Sample records for chloride chemical reduction

  1. Source reduction for prevention of methylene chloride hazards: cases from four industrial sectors.

    PubMed

    Roelofs, Cora R; Ellenbecker, Michael J

    2003-07-21

    Source reduction, defined as chemical, equipment and process changes that intervene in an industrial process to eliminate or reduce hazards, has not figured as a front-line strategy for the protection of workers' health. Such initiatives are popular for environmental protection, but their feasibility and effectiveness as an industrial hygiene approach have not been well described. We investigated four cases of source reduction as a hazard prevention strategy in Massachusetts companies that had used methylene chloride, an occupational carcinogen, for cleaning and adhesive thinning. Three cases were retrospective and one was prospective, where the researchers assisted with the source reduction process change. Data were collected using qualitative research methods, including in-depth interviews and site visits. Motivated by environmental restrictions, a new worker health standard, and opportunity for productivity improvements, three companies eliminated their use of methylene chloride by utilizing available technologies and drop-in substitutes. Aided by technical assistance from the investigators, a fourth case dramatically reduced its use of methylene chloride via process and chemistry changes. While the companies' evaluations of potential work environment impacts of substitutes were not extensive, and in two cases new potential hazards were introduced, the overall impact of the source reduction strategy was deemed beneficial, both from a worker health and a production standpoint. The findings from these four cases suggest that source reduction should be considered potentially feasible and effective for reducing or eliminating the potential hazards of methylene chloride exposure. Especially when faced with a hazard that is both an environmental and worker health concern, companies may chose to change their processes rather than rely on local exhaust ventilation equipment or personal protective equipment that might not be as effective, might transfer risk and/or not

  2. Source reduction for prevention of methylene chloride hazards: cases from four industrial sectors

    PubMed Central

    Roelofs, Cora R; Ellenbecker, Michael J

    2003-01-01

    Background Source reduction, defined as chemical, equipment and process changes that intervene in an industrial process to eliminate or reduce hazards, has not figured as a front-line strategy for the protection of workers' health. Such initiatives are popular for environmental protection, but their feasibility and effectiveness as an industrial hygiene approach have not been well described. Methods We investigated four cases of source reduction as a hazard prevention strategy in Massachusetts companies that had used methylene chloride, an occupational carcinogen, for cleaning and adhesive thinning. Three cases were retrospective and one was prospective, where the researchers assisted with the source reduction process change. Data were collected using qualitative research methods, including in-depth interviews and site visits. Results Motivated by environmental restrictions, a new worker health standard, and opportunity for productivity improvements, three companies eliminated their use of methylene chloride by utilizing available technologies and drop-in substitutes. Aided by technical assistance from the investigators, a fourth case dramatically reduced its use of methylene chloride via process and chemistry changes. While the companies' evaluations of potential work environment impacts of substitutes were not extensive, and in two cases new potential hazards were introduced, the overall impact of the source reduction strategy was deemed beneficial, both from a worker health and a production standpoint. Conclusion The findings from these four cases suggest that source reduction should be considered potentially feasible and effective for reducing or eliminating the potential hazards of methylene chloride exposure. Especially when faced with a hazard that is both an environmental and worker health concern, companies may chose to change their processes rather than rely on local exhaust ventilation equipment or personal protective equipment that might not be as

  3. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    PubMed Central

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  4. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-04

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  5. Temporal Stability of Metal-Chloride-Doped Chemical-Vapour-Deposited Graphene.

    PubMed

    Kang, Moon H; Milne, William I; Cole, Matthew T

    2016-08-18

    Graphene has proven to be a promising material for transparent flexible electronics. In this study, we report the development of a transfer and doping scheme of large-area chemical vapour deposited (CVD) graphene. A technique to transfer the as-grown material onto mechanically flexible and optically transparent polymeric substrates using an ultraviolet adhesive (UVA) is outlined, along with the temporal stability of the sheet resistance and optical transparency following chemical doping with various metal chlorides (Mx Cly The sheet resistance (RS ) and 550 nm optical transparency (%T550 ) of the transferred un-doped graphene was 3.5 kΩ sq(-1) (±0.2 kΩ sq(-1) ) and 84.1 % (±2.9 %), respectively. Doping with AuCl3 showed a notable reduction in RS by some 71.4 % (to 0.93 kΩ sq(-1) ) with a corresponding %T550 of 77.0 %. After 200 h exposure to air at standard temperature and pressure, the increase in RS was found to be negligible (ΔRS AuCl3 =0.06 kΩ sq(-1) ), indicating that, of the considered Mx Cly species, AuCl3 doping offered the highest degree of time stability under ambient conditions. There appears a tendency of increasing RS with time for the remaining metal chlorides studied. We attribute the observed temporal shift to desorption of molecular dopants. We find that desorption was most significant in RhCl3 -doped samples whereas, in contrast, after 200 h in ambient conditions, AuCl3 -doped graphene showed only marginal desorption. The results of this study demonstrate that chemical doping of UVA-transferred graphene is a promising means for enhancing large-area CVD graphene in order to realise a viable platform for next-generation optically transparent and mechanically flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Microbial reductive dehalogenation of vinyl chloride

    DOEpatents

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Nannhein, DE; Meshulam-Simon, Galit [Los Altos, CA; McCarty, Perry L [Stanford, CA

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  7. Microbial reductive dehalogenation of vinyl chloride

    DOEpatents

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Mannheim, DE; Meshulam-Simon, Galit [Los Angeles, CA; McCarty, Perry L [Stanford, CA

    2014-02-11

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  8. Results of the Massachusetts methylene chloride end-users survey.

    PubMed

    Roelofs, Cora R; Ellenbecker, Michael J

    2003-02-01

    A survey of Massachusetts companies reporting use of methylene chloride between 1995 and 1999 was conducted to assess the status of industrial use of the chemical in 2000. Methylene chloride has had wide use in industry although it has been identified as potentially hazardous to exposed workers and the environment. New and tightened occupational and environmental regulations taking effect in the 1990s were hypothesized to have reduced use of the chemical in Massachusetts. Substitute technologies, especially aqueous cleaning, were expected to have replaced methylene chloride in many industries. Seventeen of the 21 Massachusetts manufacturing companies reporting use of over 10,000 lb/y of methylene chloride between 1995 and 1999 were surveyed by telephone regarding their experiences of methylene chloride use and elimination and/or replacement. Fifteen of the 17 companies had either eliminated (10) or reduced to below 10,000 lbs/yr (5) their use of methylene chloride at the time of the survey in 2000. Many of the surveyed companies moved to aqueous cleaning from methylene chloride degreasing operations. Environmental concerns were the most popular reason given for eliminating or reducing use of methylene chloride. Worker health and safety concerns, especially concern about compliance with the 1997 Occupational Safety and Health Administration methylene chloride standard, were also a motivation. In general, the companies associated many benefits and few problems with eliminating or reducing use of methylene chloride. Exposure reduction strategies based on toxics use reduction techniques appear to be feasible for many manufacturing companies. However, research should be conducted to assess the introduction of new hazards as a result of tightened regulations on methylene chloride.

  9. Evaluation of an alternative deicing chemical vs. conventional sodium chloride.

    DOT National Transportation Integrated Search

    2004-07-01

    A research project was initiated to evaluate the performance and cost effectiveness of a proprietary, pre-blended, : roadway-deicing chemical on New Hampshire highways. The evaluated material is a patented blend of sodium chloride, liquid : magnesium...

  10. Malnutrition causes a reduction in alveolar epithelial sodium and chloride transport which predisposes to death from lung injury.

    PubMed

    Eisenhut, Michael

    2007-01-01

    All forms of malnutrition have been associated with increased severity of pneumonia, an increased pneumonia associated mortality and an increased risk of pulmonary fluid overload. Malnutrition was found to be associated with increased sweat sodium and chloride concentrations. A reduction of systemic sodium and chloride transport reflected in sweat sodium and chloride levels has been linked to increased severity of pulmonary edema in children with septicemia. Malnutrition causes a reduction in alveolar epithelial sodium and chloride transport which predisposes to death from lung injury. SUPPORTING EVIDENCE FOR THE HYPOTHESIS: Malnutrition caused reduced pulmonary fluid clearance in the rat model. Amiloride insensitive pulmonary fluid clearance in malnourished rats was reduced. The reduction in fluid clearance was reversible by beta agonists which increases epithelial sodium and chloride transport. Reduction of alveolar ion and fluid transport capacity explains the predisposition to death from pulmonary edema associated with intravenous fluids and blood transfusions in inpatients with malnutrition. Reduced alveolar epithelial ion transport impairs absorption of intra-alveolar inflammatory exudate in pneumonia leading to a increased severity of respiratory compromise and increased mortality. MEANS TO TEST THE HYPOTHESIS: Nasal potential difference measurements could compare airway epithelial sodium and chloride transport in patients with and without malnutrition and malnutrition associated lung disease. Sweat sodium and chloride concentrations could be compared in patients with and without respiratory disease associated with malnutrition and correlated with the severity of respiratory compromise.

  11. Use of glutaraldehyde and benzalkonium chloride for minimizing post-harvest physio-chemical and microbial changes responsible for sucrose losses in sugar cane.

    PubMed

    Singh, Pushpa; Arya, Namita; Tiwari, Priyanka; Suman, Archna; Rai, R K; Shrivastava, A K; Solomon, S

    2008-08-27

    Sugar cane is sensitive to enormous sucrose losses induced by physio-chemical and microbial changes, the severity being increased during the time lag between harvest and crushing in the mills. Minimization of the sucrose losses in the field is essential for better sugar recovery and prevention of sucrose losses. An experiment was conducted to evaluate the efficacy of glutaraldehyde and benzalkonium chloride for their effects on the microbial counts and physio-chemical changes responsible for sucrose losses. Glutaraldehyde and benzalkonium chloride (1000 + 250 ppm) reduced the losses in sucrose content to 7.1% as compared to the 30.8% loss in the control, thus improving the performance by 76.9%. The application of chemicals reduced the acid invertase activity (by 60%), lowered weight loss, titrable acidity, reducing sugars content, dextran, ethanol, and ethylene production and respiration rates. The application led to the reduction in the total bacterial, fungal, Leuconostoc, and yeast counts by 67.92, 51.3%, 26.08, and 51.2%, respectively.

  12. Chemical Attribution Signatures of Cyanogen Chloride from Commercial Sources

    DTIC Science & Technology

    2016-10-01

    Biological Center Forensic Analytical Center members have performed purity analyses on >70 cylinders of cyanogen chloride (CK) procured from three different...Department of Homeland Security Chemical Forensics Program. The work was started in September 2012 and completed in August 2013. The use of...manufacturers; and  Timothy Allan, Alex Jestel, and other members of the ECBC Forensic Analytical Center for their expertise in CK analysis by

  13. Regeneration of anion exchange resins by catalyzed electrochemical reduction

    DOEpatents

    Gu, Baohua; Brown, Gilbert M.

    2002-01-01

    Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.

  14. Effect of temperature and benzalkonium chloride on nitrate reduction.

    PubMed

    Hajaya, Malek G; Tezel, Ulas; Pavlostathis, Spyros G

    2011-04-01

    The effect of temperature and benzalkonium chloride (BAC) on nitrate reduction was investigated in batch assays using a mixed nitrate reducing culture. Nitrate was transformed completely, mainly through denitrification, to dinitrogen at 5, 10, 15 and 22 °C. In the absence of BAC, reduction of individual nitrogen oxides had different susceptibility to temperature and transient nitrite accumulation was observed at low temperatures. When the effect of BAC was tested up to 100 mg/L from 5 to 22 °C, denitrification was inhibited at and above 50mg BAC/L with transient nitrite accumulation at all temperatures. The effect of BAC was described by a competitive inhibition model. Nitrite reduction was the denitrification step most susceptible to BAC, especially at low temperatures. BAC was not degraded during the batch incubation and was mostly biomass-adsorbed. Overall, this study shows that low temperatures exacerbate the BAC inhibitory effect, which in turn is controlled by adsorption to biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate.

    PubMed

    Zhang, Chao; Jia, Yongzhong; Jing, Yan; Wang, Huaiyou; Hong, Kai

    2014-08-01

    The infrared spectrum of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was measured by the FTIR spectroscopy and analyzed with the aid of DFT calculations. The main chemical species and molecular structure in deep eutectic solvent of [MgClm(H2O)6-m]2-m and [ChxCly]x+y complexes were mainly identified and the active ion of magnesium complex during the electrochemical process was obtained. The mechanism of the electrochemical process of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was well explained by combination theoretical calculations and experimental. Besides, based on our results we proposed a new system for the dehydration study of magnesium chloride hexahydrate.

  16. Chemical and physical compatibility of an intravenous solution of epinephrine with calcium chloride.

    PubMed

    Weeks, Phillip A; Teng, Yang; Wu, Lei; Sun, Mary; Yang, Zhen; Chow, Diana S-L

    2014-01-01

    An infusion of epinephrine combined with calcium chloride has been used historically as an intravenous inotropic solution to support critically ill heart failure patients with severe cardiogenic shock. There is no reliable data on the stability of this solution beyond three hours. This study was conducted to evaluate the chemical and physical compatibility of epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in a solution for intravenous administration up to 26 hours at room temperature. The chemical stability of epinephrine was monitored by measuring epinephrine concentrations using high-performance liquid chromatography. The physical compatibility of the mixture was determined by measuring spectrophotometric absorbance between 400 to 700 nm. Absorbance greater than 0.010 AU was considered an indicator of the presence of precipitation. The results showed epinephrine with calcium chloride was stable together in normal saline up to 26 hours at room temperature, irrespective of exposure to light. The absorbance of epinephrine throughout the study was less than 0.010 AU, indicating no significant precipitation. Conclusions indicate that epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in normal saline at room temperature is acceptably stable up to 26 hours for intravenous administration.

  17. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  18. Evaluation of chemical castration with calcium chloride versus surgical castration in donkeys: testosterone as an endpoint marker.

