), NDGA (10 mg/kg) in 50% DMSO, L-NAME (50 mg/ kg) in PBS, or the combination NDGA+L-NAME. Uveitis was assessed by slit lamp examination, protein levels in aqueous humor, and myeloperoxidase (MPO) activity in the iris/ciliary body 6 h after induction. Nitrite, leukotriene B4 (LTB4), prostaglandin E2 (PGE2), platelet-activating factor (PAF) and interleukin-1 beta (IL-1 beta) levels in aqueous humor were also determined. NDGA or L-NAME alone did not show a significant reduction of uveitis intensity, although a significant decrease in MPO or in proteins was found, respectively. The combination NDGA+L-NAME significantly reduced the uveitis intensity, MPO in the iris/ciliary body, and the levels of nitrites, LTB4, PGE2, and PAF in aqueous humor. IL-1 beta levels were lower than the detection limit of the radioimmunoassay in all treatment groups. We conclude that concomitant treatment with NDGA in DMSO improves the anti-inflammatory activity of L-NAME during the early phase of EIU, suggesting that the inhibition of NO synthesis could enhance leukocyte infiltration and the release of oxygen free radicals. PMID:9261846

  7. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants.

    PubMed Central

    Chang, A K; Duggleby, R G

    1998-01-01

    Acetohydroxyacid synthase (AHAS) catalyses the first step in the synthesis of the branched-chain amino acids and is the target of several classes of herbicides. Four mutants (A122V, W574S, W574L and S653N) of the AHAS gene from Arabidopsis thaliana were constructed, expressed in Escherichia coli, and the enzymes were purified. Each mutant form and wild-type was characterized with respect to its catalytic properties and sensitivity to nine herbicides. Each enzyme had a pH optimum near 7.5. The specific activity varied from 13% (A122V) to 131% (W574L) of the wild-type and the Km for pyruvate of the mutants was similar to the wild-type, except for W574L where it was five-fold higher. The activation by cofactors (FAD, Mg2+ and thiamine diphosphate) was examined. A122V showed reduced affinity for all three cofactors, whereas S653N bound FAD more strongly than wild-type AHAS. Six sulphonylurea herbicides inhibited A122V to a similar degree as the wild-type but S653N showed a somewhat greater reduction in sensitivity to these compounds. In contrast, the W574 mutants were insensitive to these sulphonylureas, with increases in the Kiapp (apparent inhibition constant) of several hundred fold. All four mutants were resistant to three imidazolinone herbicides with decreases in sensitivity ranging from 100-fold to more than 1000-fold. PMID:9677339

  8. Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.

    PubMed

    Verhoff, Moritz; Seitz, Stefanie; Paul, Michael; Noha, Stefan M; Jauch, Johann; Schuster, Daniela; Werz, Oliver

    2014-06-27

    The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously found that mPGES-1 is inhibited by boswellic acids (IC50 = 3-30 ?M), which are bioactive triterpene acids present in the anti-inflammatory remedy frankincense. Here we show that besides boswellic acids, additional known triterpene acids (i.e., tircuallic, lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1 with increased potencies. In particular, 3?-acetoxy-8,24-dienetirucallic acid (6) and 3?-acetoxy-7,24-dienetirucallic acid (10) inhibited mPGES-1 activity in a cell-free assay with IC50 = 0.4 ?M, each. Structure-activity relationship studies and docking simulations revealed concrete structure-related interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and -2 were hardly affected by the triterpene acids (IC50 > 10 ?M). Given the crucial role of mPGES-1 in inflammation and the abundance of highly active triterpene acids in frankincence extracts, our findings provide further evidence of the anti-inflammatory potential of frankincense preparations and reveal novel, potent bioactivities of tirucallic acids, roburic acids, and lupeolic acids. PMID:24844534

  9. 5-Imino-1,2-4-thiadiazoles and quinazolines derivatives as glycogen synthase kinase 3? (GSK-3?) and phosphodiesterase 7 (PDE7) inhibitors: determination of blood-brain barrier penetration and binding to human serum albumin.

    PubMed

    Pérez, Daniel I; Pistolozzi, Marco; Palomo, Valle; Redondo, Miriam; Fortugno, Cecilia; Gil, Carmen; Felix, Guy; Martinez, Ana; Bertucci, Carlo

    2012-04-11

    5-Imino-1,2,4-thiadiazoles and quinazolines derivatives as glycogen synthase kinase 3? (GSK-3?) and phosphodiesterase 7 (PDE7) inhibitors were characterized for their ability to pass the blood-brain barrier (BBB) together with their human serum albumin (HSA) binding using high-performance liquid affinity chromatography (HPLAC) and circular dichroism (CD). To study the blood-brain barrier penetration, a parallel artificial membrane permeability assay (PAMPA) using a porcine brain lipid was employed. For the HPLAC investigation, HSA was previously covalently immobilized to the silica matrix of the HPLC column. This HSA-based column was used to characterize the high affinity binding sites of 5-imino-1,2,4-thiadiazoles and quinazolines derivatives to HSA. Displacement experiments in the presence of increasing concentrations of competitors known to bind selectively to the main binding sites of HSA were carried out to determine their possible binding site. The same drug-protein system was studied by CD. The analysed compounds were able to pass BBB, they present good drug-like properties and they showed a high affinity to HSA. Competition experiments showed an anticooperative interaction at sites I and II, and an independent binding at bilirubin binding site on HSA. PMID:22306656

  10. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells.

    PubMed Central

    Hernández-Perera, O; Pérez-Sala, D; Navarro-Antolín, J; Sánchez-Pascuala, R; Hernández, G; Díaz, C; Lamas, S

    1998-01-01

    Endothelial dysfunction associated with atherosclerosis has been attributed to alterations in the L-arginine-nitric oxide (NO)-cGMP pathway or to an excess of endothelin-1 (ET-1). The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to ameliorate endothelial function. However, the physiological basis of this observation is largely unknown. We investigated the effects of Atorvastatin and Simvastatin on the pre-proET-1 mRNA expression and ET-1 synthesis and on the endothelial NO synthase (eNOS) transcript and protein levels in bovine aortic endothelial cells. These agents inhibited pre-proET-1 mRNA expression in a concentration- and time-dependent fashion (60-70% maximum inhibition) and reduced immunoreactive ET-1 levels (25-50%). This inhibitory effect was maintained in the presence of oxidized LDL (1-50 microg/ml). No significant modification of pre-proET-1 mRNA half-life was observed. In addition, mevalonate, but not cholesterol, reversed the statin-mediated decrease of pre-proET-1 mRNA levels. eNOS mRNA expression was reduced by oxidized LDL in a dose-dependent fashion (up to 57% inhibition), whereas native LDL had no effect. Statins were able to prevent the inhibitory action exerted by oxidized LDL on eNOS mRNA and protein levels. Hence, these drugs might influence vascular tone by modulating the expression of endothelial vasoactive factors. PMID:9637705

  11. Effect of the ATPase inhibitor protein IF{sub 1} on H{sup +} translocation in the mitochondrial ATP synthase complex

    SciTech Connect

    Zanotti, Franco [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy) [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy); Inst. of Biomembranes and Bioenergetics, CNR, Bari (Italy); Gnoni, Antonio; Mangiullo, Roberto [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy)] [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy); Papa, Sergio, E-mail: papabchm@cimedoc.uniba.it [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy) [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy); Inst. of Biomembranes and Bioenergetics, CNR, Bari (Italy)

    2009-06-19

    The H{sup +} F{sub o}F{sub 1}-ATP synthase complex of coupling membranes converts the proton-motive force into rotatory mechanical energy to drive ATP synthesis. The F{sub 1} moiety of the complex protrudes at the inner side of the membrane, the F{sub o} sector spans the membrane reaching the outer side. The IF{sub 1} component of the mitochondrial complex is a basic 10 kDa protein, which inhibits the F{sub o}F{sub 1}-ATP hydrolase activity. The mitochondrial matrix pH is the critical factor for the inhibitory binding of the central segment of IF{sub 1} (residue 42-58) to the F{sub 1}-{alpha}/{beta} subunits. We have analyzed the effect of native purified IF{sub 1} the IF{sub 1}-(42-58) synthetic peptide and its mutants on proton conduction, driven by ATP hydrolysis or by [K{sup +}] gradients, in bovine heart inside-out submitochondrial particles and in liposome-reconstituted F{sub o}F{sub 1} complex. The results show that IF{sub 1}, and in particular its central 42-58 segment, displays different inhibitory affinity for proton conduction from the F{sub 1} to the F{sub o} side and in the opposite direction. Cross-linking of IF{sub 1} to F{sub 1}-{alpha}/{beta} subunits inhibits the ATP-driven H{sup +} translocation but enhances H{sup +} conduction in the reverse direction. These observation are discussed in terms of the rotary mechanism of the F{sub o}F{sub 1} complex.

  12. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue.

    PubMed

    Kamst, E; Bakkers, J; Quaedvlieg, N E; Pilling, J; Kijne, J W; Lugtenberg, B J; Spaink, H P

    1999-03-30

    Lipochitin oligosaccharides are organogenesis-inducing signal molecules produced by rhizobia to establish the formation of nitrogen-fixing root nodules in leguminous plants. Chitin oligosaccharide biosynthesis by the Mesorhizobium loti nodulation protein NodC was studied in vitro using membrane fractions of an Escherichia coli strain expressing the cloned M. loti nodC gene. The results indicate that prenylpyrophosphate-linked intermediates are not involved in the chitin oligosaccharide synthesis pathway. We observed that, in addition to N-acetylglucosamine (GlcNAc) from UDP-GlcNAc, NodC also directly incorporates free GlcNAc into chitin oligosaccharides. Further analysis showed that free GlcNAc is used as a primer that is elongated at the nonreducing terminus. The synthetic glycoside p-nitrophenyl-beta-N-acetylglucosaminide (pNPGlcNAc) has a free hydroxyl group at C4 but not at C1 and could also be used as an acceptor by NodC, confirming that chain elongation by NodC takes place at the nonreducing-terminal residue. The use of artificial glycosyl acceptors such as pNPGlcNAc has not previously been described for a processive glycosyltransferase. Using this method, we show that also the DG42-directed chitin oligosaccharide synthase activity, present in extracts of zebrafish embryos, is able to initiate chitin oligosaccharide synthesis on pNPGlcNAc. Consequently, chain elongation in chitin oligosaccharide synthesis by M. loti NodC and zebrafish DG42 occurs by the transfer of GlcNAc residues from UDP-GlcNAc to O4 of the nonreducing-terminal residue, in contrast to earlier models on the mechanism of processive beta-glycosyltransferase reactions. PMID:10194317

  13. Solid state characterization of ?-chitin from Vanessa cardui Linnaeus wings

    Microsoft Academic Search

    Jessica D. Schiffman; Caroline L. Schauer

    2009-01-01

    Material properties of the painted lady butterfly, Vanessa cardui Linnaeus were investigated using typical material science techniques. The examined butterflies were raised and hatched from the larvae stage and their chemical and crystalline structure evaluated and compared to that of crab shell (?-chitin) and squid pens from Notodarus sloanii and Loligo pealei (?-chitin). Fourier transmission infrared spectroscopy (FTIR) and X-ray

  14. Doxorubicin-chitin-poly(caprolactone) composite nanogel for drug delivery.

    PubMed

    Arunraj, T R; Sanoj Rejinold, N; Ashwin Kumar, N; Jayakumar, R

    2013-11-01

    In this work, we developed a pH responsive chitin-poly(caprolactone) composite nanogels (chitin-PCL CNGs) system for non-small cell lung cancer (NSCLC). A hydrophilic drug, doxorubicin (Dox) was loaded in Chitin-PCL CNGs (Dox-chitin-PCL CNGs). Both control and drug loaded systems were analyzed by DLS, SEM, FTIR and TG/DTA. The size ranges of the control composite nanogels and their drug loaded counterparts were found to be 70 ± 20 and 240 ± 20 nm, respectively. The control chitin-PCL CNGs and Dox-chitin-PCL CNGs showed higher swelling and degradation in acidic pH. Drug entrapment efficiency and in-vitro drug release studies were carried out and showed a higher drug release at acidic pH compared to neutral pH. Cellular internalization of the nanogel systems was confirmed by fluorescent microscopy. Dox-Chitin-PCL CNGs showed dose dependent cytotoxicity toward A549 (adenocarcinomic human alveolar basal epithelial cells) cancer cells. Furthermore, the results of in-vitro hemolytic assay and coagulation assay substantiate the blood compatibility of the system. These results indicate that chitin-PCL CNGs is a novel carrier for delivery of anticancer drugs. PMID:23973498

  15. Kinetic properties and role of bacterial chitin deacetylase in the bioconversion of chitin to chitosan.

    PubMed

    ElMekawy, Ahmed; Hegab, Hanaa M; El-Baz, Ashraf; Hudson, Samuel M

    2013-12-01

    Chitin is an extremely insoluble material with very limited industrial use; however it can be deacetylated to soluble chitosan which has a wide range of applications. The enzymatic deacetylation of various chitin samples was investigated using the bacterial chitin deacetylase (CDA), which was partially purified from Alcaligenes sp. ATCC 55938 growth medium and the kinetic parameters of the enzyme were determined. Also, the efficiency of biocatalyst recycling by immobilization technique was examined. CDA activity reached its maximum (0.419 U/ml) after 18 h of bacterial cultivation. When glycol chitin was used as a substrate, the optimum pH of the enzyme was estimated to be 6 after checking a pH range between 3 and 9, while the optimum temperature was found to be 35°C. Addition of acetate (100 mM) in the assay mixture resulted in 50% loss of enzyme activity. The Km value of the enzyme is 1.6 × 10(-4) µM and Vmax is 24.7 µM/min. The average activity of CDA was 0.38 U/ml for both of immobilized and freely suspended cells after 18 h of bacterial growth. Some related patents are also discussed here. PMID:24308492

  16. Degradation and mineralization of chitin in an estuary

    SciTech Connect

    Boyer, J.

    1987-01-01

    A method for measuring microbial degradation and mineralization of radiolabeled native chitin is described. /sup 14/C-labeled chitin was synthesized in vivo by injecting shed blue crabs (Callinectes sapidus) with N-acetyl-D-(/sup 14/C)-glucosamine, allowing for its incorporation into the exoskeleton. Rates of chitin degradation and mineralization in estuarine water and sediments were determined as functions of temperature, inoculum source, and oxygen condition. Significant differences in rates between temperature treatments were evident. Q/sub 10/ values ranged from 1.2 to 2.5 for water and sediment, respectively. Increased incubation temperature also resulted in decreased lag times before onset of chitinoclastic bacterial growth and chitin degradation. The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other bacterial types. Actively growing chitinoclastic bacterial isolates produced primarily acetate, hydrogen, and carbon dioxide in broth culture.

  17. Applications of Chitin and Its Derivatives in Biological Medicine

    PubMed Central

    Park, Bae Keun; Kim, Moon-Moo

    2010-01-01

    Chitin and its derivatives—as a potential resource as well as multiple functional substrates—have generated attractive interest in various fields such as biomedical, pharmaceutical, food and environmental industries, since the first isolation of chitin in 1811. Moreover, chitosan and its chitooligosaccharides (COS) are degraded products of chitin through enzymatic and acidic hydrolysis processes; and COS, in particular, is well suited for potential biological application, due to the biocompatibility and nontoxic nature of chitosan. In this review, we investigate the current bioactivities of chitin derivatives, which are all correlated with their biomedical properties. Several new and cutting edge insights here may provide a molecular basis for the mechanism of chitin, and hence may aid its use for medical and pharmaceutical applications. PMID:21614199

  18. Chitin-related enzymes in agro-biosciences.

    PubMed

    Arakane, Yasuyuki; Taira, Toki; Ohnuma, Takayuki; Fukamizo, Tamo

    2012-04-01

    Plants utilized for agricultural productions interact with insects, fungi, and bacteria under the field conditions, affecting thereby their productivity. Since chitin and its derivatives play important roles in the interactions between these organisms, chitin-related enzymes are effective tools or drug targets for controlling the interactions. Thus, the molecular biology, protein chemistry, and enzymology of the chitin-related enzymes have been intensively studied by many investigators. Identifications and classifications of the genes encoding chitin synthetases, chitinases, chitosanases, and chitin deacetylases in these organisms were conducted, and their physiological functions were defined by knockdown, knockout, or overexpression of the corresponding genes. Recombinant enzyme productions and mutation studies are also being conducted to understand their structure and function. All of these studies have opened the way to efficiently utilize these enzyme tools for enhancing the agricultural productions. PMID:22280343

  19. Role of the anterior region of the third ventricle in the cardiovascular responses produced by systemic injection of a nitric oxide synthase inhibitor

    NASA Technical Reports Server (NTRS)

    Lewis, S. J.; Whalen, E. J.; Beltz, T. G.; Johnson, A. K.

    1999-01-01

    This study examined whether a prior electrolytic lesion of the tissue surrounding the anteroventral third ventricle (AV3V) would affect the increase in mean arterial blood pressure (MAP) and the fall in heart rate (HR) produced by systemic injection of the nitric oxide synthesis (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 25 micromol/kg, i.v.) in conscious rats. L-NAME produced a smaller increase in MAP in AV3V-lesion than in sham-lesion rats (+19+/-3 vs. +40+/-3 mmHg, respectively; P<0.05). In contrast, L-NAME produced similar falls in HR in the AV3V-lesion and sham-lesion rats (-103+/-15 vs. -97+/-8 bpm, respectively; P<0.05). These findings demonstrate that the L-NAME-induced pressor response is dependent upon the integrity of the AV3V region, whereas the L-NAME-induced bradycardia is not. Copyright 1999 Elsevier Science B. V.

  20. New Monocyclic, Bicyclic, and Tricyclic Ethynylcyanodienones as Activators of the Keap1/Nrf2/ARE Pathway and Inhibitors of Inducible Nitric Oxide Synthase.

    PubMed

    Li, Wei; Zheng, Suqing; Higgins, Maureen; Morra, Rocco P; Mendis, Anne T; Chien, Chih-Wei; Ojima, Iwao; Mierke, Dale F; Dinkova-Kostova, Albena T; Honda, Tadashi

    2015-06-11

    A monocyclic compound 3 (3-ethynyl-3-methyl-6-oxocyclohexa-1,4-dienecarbonitrile) is a highly reactive Michael acceptor leading to reversible adducts with nucleophiles, which displays equal or greater potency than the pentacyclic triterpenoid CDDO in inflammation and carcinogenesis related assays. Recently, reversible covalent drugs, which bind with protein targets but not permanently, have been gaining attention because of their unique features. To explore such reversible covalent drugs, we have synthesized monocyclic, bicyclic, and tricyclic compounds containing 3 as an electrophilic fragment and evaluated them as activators of the Keap1/Nrf2/ARE pathway and inhibitors of iNOS. Notably, these compounds maintain the unique features of the chemical reactivity and biological potency of 3. Among them, a monocyclic compound 5 is the most potent in these assays while a tricyclic compound 14 displays a more robust and specific activation profile compared to 5. In conclusion, we demonstrate that 3 is a useful electrophilic fragment for exploring reversible covalent drugs. PMID:25965897

  1. Chitin-Silk Fibroin Interactions: Relevance to Calcium Carbonate Formation in Invertebrates

    Microsoft Academic Search

    G. Falini; S. Weiner; L. Addadi

    2003-01-01

    In mineralized tissues chitin is almost always associated with proteins, many of which are known to have chitin recognition consensus sequences. It has been observed in some mollusk shells that there is a well-defined spatial relation between the crystallographic axes of the crystals and the chitin fibrils. This implies that the chitin functions directly or indirectly as a template for

  2. Detection and characterization of chitinases and other chitin-modifying enzymes

    Microsoft Academic Search

    Michael B. Howard; Nathan A. Ekborg; Ronald M. Weiner; Steven W. Hutcheson

    2003-01-01

    Multiple industrial and medical uses of chitin and its derivatives have been developed in recent years. The demand for enzymes with new or desirable properties continues to grow as additional uses of chitin, chitooligosaccharides, and chitosan become apparent. Microorganisms, the primary degraders of chitin in the environment, are a rich source of valuable chitin-modifying enzymes. This review summarizes many methods

  3. Attenuated virulence of chitin-deficient mutants of Candida albicans.

    PubMed Central

    Bulawa, C E; Miller, D W; Henry, L K; Becker, J M

    1995-01-01

    We have analyzed the role of chitin, a cell-wall polysaccharide, in the virulence of Candida albicans. Mutants with a 5-fold reduction in chitin were obtained in two ways: (i) by selecting mutants resistant to Calcofluor, a fluorescent dye that binds to chitin and inhibits growth, and (ii) by disrupting CHS3, the C. albicans homolog of CSD2/CAL1/DIT101/KT12, a Saccharomyces cerevisiae gene required for synthesis of approximately 90% of the cell-wall chitin. Chitin-deficient mutants have no obvious alterations in growth rate, sugar assimilation, chlamydospore formation, or germ-tube formation in various media. When growing vegetatively in liquid media, the mutants tend to clump and display minor changes in morphology. Staining of cells with the fluorescent dye Calcofluor indicates that CHS3 is required for synthesis of the chitin rings found on the surface of yeast cells but not formation of septa in either yeast cells or germ tubes. Despite their relatively normal growth, the mutants are significantly less virulent than the parental strain in both immunocompetent and immunosuppressed mice; at 13 days after infection, survival was 95% in immunocompetent mice that received chs3/chs3 cells and 10% in immunocompetent mice that received an equal dose of chs3/CHS3 cells. Chitin-deficient strains can colonize the organs of infected mice, suggesting that the reduced virulence of the mutants is not due to accelerated clearing. Images Fig. 1 Fig. 2 PMID:7479842

  4. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

    PubMed Central

    Azuma, Kazuo; Izumi, Ryotaro; Osaki, Tomohiro; Ifuku, Shinsuke; Morimoto, Minoru; Saimoto, Hiroyuki; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    Chitin (?-(1-4)-poly-N-acetyl-d-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review, the studies on the wound-healing effects of chitin, chitosan, and its derivatives are summarized. Moreover, the development of adhesive-based chitin and chitosan are also described. The evidence indicates that chitin, chitosan, and its derivatives are beneficial for the wound healing process. More recently, it is also indicate that some nano-based materials from chitin and chitosan are beneficial than chitin and chitosan for wound healing. Clinical applications of nano-based chitin and chitosan are also expected. PMID:25780874

  5. Chitin, chitosan, and its derivatives for wound healing: old and new materials.

    PubMed

    Azuma, Kazuo; Izumi, Ryotaro; Osaki, Tomohiro; Ifuku, Shinsuke; Morimoto, Minoru; Saimoto, Hiroyuki; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    Chitin (?-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review, the studies on the wound-healing effects of chitin, chitosan, and its derivatives are summarized. Moreover, the development of adhesive-based chitin and chitosan are also described. The evidence indicates that chitin, chitosan, and its derivatives are beneficial for the wound healing process. More recently, it is also indicate that some nano-based materials from chitin and chitosan are beneficial than chitin and chitosan for wound healing. Clinical applications of nano-based chitin and chitosan are also expected. PMID:25780874

  6. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    PubMed Central

    Ospina Álvarez, Sandra Patricia; Ramírez Cadavid, David Alexander; Ossa Orozco, Claudia Patricia; Zapata Ocampo, Paola; Atehortúa, Lucía

    2014-01-01

    The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144?mg/g?1 (milligrams of chitin/grams of dry biomass) for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD), by Fourier transform infrared spectroscopy (FTIR), and by thermal analysis (TGA). The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated. PMID:24551839

  7. Metastability of nematic gels made of aqueous chitin nanocrystal dispersions.

    PubMed

    Tzoumaki, Maria V; Moschakis, Thomas; Biliaderis, Costas G

    2010-01-11

    Chitin nanocrystal aqueous dispersions were prepared by acid hydrolysis of crude chitin from crab shells. The resulting dispersions were studied with small deformation oscillatory experiments and polarized optical microscopy under different conditions of nanocrystal concentration, ionic strength, pH, and temperature. The chitin nanocrystal dispersions exhibited a nematic gel-like behavior with increasing solids concentration. The appearance of nematic-like structures could be explained by the Onsager theory for parallel alignment of anisotropic particles on entropic terms, while the sol-gel transition could be attributed to associative interactions between the chitin nanocrystals. With increasing ionic strength and pH, such associative interactions were enhanced, because the repulsive forces due to the electrostatic charges were reduced and, thus, stronger gels were formed. Heating of the nanocrystal dispersions led to further increases in the storage modulus (G'), which were irreversible upon cooling; the rate of G' increase (dG'/dt) was dependent on temperature. PMID:19947640

  8. Emerging chitin and chitosan nanofibrous materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-07-01

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  9. Bacterial Chitin Hydrolysis in Two Lakes with Contrasting Trophic Statuses

    PubMed Central

    Carstens, Dörte; Keller, Esther; Vazquez, Francisco; Schubert, Carsten J.; Zeyer, Josef; Bürgmann, Helmut

    2012-01-01

    Chitin, which is a biopolymer of the amino sugar glucosamine (GlcN), is highly abundant in aquatic ecosystems, and its degradation is assigned a key role in the recycling of carbon and nitrogen. In order to study the significance of chitin decomposition in two temperate freshwater lakes with contrasting trophic and redox conditions, we measured the turnover rate of the chitin analog methylumbelliferyl-N,N?-diacetylchitobioside (MUF-DC) and the presence of chitinase (chiA) genes in zooplankton, water, and sediment samples. In contrast to the eutrophic and partially anoxic lake, chiA gene fragments were detectable throughout the oligotrophic water column and chiA copy numbers per ml of water were up to 15 times higher than in the eutrophic waters. For both lakes, the highest chiA abundance was found in the euphotic zone—the main habitat of zooplankton, but also the site of production of easily degradable algal chitin. The bulk of chitinase activity was measured in zooplankton samples and the sediments, where recalcitrant chitin is deposited. Both, chiA abundance and chitinase activity correlated well with organic carbon, nitrogen, and concentrations of particulate GlcN. Our findings show that chitin, although its overall contribution to the total organic carbon is small (?0.01 to 0.1%), constitutes an important microbial growth substrate in these temperate freshwater lakes, particularly where other easily degradable carbon sources are scarce. PMID:22101058

  10. Bacterial chitin hydrolysis in two lakes with contrasting trophic statuses.

    PubMed

    Köllner, Krista E; Carstens, Dörte; Keller, Esther; Vazquez, Francisco; Schubert, Carsten J; Zeyer, Josef; Bürgmann, Helmut

    2012-02-01

    Chitin, which is a biopolymer of the amino sugar glucosamine (GlcN), is highly abundant in aquatic ecosystems, and its degradation is assigned a key role in the recycling of carbon and nitrogen. In order to study the significance of chitin decomposition in two temperate freshwater lakes with contrasting trophic and redox conditions, we measured the turnover rate of the chitin analog methylumbelliferyl-N,N'-diacetylchitobioside (MUF-DC) and the presence of chitinase (chiA) genes in zooplankton, water, and sediment samples. In contrast to the eutrophic and partially anoxic lake, chiA gene fragments were detectable throughout the oligotrophic water column and chiA copy numbers per ml of water were up to 15 times higher than in the eutrophic waters. For both lakes, the highest chiA abundance was found in the euphotic zone--the main habitat of zooplankton, but also the site of production of easily degradable algal chitin. The bulk of chitinase activity was measured in zooplankton samples and the sediments, where recalcitrant chitin is deposited. Both, chiA abundance and chitinase activity correlated well with organic carbon, nitrogen, and concentrations of particulate GlcN. Our findings show that chitin, although its overall contribution to the total organic carbon is small (~0.01 to 0.1%), constitutes an important microbial growth substrate in these temperate freshwater lakes, particularly where other easily degradable carbon sources are scarce. PMID:22101058

  11. Digestibility of chitin in cod, Gadus morhua, in vivo

    NASA Astrophysics Data System (ADS)

    Danulat, Eva

    1987-12-01

    Sixteen cod, Gadus morhua (L.), were individually fed a single ration of shrimps, Crangon allmanni. Four fish were killed and examined 6, 12, 24 and 48 h after the fish had been fed. Chitinase activities were measured in the extracts of stomach contents, stomach tissue, pyloric caecae, intestinal contents and intestinal tissue. The level of enzyme activity in different parts of the digestive tract was shown to be dependent on the phase of the digestive process. High concentrations of the chitin degradation product N-acetyl-D-glucosamine were determined in the stomach and in the intestinal contents. Based on the chitin concentration in the food organisms and the individual food uptake, the amount of chitin consumed by each fish could be calculated. Only up to 9% of the ingested chitin was recovered from the intestinal contents of the fish at any given time after feeding (6, 12, 24 and 48 h). In addition, only 2.4% of the chitin consumed with the food could be recovered in the collected faeces of the fish. The 4 cod killed 48 h after feeding had completely emptied their stomach. Chitin digestion in these fish was calculated to have been 90%.

  12. Aspergillus fumigatus devoid of cell wall ?-1,3-glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors.

    PubMed

    Dichtl, Karl; Samantaray, Sweta; Aimanianda, Vishukumar; Zhu, Zhaojun; Prévost, Marie-Christine; Latgé, Jean-Paul; Ebel, Frank; Wagener, Johannes

    2015-02-01

    Echinocandins inhibit ?-1,3-glucan synthesis and are one of the few antimycotic drug classes effective against Aspergillus spp. In this study, we characterized the ?-1,3-glucan synthase Fks1 of Aspergillus fumigatus, the putative target of echinocandins. Data obtained with a conditional mutant suggest that fks1 is not essential. In agreement, we successfully constructed a viable ?fks1 deletion mutant. Lack of Fks1 results in characteristic growth phenotypes similar to wild type treated with echinocandins and an increased susceptibility to calcofluor white and sodium dodecyl sulfate. In agreement with Fks1 being the only ?-1,3-glucan synthase in A.?fumigatus, the cell wall is devoid of ?-1,3-glucan. This is accompanied by a compensatory increase of chitin and galactosaminogalactan and a significant decrease in cell wall galactomannan due to a massively enhanced galactomannan shedding. Our data furthermore suggest that inhibition of hyphal septation can overcome the limitations of echinocandin therapy. Compounds inhibiting septum formation boosted the antifungal activity of caspofungin. Thus, development of clinically applicable inhibitors of septum formation is a promising strategy to improve existing antifungal therapy. PMID:25425041

  13. INHIBITOR STUDIES ON MYCOBACTERIUM TUBERCULOSIS MALATE SYNTHASE 

    E-print Network

    Owen, Joshua

    2008-08-03

    The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has intensified efforts to discover novel drugs for tuberculosis (TB) treatment. Targeting the persistent state of Mtb, a condition in which Mtb is resistant...

  14. INHIBITOR STUDIES ON MYCOBACTERIUM TUBERCULOSIS MALATE SYNTHASE

    E-print Network

    Owen, Joshua

    2008-08-03

    observed. Table 10 shows an example of this phenomenon. 45 Table 10. The position effect of the methyl group on the PKBA phenyl ring. Compound ID Modification % Inhibition @ 50 µM % Inhibition @ 1 µM MIC (µM) for –MS; -MS + TBMS PKBA - 79... be compared (Table 11). 46 Table 11. The position effect of modifications to the PKBA phenyl ring. Compound ID Modification % Inhibition @ 50 µM % Inhibition @ 1 µM MIC (µM) for –MS; -MS + TBMS PKBA - 79 29; 41 (d) >100; >100 JSF-1030 2-naphthyl 100...