    PubMed

    Ibrahim, Ahmed; Ali, Magda M; Abou-Khalil, Nasser S; Ali, Marwa F

    2016-03-08

    For the last few years, researchers have been interested in developing a method for chemical sterilization which may be a better alternative to surgical castration. An ideal chemical sterilant would be one that effectively arrests spermatogenesis and androgenesis as well as libido with absence of toxic or other side effects. Calcium chloride in various solutions and concentrations has been tested in many animal species, but few studies have been evaluated it in equines as a chemical sterilant. So, the objective of this study was to evaluate the clinical efficacy of chemical castration with 20% calcium chloride dissolved in absolute ethanol in comparison with surgical castration in donkeys based on the changes in the serum testosterone level and the histopathological changes in treated testes. Twelve clinically healthy adult male donkeys were used in this study. Donkeys were divided randomly and equally into two groups: a surgical (S) group (n = 6) and a chemical (C) group (n = 6). Animals in the (S) group were subjected to surgical castration while those in the (C) group received a single bilateral intratesticular injection of 20% calcium chloride dissolved in absolute ethanol (20 ml/testis). Animals were kept under clinical observation for 60 days. Changes in animals' behavior and gross changes in external genitalia were monitored daily. Serum concentrations of testosterone were measured prior to treatment and at 15, 30, 45 and 60 days post-treatment. Testicles in the (C) group were examined histopathologically at the end of the experiment. Chemical castration with intratesticular calcium chloride vs. surgical castration failed to reduce serum concentrations of testosterone throughout the whole duration of the study; however it induced orchitis that was evident by focal necrotic areas in seminiferous tubules, cellular infiltration of neutrophils, proliferative intertubular fibrosis with a compensatory proliferation of Leydig cells. Donkeys tolerated the

  19. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate.

    PubMed

    Su, Chunming; Puls, Robert W

    2004-05-01

    Recent studies have shown that zerovalent iron (Fe0) may potentially be used as a chemical medium in permeable reactive barriers (PRBs) for groundwater nitrate remediation; however, the effects of commonly found organic and inorganic ligands in soil and sediments on nitrate reduction by Fe0 have not been well understood. A 25.0 mL nitrate solution of 20.0 mg of N L(-1) (1.43 mM nitrate) was reacted with 1.00 g of Peerless Fe0 at 200 rpm on a rotational shaker at 23 degrees C for up to 120 h in the presence of each of the organic acids (3.0 mM formic, 1.5 mM oxalic, and 1.0 mM citric acids) and inorganic acids (3.0 mM HCl, 1.5 mM H2SO4, 3.0 mM H3BO3, and 1.5 mM H3PO4). These acids provided an initial dissociable H+ concentration of 3.0 mM available for nitrate reduction reactions under conditions of final pH < 9.3. Nitrate reduction rates (pseudo-first-order) increased in the order: H3PO4 < citric acid < H3BO3 < oxalic acid < H2SO4 < formic acid < HCl, ranging from 0.00278 to 0.0913 h(-1), corresponding to surface area normalized rates ranging from 0.126 to 4.15 h(-1) m(-2) mL. Correlation analysis showed a negative linear relationship between the nitrate reduction rates for the ligands and the conditional stability constants for the soluble complexes of the ligands with Fe2+ (R2 = 0.701) or Fe3+ (R2 = 0.918) ions. This sequence of reactivity corresponds also to surface adsorption and complexation of the three organic ligands to iron oxides, which increase in the order formate < oxalate < citrate. The results are also consistent with the sequence of strength of surface complexation of the inorganic ligands to iron oxides, which increases in the order: chloride < sulfate < borate < phosphate. The blockage of reactive sites on the surface of Fe0 and its corrosion products by specific adsorption of the inner-sphere complex forming ligands (oxalate, citrate, sulfate, borate, and phosphate) may be responsible for the decreased nitrate reduction by Fe0 relative to the

  20. The effect of chemical treatment on reduction of aflatoxins and ochratoxin A in black and white pepper during washing.

    PubMed

    Jalili, M; Jinap, S; Son, R

    2011-04-01

    The effect of 18 different chemicals, which included acidic compounds (sulfuric acid, chloridric acid, phosphoric acid, benzoic acid, citric acid, acetic acid), alkaline compounds (ammonia, sodium bicarbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide), salts (acetate ammonium, sodium bisulfite, sodium hydrosulfite, sodium chloride, sodium sulfate) and oxidising agents (hydrogen peroxide, sodium hypochlorite), on the reduction of aflatoxins B(1), B(2), G(1) and G(2) and ochratoxin A (OTA) was investigated in black and white pepper. OTA and aflatoxins were determined using HPLC after immunoaffinity column clean-up. Almost all of the applied chemicals showed a significant degree of reduction on mycotoxins (p < 0.05). The lowest and highest reduction of aflatoxin B(1), which is the most dangerous aflatoxin, was 20.5% ± 2.7% using benzoic acid and 54.5% ± 2.7% using sodium hydroxide. There was no significant difference between black and white peppers (p < 0.05).

  1. Carcinogenicity of benzyl chloride, benzal chloride, benzotrichloride and benzoyl chloride in mice by skin application.

    PubMed

    Fukuda, K; Matsushita, H; Sakabe, H; Takemoto, K

    1981-10-01

    The carcinogenicity of benzyl chloride (BYC), benzal chloride (BAC), benzotrichloride (BTC) and benzoyl chloride (BOC), which were suspected as causative agents of lung cancer and maxillary malignant lymphoma of workers employed in factories producing BOC, was examined by skin applications in female ICR mice. After rather high dose exposure, BTC exhibited leukemogenic and pulmonary tumorigenic activities as well as potent dermal carcinogenic activity. After administration of the chemicals at the dose of 2.3 microliter/animal, twice a week for 50 weeks, BTC induced 68% incidence of skin cancers and 58% incidence of pulmonary tumors (including 10% of lung carcinomas) within 399 days. Incidence of skin cancers was 58% for BAC, 15% for BYC and 10% for BOC within 560 days. Considering the extent of possible exposure of the workers to these chemicals in the working environment and the carcinogenic potency of the chemicals tested, it can be concluded that BTC was very probably responsible for causing the cancers seen int he workers employed in manufacturing BOC.

  2. Chemical corrosion by chlorides on ancient-like bronzes and treatment by hydrogen glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Papadopoulou, O.; Novakovic, J.; Vassiliou, P.; Filippaki, E.; Bassiakos, Y.

    2013-12-01

    Three representative ancient-like bronzes are employed for the chemical synthesis of Cu2(OH)3Cl rich patinas in order to study the influence of the alloying elements in the evolution of the chloride attack and to further conduct stabilization treatment via Hydrogen Glow Discharge Plasma (HGDP) at low temperature and pressure. The corrosion behavior of specimens having Sn and Pb as main alloying elements is governed by a decuprification mechanism and by the formation of Sn-Pb-O enriched barrier layers. In the case of the Zn containing alloy, dezincification is more pronounced at the corrosion initial stages, and copper species predominate the corrosion products evolution. A three-hour HGDP treatment leads to Cu+ production and metallic Cu, Sn, Zn, and Pb redeposition, as a result of metal cation reduction. This process is accompanied by partial removal of Cl species, O diminution, and change in coloration. The further increase of the Cl/O atomic ratio measured on the post-treated surfaces leads to the formation of nantokite and thus to the conclusion that the stabilization of objects with extensive Cl attack is not feasible by HGDP without preliminary chemical treatment.

  3. Stability study of carboplatin infusion solutions in 0.9% sodium chloride in polyvinyl chloride bags.

    PubMed

    Myers, Alan L; Zhang, Yang-Ping; Kawedia, Jitesh D; Trinh, Van A; Tran, Huyentran; Smith, Judith A; Kramer, Mark A

    2016-02-01

    Carboplatin is a platinum-containing compound with efficacy against various malignancies. The physico-chemical stability of carboplatin in dextrose 5% water (D5W) has been thoroughly studied; however, there is a paucity of stability data in clinically relevant 0.9% sodium chloride infusion solutions. The manufacturer's limited stability data in sodium chloride solutions hampers the flexibility of carboplatin usage in oncology patients. Hence, the purpose of this study is to determine the physical and chemical stability of carboplatin-sodium chloride intravenous solutions under different storage conditions. The physico-chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL carboplatin-sodium chloride solutions prepared in polyvinyl chloride bags was determined following storage at room temperature under ambient fluorescent light and under refrigeration in the dark. Concentrations of carboplatin were measured at predetermined time points up to seven days using a stability-indicating high-performance liquid chromatography method. All tested solutions were found physically stable for at least seven days. The greatest chemical stability was observed under refrigerated storage conditions. At 4℃, all tested solutions were found chemically stable for at least seven days, with nominal losses of ≤6%. Following storage at room temperature exposed to normal fluorescent light, the chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL solutions was three days, five days, and seven days, respectively. The extended physico-chemical stability of carboplatin prepared in sodium chloride reported herein permits advance preparation of these admixtures, facilitating pharmacy utility and operations. Since no antibacterial preservative is contained within these carboplatin solutions, we recommend storage, when prepared under specified aseptic conditions, no greater than 24 h at room temperature or three days under refrigeration. © The Author(s) 2014.

  4. [Progress on suxamethonium chloride analysis].

    PubMed

    Jiang, Ming-Zhe; Cheng, Xiang-Wei; Chu, Jian-Xin

    2013-12-01

    Abstract: Suxamethonium chloride is a depolarizing muscle relaxant used in general anesthesia. In overdose, it causes adverse reactions such as bradycardia, arrhythmia, cardiac arrest, and death. The article reviews the progress on testing methods of suxamethonium chloride such as infrared spectroscopy, chemical color reaction, chemical titration, enzyme electrode, chromatography and mass spectrometry.

  5. Potato plants (Solanum tuberosum L.) are chloride-sensitive: Is this dogma valid?

    PubMed

    Hütsch, Birgit W; Keipp, Katrin; Glaser, Ann-Kathrin; Schubert, Sven

    2018-06-01

    Chloride sensitivity of the potato (Solanum tuberosum L.) cultivars Marabel and Désirée was investigated in two pot experiments (soil/sand mixture and hydroponics). It was tested whether there are differential effects of KCl and K 2 SO 4 application on tuber yield and tuber quality, and whether both potato cultivars differ in their chloride sensitivity. Tuber yield, dry matter percentage of the tubers, starch concentration and starch yield were not significantly affected by potassium source (K 2 SO 4 or KCl). After exposure to salt stress in hydroponics (100 mmol L -1 NaCl, 50 mmol L -1 Na 2 SO 4 , 50 mmol L -1 CaCl 2 ) for 5 days, 3-week-old potato plants had significantly reduced shoot dry mass after NaCl and Na 2 SO 4 application. However, CaCl 2 treatment did not significantly affect shoot growth, although the chloride concentration reached 65 to 74 mg Cl - mg -1 dry matter, similar to the NaCl treatment. In contrast, growth reductions were closely related to sodium concentrations, thus plants suffered sodium toxicity and not chloride toxicity. Both potato cultivars are chloride-resistant and can be fertilised with KCl instead of K 2 SO 4 without the risk of depression in tuber yield or tuber quality. The statement that potatoes are chloride-sensitive and that chloride has negative effects on yield performance needs reconsideration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. IRIS Toxicological Review of Vinyl Chloride (Final Report ...

    EPA Pesticide Factsheets

    EPA is announcing the release of the final report, Toxicological Review of Vinyl Chloride: in support of the Integrated Risk Information System (IRIS). The updated Summary for Vinyl Chloride and accompanying Quickview have also been added to the IRIS Database. Common synonyms of vinyl chloride (VC) include chloroethene, chloroethylene, ethylene monochloride, and monochloroethene. VC is a synthetic chemical used as a chemical intermediate in the polymerization of polyvinyl chloride.

  7. 21 CFR 522.1862 - Sterile pralidoxime chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sterile pralidoxime chloride. 522.1862 Section 522....1862 Sterile pralidoxime chloride. (a) Chemical name. 2-Formyl-1-methylpyridinium chloride oxime. (b) Specifications. Sterile pralidoxime chloride is packaged in vials. Each vial contains 1 gram of sterile...

  8. 40 CFR 721.6167 - Piperdinium, 1,1-dimethyl-, chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Piperdinium, 1,1-dimethyl-, chloride... Substances § 721.6167 Piperdinium, 1,1-dimethyl-, chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as piperdinium, 1,1-dimethyl-, chloride. (PMN...

  9. Inhalation exposure to methylene chloride does not induce systemic immunotoxicity in rats.

    PubMed

    Warbrick, E V; Kilgour, J D; Dearman, R J; Kimber, I; Dugard, P H

    2003-07-11

    Methylene chloride (dichloromethane) is used in a variety of industrial applications. To date, there has been no formal assessment of immunotoxicity attributed to methylene chloride. Studies were undertaken to examine whether methylene chloride has any potential to influence the integrity of immune function. For this purpose, Sprague-Dawley rats of both genders were exposed by inhalation to a single high dose (5000 ppm) of methylene chloride for 6 h/d, 5 d/wk for 28 d. This was considered the relevant route of administration, as not only is inhalation a primary route for human exposure to methylene chloride, but, also, the chemical is absorbed rapidly via the lungs. Under these conditions of exposure, methylene chloride failed to influence absolute or relative thymus weights in either gender and produced a significant reduction in relative, but not absolute, spleen weight in female rats only. Immunocompetence was measured as a function of the ability of treated animals to mount immunoglobulin M (IgM) antibody responses to sheep red blood cells (SRBC) as determined by enzyme-linked immunosorbent assay (ELISA). Exposure to methylene chloride did not affect antibody production. Evidence indicates that under these conditions of exposure, methylene chloride did not compromise immune function.

  10. Fiber optic chloride sensing: if corrosion's the problem, chloride sensing is the key

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; MacCraith, Brian D.; Huston, Dryver R.; Guerrina, Mario; Nelson, Matthew

    1997-09-01

    The use of chloride-based deicing agents to help clear US highways of roadway hazards leads to associated chemical related problems. Fouling of local rivers and streams due to runoff of the water borne chlorides is significant and has contributed to local ordances are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides. With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. The costs of this corrosion are considerable and have led to the widespread use of chloride/water impermeable membranes on roadways and especially within bridges. Fiber optic sensor have repeatedly been shown to provide measurement capabilities of parameters within such reinforced concrete structures. Development of a fiber optic chloride sensors capable of being embedded within a roadway or bridge deck is reported.

  11. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet)

    PubMed Central

    Silva, Cleuzilene V.; Royer, Betina; Rodrigues Filho, Guimes; Cerqueira, Daniel A.; Assunção, Rosana M. N.

    2017-01-01

    The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC) as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS) showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet) from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1). Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer. PMID:29137158

  12. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    DOE PAGES

    Squires, Leah N.; Lessing, Paul

    2016-01-13

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can easily removed upon cooling. Furthermore, the direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.