  15. Folate Receptor Targeted Thymidylate Synthase Inhibitors

    Microsoft Academic Search

    Ann L. Jackman; Gerrit Jansen; Matthew Ng

    \\u000a Antifolate drugs used for cancer treatment lack the level of tissue ­targeting desired by the new drug development paradigm.\\u000a This is because their most pharmacologically relevant cell membrane transporter (the reduced-folate carrier [RFC]) and intracellular\\u000a targets are not tumor specific. A number of folate receptor (FR)-targeted agents for the imaging and treatment of cancer have\\u000a entered clinical studies in the

  16. Structural differences between chitin and chitosan extracted from three different marine sources.

    PubMed

    Hajji, Sawssen; Younes, Islem; Ghorbel-Bellaaj, Olfa; Hajji, Rachid; Rinaudo, Marguerite; Nasri, Moncef; Jellouli, Kemel

    2014-04-01

    Three marine sources of chitin from Tunisia were investigated. Structural differences between ?-chitin from shrimp (Penaeus kerathurus) waste, crab (Carcinus mediterraneus) shells, and ?-chitin from cuttlefish (Sepia officinalis) bones were studied by the (13)C NMR, FTIR, and XRD diffractograms. The (13)C NMR analysis showed a splitting of the C3 and C5 carbon signals for ?-chitin, while that of ?-chitin was merged into a single resonance. The bands contour of deconvoluted and curve-fit FTIR spectra showed a more detailed structure of ?-chitin in the region of O-H, N-H and CO stretching regions. IR and (13)C NMR were used to determine the chitin degree of acetylation (DA). XRD analysis indicated that ?-chitins were more crystalline polymorph than ?-chitin. Shrimp chitin was obtained with a good yield (20% on raw material dry weight) and no residual protein and salts. Chitosans, with a DA lower than 20% and relatively low molecular masses were prepared from the wet chitins in the same experimental conditions. They were perfectly soluble in acidic medium. Nevertheless, chitin and chitosan characteristics were depending upon the chitin source. PMID:24468048

  17. Plant callose synthase complexes

    Microsoft Academic Search

    Desh Pal S. Verma; Zonglie Hong

    2001-01-01

    Synthesis of callose (ß-1,3-glucan) in plants has been a topic of much debate over the past several decades. Callose synthase could not be purified to homogeneity and most partially purified cellulose synthase preparations yielded ß-1,3-glucan in vitro, leading to the interpretation that cellulose synthase might be able to synthesize callose. While a rapid progress has been made on the genes involved

  18. Chitin in the Silk Gland Ducts of the Spider Nephila edulis and the Silkworm Bombyx mori

    PubMed Central

    Davies, Gwilym J. G.; Knight, David P.; Vollrath, Fritz

    2013-01-01

    Here we report the detection and localisation of chitin in the cuticle of the spinning ducts of both the spider Nephila edulis and the silkworm Bombyx mori. Our observations demonstrate that the duct walls of both animals contain chitin notwithstanding totally independent evolutionary pathways of the systems. We conclude that chitin may well be an essential component for the construction of spinning ducts; we further conclude that in both species chitin may indicate the evolutionary origin of the spinning ducts. PMID:24015298

  19. Cartilage regeneration by novel polyethylene oxide/chitin/chitosan scaffolds.

    PubMed

    Kuo, Yung-Chih; Ku, I-Nan

    2008-10-01

    This study presents the application of novel PEO/chitin/chitosan scaffolds for the cultivation of bovine knee chondrocytes (BKCs). The results reveled that the composition strongly affected physicochemical characteristics of the ternary scaffolds. Based on the contours of porosity, the percentage of void space in these scaffolds was estimated to be higher than 90%. In regard to mechanical strength, the composition of 50% chitin and 50% chitosan in the scaffold led to the maximum of Young's modulus. Moreover, large extensibility of the scaffolds occurred at the following range of the composition: PEO > 37.5%, chitin < 25%, and chitosan <62.5%. After cultivation of BKCs over 4 weeks, the percentage of biodegradation was normally between 30 and 60%. The formation of neocartilage was assessed by the amounts of BKCs, glycosaminoglycans and collagens in the cultured BKC-polymer constructs. Better chondrogenesis was obtained at the following range of the composition: 25% < PEO < 40%, 12.5% < chitin < 37.5%, and 30% < chitosan < 50%. Thus, the regeneration of cartilaginous components could be manipulated simply by controlling the composition of PEO, chitin, and chitosan in the hybrid scaffolds. PMID:18771317

  20. Activity staining method of chitinase on chitin agar plate through polyacrylamide gel electrophoresis

    Microsoft Academic Search

    Vipul Gohel; Pranav Vyas; H. S. Chhatpar

    2005-01-01

    A method for detection of chitinase activity on chitin agar plate after polyacrylamide gel electrophoresis is described. Different staining dyes such as calcofluor white M2R, fluorescein isothiocyanate, rhodamine B, ruthenium red and congo red were separately incorporated in chitin agar plates. After running polyacrylamide gel electrophoresis, the gel was transferred onto chitin agar plate containing different dyes for the activity

  1. Chitin-based tubes for tissue engineering in the nervous system

    Microsoft Academic Search

    Thomas Freier; Rivelino Montenegro; Hui Shan Koh; Molly S. Shoichet

    2005-01-01

    The purpose of this study was to investigate chitin and chitosan as potential materials for biodegradable nerve guides. Transparent chitin hydrogel tubes were synthesized, for the first time, from chitosan solutions using acylation chemistry and mold casting techniques. Alkaline hydrolysis of chitin tubes resulted in chitosan tubes, with the extent of hydrolysis controlling the resulting amine content. This, in turn,

  2. Mammalian nitric oxide synthases

    Microsoft Academic Search

    Dennis J Stuehr

    1999-01-01

    The nitric oxide (NO) synthase family of enzymes generate NO from l-arginine, which acts as a biologic effector molecule in a broad number of settings. This report summarizes some of the current information regarding NO synthase structure-function, reaction mechanism, control of catalysis, and protein interactions.

  3. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF7 and SKBr-3 breast cancer cells

    Microsoft Academic Search

    Binqiu Liu; Yingqiang Wang; Kerry L. Fillgrove; Vernon E. Anderson

    2002-01-01

    . Background and purpose: Human type I fatty acid synthase has been proposed as a chemotherapeutic target for the treatment of breast cancer based on the inactivation of human #-ketoacyl synthase activity by cerulenin. Triclosan, a common antibiotic, functions by inhibiting the enoyl-reductase enzymes of type II fatty acid synthases in susceptible bacteria. If triclosan is an inhibitor of human

  4. Chitin-Induced Carbotype Conversion in Vibrio vulnificus?†

    PubMed Central

    Neiman, Jana; Guo, Yunzhi; Rowe-Magnus, Dean A.

    2011-01-01

    As an etiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionaceae. The most intensely studied of its virulence factors is the capsular polysaccharide (CPS). Over 100 CPS types have been identified, yet little is known about the genetic mechanisms that drive such diversity. Chitin, the second-most-abundant polysaccharide in nature, is known to induce competence in Vibrio species. Here, we show that the frequency of chitin-induced transformation in V. vulnificus varies by strain and that (GlcNAc)2 is the shortest chitin-derived polymer capable of inducing competence. Transformation frequencies (TFs) increased 8-fold when mixed-culture biofilms were exposed to a strain-specific lytic phage, suggesting that the lysis of dead cells during lytic infection increased the amount of extracellular DNA within the biofilm that was available for transfer. Furthermore, we show that V. vulnificus can undergo chitin-dependent carbotype conversion following the uptake and recombination of complete cps loci from exogenous genomic DNA (gDNA). The acquisition of a partial locus was also demonstrated when internal regions of homology between the endogenous and exogenous loci existed. This suggested that the same mechanism governing the transfer of complete cps loci also contributed to their evolution by generating novel combinations of CPS biosynthesis genes. Since no evidence that cps loci were preferentially acquired during natural transformation (random transposon-tagged DNA was readily taken up in chitin transformation assays) exists, the phenomenon of chitin-induced transformation likely plays an important but general role in the evolution of this genetically promiscuous genus. PMID:21670169

  5. Chitin-induced carbotype conversion in Vibrio vulnificus.

    PubMed

    Neiman, Jana; Guo, Yunzhi; Rowe-Magnus, Dean A

    2011-08-01

    As an etiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionaceae. The most intensely studied of its virulence factors is the capsular polysaccharide (CPS). Over 100 CPS types have been identified, yet little is known about the genetic mechanisms that drive such diversity. Chitin, the second-most-abundant polysaccharide in nature, is known to induce competence in Vibrio species. Here, we show that the frequency of chitin-induced transformation in V. vulnificus varies by strain and that (GlcNAc)(2) is the shortest chitin-derived polymer capable of inducing competence. Transformation frequencies (TFs) increased 8-fold when mixed-culture biofilms were exposed to a strain-specific lytic phage, suggesting that the lysis of dead cells during lytic infection increased the amount of extracellular DNA within the biofilm that was available for transfer. Furthermore, we show that V. vulnificus can undergo chitin-dependent carbotype conversion following the uptake and recombination of complete cps loci from exogenous genomic DNA (gDNA). The acquisition of a partial locus was also demonstrated when internal regions of homology between the endogenous and exogenous loci existed. This suggested that the same mechanism governing the transfer of complete cps loci also contributed to their evolution by generating novel combinations of CPS biosynthesis genes. Since no evidence that cps loci were preferentially acquired during natural transformation (random transposon-tagged DNA was readily taken up in chitin transformation assays) exists, the phenomenon of chitin-induced transformation likely plays an important but general role in the evolution of this genetically promiscuous genus. PMID:21670169

  6. Dynamics of Gram-negative bacteria population density in a soil in the course of the succession initiated by chitin and cellulose

    NASA Astrophysics Data System (ADS)

    Konstantin, Ivanov; Lubov, Polyanskaya

    2014-05-01

    The functions of actinomycetes in polymer destruction in soil traditionally considered as the dominant, compare to another groups of bacteria. Gram-positive bacteria also have ecological functions in destruction of soil organic matter. The role of Gram-negative bacteria has been researched in the microbial succession in terms of polymers destruction, which are widely spreads in soils: chitin and cellulose. The method with nalidixic acid as an inhibitor of DNA division of Gram-negative bacteria was modified. By modified method microbial succession of Gram-negative bacteria in the different horizons of a chernozem under aerobic and anaerobic conditions was researched. Chitin and cellulose as the source of nutrients with moistening was used in experiments. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria in a chernozem, but it advanced the date of their appearance in microbial succession: the maximum of Gram-negative bacteria population density was registered on the 3rd- 7th day of the experiment with adding chitin. Compare to the control, which one was without any nutrient adding this dynamics registered much earlier. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria in soil already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram-negative bacteria in the lower layer of the A horizon of the chernozem and in the B horizon was slightly higher only in the case of the chitin introduction. When cellulose was introduced into the soil under aerobic conditions, the population density of Gram-negative bacteria in all the layers of the A horizon of the chernozem was maximal from the 14th to the 22nd day of the experiment. Simultaneously, an increase in the length of the actinomycetal mycelium was observed, as these organisms also perform cellulose hydrolysis in soils. The Gram-negative bacteria began to develop at the stage of the fungal mycelium destruction, which indirectly confirmed the chitinolytic activity of these bacteria.

  7. Characterization of Citrate Synthase from Geobacter sulfurreducens and Evidence for a Family of Citrate Synthases Similar to Those of Eukaryotes throughout the Geobacteraceae

    PubMed Central

    Bond, Daniel R.; Mester, Tünde; Nesbø, Camilla L.; Izquierdo-Lopez, Andrea V.; Collart, Frank L.; Lovley, Derek R.

    2005-01-01

    Members of the family Geobacteraceae are commonly the predominant Fe(III)-reducing microorganisms in sedimentary environments, as well as on the surface of energy-harvesting electrodes, and are able to effectively couple the oxidation of acetate to the reduction of external electron acceptors. Citrate synthase activity of these organisms is of interest due to its key role in acetate metabolism. Prior sequencing of the genome of Geobacter sulfurreducens revealed a putative citrate synthase sequence related to the citrate synthases of eukaryotes. All citrate synthase activity in G. sulfurreducens could be resolved to a single 49-kDa protein via affinity chromatography. The enzyme was successfully expressed at high levels in Escherichia coli with similar properties as the native enzyme, and kinetic parameters were comparable to related citrate synthases (kcat = 8.3 s?1; Km = 14.1 and 4.3 ?M for acetyl coenzyme A and oxaloacetate, respectively). The enzyme was dimeric and was slightly inhibited by ATP (Ki = 1.9 mM for acetyl coenzyme A), which is a known inhibitor for many eukaryotic, dimeric citrate synthases. NADH, an allosteric inhibitor of prokaryotic hexameric citrate synthases, did not affect enzyme activity. Unlike most prokaryotic dimeric citrate synthases, the enzyme did not have any methylcitrate synthase activity. A unique feature of the enzyme, in contrast to citrate synthases from both eukaryotes and prokaryotes, was a lack of stimulation by K+ ions. Similar citrate synthase sequences were detected in a diversity of other Geobacteraceae members. This first characterization of a eukaryotic-like citrate synthase from a prokaryote provides new insight into acetate metabolism in Geobacteraceae members and suggests a molecular target for tracking the presence and activity of these organisms in the environment. PMID:16000798

  8. In Vivo Nitric Oxide Synthase Inhibitors Can Be Deprived of This Activity: Unexpected Influence of the Tetrachloroplatinate(II) Counteranion. Crystal Structures of Bis(S-Methyl-Isothiouronium)-N,N?-Bis(3-Guanidinopropyl)Piperazinium and Hexamidinium Tetrachloroplatinates(II) Salts

    PubMed Central

    Morgant, Georges; Viossat, Bernard; Roch-Arveiller, Monique; Prognon, Patrice; Giroud, Jean-Paul; Lancelot, Jean-Charles; Robba, Max

    1998-01-01

    The synthesis and crystal structures of bis(S-methylisothiouronium) (MSTUH)+, N,N?-bis((3- guanidinopropyl)piperazinium (PipeC3GuaH4)4+ and hexamidinium (HexaH2)2+ tetrachloro platinate(ll) salts ( called hereafter PtMSTU, PtPipeC3Gua and PtHexa respectively ) were investigated. These compounds contain the “amidine” function ( - C(=NH)NH2 ) in which the H atoms supplied by the acid have become attached to the imino group of each terminal amidino function. Moreover, in PtPipeC3Gua, the nitrogen atoms of the chair-piperazine moiety are also protonated. The influence of tetrachloroplatinate(ll) counteranion ( versus sulfate, nitrate and diisethionate ) in the in vivo nitrite inhibition by the (MSTUH)+, (PipeC3GuaH4)4+ and (HexaH2)2+ cations was investigated. The three tetrachloroplatinate(ll) salts, unexpectedly, do not inhibit significantly the in vivo nitrite production in comparison with the other salts (sulfate, nitrate and diisethionate and their corresponding previous countercations) which exhibit NO synthase inhibition, especially bis(S-methylisothiouronium) sulfate, a selective and potent inducible NO synthase (iNOS) inhibitor commonly used as standard. PMID:18475834

  9. A new method for fast chitin extraction from shells of crab, crayfish and shrimp.

    PubMed

    Kaya, Murat; Baran, Talat; Karaarslan, Muhsin

    2015-08-01

    A new method for quick chitin isolation from the shells of crab, crayfish and shrimp is described. The main difference between the new method and the conventional method is two sodium hypochlorite (NaClO) treatments for 10 min each before the processes of demineralisation and deproteinisation. After the NaClO treatment, only 15 min is adequate for the demineralisation and 20 min for the deproteinisation processes. Newly extracted chitin from crab, crayfish and shrimp shells and commercial chitin were characterised using FT-IR, TGA, X-ray diffractometry and elemental analysis. From the results, it was observed that the chitins isolated with the new method and the commercial chitin had almost the same physicochemical properties. The advantage of the new method compared to traditional methods is the relatively rapid chitin extraction. When compared to the traditional chitin extraction method, the proposed method appears to be promising regarding its time and energy saving nature. PMID:25835041

  10. Characterisation of ?-chitin extracted from a lichenised fungus species Xanthoria parietina.

    PubMed

    Kaya, Murat; Hal?c?, Mehmet Gökhan; Duman, Fatih; Erdo?an, Sevil; Baran, Talat

    2015-07-01

    Lichens are symbiotic associations formed mainly by ascomycete fungi and green algae or cyanobacteria. The presence of chitin in the fungal cell wall has been revealed by previous studies. Considering the presence of fungi in the lichens, this work determines the presence of chitin in a cosmopolitan lichen species Xanthoria parietina. In this study, chitin was derived from a lichen species for the first time and its physicochemical properties were determined by Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and elemental analysis. The dry weight chitin content of X. parietina was 4.23%, and this chitin was in the ?-form. The crystalline index value of the lichen chitin was calculated as 70.1%. The chitin from X. parietina had a smooth surface. PMID:25553773

  11. Sonication of chitin-glucan, preparation of water-soluble fractions and characterization by HPLC.

    PubMed

    Mislovicová, D; Masárová, J; Bendzálová, K; Soltés, L; Machová, E

    2000-04-01

    A water-insoluble chitin-glucan complex, isolated from the mycelium of Aspergillus niger, was swollen in various aqueous media and treated subsequently by high-energy sonication. The concentration of the resulting water-soluble polysaccharide fractions was dependent on the swelling medium, the amount of the chitin-glucan complex in the suspension, and on the time of sonication. The yields of water-soluble chitin-glucan were within the range 13.6 to 24.4% relative to the mass of the original chitin-glucan. The nitrogen content obtained for the samples of water-soluble chitin-glucan indicated a higher content of chitin (3.45% of nitrogen in high-molecular fraction) than in the original water-insoluble chitin-glucan sample (1.8%). The distribution of the molecular weights of the water-soluble fractions prepared was determined by high-performance liquid chromatography. PMID:10769872

  12. Chorismate aminations: partial purification of Escherichia coli PABA synthase and mechanistic comparison with anthranilate synthase.

    PubMed

    Walsh, C T; Erion, M D; Walts, A E; Delany, J J; Berchtold, G A

    1987-07-28

    Chorismate is converted by regiospecific amination/aromatization sequences to o-aminobenzoate and p-aminobenzoate (PABA) by anthranilate synthase (AS) and PABA synthase (PABS), respectively. We report here the first partial purification of the large subunit of Escherichia coli PABA synthase, previously reported to be quantitatively inactivated in purification attempts. The subunit encoded by the pabB gene was overexpressed from a T7 promoter and purified 9-fold to 25-30% homogeneity. The pabB subunit appears unusually sensitive to inactivation by glycerol so this cosolvent is contraindicated. The Km for chorismate is 42 microM in the ammonia-dependent conversion to PABA, and we estimate a turnover number of 2.6 min-1. A variety of chorismate analogues have been prepared and examined. Of these compounds, cycloheptadienyl analogue 11 has been found to be the most potent inhibitor of Serratia marcescens anthranilate synthase (Ki = 30 microM for an RS mixture) and of the E. coli pabB subunit of PABA synthase (Ki = 226 microM). Modifications in the substituents at C-3 [enolpyruyl ether, (R)- or (S)-lactyl ether, glycolyl ether] or C-4 (O-methyl) of chorismate lead to alternate substrates. The Vmax values for (R)- and (S)-lactyl ethers are down 10-20-fold for each enzyme, and V/K analyses show the (S)-lactyl chorismate analogue to be preferred by 12/1 over (R)-lactyl for anthranilate synthase while a 3/1 preference was observed for (R)-/(S)-lactyl analogues by PABA synthase. The glycolyl ether analogue of chorismate shows 15% Vmax vs. chorismate for anthranilate synthase but is actually a faster substrate (140%) than chorismate with PABA synthase, suggesting the elimination/aromatization step from an aminocyclohexadienyl species may be rate limiting with AS but not with PABS. Indeed, studies with (R)-lactyl analogue 14 and anthranilate synthase led to accumulation of an intermediate, isolable by high-performance liquid chromatography and characterized by NMR and UV-visible spectroscopy as 6-amino-5-[(1-carboxyethyl)oxy]-1,3-cyclohexadiene-1-carboxylic acid (17). This is the anticipated intermediate predicted by our previous work with conversion of synthetic trans-6-amino-5-[(1-carboxyethenyl)oxy]-1,3-cyclohexadiene-1-carbo xylic acid (2) to anthranilate by the enzyme. Compound 17 is quantitatively converted to anthranilate on reincubation with enzyme, but at a 1.3-10-fold lower Vmax than starting lactyl substrate 14 under the conditions investigated; the basis for this kinetic variation is not yet determined. PMID:3311153

  13. Studies on taxadiene synthase 

    E-print Network

    Chow, Siew Yin

    2006-08-16

    Taxadiene synthase catalyzes the formation of taxadiene from GGPP, the universal building block of diterpenes. The cyclization of GGPP to taxadiene is generally thought to proceed through a series of monocyclic and bicyclic ...

  14. SHORT REPORT Open Access Saccharomyces cerevisiae chitin biosynthesis

    E-print Network

    Paris-Sud XI, Université de

    -acetylchitooses depends on size and structure of chito-oligosaccharides Hubert F Becker1,2* , Annie Piffeteau2,3 and Annie oligosaccharides on in vitro chitin synthesis was studied. Oligosaccharides of various natures and lengths were-acetylchitooses as it was not observed with oligosaccharides in other series, such as beta-(1,4), beta-(1,3) or alpha-(1

  15. Studies on taxadiene synthase

    E-print Network

    Chow, Siew Yin

    2006-08-16

    to taxadiene, catalyzed by taxadiene synthase. The cyclization activity was first seen in soluble extracts of T. brevefolia, which converted tritium-labeled GGPP to a tritium-labeled hydrocarbon. After dilution with 3.1 g unlabeled hydrocarbon fractions... activity using tritium-labeled GGPP, and the radioactive product isolated was confirmed to be taxadiene by GCMS. In the yew tree, taxadiene synthase is translated with a signal peptide, for transport to the plastids. After being transported...

  16. Chitin Regulation of Immune Responses: An Old Molecule With New Roles

    PubMed Central

    Lee, Chun Geun; Da Silva, Carla A.; Lee, Jae-Young; Hartl, Dominik; Elias, Jack A.

    2008-01-01

    Chitin, the second most abundant polysaccharide in nature, is commonly found in lower organisms such as fungi, crustaceans and insects, but not in mammals. Although the non-specific anti-viral and anti-tumor activities of chitin/chitin derivatives were described two decades ago, the immunological effects of chitin have been only recently been addressed. Recent studies demonstrated that chitin has complex and size-dependent effects on innate and adaptive immune responses including the ability to recruit and activate innate immune cells and induce cytokine and chemokine production via a variety of cell surface receptors including macrophage mannose receptor, toll-like receptor 2 (TLR-2), and Dectin-1. They also demonstrated adjuvant effects of chitin in allergen-induced Type 1 or Type 2 inflammation and provided insights into the important roles of chitinases and chitinase-like proteins (C/CLP) in pulmonary inflammation. The status of the field and areas of controversy are highlighted. PMID:18938241

  17. Effect of addition of water-soluble chitin on amylose film.

    PubMed

    Suzuki, Shiho; Shimahashi, Katsumasa; Takahara, Junichi; Sunako, Michihiro; Takaha, Takeshi; Ogawa, Kozo; Kitamura, Shinichi

    2005-01-01

    Amylose films blended with chitosan, which were free from additives such as acid, salt, and plasticizer, were prepared by casting mixtures of an aqueous solution of an enzymatically synthesized amylose and that of water-soluble chitin (44.1% deacetylated). The presence of a small amount of chitin (less than 10%) increased significantly the permeability of gases (N2, O2, CO2, C2H4) and improved the mechanical parameters of amylose film; particularly, the elastic modulus and elongation of the blend films were larger than those of amylose or chitin films. No antibacterial activity was observed with either amylose or water-soluble chitin films. But amylose films having a small amount of chitin showed strong antibacterial action, suggesting a morphological change in water-soluble chitin on the film surface by blending with amylose molecule. These facts suggested the presence of a molecular complex of amylose and chitosan. PMID:16283751

  18. Bioconversion to chitosan: a two stage process employing chitin deacetylase from Penicillium oxalicum SAEM-51.

    PubMed

    Pareek, Nidhi; Vivekanand, V; Agarwal, Pragati; Saroj, Samta; Singh, Rajesh P

    2013-07-25

    Chitin deacetylase from Penicillium oxalicum SAEM-51 was evaluated for bioconversion of chitin to chitosan in a two stage chemical and enzymatic process. Variations in morphology, crystallinity and thermal properties following chemical treatment were evaluated by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. Degree of deacetylation of the substrates was determined using FT-IR and elemental analysis. The pretreatment of substrate led to the decrease in crystallinity and formation of amorphous chitinous substrates to facilitate enzyme reaction. The treated chitin was further subjected to enzymatic deacetylation employing chitin deacetylase from P. oxalicum SAEM-51 to produce chitosan with considerably higher degree of deacetylation. Maximum deacetylation (79.52%) was achieved using superfine chitin, owing to its porous structure and low crystallinity. Further, derivation of reaction variables, i.e. substrate amount and enzyme dose through full-factorial central composite design led to enhanced degree of deacetylation with formation of 90% deacetylated chitosan. PMID:23768582

  19. Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats.

    PubMed

    Ji, Yali; Liang, Kai; Shen, Xinyuan; Bowlin, Gary L

    2014-01-30

    Nanocomposite fiber mats based on biodegradable polycaprolactone (PCL) and chitin nanofibril (n-chitin) were produced via electrospinning. The morphologies, thermal and mechanical properties as well as surface wettability of the fiber mats were studied by scanning electron microscopy, differential scanning calorimetry analysis, thermogravimetric analysis, dynamic mechanical analysis and static water-contact-angle analysis, respectively. The addition of chitin nanofibrils into PCL resulted in a small change in thermal behavior, but a significant improvement in mechanical properties. Moreover, the surface wettability of electrospun fiber mats transformed from hydrophobicity to hydrophilicity when the chitin nanofibril content was more than 25 wt%. In addition, in vitro cell culture results indicated that the addition of chitin nanofibrils can strongly improve the cellular infiltration and migration confirming that the chitin nanofibril was a good reinforcing as well as bioactive filler for PCL. PMID:24299750

  20. Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

    PubMed

    Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki

    2012-09-01

    Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of ?-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. PMID:24751085

  1. Inhibition of Inducible Nitric Oxide Synthase in Murine Visceral Larva Migrans: Effects on Lung and Liver Damage

    Microsoft Academic Search

    Cihan Demirci; Aysen Gargili; Handan Cetinkaya; Ilhan Uyaner; Basak Boynuegri; M. Koray Gumustas

    2006-01-01

    The roles of nitric oxide production and oxidative process were studied in mice infected with Toxocara canis and treated with aminoguanidine which is a specific inhibitor of inducible nitric oxide synthase (iNOS). Relations of nitric oxide synthase inhibition and tissue pathology were assessed by biochemical, histological and immunohistochemical methods. In experiments, Balb\\/c albino mice were inoculated with T. canis eggs

  2. A comparative study of sorption of chromium (III) onto chitin and chitosan

    NASA Astrophysics Data System (ADS)

    Singh, Pooja; Nagendran, R.

    2014-07-01

    Heavy metals have always been the most hazardous components in the wastewater of industries like electroplating, automobiles, mining facilities and fertilizer manufacturers. Treatment of heavy metal laden wastewater requires expensive operational and maintenance systems. Food processing industries create a huge amount of shell waste which is sold to poultry farms in powdered form but the quantity thus used is still not comparable to the left over waste. The shell contains chitin which acts as an adsorbent for the heavy metals and can be used to treat heavy metal wastewater. The paper presents a study on the use of chitin and its processed product, chitosan, to remove chromium. Shake flask experiment was conducted to compare the adsorptive capacity of chitin and chitosan for chromium removal from simulated solution and isotherm studies were carried out. The studies showed that the chitosan was a better adsorbent than chitin. Both chitin and chitosan gave best adsorption results at pH 3. Chitin exhibited maximum chromium removal of 49.98 % in 20 min, whereas chitosan showed 50 % removal efficiency at a contact time of 20 min showing higher adsorptive capacity for chromium than chitin. The Langmiur and Freundlich isotherm studies showed very good adsorption capacity and monolayer interaction according to the regression coefficient 0.973 for chitosan and 0.915 for chitin. The regression coefficient for Freundlich isotherm was 0.894 and 0.831 for chitosan and chitin, respectively.

  3. Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan

    PubMed Central

    Mushi, Ngesa E.; Utsel, Simon; Berglund, Lars A.

    2014-01-01

    Chitosan is widely used in films for packaging applications. Chitosan reinforcement by stiff particles or fibers is usually obtained at the expense of lowered ductility and toughness. Here, chitosan film reinforcement by a new type of native chitin nanofibers is reported. Films are prepared by casting from colloidal suspensions of chitin in dissolved chitosan. The nanocomposite films are chitin nanofiber networks in chitosan matrix. Characterization is carried out by dynamic light scattering, quartz crystal microbalance, field emission scanning electron microscopy, tensile tests and dynamic mechanical analysis. The polymer matrix nanocomposites were produced in volume fractions of 8, 22, and 56% chitin nanofibers. Favorable chitin-chitosan synergy for colloidal dispersion is demonstrated. Also, lowered moisture sorption is observed for the composites, probably due to the favorable chitin-chitosan interface. The highest toughness (area under stress-strain curve) was observed at 8 vol% chitin content. The toughening mechanisms and the need for well-dispersed chitin nanofibers is discussed. Finally, desired structural characteristics of ductile chitin biocomposites are discussed. PMID:25478558

  4. Recent trends in biological extraction of chitin from marine shell wastes: a review.

    PubMed

    Kaur, Surinder; Dhillon, Gurpreet Singh

    2015-03-01

    The natural biopolymer chitin and its deacetylated product chitosan are widely used in innumerable applications ranging from biomedicine, pharmaceuticals, food, agriculture and personal care products to environmental sector. The abundant and renewable marine processing wastes are commercially exploited for the extraction of chitin. However, the traditional chitin extraction processes employ harsh chemicals at elevated temperatures for a prolonged time which can harm its physico-chemical properties and are also held responsible for the deterioration of environmental health. In view of this, green extraction methods are increasingly gaining popularity due to their environmentally friendly nature. The bioextraction of chitin from crustacean shell wastes has been increasingly researched at the laboratory scale. However, the bioextraction of chitin is not currently exploited to its maximum potential on the commercial level. Bioextraction of chitin is emerging as a green, cleaner, eco-friendly and economical process. Specifically in the chitin extraction, microorganisms-mediated fermentation processes are highly desirable due to easy handling, simplicity, rapidity, controllability through optimization of process parameters, ambient temperature and negligible solvent consumption, thus reducing environmental impact and costs. Although, chitin production from crustacean shell waste through biological means is still at its early stage of development, it is undergoing rapid progress in recent years and showing a promising prospect. Driven by reduced energy, wastewater or solvent, advances in biological extraction of chitin along with valuable by-products will have high economic and environmental impact. PMID:24083454

  5. Effects of moisture on tablet compression of chitin

    Microsoft Academic Search

    Viviana García Mir; Jyrki Heinämäki; Osmo Antikainen; Antonio Iraizoz Colarte; Sari Airaksinen; Milja Karjalainen; Ofelia Bilbao Revoredo; Olga Maria Nieto; Jouko Yliruusi

    2011-01-01

    Direct compression of chitin was studied with special reference to the effects of moisture content on tablet formation and properties. Two cellulosic direct compression materials, microcrystalline cellulose (MCC) and spray-dried lactose-cellulose (SDLC, (Cellactose®) were used as reference materials. The compaction studies were carried out using an instrumented single-punch tablet machine. For physical material characterisation, water sorption isotherms were determined gravimetrically

  6. The role of chitin in uranium adsorption by R. arrhizus

    Microsoft Academic Search

    Marios Tsezos

    1983-01-01

    In order to further refine and support the uranium biosorption mechanism hypothesis proposed for Rhizopus arrhizus, uranium competitive equilibrium uptake isotherms by chitin were determined at two different solution pH levels and in the presence of different concentrations of competing ions, namely, Cu\\/sup 2 +\\/, Zn\\/sup 2 +\\/, and Fe\\/sup 2 +\\/. The co-ion effect became more pronounced as the

  7. Chitin dipentanoate as the new technologically usable biomaterial.

    PubMed

    Sko?ucka-Szary, Karolina; Rami?ga, Aleksandra; Piaskowska, Wanda; Janicki, Bartosz; Grala, Magdalena; Rieske, Piotr; Stoczy?ska-Fidelus, Ewelina; Piaskowski, Sylwester

    2015-10-01

    In this article, the synthesis of novel biopolymer, chitin dipentanoate (Di-O-Valeryl Chitin, DVCH) has been described. DVCH is a chitin derivative esterified with two valeryl groups at positions 3 and 6 of the N-acetylglucosamine units and it is soluble in common organic solvents like ethanol, methanol, acetone, dichloromethane, 1,2-dichloroethane, N,N-dimethylmethanamide, N,N-dimethylacetamide and ethyl acetate. Highly efficient synthesis (degree of esterification close to 2) of DVCH was achieved by employing a huge excess of valeric anhydride used as both the acylation agent and the reaction medium in the presence of perchloric acid as catalyst. Studies on the DVCH synthesis were aimed at finding optimal conditions (temperature, reaction time) to obtain DVCH with high reaction yield and desirable physicochemical properties. Biological data demonstrate that DVCH is non-cytotoxic in vitro and doesn't exert irritating or allergic effects to animal skin. Thanks to its filmogenic properties, it can be used to manufacture threads, foils, foams and non-woven materials. Moreover, DVCH can be easily processed by salt-leaching method to prepare highly porous structures exhibiting open-cell architecture, that can be further employed in wound dressing therapies and scaffolds for tissue engineering. PMID:26117738

  8. An Inhibitor of the ?PKC Interaction with the d Subunit of F1Fo ATP Synthase Reduces Cardiac Troponin I Release from Ischemic Rat Hearts: Utility of a Novel Ammonium Sulfate Precipitation Technique

    PubMed Central

    Ogbi, Mourad; Obi, Ijeoma; Johnson, John A.

    2013-01-01

    We have previously reported protection against hypoxic injury by a cell-permeable, mitochondrially-targeted ?PKC-d subunit of F1Fo ATPase (dF1Fo) interaction inhibitor [NH2-YGRKKRRQRRRMLA TRALSLIGKRAISTSVCAGRKLALKTIDWVSFDYKDDDDK-COOH] in neonatal cardiac myo-cytes. In the present work we demonstrate the partitioning of this peptide to the inner membrane and matrix of mitochondria when it is perfused into isolated rat hearts. We also used ammonium sulfate ((NH4)2SO4) and chloroform/methanol precipitation of heart effluents to demonstrate reduced card-iac troponin I (cTnI) release from ischemic rat hearts perfused with this inhibitor. 50% (NH4)2SO4 saturation of perfusates collected from Langendorff rat heart preparations optimally precipitated cTnI, allowing its detection in Western blots. In hearts receiving 20 min of ischemia followed by 30, or 60 min of reperfusion, the Mean±S.E. (n?=?5) percentage of maximal cTnI release was 30±7 and 60±17, respectively, with additional cTnI release occurring after 150 min of reperfusion. Perfusion of hearts with the ?PKC-dF1Fo interaction inhibitor, prior to 20 min of ischemia and 60–150 min of reperfusion, reduced cTnI release by 80%. Additionally, we found that when soybean trypsin inhibitor (SBTI), was added to rat heart effluents, it could also be precipitated using (NH4)2SO4 and detected in western blots. This provided a convenient method for normalizing protein recoveries between groups. Our results support the further development of the ?PKC-dF1Fo inhibitor as a potential therapeutic for combating cardiac ischemic injury. In addition, we have developed an improved method for the detection of cTnI release from perfused rat hearts. PMID:23936451

  9. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata).