  13. Chloride flux in phagocytes.

    PubMed

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Mepiquat chloride

    Integrated Risk Information System (IRIS)

    Mepiquat chloride ; CASRN 24307 - 26 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  15. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  16. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  17. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  18. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  19. Benzyl chloride

    Integrated Risk Information System (IRIS)

    Benzyl chloride ; CASRN 100 - 44 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  20. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  1. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Development of a Chemical Process for Production of Cesium Chloride from a Canadian Pollucite Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, H. W.; Vezina, J. A.; Simard, R.

    1963-01-01

    A chemical process was developed for the production of a high-purity cesium chioride from a pollucite (cesium aluminum silicate) ore from the Manitoba deposit of Chemalloy Minerais Ltd. The history of the deposit, and the present and possible future uses of cesium are briefly reviewed. Laboratory and piiot plant investigations on this ore have shown that a cyclic sulphuric acid leach followed by fractional crystallization will produce a rubidiumfree cesium alum, which can be converted to cesium chloride by thermal decomposition and ion exchange. On the basis of these findings it is concluded that the process is applicable to themore » tonnage production of cesium chloride. Reagent consumption was found to be 3.3 sulphuric acid and 0.3 lb hydrochloric acid per pound of cesium extracted. Overall extraction of cesium was 95 to 96%. (auth)« less

  3. Modeling methylene chloride exposure-reduction options for home paint-stripper users.

    PubMed

    Riley, D M; Small, M J; Fischhoff, B

    2000-01-01

    Home improvement is a popular activity, but one that can also involve exposure to hazardous substances. Paint stripping is of particular concern because of the high potential exposures to methylene chloride, a solvent that is a potential human carcinogen and neurotoxicant. This article presents a general methodology for evaluating the effectiveness of behavioral interventions for reducing these risks. It doubles as a model that assesses exposure patterns, incorporating user time-activity patterns and risk-mitigation strategies. The model draws upon recent innovations in indoor air-quality modeling to estimate exposure through inhalation and dermal pathways to paint-stripper users. It is designed to use data gathered from home paint-stripper users about room characteristics, amount of stripper used, time-activity patterns and exposure-reduction strategies (e.g., increased ventilation and modification in the timing of stripper application, scraping, and breaks). Results indicate that the effectiveness of behavioral interventions depends strongly on characteristics of the room (e.g., size, number and size of doors and windows, base air-exchange rates). The greatest simple reduction in exposure is achieved by using an exhaust fan in addition to opening windows and doors. These results can help identify the most important information for product labels and other risk-communication materials.

  4. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials.

    PubMed

    Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar

    2015-08-17

    The effectiveness of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella in vitro and on chicken breast fillets was examined in combination with lauric arginate (LAE) or cetylpyridinium chloride (CPC). In another experiment, a sequential spray application of this bacteriophage (phage) solution on Salmonella inoculated chicken skin after a 20s dip in chemical antimicrobials (LAE, CPC, peracetic acid, or chlorine) was also examined in reducing Salmonella counts on chicken skin. The application of phage in combination with CPC or LAE reduced S. Typhimurium, S. Heidelberg, and S. Enteritidis up to 5 log units in vitro at 4 °C. On chicken breast fillets, phage in combination with CPC or LAE resulted in significant (p<0.05) reductions of Salmonella ranging from 0.5 to 1.3 log CFU/g as compared to control up to 7 days of refrigerated storage. When phage was applied sequentially with chemical antimicrobials, all the treatments resulted in significant reductions of Salmonella. The application of chlorine (30 ppm) and PAA (400 ppm) followed by phage spray (10(9)PFU/ml) resulted in highest Salmonella reductions of 1.6-1.7 and 2.2-2.5l og CFU/cm(2), respectively. In conclusion, the surface applications of phage in combination with LAE or CPC significantly reduced Salmonella counts on chicken breast fillets. However, higher reductions in Salmonella counts were achieved on chicken skin by the sequential application of chemical antimicrobials followed by phage spray. The sequential application of chlorine, PAA, and phage can provide additional hurdles to reduce Salmonella on fresh poultry carcasses or cut up parts. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Chemical Reduction of SIM MOX in Molten Lithium Chloride Using Lithium Metal Reductant

    NASA Astrophysics Data System (ADS)

    Kato, Tetsuya; Usami, Tsuyoshi; Kurata, Masaki; Inoue, Tadashi; Sims, Howard E.; Jenkins, Jan A.

    2007-09-01

    A simulated spent oxide fuel in a sintered pellet form, which contained the twelve elements U, Pu, Am, Np, Cm, Ce, Nd, Sm, Ba, Zr,Mo, and Pd, was reduced with Li metal in a molten LiCl bath at 923 K. More than 90% of U and Pu were reduced to metal to form a porous alloy without significant change in the Pu/U ratio. Small fractions of Pu were also combined with Pd to form stable alloys. In the gap of the porous U-Pu alloy, the aggregation of the rare-earth (RE) oxide was observed. Some amount of the RE elements and the actinoides leached from the pellet. The leaching ratio of Am to the initially loaded amount was only several percent, which was far from about 80% obtained in the previous ones on simple MOX including U, Pu, and Am. The difference suggests that a large part of Am existed in the RE oxide rather than in the U-Pu alloy. The detection of the RE elements and actinoides in the molten LiCl bath seemed to indicate that they dissolved into the molten LiCl bath containing the oxide ion, which is the by-product of the reduction, as solubility of RE elements was measured in the molten LiCl-Li2O previously.

  6. Methylene Chloride.

    PubMed

    Phillips, Jennan A

    2018-02-01

    Methylene chloride is an industrial solvent used in commercial paint strippers and degreasing agents. This chemical is widely used in consumer products, yet without appropriate protections, exposure may lead to death. Already banned in some countries, the Environmental Protection Agency (EPA) recently proposed limiting its use in the United States.

  7. Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique.

    PubMed

    van Buren, Leo; Dötsch-Klerk, Mariska; Seewi, Gila; Newson, Rachel S

    2016-04-21

    Potassium chloride is a leading reformulation technology for reducing sodium in food products. As, globally, sodium intake exceeds guidelines, this technology is beneficial; however, its potential impact on potassium intake is unknown. Therefore, a modeling study was conducted using Dutch National Food Survey data to examine the dietary impact of reformulation (n = 2106). Product-specific sodium criteria, to enable a maximum daily sodium chloride intake of 5 grams/day, were applied to all foods consumed in the survey. The impact of replacing 20%, 50% and 100% of sodium chloride from each product with potassium chloride was modeled. At baseline median, potassium intake was 3334 mg/day. An increase in the median intake of potassium of 453 mg/day was seen when a 20% replacement was applied, 674 mg/day with a 50% replacement scenario and 733 mg/day with a 100% replacement scenario. Reformulation had the largest impact on: bread, processed fruit and vegetables, snacks and processed meat. Replacement of sodium chloride by potassium chloride, particularly in key contributing product groups, would result in better compliance to potassium intake guidelines (3510 mg/day). Moreover, it could be considered safe for the general adult population, as intake remains compliant with EFSA guidelines. Based on current modeling potassium chloride presents as a valuable, safe replacer for sodium chloride in food products.

  8. Sodium and chloride levels in rainfall, mist. streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls

    NASA Astrophysics Data System (ADS)

    Neal, C.; Kirchner, J. W.

    Variations in sodium and chloride in atmospheric inputs (rainfall and mist), stream runoff and groundwater stores are documented for the upper Severn River (Afon Hafren and Afon Hore catchments), Plynlimon, mid-Wales. The results show five salient features.

    1. Sodium and chloride concentrations are highly variable and highly correlated in rainfall and mist. The sodium-chloride relationship in rainfall has a slope close to the sodium/chloride ratio in sea-water, and an intercept that is not significantly different from zero. This indicates that sea-salt is the dominant source of both sodium and chloride in rainfall, which would be expected given the maritime nature of the metrology. For mist, there is also a straight line with near-zero intercept, but with a slightly higher gradient than the sea-salt ratio, presumably due to small additional sodium inputs from other sources.
    2. There is an approximate input-output balance for both sodium and chloride, with the exception of one groundwater well, in which high chemical weathering results in an anomalous high Na/Cl ratio. Thus, atmospheric deposition is the dominant source of both sodium and chloride in groundwater and streamflow.
    3. The fluctuations in sodium and chloride concentrations in the streams and groundwaters are strongly damped compared to those in the rain and the mist, reflecting the storage and mixing of waters in the subsurface.
    4. On all timescales, from weeks to years, sodium fluctuations are more strongly damped than chloride fluctuations in streamflow. The additional damping of sodium is consistent with ion exchange buffering of sodium in the catchment soils.
    5. Sodium and chloride concentrations are linearly correlated in the streams and groundwaters, but the slope is almost universally less than the sea-salt ratio and there is a non-zero intercept. The Na/Cl ratio in streamflow and groundwater is higher than the sea-salt ratio when salinity is low and lower

    6. Embedded chloride detectors for roadways and bridges

      NASA Astrophysics Data System (ADS)

      Fuhr, Peter L.; Huston, Dryver R.; McPadden, Adam P.; Cauley, Robert F.

      1996-04-01

      The problems associated with the application of chloride-based deicing agents to roadways and specifically bridges include chemical pollution and accelerated corrosion of strength members (especially rebar) within the structure. In many instances, local ordinances are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides (typically at the cost of increased driving hazards). With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. In response to this problem, particularly in high roadsalt usage areas, a chloride/water impermeable membrane is placed above the rebar matrix so if/when roadway cracking occurs, the roadsalts won't be able to damage the rebar. Such a membrane is costly -- and the question of its in-service performance is questionable. In a joint effort between the University of Vermont and the Vermont Agency of Transportation, we are developing fiber optic chloride detectors which are capable of being embedded into the rebar-concrete roadway under this membrane. The sensing mechanism relies on spectroscopic analysis of a chemical reaction of chloride and reagents (which have been coated onto the ends of fibers). Laboratory results of these detectors and a usable system configuration are presented.

    7. Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents.

      PubMed

      Wagle, Durgesh V; Deakyne, Carol A; Baker, Gary A

      2016-07-14

      We report quantum chemical calculations performed on three popular deep eutectic solvents (DESs) in order to elucidate the molecular interactions, charge transfer interactions, and thermodynamics associated with these systems. The DESs studied comprise 1:2 choline chloride/urea (reline), 1:2 choline chloride/ethylene glycol (ethaline), and 1:1 choline chloride/malonic acid (maloline). The excellent correlation between calculated and experimental vibrational spectra allowed for identification of dominant interactions in the DES systems. The DESs were found to be stabilized by both conventional hydrogen bonds and C-H···O/C-H···π interactions between the components. The hydrogen-bonding network established in the DES is clearly distinct from that which exists within the neat hydrogen-bond donor dimer. Charge decomposition analysis indicates significant charge transfer from choline and chloride to the hydrogen-bond donor with a higher contribution from the cation, and a density of states analysis confirms the direction of the charge transfer. Consequently, the sum of the bond orders of the choline-Cl(-) interactions in the DESs correlates directly with the melting temperatures of the DESs, a correlation that offers insight into the effect of the tuning of the choline-Cl(-) interactions by the hydrogen-bond donors on the physical properties of the DESs. Finally, the differences in the vibrational entropy changes upon DES formation are consistent with the trend in the overall entropy changes upon DES formation.

    8. Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments

      USGS Publications Warehouse

      Bradley, P.M.; Chapelle, F.H.

      1996-01-01

      Within anaerobic aquifer systems, reductive dehalogenation of polychlorinated ethenes commonly results in the accumulation of vinyl chloride, which is highly toxic and carcinogenic to humans. Anaerobic reduction of vinyl chloride is considered to be slow and incomplete. Here, we provide the first evidence for anaerobic oxidation of vinyl chloride under Fe(III)reducing conditions. Addition of chelated Fe(III) (as Fe-EDTA) to anaerobic aquifer microcosms resulted in mineralization of up to 34% of [1,2- 14C]vinyl chloride within 84 h. The results indicate that vinyl chloride can be mineralized under anaerobic, Fe(III)-reducing conditions and that the bioavailability of Fe(III) is an important factor affecting the rates of mineralization.

    9. High lumenal chloride in the lysosome is critical for lysosome function.

      PubMed

      Chakraborty, Kasturi; Leung, KaHo; Krishnan, Yamuna

      2017-07-25

      Lysosomes are organelles responsible for the breakdown and recycling of cellular machinery. Dysfunctional lysosomes give rise to lysosomal storage disorders as well as common neurodegenerative diseases. Here, we use a DNA-based, fluorescent chloride reporter to measure lysosomal chloride in Caenorhabditis elegans as well as murine and human cell culture models of lysosomal diseases. We find that the lysosome is highly enriched in chloride, and that chloride reduction correlates directly with a loss in the degradative function of the lysosome. In nematodes and mammalian cell culture models of diverse lysosomal disorders, where previously only lysosomal pH dysregulation has been described, massive reduction of lumenal chloride is observed that is ~10 3 fold greater than the accompanying pH change. Reducing chloride within the lysosome impacts Ca 2+ release from the lysosome and impedes the activity of specific lysosomal enzymes indicating a broader role for chloride in lysosomal function.

    10. Dialkylimidazolium Chlorides

      DTIC Science & Technology

      1981-01-01

      Force Systems Command U. S. Air Force Academy, Colorado 80840 I7 *i iL•- r.•r -i- ABSTRACT A- A - i The synthesis of a homologous series of 1 -methyl...Chemical Co. and was vacuum distilled from BaO before use. The 1 - chloropropane and 1 -chlorobutane were obtained from the Aldrich Chemical Co. and were used...23.52% Cl, 1.84% 0. l-Methvl-3-propylimidazolium chloride. 1 -Methylimidazole (10.1 g, 0.123 mol) and l- chloropropane (12.7 g, 0.161 mol) were mixed in

    11. Lithium metal reduction of plutonium oxide to produce plutonium metal

      DOEpatents

      Coops, Melvin S.

      1992-01-01

      A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

    12. High lumenal chloride in the lysosome is critical for lysosome function

      PubMed Central

      Chakraborty, Kasturi; Leung, KaHo; Krishnan, Yamuna

      2017-01-01

      Lysosomes are organelles responsible for the breakdown and recycling of cellular machinery. Dysfunctional lysosomes give rise to lysosomal storage disorders as well as common neurodegenerative diseases. Here, we use a DNA-based, fluorescent chloride reporter to measure lysosomal chloride in Caenorhabditis elegans as well as murine and human cell culture models of lysosomal diseases. We find that the lysosome is highly enriched in chloride, and that chloride reduction correlates directly with a loss in the degradative function of the lysosome. In nematodes and mammalian cell culture models of diverse lysosomal disorders, where previously only lysosomal pH dysregulation has been described, massive reduction of lumenal chloride is observed that is ~103 fold greater than the accompanying pH change. Reducing chloride within the lysosome impacts Ca2+ release from the lysosome and impedes the activity of specific lysosomal enzymes indicating a broader role for chloride in lysosomal function. DOI: http://dx.doi.org/10.7554/eLife.28862.001 PMID:28742019

    13. Physical and chemical basics of modification of poly(vinyl chloride) by means of polyisocyanate

      NASA Astrophysics Data System (ADS)

      Islamov, Anvar; Fakhrutdinova, Venera; Abdrakhmanova, Lyailya

      2016-01-01

      This research presents data relating to polyvinyl chloride (PVC) modification by means of reactive oligomer and measures technological, physical and mechanical properties of the modified composites. Polyisocyanate (PIC) has been chosen as the modifying reactive oligomer. It has been shown that insertion of the oligomer has a double effect on PVC. Primarily, PIC produces a plasticizing effect on PVC and in particular leads to an increase in thermal stability and melt flow index at the stage of processing. In addition, the molded PVC composites possess higher strength properties and lower deformability when exposed to temperature because of chemical transformations of PIC in polymer matrix and, as the result, the formation of cross-linked systems takes place. In this case, semi-interpenetrating structures are formed based on cross-linked products of PIC chemical transformations homogeneously distributed in the PVC matrix. It has been determined by means of IR-spectroscopy that the basic products of PIC curing are compounds with urea and biuret groups which leads to modifying effect on PVC especially: increase in strength, thermal and mechanical properties, and chemical resistance.

    14. REACTIVITY OF CHEMICAL REDUCTANTS AS A FUNCTION OF REDOX ZONATION

      EPA Science Inventory

      The incorporation of reductive transformations into fate models continues to be a challenging problem. The occurrence of chemical reductants in anaerobic sediments and aquifers is a result of the reduction of inorganic, electron acceptors coupled to the microbial oxidation of org...

    15. Automatic electrochemical ambient air monitor for chloride and chlorine

      DOEpatents

      Mueller, Theodore R.

      1976-07-13

      An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

    16. Enhanced hydrophilicity of chlorided aluminum oxide particulates

      NASA Technical Reports Server (NTRS)

      Cofer, W. R., III

      1978-01-01

      An enhancement of hydrophilicity for chlorided aluminas was demonstrated by the results obtained from gaseous H2O sorptions at 70-, 80-, and 86-percent relative humidity on alpha and gamma aluminum oxide particulates and on alpha and gamma aluminum oxide particulates with a chemisorbed surface chloride phase (produced by reactions of gaseous HCl + H2O on alumina). Continuous sorption histories for H2O on chlorided aluminas having specific surface areas that range from 7 to 227 sq m/g before chloriding indicated that initial sorption rates were directly linked to the extent of chemisorbed chlorided coverage and implied the same relationship for sorption capacities. The initial sorption rate on chlorided aluminas was found to be slower for the first exposure to H2O than for subsequent exposures (which reached equilibrated H2O coverages much faster), suggesting that slow chemical reactions between H2O and chlorided alumina may have been operative during initial exposures. Chlorided alumina particles were found to remain very hydrophilic (relative to nonchlorided analogs) for several H2O sorption/desorption cycles.

    17. Competition between skin-sensitizing chemicals in the mouse

      PubMed Central

      Wallington, T. B.; Jones, J. Verrier

      1974-01-01

      The skin contact sensitivity responses to picryl chloride in CBA mice can be reduced by prior sensitization with oxazolone. Initial experiments showed this reduction to be significant when the interval between skin paintings was 7 days. In further experiments to study the time course of this effect, the depression was found to be maximal when the interval between skin paintings was between 3 and 7 days. Prior painting with a non-immunogenic chemical irritant, oil of turpentine, did not depress responses to picryl chloride. The relation of this phenomenon to antigenic competition in antibody production is discussed. PMID:4851120

  1. The effect of benzalkonium chloride additions to AH Plus sealer. Antimicrobial, physical and chemical properties.

    PubMed

    Arias-Moliz, M T; Ruiz-Linares, M; Cassar, G; Ferrer-Luque, C M; Baca, P; Ordinola-Zapata, R; Camilleri, J

    2015-07-01

    The aim of this study was to determine the antimicrobial and antibiofilm activities and physicochemical properties of AH Plus sealer mixed with different concentrations of benzalkonium chloride (BC). AH Plus was tested alone and mixed with 1%, 2% and 3% of BC. The antimicrobial and antibiofilm activities of the sealers against Enterococcus faecalis were evaluated by the direct contact test (DCT) and by confocal laser scanning microscopy, respectively. Setting time, flow and solubility were assessed according to ANSI/ADA specifications. Microhardness and contact angle tests were also performed. The chemical changes of the sealers were evaluated by X-ray diffraction analysis, and both Fourier transform infrared spectroscopy (FT-IR) and attenuated total reflectance Fourier transform infrared (ATR FT-IR). AH Plus+3% BC was the only sealer to promote total elimination of E. faecalis and the biovolume in this group was significantly lower than in the rest of the sealers (p>0.05). The physical properties of the sealers were according to the ANSI/ADA specifications. The microhardness decreased significantly when BC was added and a significant reduction in contact angle was obtained when incorporating 2% and 3% BC (p<0.05). No phase changes were observed with the modified sealers. The addition of 2% or higher concentrations BC to AH Plus showed antimicrobial and antibiofilm activities without affecting the properties specified in ANSI/ADA standards. However, additives to the root canal sealer altered other physical and chemical properties that are not commonly found in the literature to evaluate filling materials. The present study highlights that the antimicrobial properties of AH Plus can be significantly improved with the addition of BC. Testing beyond what is specified in standards may be indicated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Chemical catalysis of nitrate reduction by iron (II)

    NASA Astrophysics Data System (ADS)

    Ottley, C. J.; Davison, W.; Edmunds, W. M.

    1997-05-01

    Experiments have been conducted to investigate the chemical reduction of nitrate under conditions relevant to the often low organic carbon environment of groundwaters. At pH 8 and 20 ± 2°C, in the presence of Cu(II), NO 3- was chemically reduced by Fe(II) to NH 4+ with an average stoichiometric liberation of 8 protons. The rate of the reaction systematically increased with pH in the range pH 7-8.5. The half-life for nitrate reduction, t 1/2, was inversely related to the total molar copper concentration, [Cu T], by the equation log t 1/2 = -1.35 log [Cu T] -2.616, for all measured values of t 1/2 from 23 min to 15 days. At the Cu(II) concentrations used of 7 × 10 -6 -10 -3 M, Cu was present mainly as a solid phase, either adsorbed to the surfaces of precipitated iron oxides or as a saturated solid. It is this solid phase copper rather than CU 2+ in solution which is catalytically active. Neither magnetite, which was formed as a product of the reaction, nor freshly prepared lepidocrocite catalysed the reaction, but goethite did. Although traces of oxygen accelerated the reaction, at higher partial pressures (>0.01 atm) the reduction of nitrate was inhibited, probably due to competition between NO 3- and O 2 for Fe(II). Appreciable catalytic effects were also observed for solid phase forms of Ag(I), Cd(H), Ni(H), Hg(II), and Pb(II). Mn(II) enhanced the rate slightly, and there was evidence for slow abiotic reduction in the absence of any added metal catalysts. These results suggest that the chemical reduction of nitrate at catalytic concentrations and temperatures appropriate to groundwater conditions is feasible on a timescale of months to years.

  3. Health Assessment Document for Vinylidene Chloride (Final Report, 1983)

    EPA Science Inventory

    Vinylidene chloride is a highly reactive, flammable, clear colorless liquid. In the absence of chemical inhibitors, it can produce violently explosive, complex peroxides. The estimated, ambient air level of vinylidene chloride in urban-suburban areas of the United States is 20 mi...

  4. Interfacial concentrations of chloride and bromide in zwitterionic micelles with opposite dipoles: experimental determination by chemical trapping and a theoretical description.

    PubMed

    de Souza, Tereza Pereira; Chaimovich, Hernan; Fahr, Alfred; Schweitzer, Bianca; Agostinho Neto, Augusto; Cuccovia, Iolanda Midea

    2012-04-01

    Interfacial concentrations of chloride and bromide ions, with Li(+), Na(+), K(+), Rb(+), Cs(+), trimethylammonium (TMA(+)), Ca(2+), and Mg(2+) as counterions, were determined by chemical trapping in micelles formed by two zwitterionic surfactants, namely N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and hexadecylphosphorylcholine (HDPC) micelles. Appropriate standard curves for the chemical trapping method were obtained by measuring the product yields of chloride and bromide salts with 2,4,6-trimethyl-benzenediazonium (BF(4)) in the presence of low molecular analogs (N,N,N-trimethyl-propane sulfonate and methyl-phosphorylcholine) of the employed surfactants. The experimentally determined values for the local Br(-) (Cl(-)) concentrations were modeled by fully integrated non-linear Poisson Boltzmann equations. The best fits to all experimental data were obtained by considering that ions at the interface are not fixed at an adsorption site but are free to move in the interfacial plane. In addition, the calculation of ion distribution allowed the estimation of the degree of ion coverage by using standard chemical potential differences accounting for ion specificity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Effect of didecyl dimethyl ammonium chloride on nitrate reduction in a mixed methanogenic culture.

    PubMed

    Tezel, U; Pierson, J A; Pavlostathis, S G

    2008-01-01

    The effect of the quaternary ammonium compound, didecyl dimethyl ammonium chloride (DDAC), on nitrate reduction was investigated at concentrations up to 100 mg/L in a batch assay using a mixed, mesophilic (35 degrees C) methanogenic culture. Glucose was used as the carbon and energy source and the initial nitrate concentration was 70 mg N/L. Dissimilatory nitrate reduction to ammonia (DNRA) and to dinitrogen (denitrification) were observed at DDAC concentrations up to 25 mg/L. At and above 50 mg DDAC/L, DNRA was inhibited and denitrification was incomplete resulting in accumulation of nitrous oxide. At DDAC concentrations above 10 mg/L, production of nitrous oxide, even transiently, resulted in complete, long-term inhibition of methanogenesis and accumulation of volatile fatty acids. Fermentation was inhibited at and above 75 mg DDAC/L. DDAC suppressed microbial growth and caused cell lysis at a concentration 50 mg/L or higher. Most of the added DDAC was adsorbed on the biomass. Over 96% of the added DDAC was recovered from all cultures at the end of the 100-days incubation period, indicating that DDAC did not degrade in the mixed methanogenic culture under the conditions of this study.

  6. Toxicological and pharmacological effects of gadolinium and samarium chlorides

    PubMed Central

    Haley, T. J.; Raymond, K.; Komesu, N.; Upham, H. C.

    1961-01-01

    A study has been made of the toxicology and pharmacology of gadolinium and samarium chlorides. The symptoms of acute toxicity following intraperitoneal injection are described. The chronic oral ingestion of both chemicals for 12 weeks produced no effects on growth or the blood picture, and only the male rats receiving gadolinium chloride showed liver damage. The pharmacological responses to both chemicals were mainly depressant on all systems studied, and death was associated with cardiovascular collapse coupled with respiratory paralysis. The greatest damage seen was on abraded skin, where non-healing ulcers were produced by both chemicals, whereas irritation of intact skin and ocular tissues was only transient in nature. PMID:13903826

  7. Solution phase synthesis of aluminum-doped silicon nanoparticles via room-temperature, solvent based chemical reduction of silicon tetrachloride

    NASA Astrophysics Data System (ADS)

    Mowbray, Andrew James

    We present a method of wet chemical synthesis of aluminum-doped silicon nanoparticles (Al-doped Si NPs), encompassing the solution-phase co-reduction of silicon tetrachloride (SiCl4) and aluminum chloride (AlCl 3) by sodium naphthalide (Na[NAP]) in 1,2-dimethoxyethane (DME). The development of this method was inspired by the work of Baldwin et al. at the University of California, Davis, and was adapted for our research through some noteworthy procedural modifications. Centrifugation and solvent-based extraction techniques were used throughout various stages of the synthesis procedure to achieve efficient and well-controlled separation of the Si NP product from the reaction media. In addition, the development of a non-aqueous, formamide-based wash solution facilitated simultaneous removal of the NaCl byproduct and Si NP surface passivation via attachment of 1-octanol to the particle surface. As synthesized, the Si NPs were typically 3-15 nm in diameter, and were mainly amorphous, as opposed to crystalline, as concluded from SAED and XRD diffraction pattern analysis. Aluminum doping at various concentrations was accomplished via the inclusion of aluminum chloride (AlCl3); which was in small quantities dissolved into the synthesis solution to be reduced alongside the SiCl4 precursor. The introduction of Al into the chemically-reduced Si NP precipitate was not found to adversely affect the formation of the Si NPs, but was found to influence aspects such as particle stability and dispersibility throughout various stages of the procedure. Analytical techniques including transmission electron microscopy (TEM), FTIR spectroscopy, and ICP-optical emission spectroscopy were used to comprehensively characterize the product NPs. These methods confirm both the presence of Al and surface-bound 1-octanol in the newly formed Si NPs.

  8. Liver disease among polyvinyl chloride production workers.

    PubMed

    Creech, J L; Makk, L

    1975-01-31

    A protocol for systematic testing of all employees of a chemical plant is presented. This factory manufactures polyvinyl chloride compounds and resins, ABS compounds and resins, and synthetic rubber. The results were reviewed, which led to the discovery of 2 additional cases of angiosarcoma and 11 cases of portal fibrosis. Two of the 11 cases were found to have developed in employees other than polyvinyl chloride production workers.

  9. Salt microspheres and potassium chloride usage for sodium reduction: Case study with sushi.

    PubMed

    Đorđević, Đani; Buchtová, Hana; Macharáčková, Blanka

    2018-01-01

    The aim of the study was to estimate possibilities of salt substitutes usage in the preparation of two sushi types (nigiri and maki) prepared with different seafood (salmon: Salmo salar, tuna: Thunnus albacares, and shrimp: Pleoticus muelleri). Potassium chloride (Mary samples), Soda-Lo (hollowed microsphere of regular salt crystals), and regular salt (sodium chloride) were used in the experiment. Sushi samples (n = 1960) were evaluated by 40 trained panelists who noticed that maki shrimp samples prepared with Mary salt had higher bitterness (21.48 ± 28.01) in comparison with 2% sodium chloride (7.91 ± 8.80). The saltiness was lower in nigiri tuna prepared with Mary (49.59 ± 17.47) than 2% sodium chloride (61.11 ± 15.75). The study clearly showed the possibility of lowering sodium content in sushi meal with the usage of salt substitutes, with emphasis that Soda-Lo should be considered as a better option due to the retention of sensory properties in sushi samples prepared with this salt substitute.