    PubMed

    Kaya, Murat; Baran, Talat; Erdo?an, Sevil; Mente?, Ayfer; Özüsa?lam, Meltem A?an; Çakmak, Yavuz Selim

    2014-12-01

    Chitins and chitosans obtained from larva and adult Colorado potato beetles (Leptinotarsa decemlineata) were physico-chemically characterized and differences between adults and larvae were identified. The dry weight chitin contents of the adult Colorado potato beetles and larvae were determined as 20% and 7%, respectively. The chitin produced chitosan yields of 72% from the adult Colorado potato beetles and 67% from the larvae. FTIR analysis showed that the isolated chitins were in the alpha form. Crystalline index values, determined by XRD, were 72% for larvae and 76% for adults. The degradation temperatures of the isolated chitin structures were measured by TGA, and this showed that the chitin from adult Colorado potato beetles had a more stable structure than that from the larvae. The surface morphologies of the isolated chitin and chitosan structures were analysed with SEM and it was revealed that these structures consisted of nanofibres. According to elemental analysis, the purity of chitin and chitosan from adults was greater than that from the larvae. The results of molecular analysis showed that the chitosans from adults (2.722 kDa) and larvae (2.676 kDa) of the Colorado potato beetle have low molecular weights. Antimicrobial and antioxidant activities of both adult and larval chitosans were determined. The adult potato beetle is more appropriate than the larvae as an alternative chitin source because of the fact that its dry weight chitin content, chitosan yield and purity of chitin are higher than those from the larvae, and its antimicrobial and antioxidant activities are also higher than those from the larvae. PMID:25491803

  10. Chitin utilisation by broilers and its effect on body composition and blood metabolites.

    PubMed

    Hossain, S M; Blair, R

    2007-02-01

    1. Little is known about the ability of farmed poultry to digest chitin and derive nutrients from the ingestion of insects. 2. Commercial chitin derived from crustacean shell waste was found to contain 373 g crude protein, 265 g ash, 23.5 g ether extract, 130 g calcium and 16.4 g phosphorus per kg, on an air-dry basis. 3. It was included in diets at 0, 25, 50 and 75 g chitin per kg and fed to 320 1-d-old broiler males, over a 21-d period. There were no statistically significant treatment effects on weight gain or feed efficiency. Apparent digestibility of chitin protein was 0.48, 0.50 and 0.45, at the 25, 50 and 75 g per kg inclusions, respectively. Mean AME and AMEN values of chitin were determined as 8.97 and 8.86 MJ/kg. 4. In a subsequent study, mean TME and TMEN values of chitin were determined to be 8.23 and 8.21 MJ per kg, respectively. Addition of chitinase to the diet increased TME and TMEN of chitin to 8.81 and 8.79 MJ per kg, respectively (P<0.05). True digestibility of chitin protein was determined to be 0.87. 5. Triglyceride concentrations in liver and breast meat were significantly reduced by chitin inclusion. No significant differences in carcase yield at 21 d of age were found. Serum cholesterol and triglycerol concentrations were reduced significantly by dietary chitin, the lowest levels being observed at the 50 g per kg inclusion level. 6. These findings indicate the ability of modern poultry to digest chitin but suggest that the ingestion of insects is not an important source of nutrients, at least from the exoskeleton. PMID:17364538

  11. Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production.

    PubMed

    McAndrew, Ryan P; Peralta-Yahya, Pamela P; DeGiovanni, Andy; Pereira, Jose H; Hadi, Masood Z; Keasling, Jay D; Adams, Paul D

    2011-12-01

    The sesquiterpene bisabolene was recently identified as a biosynthetic precursor to bisabolane, an advanced biofuel with physicochemical properties similar to those of D2 diesel. High-titer microbial bisabolene production was achieved using Abies grandis ?-bisabolene synthase (AgBIS). Here, we report the structure of AgBIS, a three-domain plant sesquiterpene synthase, crystallized in its apo form and bound to five different inhibitors. Structural and biochemical characterization of the AgBIS terpene synthase Class I active site leads us to propose a catalytic mechanism for the cyclization of farnesyl diphosphate into bisabolene via a bisabolyl cation intermediate. Further, we describe the nonfunctional AgBIS Class II active site whose high similarity to bifunctional diterpene synthases makes it an important link in understanding terpene synthase evolution. Practically, the AgBIS crystal structure is important in future protein engineering efforts to increase the microbial production of bisabolene. PMID:22153510

  12. Preparation, assessment, and comparison of ?-chitin nano-fiber films with different surface charges

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-05-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized ?-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.

  13. Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan

    Microsoft Academic Search

    S. Nami Kartal; Yuji Imamura

    2005-01-01

    Chitin and chitosan are naturally abundant biopolymers which are of interest to research concerning the sorption of metal ions since the amine and hydroxyl groups on their chemical structures act as chelation sites for metal ions. This study evaluates the removal of copper, chromium, and arsenic elements from chromated copper arsenate (CCA)-treated wood via biosorption by chitin and chitosan. Exposing

  14. Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach.

    PubMed

    Jacquiod, Samuel; Franqueville, Laure; Cécillon, Sébastien; Vogel, Timothy M; Simonet, Pascal

    2013-01-01

    Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, ?-proteobacteria and ?-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome. PMID:24278158

  15. Soil Bacterial Community Shifts after Chitin Enrichment: An Integrative Metagenomic Approach

    PubMed Central

    Jacquiod, Samuel; Franqueville, Laure; Cécillon, Sébastien; M. Vogel, Timothy; Simonet, Pascal

    2013-01-01

    Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, ?-proteobacteria and ?-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome. PMID:24278158

  16. Calorimetric studies of the association of chitin and chitosan with sodium dodecyl sulfate

    Microsoft Academic Search

    Alexandre G. S Prado; Julio L Macedo; S??lvia C. L Dias; José A Dias

    2004-01-01

    The interaction of hydrophobic chitin and chitosan with sodium dodecyl sulfate (SDS) has been studied by titration calorimetry at 298.15K. The nature of interaction of the surfactant and biopolymers was followed by enthalpy interaction profiles. The mixing enthalpy curves were determined by mixing SDS solutions above their critical micelle concentration with chitin and chitosan suspensions in different concentrations. The Gibbs

  17. Preparation, assessment, and comparison of ?-chitin nano-fiber films with different surface charges.

    PubMed

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-01-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized ?-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14?±?4.3 and 190?±?140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6?±?1.7 and 320?±?105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material. PMID:26034418

  18. Production, Properties, and Some New Applications of Chitin and Its Derivatives

    Microsoft Academic Search

    Józef Synowiecki; Nadia Ali Al-Khateeb

    2003-01-01

    Chitin is a polysaccharide composed from N-acetyl-D-glucosamine units. It is the second most abundant biopolymer on Earth and found mainly in invertebrates, insects, marine diatoms, algae, fungi, and yeasts. Recent investigations confirm the suitability of chitin and its derivatives in chemistry, biotechnology, medicine, veterinary, dentistry, agriculture, food processing, environmental protection, and textile production. The development of technologies based on the

  19. Failure of L-Nitroarginine to Inhibit the Activity of Aortic Inducible Nitric Oxide Synthase

    Microsoft Academic Search

    Benoit Darblade; Sandor Batkai; Elisabeth Caussé; Pierre Gourdy; Marie-José Fouque; Jacques Rami; Jean-François Arnal

    2001-01-01

    Nitric oxide (NO) is produced by a family of three isoenzymes: the endothelial, inducible and neuronal NO synthases. L-Nitroarginine methyl ester (L-NAME) is the most commonly used inhibitor of NO synthase activity. The goal of the present study was to evaluate to what extent L-nitroarginine (L-NA), the in vivo circulating metabolite of L-NAME, blocks NO production in the rat aorta

  20. EFFECTS OF NITRIC OXIDE SYNTHASE INHIBITION IN LIPOPOLYSACCHARIDE-INDUCED SEPSIS IN MICE

    Microsoft Academic Search

    BAHAR TUNÇTAN; ORHAN ULUDA ?; SEDAT ALTU ?; NURETTIN ABACIO ?

    1998-01-01

    In the present study, we have investigated the effects of nitric oxide (NO) synthase inhibition on mortality in lipopolysaccharide (LPS)-induced sepsis in mice. Serum nitrite levels peaked at 15 h after an injection of LPS (10 mg kg?1, i.p.). Aminoguanidine, a selective inducible NO synthase (iNOS) inhibitor, at a dose of 100 mg kg?1significantly reduced the LPS-induced increase in nitrite

  1. Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: surface characteristics.

    PubMed

    Zia, Khalid Mahmood; Zuber, Mohammad; Saif, Muhammad Jawwad; Jawaid, Mohammad; Mahmood, Kashif; Shahid, Muhammad; Anjum, Muhammad Naveed; Ahmad, Mirza Nadeem

    2013-11-01

    Hydroxy terminated polybutadiene (HTPB)-chitin based polyurethanes (PUs) with controlled hydrophobicity were synthesized using HTPB and toluene diisocyanate (TDI). The prepolymer was extended with different mass ratios of chitin and 1,4-butane diol (BDO). The effect of chitin contents in chain extender (CE) proportions on surface properties was studied and investigated. Incorporation of chitin contents into the final PU showed decrease in contact angle value of water drop, water absorption (%) and swelling behavior. The antibacterial activity of the prepared samples was affected by varying the chitin contents in the chemical composition of the final PU. The results demonstrated that the use of prepared material can be suggested as non-absorbable suture. PMID:24120963

  2. Examination of the ?-chitin structure and decrystallization thermodynamics at the nanoscale.

    PubMed

    Beckham, Gregg T; Crowley, Michael F

    2011-04-21

    Chitin is the primary structural material of insect and crustacean exoskeletons and fungal and algal cell walls, and as such it is the one of the most abundant biological materials on Earth. Chitin forms linear polymers of ?1,4-linked-N-acetyl-D-glucosamine (GlcNAc), and in Nature, enzyme cocktails deconstruct chitin to GlcNAc. The mechanism of chitin deconstruction, like that of cellulose deconstruction, has been under investigation due to its importance in the global carbon cycle and in production of renewable and sustainable products from biological matter. To further understand the nanoscale properties of chitin, here we simulate crystals of ?-chitin, which is the most prevalent form in Nature. We find excellent agreement with the recently reported crystal structure and we report the salient features of the simulations related to crystalline stability. We also compute the thermodynamic work required to peel individual chains from ?-chitin surfaces, which a chitinase enzyme must conduct to deconstruct chitin. Compared with previous simulations of native plant cellulose I?, ?-chitin exhibits higher decrystallization work for chains in the middle of surfaces and similar work for chains on the edges of crystals. Unlike cellulose, the free energy profile is dominated by a single bifurcated hydrogen bond between chains formed by the GlcNAc side chains and the O6 atoms on the primary alcohol group. This study highlights the molecular features of chitin that make it such a tough, recalcitrant material, and provides a key thermodynamic parameter in our quantitative understanding of how enzymes contribute to the turnover of carbohydrates in the biosphere. PMID:21452798

  3. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    NASA Astrophysics Data System (ADS)

    Wieczorek, A. S.; Hetz, S. A.; Kolb, S.

    2014-06-01

    Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.

  4. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    NASA Astrophysics Data System (ADS)

    Wieczorek, A. S.; Hetz, S. A.; Kolb, S.

    2014-02-01

    Chitin is the second most abundant biopolymer in terrestrial ecosystems and is subject to microbial degradation. Chitin can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities has previously been unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation were along with ammonification likely responsible for apparent anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of >50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions at the level of the community.

  5. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme. PMID:24814295

  6. Farnesyl pyrophosphate synthase modulators: a patent review (2006 - 2010)

    PubMed Central

    Sun, Shuting; McKenna, Charles E.

    2012-01-01

    Introduction Farnesyl pyrophosphosphate synthase (FPPS (also known as farnesyl diphosphate synthase, FDPS)) is one of the key enzymes involved in the mevalonate pathway and as such is widely expressed. FPPS modulators, specifically FPPS inhibitors, are useful in treating a number of diseases, including bone related disorders characterized by excessive bone resorption e.g. osteoporosis, cancer metathesis to bone and infectious diseases caused by certain parasites. Areas covered This review covers structures and applications of novel FPPS modulators described in the patent literature from 2006 to 2010. Patents disclosing new formulations and uses of existing FPPS inhibitors are also reviewed. Thirty-three patents retrieved from the USPTO, EP and WIPO databases are examined with the goal of defining current trends in drug discovery related to FPPS inhibition, and its therapeutic effects. Expert opinion Bisphosphonates continue to dominate in this area, although other types of modulator are making their appearance. Remarkable for their high bone mineral affinity, bisphosphonates are structural mimics of the dimethylallyl pyrophosphate (DMAPP) substrate of FPPS, and constitute the major type of FPPS inhibitor currently used in the clinic for treatment of bone-related diseases. Lipophilic bisphosphonates and new classes of non-bisphosphonate FPPS inhibitors (salicylic acid and quinoline derivatives) have been introduced as possible alternatives for treatment of soft tissue diseases, such as some cancers. Novel formulations, fluorescent diagnostic probes and new therapeutic applications of existing FPPS inhibitors are also areas of significant patent activity, demonstrating growing recognition of the versatility and underdeveloped potential of these drugs. PMID:21702715

  7. A single amino acid substitution converts benzophenone synthase into phenylpyrone synthase.

    PubMed

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-11-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic change in both substrate and product specificities of BPS was rationalized by homology modeling. The mutation may open a new pocket that accommodates the phenyl moiety of the triketide intermediate but limits polyketide elongation to two reactions, resulting in phenylpyrone formation. 3-Hydroxybenzoyl-CoA is the second best starter molecule for BPS but a poor substrate for PPS. The aryl moiety of the triketide intermediate may be trapped in the new pocket by hydrogen bond formation with the backbone, thereby acting as an inhibitor. PPS is a promising biotechnological tool for manipulating benzoate-primed biosynthetic pathways to produce novel compounds. PMID:19710020

  8. Novel pyridyl substituted 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines as potent and selective aldosterone synthase inhibitors with improved in vitro metabolic stability.

    PubMed

    Hu, Qingzhong; Yin, Lina; Ali, Amjad; Cooke, Andrew J; Bennett, Jonathan; Ratcliffe, Paul; Lo, Michael Man-Chu; Metzger, Edward; Hoyt, Scott; Hartmann, Rolf W

    2015-03-12

    CYP11B2 inhibition is a promising treatment for diseases caused by excessive aldosterone. To improve the metabolic stability in human liver miscrosomes of previously reported CYP11B2 inhibitors, modifications were performed via a combination of ligand- and structure-based drug design approaches, leading to pyridyl 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolones. Compound 26 not only exhibited a much longer half-life (t1/2 ? 120 min), but also sustained inhibitory potency (IC50 = 4.2 nM) and selectivity over CYP11B1 (SF = 422), CYP17, CYP19, and a panel of hepatic CYP enzymes. PMID:25711516

  9. Pyrolysis GC/MS and IR spectroscopy in chitin analysis of molluscan shells.

    PubMed

    Furuhashi, Takeshi; Beran, Anton; Blazso, Marianne; Czegeny, Zsuzsanna; Schwarzinger, Clemens; Steiner, Gerhard

    2009-01-01

    Chitin is an insoluble component in the shells of several molluscan species. It is thought to play important roles, in biomineralization and shell structure. To date, however, reports are scarce and sometimes contradictory, and suffer from methodological problems. Only in a single cephalopod species has the chitin been identified as beta-chitin. We present data on chitin occurrence in 22 species of shell-bearing Mollusca (Conchifera) and Polyplacophora, including the first evidence for scaphopods, based on pyrolysis gas chromatography, mass spectrometry (GC-MS), and infrared spectroscopy (IR). Pyrolysis GC-MS detected chitin in every tested member of the Conchifera. IR spectroscopy before and after chitinase treatment revealed at least three distinct patterns of peak changes. The contents of the insoluble shell organics included not only chitin and proteins, but also insoluble polysaccharides, e.g., glucan. We conclude that chitin was present in the last common ancestor of the Conchifera and that its abundance in the shell matrix depends on the differentiation of the shell. PMID:19129649

  10. Chitin synthesis and localization in cell division cycle mutants of Saccharomyces cerevisiae.

    PubMed

    Roberts, R L; Bowers, B; Slater, M L; Cabib, E

    1983-05-01

    Growth of Saccharomyces cerevisiae cell cycle mutants cdc3, cdc4, cdc7, cdc24, and cdc28 at a nonpermissive temperature (37 degrees C) resulted in increased accumulation of chitin relative to other cell wall components, as compared with that observed at a permissive temperature (25 degrees C). Wild-type cells showed the same chitin/carbohydrate ratio at both temperatures, whereas mutants cdc13 and cdc21 yielded only a small increase in the ratio at 37 degrees C. These results confirm and extend those reported by B. F. Sloat and J. R. Pringle (Science 200:1171-1173, 1978) for mutant cdc24. The distribution of chitin in the cell wall was studied by electron microscopy, by specific staining with wheat germ agglutinin-colloidal gold complexes. At the permissive temperature, chitin was restricted to the septal region in all strains, whereas at 37 degrees C a generalized distribution of chitin in the cell wall was observed in all mutants. These results do not support a unique interdependence between the product of the cdc24 gene and localization of chitin deposition; they suggest that unbalanced conditions created in the cell by arresting the cycle at different stages result in generalized activation of the chitin synthetase zymogen. Thus, blockage of an event in the cell cycle may lead to consequences that are not functionally related to that event under normal conditions. PMID:6223209

  11. Green Conversion of Agroindustrial Wastes into Chitin and Chitosan by Rhizopus arrhizus and Cunninghamella elegans Strains

    PubMed Central

    Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Alcântara, Sergio Roberto Cabral; da Silva, Antonio Cardoso; da Silva, Adamares Marques; do Nascimento, Aline Elesbão; de Campos-Takaki, Galba Maria

    2014-01-01

    This article sets out a method for producing chitin and chitosan by Cunninghamella elegans and Rhizopus arrhizus strains using a green metabolic conversion of agroindustrial wastes (corn steep liquor and molasses). The physicochemical characteristics of the biopolymers and antimicrobial activity are described. Chitin and chitosan were extracted by alkali-acid treatment, and characterized by infrared spectroscopy, viscosity and X-ray diffraction. The effectiveness of chitosan from C. elegans and R. arrhizus in inhibiting the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli and Yersinia enterocolitica were evaluated by determining the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC). The highest production of biomass (24.60 g/L), chitin (83.20 mg/g) and chitosan (49.31 mg/g) was obtained by R. arrhizus. Chitin and chitosan from both fungi showed a similar degree of deacetylation, respectively of 25% and 82%, crystallinity indices of 33.80% and 32.80% for chitin, and 20.30% and 17.80% for chitosan. Both chitin and chitosan presented similar viscosimetry of 3.79–3.40 cP and low molecular weight of 5.08 × 103 and 4.68 × 103 g/mol. They both showed identical MIC and MBC for all bacteria assayed. These results suggest that: agricultural wastes can be produced in an environmentally friendly way; chitin and chitosan can be produced economically; and that chitosan has antimicrobial potential against pathogenic bacteria. PMID:24853288

  12. Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana).

    PubMed

    Kaya, Murat; Baran, Talat

    2015-04-01

    In this study a new morphology of chitin, which could find wide applications in the fields of medicine, pharmacy, agriculture, food and textiles, has been described. The chitin was isolated from the wings of Periplaneta americana employing a conventional method. Considering chitin isolation studies conducted previously, chitin has three surface morphologies, which are (1) hard and rough surface without pores or nanofibers, (2) surface solely composed of nanofibers and (3) surfaces with both pores and nanofibers. In this study, the surface of the chitin, examined with environmental scanning electron microscopy (ESEM), only has oval nanopores (230-510 nm) without nanofibers, and this is different from the above mentioned surface morphologies. The nanopores are not distributed on the chitin surface randomly. Typically, there is a pore in the center that is surrounded by six or seven other pores in an ordered manner. Structures similar to cell walls exist between the pores. Chitin with the new surface morphology was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), X-ray diffraction (XRD) and elemental analysis. PMID:25597430

  13. Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility.

    PubMed

    He, Meng; Wang, Zhenggang; Cao, Yan; Zhao, Yanteng; Duan, Bo; Chen, Yun; Xu, Min; Zhang, Lina

    2014-09-01

    High strength chitin/poly(vinyl alcohol) (PVA) composite hydrogels (RCP) were constructed by adding PVA into chitin dissolved in a NaOH/urea aqueous solution, and then by cross-linking with epichlorohydrin (ECH) and freezing-thawing process. The RCP hydrogels were characterized by field emission scanning electron microscopy, FTIR, differential scanning calorimetry, solid-state (13)C NMR, wide-angle X-ray diffraction, and compressive test. The results revealed that the repeated freezing/thawing cycles induced the bicrosslinked networks consisted of chitin and PVA crystals in the composite gels. Interestingly, a jellyfish gel-like structure occurred in the RCP75 gel with 25 wt % PVA content in which the amorphous and crystalline PVA were immobilized tightly in the chitin matrix through hydrogen bonding interaction. The freezing/thawing cycles played an important role in the formation of the layered porous PVA networks and the tight combining of PVA with the pore wall of chitin. The mechanical properties of RCP75 were much higher than the other RCP gels, and the compressive strength was 20× higher than that of pure chitin gels, as a result of broadly dispersing stress caused by the orderly multilayered networks. Furthermore, the cell culture tests indicated that the chitin/PVA composite hydrogels exhibited excellent biocompatibility and safety, showing potential applications in the field of tissue engineering. PMID:25077674

  14. Structures of human constitutive nitric oxide synthases.

    PubMed

    Li, Huiying; Jamal, Joumana; Plaza, Carla; Pineda, Stephanie Hai; Chreifi, Georges; Jing, Qing; Cinelli, Maris A; Silverman, Richard B; Poulos, Thomas L

    2014-10-01

    Mammals produce three isoforms of nitric oxide synthase (NOS): neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The overproduction of NO by nNOS is associated with a number of neurodegenerative disorders; therefore, a desirable therapeutic goal is the design of drugs that target nNOS but not the other isoforms. Crystallography, coupled with computational approaches and medicinal chemistry, has played a critical role in developing highly selective nNOS inhibitors that exhibit exceptional neuroprotective properties. For historic reasons, crystallography has focused on rat nNOS and bovine eNOS because these were available in high quality; thus, their structures have been used in structure-activity-relationship studies. Although these constitutive NOSs share more than 90% sequence identity across mammalian species for each NOS isoform, inhibitor-binding studies revealed that subtle differences near the heme active site in the same NOS isoform across species still impact enzyme-inhibitor interactions. Therefore, structures of the human constitutive NOSs are indispensible. Here, the first structure of human neuronal NOS at 2.03?Å resolution is reported and a different crystal form of human endothelial NOS is reported at 1.73?Å resolution. PMID:25286850

  15. Characterization of Potential Drug Targets Farnesyl Diphosphate Synthase and Geranylgeranyl Diphosphate Synthase in Schistosoma mansoni

    PubMed Central

    Ziniel, Peter D.; Desai, Janish; Cass, Cynthia L.; Gatto, Craig; Oldfield, Eric

    2013-01-01

    Schistosomiasis affects over 200 million people worldwide, with over 200,000 deaths annually. Currently, praziquantel is the only drug available against schistosomiasis. We report here that Schistosoma mansoni farnesyl diphosphate synthase (SmFPPS) and geranylgeranyl diphosphate synthase (SmGGPPS) are potential drug targets for the treatment of schistosomiasis. We expressed active, recombinant SmFPPS and SmGGPPS for subsequent kinetic characterization and testing against a variety of bisphosphonate inhibitors. Recombinant SmFPPS was found to be a soluble 44.2-kDa protein, while SmGGPPS was a soluble 38.3-kDa protein. Characterization of the substrate utilization of the two enzymes indicates that they have overlapping substrate specificities. Against SmFPPS, several bisphosphonates had 50% inhibitory concentrations (IC50s) in the low micromolar to nanomolar range; these inhibitors had significantly less activity against SmGGPPS. Several lipophilic bisphosphonates were active against ex vivo adult worms, with worm death occurring over 4 to 6 days. These results indicate that FPPS and GGPPS could be of interest in the context of the emerging resistance to praziquantel in schistosomiasis therapy. PMID:24041901

  16. Solvothermal synthesis of hydrophobic chitin-polyhedral oligomeric silsesquioxane (POSS) nanocomposites.

    PubMed

    Wysokowski, Marcin; Materna, Katarzyna; Walter, Juliane; Petrenko, Iaroslav; Stelling, Allison L; Bazhenov, Vasilii V; Klapiszewski, ?ukasz; Szatkowski, Tomasz; Lewandowska, Olga; Stawski, Dawid; Molodtsov, Serguei L; Maciejewski, Hieronim; Ehrlich, Hermann; Jesionowski, Teofil

    2015-07-01

    Chitinous scaffolds isolated from the skeleton of marine sponge Aplysina cauliformis were used as a template for the deposition of polyhedral oligomeric silsesquioxanes (POSS). These chitin-POSS based composites with hydrophobic properties were prepared for the first time using solvothermal synthesis (pH 3, temp 80°C), and were thoroughly characterized. The resulting material was studied using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetry. A mechanism for the chitin-POSS interaction after exposure to these solvothermal conditions is proposed and discussed. PMID:25889055

  17. Purification and Characterization of Dihydrodipicolinate Synthase from Pea

    PubMed Central

    Dereppe, Catherine; Bold, Guido; Ghisalba, Oreste; Ebert, Edith; Schär, Hans-Peter

    1992-01-01

    Dihydrodipicolinate synthase (EC 4.2.1.52), the first enzyme unique to lysine biosynthesis in bacteria and higher plants, has been purified to homogeneity from etiolated pea (Pisum sativum) seedlings using a combination of conventional and affinity chromatographic steps. This is the first report on a homogeneous preparation of native dihydrodipicolinate synthase from a plant source. The pea dihydrodipicolinate synthase has an apparent molecular weight of 127,000 and is composed of three identical subunits of 43,000 as determined by gel filtration and cross-linking experiments. The trimeric quaternary structure resembles the trimeric structure of other aldolases, such as 2-keto-3-deoxy-6-phosphogluconic acid aldolase, which catalyze similar aldol condensations. The amino acid compositions of dihydrodipicolinate synthase from pea and Escherichia coli are similar, the most significant difference concerns the methionine content: dihydrodipicolinate synthase from pea contains 22 moles of methionine residue per mole of native protein, contrary to the E. coli enzyme, which does not contain this amino acid at all. Dihydrodipicolinate synthase from pea is highly specific for the substrates pyruvate and l-aspartate-?-semialdehyde; it follows Michaelis-Menten kinetics for both substrates. The pyruvate and l-aspartate-?-semialdehyde have Michaelis constant values of 1.70 and 0.40 millimolar, respectively. l-Lysine, S-(2-aminoethyl)-l-cysteine, and l-?-(2-aminoethoxyvinyl)glycine are strong allosteric inhibitors of the enzyme with 50% inhibitory values of 20, 160, and 155 millimolar, respectively. The inhibition by l-lysine and l-?-(2-aminoethoxyvinyl)glycine is noncompetitive towards l-aspartate-?-semialdehyde, whereas S-(2-aminoethyl)-l-cysteine inhibits dihydrodipicolinate synthase competitively with respect to l-aspartate-?-semialdehyde. Furthermore, the addition of (2R,3S,6S)-2,6-diamino-3-hydroxy-heptandioic acid (1.2 millimolar) and (2S,6R/S)-2,6-diamino-6-phosphono-hexanic acid (1.2 millimolar) activates dihydrodipicolinate synthase from pea by a factor of 1.4 and 1.2, respectively. This is the first reported activation process found for dihydrodipicolinate synthase. ImagesFigure 1Figure 3 PMID:16668753

  18. Applying Molecular Dynamics Simulations to Identify Rarely Sampled Ligand-bound Conformational States of Undecaprenyl Pyrophosphate Synthase, an Antibacterial Target

    SciTech Connect

    Sinko, William; de Oliveira, César; Williams, Sarah; Van Wynsberghe, Adam; Durrant, Jacob D.; Cao, Rong; Oldfield, Eric; McCammon, J. Andrew (UIUC); (UCSD); (Hamilton)

    2012-04-30

    Undecaprenyl pyrophosphate synthase is a cis-prenyltransferase enzyme, which is required for cell wall biosynthesis in bacteria. Undecaprenyl pyrophosphate synthase is an attractive target for antimicrobial therapy. We performed long molecular dynamics simulations and docking studies on undecaprenyl pyrophosphate synthase to investigate its dynamic behavior and the influence of protein flexibility on the design of undecaprenyl pyrophosphate synthase inhibitors. We also describe the first X-ray crystallographic structure of Escherichia coli apo-undecaprenyl pyrophosphate synthase. The molecular dynamics simulations indicate that undecaprenyl pyrophosphate synthase is a highly flexible protein, with mobile binding pockets in the active site. By carrying out docking studies with experimentally validated undecaprenyl pyrophosphate synthase inhibitors using high- and low-populated conformational states extracted from the molecular dynamics simulations, we show that structurally dissimilar compounds can bind preferentially to different and rarely sampled conformational states. By performing structural analyses on the newly obtained apo-undecaprenyl pyrophosphate synthase and other crystal structures previously published, we show that the changes observed during the molecular dynamics simulation are very similar to those seen in the crystal structures obtained in the presence or absence of ligands. We believe that this is the first time that a rare 'expanded pocket' state, key to drug design and verified by crystallography, has been extracted from a molecular dynamics simulation.

  19. Design, synthesis and biological evaluation of N-alkyl or aryl substituted isoindigo derivatives as potential dual cyclin-dependent kinase 2 (CDK2)/glycogen synthase kinase 3? (GSK-3?) phosphorylation inhibitors.

    PubMed

    Zhao, Ping; Li, Yanzhong; Gao, Guangwei; Wang, Shuai; Yan, Yun; Zhan, Xiaoping; Liu, Zenglu; Mao, Zhenmin; Chen, Shaoxiong; Wang, Liqun

    2014-10-30

    A series of N-alkyl or aryl substituted isoindigo derivatives have been synthesized and their anti-proliferative activity was evaluated by Sulforhodamine B (SRB) assay. Some of the target compounds exhibited significant antitumor activity, including compounds 6h and 6k (against K562 cells), 6i (against HeLa cells) and 6j (against A549 cells). N-(p-methoxy-phenyl)-isoindigo (6k) exhibited a high and selective anti-proliferative activity against K562 cells (IC50 7.8 ?M) and induced the apoptosis of K562 cells in a dose-dependent manner. Compound 6k arrested the cell cycle at S phase in K562 cells by decreasing the expression of cyclin A and CDK2, which played critical roles in DNA replication and passage through G2 phase. Moreover, compound 6k down-regulated the expression of p-GSK-3? (Ser9), ?-catenin and c-myc proteins, up-regulated the expression of GSK-3?, consequently, suppressed Wnt/?-catenin signaling pathway and induced the apoptosis of K562 cells. The binding mode of compound 6k with GSK-3? was simulated using molecular docking tools. All of these studies gave a better understanding to the molecular mechanisms of this class of agents and clues to develop dual CDK2/GSK-3? (Ser9) phosphorylation inhibitors applied in cancer chemotherapy. PMID:25151579

  20. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    PubMed Central

    Muzzarelli, Riccardo A. A.

    2010-01-01

    Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/?) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-?-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as “crustacean derivatives”, because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin. PMID:20390107

  1. Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta

    PubMed Central

    Brunner, E.; Ehrlich, H.; Schupp, P.; Hedrich, R.; Hunoldt, S.; Kammer, M.; Machill, S.; Paasch, S.; Bazhenov, V.V.; Kurek, D.V.; Arnold, T.; Brockmann, S.; Ruhnow, M.; Born, R.

    2010-01-01

    The skeletons of demosponges, such as Ianthella basta, are known to be a composite material containing organic constituents. Here, we show that a filigree chitin-based scaffold is an integral component of the I. basta skeleton. These chitin-based scaffolds can be isolated from the sponge skeletons using an isolation and purification technique based on treatment with alkaline solutions. Solid-state 13C NMR, Raman, and FT-IR spectroscopies, as well as chitinase digestion, reveal that the isolated material indeed consists of chitin. The morphology of the scaffolds has been determined by light and electron microscopy. It consists of cross-linked chitin fibers approximately 40–100 nm in diameter forming a micro-structured network. The overall shape of this network closely resembles the shape of the integer sponge skeleton. Solid-state 13C NMR spectroscopy was used to characterize the sponge skeleton on a molecular level. The 13C NMR signals of the chitin-based scaffolds are relatively broad, indicating a high amount of disordered chitin, possibly in the form of surface-exposed molecules. X-ray diffraction confirms that the scaffolds isolated from I. basta consist of partially disordered and loosely packed chitin with large surfaces. The spectroscopic signature of these chitin-based scaffolds is closer to that of ?-chitin than ?-chitin. PMID:19567270

  2. Synthesis and evaluation of dimeric lipophilic iminosugars as inhibitors of glucosylceramide metabolism

    Microsoft Academic Search

    Tom Wennekes; Richard J. B. H. N. van den Berg; Kimberly M. Bonger; Wilma E. Donker-Koopman; Amar Ghisaidoobe; Gijsbert A. van der Marel; Anneke Strijland; Johannes M. F. G. Aerts; Herman S. Overkleeft

    2009-01-01

    Four dimeric and four monomeric lipophilic iminosugars were synthesized and subsequently evaluated on their inhibitory potential towards mammalian glucosylceramide synthase, glucocerebrosidase, ?-glucosidase 2, sucrase and lysosomal ?-glucosidase. Compared to their monomeric counterparts the dimeric inhibitors showed decreased inhibition of glucosylceramide synthase and generally a comparable inhibitory potency for the glycosidases.