  10. Deicing chemicals as source of constituents of highway runoff

    USGS Publications Warehouse

    Granato, G.E.

    1996-01-01

    The dissolved major and trace constituents of deicing chemicals as a source of constituents in highway runoff must be quantified for interpretive studies of highway runoff and its effects on surface water and groundwater. Dissolved constituents of the deicing chemicals-sodium chloride, calcium chloride, and premix (a mixture of sodium and calcium chloride)-were determined by analysis of salt solutions created in the laboratory and are presented as mass ratios to chloride. Deicing chemical samples studied are about 98 and 97 percent pure sodium chloride and calcium chloride, respectively: however, each has a distinct major and trace ion constituent signature. The greatest impurity in sodium chloride road sail samples was sulfate, followed by calcium, potassium, bromide, vanadium, magnesium, fluoride, and other constituents with a ratio to chloride of less than 0.0001 by mass. The greatest impurity in the calcium chloride road salt samples was sodium, followed by potassium, sulfate, bromide, silica, fluoride. strontium, magnesium, and other constituents with a ratio to chloride of less than 0.0001 by mass. Major constituents of deicing chemicals in highway runoff may account for a substantial source of annual chemical loads. Comparison of estimated annual loads and first flush concentrations of deicing chemical constituents in highway runoff with those reported in the literature indicate that although deicing chemicals are not a primary source of trace constituents, they are not a trivial source, either. Therefore, deicing chemicals should be considered as a source of many major and trace constituents in highway and urban runoff.

  11. Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries.

    PubMed

    Fan, Lei; Zhuang, Houlong L; Zhang, Kaihang; Cooper, Valentino R; Li, Qi; Lu, Yingying

    2016-12-01

    Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-the-art lithium-ion batteries due to its high theoretical energy density and low production cost from the use of sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified cathode through both chemical and physical confinements, these chloride-coated cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. From adsorption experiments and theoretical calculations, it is shown that not only the sulfide-adsorption effect but also the diffusivity in the vicinity of these chlorides materials plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Balancing the adsorption and diffusion effects of these nonconductive materials could lead to the enhanced cycling performance of an Li-S cell. Electrochemical analyses over hundreds of cycles indicate that cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salts, delivering an average specific capacity of above 1200 mAh g -1 at 0.2 C.

  12. Mechanistic characterization of chloride interferences in electrothermal atomization systems

    USGS Publications Warehouse

    Shekiro, J.M.; Skogerboe, R.K.; Taylor, Howard E.

    1988-01-01

    A computer-controlled spectrometer with a photodiode array detector has been used for wavelength and temperature resolved characterization of the vapor produced by an electrothermal atomizer. The system has been used to study the chloride matrix interference on the atomic absorption spectrometric determination of manganese and copper. The suppression of manganese and copper atom populations by matrix chlorides such as those of calcium and magnesium is due to the gas-phase formation of an analyte chloride species followed by the diffusion of significant fractions of these species from the atom cell prior to completion of the atomization process. The analyte chloride species cannot be formed when matrix chlorides with metal-chloride bond dissociation energies above those of the analyte chlorides are the principal entitles present. The results indicate that multiple wavelength spectrometry used to obtain temperature-resolved spectra is a viable tool in the mechanistic characterization of interference effects observed with electrothermal atomization systems. ?? 1988 American Chemical Society.

  13. Mercuric chloride (HgCl2)

    Integrated Risk Information System (IRIS)

    Mercuric chloride ( HgCl2 ) ; CASRN 7487 - 94 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  14. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant..., dicoco alkyldimethyl, chlorides, reaction products with silica (PMN P-08-157; CAS No. 956147-76-5) is...

  15. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant..., dicoco alkyldimethyl, chlorides, reaction products with silica (PMN P-08-157; CAS No. 956147-76-5) is...

  16. Polypyrrole-MWCNT-Ag composites for electromagnetic shielding: Comparison between chemical deposition and UV-reduction approaches

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh

    2018-07-01

    In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.

  17. Laboratory Evaluation of the Effects of 3-Chloride Compounds on the Geotechnical Properties of an Expansive Subgrade Soil

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada

    2017-12-01

    Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.

  18. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.

  19. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent

    NASA Astrophysics Data System (ADS)

    Duong Trinh, Ngoc; Thanh Binh Nguyen, Thi; Hai Nguyen, Thanh

    2015-12-01

    Silver chloride nanoparticles were prepared by the precipitation reaction between silver nitrate and sodium chloride in an aqueous solution containing poly(vinyl alcohol) as a stabilizing agent. Different characteristics of the nanoparticles in suspension and in lyophilized powder such as size, morphology, chemical nature, interaction with stabilizing agent and photo-stability were investigated. Biological tests showed that the obtained silver chloride nanoparticles displayed antibacterial activities against Escherichia coli and Staphylococcus aureus.

  20. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  1. Chemical characterization of sanding dust and methylene chloride usage in automotive refinishing: implications for occupational and environmental health.

    PubMed

    Enander, Richard T; Gute, David M; Cohen, Howard J; Brown, Linfield C; Desmaris, Anne Marie C; Missaghian, Richard

    2002-01-01

    Surface preparation activities conducted during automotive refinishing present several potential human health and environmental risks. This study examines the chemical composition of vehicle sanding dust and the prevalence of methylene chloride use as a basis for evaluating potential chemical exposures in the work environment, fugitive environmental releases, and take-home toxics. This article reports on the findings of (1) a statewide technology and work practices survey of 353 licensed auto body shops and (2) laboratory analyses of sanding dust representing more than 200 vehicles, 10 commercial body filler compounds, and work shirts worn during vehicle sanding while using nonventilated equipment. Survey data revealed that the majority of shops (78%) do not use ventilated sanding equipment, that most workers (55%) take their work clothes and shoes home at the end of the workday, and that 17% of the respondents used a methylene chloride-based paint stripper as an adjunct to mechanical sanding. Laboratory results showed that Pb, As, Cr, Mn, and Ni were present in the sanding dust at every facility tested. Lead concentrations in sanding dust were found to be highest at facilities that performed complete vehicle refinishing (range 770 to 7300 ppm) and at a collision repair shop that used a high-lead content body filler compound (1800 ppm). Hexavalent chromium also was found in two vocational high school paint dust samples at concentrations of 54 and 710 ppm. When total lead and chromium concentrations reached 7300 and 2300 ppm, respectively, facility sanding dust samples failed the U.S. Environmental Protection Agency's Toxicity Characteristic Leaching Procedure for hazardous waste. Metals found in the sanding dust also were present on the work shirts of technicians-ranging from 0.06 (Cd) to 81 (Mg) microg/inch2 of cloth-who sanded on paint without ventilated equipment. Results suggest that sanding dust and methylene chloride paint strippers used in vehicle

  2. Method for the production of uranium chloride salt

    DOEpatents

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  3. Embedded fiber optic sensors for bridge deck chloride penetration measurements

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Huston, Dryver R.; MacCraith, Brian D.

    1998-04-01

    The use of chloride-based deicing agents to help clear U.S. highways of roadway hazards leads to associated chemical related problems. Fouling of local rivers and streams due to runoff of the waterborne chlorides is significant and has contributed to local ordinances that are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides (typically at the cost of increased driving hazards). With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. The costs of this corrosion are considerable and have led to the wide- spread use of chloride/water impermeable membranes on roadways and especially within bridges. Fiber optics sensors have repeatedly been shown to provide measurement capabilities of parameters within such reinforced concrete structures. Development of fiber optic chloride sensors capable of being embedded within a roadway or bridge deck is reported.

  4. Sodium-metal chloride battery research at JPL

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Sodium metal chloride batteries have certain distinct advantages over sodium sulfur batteries such as increased safety, inherent overcharge capability and lower operation temperatures. Two systems, i.e., Na/FeCl2 and Na/NiCl2 were developed extensively elsewhere and evaluated for various applications including electric vehicles and space. Their performance has been very encouraging and prompted a detailed fundamental study of these cathodes here at the Jet Propulsion Laboratory. A brief review of our studies on these new cathode materials is presented here. The initial efforts focussed on the methods of fabrication of the electrodes and their electrochemical characterization. Subsequent studies were aimed at establishing the reaction mechanism, determining the kinetics and identifying the rate limiting processes in the reduction of metal chloride cathodes. Nickel chloride emerged from these studies as the most promising candidate material and was taken up for further detailed study on its passivation - a rate limiting process - under different experimental conditions. Also, the feasibility of using copper chloride, which is expected to have higher energy density, has been assessed. Based on the criteria established from the voltammetric response of FeCl2, NiCl2, and CuCl2, several other transition metal chlorides were screened. Of these, molybdenum and cobalt chlorides appear promising.

  5. Reduction of chlorine radical chemical etching of GaN under simultaneous plasma-emitted photon irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Zecheng; Imamura, Masato; Asano, Atsuki; Ishikawa, Kenji; Takeda, Keigo; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2017-08-01

    Surface chemical reactions on the GaN surface with Cl radicals are thermally enhanced in the high-temperature Cl2 plasma etching of GaN, resulting in the formation of etch pits and thereby, a roughened surface. Simultaneous irradiation of ultraviolet (UV) photons in Cl2 plasma emissions with wavelengths of 258 and 306 nm reduces the surface chemical reactions because of the photodissociation of both Ga and N chlorides, which leads to a suppression of the increase in surface roughness. Compared with Si-related materials, we point out that photon-induced reactions should be taken into account during the plasma processing of wide-bandgap semiconductors.

  6. Exercise modulates chloride homeostasis after spinal cord injury.

    PubMed

    Côté, Marie-Pascale; Gandhi, Sapan; Zambrotta, Marina; Houlé, John D

    2014-07-02

    Activity-based therapies are routinely integrated in spinal cord injury (SCI) rehabilitation programs because they result in a reduction of hyperreflexia and spasticity. However, the mechanisms by which exercise regulates activity in spinal pathways to reduce spasticity and improve functional recovery are poorly understood. Persisting alterations in the action of GABA on postsynaptic targets is a signature of CNS injuries, including SCI. The action of GABA depends on the intracellular chloride concentration, which is determined largely by the expression of two cation-chloride cotransporters (CCCs), KCC2 and NKCC1, which serve as chloride exporters and importers, respectively. We hypothesized that the reduction in hyperreflexia with exercise after SCI relies on a return to chloride homeostasis. Sprague Dawley rats received a spinal cord transection at T12 and were assigned to SCI-7d, SCI-14d, SCI-14d+exercise, SCI-28d, SCI-28d+exercise, or SCI-56d groups. During a terminal experiment, H-reflexes were recorded from interosseus muscles after stimulation of the tibial nerve and the low-frequency-dependent depression (FDD) was assessed. We provide evidence that exercise returns spinal excitability and levels of KCC2 and NKCC1 toward normal levels in the lumbar spinal cord. Acutely altering chloride extrusion using the KCC2 blocker DIOA masked the effect of exercise on FDD, whereas blocking NKCC1 with bumetanide returned FDD toward intact levels after SCI. Our results indicate that exercise contributes to reflex recovery and restoration of endogenous inhibition through a return to chloride homeostasis after SCI. This lends support for CCCs as part of a pathway that could be manipulated to improve functional recovery when combined with rehabilitation programs. Copyright © 2014 the authors 0270-6474/14/348976-12$15.00/0.

  7. The subtle business of model reduction for stochastic chemical kinetics.

    PubMed

    Gillespie, Dan T; Cao, Yang; Sanft, Kevin R; Petzold, Linda R

    2009-02-14

    This paper addresses the problem of simplifying chemical reaction networks by adroitly reducing the number of reaction channels and chemical species. The analysis adopts a discrete-stochastic point of view and focuses on the model reaction set S(1)<=>S(2)-->S(3), whose simplicity allows all the mathematics to be done exactly. The advantages and disadvantages of replacing this reaction set with a single S(3)-producing reaction are analyzed quantitatively using novel criteria for measuring simulation accuracy and simulation efficiency. It is shown that in all cases in which such a model reduction can be accomplished accurately and with a significant gain in simulation efficiency, a procedure called the slow-scale stochastic simulation algorithm provides a robust and theoretically transparent way of implementing the reduction.

  8. The possibility of using C20 fullerene and graphene as semiconductor segments for detection, and destruction of cyanogen-chloride chemical agent.

    PubMed

    Pakravan, Parvaneh; Siadati, Seyyed Amir

    2017-08-01

    Detection of hazardous chemical species by changing the electrical conductivity of a semiconductor matter is a proposed and applied way for decreasing their subsequent unpleasant effects. Recently, many examples of using inorganic or organic materials, polymeric, and also nano-sized species as sensors were reported in which, in some cases, those matters were strongly affective and suitable. In this project, we have made an assessment on whether the graphene segment or C 20 fullerene, able to sense the existence of cyanogen chloride NCCl? In order to gain trustable results, the possible reaction pathways along with the adsorption kinetics were investigated. Moreover, the electronic density of states DOS showed that C 20 fullerene senses the existence of cyanogen chloride agent with a clearer signal (ΔE g =0.0110eV) compared to the graphene segment (ΔE g =0.0001eV). Also the adsorption energy calculations showed that cyanogen chloride could be adsorbed by the fullerene in a multi-step process (E ads1 =-0.852kcalmol -1 ; E ads2 =-0.446kcalmol -1 ; E ads3 =-2.330kcalmol -1 ). Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A central venous catheter coated with benzalkonium chloride for the prevention of catheter-related microbial colonization.

    PubMed

    Moss, H A; Tebbs, S E; Faroqui, M H; Herbst, T; Isaac, J L; Brown, J; Elliott, T S

    2000-11-01

    In an attempt to overcome infections associated with central venous catheters, a new antiseptic central venous catheter coated with benzalkonium chloride on the internal and external surfaces has been developed and evaluated in a clinical trial. Patients (235) randomly received either a triple-lumen central venous catheter coated with benzalkonium chloride (117) or a polyurethane non-antiseptic catheter (118). The incidence of microbial colonization of both catheters and retained antiseptic activity of the benzalkonium chloride device following removal were determined. The benzalkonium chloride resulted in a significant reduction of the incidence of microbial colonization on both the internal and external catheter surfaces. The reduction in colonization was detected at both the intradermal (21 benzalkonium chloride catheters vs. 38 controls, P = 0.0016) and distal segments of the antiseptic-coated catheters. Following catheter removal retained activity was demonstrated in benzalkonium chloride catheters which had been in place for up to 12 days. No patients developed adverse reactions to the benzalkonium chloride catheters. The findings demonstrate that the benzalkonium chloride catheter significantly reduced the incidence of catheter-associated colonization.

  10. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the zinc chloride production subcategory. 415.670 Section 415.670 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Zinc Chloride Production...

  11. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the zinc chloride production subcategory. 415.670 Section 415.670 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Zinc Chloride Production...

  12. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the zinc chloride production subcategory. 415.670 Section 415.670 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Zinc Chloride Production...

  13. Optimization of the lithium/thionyl chloride battery

    NASA Technical Reports Server (NTRS)

    White, Ralph E.

    1989-01-01

    A 1-D math model for the lithium/thionyl chloride primary cell is used in conjunction with a parameter estimation technique in order to estimate the electro-kinetic parameters of this electrochemical system. The electro-kinetic parameters include the anodic transfer coefficient and exchange current density of the lithium oxidation, alpha sub a,1 and i sub o,i,ref, the cathodic transfer coefficient and the effective exchange current density of the thionyl chloride reduction, alpha sub c,2 and a sup o i sub o,2,ref, and a morphology parameter, Xi. The parameter estimation is performed on simulated data first in order to gain confidence in the method. Data, reported in the literature, for a high rate discharge of an experimental lithium/thionyl chloride cell is used for an analysis.

  14. Controlling attachment and growth of Listeria monocytogenes in polyvinyl chloride model floor drains using a peroxide chemical, chitosan-arginine, or heat.

    PubMed

    Berrang, Mark E; Hofacre, Charles L; Frank, Joseph F

    2014-12-01

    Listeria monocytogenes can colonize a poultry processing plant as a resident in floor drains. Limiting growth and attachment to drain surfaces may help lessen the potential for cross-contamination of product. The objective of this study was to compare a hydrogen peroxide-peroxyacetic acid-based chemical to chitosan-arginine or heat to prevent attachment of or destroy existing L. monocytogenes on the inner surface of model floor drains. L. monocytogenes was introduced to result in about 10(9) planktonic and attached cells within untreated polyvinyl chloride model drain pipes. Treatments (0.13 % peroxide-based sanitizer, 0.1 % chitosan-arginine, or 15 s of hot water at 95 to 100°C) were applied immediately after inoculation or after 24 h of incubation. Following treatment, all pipes were incubated for an additional 24 h; planktonic and attached cells were enumerated by plate count. All treatments significantly (P < 0.05) lowered numbers of planktonic and attached cells recovered. Chitosan-arginine resulted in approximately a 6-log reduction in planktonic cells when applied prior to incubation and a 3-log reduction after the inoculum had a chance to grow. Both heat and peroxide significantly outperformed chitosan-arginine (8- to 9-log reduction) and were equally effective before and after incubation. Heat was the only treatment that eliminated planktonic L. monocytogenes. All treatments were less effective against attached cells. Chitosan-arginine provided about a 4.5-log decrease in attached cells when applied before incubation and no significant decrease when applied after growth. Like with planktonic cells, peroxide-peroxyacetic acid and heat were equally effective before or after incubation, causing decreases ranging from 7 to 8.5 log for attached L. monocytogenes. Applied at the most efficacious time, any of these techniques may lessen the potential for L. monocytogenes to remain as a long-term resident in processing plant floor drains.

  15. Chemical model for the solvent extraction of GdCl3 from a chloride solution with saponified PC88A

    NASA Astrophysics Data System (ADS)

    Lee, Man-Seung; Lee, Jin-Young; Kim, Joon-Soo

    2005-12-01

    Solvent extraction experiments of Gd with 40% saponified PC88A have been conducted from a chloride solution under different extraction conditions. The effect of saponification of an acidic extractant on the extraction of Gd was investigated. To analyze the ionic equilibria of a GdCl3 solution, we estimated the necessary thermodynamic properties from reported values. Moreover, when applying the chemical model developed in this study, we used experimental data to estimate the equilibrium constant for the extraction of Gd with partially saponified PC88A.

  16. Adsorption of hydrogen chloride on microcrystalline silica. [solid rocket propellant exhaust

    NASA Technical Reports Server (NTRS)

    Kang, Y.; Wightman, J. P.

    1979-01-01

    The interaction of hydrogen chloride with quartz was studied to determine the extent to which silica can irreversibly remove hydrogen chloride from the atmosphere. Adsorption isotherms were measured at 30 C for hydrogen chloride on silica outgassed between 100 C and 400 C. Readsorption isotherms were also measured. The silica surface was characterized further by infrared spectroscopy, electron spectroscopy for chemical analysis, scanning electron microscopy, and immersional calorimetry. Ground debris samples obtained from the Kennedy Space Center, were likewise examined.

  17. Study of chloride ion transport of composite by using cement and starch as a binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less

  18. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  19. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  20. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  1. Chemical castration in cattle with intratesticular injection of sodium chloride: Effects on stress and inflammatory markers.

    PubMed

    Oliveira, Fernando C; Ferreira, Carlos E R; Haas, Cristina S; Oliveira, Leonardo G; Mondadori, Rafael G; Schneider, Augusto; Rovani, Monique T; Gonçalves, Paulo B D; Vieira, Arnaldo D; Gasperin, Bernardo G; Lucia, Thomaz

    2017-03-01

    Intratesticular injection (ITI) of sodium chloride (NaCl) is efficient for chemical castration of young calves, but its effects on calves welfare are unknown. Two experiments were conducted to evaluate the effects of ITI of 20% NaCl on stress and inflammatory markers in calves less than 20 days old and to assess the efficiency of ITI of 30% NaCl in 5 months old calves. In Experiment 1, control calves were only restrained and compared to calves submitted to castration through surgery (SC) and ITI with 20% NaCl (n = 9/group). No differences were observed for the eye corner temperature measured by thermography from 60 s before to 60 s after the procedures (P > 0.05). In the SC group, acute serum cortisol levels increased at 30 and 60 min after the procedure, but increased levels in the ITI group occurred only at 30 min (P < 0.05). Chronic discomfort markers were measured at 0, 24, 48, 72 and 96 h after the procedures (D0, D1, D2, D3 and D4, respectively). The serum levels of the paraoxonase 1 (PON1) enzyme and cortisol did not differ among groups (P > 0.05). Scrotal temperature was higher at D1 in the SC group than for the other groups, but lowest at D4 compared to the control (both P < 0.05). In Experiment 2, histological sections of testes were compared after ITI with either 30% NaCl or 30% calcium chloride (CaCl 2 ), to intact calves (control). After 60 days, intact seminiferous tubules and mediastinum were observed after ITI with 30% NaCl, whereas coagulative necrosis, inflammatory infiltration and calcification occurred after ITI with 30% CaCl 2 . Efficient chemical castration through ITI of 20% NaCl in young calves was followed by slight stress and inflammatory responses compared to surgical castration. However, ITI of 30% NaCl was ineffective for chemical castration of 5 months old calves. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The subtle business of model reduction for stochastic chemical kinetics

    NASA Astrophysics Data System (ADS)

    Gillespie, Dan T.; Cao, Yang; Sanft, Kevin R.; Petzold, Linda R.

    2009-02-01

    This paper addresses the problem of simplifying chemical reaction networks by adroitly reducing the number of reaction channels and chemical species. The analysis adopts a discrete-stochastic point of view and focuses on the model reaction set S1⇌S2→S3, whose simplicity allows all the mathematics to be done exactly. The advantages and disadvantages of replacing this reaction set with a single S3-producing reaction are analyzed quantitatively using novel criteria for measuring simulation accuracy and simulation efficiency. It is shown that in all cases in which such a model reduction can be accomplished accurately and with a significant gain in simulation efficiency, a procedure called the slow-scale stochastic simulation algorithm provides a robust and theoretically transparent way of implementing the reduction.

  3. Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Kyle Shelton; Kimball, David Bryan; Skidmore, Bradley Evan

    These are a set of slides intended for an information session as part of recruiting activities at Brigham Young University. It gives an overview of aqueous chloride operations, specifically on plutonium and americium purification/recovery. This presentation details the steps taken perform these processes, from plutonium size reduction, dissolution, solvent extraction, oxalate precipitation, to calcination. For americium recovery, it details the CLEAR (chloride extraction and actinide recovery) Line, oxalate precipitation and calcination.

  4. The effect of hypophysectomy on chloride balance in young-of-the-year bowfin, Amia calva.

    PubMed

    Duff, D; Hanson, R; Fleming, W R

    1987-01-01

    The effect of hypophysectomy on chloride balance was examined in young-of-the-year bowfin, Amia calva. Hypophysectomy resulted in decreased serum and total body chloride levels but not in serum and total body sodium levels. Hypophysectomy resulted in decreased chloride influx with no effect on chloride efflux or sodium fluxes. Prolactin therapy reversed the effect of hypophysectomy on electrolyte balance but caused a significant reduction in serum protein.

  5. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  6. Effect of nickel and cadmium chloride on autonomic and behavioral thermoregulation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, C.J.; Stead, A.G.

    1986-01-01

    Male BALB/c mice were injected intraperitoneally (i.p.) with nickel chloride (0, 5, 10, and 15 mg/kg) or cadmium chloride (0, 2, 4, and 6 mg/kg) while preferred ambient temperature (Ta) and activity were measured. Both metals caused drastic reductions in preferred Ta and activity within 30-min postinjection. Preferred Ta and activity were depressed for up to 90 min following nickel and cadmium injection. In a second experiment, body temperature was measured 60 min following the injection of nickel or cadmium chloride at a Ta of 20, 30, or 35 C. Nickel and cadmium caused a drastic reduction in body temperaturemore » when injected at a Ta of 20 and 30 C but produced either no effect or only a slight elevation in body temperature at a Ta of 35 C. In a third experiment, metabolic rate was measured continuously for 60 min following the i.p. injection of a relatively large dose of nickel (15 mg/kg) or cadmium chloride (6 mg/kg) at a Ta of 20, 30, and 35 C. Both metals caused significant reductions in metabolic rate at Ta's of 20 and 30 C.« less

  7. Chemical and Electrochemical Processing of Aluminum Dross Using Molten Salts

    NASA Astrophysics Data System (ADS)

    Yan, Xiao Y.

    2008-04-01

    A novel molten salt process was investigated, where Al, as metal or contained in Al2O3 and AlN, was recovered from Al dross by chemical or direct electrochemical reduction in electrolytic cells. Electrolysis experiments were carried out under argon at temperatures from 1123 to 1243 K. In order to better understand the reduction behavior, the as-received Al dross was simulated using simplified systems, including pure Al2O3, pure AlN, an Al2O3/AlN binary mixture, and an Al2O3/AlN/Al ternary mixture. The reduction of the as-received dross was also studied experimentally. The studies showed that solid Al2O3 was chemically reduced by the Ca in a Ca-saturated Ca-CaCl2 melt to form Al2Ca or electrochemically reduced to Al-rich Al-Ca alloys and that the Al value in the Al2O3 was easily recovered from the Al drosses. It was found experimentally that solid AlN in the drosses could not be calciothermically reduced to any extent, consistent with thermodynamic evaluations. It was also found that the direct electrochemical reduction of the AlN in the drosses was confined to three phase boundaries (3PBs) between the AlN, the electrolyte, and the current collector and could not be enhanced by using the LiCl-containing chloride melt or the chloride-fluoride melts studied. The presence of Al powder in the Al2O3/AlN mixture facilitated the direct electrochemical reduction of both Al2O3 and AlN. The reduction mechanisms are discussed based upon the present experimental observations. Flow sheets for recovering the metallic Al and the Al in the Al2O3 and AlN from Al dross are finally proposed.

  8. Absorption media for irreversibly gettering thionyl chloride

    DOEpatents

    Buffleben, George; Goods, Steven H.; Shepodd, Timothy; Wheeler, David R.; Whinnery, Jr., LeRoy

    2002-01-01

    Thionyl chloride is a hazardous and reactive chemical used as the liquid cathode in commercial primary batteries. Contrary to previous thinking, ASZM-TEDA.RTM. carbon (Calgon Corporation) reversibly absorbs thionyl chloride. Thus, several candidate materials were examined as irreversible getters for thionyl chloride. The capacity, rate and effect of temperature were also explored. A wide variety of likely materials were investigated through screening experiments focusing on the degree of heat generated by the reaction as well as the material absorption capacity and irreversibility, in order to help narrow the group of possible getter choices. More thorough, quantitative measurements were performed on promising materials. The best performing getter was a mixture of ZnO and ASZM-TEDA.RTM. carbon. In this example, the ZnO reacts with thionyl chloride to form ZnCl.sub.2 and SO.sub.2. The SO.sub.2 is then irreversibly gettered by ASZM-TEDA.RTM. carbon. This combination of ZnO and carbon has a high capacity, is irreversible and functions effectively above -20.degree. C.

  9. Immediate effect of benzalkonium chloride in decongestant nasal spray on the human nasal mucosal temperature.

    PubMed

    Lindemann, J; Leiacker, R; Wiesmiller, K; Rettinger, G; Keck, T

    2004-08-01

    Benzalkonium chloride is a preservative commonly used in nasal decongestant sprays. It has been suggested that benzalkonium chloride may be harmful to the nasal mucosa. Decongestion with the vasoconstrictor xylometazoline containing benzalkonium chloride has been shown to cause a significant reduction of the nasal mucosal temperature. The purpose of the present study was to determine the short-term influence of xylometazoline nasal spray with and without benzalkonium chloride on the nasal mucosal temperature. Healthy volunteers (30) were included in the study. Fifteen volunteers received xylometazoline nasal spray (1.0 mg/mL) containing benzalkonium chloride (0.1 mg/mL) and 15 age-matched subjects, received xylometazoline nasal spray without benzalkonium chloride. Using a miniaturized thermocouple the septal mucosal temperature was continuously measured at defined intranasal detection sites before and after application of the nasal spray. The mucosal temperature values did not significantly differ between the group receiving xylometazoline containing benzalkonium chloride and the group receiving xylometazoline spray without benzalkonium chloride before and after decongestion (P > 0.05). In both study groups septal mucosal temperatures significantly decreased after decongestion (P < 0.05) because of a reduction of the nasal mucosal blood flow following vasoconstriction. This study indicates that benzalkonium chloride itself does not seem to influence nasal blood flow and nasal mucosal temperature in topical nasal decongestants.