  3. The ion channel of F-ATP synthase is the target of toxic organotin compounds

    PubMed Central

    von Ballmoos, Christoph; Brunner, Josef; Dimroth, Peter

    2004-01-01

    ATP is the universal energy currency of living cells, and the majority of it is synthesized by the F1F0 ATP synthase. Inhibitors of this enzyme are therefore potentially detrimental for all life forms. Tributyltin chloride (TBT-Cl) inhibits ATP hydrolysis by the Na+-translocating ATP synthase of Ilyobacter tartaricus or the H+-translocating counterpart of Escherichia coli with apparent Ki of 200 nM. To target the site of this inhibition, we synthesized a tritium-labeled derivative of TBT-Cl in which one of the butyl groups was replaced by a photoactivatable aryldiazirine residue. Upon illumination, subunit a of the ATP synthase becomes specifically modified, and this labeling is suppressed in the presence of the original inhibitor. In case of the Na+ ATP synthase, labeling is also suppressed in the presence of Na+ ions, suggesting an interference in Na+ or TBT-Cl binding to subunit a. This interference is corroborated by the protection of ATP hydrolysis from TBT-Cl inhibition by 105 mM Na+. TBT-Cl strongly inhibits Na+ exchange by the reconstituted I. tartaricus ATP synthase. Taken together these results indicate that the subunit a ion channel is the target site for ATPase inhibition by toxic organotin compounds. An inhibitor interacting specifically with this site has not been reported previously. PMID:15277681

  4. The ion channel of F-ATP synthase is the target of toxic organotin compounds.

    PubMed

    von Ballmoos, Christoph; Brunner, Josef; Dimroth, Peter

    2004-08-01

    ATP is the universal energy currency of living cells, and the majority of it is synthesized by the F1F0 ATP synthase. Inhibitors of this enzyme are therefore potentially detrimental for all life forms. Tributyltin chloride (TBT-Cl) inhibits ATP hydrolysis by the Na(+)-translocating ATP synthase of Ilyobacter tartaricus or the H(+)-translocating counterpart of Escherichia coli with apparent Ki of 200 nM. To target the site of this inhibition, we synthesized a tritium-labeled derivative of TBT-Cl in which one of the butyl groups was replaced by a photoactivatable aryldiazirine residue. Upon illumination, subunit a of the ATP synthase becomes specifically modified, and this labeling is suppressed in the presence of the original inhibitor. In case of the Na+ ATP synthase, labeling is also suppressed in the presence of Na+ ions, suggesting an interference in Na+ or TBT-Cl binding to subunit a. This interference is corroborated by the protection of ATP hydrolysis from TBT-Cl inhibition by 105 mM Na+. TBT-Cl strongly inhibits Na+ exchange by the reconstituted I. tartaricus ATP synthase. Taken together these results indicate that the subunit a ion channel is the target site for ATPase inhibition by toxic organotin compounds. An inhibitor interacting specifically with this site has not been reported previously. PMID:15277681

  5. Structure and Mechanism of Chitin Deacetylase from the Fungal Pathogen Colletotrichum lindemuthianum,

    E-print Network

    van Aalten, Daan

    . Before the fungal hyphae can successfully pen- etrate and gain access to host tissue, the fungus has-7). Studies of cell wall composition of invasive fungal hyphae suggest that exposed fungal chitin polymers

  6. Favorable effects of superficially deacetylated chitin nanofibrils on the wound healing process.

    PubMed

    Izumi, Ryotaro; Komada, Shuntaro; Ochi, Kosuke; Karasawa, Lisa; Osaki, Tomohiro; Murahata, Yusuke; Tsuka, Takeshi; Imagawa, Tomohiro; Itoh, Norihiko; Okamoto, Yoshiharu; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Azuma, Kazuo; Ifuku, Shinsuke

    2015-06-01

    Previous reports indicate that the beneficial effect of chitin nanofibrils (CNFs), and chitosan nanofibrils (CSNFs) for wound healing. In this study, the wound healing effects of superficially deacetylated chitin nanofibrils (SDACNFs) were evaluated using an experimental model. In the experiments using circular excision wound model, SDACNFs induced re-epithelium and proliferation of the fibroblasts and collagen tissue. In the chitin, CNFs, and CSNFs, on the other hand, the e-epithelium and proliferation of the fibroblasts and collagen tissue were not induced perfectly compared with the SDACNFs group. In particular, re-epithelization was observed on day 4 in the only SDACNF group. Moreover, SDACNFs did not induce severe systemic inflammation in the linear incision wound model. The data indicated that SDACNFs effectively induced the proliferation and re-modeling phases compared with chitin, CNFs, and CSNFs in the wound. These data indicate that SDACNFs can be beneficial as a new biomaterial for wound healing. PMID:25843880

  7. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.

    PubMed

    Tan, YerPeng; Hoon, Shawn; Guerette, Paul A; Wei, Wei; Ghadban, Ali; Hao, Cai; Miserez, Ali; Waite, J Herbert

    2015-07-01

    The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials. PMID:26053298

  8. Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba).

    PubMed

    Wang, Yanchao; Chang, Yaoguang; Yu, Long; Zhang, Cuiyu; Xu, Xiaoqi; Xue, Yong; Li, Zhaojie; Xue, Changhu

    2013-01-30

    Antarctic krill (Euphausia superba) has been widely studied and extensively recognized as a target for commercial fishing. In this study, Antarctic krill chitin was extracted from defatted Antarctic krill shell, and its crystalline structure and thermal properties were characterized by employing Fourier transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, thermogravimetry, and differential scanning calorimetry. Results showed that Antarctic krill chitin corresponded to the ?-polymorph, and was composed of small, stable, and uniform microcrystals. The degree of N-deacetylation was 11.28 ± 0.86%. The d-spacings of Antarctic krill chitin were 9.78 ? and 4.63 ? at (020) and (110) planes. The crystalline sizes were 6.07 nm and 5.16 nm at (020) and (110) planes, respectively. The activation energy of the polysaccharide chain decomposition was 123.35 kJ/mol and the glass transition (T(g)) of Antarctic krill chitin was 164.96 °C. PMID:23218270

  9. MOLECULAR TRACERS FOR SMOKE FROM CHARRING/BURNING OF CHITIN BIOPOLYMER. (R823990)

    EPA Science Inventory

    Abstract Monosaccharide derivatives from the breakdown of cellulose are the major organic components of smoke particles emitted to the atmosphere from biomass burning. In urban areas a related biopolymer, chitin, may contribute markers to smoke from grilling/charring o...

  10. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    PubMed Central

    Kumirska, Jolanta; Czerwicka, Ma?gorzata; Kaczy?ski, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  11. Application of spectroscopic methods for structural analysis of chitin and chitosan.

    PubMed

    Kumirska, Jolanta; Czerwicka, Ma?gorzata; Kaczy?ski, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  12. CHITIN TRANSFORMATION AND PESTICIDE INTERACTIONS IN A SIMULATED AQUATIC MICROENVIRONMENTAL SYSTEM

    EPA Science Inventory

    Interactions between the structural animo-polysaccharide, chitin, and the organophosphate pesticide, azinphosmethyl (Guthion), have been studied in a controlled continuous flow-through microcosm. Pesticide-induced microbial population changes and increases in substrate utilizatio...

  13. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation

    Microsoft Academic Search

    Jennifer J Trowbridge; Anargyros Xenocostas; Randall T Moon; Mickie Bhatia

    2005-01-01

    The in vivo regulation of hematopoietic stem cell (HSC) function is poorly understood. Here, we show that hematopoietic repopulation can be augmented by administration of a glycogen synthase kinase-3 (GSK-3) inhibitor to recipient mice transplanted with mouse or human HSCs. GSK-3 inhibitor treatment improved neutrophil and megakaryocyte recovery, recipient survival and resulted in enhanced sustained long-term repopulation. The output of

  14. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    SciTech Connect

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate that the chitinase and cellulase systems of this bacterium are distinct in terms of the proteins involved and the regulation of their production. 4. Characterization of the chitinase system of C. uda. A 70,000-Mr endochitinase, designated ChiA, was purified from C. uda culture supernatant fluids and characterized. 5. Analysis of chiA, which codes for the major enzymatic component of the chitinase system of C. uda. The gene encoding the endochitinase ChiA in C. uda was cloned, its complete nucleotide sequence was determined and its implications were investigated. 6. Formation of biofilms by C. uda on cellulose and chitin. Microscopic observations indicated that, under conditions of nitrogen limitation, C. uda cells grew as a biofilm attached tightly to the surface of cellulose or chitin. 7. Development of tools for a genetic approach to studies of cellulose fermentation by cellulolytic clostridia. We have explored the potential of various techniques, and obtained evidence indicating that Tn916 mutagenesis may be particularly effective in this regard. As part of this research, we identified the presence of a plasmid in one strain, which was cloned, sequenced, and analyzed for its utility in the development of vectors for genetic studies. 8. Effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes. We determined that humic substances play an important role in the anaerobic cellulose decomposition and in the physiology of cellulose-fermenting soil bacteria. 9. Nitrogenases of cellulolytic clostridia. We described a nitrogenase gene from a cellulolytic clostridium and presented evidence, based on sequence analyses and conserved gene order, for lateral gene transfer between this bacterium and a methanogenic archaeon. 10. Characterization of Clostridium hungatei, a new N2-fixing cellulolytic species isolated from a methanogenic consortium from soil. 11. Understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. We discovered that C. papyrosolvens produces a multiprotein, multicom

  15. Multifaceted chitin/poly(lactic-co-glycolic) acid composite nanogels.

    PubMed

    Rejinold, N Sanoj; Biswas, Raja; Chellan, Gopi; Jayakumar, R

    2014-06-01

    Cyto-compatible, 80nm sized chitin/PLGA composite nanogels (chit/PLGA-comp NGs) were prepared by regeneration method and characterized. The multifaceted chit/PLGA-comp NGs were surface modified with Au, Fe3O4, CdTe/ZnTe-QDs and umbelliferone, respectively. 185nm sized Au-chit/PLGA-comp NGs, 170nm sized QD-chit/PLGA-comp-NGs and 160nm sized Fe3O4-chit/PLGA-comp-NGs showed RF heating. The QD-chit/PLGA-comp-NGs and 180nm sized umb-chit/PLGA-comp-NGs were well uptaken by Escherichia coli, Staphylococcus aureus and Candida albicans. The chit/PLGA-comp NGs could be useful for microbial monitoring and RF application for cancer therapy. The preliminary data showed that multifaceted chit/PLGA-comp-NGs could be useful for hyperthermia for cancer treatment and microbial labelling and imaging. PMID:24685461

  16. Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine.

    PubMed

    Li, Xiaosong; Min, Min; Du, Nan; Gu, Ying; Hode, Tomas; Naylor, Mark; Chen, Dianjun; Nordquist, Robert E; Chen, Wei R

    2013-01-01

    With the development of cancer immunotherapy, cancer vaccine has become a novel modality for cancer treatment, and the important role of adjuvant has been realized recently. Chitin, chitosan, and their derivatives have shown their advantages as adjuvants for cancer vaccine. In this paper, the adjuvant properties of chitin and chitosan were discussed, and some detailed information about glycated chitosan and chitosan nanoparticles was also presented to illustrate the trend for future development. PMID:23533454

  17. Structural Investigations of Chitin and Chitosan Complexed with Iron or Tin

    NASA Astrophysics Data System (ADS)

    Gamblin, B. E.; Stevens, J. G.; Wilson, K. L.

    1998-12-01

    Chitin (N-acetyl-glucosamine) and its derivative chitosan (glucosamine) bind with most transition and main group metals, including iron and tin. Using 57Fe and 119Sn Mössbauer Spectroscopy it is determined that an oxidation reaction occurs during the metal uptake. Data also supports a structure with more than one metal bonding site and shows the ability of the chitin and chitosan polymers to bind large concentrations of iron.

  18. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    SciTech Connect

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  19. Monoterpene synthases from common sage (Salvia officinalis)

    Microsoft Academic Search

    Rodney Bruce Croteau; Mitchell Lynn Wise; Eva Joy Katahira; Thomas Jonathan Savage

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ

  20. Biphenyl synthase, a novel type III polyketide synthase

    Microsoft Academic Search

    B. Liu; T. Raeth; T. Beuerle; L. Beerhues

    2007-01-01

    Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The\\u000a carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding\\u000a this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about

  1. Virtual Screening, Selection and Development of a Benzindolone Structural Scaffold for Inhibition of Lumazine Synthase

    PubMed Central

    Talukdar, Arindam; Morgunova, Ekaterina; Duan, Jianxin; Meining, Winfried; Foloppe, Nicolas; Nilsson, Lennart; Bacher, Adelbert; Illarionov, Boris; Fischer, Markus; Ladenstein, Rudolf; Cushman, Mark

    2010-01-01

    Virtual screening of a library of commercially available compounds vs. the structure of Mycobacterium tuberculosis lumazine synthase identified 2-(2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamido)acetic acid (9) as a possible lead compound. Compound 9 proved to be an effective inhibitor of M. tuberculosis lumazine synthase with a Ki of 70 ?M. Lead optimization through replacement of the carboxymethylsulfonamide sidechain with sulfonamides substituted with alkyl phosphates led to a four-carbon phosphate 38 that displayed a moderate increase in enzyme inhibitory activity (Ki 38 ?M). Molecular modeling based on known lumazine synthase/inhibitor crystal structures suggests that the main forces stabilizing the present benzindolone/enzyme complexes involve ?–? stacking interactions with Trp27 and hydrogen bonding of the phosphates with Arg128, the backbone nitrogens of Gly85 and Gln86, and the side chain hydroxyl of Thr87. PMID:20430628

  2. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films.

    PubMed

    Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan; Kim, Hee-Yun

    2015-03-01

    Present study illustrates the preparation of chitin nanofibrils (CNF) reinforced carrageenan nanocomposite films by the solution-casting technique. CNF was prepared by acid hydrolysis of chitin, followed by high speed homogenization and sonication. FTIR result demonstrated that the chemical structure of chitin had not changed after acid hydrolysis. However, the crystalinity of CNF was found to be higher than chitin. The crystallite size of chitin and CNF was 4.73 and 6.27 nm, respectively. The char content at 600 °C of chitin (19.2%) was lower than the CNF (25%). The carrageenan/CNF composite films were smooth and flexible and the CNF was dispersed uniformly in the carrageenan polymer matrix. The tensile strength and modulus of carrageenan film were increased significantly (p<0.05) after CNF reinforcement with up to 5 wt%, however, elongation at break, water vapor permeability, and transparency decreased slightly. Carrageenan/CNF nanocomposite films showed strong antibacterial activity against a Gram-positive food-borne pathogen, Listeria monocytogenes. PMID:25498660

  3. Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan.

    PubMed

    Kartal, S Nami; Imamura, Yuji

    2005-02-01

    Chitin and chitosan are naturally abundant biopolymers which are of interest to research concerning the sorption of metal ions since the amine and hydroxyl groups on their chemical structures act as chelation sites for metal ions. This study evaluates the removal of copper, chromium, and arsenic elements from chromated copper arsenate (CCA)-treated wood via biosorption by chitin and chitosan. Exposing CCA-treated sawdust to various amounts of chitin and chitosan for 1, 5, and 10 days enhanced removal of CCA components compared to remediation by deionized water only. Remediation with a solution containing 2.5 g chitin for 10 days removed 74% copper, 62% chromium, and 63% arsenic from treated sawdust. Remediation of treated sawdust samples using the same amount of chitosan as chitin resulted in 57% copper, 43% chromium, and 30% arsenic removal. The results suggest that chitin and chitosan have a potential to remove copper element from CCA-treated wood. Thus, these more abundant natural amino polysaccharides could be important in the remediation of waste wood treated with the newest formulations of organometallic copper compounds and other water-borne wood preservatives containing copper. PMID:15474943

  4. Facile route to produce chitin nanofibers as precursors for flexible and transparent gas barrier materials.

    PubMed

    Wu, Jie; Zhang, Kuang; Girouard, Natalie; Meredith, J Carson

    2014-12-01

    Chitin is the second most abundant biopolymer in nature and has tremendous potential in renewable materials for packaging, energy storage, reinforced composites, and biomedical engineering. Despite attractive properties, including biodegradability, antibacterial activity, and high strength, chitin is not utilized widely due to strong molecular interactions, which make solubilization and processing difficult. We report a high pressure homogenization route to produce pure chitin nanofibers (ChNFs) starting with a mildly acidic aqueous dispersion of purified crab ?-chitin. The well-dispersed ChNFs with diameter ?20 nm do not form strong network structures under conditions explored herein and can be directly processed into useful materials, bypassing the need to dissolve the chitin. Dried ChNFs form pure self-standing chitin films with the lowest to-date reported O2 and CO2 permeabilities of 0.006 and 0.018 barrer, respectively. Combined with high flexibility and optical transparency, these materials are ideal candidates for sustainable barrier packaging. PMID:25483821

  5. Application of crustacean chitin as a co-diluent in direct compression of tablets.

    PubMed

    Mir, Viviana García; Heinämäki, Jyrki; Antikainen, Osmo; Sandler, Niklas; Revoredo, Ofelia Bilbao; Colarte, Antonio Iraizoz; Nieto, Olga Maria; Yliruusi, Jouko

    2010-03-01

    A "simplex-centroid mixture design" was used to study the direct-compression properties of binary and ternary mixtures of chitin and two cellulosic direct-compression diluents. Native milled and fractioned (125-250 microm) crustacean chitin of lobster origin was blended with microcrystalline cellulose, MCC (Avicel PH 102) and spray-dried lactose-cellulose, SDLC Cellactose (composed of a spray-dried mixture of alpha-lactose monohydrate 75% and cellulose powder 25%). An instrumented single-punch tablet machine was used for tablet compactions. The flowability of the powder mixtures composed of a high percentage of chitin and SDLC was clearly improved. The fractioned pure chitin powder was easily compressed into tablets by using a magnesium stearate level of 0.1% (w/w) but, as the die lubricant level was 0.5% (w/w), the tablet strength collapsed dramatically. The tablets compressed from the binary mixtures of MCC and SDLC exhibited elevated mechanical strengths (>100 N) independent of the die lubricant level applied. In conclusion, fractioned chitin of crustacean origin can be used as an abundant direct-compression co-diluent with the established cellulosic excipients to modify the mechanical strength and, consequently, the disintegration of the tablets. Chitin of crustacean origin, however, is a lubrication-sensitive material, and this should be taken into account in formulating direct-compression tablets of it. PMID:20238188

  6. Nisin production in a chitin-including continuous fermentation system with Lactococcus lactis displaying a cell wall chitin-binding domain.

    PubMed

    ?im?ek, Ömer

    2014-03-01

    The limiting factors in the continuous production of nisin are high amount of biomass loss and low dilution rate application. In this study, a chitin-including continuous nisin fermentation system (CICON-FER) was constructed for high volumetric nisin production using nisin producer L. lactis displaying cell wall chitin-binding domain (ChBD) together with chitin in the reactor. In this respect, the highest binding conditions of relevant L. lactis cells to chitin were determined. Then the chitin flakes carrying nisin-producing L. lactis cells were used within the CICON-FER system at different dilution rates (0.1-0.9 h?¹) and initial glucose concentrations (20-60 g l?¹). The results revealed that the pH 7 conditions and the use of 100 mM sodium phosphate buffer with 0.1 % Tween 20 and Triton X-100 significantly increased the binding capacity of ChBD displaying L. lactis cells to chitin. The constructed CICON-FER system maintained the presence of the ChBD surface displaying L. lactis cells in the reactor system until 0.9 h?¹ dilution rate that resulted in a considerably high level of volumetric nisin production and productivity (10,500 IU ml?¹ and 9,450 IU ml?¹ h?¹, respectively) with the combination of a 0.9-h?¹ dilution rate and a 40-g l?¹ initial glucose concentration. In conclusion, an innovative nisin fermentation system that yielded the highest nisin production thus far and that was feasible for industrial application was created. PMID:24342966

  7. Role of Different Isoforms of Nitric Oxide Synthase in Development of Tumor Mutants in Drosophila melanogaster

    Microsoft Academic Search

    L. B. Dzhansugurova; B. O. Bekmanov; R. I. Bersimbaev

    2003-01-01

    We studied the role of nitric oxide synthase during tumor growth in oncovirus-induced tumor mutants of Drosophila melanogaster. The lines with different capacity for malignancy differed reliably in the level of enzymatic activity. It was shown using specific inhibitors of neuronal and inducible isoforms that the neuronal isoform was not involved in tumor formation, while the inducible one appears to

  8. Synthesis and utilization of chitin humic acid hybrid as sorbent for Cr(III)

    NASA Astrophysics Data System (ADS)

    Santosa, Sri Juari; Siswanta, Dwi; Sudiono, Sri; Sehol, Muhamad

    2007-11-01

    New types of hybrid material have been synthesized by using four different methods of immobilization of humic acid (HA) on chitin. The most stable hybrid material toward the change of medium acidity was then utilized as sorbent for Cr(III). The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, using the recommended procedure of International Humic Substances Society (IHSS), while the chitin was isolated from crab shell waste through deproteination using 3.5% (w/v) NaOH and followed by removal of inorganic impurities using 1 M HCl. The four methods of immobilization of HA on chitin were (i) Method A: chitin powder (4 g) was gently poured into the stirred solution of 0.4 g HA in 40 mL of 0.01 M NaOH. After overnight stirring, the solid was separated, washed with water, and dried in oven at 70 °C. (ii) Method B: gelatinous chitin (40 g) in 250 mL of 0.5 M HCl was reacted with HA (4 g) in 500 mL of 0.5 M NaOH and aged for 24 h. The product was washed with water and dried. (iii) Method C: HA powder (0.5 g) was mixed with the stirred gel of chitin (2.5 g) in 60 mL of CaCl 2 saturated methanol and the mixture was then washed with the mixed solution of 25 mL of 2 M sodium citrate and ethylene glycol 1:1. The solid was separated, washed with water, and dried. (iv) Method D: the solution of HA (0.056 g) in 10 mL of 0.01 M NaOH was reacted with the gel of chitin (0.2 g) in 10 mL of CaCl 2 saturated methanol. After 24 h stirring, the solid was separated from the reaction medium, washed with the mixed solution of 2 M sodium citrate and ethylene glycol 1:1, and followed by washing with water and drying. Parameters investigated in this study consisted of the stability test of the immobilized HA, as well as the rate constant ( k1), capacity ( b), and energy ( E) of sorption as well as the rate constant of desorption ( k-1). The k1 and k-1 were determined according to a kinetic model of first order sorption reaching equilibrium, while the b and E were determined according to the Langmuir isotherm model. Compared to HA, Methods, A, C, and D; Method B produced the most stable immobilization of HA on chitin. The hybrid material (Chitin-HA) synthesized through Method B was stable in the acidity range that equivalent to pH 2.0-11.0. At the acidity giving maximum sorption, i.e. pH 5, the presence of immobilized HA on the Chitin-HA enhanced more than three times the k1 and k-1, i.e. from 0.057 min -1 and 8.51 × 10 -4 (min -1) (mol/L) for chitin to 0.183 min -1 and 3.27 × 10 -3 (min -1) (mol/L) for the Chitin-HA. On the contrary, the presence of HA on Chitin-HA only gave small increase on b and small decrease on E. The values of b and E for Cr(III) on chitin were 1.45 × 10 -2 mol/g and 23.12 kJ/mol, respectively, while those on Chitin-HA were 1.78 × 10 -2 mol/g and 19.95 kJ/mol, respectively.

  9. Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior.

    PubMed

    Mi, Fwu-Long; Lin, Yi-Mei; Wu, Yu-Bey; Shyu, Shin-Shing; Tsai, Yi-Hung

    2002-08-01

    A novel chitin-based microsphere was developed for anti-cancer drug-delivery purpose in the present study. These biodegradable microspheres were prepared by directly blending chitin with different contents of poly(D,L-lactide-co-glycolide 50:50) (PLGA 50/50) in dimethylacetamide-lithium chloride solution, and following it by coagulating in water via wet phase inversion. Scanning electron microscopy (SEM) micrography of the blend microsphere showed that there are numerous PLGA particulates homogeneously dispersed in chitin matrix, suggesting the occurrence of obvious phase separation from the blended chitin and PLGA 50/50 phase due to their thermodynamic incompatibility. Degradation of the chitin/PLGA 50/50 blend microsphere depends on the surface erosion of chitin phase and bulk hydrolysis of PLGA phase, according to the examinations of SEM and differential scanning calorimetry studies. Weight loss of the chitin/PLGA 50/50 blend microsphere increases with the increase of chitin content in the microsphere. A two-phase drug-release model is observed from the release of chlorambucil from chitin/PLGA 50/50 blend microspheres. The initial stage of drug-release rate increases with the increased chitin content due to the hydration and surface erosion of hydrophilic chitin phase; however, the following stage of slow release is sustained for several days, mainly contributed by the bulk hydrolysis of hydrophobic PLGA phase. In conclusion, such a chitin/PLGA 50/50 blend microsphere is novel and interesting, and may be used as a special drug-delivery system. PMID:12102197

  10. Oral Administration of Chitin Down-Regulates Serum IgE Levels and Lung Eosinophilia in the Allergic Mouse1

    Microsoft Academic Search

    Yoshimi Shibata; L. Ann Foster; John F. Bradfield; Quentin N. Myrvik

    Previous studies showed that local macrophages phagocytose nonantigenic chitin particles (1-10 mm polymers of N-acetyl-D- glucosamine) through mannose receptors and produce IL-12, IL-18, and TNF-a. These cytokines lead to the production of IFN-g by NK cells. To determine whether chitin could down-regulate Th2 responses, chitin was given orally (8 mg\\/day for 3 days before and 13 days during ragweed allergen

  11. The H385N Mutant of 5-Enolpyruvylshikimate-3-phosphate Synthase: Kinetics, Fluorescence, and Nuclear Magnetic Resonance Studies

    Microsoft Academic Search

    Wendy A. Shuttleworth; Jeremy N. S. Evans

    1996-01-01

    The site-directed mutagenesis of histidine-385 of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is reported. The H385N mutant is compared with wild type by a number of methods. H385N was found to retain 6% activity. Kinetic parameters, includingKmvalues for the natural substrates andKiandKdvalues for the inhibitor glyphosate, were found to be similar to wild type. Unlike wild-type enzyme, H385N EPSP synthase does not show

  12. Chitin Amendment Increases Soil Suppressiveness toward Plant Pathogens and Modulates the Actinobacterial and Oxalobacteraceal Communities in an Experimental Agricultural Field

    PubMed Central

    Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.

    2013-01-01

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment. PMID:23811512

  13. Adsorption of Silver Nanoparticles onto Different Surface Structures of Chitin/Chitosan and Correlations with Antimicrobial Activities

    PubMed Central

    Ishihara, Masayuki; Nguyen, Vinh Quang; Mori, Yasutaka; Nakamura, Shingo; Hattori, Hidemi

    2015-01-01

    Size-controlled spherical silver nanoparticles (Ag NPs) can be simply prepared by autoclaving mixtures of glass powder containing silver with glucose. Moreover, chitins with varying degrees of deacetylation (DDAc < 30%) and chitosan powders and sheets (DDAc > 75%) with varying surface structure properties have been evaluated as Ag NP carriers. Chitin/chitosan-Ag NP composites in powder or sheet form were prepared by mixing Ag NP suspensions with each of the chitin/chitosan-based material at pH 7.3, leading to homogenous dispersion and stable adsorption of Ag NPs onto chitin carriers with nanoscale fiber-like surface structures, and chitosan carriers with nanoscale porous surface structures. Although these chitins exhibited mild antiviral, bactericidal, and antifungal activities, chitin powders with flat/smooth film-like surface structures had limited antimicrobial activities and Ag NP adsorption. The antimicrobial activities of chitin/chitosan-Ag NP composites increased with increasing amounts of adsorbed Ag NPs, suggesting that the surface structures of chitin/chitosan carriers strongly influence adsorption of Ag NPs and antimicrobial activities. These observations indicate that chitin/chitosan-Ag NPs with nanoscale surface structures have potential as antimicrobial biomaterials and anti-infectious wound dressings. PMID:26096004

  14. Adsorption of Silver Nanoparticles onto Different Surface Structures of Chitin/Chitosan and Correlations with Antimicrobial Activities.

    PubMed

    Ishihara, Masayuki; Nguyen, Vinh Quang; Mori, Yasutaka; Nakamura, Shingo; Hattori, Hidemi

    2015-01-01

    Size-controlled spherical silver nanoparticles (Ag NPs) can be simply prepared by autoclaving mixtures of glass powder containing silver with glucose. Moreover, chitins with varying degrees of deacetylation (DDAc < 30%) and chitosan powders and sheets (DDAc > 75%) with varying surface structure properties have been evaluated as Ag NP carriers. Chitin/chitosan-Ag NP composites in powder or sheet form were prepared by mixing Ag NP suspensions with each of the chitin/chitosan-based material at pH 7.3, leading to homogenous dispersion and stable adsorption of Ag NPs onto chitin carriers with nanoscale fiber-like surface structures, and chitosan carriers with nanoscale porous surface structures. Although these chitins exhibited mild antiviral, bactericidal, and antifungal activities, chitin powders with flat/smooth film-like surface structures had limited antimicrobial activities and Ag NP adsorption. The antimicrobial activities of chitin/chitosan-Ag NP composites increased with increasing amounts of adsorbed Ag NPs, suggesting that the surface structures of chitin/chitosan carriers strongly influence adsorption of Ag NPs and antimicrobial activities. These observations indicate that chitin/chitosan-Ag NPs with nanoscale surface structures have potential as antimicrobial biomaterials and anti-infectious wound dressings. PMID:26096004

  15. The distribution of chitin in the water and sediment columns in the Gulf of Mexico and its geochemical significance

    E-print Network

    Ho, Wai Kwok

    1977-01-01

    EXPERIMENTAL TECHiVIQUE 25 Sample Collection and Handling Sample Analysis 25 30 General 30 Evaluat~'on of the persulfate oxidation and combustion methods for POC 31 RESULTS AND DISCL'SS10N 3I Particulate Chitin in Surface Water 37 General 37... for the analysis of urganic 33 10. Percent chitin oxidized by persulfate 36 11. Geographic distribution of particulate chitin (ug/1) for surface water in the Gulf of Mexico 39 12. Distribution of particulate chitin (ug/I) for surface water of the Mississippi...

  16. Two distinct proton binding sites in the ATP synthase family.

    PubMed

    von Ballmoos, Christoph; Dimroth, Peter

    2007-10-23

    The F1F0 ATP synthase utilizes energy stored in an electrochemical gradient of protons (or Na+ ions) across the membrane to synthesize ATP from ADP and phosphate. Current models predict that the protonation/deprotonation of specific acidic c ring residues is at the core of the proton translocation mechanism by this enzyme. To probe the mode of proton binding, we measured the covalent modification of the acidic c ring residues with the inhibitor dicyclohexylcarbodiimide (DCCD) over the pH range from 5 to 11. With the H+-translocating ATP synthase from the archaeum Halobacterium salinarium or the Na+-translocating ATP synthase from Ilyobacter tartaricus, the pH profile of DCCD labeling followed a titration curve with a pKa around neutral, reflecting protonation of the acidic c ring residues. However, with the ATP synthases from Escherichia coli, mitochondria, or chloroplasts, a clearly different, bell-shaped pH profile for DCCD labeling was observed which is not compatible with carboxylate protonation but might be explained by the coordination of a hydronium ion as proposed earlier [Boyer, P. D. (1988) Trends Biochem. Sci. 13, 5-7]. Upon site-directed mutagenesis of single binding site residues of the structurally resolved c ring, the sigmoidal pH profile for DCCD labeling could be converted to a more bell-shaped one, demonstrating that the different ion binding modes are based on subtle changes in the amino acid sequence of the protein. The concept of two different binding sites in the ATP synthase family is supported by the ATP hydrolysis pH profiles of the investigated enzymes. PMID:17910472

  17. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  18. Modification of chitin with kraft lignin and development of new biosorbents for removal of cadmium(II) and nickel(II) ions.

    PubMed

    Wysokowski, Marcin; Klapiszewski, ?ukasz; Moszy?ski, Dariusz; Bartczak, Przemys?aw; Szatkowski, Tomasz; Majchrzak, Izabela; Siwi?ska-Stefa?ska, Katarzyna; Bazhenov, Vasilii V; Jesionowski, Teofil

    2014-04-01

    Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively). The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry. PMID:24727394

  19. Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II) and Nickel(II) Ions

    PubMed Central

    Wysokowski, Marcin; Klapiszewski, ?ukasz; Moszy?ski, Dariusz; Bartczak, Przemys?aw; Szatkowski, Tomasz; Majchrzak, Izabela; Siwi?ska-Stefa?ska, Katarzyna; Bazhenov, Vasilii V.; Jesionowski, Teofil

    2014-01-01

    Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively). The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry. PMID:24727394

  20. Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects.

    PubMed

    Tetreau, Guillaume; Dittmer, Neal T; Cao, Xiaolong; Agrawal, Sinu; Chen, Yun-Ru; Muthukrishnan, Subbaratnam; Haobo, Jiang; Blissard, Gary W; Kanost, Michael R; Wang, Ping

    2015-07-01

    In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered together in the phylogenetic tree. For chitinases and chitin deacetylases, most of phylogenetic analysis performed with the CBD sequences resulted in similar clustering to the one obtained by using catalytic domain sequences alone, suggesting that CBDs were incorporated into these enzymes and evolved in tandem with the catalytic domains before the diversification of different insect orders. Based on these results, the evolution of CBDs in insect CBPs is discussed to provide a new insight into the CBD sequence structure and diversity, and their evolution and expression in insects. PMID:25524298

  1. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  2. Pronounced seasonal dynamics of freshwater chitinase genes and chitin processing.

    PubMed

    Beier, Sara; Mohit, Vani; Ettema, Thijs J G; Ostman, Orjan; Tranvik, Lars J; Bertilsson, Stefan

    2012-09-01

    Seasonal variation in activity of enzymes involved in polymer degradation, including chitinases, has been observed previously in freshwater environments. However, it is not known whether the seasonal dynamics are due to shifts in the activity of bacteria already present, or shifts in community structure towards emergence or disappearance of chitinolytic organisms. We traced seasonal shifts in the chitinase gene assemblage in a temperate lake and linked these communities to variation in chitinase activity. Chitinase genes from 20 samples collected over a full yearly cycle were characterized by pyrosequencing. Pronounced temporal shifts in composition of the chitinase gene pool (beta diversity) occurred along with distinct shifts in richness (alpha diversity) as well as chitin processing. Changes in the chitinase gene pool correlated mainly with temperature, abundance of crustacean zooplankton and phytoplankton blooms. Also changes in the physical structure of the lake, e.g. stratification and mixing were associated with changes in the chitinolytic community, while differences were minor between surface and suboxic hypolimnetic water. The lake characteristics influencing the chitinolytic community are all linked to changes in organic particles and we suggest that seasonal changes in particle quality and availability foster microbial communities adapted to efficiently degrade them. PMID:22564279

  3. Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals.

    PubMed

    Liu, Mingxian; Huang, Jiandong; Luo, Binghong; Zhou, Changren

    2015-07-01

    Chitin nanocrystals (CNCs) that were 10-20nm wide and 100-500nm long were synthetized via acidolysis and characterized with various methods. To avoid the flocculation of CNCs in the initiator solution during acrylamide polymerization, chitosan was selected as a surface modifier. The chitosan-modified CNCs were employed as multifunctional crosslinkers for the polyacrylamide (PAAm) nanocomposite (NC) hydrogels. The NC gels were tough and stretchable; for example, the maximum tensile strength and the elongation at break of the NC gels were 90kPa and 3070%, respectively. The dynamic shear modulus of the NC gels was also significantly higher than that of the PAAm. The NC gels were nearly free of residual strain after 2000% elongation. The microstructures of all NC gels were porous, with a pore size of 20-100?m. The maximum equilibrium swelling degree of the NC gels was 3800%. The improvement in the properties of the NC gels is attributed to the good dispersion of CNCs and the interfacial interactions in the composites. This work developed PAAm NC hydrogels with CNCs for application as absorbent or biomedical material due to the high mechanical properties, high absorb ability and good biocompatibility of CNCs and explored new applications for CNCs as well. PMID:25841364

  4. Chitin-based Materials in Tissue Engineering: Applications in Soft Tissue and Epithelial Organ

    PubMed Central

    Yang, Tsung-Lin

    2011-01-01

    Chitin-based materials and their derivatives are receiving increased attention in tissue engineering because of their unique and appealing biological properties. In this review, we summarize the biomedical potential of chitin-based materials, specifically focusing on chitosan, in tissue engineering approaches for epithelial and soft tissues. Both types of tissues play an important role in supporting anatomical structures and physiological functions. Because of the attractive features of chitin-based materials, many characteristics beneficial to tissue regeneration including the preservation of cellular phenotype, binding and enhancement of bioactive factors, control of gene expression, and synthesis and deposition of tissue-specific extracellular matrix are well-regulated by chitin-based scaffolds. These scaffolds can be used in repairing body surface linings, reconstructing tissue structures, regenerating connective tissue, and supporting nerve and vascular growth and connection. The novel use of these scaffolds in promoting the regeneration of various tissues originating from the epithelium and soft tissue demonstrates that these chitin-based materials have versatile properties and functionality and serve as promising substrates for a great number of future applications. PMID:21673932

  5. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis

    PubMed Central

    Miya, Ayako; Albert, Premkumar; Shinya, Tomonori; Desaki, Yoshitake; Ichimura, Kazuya; Shirasu, Ken; Narusaka, Yoshihiro; Kawakami, Naoto; Kaku, Hanae; Shibuya, Naoto

    2007-01-01

    Chitin is a major component of fungal cell walls and serves as a microbe-associated molecular pattern (MAMP) for the detection of various potential pathogens in innate immune systems of both plants and animals. We recently showed that chitin elicitor-binding protein (CEBiP), plasma membrane glycoprotein with LysM motifs, functions as a cell surface receptor for chitin elicitor in rice. The predicted structure of CEBiP does not contain any intracellular domains, suggesting that an additional component(s) is required for signaling through the plasma membrane into the cytoplasm. Here, we identified a receptor-like kinase, designated CERK1, which is essential for chitin elicitor signaling in Arabidopsis. The KO mutants for CERK1 completely lost the ability to respond to the chitin elicitor, including MAPK activation, reactive oxygen species generation, and gene expression. Disease resistance of the KO mutant against an incompatible fungus, Alternaria brassicicola, was partly impaired. Complementation with the WT CERK1 gene showed cerk1 mutations were responsible for the mutant phenotypes. CERK1 is a plasma membrane protein containing three LysM motifs in the extracellular domain and an intracellular Ser/Thr kinase domain with autophosphorylation/myelin basic protein kinase activity, suggesting that CERK1 plays a critical role in fungal MAMP perception in plants. PMID:18042724

  6. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    SciTech Connect

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  7. Chitin Induces Tissue Accumulation of Innate Immune Cells Associated with Allergy

    PubMed Central

    Reese, Tiffany A.; Liang, Hong-Erh; Tager, AndrewN M.; Luster, Andrew D.; Van Rooijen, Nico; Voehringer, David; Locksley, Richard M.

    2008-01-01

    Allergic and parasitic helminth immunity is characterized by infiltration of tissues with IL-4- and IL-13-expressing cells, including Th2 cells, eosinophils and basophils1. Tissue macrophages assume a distinct phenotype, designated alternatively activated macrophages2. Relatively little is known regarding factors that trigger these host responses. Chitin, a widespread environmental biopolymer of N-acetyl-?-D-glucosamine, confers structural rigidity to fungi, crustaceans, helminths and insects3. Here, we show that chitin induces the tissue accumulation of IL-4-expressing innate immune cells, including eosinophils and basophils, when given to mice. Tissue infiltration was unaffected by the absence of Toll-like receptor-mediated LPS recognition and was abolished by treatment of chitin with the IL-4- and IL-13-inducible mammalian chitinase, AMCase4, or by injection into mice that over-expressed AMCase. Chitin mediated alternative macrophage activation in vivo and production of leukotriene B4, which was required for optimal immune cell recruitment. Chitin is a recognition element for tissue infiltration by innate cells implicated in allergic and helminth immunity and this process can be negatively regulated by a vertebrate chitinase. PMID:17450126

  8. Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation.

    PubMed

    Qu, Mingbo; Ma, Li; Chen, Peng; Yang, Qing

    2014-06-01

    Cuticular chitin degradation is extremely important for insect growth and development, which has not been fully understood thus far. One obstacle to understanding this mechanism is the lack of a systematic analysis of the chitinolytic enzymes involved in cuticular chitin degradation. In this study, we used the silkmoth Bombyx mori as a model organism and compared proteomic analyses for larval-pupal (L-P) and pupal-adult (P-A) molting fluids using tandem mass tag quantitative mass spectrometry. There were 195 proteins identified from both L-P and P-A molting fluids. A total of 170 out of 195 proteins were deduced to be secretory and were enriched for GO terms associated with chitin metabolism and proteolysis by using AgriGO. Although the chitinolytic enzymes are encoded by many insect genes, the proteomics analysis unexpectedly showed that only four chitinolytic enzymes with the combination "211" were abundant in both molting fluids, namely, two insect GH18 Chitinase family members (ChtI and ChtII), one bacterial-type GH18 Chitinase (Chi-h), and one insect GH20 hexosaminidase (Hex1). A tissue-specific and stage-specific gene expression pattern verified that the "211" enzymes are involved in cuticular chitin degradation. This work first demonstrates that specific enzymes ChtI, ChtII, Chi-h, and Hex1 can be assigned to cuticular chitin degradation. PMID:24779478

  9. Chitin-glucan complex production by Komagataella pastoris: Downstream optimization and product characterization.

    PubMed

    Farinha, Inês; Duarte, Paulo; Pimentel, Ana; Plotnikova, Evgeniya; Chagas, Bárbara; Mafra, Luís; Grandfils, Christian; Freitas, Filomena; Fortunato, Elvira; Reis, Maria A M

    2015-10-01

    Purified chitin-glucan complex (CGCpure) was extracted from Komagataella pastoris biomass using a hot alkaline treatment, followed by neutralization and repeated washing with deionized water. The co-polymer thus obtained had a ?-glucan:chitin molar ratio of 75:25 and low protein and inorganic salts contents (3.0 and 0.9wt%, respectively). CGCpure had an average molecular weight of 4.9×10(5)Da with a polydispersity index of 1.7, and a crystallinity index of 50%. Solid-state NMR provided structural insight at the co-polymer. X-ray diffraction suggests that CGCpure has ?-chitin in its structure. CGCpure presented an endothermic decomposition peak at 315°C, assigned to the degradation of the saccharide structures. This study revealed that K. pastoris CGC has properties similar to other chitinous biopolymers and may represent an attractive alternative to crustacean chitin derived-products, being a reliable raw material for the development of new/improved pharmaceutical, cosmetic or food products. PMID:26076647

  10. Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton

    PubMed Central

    Chaudhari, Sujata S.; Arakane, Yasuyuki; Specht, Charles A.; Moussian, Bernard; Boyle, Daniel L.; Park, Yoonseong; Kramer, Karl J.; Beeman, Richard W.; Muthukrishnan, Subbaratnam

    2011-01-01

    During each molting cycle of insect development, synthesis of new cuticle occurs concurrently with the partial degradation of the overlying old exoskeleton. Protection of the newly synthesized cuticle from molting fluid enzymes has long been attributed to the presence of an impermeable envelope layer that was thought to serve as a physical barrier, preventing molting fluid enzymes from accessing the new cuticle and thereby ensuring selective degradation of only the old one. In this study, using the red flour beetle, Tribolium castaneum, as a model insect species, we show that an entirely different and unexpected mechanism accounts for the selective action of chitinases and possibly other molting enzymes. The molting fluid enzyme chitinase, which degrades the matrix polysaccharide chitin, is not excluded from the newly synthesized cuticle as previously assumed. Instead, the new cuticle is protected from chitinase action by the T. castaneum Knickkopf (TcKnk) protein. TcKnk colocalizes with chitin in the new cuticle and organizes it into laminae. Down-regulation of TcKnk results in chitinase-dependent loss of chitin, severe molting defects, and lethality at all developmental stages. The conservation of Knickkopf across insect, crustacean, and nematode taxa suggests that its critical roles in the laminar ordering and protection of exoskeletal chitin may be common to all chitinous invertebrates. PMID:21930896

  11. Identification of a Membrane-Bound Transcriptional Regulator That Links Chitin and Natural Competence in Vibrio cholerae

    PubMed Central

    Dalia, Ankur B.; Lazinski, David W.; Camilli, Andrew

    2014-01-01

    ABSTRACT Vibrio cholerae is naturally competent when grown on chitin. It is known that expression of the major regulator of competence, TfoX, is controlled by chitin; however, the molecular mechanisms underlying this requirement for chitin have remained unclear. In the present study, we identify and characterize a membrane-bound transcriptional regulator that positively regulates the small RNA (sRNA) TfoR, which posttranscriptionally enhances tfoX translation. We show that this regulation of the tfoR promoter is direct by performing electrophoretic mobility shift assays and by heterologous expression of this system in Escherichia coli. This transcriptional regulator was recently identified independently and was named “TfoS” (S. Yamamoto et al., Mol. Microbiol., in press, doi:10.1111/mmi.12462). Using a constitutively active form of TfoS, we demonstrate that the activity of this regulator is sufficient to promote competence in V. cholerae in the absence of chitin. Also, TfoS contains a large periplasmic domain, which we hypothesized interacts with chitin to regulate TfoS activity. In the heterologous host E. coli, we demonstrate that chitin oligosaccharides are sufficient to activate TfoS activity at the tfoR promoter. Collectively, these data characterize TfoS as a novel chitin-sensing transcriptional regulator that represents the direct link between chitin and natural competence in V. cholerae. PMID:24473132

  12. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization

    PubMed Central

    Kombrink, Anja; Hansen, Guido; Valkenburg, Dirk-Jan

    2013-01-01

    While host immune receptors detect pathogen-associated molecular patterns to activate immunity, pathogens attempt to deregulate host immunity through secreted effectors. Fungi employ LysM effectors to prevent recognition of cell wall-derived chitin by host immune receptors, although the mechanism to compete for chitin binding remained unclear. Structural analysis of the LysM effector Ecp6 of the fungal tomato pathogen Cladosporium fulvum reveals a novel mechanism for chitin binding, mediated by intrachain LysM dimerization, leading to a chitin-binding groove that is deeply buried in the effector protein. This composite binding site involves two of the three LysMs of Ecp6 and mediates chitin binding with ultra-high (pM) affinity. Intriguingly, the remaining singular LysM domain of Ecp6 binds chitin with low micromolar affinity but can nevertheless still perturb chitin-triggered immunity. Conceivably, the perturbation by this LysM domain is not established through chitin sequestration but possibly through interference with the host immune receptor complex. DOI: http://dx.doi.org/10.7554/eLife.00790.001 PMID:23840930

  13. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitin, a polymer of N-acetyl-D-glucosamine, is found in fungal cell walls, but not in plants. Plant cells are capable of perceiving chitin fragments (chitooligosaccharides) to trigger plant defense. We identified a LysM receptor-like protein (AtLysM RLK1) that is required for the perception of chit...

  14. Thermo-mechanical properties of the composite made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and acetylated chitin nanocrystals.

    PubMed

    Wang, Bingjie; Li, Jun; Zhang, Jianqiang; Li, Huyan; Chen, Peng; Gu, Qun; Wang, Zongbao

    2013-06-01

    Acetylated chitin nanocrystals were prepared through surface modification, and biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/chitin nanocrystals films were produced via solution-casting method. Transmission electron microscopy observations and X-ray diffraction profiles revealed that the rod-like morphology and crystal structure of chitin nanocrystals were maintained. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results showed that the hydroxyl groups were partly replaced by the acetyl groups on the surface of chitin nanocrystals. The hydrophobic performance of the acetylated chitin nanocrystals was significantly increased according to the contact angle measurements. Differential scanning calorimeter results indicated that the influence of chitin nanocrystals on the crystallization behaviors of PHBV matrix was changed from suppression to assistance after the surface modification. Tensile test showed that the tensile strength and Young's modulus of PHBV/acetylated chitin nanocrystals composites were improved by 44% and 67%, comparing to the improvement of 24% and 43% for PHBV/chitin nanocrystals composites with the addition of 5.0 wt.% nanocrystals into PHBV. PMID:23618245

  15. Assembly and oligomerization of human ATP synthase lacking mitochondrial subunits a and A6L.

    PubMed

    Wittig, Ilka; Meyer, Bjoern; Heide, Heinrich; Steger, Mirco; Bleier, Lea; Wumaier, Zibiernisha; Karas, Michael; Schägger, Hermann

    2010-01-01

    Here we study ATP synthase from human rho0 (rho zero) cells by clear native electrophoresis (CNE or CN-PAGE) and show that ATP synthase is almost fully assembled in spite of the absence of subunits a and A6L. This identifies subunits a and A6L as two of the last subunits to complete the ATP synthase assembly. Minor amounts of dimeric and even tetrameric forms of the large assembly intermediate were preserved under the conditions of CNE, suggesting that it associated further into higher order structures in the mitochondrial membrane. This result was reminiscent to the reduced amounts of dimeric and tetrameric ATP synthase from yeast null mutants of subunits e and g detected by CNE. The dimer/oligomer-stabilizing effects of subunits e/g and a/A6L seem additive in human and yeast cells. The mature IF1 inhibitor was specifically bound to the dimeric/oligomeric forms of ATP synthase and not to the monomer. Conversely, nonprocessed pre-IF1 still containing the mitochondrial targeting sequence was selectively bound to the monomeric assembly intermediate in rho0 cells and not to the dimeric form. This supports previous suggestions that IF1 plays an important role in the dimerization/oligomerization of mammalian ATP synthase and in the regulation of mitochondrial structure and function. PMID:20188060

  16. The human liver glycogen synthase isozyme gene is located on the short arm of chromosome 12

    SciTech Connect

    Nuttall, F.Q.; Gannon, M.C. (Univ. of Minnesota, Minneapolis (United States)); Kubic, V.L.; Hoyt, K.J. (Hennepin County Medical Center, Minneapolis, MN (United States))

    1994-01-15

    Glycogen synthase catalyzes the rate-limiting step in glycogen synthesis. Its activity is regulated by a complex phosphorylation-dephosphorylation mechanism and by allosteric stimulators and inhibitors. Two isozymes of synthase, a skeletal muscle type and liver type, have been identified in rabbit and rat tissues using specific polyclonal antibodies. The skeletal muscle type isozyme is present in several organs in addition to skeletal muscle; the liver isozyme has been identified only in liver. Recently, we have purified and characterized the human liver synthase isozyme. We also have cloned and sequenced the gene from a human liver cDNA library. Using the entire cDNA coding sequence as a probe, we report here the localization of the liver synthase isozyme gene to the short arm of chromosome 12. These studies revealed a centromeric signal on chromosome 12 together with signal to glycogen synthase on the short arm of this chromosome in the p11.2-p12.2 region. Measurements of the relative distance from the midpoint of the centromere to the signal corresponding to glycogen synthase suggests that the locus is in the p12.2 band rather than in the more centromeric location.

  17. Adsorption of NO synthase inhibitor on dehydroxylated silica

    Microsoft Academic Search

    T. D. Khokhlova; A. A. Mandrugin; T. P. Trofimova; V. M. Fedoseev

    2010-01-01

    A series of thiazine derivatives with the NO inhibiting effect was synthesized. These derivatives can be used in the treatment\\u000a of gastrointestinal diseases, as well as antihypotensive (antishock) drugs. The potentially prolonged effect of these substances\\u000a was studied by the adsorption of 2-N-benzoyl-2-amino-5,6-dihydro-4H-1,3-thiazine hydrobromide (I) on silica (nonporous Polysorb\\u000a MP with specific surface area S = 330 m2\\/g and narrow-porous

  18. Inhibitors of Nitric Oxide Synthase in Human Skin

    Microsoft Academic Search

    Portia C. Goldsmith; Tabi A. Leslie; Nicholas A. Hayes; Nicholas J. Levell; Pauline M. Dowd; John C. Foreman

    1996-01-01

    The aim of this study was to investigate in human skin in viva the role of nitric oxide in maintaining resting vascular tone, in the vasodilatation caused by local warming and by ultraviolet B light exposure and in the response to exogenous calcitonin gene-related peptide (CGRP). Cutaneous blood flow was assessed by planimetry of the visible erythema or pallor and

  19. Chitin based polyurethanes using hydroxyl terminated polybutadiene, Part II: morphological studies.

    PubMed

    Zia, Khalid Mahmood; Qureshi, Naureen Aziz; Mujahid, Mohammad; Mahmood, Kashif; Zuber, Mohammad

    2013-08-01

    Chitin-hydroxyl terminated polybutadiene (HTPB) based polyurethane (PU) was prepared and structure of the pre-designed PU was confirmed using FT-IR spectrometer. The FT-IR analysis confirmed that the crosslinking density increased with increasing the chitin contents in the final PU. During the detailed FT-IR study, it was observed that tri-functional character of chitin is responsible for the formation of network structure. The scanning electron microscope (SEM) analysis also confirmed the cross-linked structure of the material. The amount of carbon, nitrogen and oxygen elements obtained from EDX-SEM microanalysis also supported the results. The resistance in solubility against the solvent also confirmed the crosslinking behavior of the prepared polyurethane. PMID:23603077

  20. Chitin based polyurethanes using hydroxyl terminated polybutadiene. Part I: molecular engineering.

    PubMed

    Zia, Khalid Mahmood; Mahmood, Kashif; Zuber, Mohammad; Jamil, Tahir; Shafiq, Muhammad

    2013-08-01

    Chitin based polyurethanes (PUs) using hydroxyl terminated polybutadiene (HTPB) as soft segment were prepared and the structure of the proposed PU was confirmed using FTIR spectrometer. PU prepolymer was prepared using HTPB and toluene-2,4-diisocyanate (TDI), and the chain was extended with different proportions of 1,4-butane diol (BDO) and chitin. During the detailed FTIR study, it was observed that tri-functional character of chitin results in the formation of network structure due to crosslinking of the material, whereas bi-functional aliphatic diol based polyurethane produced linear PU. Hydrogen bonding between the hard segments was identified by the IR spectroscopy. The scanning electron microscope (SEM) analysis also confirmed the cross-linked structure. PMID:23643975

  1. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    PubMed Central

    Zhang, Hongyin; Li, Renping; Liu, Weimin

    2011-01-01

    Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are widely used in controlling postharvest decay of fruits. This review aims to introduce the effect of chitin and chitosan on postharvest decay in fruits and the possible modes of action involved. We found most of the actions discussed in these researches rest on physiological mechanisms. All of the mechanisms are summarized to lay the groundwork for further studies which should focus on the molecular mechanisms of chitin and chitosan in controlling postharvest decay of fruits. PMID:21541034

  2. Nicotine activation of neuronal nitric oxide synthase and guanylyl cyclase in the medulla increases blood flow of the common carotid artery in cats.

    PubMed

    Gong, Chi-Li; Leung, Yuk-Man; Huang, Yi-Ping; Lin, Nai-Nu; Hung, Yi-Wen; Lee, Tony Jer-Fu; Kuo, Jon-Son

    2010-12-17

    Individual activation of nicotinic acetylcholine receptor (nAChR) or nitric oxide (NO) synthase in the dorsal facial area (DFA) increases blood flow of common carotid artery (CCA) supplying intra- and extra-cranial tissues. We investigated whether the activation of nAChR initiated the activation of NO synthase and guanylyl cyclase to increase CCA blood flow in anesthetized cats. Microinjections of nicotine (a non-selective nAChR agonist), or choline (a selective ?7-nAChR agonist) in the DFA produced increases in CCA blood flow ipsilaterally. These increases were significantly reduced by pretreatment with NG-nitro-arginine methyl ester (l-NAME, a non-specific NO synthase inhibitor), 7-nitroindazole (7-NI, a relatively selective neuronal NO synthase inhibitor) or methylene blue (MB, a guanylyl cyclase inhibitor) but not by that with N5-(1-iminoethyl)-l-ornithine (l-NIO, a potent endothelial NO synthase inhibitor). Control microinjection with d-NAME (an isomer of l-NAME), artificial cerebrospinal fluid or DMSO (a solvent for 7-NI) did not affect resting CCA blood flow, nor did they affect nicotine- or choline-induced response. In conclusion, activation of nAChR, at least ?7-nAChR, led to the activation of neuronal NO synthase and guanylyl cyclase in the DFA, which induced an increase in CCA blood flow. PMID:20813160

  3. Corrosion inhibitor

    SciTech Connect

    Wisotsky, M.J.; Metro, S.J.

    1989-10-31

    A corrosion inhibitor for use in synthetic ester lubricating oils is disclosed. It comprises an effective amount of: at least one aromatic amide; and at least one hydroxy substituted aromatic compound. The corrosion inhibitor thus formed is particularly useful in synthetic ester turbo lubricating oils.

  4. Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection

    PubMed Central

    Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten

    2015-01-01

    Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512

  5. Chitinous fibrils in the lorica of the flagellate chrysophyte Poteriochromonas stipitata (syn. Ochromonas malhamensis)

    PubMed Central

    1977-01-01

    Ordered microfibrils are formed on the membrane of the cytoplasmic tail of the alga Poteriochromonas after attachment to a substrate. The ultrastructure of native and extracted stalk fibrils was studied with electron microscope methods. In addition, the structural polysaccharide was characterized by hydrolyses, separation of the monomers by thin- layer chromatography, gas-liquid chromatography and amino acid analysis, and by X-ray diffraction. The alkali-resistant fibrils yielded mostly glucosamine upon extensive hydrolysis, and showed X-ray diffraction patterns similar to those of fugal chitin. It is concluded that the resistant core of the fibrils is chitinous. PMID:858740

  6. Statistical optimization for production of chitin deacetylase from Rhodococcus erythropolis HG05.

    PubMed

    Sun, Yuying; Zhang, Jiquan; Wu, Shengjun; Wang, Shujun

    2014-02-15

    A strain producing chitin deacetylase (CDA) was isolated and identified as Rhodococcus erythropolis by morphological characteristics and 16S rDNA analysis, named as R. erythropolis HG05. By Plackett-Burman and central composite design, CDA production from R. erythropolis HG05 was increased from 58.00 U/mL to 238.89 U/mL. With the crude enzyme from R. erythropolis HG05, the hydrolysate components from colloid chitin were chito-oligosaccharides with polymerization number larger than hexaose. PMID:24507331

  7. Application of Crustacean Chitin as a Co-diluent in Direct Compression of Tablets

    Microsoft Academic Search

    Viviana García Mir; Jyrki Heinämäki; Osmo Antikainen; Niklas Sandler; Ofelia Bilbao Revoredo; Antonio Iraizoz Colarte; Olga Maria Nieto; Jouko Yliruusi

    2010-01-01

    A “simplex-centroid mixture design” was used to study the direct-compression properties of binary and ternary mixtures of\\u000a chitin and two cellulosic direct-compression diluents. Native milled and fractioned (125–250 ?m) crustacean chitin of lobster\\u000a origin was blended with microcrystalline cellulose, MCC (Avicel® PH 102) and spray-dried lactose–cellulose, SDLC Cellactose®\\u000a (composed of a spray-dried mixture of alpha-lactose monohydrate 75% and cellulose powder 25%).

  8. Sucrose Synthase: Expanding Protein Function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase (SUS: EC 2.4.1.13), a key enzyme in plant sucrose catabolism, is uniquely able to mobilize sucrose into multiple pathways involved in metabolic, structural, and storage functions. Our research indicates that the biological function of SUS may extend beyond its catalytic activity. Th...

  9. Overexpression of Human Endothelial Nitric Oxide Synthase in Rat Vascular Smooth Muscle Cells and in Balloon-Injured Carotid Artery

    Microsoft Academic Search

    Lihua Chen; Gunter Daum; Reza Forough; Monika Clowes; Ulrich Walter; Alexander W. Clowes

    Endothelial cells in normal blood vessels might prevent the unscheduled proliferation of smooth muscle cells (SMCs) by the expression of cell migration and growth inhibitors. NO, a potent vasodilator, generated by endothelium-specific constitutive NO synthase (ecNOS) might be such an inhibitor. To test this hypothesis, we overexpressed human ecNOS in syngeneic rat arterial SMCs using retrovirus-mediated gene transfer. Compared with

  10. Adipocyte Mineralocorticoid Receptor Activation Leads to Metabolic Syndrome and Induction of Prostaglandin D2 Synthase.

    PubMed

    Urbanet, Riccardo; Nguyen Dinh Cat, Aurelie; Feraco, Alessandra; Venteclef, Nicolas; El Mogrhabi, Soumaya; Sierra-Ramos, Catalina; Alvarez de la Rosa, Diego; Adler, Gail K; Quilliot, Didier; Rossignol, Patrick; Fallo, Francesco; Touyz, Rhian M; Jaisser, Frédéric

    2015-07-01

    Metabolic syndrome is a major risk factor for the development of diabetes mellitus and cardiovascular diseases. Pharmacological antagonism of the mineralocorticoid receptor (MR), a ligand-activated transcription factor, limits metabolic syndrome in preclinical models, but mechanistic studies are lacking to delineate the role of MR activation in adipose tissue. In this study, we report that MR expression is increased in visceral adipose tissue in a preclinical mouse model of metabolic syndrome and in obese patients. In vivo conditional upregulation of MR in mouse adipocytes led to increased weight and fat mass, insulin resistance, and metabolic syndrome features without affecting blood pressure. We identified prostaglandin D2 synthase as a novel MR target gene in adipocytes and AT56, a specific inhibitor of prostaglandin D2 synthase enzymatic activity, blunted adipogenic aldosterone effects. Moreover, translational studies showed that expression of MR and prostaglandin D2 synthase is strongly correlated in adipose tissues from obese patients. PMID:25966493

  11. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein.

    PubMed Central

    Stuehr, D J; Cho, H J; Kwon, N S; Weise, M F; Nathan, C F

    1991-01-01

    A soluble nitric oxide (NO) synthase activity was purified 426-fold from a mouse macrophage cell line activated with interferon gamma and bacterial lipopolysaccharide by sequential anion-exchange, affinity, and gel filtration chromatography. SDS/PAGE of the purified NO synthase gave three closely spaced silver-staining protein bands between 125 and 135 kDa. When assayed in the presence of L-arginine, NADPH, tetrahydrobiopterin, FAD, and reduced thiol, purified NO synthase had a specific activity of 1313 nmol of NO2- plus NO3- per min per mg. The apparent Km of the enzyme for L-arginine and NADPH was 2.8 and 0.3 microM, respectively. Addition of calcium ions with or without calmodulin did not increase the activity of the purified enzyme, and NO synthesis was not altered by calmodulin inhibitors. Gel filtration chromatography indicated that the induced NO synthase was catalytically competent as a dimer of approximately 250 kDa but could be dissociated into inactive monomers of approximately 130 kDa in the absence of L-arginine, FAD, and tetrahydrobiopterin. Upon heat denaturation, NO synthase released 1.1 mol of FAD and 0.55 mol of FMN per mol of 130-kDa subunit. Thus, inducible macrophage NO synthase differs in several respects from constitutive NO synthases and is one of very few eukaryotic enzymes containing both FAD and FMN. Images PMID:1715579

  12. Heterologous expression of the antifungal ?-chitin binding protein CBP24 from bacillus thuringiensis and its synergistic action with bacterial chitinases.

    PubMed

    Mehmood, Muhammad A; Latif, Mamoona; Hussain, Khadim; Gull, Munazza; Latif, Farooq; Rajoka, Muhammad I

    2015-01-01

    The genome sequence analysis of Bacillus thuringiensis serovar konkukian S4 has shown to contain two chitinases (Chi74, Chi39) and two chitin-binding proteins (CBP50 and CBP24). The Chi74, Chi39 and CBP50 have been characterized previously. The chitin-binding protein CBP24 was cloned and heterologously expressed in Escherichia coli. The recombinant protein was purified using a Ni-NTA purification system. The purified protein was used to study its substrate binding activity using crystalline chitin variants as substrates. The Bmax and Kd values have shown that it preferably binds to ?-type of the crystalline chitin at a range of pH with peak activity between 5.5-7.5. To elucidate the role of CBP24 in the chitin degradation system of S4, the purified chitinases Chi74, Chi39 along with the ChiA from Serratia proteamcualans were used in different combinations with the CBP24 and chitinolytic activity was assayed. It was shown that the CBP24 acts synergistically with chitin degradation activity of bacterial chitinases non-specifically. Moreover, the CBP24 has shown antifungal activity against plant pathogenic fungi Fusarium oxysporum and Rhizoctonia solani. The present study will lead us to develop a technology for environmental friendly conversion of chitin to valuable products. PMID:25182053

  13. Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium

    Microsoft Academic Search

    Sevag A Kaladchibachi; Brad Doble; Norman Anthopoulos; James R Woodgett; Armen S Manoukian

    2007-01-01

    BACKGROUND: Bipolar disorder (BPD) is a widespread condition characterized by recurring states of mania and depression. Lithium, a direct inhibitor of glycogen synthase kinase 3 (GSK3) activity, and a mainstay in BPD therapeutics, has been proposed to target GSK3 as a mechanism of mood stabilization. In addition to mood imbalances, patients with BPD often suffer from circadian disturbances. GSK3, an

  14. Ultrastructural localisation by protein A-gold immunocytochemistry of 5-enolpyruvylshikimic acid 3-phosphate synthase in a plant cell culture which overproduces the enzyme.

    PubMed

    Smart, C C; Amrhein, N

    1987-01-01

    Recently we have shown that cultured cells of the higher plant Corydalis sempervirens Pers., adapted to growth in the presence of high concentrations of the herbicide glyphosate, a potent specific inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimic acid 3-phosphate (EPSP) synthase (EC 2.5.1.19, 3-phosphoshikimate 1-carboxyvinyltransferase) oversynthesize the EPSP synthase protein (Smart et al., 1985, J. Biol. Chem. 260, 16338-16346). We now report that the EPSP synthase protein can be detected in cells of the adapted as well as of the non-adapted strain by the use of protein A-colloidal gold immunocytochemistry. The overproduced EPSP synthase in the glyphosate-adapted cells is located exclusively in the plastid and we find no evidence for the existence of extra-plastidic EPSP synthase in either strain. PMID:24232834

  15. Chitinase and apparent digestibility of chitin in the digestive tract of juvenile cobia, Rachycentron canadum

    Microsoft Academic Search

    B. C. Fines; G. J. Holt

    2010-01-01

    A study was designed to determine the presence of chitinolytic enzymes in cobia. Additionally, the source of the chitinolytic enzymes (bacterial or endogenous) and apparent digestibility of chitinous waste meals were investigated to determine the viability of crustacean processing waste products in juvenile cobia diets. Antibiotics were used to eliminate potential chitinolytic gut flora and chitinolytic enzyme levels were compared

  16. Characterization of Organics Consistent with ?-Chitin Preserved in the Late Eocene Cuttlefish Mississaepia mississippiensis

    PubMed Central

    Weaver, Patricia G.; Doguzhaeva, Larisa A.; Lawver, Daniel R.; Tacker, R. Christopher; Ciampaglio, Charles N.; Crate, Jon M.; Zheng, Wenxia

    2011-01-01

    Background Preservation of original organic components in fossils across geological time is controversial, but the potential such molecules have for elucidating evolutionary processes and phylogenetic relationships is invaluable. Chitin is one such molecule. Ancient chitin has been recovered from both terrestrial and marine arthropods, but prior to this study had not been recovered from fossil marine mollusks. Methodology/Principal Findings Organics consistent with ?-chitin are recovered in cuttlebones of Mississaepia mississippiensis from the Late Eocene (34.36 million years ago) marine clays of Hinds County, Mississippi, USA. These organics were determined and characterized through comparisons with extant taxa using Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/EDS), Field Emission Scanning Electron Microscopy (Hyperprobe), Fourier Transmission Infrared Spectroscopy (FTIR) and Immunohistochemistry (IHC). Conclusions/Significance Our study presents the first evidence for organics consistent with chitin from an ancient marine mollusk and discusses how these organics have been degraded over time. As mechanisms for their preservation, we propose that the inorganic/organic lamination of the cuttlebone, combined with a suboxic depositional environment with available free Fe2+ ions, inhibited microbial or enzymatic degradation. PMID:22132239

  17. Reduction of the Algicidal Properties of Copper and Mercury Ions by Chitin and Chitosan.

    ERIC Educational Resources Information Center

    Blair, Hal S.; And Others

    1982-01-01

    When chitin and chitosan were added to growing cultures of Chlorella containing various quantities of toxic metals (copper and mercury), it was found that the presence of these materials reduced the toxic effect of the metals. Background information, procedures, and results are provided for this experiment. (Author/JN)

  18. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    NASA Astrophysics Data System (ADS)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p<0.001) increase in the absorption capacity. Moisture vapour transmission rate of the membranes was 4285.77±455.61 g/m2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  19. Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).