  10. Investigation of factors influencing chloride extraction efficiency during electrochemical chloride extraction from reinforcing concrete

    NASA Astrophysics Data System (ADS)

    Sharp, Stephen R.

    2005-11-01

    residue revealed that it contains calcium carbonate, calcium chloride, and other yet unidentified minor components when calcium hydroxide was used as the electrolyte. The surface film can be completely removed mechanically or to some extent inhibited chemically, with both of these processes resulting in an increase in the efficiency of the electrochemical chloride extraction process. In addition, an obvious relationship between the cover depth, water-to-cement ratio, and chloride extraction efficiency does not exist, however, cover depth does influence the current density. The final phase of this study will be presented in a VTRC/FHWA final report. This report will include the results that are presented in this dissertation, in addition to the results from the ongoing research. It will also include an estimation of the additional service life that can be expected following treatment.

  11. Chemically exfoliating large sheets of phosphorene via choline chloride urea viscosity-tuning

    NASA Astrophysics Data System (ADS)

    Ng, A.; Sutto, T. E.; Matis, B. R.; Deng, Y.; Ye, P. D.; Stroud, R. M.; Brintlinger, T. H.; Bassim, N. D.

    2017-04-01

    Exfoliation of two-dimensional phosphorene from bulk black phosphorous through chemical means is demonstrated where the solvent system of choice (choline chloride urea diluted with ethanol) has the ability to successfully exfoliate large-area multi-layer phosphorene sheets and further protect the flakes from ambient degradation. The intercalant solvent molecules, aided by low-powered sonication, diffuse between the layers of the bulk black phosphorus, allowing for the exfoliation of the multi-layer phosphorene through breaking of the interlayer van der Waals bonds. Through viscosity tuning, the optimal parameters (1:1 ratio between the intercalant and the diluting solvent) at which the exfoliation takes place is determined. Our exfoliation technique is shown to produce multi-layer phosphorene flakes with surface areas greater than 3 μm2 (a factor of three larger than what has previously been reported for a similar exfoliation method) while limiting exposure to the ambient environment, thereby protecting the flakes from degradation. Characterization techniques such as optical microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, and (scanning) transmission electron microscopy are used to investigate the quality, quantity, and thickness of the exfoliated flakes.

  12. Mortality experience of workers exposed to vinyl chloride monomer in the manufacture of polyvinyl chloride in Great Britain.

    PubMed Central

    Fox, A J; Collier, P F

    1977-01-01

    Identification particulars were obtained for over 7000 men who were at some time between 1940 and 1974 exposed to vinyl chloride monomer in the manufacture of polyvinyl chloride. Approximately 99% of these men have been traced and their mortality experience studied. The overall standardised mortality ratio, 75-4, shows a significant reduction compared with the national rates. Four cases of liver cancer were found. Two of these have been confirmed by a panel of liver pathologists as angiosarcoma and two as not angiosarcoma. There is no evidence to support the hypothesis that cancers other than those of the liver are associated with exposure to vinyl chloride monomer. The two cases of angiosarcoma were found in men who had been exposed to high concentrations of the monomer although the second man died only eight years after first exposure. The industry in Great Britain has expanded considerably since the second world war with over 50% of men having entered with the last decade. Conclusions drawn about the effect of vinyl chloride monomer on the mortality experience of men in this industry must consequently be tempered by the reservation that the full impact may not yet be in evidence. PMID:557328

  13. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...

  14. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  15. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  16. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  17. THE EFFECT OF SODIUM CHLORIDE ON THE CHEMICAL CHANGES IN THE BLOOD OF THE DOG AFTER PYLORIC AND INTESTINAL OBSTRUCTION.

    PubMed

    Haden, R L; Orr, T G

    1923-06-30

    animal. Two dogs in which the duodenum was obstructed by section and inversion of the cut ends were given 500 cc. of 0.85 per cent NaCl subcutaneously on the day of operation and each day thereafter until death. One dog lived 21 days, the other 28. Both dogs showed a marked alkalosis, but never any rise in the non-protein nitrogen of the blood. The animals at autopsy showed intussusception of the ileum with extensive ulceration. In one there was a perforation and terminal peritonitis. The operation wounds healed normally. Three dogs with section of the duodenum were given 500 cc. of distilled water every day. One died in 24 hours, one in 48 hours, and the third in 72 hours. Autopsy showed no cause for death other than toxemia. One dog with section of the duodenum was given 500 cc. of 2 per cent glucose every day. The blood showed a rapid rise in non-protein nitrogen and carbon dioxide-combining power, and a fall in chlorides. The animal died 72 hours after operation. Three dogs with section of the duodenum were given 500 cc. of 1 per cent sodium bicarbonate every day. One dog died in 72 hours, one lived 7 days, and the third lived 9 days. All developed a high non-protein nitrogen in the blood and two showed marked clinical symptoms of an alkalosis. These results demonstrate that solutions of sodium chloride have a marked effect in preventing and controlling the toxemia of pyloric and intestinal obstruction as shown in clinical symptoms and in chemical changes in the blood. Dogs given an abundant supply of distilled water died more quickly than untreated control animals. Solutions of glucose have no specific value, and sodium bicarbonate solutions prolong life only a short while. Good therapeutic results have been obtained with very concentrated sodium chloride solutions, and with dry sodium chloride given by mouth. It seems evident that sodium chloride has a specific action in preventing and possibly in controlling the changes produced by the toxic body. Sodium chloride

  18. GKI chloride in water, analysis method. GKI boron in water, analysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morriss, L.L.

    1979-05-01

    Procedures for the chemical analysis of chlorides and boron in water are presented. Chlorides can be titrated with mercuric nitrate to form mercuric chloride. At pH 2.3 to 2.8, diphenylcarbazone indicates the end point of this titration by formation of a purple complex with mercury ions. When a sample of water containing boron is acidified and evaporated in the presence of curcumin, a red colored product called rosocyanine is formed. This is dissolved and can be measured photometrically or visually. (DMC)

  19. Mechanism of chemical activation of sodium chloride in the presence of amino acids.

    PubMed

    Rahn, Anja K K; Yaylayan, Varoujan A

    2015-01-01

    Sodium chloride has been shown to promote chlorination of glycerol during thermal processing. However, the detailed mechanism of this reaction is not well understood. Preliminary experiments have indicated that the reaction mixture should contain an amino acid and it should be dissolved thoroughly in water in order to induce chlorination. These observations are consistent with the process of dissociation of sodium chloride and its re-association with amino acid and eventual formation of the chlorinating agent in the form of the hydrochloride salt. Release of HCl from this salt can be manifested in chlorination and hydrolytic reactions occurring during thermal processing. The generation of HCl at room temperature from a mixture of sodium chloride and glycine was confirmed through spectrophotometric monitoring of the pH. Hydrolytic and chlorination reactions were demonstrated through monitoring of formation of HMF and chlorinated products under pyrolytic conditions using glucose or sucrose and amino acid mixtures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Influence of the different sodium chloride concentrations on microbiological and physico-chemical characteristics of mozzarella cheese.

    PubMed

    Faccia, Michele; Mastromatteo, Marianna; Conte, Amalia; Del Nobile, Matteo Alessandro

    2012-11-01

    In this work the effects of addition of different amounts of sodium chloride, during cheese making, on shelf life of mozzarella cheese were evaluated. The mozzarella cheese quality decay was assessed during storage at 9 °C by monitoring microbiological, sensory and physico-chemical changes in the product. Results showed that Pseudomonas spp. growth was responsible for cheese unacceptability, whereas the sensory quality did not limit cheese shelf life. In particular, the highest shelf life values were obtained for mozzarella without salt and with the lowest salt concentration (0·23 g NaCl), and amounted to about 5 and 4 d, respectively. On the contrary, high salt concentrations affected product shelf life, probably as a consequence of progressive solubilisation of cheese casein, due to the phenomenon of 'salting in'.

  1. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  2. Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium-sulfur batteries

    DOE PAGES

    Fan, Lei; Zhuang, Houlong; Zhang, Kaihang; ...

    2016-01-01

    Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-art lithium-ion batteries (LIBs) due to its high theoretical energy density and lower production cost from the use of earth abundant element - sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified-cathode through both chemical and physical confinements in a conductive host, these chloride-coatedmore » cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. We show that not only the binding energy but also the electronic conductivity of the host plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Electrochemical analysis of the chloride-modified cathodes over hundreds of cycles indicates that too strong binding of the sulfur species may lead to the decay of Coulombic efficiency. Cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salt modifications, delivering an average specific capacity of above 1200mAh g-1 at 0.2C over 200 cycles. Once loaded with high S content, it shows stable capacity retention with only 0.019% decay per cycle from 5th to 650th cycle. It also shows stabilized cyclability and enhanced Coulombic efficiency in the absence of traditional anode stabilizer lithium nitrite.« less

  3. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    PubMed

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. This journal is © the Owner Societies 2011

  4. Reductive mineralization of cellulose with vanadium, iron and tungsten chlorides and access to MxOy metal oxides and MxOy/C metal oxide/carbon composites.

    PubMed

    Henry, Aurélien; Hesemann, Peter; Alauzun, Johan G; Boury, Bruno

    2017-10-15

    M x O y and M x O y /C composites (M=V, Fe and W) were obtained by mineralization of cellulose with several metal chlorides. Cellulose was used both as a templating agent and as an oxygen and a carbon source. Soluble chloride molecules (VOCl 3 and WCl 6 ) and a poorly soluble ionic chloride compound (FeCl 3 ) were chosen as metal oxide precursors. In a first time, primary metal oxide/cellulose composites were obtained via a thermal treatment by reacting urea impregnated filter paper with the corresponding metal chlorides in an autoclave at 150°C after 3days. After either pyrolysis or calcination steps of these intermediate materials, interesting metal oxides with various morphologies were obtained (V 2 O 5, V 2 O 3 , Fe 3 O 4 , WO 3, H 0.23 WO 3 ), composites (V 2 O 3 /C) as well as carbides (hexagonal W 2 C and WC, Fe 3 C) This result highlight the reductive role that can play cellulose during the pyrolysis step that allows to tune the composition of M x O y /C composites. The materials were characterized by FTIR, Raman, TGA, XRD and SEM. This study highlights that cellulose can be used for a convenient preparation of a variety of highly demanded M x O y and M x O y /C composites with original shapes and morphologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  6. Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila.

    PubMed

    Kregiel, Dorota; Berlowska, Joanna; Mizerska, Urszula; Fortuniak, Witold; Chojnowski, Julian; Ambroziak, Wojciech

    2013-07-01

    Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm(2). Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm(-2) and less than 1 c.f.u. cm(-2) were noted. For the native gumosil, the results were 9,375 RLU cm(-2) and 2.5 × 10(8) c.f.u. cm(-2), respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth.

  7. Field and laboratory evidence for intrinsic biodegradation of vinyl chloride contamination in a Fe(III)-reducing aquifer

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Wilson, J.T.

    1998-01-01

    Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biodegradability of vinyl chloride under anaerobic conditions. In this study, a combination of field geochemical analyses and laboratory radiotracer ([1,2-14C] vinyl chloride) experiments was utilized to assess the potential for intrinsic biodegradation of vinyl chloride contamination in an Fe(III)-reducing, anaerobic aquifer. Microcosm experiments conducted under Fe(III)-reducing conditions with material from the Fe(III)-reducing, chlorinated-ethene contaminated aquifer demonstrated significant oxidation of [1,2-14C] vinyl chloride to 14CO2 with no detectable production of ethene or other reductive dehalogenation products. Rates of degradation derived from the microcosm experiments (0.9-1.3% d-1) were consistent with field-estimated rates (0.03-0.2% d-1) of apparent vinyl chloride degradation. Field estimates of apparent vinyl chloride biodegradation were calculated using two distinct approaches; 1) a solute dispersion model and 2) a mass balance assessment. These findings demonstrate that degradation under Fe(III) reducing conditions can be an environmentally significant mechanism for intrinsic bioremediation of vinyl chloride in anaerobic ground-water systems.

  8. Evaluation of several chemical disinfectants for removing zebra mussels from unionid mussels

    USGS Publications Warehouse

    Waller, D.L.; Fisher, S.W.

    1998-01-01

    We evaluated the safety and effectiveness of chemical treatments for killing veliger and juvenile stages of the zebra mussel Dreissena polymorpha attached to unionid mussels. Static toxicity tests were conducted on eight unionid mussel species with common aquaculture chemicals (benzalkonium chloride, formalin, hydrogen peroxide, calcium chloride, potassium chloride, and sodium chloride). The concentration and duration of each chemical treatment tested had previously been found to kill zebra mussel veligers and juveniles. Several species (e.g., Elliptio dilatata, Lampsilis cardium, and Lasmigona complanata) incurred less than 10% mortality in chloride salt treatments, while in other species (e.g., Obliquaria reflexa and Leptodea fragilis) mortality varied greatly among treatment regimes. Treatments with benzalkonium chloride, formalin, and hydrogen peroxide were less than 90% effective on juvenile stages of zebra mussels and, therefore, were ruled out after preliminary trials. Limited application of specific chemical treatments may be feasible for more tolerant species; however, effective disinfection of unionid shells will require the use of chemical treatment followed by a quarantine period to completely remove zebra mussel larvae and juveniles.

  9. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34 Section 151.50-34 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall...

  10. Prevention and harm reduction for chemical dependency: a process perspective.

    PubMed

    DiClemente, C C

    1999-06-01

    Clinical psychology is often on the periphery of treatment and prevention efforts to stop substance abuse and dependence. This article describes the current status of prevention research and practice, outlines a process perspective on the initiation and cessation of drug use and abuse, and offers some new ideas about how psychology can and should become involved in the prevention of chemical dependency. Psychologists are faced with the precursors and consequences of chemical dependency on a daily basis. With improved training and increased awareness, and aided by a process perspective, psychology and psychologists can play an important role in preventing the onset of chemical dependency, creating early interventions to stop the process of initiation, and becoming more involved in treatment and harm-reduction efforts. Psychologists have the basic training and the biopsychosocial orientation that could make them effective agents for primary, secondary, and tertiary prevention of chemical dependency.