    PubMed

    Xi, Y; Pan, P-L; Ye, Y-X; Yu, B; Zhang, C-X

    2014-12-01

    Chitin deacetylases (CDAs) are enzymes required for one of the pathways of chitin degradation, in which chitosan is produced by the deacetylation of chitin. Bioinformatic investigations with genomic and transcriptomic databases identified four genes encoding CDAs in Nilaparvata lugens (NlCDAs). Phylogenetic analysis showed that insect CDAs were clustered into five major groups. Group I, III and IV CDAs are found in all insect species, whereas the pupa-specific group II and gut-specific group V CDAs are not found in the plant-sap/blood-sucking hemimetabolous species from Hemiptera and Anoplura. The developmental and tissue-specific expression patterns of four NlCDAs revealed that NlCDA3 was a gut-specific CDA, with high expression at all developmental stages; NlCDA1, NlCDA2 and NlCDA4 were highly expressed in the integument and peaked periodically during every moulting, which suggests their roles in chitin turnover of the insect old cuticle. Lethal phenotypes of cuticle shedding failure and high mortality after the injection of double-stranded RNAs (dsRNAs) for NlCDA1, NlCDA2 and NlCDA4 provide further evidence for their functions associated with moulting. No observable morphological and internal structural abnormality was obtained in insects treated with dsRNA for gut-specific NlCDA3. PMID:24989071

  20. Hydrophobic modification of chitin whisker and its potential application in structuring oil.

    PubMed

    Huang, Yao; He, Meng; Lu, Ang; Zhou, Weizheng; Stoyanov, Simeon D; Pelan, Eddie G; Zhang, Lina

    2015-02-10

    A facile approach was developed to modify chitin whiskers by reacting them with bromohexadecane, and the potential application of modified whiskers in structuring oil was evaluated. The results of Fourier transform infrared spectra (FT-IR), wide-angle X-ray diffraction (XRD), elemental analysis, solid (13)C NMR, and differential scanning calorimeter (DSC) confirmed that the long alkyl chains were successfully introduced to the chitin whiskers and endowed them with improved hydrophobicity and thermal transition. By hot pressing the modified whiskers, the highly hydrophobic whisker sheets were constructed, showing high contact angles close to 150°. The hydrophobic interaction between the long alkyl chains and chitin backbone induced the crystal alignment with micro-nano structure, leading to the surface roughness and high hydrophobicity of the sheets. Furthermore, the modified whiskers could form a stable dispersion in sunflower oil, displaying a remarkable thickening effect. The viscosity of the oily suspension exhibited temperature dependence and shear-thinning behavior, suggesting great potentials to fabricate oleogel without adding any saturated fat. Furthermore, the intrinsic biocompatibility of ?-chitin structure benefits its application in foodstuff, cosmetics, and medical fields. PMID:25578624

  1. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing

    E-print Network

    Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing the wavelength dependence of the refractive index of butterfly wing scales and bird feathers. The refractive index values of the glass scales of the butterfly Graphium sarpedon are, at wavelengths 400, 500 and 600

  2. Ultrastructural localisation by protein A-gold immunocytochemistry of 5-enolpyruvylshikimic acid 3-phosphate synthase in a plant cell culture which overproduces the enzyme

    Microsoft Academic Search

    C. C. Smart; N. Amrhein

    1987-01-01

    Recently we have shown that cultured cells of the higher plant Corydalis sempervirens Pers., adapted to growth in the presence of high concentrations of the herbicide glyphosate, a potent specific inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimic acid 3-phosphate (EPSP) synthase (EC 2.5.1.19, 3-phosphoshikimate 1-carboxyvinyltransferase) oversynthesize the EPSP synthase protein (Smart et al., 1985, J. Biol. Chem. 260, 16338–16346). We

  3. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae.

    PubMed

    Dalia, Ankur B; Lazinski, David W; Camilli, Andrew

    2014-01-01

    Vibrio cholerae is naturally competent when grown on chitin. It is known that expression of the major regulator of competence, TfoX, is controlled by chitin; however, the molecular mechanisms underlying this requirement for chitin have remained unclear. In the present study, we identify and characterize a membrane-bound transcriptional regulator that positively regulates the small RNA (sRNA) TfoR, which posttranscriptionally enhances tfoX translation. We show that this regulation of the tfoR promoter is direct by performing electrophoretic mobility shift assays and by heterologous expression of this system in Escherichia coli. This transcriptional regulator was recently identified independently and was named "TfoS" (S. Yamamoto et al., Mol. Microbiol., in press, doi:10.1111/mmi.12462). Using a constitutively active form of TfoS, we demonstrate that the activity of this regulator is sufficient to promote competence in V. cholerae in the absence of chitin. Also, TfoS contains a large periplasmic domain, which we hypothesized interacts with chitin to regulate TfoS activity. In the heterologous host E. coli, we demonstrate that chitin oligosaccharides are sufficient to activate TfoS activity at the tfoR promoter. Collectively, these data characterize TfoS as a novel chitin-sensing transcriptional regulator that represents the direct link between chitin and natural competence in V. cholerae. IMPORTANCE Naturally competent bacteria can take up exogenous DNA from the environment and integrate it into their genome by homologous recombination. This ability to take up exogenous DNA is shared by diverse bacterial species and serves as a mechanism to acquire new genes to enhance the fitness of the organism. Several members of the family Vibrionaceae become naturally competent when grown on chitin; however, a molecular understanding of how chitin activates competence is lacking. Here, we identify a novel membrane-bound transcriptional regulator that is required for natural transformation in the human pathogen Vibrio cholerae. We demonstrate that this regulator senses chitin oligosaccharides to activate the competence cascade, thus, uncovering the molecular link between chitin and natural competence in this Vibrio species. PMID:24473132

  4. Polymorphisms of methylenetetrahydrofolate reductase ( MTHFR), methionine synthase ( MTR), methionine synthase reductase ( MTRR), and thymidylate synthase ( TYMS) in multiple myeloma risk

    Microsoft Academic Search

    Carmen S. P. Lima; Manoela M. Ortega; Margareth C. Ozelo; Renato C. Araujo; Cármino A. De Souza; Irene Lorand-Metze; Joyce M. Annichino-Bizzacchi; Fernando F. Costa

    2008-01-01

    We tested whether the polymorphisms of the methylenetetrahydrofolate reductase gene, MTHFR C677T and A1298C, the methionine synthase gene, MTR A2756G, the methionine synthase reductase gene, MTRR A66G, and the thymidylate synthase gene, TYMS 2R?3R, involved in folate and methionine metabolism, altered the risk for multiple myeloma (MM). Genomic DNA from 123MM patients and 188 controls was analysed by polymerase chain

  5. An Insecticidal GroEL Protein with Chitin Binding Activity from Xenorhabdus nematophila*

    PubMed Central

    Joshi, Mohan Chandra; Sharma, Animesh; Kant, Sashi; Birah, Ajanta; Gupta, Gorakh Prasad; Khan, Sharik R.; Bhatnagar, Rakesh; Banerjee, Nirupama

    2008-01-01

    Xenorhabdus nematophila secretes insecticidal proteins to kill its larval prey. We have isolated an ?58-kDa GroEL homolog, secreted in the culture medium through outer membrane vesicles. The protein was orally insecticidal to the major crop pest Helicoverpa armigera with an LC50 of ?3.6 ?g/g diet. For optimal insecticidal activity all three domains of the protein, apical, intermediate, and equatorial, were necessary. The apical domain alone was able to bind to the larval gut membranes and manifest low level insecticidal activity. At equimolar concentrations, the apical domain contained approximately one-third and the apical-intermediate domain approximately one-half bioactivity of that of the full-length protein. Interaction of the protein with the larval gut membrane was specifically inhibited by N-acetylglucosamine and chito-oligosaccharides. Treatment of the larval gut membranes with chitinase abolished protein binding. Based on the three-dimensional structural model, mutational analysis demonstrated that surface-exposed residues Thr-347 and Ser-356 in the apical domain were crucial for both binding to the gut epithelium and insecticidal activity. Double mutant T347A,S356A was 80% less toxic (p < 0.001) than the wild type protein. The GroEL homolog showed ?-chitin binding activity with Kd ? 0.64 ?m and Bmax ? 4.68 ?mol/g chitin. The variation in chitin binding activity of the mutant proteins was in good agreement with membrane binding characteristics and insecticidal activity. The less toxic double mutant XnGroEL showed an ?8-fold increase of Kd in chitin binding assay. Our results demonstrate that X. nematophila secretes an insecticidal GroEL protein with chitin binding activity. PMID:18667427

  6. Microbial colonization of copepod body surfaces and chitin degradation in the sea

    NASA Astrophysics Data System (ADS)

    Kirchner, M.

    1995-03-01

    Next to cellulose, chitin (composed of N-acetyl-D-glucosamine sugar units) is the most frequently occurring biopolymer in nature. Among the most common sources of chitin in the marine environment are copepods and the casings of their fecal pellets. During the mineralization of chitin by microorganisms, which occurs chiefly by means of exoenzymes, nitrogen and carbon are returned to the nutrient cycle. In this study, the microbial colonization of the moults (exuviae), carcasses and fecal pellets of Tisbe holothuriae Humes (Copepoda: Harpacticoida) was examined in the laboratory. Results obtained with DAPI staining indicated that a succession of microorganisms from rodshaped bacteria and cocci to starlike aggregates took place, followed by the yeastlike fungus Aureobasidium pullulans (de Bary) Arnaud. No differences were noted between moults from various developmental stages, from nauplius to adult. The ventral sides and extremities of exuviae and carcasses were more rapidly colonized than other parts of the bodies. The casings of fecal pellets were frequently surrounded by bacteria with fimbriae or slime threads. In situ studies of chitin degradation (practical grade chitin from crustacean shells) with the mesh bag technique showed that about 90% of the original substance was lost after 3 months exposure in seawater at temperatures between 10 and 18°C. Chitinase activity was measured in the water at two stations near Helgoland, an island in the North Sea. A higher exoenzymatic activity was found in the rocky intertidal zone, compared to the Station Cable Buoy located between the main and Düne island. These values correspond to the higher bacteria numbers (cfu ml-1) found in the rocky intertidal: 10 to 100× greater than those found at the Cable Buoy Station.

  7. STRUCTURAL ENZYMOLOGY OF POLYKETIDE SYNTHASES

    PubMed Central

    Tsai, Shiou-Chuan (Sheryl); Ames, Brian Douglas

    2010-01-01

    This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence–structure–function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein–protein interactions leading to the extraordinary structural diversity of naturally occurring polyketides. PMID:19362634

  8. Mutational analysis of a monoterpene synthase reaction: Altered catalysis through directed mutagenesis of (?)-pinene synthase from Abies grandis

    Microsoft Academic Search

    David C. Hyatt; Rodney Croteau

    2005-01-01

    Two monoterpene synthases, (?)-pinene synthase and (?)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (?)-camphene synthase, (?)-camphene, and the major products of (?)-pinene synthase, (?)-?-pinene, and (?)-?-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common

  9. Kei1: A Novel Subunit of Inositolphosphorylceramide Synthase, Essential for Its Enzyme Activity and Golgi Localization

    PubMed Central

    Sato, Keisuke; Noda, Yoichi

    2009-01-01

    Fungal sphingolipids have inositol-phosphate head groups, which are essential for the viability of cells. These head groups are added by inositol phosphorylceramide (IPC) synthase, and AUR1 has been thought to encode this enzyme. Here, we show that an essential protein encoded by KEI1 is a novel subunit of IPC synthase of Saccharomyces cerevisiae. We find that Kei1 is localized in the medial-Golgi and that Kei1 is cleaved by Kex2, a late Golgi processing endopeptidase; therefore, it recycles between the medial- and late Golgi compartments. The growth defect of kei1-1, a temperature-sensitive mutant, is effectively suppressed by the overexpression of AUR1, and Aur1 and Kei1 proteins form a complex in vivo. The kei1-1 mutant is hypersensitive to aureobasidin A, a specific inhibitor of IPC synthesis, and the IPC synthase activity in the mutant membranes is thermolabile. A part of Aur1 is missorted to the vacuole in kei1-1 cells. We show that the amino acid substitution in kei1-1 causes release of Kei1 during immunoprecipitation of Aur1 and that Aur1 without Kei1 has hardly detectable IPC synthase activity. From these results, we conclude that Kei1 is essential for both the activity and the Golgi localization of IPC synthase. PMID:19726565

  10. Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum.

    PubMed

    Liu, Wenting; Feng, Xinxin; Zheng, Yingying; Huang, Chun-Hsiang; Nakano, Chiaki; Hoshino, Tsutomu; Bogue, Shannon; Ko, Tzu-Ping; Chen, Chun-Chi; Cui, Yunfeng; Li, Jian; Wang, Iren; Hsu, Shang-Te Danny; Oldfield, Eric; Guo, Rey-Ting

    2014-01-01

    We report the first X-ray crystal structure of ent-kaur-16-ene synthase from Bradyrhizobium japonicum, together with the results of a site-directed mutagenesis investigation into catalytic activity. The structure is very similar to that of the ? domains of modern plant terpene cyclases, a result that is of interest since it has been proposed that many plant terpene cyclases may have arisen from bacterial diterpene cyclases. The ent-copalyl diphosphate substrate binds to a hydrophobic pocket near a cluster of Asp and Arg residues that are essential for catalysis, with the carbocations formed on ionization being protected by Leu, Tyr and Phe residues. A bisphosphonate inhibitor binds to the same site. In the kaurene synthase from the moss Physcomitrella patens, 16-?-hydroxy-ent-kaurane as well as kaurene are produced since Leu and Tyr in the P. patens kaurene synthase active site are replaced by smaller residues enabling carbocation quenching by water. Overall, the results represent the first structure determination of a bacterial diterpene cyclase, providing insights into catalytic activity, as well as structural comparisons with diverse terpene synthases and cyclases which clearly separate the terpene cyclases from other terpene synthases having highly ?-helical structures. PMID:25269599

  11. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  12. Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum

    PubMed Central

    Liu, Wenting; Feng, Xinxin; Zheng, Yingying; Huang, Chun-Hsiang; Nakano, Chiaki; Hoshino, Tsutomu; Bogue, Shannon; Ko, Tzu-Ping; Chen, Chun-Chi; Cui, Yunfeng; Li, Jian; Wang, Iren; Hsu, Shang-Te Danny; Oldfield, Eric; Guo, Rey-Ting

    2014-01-01

    We report the first X-ray crystal structure of ent-kaur-16-ene synthase from Bradyrhizobium japonicum, together with the results of a site-directed mutagenesis investigation into catalytic activity. The structure is very similar to that of the ? domains of modern plant terpene cyclases, a result that is of interest since it has been proposed that many plant terpene cyclases may have arisen from bacterial diterpene cyclases. The ent-copalyl diphosphate substrate binds to a hydrophobic pocket near a cluster of Asp and Arg residues that are essential for catalysis, with the carbocations formed on ionization being protected by Leu, Tyr and Phe residues. A bisphosphonate inhibitor binds to the same site. In the kaurene synthase from the moss Physcomitrella patens, 16-?-hydroxy-ent-kaurane as well as kaurene are produced since Leu and Tyr in the P. patens kaurene synthase active site are replaced by smaller residues enabling carbocation quenching by water. Overall, the results represent the first structure determination of a bacterial diterpene cyclase, providing insights into catalytic activity, as well as structural comparisons with diverse terpene synthases and cyclases which clearly separate the terpene cyclases from other terpene synthases having highly ?-helical structures. PMID:25269599

  13. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    SciTech Connect

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

  14. A Molecular Dynamics Investigation of Mycobacterium tuberculosis Prenyl Synthases: Conformational Flexibility and Implications for Computer-aided Drug Discovery.

    PubMed

    Kim, Meekyum Olivia; Feng, Xinxin; Feixas, Ferran; Zhu, Wei; Lindert, Steffen; Bogue, Shannon; Sinko, William; de Oliveira, César; Rao, Guodong; Oldfield, Eric; McCammon, James Andrew

    2015-06-01

    With the rise in antibiotic resistance, there is interest in discovering new drugs active against new targets. Here, we investigate the dynamic structures of three isoprenoid synthases from Mycobacterium tuberculosis using molecular dynamics (MD) methods with a view to discovering new drug leads. Two of the enzymes, cis-farnesyl diphosphate synthase (cis-FPPS) and cis-decaprenyl diphosphate synthase (cis-DPPS), are involved in bacterial cell wall biosynthesis, while the third, tuberculosinyl adenosine synthase (Rv3378c), is involved in virulence factor formation. The MD results for these three enzymes were then compared with previous results on undecaprenyl diphosphate synthase (UPPS) by means of active site volume fluctuation and principal component analyses. In addition, an analysis of the binding of prenyl diphosphates to cis-FPPS, cis-DPPS, and UPPS utilizing the new MD results is reported. We also screened libraries of inhibitors against cis-DPPS, finding ~1 ?m inhibitors, and used the receiver operating characteristic-area under the curve (ROC-AUC) method to test the predictive power of X-ray and MD-derived cis-DPPS receptors. We found that one compound with potent M. tuberculosis cell growth inhibition activity was an IC50 ~0.5- to 20-?m inhibitor (depending on substrate) of cis-DPPS, a ~660-nm inhibitor of Rv3378c as well as a 4.8-?m inhibitor of cis-FPPS, opening up the possibility of multitarget inhibition involving both cell wall biosynthesis and virulence factor formation. PMID:25352216

  15. Alkali- or acid-induced changes in structure, moisture absorption ability and deacetylating reaction of ?-chitin extracted from jumbo squid (Dosidicus gigas) pens.

    PubMed

    Jung, Jooyeoun; Zhao, Yanyun

    2014-01-01

    Alkali- or acid-induced structural modifications in ?-chitin from squid (Dosidicus gigas, d'Orbigny, 1835) pens and their moisture absorption ability (MAA) and deacetylating reaction were investigated and compared with ?-chitin from shrimp shells. ?-Chitin was converted into the ?-form after 3h in 40% NaOH or 1-3 h in 40% HCl solution, and ?-chitin obtained from NaOH treatment had higher MAA than had native ?-chitin, due to polymorphic destructions. In contrast, induced ?-chitin from acid treatment of ?-chitin had few polymorphic modifications, showing no significant change (P>0.05) in MAA. ?-Chitin was more susceptible to alkali deacetylation than was ?-chitin, and required a lower concentration of NaOH and shorter reaction time. These results demonstrate that alkali- or acid-treated ?-chitin retained high susceptibility toward solvents, which in turn resulted in good biological activity of ?-chitosan for use as a natural antioxidant and antimicrobial substance or application as edible coatings and films for various food applications. PMID:24444948

  16. Negative Regulation by Phosphatidylinositol 3Kinase of Inducible Nitric Oxide Synthase Expression in Macrophages1

    Microsoft Academic Search

    Maria J. M. Diaz-Guerra; Antonio Castrillo; Paloma Martin-Sanz; Lisardo Bosca

    Triggering of the macrophage cell line RAW 264.7 with LPS promotes a transient activation of phosphatidylinositol 3-kinase (PI3-kinase). Incubation of activated macrophages with wortmannin and LY294002, two inhibitors of PI3-kinase, increased the amount of inducible nitric oxide synthase (iNOS) and the synthesis of nitric oxide. Treatment with wortmannin promoted a prolonged activation of NF-kB in LPS-treated cells as well as

  17. Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis

    Microsoft Academic Search

    Julie Laplante; Istvan Rajcan; François J. Tardif

    2009-01-01

    In weed species, resistance to herbicides inhibiting acetohydroxyacid synthase (AHAS) is often conferred by genetic mutations\\u000a at one of six codons in the AHAS gene. These mutations provide plants with various levels of resistance to different chemical classes of AHAS inhibitors.\\u000a Five green foxtail [Setaria viridis (L.) Beauv.] populations were reported in Ontario with potential resistance to the AHAS-inhibiting herbicide

  18. Sigma 1 Receptor Agonists Act as Neuroprotective Drugs Through Inhibition of Inducible Nitric Oxide Synthase

    Microsoft Academic Search

    Kamila Vagnerova; Patricia D. Hurn; Anish Bhardwaj; Jeffrey R. Kirsch

    2006-01-01

    Postischemic administration of the sigma-1 agonists reduces ischemic brain injury; however, the mechanism is unclear. We hypothesized that the sigma-1 agonist ()isoform of pentazocine (P()) reduces damage in part by ameliorating cell death mediated via inducible nitric oxide synthase (iNOS) and that the ()isoform (P()) lacks this effect. We compared treatment with P() with or without the iNOS inhibitor aminoguanidine

  19. Role of inducible nitric oxide synthase in trinitrobenzene sulphonic acid induced colitis in mice

    Microsoft Academic Search

    D-M McCafferty; M Miampamba; E Sihota; K A Sharkey; P Kubes

    1999-01-01

    BACKGROUNDStudies using inhibitors of nitric oxide synthase (NOS) to date are inconclusive regarding the role of inducible NOS (iNOS) in intestinal inflammation.AIMS(1) To examine the role of iNOS in the development of chronic intestinal inflammation; (2) to identify the cellular source(s) of iNOS.METHODSColitis was induced by an intrarectal instillation of trinitrobenzene sulphonic acid (TNBS, 60 mg\\/ml, 30% ethanol), in wild

  20. Geranylgeranyl diphosphate synthase genes in entomopathogenic fungi

    Microsoft Academic Search

    Suthitar Singkaravanit; Hiroshi Kinoshita; Fumio Ihara; Takuya Nihira

    2010-01-01

    Based on comparative amino-acid sequence alignment of geranylgeranyl diphosphate (GGPP) synthase from filamentous fungi, degenerated\\u000a oligonucleotide primers were designed for searching GGPP synthase gene(s) in entomopathogenic fungi. Polymerase chain reaction\\u000a with the designed primers amplified GGPP synthase homologues from five representative entomopathogenic fungi: Metarhizium anisopliae, Beauveria bassiana, Verticillium lecanii, Paecilomyces farinosus, and Nomuraea rileyi. Sequence comparison of the amplified of

  1. Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase.

    PubMed

    Wise, M L; Savage, T J; Katahira, E; Croteau, R

    1998-06-12

    Common sage (Salvia officinalis) produces an extremely broad range of cyclic monoterpenes bearing diverse carbon skeletons, including members of the p-menthane (1,8-cineole), pinane (alpha- and beta-pinene), thujane (isothujone), camphane (camphene), and bornane (camphor) families. An homology-based polymerase chain reaction cloning strategy was developed and used to isolate the cDNAs encoding three multiproduct monoterpene synthases from this species that were functionally expressed in Escherichia coli. The heterologously expressed synthases produce (+)-bornyl diphosphate, 1, 8-cineole, and (+)-sabinene, respectively, as their major products from geranyl diphosphate. The bornyl diphosphate synthase also produces significant amounts of (+)-alpha-pinene, (+)-camphene, and (+/-)-limonene. The 1,8-cineole synthase produces significant amounts of (+)- and (-)-alpha-pinene, (+)- and (-)-beta-pinene, myrcene and (+)-sabinene, and the (+)-sabinene synthase produces significant quantities of gamma-terpinene and terpinolene. All three enzymes appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence, consistent with the plastidial origin of monoterpenes in plants. Deduced sequence analysis and size exclusion chromatography indicate that the recombinant bornyl diphosphate synthase is a homodimer, whereas the other two recombinant enzymes are monomeric, consistent with the size and subunit architecture of their native enzyme counterparts. The distribution and stereochemistry of the products generated by the recombinant (+)-bornyl diphosphate synthase suggest that this enzyme might represent both (+)-bornyl diphosphate synthase and (+)-pinene synthase which were previously assumed to be distinct enzymes. PMID:9614092

  2. Impaired Nitric Oxide Synthase Signaling Dissociates Social Investigation and Aggression

    E-print Network

    Trainor, Brian

    Impaired Nitric Oxide Synthase Signaling Dissociates Social Investigation and Aggression Brian C these behaviors are regulated in concert. Neuronal nitric oxide synthase (nNOS) produces gaseous nitric oxide. Keywords: aggression, autism, nitric oxide synthase, serotonin, social investigation The neurobiological

  3. New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin

    SciTech Connect

    Durner, J.; Gailus, V.; Boeger, P. (Univ. Konstanz (West Germany))

    1991-04-01

    The sulfonylurea herbicide chlorsulfuron and the imidazolinone herbicide imazaquin were shown to be noncompetitive and uncompetitive inhibitors, respectively, of purified acetolactate synthase from barley (Hordeum vulgare L.) with respect to pyrvuate. From double-reciprocal plots of the time-dependent biphasic inhibition by chlorsulfuron, and initial apparent inhibition constant of 68 nanomolar was calculated (a 0 to 4 minute assay was used for the initial inhibition), and a final steady-state dissociation constant of 3 nanomolar was estimated. The corresponding constants for imazaquin were 10 and 0.55 micromolar. Specific binding of ({sup 14}C)chlorsulfuron and ({sup 14}C)imazaquin to purified acetolactate synthase from barley and partially purified enzyme from corn (Zea mays L.) could be demonstrated by gel filtration and equilibrium dialysis. Evidence is presented that the binding of the inhibitors to the enzyme follows the previously described mechanism of slow reversibility once excess inhibitor has been removed. However, after formation of the slowly reversible complex and subsequent dissociation, both chlorsulfuron and imazaquin seem to permanently inactivate acetolactate synthase. These results add a new feature to the mode of action of these herbicides with respect to their high herbicidal potency.

  4. Developmental change of the composition and content of the chitin-glucan complex in the fungus Aspergillus niger

    Microsoft Academic Search

    E. P. Feofilova; D. V. Nemtsev; V. M. Tereshina; A. S. Memorskaya

    2006-01-01

    The change of the content and composition of the chitin-glucan complex (CGC) of the ascomycete Aspergillus niger during its development has been studied. In submerged mycelium, the complex is dominated by glucan, whereas chitin is predominant\\u000a in sporophores and spores. The highest CGC content has been noted in sporophores in the terminal phase and in submerged mycelium\\u000a in the idiophase;

  5. The distribution of chitin in the water and sediment columns in the Gulf of Mexico and its geochemical significance 

    E-print Network

    Ho, Wai Kwok

    1977-01-01

    , Humboldt Chairman of Advisory Committee: Dr. Lola M. Jeffrey Distribution of chi. tin was investigated in the Texas-Louisiana Shelf, Continental Slope and Continental Rise, the East Mexico Shelf, the Bahia de Mexico Continental Slope, the Mississippi... Pan, and the Mississippi Delta. It was found that higher particul. ate chitin in the water was located in coastal areas as well. as the bfissi. ssippi Delta region. Generally the concentrations of chitin in water. and also in sediment decreased...

  6. Hypoxia–Reoxygenation Triggers Coronary Vasospasm in Isolated Bovine Coronary Arteries via Tyrosine Nitration of Prostacyclin Synthase

    PubMed Central

    Zou, Ming-Hui; Bachschmid, Markus

    1999-01-01

    The role of peroxynitrite in hypoxia–reoxygenation-induced coronary vasospasm was investigated in isolated bovine coronary arteries. Hypoxia–reoxygenation selectively blunted prostacyclin (PGI2)-dependent vasorelaxation and elicited a sustained vasoconstriction that was blocked by a cyclooxygenase inhibitor, indomethacin, and SQ29548, a thromboxane (Tx)A2/prostaglandin H2 receptor antagonist, but not by CGS13080, a TxA2 synthase blocker. The inactivation of PGI2 synthase, as evidenced by suppressed 6-keto-PGF1? release and a decreased conversion of 14C-prostaglandin H2 into 6-keto-PGF1?, was paralleled by an increased nitration in both vascular endothelium and smooth muscle of hypoxia–reoxygenation-exposed vessels. The administration of the nitric oxide (NO) synthase inhibitors as well as polyethylene-glycolated superoxide dismutase abolished the vasospasm by preventing the inactivation and nitration of PGI2 synthase, suggesting that peroxynitrite was implicated. Moreover, concomitant administration to the organ baths of the two precursors of peroxynitrite, superoxide, and NO mimicked the effects of hypoxia–reoxygenation, although none of them were effective when given separately. We conclude that hypoxia–reoxygenation elicits the formation of superoxide, which causes loss of the vasodilatory action of NO and at the same time yields peroxynitrite. Subsequently, peroxynitrite nitrates and inactivates PGI2 synthase, leaving unmetabolized prostaglandin H2, which causes vasospasm, platelet aggregation, and thrombus formation via the TxA2/prostaglandin H2 receptor. PMID:10429677

  7. Effector-mediated suppression of chitin-triggered immunity by magnaporthe oryzae is necessary for rice blast disease.

    PubMed

    Mentlak, Thomas A; Kombrink, Anja; Shinya, Tomonori; Ryder, Lauren S; Otomo, Ippei; Saitoh, Hiromasa; Terauchi, Ryohei; Nishizawa, Yoko; Shibuya, Naoto; Thomma, Bart P H J; Talbot, Nicholas J

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue. PMID:22267486

  8. Dietary supplementation with chitin and chitosan on haematology and innate immune response in Epinephelus bruneus against Philasterides dicentrarchi.

    PubMed

    Harikrishnan, Ramasamy; Kim, Ju-Sang; Balasundaram, Chellam; Heo, Moon-Soo

    2012-05-01

    The present study investigated the effect of 1.0% chitin and chitosan supplementation diets on haematology and immune response in Kelp grouper, Epinephelus bruneus against protozoan parasite, Philasterides dicentrarchi. The red blood cells (RBC), white blood cells (WBC), haemoglobin levels, lymphocytes, monocytes, and neutrophils significantly increased in kelp grouper fed with chitin or chitosan enriched diets against P. dicentrarchi. The mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), and thrombocytes did not significantly change against pathogen. The phagocytic activity, respiratory burst activity, complement activity, antiprotease activity, and ?2-macroglobulin were significantly enhanced in fish fed with 1% chitin and chitosan diet on weeks 2 and 4. The lysozyme activity, total protein, and myeloperoxidase activity significantly increased in fish fed with chitin or chitosan supplementation diet from weeks 1 to 4 against pathogen. The cumulative mortality was found low in fish fed with chitin and chitosan enriched diets than those of control against pathogen. The present study suggests that supplementation of 1.0% chitin or chitosan in diets positively enhances immune response and affords disease resistance in kelp grouper, E. bruneus against P. dicentrarchi infection. PMID:22475776

  9. Allosteric Inhibition of Human Porphobilinogen Synthase*

    PubMed Central

    Lawrence, Sarah H.; Ramirez, Ursula D.; Selwood, Trevor; Stith, Linda; Jaffe, Eileen K.

    2009-01-01

    Porphobilinogen synthase (PBGS) catalyzes the first common step in tetrapyrrole (e.g. heme, chlorophyll) biosynthesis. Human PBGS exists as an equilibrium of high activity octamers, low activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. It is posited that small molecules can be found that inhibit human PBGS activity by stabilizing the hexamer. Such molecules, if present in the environment, could potentiate disease states associated with reduced PBGS activity, such as lead poisoning and ALAD porphyria, the latter of which is associated with human PBGS variants whose quaternary structure equilibrium is shifted toward the hexamer (Jaffe, E. K., and Stith, L. (2007) Am. J. Hum. Genet. 80, 329–337). Hexamer-stabilizing inhibitors of human PBGS were identified using in silico prescreening (docking) of ?111,000 structures to a hexamer-specific surface cavity of a human PBGS crystal structure. Seventy-seven compounds were evaluated in vitro; three provided 90–100% conversion of octamer to hexamer in a native PAGE mobility shift assay. Based on chemical purity, two (ML-3A9 and ML-3H2) were subjected to further evaluation of their effect on the quaternary structure equilibrium and enzymatic activity. Naturally occurring ALAD porphyria-associated human PBGS variants are shown to have an increased susceptibility to inhibition by both ML-3A9 and ML-3H2. ML-3H2 is a structural analog of amebicidal drugs, which have porphyria-like side effects. Data support the hypothesis that human PBGS hexamer stabilization may explain these side effects. The current work identifies allosteric ligands of human PBGS and, thus, identifies human PBGS as a medically relevant allosteric enzyme. PMID:19812033

  10. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  11. Glyphosate Inhibition of5-Enolpyruvylshi kimate 3Phosphate Synthase fromSuspension-Cultured Cells ofNicotiana silvestris

    Microsoft Academic Search

    JUDITH L. RUBIN

    Treatment ofisogenic suspension-cultured cells ofNicotiana silvestris Speg. etComeswithglyphosate (N-phosphonomethyljglycine) ledto elevated levels ofintracellular shikimate (364-fold increase by1.0milli- molar glyphosate). Inthepresence ofglyphosate, itislikely that most molecules ofshikimate originate fromtheaction of3-deoxy-D-arabiao- heptulosonate 7-phosphate (DAHP)synthase-Mn since this isozyme, in contrast totheDAHPsynthase-Co isozyme, isinsensitive toinhibition byglyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC2.5.1.19) fromN.silvestris wassensitive tomicromolar concentra- tions ofglyphosate andpossessed asingle inhibitor binding site. Rigorous kinetic

  12. Glycogen synthase kinase-3? inhibition of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (Wasabia japonica Matsum).

    PubMed

    Yoshida, Jun; Nomura, Satomi; Nishizawa, Naoyuki; Ito, Yoshiaki; Kimura, Ken-ichi

    2011-01-01

    A new biological activity of 6-(methylsulfinyl)hexyl isothiocyanate derived from Wasabia japonica was discovered as an inhibitor of glycogen synthase kinase-3?. The most potent isothiocyanate, 9-(methylsulfinyl)hexyl isothiocyanate, inhibited glycogen synthase kinase-3? at a K(i) value of 10.5 µM and showed ATP competitive inhibition. The structure-activity relationship revealed an inhibitory potency of methylsulfinyl isothiocyanate dependent on the alkyl chain length and the sulfoxide, sulfone, and/or the isothiocyanate moiety. PMID:21228474

  13. Surface-initiated atom transfer radical polymerization from chitin nanofiber macroinitiator film.

    PubMed

    Yamamoto, Kazuya; Yoshida, Sho; Kadokawa, Jun-Ichi

    2014-11-01

    This paper reports the preparation of chitin nanofiber-graft-poly(2-hydroxyethyl acrylate) (CNF-g-polyHEA) films by surface-initiated atom transfer radical polymerization (ATRP) of HEA monomer from a CNF macroinitiator film. First, a CNF film was prepared by regeneration from a chitin ion gel with an ionic liquid. Then, acylation of the CNF surface with ?-bromoisobutyryl bromide was carried out to obtain the CNF macroinitiator film having the initiating moieties (?-bromoisobutyrate group). The surface-initiated graft polymerization of HEA from the CNF macroinitiator film by ATRP was performed to produce the CNF-g-polyHEA film. The IR, XRD, and SEM measurements of the resulting film indicated the progress of the graft polymerization of HEA on surface of CNFs. The molecular weights of the grafted polyHEAs increased with prolonged polymerization times, which affected the mechanical properties of the films under tensile mode. PMID:25129725

  14. Synthesis, characterization and cytocompatibility studies of ?-chitin hydrogel/nano hydroxyapatite composite scaffolds.

    PubMed

    Kumar, P T Sudheesh; Srinivasan, Sowmya; Lakshmanan, Vinoth-Kumar; Tamura, H; Nair, S V; Jayakumar, R

    2011-07-01

    ?-chitin hydrogel/nano hydroxyapatite (nHAp) composite scaffold have been synthesized by freeze-drying approach with nHAp and ?-chitin hydrogel. The prepared nHAp and nanocomposite scaffolds were characterized using DLS, SEM, FT-IR, XRD and TGA studies. The porosity, swelling, degradation, protein adsorption and biomineralization (calcification) of the prepared nanocomposite scaffolds were evaluated. Cell viability, attachment and proliferation were investigated using MG 63, Vero, NIH 3T3 and nHDF cells to confirm that the nanocomposite scaffolds were cytocompatible and cells were found to attach and spread on the scaffolds. All the results suggested that these scaffolds can be used for bone and wound tissue engineering. PMID:21435350

  15. Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops

    Microsoft Academic Search

    S. Tan; R. Evans; B. Singh

    2006-01-01

    Summary.  Acetohydroxyacid synthase (AHAS) inhibitors interfere with branched-chain amino acid biosynthesis by inhibiting AHAS. Glyphosate\\u000a affects aromatic amino acid biosynthesis by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Glufosinate inhibits\\u000a glutamine synthetase and blocks biosynthesis of glutamine. AHAS gene variants that confer tolerance to AHAS inhibitors have\\u000a been discovered in plants through selection or mutagenesis. Imidazolinone-tolerant crops have been commercialized based on\\u000a these AHAS

  16. BIOSORPTION OF METAL IONS USING CHITOSAN, CHITIN, AND BIOMASS OF RHIZOPUS ORYZAE

    Microsoft Academic Search

    Brenda J. Mcafee; W. Douglas Gould; Jennifer C. Nadeau; Antonio C. A. da Costa

    2001-01-01

    The biosorptive capacity of dried biomass fungus Rhizopus oryzae Went & Prinsen-Geerlings for metal sorption was compared with commercially available sources of chitin, chitosan and chitosan cross-linked with benzoquinone. Initial pH of the metal solution significantly influenced metal uptake capacity. The optimum biomass\\/solution ratio for metal uptake in all systems was 1 g\\/L. The highest metal uptake values (137, 108,

  17. Electrospinning of carboxymethyl chitin\\/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications

    Microsoft Academic Search

    K. T. Shalumon; N. S. Binulal; N. Selvamurugan; S. V. Nair; Deepthy Menon; T. Furuike; H. Tamura; R. Jayakumar

    2009-01-01

    A novel fibrous membrane of carboxymethyl chitin (CMC)\\/poly(vinyl alcohol) (PVA) blend was successfully prepared by electrospinning technique. The concentration of CMC (7%) with PVA (8%) was optimized, blended in different ratios (0–100%) and electrospun to get nanofibers. Fibers were made water insoluble by chemical followed by thermal cross-linking. In vitro mineralization studies identified the ability of formation of hydroxyapatite deposits

  18. Fabrication of chitin–chitosan\\/nano TiO 2-composite scaffolds for tissue engineering applications

    Microsoft Academic Search

    R. Jayakumar; Roshni Ramachandran; V. V. Divyarani; K. P. Chennazhi; H. Tamura; S. V. Nair

    2011-01-01

    In this study, we prepared chitin–chitosan\\/nano TiO2 composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold

  19. Composition of cellulin, the unique chitin-glucan granules of the fungus, Apodachlya sp

    Microsoft Academic Search

    Helen Y. Lee; Jerome M. Aronson

    1975-01-01

    Cellulin granules, the polysaccharide inclusions found uniquely in oomycetous fungi of the order Leptomitales, were isolated from Apodachlya sp. The granules were prepared free of cell wall and cytoplasmic contaminants. Biochemical analyses and X-ray diffraction studies demonstrated that the granules were composed of 60% chitin and 39% glucan consisting of ß-1,3-and ß-1,6-linked glucose units. A protein content of only 0.1%

  20. Chitinase of Bacillus licheniformis from oyster shell as a probe to detect chitin in marine shells

    Microsoft Academic Search

    Kye Man Cho; Sun Joo Hong; Jong Min Kim; Myoung Geun Yun; Ji Joong Cho; Jae Young Heo; Young Han Lee; Hoon Kim; Han Dae Yun

    2010-01-01

    Bacillus licheniformis CBFOS-03 is a chitinase producing bacteria isolated from oyster (Crassostrea gigas) shell waste. We have cloned and expressed the chi18B gene of B. licheniformis CBFOS-03, which encodes a glycohydrolase family 18 chitinase (GH18). Chi18B is a predicted 598 amino acid protein that consists\\u000a of a catalytic domain (GH18), a fibronectin type III domain (Fn3), and a chitin binding

  1. Albumin separation with Cibacron Blue carrying macroporous chitosan and chitin affinity membranes

    Microsoft Academic Search

    Eli Ruckenstein; Xianfang Zeng

    1998-01-01

    Cibacron Blue F3GA, Procion Red HE-3B and Procion Blue MX-R were immobilized on macroporous chitosan and chitin membranes with concentrations as high as 10–200?mol\\/ml membrane. These dyed membranes were chemically and mechanically stable, could be reproducibly prepared, and operated at high flow rates. Human serum albumin (HSA) and bovine serum albumin (BSA) were selected as model proteins, and their adsorption

  2. Anticancer and Anti-Inflammatory Properties of Chitin and Chitosan Oligosaccharides

    PubMed Central

    Azuma, Kazuo; Osaki, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    Previous reports indicate that N-acetyl-d-glucosamine oligomers (chitin oligosaccharide; NACOS) and d-glucosamine oligomers (chitosan oligosaccharide; COS) have various biological activities, especially against cancer and inflammation. In this review, we have summarized the findings of previous investigations that have focused on anticancer or anti-inflammatory properties of NACOS and COS. Moreover, we have introduced recent evaluation of NACOS and COS as functional foods against cancer and inflammatory disease. PMID:25594943

  3. High-resolution electron microscopy on cellulose II and ?-chitin single crystals

    Microsoft Academic Search

    WILLIAM HELBERT; JUNJI SUGIYAMA

    1998-01-01

    Single-crystalline cellulose II and a-chitin regenerated from low-molecular weight solutions using phosphoric acids as a solvent were investigated by electron diffraction together with high-resolution imaging. Cellulose II of two different degrees of polymerization (DP) were regenerated by precipitation either in water (DP = 15) or in ethanol (DP = 7), and the latter revealed better crystalline perfection. In both cases,

  4. A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae)

    Microsoft Academic Search

    Edwin Kapaun; Werner Reisser

    1995-01-01

    The stable amino-sugar fraction of the cell wall of the symbiotic Chlorella strain Pbi (Chlorophyceae) was isolated and investigated by sugar analysis, infra-red spectroscopy, lectin binding, enzymatic degradation, X-ray diffraction and electron microscopy. The results indicate the existence of a glycosaminoglycan which can be regarded as a chitin-like glycan. This carbohydrate structure is unusual for algae and reported here for

  5. Structural Study of ? Chitin from the Grasping Spines of the Arrow Worm ( Sagitta spp.)

    Microsoft Academic Search

    Yukie Saito; Takeshi Okano; Henri Chanzy; Junji Sugiyama

    1995-01-01

    The highly crystalline a chitin occurring in the grasping spines of Sagitta was investigated by electron diffraction together with high-resolution electron microscopy. These techniques confirmed the presence of diffraction spots 001 and 0k0 with 1 or k of odd order. These reflections, which should be absent in the P212121 space group, were identified as originating from double diffraction effects resulting

  6. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route

    NASA Astrophysics Data System (ADS)

    Mangalathillam, Sabitha; Rejinold, N. Sanoj; Nair, Amrita; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V.; Jayakumar, Rangasamy

    2011-12-01

    In this study, curcumin loaded chitin nanogels (CCNGs) were developed using biocompatible and biodegradable chitin with an anticancer curcumin drug. Chitin, as well as curcumin, is insoluble in water. However, the developed CCNGs form a very good and stable dispersion in water. The CCNGs were analyzed by DLS, SEM and FTIR and showed spherical particles in a size range of 70-80 nm. The CCNGs showed higher release at acidic pH compared to neutral pH. The cytotoxicity of the nanogels were analyzed on human dermal fibroblast cells (HDF) and A375 (human melanoma) cell lines and the results show that CCNGs have specific toxicity on melanoma in a concentration range of 0.1-1.0 mg mL-1, but less toxicity towards HDF cells. The confocal analysis confirmed the uptake of CCNGs by A375. The apoptotic effect of CCNGs was analyzed by a flow-cytometric assay and the results indicate that CCNGs at the higher concentration of the cytotoxic range showed comparable apoptosis as the control curcumin, in which there was negligible apoptosis induced by the control chitin nanogels. The CCNGs showed a 4-fold increase in steady state transdermal flux of curcumin as compared to that of control curcumin solution. The histopathology studies of the porcine skin samples treated with the prepared materials showed loosening of the horny layer of the epidermis, facilitating penetration with no observed signs of inflammation. These results suggest that the formulated CCNGs offer specific advantage for the treatment of melanoma, the most common and serious type of skin cancer, by effective transdermal penetration.

  7. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex.

    PubMed

    Vain, Thomas; Crowell, Elizabeth Faris; Timpano, Hélène; Biot, Eric; Desprez, Thierry; Mansoori, Nasim; Trindade, Luisa M; Pagant, Silvère; Robert, Stéphanie; Höfte, Herman; Gonneau, Martine; Vernhettes, Samantha

    2014-06-19

    Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis in plants or bacteria also requires the activity of an endo-1,4-?-d-glucanase, the exact function of which in the synthesis process is not known. Here, we show, to our knowledge for the first time, that a leaky mutation in the Arabidopsis (Arabidopsis thaliana) membrane-bound endo-1,4-?-d-glucanase KORRIGAN1 (KOR1) not only caused reduced CSC movement in the plasma membrane but also a reduced cellulose synthesis inhibitor-induced accumulation of CSCs in intracellular compartments. This suggests a role for KOR1 both in the synthesis of cellulose microfibrils and in the intracellular trafficking of CSCs. Next, we used a multidisciplinary approach, including live cell imaging, gel filtration chromatography analysis, split ubiquitin assays in yeast (Saccharomyces cerevisiae NMY51), and bimolecular fluorescence complementation, to show that, in contrast to previous observations, KOR1 is an integral part of the primary cell wall CSC in the plasma membrane. PMID:24948829

  8. Structure and Inhibition of Mouse Leukotriene C4 Synthase

    PubMed Central

    Niegowski, Damian; Qureshi, Abdul Aziz

    2014-01-01

    Leukotriene (LT) C4 synthase (LTC4S) is an integral membrane protein that catalyzes the conjugation reaction between the fatty acid LTA4 and GSH to form the pro-inflammatory LTC4, an important mediator of asthma. Mouse models of inflammatory disorders such as asthma are key to improve our understanding of pathogenesis and potential therapeutic targets. Here, we solved the crystal structure of mouse LTC4S in complex with GSH and a product analog, S-hexyl-GSH. Furthermore, we synthesized a nM inhibitor and compared its efficiency and binding mode against the purified mouse and human isoenzymes, along with the enzymes’ steady-state kinetics. Although structural differences near the active site and along the C-terminal ?-helix V suggest that the mouse and human LTC4S may function differently in vivo, our data indicate that mouse LTC4S will be a useful tool in future pharmacological research and drug development. PMID:24810165

  9. Effects of Chitin and Contact Insecticide Complexes on Rove Beetles in Commercial Orchards

    PubMed Central

    Balog, A.; Ferencz, L.; Hartel, T.

    2011-01-01

    A five-year research project was performed to explore the potential effects of contact insecticide applications on the change of abundance and species richness of predatory rove beetles (Coleoptera: Staphylinidae) in conventionally managed orchards. Twelve blocks of nine orchards were used for this study in Central Europe. High sensitivity atomic force microscopic examination was carried out for chitin structure analyses as well as computer simulation for steric energy calculation between insecticides and chitin. The species richness of rove beetles in orchards was relatively high after insecticide application. Comparing the mean abundance before and after insecticide application, a higher value was observed before spraying with alphacypermethrin and lambda-cyhalothrin, and a lower value was observed in the cases of diflubenzuron, malathion, lufenuron, and phosalone. The species richness was higher only before chlorpyrifos-methyl application. There was a negative correlation between abundance and stability value of chitin-insecticides, persistence time, and soil absorption coefficients. Positive correlation was observed with lipo- and water solubility. PMID:21870981

  10. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications

    PubMed Central

    Younes, Islem; Rinaudo, Marguerite

    2015-01-01

    This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA) and molecular weight (MW). In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone). Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability. PMID:25738328

  11. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    PubMed Central

    Daraghmeh, Nidal; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT). The excipient (Cop–CM) consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w) and produced by roll compaction (RC). Differential scanning calorimetry (DSC), Fourier transform-Infrared (FT-IR), X-ray powder diffraction (XRPD) and scanning electron microscope (SEM) techniques were used to characterize Cop–CM, in addition to characterization of its powder and ODT dosage form. The effect of particle size distribution of Cop–CM was investigated and found to have no significant influence on the overall tablet physical properties. The compressibility parameter (a) for Cop–CM was calculated from a Kawakita plot and found to be higher (0.661) than that of mannitol (0.576) due to the presence of the highly compressible chitin (0.818). Montelukast sodium and domperidone ODTs produced, using Cop–CM, displayed excellent physicochemical properties. The exceptional binding, fast wetting and superdisintegration properties of Cop–CM, in comparison with commercially available co-processed ODT excipients, results in a unique multifunctional base which can successfully be used in the formulation of oro-dispersible and fast immediate release tablets. PMID:25830680

  12. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    PubMed Central

    Alanazi, Humidah; Semlali, Abdelhabib; Perraud, Laura; Chmielewski, Witold; Zakrzewski, Andrew

    2014-01-01

    The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC) on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P < 0.01) sensitive to oxidation but significantly (P < 0.01) resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P < 0.01) slow growth rate but a significantly higher level of IL-1? when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers. PMID:25302312

  13. Chitin from Cuttlebone Activates Inflammatory Cells to Enhance the Cell Migration

    PubMed Central

    Lim, Sung Cil; Lee, Ki-Man; Kang, Tae Jin

    2015-01-01

    Our previous report showed that the extract from cuttlebone (CB) had wound healing effect in burned lesion of rat and the extract was identified as chitin by HPLS analysis. We herein investigated the morphology in CB extract using scanning electron microscope (SEM). Chitin was used as a control. There is no difference in morphology between CB extract and chitin. We also assessed the role of CB extract on the production of inflammatory mediators using murine macrophages and the migration of inflammatory cells. The extract induced the production of nitric oxide (NO) in macrophages. While the extract of CB itself stimulated macrophages to increase the expression of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-?, interleukin (IL)-1?, and IL-6, CB extract suppressed the production of those cytokines by LPS. CB extract also induced the production of mouse IL-8 which is related to the cell migration, and treatment with CB enhanced fibroblast migration and invasion. Therefore, our results suggest that CB activates inflammatory cells to enhance the cell migration. PMID:26157549

  14. Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury

    PubMed Central

    Lee, Chun Geun; Da Silva, Carla A.; Dela Cruz, Charles S.; Ahangari, Farida; Ma, Bing; Kang, Min-Jong; He, Chuan-Hua; Takyar, Seyedtaghi; Elias, Jack A.

    2013-01-01

    The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below. PMID:21054166

  15. Biochemical Characterization of the Arabidopsis Biotin Synthase Reaction. The Importance of Mitochondria in Biotin Synthesis1

    PubMed Central

    Picciocchi, Antoine; Douce, Roland; Alban, Claude

    2001-01-01

    Biotin synthase, encoded by the bio2 gene in Arabidopsis, catalyzes the final step in the biotin biosynthetic pathway. The development of radiochemical and biological detection methods allowed the first detection and accurate quantification of a plant biotin synthase activity, using protein extracts from bacteria overexpressing the Arabidopsis Bio2 protein. Under optimized conditions, the turnover number of the reaction was >2 h?1 with this in vitro system. Purified Bio2 protein was not efficient by itself in supporting biotin synthesis. However, heterologous interactions between the plant Bio2 protein and bacterial accessory proteins yielded a functional biotin synthase complex. Biotin synthase in this heterologous system obeyed Michaelis-Menten kinetics with respect to dethiobiotin (Km = 30 ?m) and exhibited a kinetic cooperativity with respect to S-adenosyl-methionine (Hill coefficient = 1.9; K0.5 = 39 ?m), an obligatory cofactor of the reaction. In vitro inhibition of biotin synthase activity by acidomycin, a structural analog of biotin, showed that biotin synthase reaction was the specific target of this inhibitor of biotin synthesis. It is important that combination experiments using purified Bio2 protein and extracts from pea (Pisum sativum) leaf or potato (Solanum tuberosum) organelles showed that only mitochondrial fractions could elicit biotin formation in the plant-reconstituted system. Our data demonstrated that one or more unidentified factors from mitochondrial matrix (pea and potato) and from mitochondrial membranes (pea), in addition to the Bio2 protein, are obligatory for the conversion of dethiobiotin to biotin, highlighting the importance of mitochondria in plant biotin synthesis. PMID:11706201

  16. Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo.

    PubMed

    Schulz, J B; Matthews, R T; Jenkins, B G; Ferrante, R J; Siwek, D; Henshaw, D R; Cipolloni, P B; Mecocci, P; Kowall, N W; Rosen, B R

    1995-12-01

    Nitric oxide may be a key mediator of excitotoxic neuronal injury in the central nervous system. We examined the effects of the neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI) on excitotoxic striatal lesions. 7-NI significantly attenuated lesions produced by intrastriatal injections of NMDA, but not kainic acid or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 7-NI attenuated secondary striatal excitotoxic lesions produced by the succinate dehydrogenase inhibitor malonate, and the protection was reversed by L-arginine but not by D-arginine, 7-NI produced nearly complete protection against striatal lesions produced by systemic administration of 3-nitropropionic acid (3-NP), another succinate dehydrogenase inhibitor, 7-NI protected against malonate induced decreases in ATP, and increases in lactate, as assessed by 1H magnetic resonance spectroscopy. 7-NI had no effects on spontaneous electrophysiologic activity in the striatum in vivo, suggesting that its effects were not mediated by an interaction with excitatory amino acid receptors. 7-NI attenuated increases in hydroxyl radical, 8-hydroxy-2-deoxyguanosine and 3-nitrotyrosine generation in vivo, which may be a consequence of peroxynitrite formation. The present results implicate neuronal nitric oxide generation in the pathogenesis of both direct and secondary excitotoxic neuronal injury in vivo. As such they suggest that neuronal nitric oxide synthase inhibitors may be useful in the treatment of neurologic diseases in which excitotoxic mechanisms play a role. PMID:8613773

  17. Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7.

    PubMed

    Itoh, Takafumi; Hibi, Takao; Fujii, Yutaka; Sugimoto, Ikumi; Fujiwara, Akihiro; Suzuki, Fumiko; Iwasaki, Yukimoto; Kim, Jin-Kyung; Taketo, Akira; Kimoto, Hisashi

    2013-12-01

    Chitin, a major component of fungal cell walls and invertebrate cuticles, is an exceedingly abundant polysaccharide, ranking next to cellulose. Industrial demand for chitin and its degradation products as raw materials for fine chemical products is increasing. A bacterium with high chitin-decomposing activity, Paenibacillus sp. strain FPU-7, was isolated from soil by using a screening medium containing ?-chitin powder. Although FPU-7 secreted several extracellular chitinases and thoroughly digested the powder, the extracellular fluid alone broke them down incompletely. Based on expression cloning and phylogenetic analysis, at least seven family 18 chitinase genes were found in the FPU-7 genome. Interestingly, the product of only one gene (chiW) was identified as possessing three S-layer homology (SLH) domains and two glycosyl hydrolase family 18 catalytic domains. Since SLH domains are known to function as anchors to the Gram-positive bacterial cell surface, ChiW was suggested to be a novel multimodular surface-expressed enzyme and to play an important role in the complete degradation of chitin. Indeed, the ChiW protein was localized on the cell surface. Each of the seven chitinase genes (chiA to chiF and chiW) was cloned and expressed in Escherichia coli cells for biochemical characterization of their products. In particular, ChiE and ChiW showed high activity for insoluble chitin. The high chitinolytic activity of strain FPU-7 and the chitinases may be useful for environmentally friendly processing of chitin in the manufacture of food and/or medicine. PMID:24077704

  18. Cooperative Degradation of Chitin by Extracellular and Cell Surface-Expressed Chitinases from Paenibacillus sp. Strain FPU-7

    PubMed Central

    Itoh, Takafumi; Hibi, Takao; Fujii, Yutaka; Sugimoto, Ikumi; Fujiwara, Akihiro; Suzuki, Fumiko; Iwasaki, Yukimoto; Kim, Jin-Kyung; Taketo, Akira

    2013-01-01

    Chitin, a major component of fungal cell walls and invertebrate cuticles, is an exceedingly abundant polysaccharide, ranking next to cellulose. Industrial demand for chitin and its degradation products as raw materials for fine chemical products is increasing. A bacterium with high chitin-decomposing activity, Paenibacillus sp. strain FPU-7, was isolated from soil by using a screening medium containing ?-chitin powder. Although FPU-7 secreted several extracellular chitinases and thoroughly digested the powder, the extracellular fluid alone broke them down incompletely. Based on expression cloning and phylogenetic analysis, at least seven family 18 chitinase genes were found in the FPU-7 genome. Interestingly, the product of only one gene (chiW) was identified as possessing three S-layer homology (SLH) domains and two glycosyl hydrolase family 18 catalytic domains. Since SLH domains are known to function as anchors to the Gram-positive bacterial cell surface, ChiW was suggested to be a novel multimodular surface-expressed enzyme and to play an important role in the complete degradation of chitin. Indeed, the ChiW protein was localized on the cell surface. Each of the seven chitinase genes (chiA to chiF and chiW) was cloned and expressed in Escherichia coli cells for biochemical characterization of their products. In particular, ChiE and ChiW showed high activity for insoluble chitin. The high chitinolytic activity of strain FPU-7 and the chitinases may be useful for environmentally friendly processing of chitin in the manufacture of food and/or medicine. PMID:24077704

  19. STRUCTURE NOTE Crystal Structure of Stilbene Synthase From Arachis

    E-print Network

    Suh, Dae-Yeon

    .3.1.95] and chalcone synthase (CHS; EC 2.3.1.74) are members of the type III polyketide synthases (PKSs) and plantSTRUCTURE NOTE Crystal Structure of Stilbene Synthase From Arachis hypogaea Yasuhito Shomura,1 Institute/SPring-8, Hyogo, Japan Introduction. Stilbene synthase [STS; Enzyme Commis- sion (EC) 2

  20. Photocatalytic degradation of di(2-ethylhexyl)phthalate adsorbed by chitin A.

    PubMed

    Chan, C M; Wong, K H; Chung, W K; Chow, T S; Wong, P K

    2007-01-01

    Di(2-ethylhexyl)phthalate (DEHP) is a ubiquitous environmental contaminant due to its extensive use as a plasticiser and its persistence. Currently, there is no cost-effective treatment method for its removal from industrial wastewater. In a previous study, DEHP was effectively adsorbed from aqueous solution by biosorption onto chitinous materials. Biosorption can pre-concentrate DEHP from the aqueous phase for further treatment. As biosorption cannot degrade DEHP, in this study the degradation (and detoxification) of DEHP adsorbed onto chitinous material by photocatalytic oxidation (PCO) is attempted. PCO relies on hydroxyl radical (.OH), which is a strong oxidising agent, for the oxidative degradation of pollutants. It is a non-selective process which can degrade DEHP adsorbed onto chitinous material. The first part of this study is the optimisation of the degradation of adsorbed DEHP by PCO. Adsorption was carried out in the physicochemical conditions optimised in the previous study, with 500 mg/L chitin A and 40 mg/L DEHP at initial pH 2, 22+/-2 degrees C and 150 rpm agitation for 5 min. After optimisation of PCO, a 61% removal efficiency of 10 mg/L of DEHP was achieved within 45 min under 0.65 mW/cm2 of UV-A with 100 mg/L TiO2, and 10 mM of H2O2 at initial pH 12. The optimisation study showed that UV-A and TiO(2) are essential for the degradation of DEHP by PCO. The degradation intermediates/products were identified by GC-MS analysis. GC-MS results showed that the di(2-ethylhexyl) side chain was first degraded, producing phthalates with shorter side chains. Further reaction produced phathalic anhydride and aliphatic compounds such as alkanol and ester. The toxicities of parental and degradation intermediates in the solution phase and on chitinous materials were followed by the Microtox test. Results indicated that toxicity can be removed after 4 h treatment by PCO. Thus the decontamination of DEHP by integrating biosorption and PCO is feasible. PMID:17951876

  1. Inhibition of neuronal nitric oxide synthase in ovine model of acute lung injury*

    PubMed Central

    Enkhbaatar, Perenlei; Connelly, Rhykka; Wang, Jianpu; Nakano, Yoshimitsu; Lange, Matthias; Hamahata, Atsumori; Horvath, Eszter; Szabo, Csaba; Jaroch, Stefan; Hölscher, Peter; Hillmann, Margrit; Traber, Lillian D.; Schmalstieg, Frank C.; Herndon, David N.; Traber, Daniel L.

    2013-01-01

    Objective Acute respiratory distress syndrome/acute lung injury is a serious complication of burn patients with concomitant smoke inhalation injury. Nitric oxide has been shown to play a major role in pulmonary dysfunction from thermal damage. In this study, we have tested the hypothesis that inhibition of neuronal nitric oxide synthase could ameliorate the severity of acute lung injury using our well-established ovine model of cutaneous burn and smoke inhalation. Design Prospective, randomized, controlled, experimental animals study. Setting Investigational intensive care unit at university hospital. Subjects Adult female sheep Interventions Female sheep (n = 16) were surgically prepared for the study. Seven days after surgery, all sheep were randomly allocated into three study groups: sham (noninjured, nontreated, n = 6); control (injured, treated with saline, n = 6); and neuronal nitric oxide synthase (injured, treated with specific neuronal nitric oxide synthase inhibitor, ZK 234238 (n = 4). Control and neuronal nitric oxide synthase groups were given a cutaneous burn (40% of total body surface, third degree) and insufflated with cotton smoke (48 breaths, <40°C) under halothane anesthesia. Animals in sham group received fake injury also under halothane anesthesia. After injury or fake injury procedure, all sheep were placed on ventilators and resuscitated with lactated Ringer's solution. Neuronal nitric oxide synthase group was administered with continuous infusion of ZK 234238 started 1 hr postinjury with a dose of 100 ?g/kg/hr. Sham and control groups received same amount of saline. Measurements and Main Results Cardiopulmonary hemodynamics monitored during the 24-hr experimental time period was stable in the sham group. Control sheep developed multiple signs of acute lung injury. This pathophysiology included decreased pulmonary gas exchange and lung compliance, increased pulmonary edema, and inflammatory indices, such as interleukin-8. Treatment of injured sheep with neuronal nitric oxide synthase inhibitor attenuated all the observed pulmonary pathophysiology. Conclusions The results provide definitive evidence that inhibition of neuronal nitric oxide synthase-derived excessive nitric oxide may be a novel and beneficial treatment strategy for pulmonary pathology in burn victims with smoke inhalation injury. PMID:19050603

  2. Effects of polymorphisms of methionine synthase and methionine synthase reductase on total plasma homocysteine in the NHLBI Family Heart Study

    Microsoft Academic Search

    Paul F Jacques; Andrew G Bostom; Jacob Selhub; Sharron Rich; R Curtis Ellison; John H Eckfeldt; Roy A Gravel; Rima Rozen

    2003-01-01

    The metabolism of homocysteine requires contributions of several enzymes and vitamin cofactors. Earlier studies identified a common polymorphism of methylenetetrahydrofolate reductase that was associated with mild hyperhomocysteinemia. Common variants of two other enzymes involved in homocysteine metabolism, methionine synthase and methionine synthase reductase, have also been identified. Methionine synthase catalyzes the remethylation of homocysteine to form methionine and methionine synthase

  3. Mechanistic Insight with HBCH2CoA as a Probe to Polyhydroxybutyrate (PHB) Synthases

    PubMed Central

    2015-01-01

    Polyhydroxybutyrate (PHB) synthases catalyze the polymerization of 3-(R)-hydroxybutyrate coenzyme A (HBCoA) to produce polyoxoesters of 1–2 MDa. A substrate analogue HBCH2CoA, in which the S in HBCoA is replaced with a CH2 group, was synthesized in 13 steps using a chemoenzymatic approach in a 7.5% overall yield. Kinetic studies reveal it is a competitive inhibitor of a class I and a class III PHB synthases, with Kis of 40 and 14 ?M, respectively. To probe the elongation steps of the polymerization, HBCH2CoA was incubated with a synthase acylated with a [3H]-saturated trimer-CoA ([3H]-sTCoA). The products of the reaction were shown to be the methylene analogue of [3H]-sTCoA ([3H]-sT-CH2-CoA), saturated dimer-([3H]-sD-CO2H), and trimer-acid ([3H]-sT-CO2H), distinct from the expected methylene analogue of [3H]-saturated tetramer-CoA ([3H]-sTet-CH2-CoA). Detection of [3H]-sT-CH2-CoA and its slow rate of formation suggest that HBCH2CoA may be reporting on the termination and repriming process of the synthases, rather than elongation. PMID:24896226

  4. Bifunctional abietadiene synthase: free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites.

    PubMed

    Peters, R J; Ravn, M M; Coates, R M; Croteau, R B

    2001-09-19

    Abietadiene synthase (AS) catalyzes two sequential, mechanistically distinct cyclizations in the conversion of geranylgeranyl diphosphate to a mixture of abietadiene double bond isomers as the initial step of resin acid biosynthesis in grand fir (Abies grandis). The first reaction converts geranylgeranyl diphosphate to the stable bicyclic intermediate (+)-copalyl diphosphate via protonation-initiated cyclization. In the second reaction, diphosphate ester ionization-initiated cyclization generates the tricyclic perhydrophenanthrene-type backbone, and is directly coupled to a 1,2-methyl migration that generates the C13 isopropyl group characteristic of the abietane family of diterpenes. Using the transition-state analogue inhibitor 14,15-dihydro-15-azageranylgeranyl diphosphate, it was demonstrated that each reaction of abietadiene synthase is carried out at a distinct active site. Mutations in two aspartate-rich motifs specifically delete one or the other activity and the location of these motifs suggests that the two active sites reside in separate domains. These mutants effectively complement each other, suggesting that the copalyl diphosphate intermediate diffuses between the two active sites in this monomeric enzyme. Free copalyl diphosphate was detected in steady-state kinetic reactions, thus conclusively demonstrating a free diffusion transfer mechanism. In addition, both mutant enzymes enhance the activity of wild-type abietadiene synthase with geranylgeranyl diphosphate as substrate. The implications of these results for the kinetic mechanism of abietadiene synthase are discussed. PMID:11552804

  5. Ammonia Fixation via Glutamine Synthetase and Glutamate Synthase in the CAM Plant Cissus quadrangularis L. 1

    PubMed Central

    Berger, Michael G.; Sprengart, Michael L.; Kusnan, Misri; Fock, Heinrich P.

    1986-01-01

    Succulent stems of Cissus quadrangularis L. (Vitaceae) contain glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. The CO2 and water gas exchanges of detached internodes were typical for Crassulacean acid metabolism plants. During three physiological phases, e.g. in the dark, in the early illumination period after stomata closure, and during the late light phase with the stomata wide open, 15NH4Cl was injected into the central pith of stem sections. The kinetics of 15N labeling in glutamate and glutamine suggested that glutamine synthetase was involved in the initial ammonia fixation. In the presence of methionine sulfoximine, an inhibitor of glutamine synthetase, the incorporation of 15N derived from 15NH4Cl was almost completely inhibited. Injections of amido-15N glutamine demonstrated a potential for 15N transfer from the amido group of glutamine into glutamate which was suppressed by the glutamate synthase inhibitor, azaserine. The evidence indicates that glutamine synthetase and glutamate synthase could assimilate ammonia and cycle nitrogen during all phases of Crassulacean acid metabolism. PMID:16664820

  6. Germination inhibitors

    Microsoft Academic Search

    Michael Evenari

    1949-01-01

    Summary  The presence of germination-inhibiting substances in plants seems to be a wide-spread phenomenon. They occur in all parts\\u000a of plants —in fruit pulp, fruit coats, endosperm, seed coat, embryo, leaves, bulbs and roots. They are non-specific in their\\u000a effects.\\u000a \\u000a Besides inhibitors, high osmotic pressure and acid pH are often partly responsible for the germination inhibition caused by\\u000a sap, juices and

  7. Nitric Oxide Synthase as a Target for Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Holden, Jeffrey K; Kang, Soosung; Beasley, Federico C; Cinelli, Maris A; Li, Huiying; Roy, Saurabh G; Dejam, Dillon; Edinger, Aimee L; Nizet, Victor; Silverman, Richard B; Poulos, Thomas L

    2015-06-18

    Bacterial infections associated with methicillin-resistant Staphylococcus aureus (MRSA) are a major economic burden to hospitals, and confer high rates of morbidity and mortality among those infected. Exploitation of novel therapeutic targets is thus necessary to combat this dangerous pathogen. Here, we report on the identification and characterization, including crystal structures, of two nitric oxide synthase (NOS) inhibitors that function as antimicrobials against MRSA. These data provide the first evidence that bacterial NOS (bNOS) inhibitors can work synergistically with oxidative stress to enhance MRSA killing. Crystal structures show that each inhibitor contacts an active site Ile residue in bNOS that is Val in the mammalian NOS isoforms. Mutagenesis studies show that the additional nonpolar contacts provided by the Ile in bNOS contribute to tighter binding toward the bacterial enzyme. PMID:26091171

  8. Natural product-guided discovery of a fungal chitinase inhibitor

    PubMed Central

    Rush, Christina L.; Schüttelkopf, Alexander W.; Hurtado-Guerrero, Ramon; Blair, David E.; Ibrahim, Adel F.M.; Desvergnes, Stéphanie; Eggleston, Ian M.; van Aalten, Daan M.F.

    2012-01-01

    Summary Natural products are often large, synthetically intractable molecules, yet frequently offer surprising inroads into previously unexplored chemical space for enzyme inhibitors. Argifin is a cyclic pentapeptide that was originally isolated as a fungal natural product. It competitively inhibits family 18 chitinases by mimicking the chitooligosaccharide substrate of these enzymes. Interestingly, argifin is a nanomolar inhibitor of the bacterial-type subfamily of fungal chitinases that possess an extensive chitin-binding groove, but does not inhibit the much smaller, plant-type enzymes from the same family that are involved in fungal cell division and are thought to be potential drug targets. Here we show that a small, highly efficient, argifin-derived nine-atom fragment is a micromolar inhibitor of the plant-type chitinase ChiA1 from the opportunistic pathogen Aspergillus fumigatus. Evaluation of the binding mode with the first crystal structure of an A. fumigatus plant-type chitinase reveals that the compound binds the catalytic machinery in the same manner as observed for argifin with the bacterial-type chitinases. The structure of the complex was used to guide synthesis of derivatives to explore a pocket near the catalytic machinery. This work provides synthetically tractable plant-type family 18 chitinase inhibitors from the repurposing of a natural product. PMID:21168763

  9. Isolation, structure determination and squalene synthase activity of L-731,120 and L-731,128, alkyl citrate analogs of zaragozic acids A and B

    Microsoft Academic Search

    Guy H. Harris; Claude Dufresne; Henry Joshua; Leslie A. Koch; Deborah L. Zink; Peter M. Salmon; Kent E. Göklen; Marc M. Kurtz; Deborah J. Rew; James D. Bergstrom; Kenneth E. Wilson

    1995-01-01

    Two new alkyl citrates, L-731,120 and L-731,128, with alkyl chains corresponding to those of zaragozic acids A and B, were isolated as minor components of large scale fungal fermentations producing zaragozic acid A and B. They are submicromolar inhibitors of squalene synthase in vitro.

  10. Deoxyhypusine Synthase Promotes Differentiation and Proliferation of T Helper Type 1 (Th1) Cells in Autoimmune Diabetes*

    PubMed Central

    Colvin, Stephanie C.; Maier, Bernhard; Morris, David L.; Tersey, Sarah A.; Mirmira, Raghavendra G.

    2013-01-01

    In type 1 diabetes, cytokines arising from immune cells cause islet ? cell dysfunction even before overt hyperglycemia. Deoxyhypusine synthase catalyzes the crucial hypusine modification of the factor eIF5A, which promotes the translation of a subset of mRNAs involved in cytokine responses. Here, we tested the hypothesis that deoxyhypusine synthase and, secondarily, hypusinated eIF5A contribute to the pathogenesis of type 1 diabetes using the non-obese diabetic (NOD) mouse model. Pre-diabetic NOD mice that received injections of the deoxyhypusine inhibitor N1-guanyl-1,7-diaminoheptane (GC7) demonstrated significantly improved glucose tolerance, more robust insulin secretion, and reduced insulitis compared with control animals. Analysis of tissues from treated mice revealed selective reductions in diabetogenic T helper type 1 (Th1) cells in the pancreatic lymph nodes, a primary site of antigen presentation. Isolated mouse CD90.2+ splenocytes stimulated in vitro with anti-CD3/anti-CD28 and IL-2 to mimic autoimmune T cell activation exhibited proliferation and differentiation of CD4+ T cell subsets (Th1, Th17, and Treg), but those treated with the deoxyhypusine synthase inhibitor GC7 showed a dose-dependent block in T cell proliferation with selective reduction in Th1 cells, similar to that observed in NOD mice. Inhibition of deoxyhypusine synthase blocked post-transcriptional expression of CD25, the high affinity IL-2 receptor ? chain. Our results suggest a previously unrecognized role for deoxyhypusine synthase in promoting T cell proliferation and differentiation via regulation of CD25. Inhibition of deoxyhypusine synthase may provide a strategy for reducing diabetogenic Th1 cells and preserving ? cell function in type 1 diabetes. PMID:24196968

  11. COMPARISON OF CHITIN STRUCTURES DERIVED FROM THREE COMMON WASP SPECIES (Vespa crabro LINNAEUS, 1758, Vespa orientalis LINNAEUS, 1771 and Vespula germanica (FABRICIUS, 1793)).

    PubMed

    Kaya, Murat; Ba?r?aç?k, Nil; Seyyar, Osman; Baran, Talat

    2015-08-01

    There has been no study on the chitin structure of wasp species. Here, we selected the three most common wasp species belonging to the family Vespidae for chitin extraction and characterization. Chitin was isolated from each wasp species and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), elemental analysis (EA), and scanning electron microscopy (SEM). The chitin contents of Vespa crabro, Vespa orientalis, and Vespula germanica were 8.3, 6.4, and 11.9%, respectively. The crystalline index (CrI) values for the chitin extracted from each species were 69.88, 53.92, and 50%, respectively. The most important finding of the study is that although the same method was used to extract chitin from each of the three wasp species, the degree of acetylation was different: for V. crabro and V. orientalis it was 96.85 and 99.82% (the chitin was extremely pure), respectively, whereas that for V. germanica the chitin was 79.83%. PMID:25850818

  12. Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material – dairy manure – using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344

    Microsoft Academic Search

    Wei Liao; Yan Liu; Craig Frear; Shulin Chen

    2008-01-01

    Fumaric acid is widely used as a food additive for flavor and preservation. Rhizopus oryzae ATCC 20344 is a fungus known for good fumaric acid production. It also has been reported that the fungal biomass has high chitin content. This study investigated the possibility of producing both fumaric acid and chitin via R. oryzae fermentation of dairy manure. Co-production of

  13. Heterologous expression systems for polyketide synthases.

    PubMed

    Fujii, Isao

    2009-02-01

    Polyketide synthases are the main biochemical machinery for the production of a structurally diverse group of natural products, polyketides. Their heterologous expression enables overproduction of target compounds, generation of novel analogs, and provides a basic understanding of their reaction programs. This Highlight outlines the current state of heterologous expression of type I, type II, and type III polyketide synthases of microbial and plant origins. PMID:19177221

  14. Synthesis and characterization of novel phosphonocarboxylate inhibitors of RGGT.

    PubMed

    Coxon, Fraser P; Joachimiak, Lukasz; Najumudeen, Arafath Kaja; Breen, George; Gmach, Joanna; Oetken-Lindholm, Christina; Way, Rebecca; Dunford, James E; Abankwa, Daniel; B?a?ewska, Katarzyna M

    2014-09-12

    Phosphonocarboxylate (PC) analogs of the anti-osteoporotic drugs, bisphosphonates, represent the first class of selective inhibitors of Rab geranylgeranyl transferase (RabGGTase, RGGT), an enzyme implicated in several diseases including ovarian, breast and skin cancer. Here we present the synthesis and biological characterization of an extended set of this class of compounds, including lipophilic derivatives of the known RGGT inhibitors. From this new panel of PCs, we have identified an inhibitor of RGGT that is of similar potency as the most active published phosphonocarboxylate, but of higher selectivity towards this enzyme compared to prenyl pyrophosphate synthases. New insights into structural requirements are also presented, showing that only PC analogs of the most potent 3rd generation bisphosphonates inhibit RGGT. In addition, the first phosphonocarboxylate-derived GGPPS inhibitor is reported. PMID:25016230

  15. Unique animal prenyltransferase with monoterpene synthase activity.

    PubMed

    Gilg, Anna B; Tittiger, Claus; Blomquist, Gary J

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C(5)) and isopentenyl diphosphate (C(5)) to produce geranyl diphosphate (GDP; C(10)). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway. PMID:19277597

  16. Stable hydrogen-isotope ratios in beetle chitin: preliminary European data and re-interpretation of North American data

    NASA Astrophysics Data System (ADS)

    Gröcke, Darren R.; Schimmelmann, Arndt; Elias, Scott; Miller, Randall F.

    2006-08-01

    Beetle exoskeletons contain chitin, a poly amino-sugar that is biosynthesized incorporating hydrogen isotopes from diet and water. As the stable isotope ratios D/H (or 2H/ 1H, expressed as ? D values) of precipitation and diet are jointly influenced by climate, the biochemically recorded hydrogen-isotope ratio in fossil beetle exoskeleton has the potential to be used for paleoclimatic reconstruction. New ? D data from modern beetles are presented as a preliminary database for Europe, with a re-evaluation of earlier North American data. We present correlated matrices of ? D values in modern beetle chitin and modern precipitation to demonstrate the concept. We review the pertinent literature to highlight the history, utility, and likely future research directions for the use of chitin's stable isotopes in entomological paleoclimatology.

  17. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Kholodkova, ?. M.; Metreveli, A. K.; Metreveli, P. K.; Erasov, V. S.; Bludenko, A. V.; Chulkov, V. N.

    2011-11-01

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy.

  18. Chitinase of Bacillus licheniformis from oyster shell as a probe to detect chitin in marine shells.

    PubMed

    Islam, Shah Asraful; Cho, Kye Man; Hong, Sun Joo; Math, Renukaradhya K; Kim, Jong Min; Yun, Myoung Geun; Cho, Ji Joong; Heo, Jae Young; Lee, Young Han; Kim, Hoon; Yun, Han Dae

    2010-03-01

    Bacillus licheniformis CBFOS-03 is a chitinase producing bacteria isolated from oyster (Crassostrea gigas) shell waste. We have cloned and expressed the chi18B gene of B. licheniformis CBFOS-03, which encodes a glycohydrolase family 18 chitinase (GH18). Chi18B is a predicted 598 amino acid protein that consists of a catalytic domain (GH18), a fibronectin type III domain (Fn3), and a chitin binding domain (CBD). Purified Chi18B showed optimum chitinase activity at pH 9 and 55 degrees C, and activity was stimulated with 25 mM Mn2+. In kinetic analysis, Chi18B showed Km values of 9.07 +/- 0.65 microM and 129.27 +/- 0.38 microM with the substrates 4-methylumbelliferyl-N-N'-diacetylchitobiose and alpha-chitin, respectively. Studies of C-terminal deletion constructs revealed that the GH18 domain with one amino acid in C-terminal region was sufficient for chitinase activity; however, fusions of full length and CBD-deleted constructs to green florescent protein (GFP) and yellow florescent protein (YFP) suggest that the C-terminus is supposedly important in binding to shell powder. Full length Chi18B with GFP showed green fluorescence with oyster shell powder, but GH18+Fn3 with GFP did not. Similarly, full length Chi18B with YFP showed yellow fluorescence with clam (Chamelea gallina) shell and disk abalone (Haliotis discus) shell powder, but GH18+Fn3 with YFP construct did not. So, the CBD domain of Chi18B appears to play an important role in binding of oyster and other marine shells. It is likely to be used as a probe to identify the presence of chitin in marine shells like oyster shell, clam shell, and disk abalone shell using fusions of Chi18B with fluorescent proteins. PMID:19756579

  19. Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase\\/glutamate synthase cycle

    Microsoft Academic Search

    R. Reggiani; M. Nebuloni; M. Mattana; I. Brambilla

    2000-01-01

    Summary.   Accumulation of amino acids was studied in rice roots of 3-day-old seedlings subjected for 48 h to anaerobic conditions.\\u000a Alanine and Gaba were the main amino acids accumulated under anoxia. Their synthesis was strongly inhibited by MSX and AZA,\\u000a inhibitors of glutamine synthetase and glutamate synthase. These activities increased after 8 h of anaerobic treatment and,\\u000a by immunoprecipitation of

  20. Posttranscriptional regulation of inducible nitric oxide synthase mRNA in murine macrophages by doxycycline and chemically modified tetracyclines

    Microsoft Academic Search

    Ashok R Amin; Rajesh N Patel; Geeta D Thakker; Charles J Lowenstein; Mukundan G Attur; Steven B Abramson

    1997-01-01

    Chemically modified tetracyclines [CMT-3 (IC50 ?6–13 ?M = ?2.5–5 ?g\\/ml) and CMT-8 (IC50 ?26 ?M = 10 ?g\\/ml), but not CMT-1, -2 or -5], which lack anti-microbial activity, inhibited nitrite production in LPS-stimulated macrophages. Unlike competitive inhibitors of l-arginine which inhibited the specific activity of inducible nitric oxide synthase (iNOS) in cell-free extracts, CMTs exerted no such direct effect on

  1. Molecular basis for multiple resistance to acetolactate synthase-inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed)

    Microsoft Academic Search

    Moshe Sibony; Baruch Rubin

    2003-01-01

    Amaranthus blitoides S. Watson (prostrate pigweed) populations resistant to acetolactate synthase (ALS; EC 4.1.3.18)-inhibiting herbicides and triazines (SuR\\/TR) were found in Israel. The Ganot population was 6- to 790-fold more resistant to ALS inhibitors than the wild type due to an altered target site. Molecular analyses showed that the Ganot population was a mixture of two biotypes: (i) SuRA\\/TR in

  2. Induction of Smooth Muscle Cell Nitric Oxide Synthase by Human Leukaemia Inhibitory Factor: Effects in vitro and in vivo

    Microsoft Academic Search

    Corey S. Moran; Julie H. Campbell; Gordon R. Campbell

    1997-01-01

    We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was

  3. Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution

    Microsoft Academic Search

    S. Tropf; T. Lanz; S. A. Rensing; J. Schröder; G. Schröder

    1994-01-01

    Chalcone (CHS) and stilbene (STS) synthases are related plant-specific polyketide synthases that are key enzymes in the biosynthesis of flavonoids and of stilbene phytoalexins, respectively. A phylogenetic tree constructed from 34 CHS and four STS sequences revealed that the STS formed no separate cluster but grouped with CHS from the same or related plants. This suggested that STS evolved from

  4. N-Acetylsphingosine stimulates phosphatidylglycerolphosphate synthase activity in H9c2 cardiac cells.

    PubMed Central

    Xu, F Y; Kelly, S L; Hatch, G M

    1999-01-01

    Cardiolipin and phosphatidylglycerol biosynthesis were examined in H9c2 cells incubated with short-chain ceramides. Incubation of cells with N-acetylsphingosine or N-hexanoylsphingosine stimulated [1, 3-3H]glycerol incorporation into phosphatidylglycerol and cardiolipin, with N-acetylsphingosine having the greater effect. The mechanism for the ceramide-mediated stimulation of de novo phosphatidylglycerol and cardiolipin biosynthesis appeared to be an increase in the activity of phosphatidylglycerolphosphate synthase, the committed step of phosphatidylglycerol and cardiolipin biosynthesis. The presence of the potent protein phosphatase inhibitors calyculin A or okadaic acid attenuated the N-acetylsphingosine-mediated stimulation of phosphatidylglycerolphosphate synthase activity and of phosphatidylglycerol and cardiolipin biosynthesis, indicating the involvement of a ceramide-activated protein phosphatase(s). The presence of 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) stimulated enzyme activity and [1,3-3H]glycerol incorporation into phosphatidylglycerol and cardiolipin. The effects of CPT-cAMP and N-acetylsphingosine on phosphatidylglycerol and cardiolipin biosynthesis and on phosphatidylglycerolphosphate synthase activity were additive. Phosphatidylglycerol biosynthesis from sn-[14C]glycerol 3-phosphate in permeabilized H9c2 cells was stimulated by preincubation with N-acetylsphingosine, and this was attenuated by okadaic acid. N-Acetylsphingosine treatment of cells elevated mitochondrial phospholipase A2 activity. Since the pool sizes of phosphatidylglycerol and cardiolipin were unaltered in these cells, the observed increase in phosphatidylglycerolphosphate synthase activity may be a compensatory mechanism for the N-acetylsphingosine-mediated elevation of mitochondrial phospholipase A2 activity. Finally, addition of tumour necrosis factor alpha to H9c2 cells resulted in an elevation of both phosphatidylglycerolphosphate synthase and phospholipase A2 activities. The results suggest that phosphatidylglycerol and cardiolipin metabolism in H9c2 cells may be regulated by intracellular ceramide signalling. PMID:9895291

  5. Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design

    SciTech Connect

    Gabelli,S.; McLellan, J.; Montalvetti, A.; Oldfield, E.; Docampo, R.; Amzel, L.

    2006-01-01

    Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.

  6. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  7. Fungal type III polyketide synthases.

    PubMed

    Hashimoto, Makoto; Nonaka, Takamasa; Fujii, Isao

    2014-10-01

    This article covers the literature on fungal type III polyketide synthases (PKSs) published from 2005 to 2014. Since the first discovery of fungal type III PKS genes in Aspergillus oryzae, reported in 2005, putative genes for type III PKSs have been discovered in fungal genomes. Compared with type I PKSs, type III PKSs are much less abundant in fungi. However, type III PKSs could have some critical roles in fungi. This article summarizes the studies on fungal type III PKS functional analysis, including Neurospora crassa ORAS, Aspergillus niger AnPKS, Botrytis cinerea BPKS and Aspergillus oryzae CsyA and CsyB. It is mostly in vitro analysis using their recombinant enzymes that has revealed their starter and product specificities. Of these, CsyB was found to be a new kind of type III PKS that catalyses the coupling of two ?-keto fatty acyl CoAs. Homology modelling reported in this article supports the importance of the capacity of the acyl binding tunnel and active site cavity in fungal type III PKSs. PMID:25182423

  8. Energy transduction in ATP synthase.

    PubMed

    Elston, T; Wang, H; Oster, G

    1998-01-29

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning F0 portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through F0 is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil gamma-subunit. This acts as a rotating 'cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this proton motive force biases the rotor's diffusion so that F0 constitutes a rotary motor turning the gamma shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility-supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump-can also be explained by our model. PMID:9461222

  9. Differential inhibition of class I and class II 5-enolpyruvylshikimate-3-phosphate synthases by tetrahedral reaction intermediate analogues.

    PubMed

    Funke, Todd; Healy-Fried, Martha L; Han, Huijong; Alberg, David G; Bartlett, Paul A; Schönbrunn, Ernst

    2007-11-20

    The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase or EPSPS) is best known as the target of the herbicide glyphosate. EPSPS is also considered an attractive target for the development of novel antibiotics since the pathogenicity of many microorganisms depends on the functionality of the shikimate pathway. Here, we have investigated the inhibitory potency of stable fluorinated or phosphonate-based analogues of the tetrahedral reaction intermediate (TI) in a parallel study utilizing class I (glyphosate-sensitive) and class II (glyphosate-tolerant) EPSPS. The (R)-difluoromethyl and (R)-phosphonate analogues of the TI are the most potent inhibitors of EPSPS described to date. However, we found that class II EPSPS are up to 400 times less sensitive to inhibition by these TI analogues. X-ray crystallographic data revealed that the conformational changes of active site residues observed upon inhibitor binding to the representative class I EPSPS from Escherichia coli do not occur in the prototypical class II enzyme from Agrobacterium sp. strain CP4. It appears that because the active sites of class II EPSPS do not possess the flexibility to accommodate these TI analogues, the analogues themselves undergo conformational changes, resulting in less favorable inhibitory properties. Since pathogenic microorganisms such as Staphylococcus aureus utilize class II EPSPS, we conclude that the rational design of novel EPSPS inhibitors with potential as broad-spectrum antibiotics should be based on the active site structures of class II EPSP synthases. PMID:17958399

  10. Terpene synthases are widely distributed in bacteria

    PubMed Central

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  11. Terpene synthases are widely distributed in bacteria.

    PubMed

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-Ya, Kazuo; Omura, Satoshi; Cane, David E; Ikeda, Haruo

    2015-01-20

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  12. Aromatic Polyketide Synthases (Purification, Characterization, and Antibody Development to Benzalacetone Synthase from Raspberry Fruits).

    PubMed

    Borejsza-Wysocki, W.; Hrazdina, G.

    1996-03-01

    p-Hydroxyphenylbutan-2-one, the characteristic aroma compound of raspberries (Rubus idaeus L.), is synthesized from p-coumaryl-coenzyme A and malonyl-coenzyme A in a two-step reaction sequence that is catalyzed by benzalacetone synthase and benzalacetone reductase (W. Borejsza-Wysocki and G. Hrazdina [1994] Phytochemistry 35: 623-628). Benzalacetone synthase condenses one malonate with p-coumarate to form the pathway intermediate p-hydroxyphenylbut-3-ene-2-one (p-hydroxybenzalacetone) in a reaction that is similar to those catalyzed by chalcone and stilbene synthases. We have obtained an enzyme preparation from ripe raspberries that was preferentially enriched in benzalacetone synthase (approximately 170-fold) over chalcone synthase (approximately 14-fold) activity. This preparation was used to characterize benzalacetone synthase and to develop polyclonal antibodies in rabbits. Benzalacetone synthase showed similarity in its molecular properties to chalcone synthase but differed distinctly in its substrate specificity, response to 2-mercaptoethanol and ethylene glycol, and induction in cell-suspension cultures. The product of the enzyme, p-hydroxybenzalacetone, inhibited mycelial growth of the raspberry pathogen Phytophthora fragariae var rubi at 250 [mu]M. We do not know whether the dual activity in the benzalacetone synthase preparation is the result of a bifunctional enzyme or is caused by contamination with chalcone synthase that was also present. The rapid induction of the enzyme in cell-suspension cultures upon addition of yeast extract and the toxicity of its product, p-hydroxybenzalacetone, to phytopathogenic fungi also suggest that the pathway may be part of a plant defense response. PMID:12226219

  13. Aromatic Polyketide Synthases (Purification, Characterization, and Antibody Development to Benzalacetone Synthase from Raspberry Fruits).

    PubMed Central

    Borejsza-Wysocki, W.; Hrazdina, G.

    1996-01-01

    p-Hydroxyphenylbutan-2-one, the characteristic aroma compound of raspberries (Rubus idaeus L.), is synthesized from p-coumaryl-coenzyme A and malonyl-coenzyme A in a two-step reaction sequence that is catalyzed by benzalacetone synthase and benzalacetone reductase (W. Borejsza-Wysocki and G. Hrazdina [1994] Phytochemistry 35: 623-628). Benzalacetone synthase condenses one malonate with p-coumarate to form the pathway intermediate p-hydroxyphenylbut-3-ene-2-one (p-hydroxybenzalacetone) in a reaction that is similar to those catalyzed by chalcone and stilbene synthases. We have obtained an enzyme preparation from ripe raspberries that was preferentially enriched in benzalacetone synthase (approximately 170-fold) over chalcone synthase (approximately 14-fold) activity. This preparation was used to characterize benzalacetone synthase and to develop polyclonal antibodies in rabbits. Benzalacetone synthase showed similarity in its molecular properties to chalcone synthase but differed distinctly in its substrate specificity, response to 2-mercaptoethanol and ethylene glycol, and induction in cell-suspension cultures. The product of the enzyme, p-hydroxybenzalacetone, inhibited mycelial growth of the raspberry pathogen Phytophthora fragariae var rubi at 250 [mu]M. We do not know whether the dual activity in the benzalacetone synthase preparation is the result of a bifunctional enzyme or is caused by contamination with chalcone synthase that was also present. The rapid induction of the enzyme in cell-suspension cultures upon addition of yeast extract and the toxicity of its product, p-hydroxybenzalacetone, to phytopathogenic fungi also suggest that the pathway may be part of a plant defense response. PMID:12226219

  14. Enantioselective Inhibition of Squalene Synthase by Aziridine Analogues of Presqualene Diphosphate

    PubMed Central

    Koohang, Ali; Bailey, Jessica L.; Erickson, Hans K.; Owen, David; Poulter, C. Dale

    2013-01-01

    Squalene synthase catalyzes the conversion of two molecules of (E,E)-farnesyl diphosphate to squalene via the cyclopropylcarbinyl intermediate, presqualene diphosphate (PSPP). Since this novel reaction constitutes the first committed step in sterol biosynthesis, there has been considerable interest and research on the stereochemistry and mechanism of the process and in the design of selective inhibitors of the enzyme. This paper reports the synthesis and characterization of five racemic and two enantiopure aziridine analogues of PSPP and the evaluation of their potencies as inhibitors of recombinant yeast squalene synthase. The key aziridine-2-methanol intermediates (6-OH, 7-OH, and 8-OH) were obtained by N-alkylations or by an N-acylation–reduction sequence of (±)-, (2R,3S)-, and (2S,3R)-2,3-aziridinofarnesol (9-OH) protected as tert-butyldi-methylsilyl ethers. SN2 displacements of the corresponding methanesulfonates with pyrophosphate and methanediphosphonate anions afforded aziridine 2-methyl diphosphates and methanediphosphonates bearing N-undecyl, N-bishomogeranyl, and N-(?-methylene)bishomogeranyl substituents as mimics for the 2,6,10-trimethylundeca-2,5,9-trienyl side chain of PSPP. The 2R,3S diphosphate enantiomer bearing the N-bishomogeranyl substituent corresponding in absolute stereochemistry to PSPP proved to be the most potent inhibitor (IC50 1.17 ± 0.08 ?M in the presence of inorganic pyrophosphate), a value 4-fold less than that of its 2S,3R stereoisomer. The other aziridine analogues bearing the N-(?-methylene)bishomogeranyl and N-undecyl substituents, and the related methanediphosphonates, exhibited lower affinities for recombinant squalene synthase. PMID:20545375

  15. Thymidylate synthase inhibition triggers glucose-dependent apoptosis in p53-negative leukemic cells.

    PubMed

    Muñoz-Pinedo, Cristina; Robledo, Gema; López-Rivas, Abelardo

    2004-07-16

    Chemotherapeutic drugs that inhibit the synthesis of DNA precursor thymidine triphosphate cause apoptosis, although the mechanism underlying this process remains rather unknown. Here, we describe thymineless death of human myeloid leukemia U937 cells treated with the thymidylate-synthase inhibitor 5'-fluoro- 2'-deoxyuridine (FUdR). This apoptotic process was shown to be independent of p53, reactive oxygen species generation and CD95 activation. Caspases were activated downstream of cytochrome c but upstream of mitochondrial depolarization. Furthermore, FUdR-induced apoptosis required the presence of glucose in the culture medium at a step upstream of the release of cytochrome c from mitochondria. PMID:15251465

  16. Chitin-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries.

    PubMed

    Stephan, A Manuel; Kumar, T Prem; Kulandainathan, M Anbu; Lakshmi, N Angu

    2009-02-19

    Nanocomposite polymer electrolytes (NCPE), with different proportions of poly(ethylene oxide)/LiClO(4)/chitin were prepared by a hot press method. Nanochitin, a biopolymer, poly(beta-(1-->4)-N acetyl-d-glucosamine) was incorporated as a filler in poly(ethylene oxide) (PEO). The ionic conductivity of the composite polymer electrolytes was enhanced by one order upon addition of nanochitin. The lithium transference number, t(Li)(+), was increased from 0.24 to 0.51 upon chitin addition. The membranes were subjected to scanning electron microscopy, thermogravimetric-differential thermal analysis, differential scanning calorimetry, ionic conductivity, and Fourier transform infrared (FTIR) spectroscopy analysis. The free volume V(f) was probed by positron annihilation lifetime spectroscopy studies at 30 degrees C. Li/NCPE/Li symmetric cells were assembled, and the thickness of the solid electrolyte interface as a function of time was analyzed. This paper also describes FTIR spectroscopic studies of the interface between lithium metal and NCPE, which suggests that the surface chemistry of lithium electrodes in contact with NCPE is dominated by compounds with C-N-Li and C-O-Li bonding. PMID:19161288

  17. Chitin nanofibrils for rapid and efficient removal of metal ions from water system.

    PubMed

    Liu, Dagang; Zhu, Yi; Li, Zehui; Tian, Donglin; Chen, Lei; Chen, Peng

    2013-10-15

    Joint mechanical defibrillation was successfully used to downsize chitin micro-particles (CMP) into nanofibrils without changing its chemical or crystalline structure. The fine chitin nanofibrils (CNF) bearing width of about 50 nm and length of more than 1 ?m were then developed as heavy metal ion sorbents. The uptake performance of CNF dependent on pH, ionic concentration, time, and temperature was investigated. Results show that fixation amount of Cd(II), Ni(II), Cu(II), Zn(II), Pb(II), Cr(III) on CNF was up to 2.94, 2.30, 2.22, 2.06, 1.46, and 0.31 mmol/g, respectively, much higher than CMP due to high specific surface area and widely distributed pores of CNF. Adsorption kinetics of CMP and CNF followed pseudo-second-order model and Freundlich isotherm although CNF exhibited higher rate constant and sorption capacity than that of CMP. The defibrillated CNF is renewable, feasible, easily recyclable, and is thought as good candidate for heavy metal ion treatment due to their low sorption energy, rapid and efficient uptake capacity. PMID:23987372

  18. Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin

    NASA Astrophysics Data System (ADS)

    Igarashi, Kiyohiko; Uchihashi, Takayuki; Uchiyama, Taku; Sugimoto, Hayuki; Wada, Masahisa; Suzuki, Kazushi; Sakuda, Shohei; Ando, Toshio; Watanabe, Takeshi; Samejima, Masahiro

    2014-06-01

    Processivity refers to the ability of synthesizing, modifying and degrading enzymes to catalyse multiple successive cycles of reaction with polymeric substrates without disengaging from the substrates. Since biomass polysaccharides, such as chitin and cellulose, often form recalcitrant crystalline regions, their degradation is highly dependent on the processivity of degrading enzymes. Here we employ high-speed atomic force microscopy to directly visualize the movement of two processive glycoside hydrolase family 18 chitinases (ChiA and ChiB) from the chitinolytic bacterium Serratia marcescens on crystalline ?-chitin. The half-life of processive movement and the velocity of ChiA are larger than those of ChiB, suggesting that asymmetric subsite architecture determines both the direction and the magnitude of processive degradation of crystalline polysaccharides. The directions of processive movements of ChiA and ChiB are observed to be opposite. The molecular mechanism of the two-way traffic is discussed, including a comparison with the processive cellobiohydrolases of the cellulolytic system.

  19. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts.

    PubMed

    Ilnicka, Anna; Walczyk, Mariusz; Lukaszewicz, Jerzy P

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N2 inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical-chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu(0) and/or Cu2O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. PMID:25953537

  20. Molecular evolution of dihydrouridine synthases

    PubMed Central

    2012-01-01

    Background Dihydrouridine (D) is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea. Despite the abundant occurrence of D, little is known about its biochemical roles in mediating tRNA function. It is assumed that D may destabilize the structure of tRNA and thus enhance its conformational flexibility. D is generated post-transcriptionally by the reduction of the 5,6-double bond of a uridine residue in RNA transcripts. The reaction is carried out by dihydrouridine synthases (DUS). DUS constitute a conserved family of enzymes encoded by the orthologous gene family COG0042. In protein sequence databases, members of COG0042 are typically annotated as “predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family”. Results To elucidate sequence-structure-function relationships in the DUS family, a comprehensive bioinformatic analysis was carried out. We performed extensive database searches to identify all members of the currently known DUS family, followed by clustering analysis to subdivide it into subfamilies of closely related sequences. We analyzed phylogenetic distributions of all members of the DUS family and inferred the evolutionary tree, which suggested a scenario for the evolutionary origin of dihydrouridine-forming enzymes. For a human representative of the DUS family, the hDus2 protein suggested as a potential drug target in cancer, we generated a homology model. While this article was under review, a crystal structure of a DUS representative has been published, giving us an opportunity to validate the model. Conclusions We compared sequences and phylogenetic distributions of all members of the DUS family and inferred the phylogenetic tree, which provides a framework to study the functional differences among these proteins and suggests a scenario for the evolutionary origin of dihydrouridine formation. Our evolutionary and structural classification of the DUS family provides a background to study functional differences among these proteins that will guide experimental analyses. PMID:22741570