  11. The reduction in inflammation and impairment in wound healing by using strontium chloride hexahydrate.

    PubMed

    Berksoy Hayta, Sibel; Durmuş, Kasim; Altuntaş, Emine Elif; Yildiz, Esin; Hisarciklıo, Mehmet; Akyol, Melih

    2018-03-01

    Numerous growth factors, cytokine, mitogen and chemotactic factors are involved in wound healing. Even though inflammation is important for the stimulation of proliferative phase, excessive inflammation also causes impairment in wound healing. Strontium salts suppress keratinocyte-induced TNF-alpha and interleukin-1 and interleukin-6 in in vitro cultures. This study was conducted to determine the effects of administration of topical strontium chloride hexahydrate on wound healing through TNF-alpha and TGF-beta in surgical wound healing model of in-vivo rat skin. Twenty-four rats were used in the study. After approximately 2 cm cutaneous-subcutaneous incision was horizontally carried out on the mid-neckline of the rats, the incision was again closed using 2.0 vicryl. The rats were assigned into three groups including eight rats in each group. Placebo emollient ointment and also the ointments, which were containing 5% and 10% strontium chloride hexahydrate and were prepared at the same base with placebo ointment, were administered to the groups by a blind executor twice a day for a week. At the end of seventh day, the rats were sacrificed and cutaneous and subcutaneous tissue of their wound site was resected for histopathological examination. Scoring of histopathological wound healing and scoring of tissue TNF-alpha and TGF-beta level with immunohistochemical staining were performed. The groups, to which both 5% and 10% strontium chloride hexahydrate was administered, had lower immunohistochemical TNF-alpha levels and histopathological wound scores compared to controls, which was statistically significant (p < 0.05). Strontium chloride hexahydrate can lead to impairment in wound healing by suppressing inflammation through TNF-alpha.

  12. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions.

    PubMed

    Shi, Yu; Wang, Yichao; Flowers, Timothy J; Gong, Haijun

    2013-06-15

    Silicon can alleviate salt damage to plants, although the mechanism(s) still remains to be elucidated. In this paper, we report the effect of silicon on chloride transport in rice (Oryza sativa L.) seedlings in saline conditions. In the absence of salinity, silicon enhanced the growth of shoots, but not roots in three cultivars (cv. GR4, IR36, and CSR10). Salinity reduced the growth of both shoots and roots in all three genotypes. In saline conditions, addition of silicon to the culture solution again improved the growth of shoots, but not of roots. Under these saline conditions, the concentrations of chloride in the shoot were markedly decreased by adding silicon and the ratio of K(+)/Cl(-) was significantly increased, while the concentration of chloride in the roots was unchanged. The decrease in chloride concentration in the shoot was correlated with the decrease in transpirational bypass flow in rice, as shown by the transport of the apoplastic tracer trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). Addition of silicon increased the net photosynthetic rate, stomata conductance, and transpiration of salt-stressed plants in cv. IR36, indicating that the reduction of chloride (and sodium) uptake by silicon was not through a reduction in transpiration rate. Silicon addition also increased the instantaneous water use efficiency of salt-stressed plants, while it did not change the relative growth rate of shoots. The results suggest that silicon addition decreased transpirational bypass flow in the roots, and therefore decreased the transport of chloride to the shoot. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (Rubidium Chloride)

    EPA Science Inventory

    This is a PPRTV for Rubidium Compounds submitted to the Superfund Program.This assessment supports multiple isomers (see related links) and this page is about the chemical rubidium chloride, CASRN 7791-11-9.

  14. Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase.

    PubMed

    Yang, Shaojun; Jan, Yi-Hua; Mishin, Vladimir; Richardson, Jason R; Hossain, Muhammad M; Heindel, Ned D; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-03-01

    Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31-180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37-19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are "off-targets" of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. In-Situ Chemical Reduction and Oxidation of VOCs in Groundwater: Groundwater Treatability Studies

    NASA Technical Reports Server (NTRS)

    Keith, Amy; Glasgow, Jason; McCaleh, Rececca C. (Technical Monitor)

    2001-01-01

    This paper presents NASA Marshall Space Flight Center's treatability studies for volatile organic compounds in groundwater. In-Situ groundwater treatment technologies include: 1) Chemical Reduction(Ferox); 2) Chemical Oxidation (Fenton Reagents, Permanganate, and Persulfate); and 3) Thermal (Dynamic Underground Stripping, Six-Phase Heating). This paper is presented in viewgraph form.

  16. Reduction of Microbial and Chemical Contaminants in Water Using POU/POE & Mobile Treatment Technologies

    EPA Science Inventory

    POU/POE may be a cost-effective option for reductions of a particular chemical to achieve water quality compliance under certain situations and given restrictions. Proactive consumers seeking to reduce exposure to potential pathogens, trace chemicals, and nanoparticles not curre...

  17. Vinyl Chloride: A Case Study of Data Suppression and Misrepresentation

    PubMed Central

    Sass, Jennifer Beth; Castleman, Barry; Wallinga, David

    2005-01-01

    When the U.S. Environmental Protection Agency (EPA) finalized its 2000 update of the toxicological effects of vinyl chloride (VC), it was concerned with two issues: the classification of VC as a carcinogen and the numerical estimate of its potency. In this commentary we describe how the U.S. EPA review of VC toxicology, which was drafted with substantial input from the chemical industry, weakened safeguards on both points. First, the assessment downplays risks from all cancer sites other than the liver. Second, the estimate of cancer potency was reduced 10-fold from values previously used for environmental decision making, a finding that reduces the cost and extent of pollution reduction and cleanup measures. We suggest that this assessment reflects discredited scientific practices and recommend that the U.S. EPA reverse its trend toward ever-increasing collaborations with the regulated industries when generating scientific reviews and risk assessments. PMID:16002366

  18. Correlation of sweat chloride and percent predicted FEV1 in cystic fibrosis patients treated with ivacaftor.

    PubMed

    Fidler, Meredith C; Beusmans, Jack; Panorchan, Paul; Van Goor, Fredrick

    2017-01-01

    Ivacaftor, a CFTR potentiator that enhances chloride transport by acting directly on CFTR to increase its channel gating activity, has been evaluated in patients with different CFTR mutations. Several previous analyses have reported no statistical correlation between change from baseline in ppFEV 1 and reduction in sweat chloride levels for individuals treated with ivacaftor. The objective of the post hoc analysis described here was to expand upon previous analyses and evaluate the correlation between sweat chloride levels and absolute ppFEV 1 changes across multiple cohorts of patients with different CF-causing mutations who were treated with ivacaftor. The goal of the analysis was to help define the potential value of sweat chloride as a pharmacodynamic biomarker for use in CFTR modulator trials. For any given study, reductions in sweat chloride levels and improvements in absolute ppFEV 1 were not correlated for individual patients. However, when the data from all studies were combined, a statistically significant correlation between sweat chloride levels and ppFEV 1 changes was observed (p<0.0001). Thus, sweat chloride level changes in response to potentiation of the CFTR protein by ivacaftor appear to be a predictive pharmacodynamic biomarker of lung function changes on a population basis but are unsuitable for the prediction of treatment benefits for individuals. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. In situ spectroscopy and spectroelectrochemistry of uranium in high-temperature alkali chloride molten salts.

    PubMed

    Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A

    2008-09-01

    Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.

  20. [Effects of long-term applying sulfur- and chloride-containing chemical fertilizers on weed growth in paddy field].

    PubMed

    Shen, Pu; Gao, Ju-sheng; Xu, Ming-gang; Li, Dong-chu; Niu, De-kui; Qin, Dao-zhu

    2011-04-01

    An investigation was made at a double-rice paddy field in the Qiyang Red Soil Field Experimental Station, Hunan Province, China to study the species and biomass of weeds growing in rice (Oryza sativa L.) growth season after 34-year application of sulfur (SO4(2-)) and chloride (Cl(-))-containing chemical fertilizers under the same application rates of nitrogen (N), phosphorus (P), and potassium (K). Long-term application of Cl(-)-containing chemical fertilizer resulted in the greatest species number of weeds and the highest biomass of floating weeds and wet weeds, compared with long-term application of SO4(2-) and Cl(-) +SO4(2-)-containing chemical fertilizers. In early rice growth season, the biomass of weeds after applying Cl(-)-containing chemical fertilizer was 51.4% and 17.6% higher than that after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, respectively; in late rice growth season, the increment was 144% and 242%, respectively. More floating weeds were observed after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, but few of them were found after applying Cl(-)-containing chemical fertilizer. The total dry mass of weeds and the dry mass of wet weeds were positively correlated with soil Cl(-) content (r = 0.764, P < 0.01 and r = 0.948, P < 0.01, respectively), but negatively correlated with soil SO4(2-)-S content (r = 0.849, P < 0.01 and r = 0.641, P < 0.05). Soil alkali-hydrolyzable N and available P, under the co-effects of soil SO4(2-)-S, Cl(-), and pH, had indirect effects on the total dry mass of weeds. By adopting various fertilization measures to maintain proper soil pH and alkali-hydrolyzable N and available P contents, increase soil SO42(-)-S content, and decrease soil Cl(-) content, it could be possible to effectively inhibit the growth of wet weeds and to decrease the total biomass of weeds in double-rice paddy field.

  1. Testing the Chloride Penetration Resistance of Concrete : A Literature Review.

    DOT National Transportation Integrated Search

    2001-01-01

    One of the major forms of environmental attack on reinforced concrete bridges is chloride ingress, which leads to corrosion of the reinforcing steel and a subsequent reduction in the strength, serviceability, and aesthetics of the structure.Reinforce...

  2. SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion.

    PubMed

    Sloufová, Ivana; Sisková, Karolína; Vlcková, Blanka; Stepánek, Josef

    2008-04-28

    Changes in morphology, surface reactivity and surface-enhancement of Raman scattering induced by modification of borate-stabilized Ag nanoparticles by adsorbed chlorides have been explored using TEM, EDX analysis and SERS spectra of probing adsorbate 2,2'-bipyridine (bpy) excited at 514.5 nm and evaluated by factor analysis. At fractional coverages of the parent Ag nanoparticles by adsorbed chlorides <0.6, the Ag colloid/Cl(-)/bpy systems were found to be constituted by fractal aggregates of Ag nanoparticles fairly uniform in size (10 +/- 2 nm) and SERS spectra of Ag(+)-bpy surface species were detected. The latter result was interpreted in terms of the presence of oxidized Ag(+) and/or Ag(n)(+) adsorption sites, which have been encountered also in systems with the chemically untreated Ag nanoparticles. At chloride coverages >0.6, a fusion of fractal aggregates into the compact aggregates of touching and/or interpenetrating Ag nanoparticles has been observed and found to be accompanied by the formation of another surface species, Ag-bpy, as well as by the increase of the overall SERS enhancement of bpy by factor of 40. The same Ag-bpy surface species has been detected under the strongly reducing conditions of reduction of silver nitrate by sodium borohydride in the presence of bpy. The formation of Ag-bpy is thus interpreted in terms of the stabilization of reduced Ag(0) adsorption sites by adsorbed bpy. The formation of reduced adsorption sites on Ag nanoparticle surfaces at chloride coverages >0.6 is discussed in terms of local changes in the work function of Ag. Finally, the SERS spectral detection of Ag-bpy species is proposed as a tool for probing the presence of reduced Ag(0) adsorption sites in systems with chemically modified Ag nanoparticles.

  3. Surface speciation and interactions between adsorbed chloride and water on cerium dioxide

    NASA Astrophysics Data System (ADS)

    Sutherland-Harper, Sophie; Taylor, Robin; Hobbs, Jeff; Pimblott, Simon; Pattrick, Richard; Sarsfield, Mark; Denecke, Melissa; Livens, Francis; Kaltsoyannis, Nikolas; Arey, Bruce; Kovarik, Libor; Engelhard, Mark; Waters, John; Pearce, Carolyn

    2018-06-01

    Ceria particles with different specific surface areas (SSA) were contaminated with chloride and water, then heat treated at 500 and 900 °C to investigate sorption behaviour of these species on metal oxides. Results from x-ray photoelectron spectroscopy and infrared spectroscopy showed chloride and water adsorption onto particles increased with surface area and that these species were mostly removed on heat treatment (from 6.3 to 0.8 at% Cl- on high SSA and from 1.4 to 0.4 at% on low SSA particles). X-ray diffraction revealed that chloride was not incorporated into the bulk ceria structure, but crystal size increased upon contamination. Ce LIII-edge x-ray absorption spectroscopy confirmed that chloride was not present in the first co-ordination sphere around Ce(IV) ions, so was not bonded to Ce as chloride in the bulk structure. Sintering of contaminated high SSA particles occurred with heat treatment at 900 °C, and they resembled low SSA particles synthesised at this temperature. Physical chloride-particle interactions were investigated using electron microscopy and energy dispersive x-ray analysis, showing that chloride was homogeneously distributed on ceria and that reduction of porosity did not trap surface-sorbed chloride inside the particles as surface area was reduced during sintering. This has implications for stabilisation of chloride-contaminated PuO2 for long term storage.

  4. In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance

    NASA Astrophysics Data System (ADS)

    Ye, Xingke; Zhu, Yucan; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang

    2017-08-01

    For practical applications of graphene-based materials in flexible supercapacitors, a technological breakthrough is currently required to fabricate high-performance graphene paper by a facile method. Herein, highly conductive (∼6900 S m-1) graphene paper with loose multilayered structure is produced by a high-efficiency in-situ chemical reduction process, which assembles graphite oxide suspensions into film and simultaneously conducts chemical reduction. Graphene papers with different parameters (including different types and doses of reductants, different thicknesses and areas of films) are successfully fabricated through this in-situ chemical reduction method. Meanwhile, the influences of the graphene papers with different parameters upon the supercapacitor performance are systematically investigated. Flexible supercapacitor based on the graphene paper exhibits high areal capacitance (152.4 mF cm-2 at current density of 2.0 mA cm-2 in aqueous electrolyte), and excellent rate performance (88.7% retention at 8.0 mA cm-2). Furthermore, bracelet-shaped all-solid supercapacitor with fascinating cycling stability (96.6% retention after 10 000 cycles) and electrochemical stability (an almost negligible capacity loss under different bending states and 99.6% retention after 4000 bending cycles) is established by employing the graphene paper electrode material and polymer electrolyte.

  5. A Simplified Extemporaneously Prepared Potassium Chloride Oral Solution.

    PubMed

    Tannous, Elias; Tal, Yana; Amarny, Kamal

    2016-01-01

    Although commercial preparations of oral potassium supplements are usually available, there are times when our Medical Center is faced with situations in which the oral solution of potassium chloride is not available. This solution is necessary for our pediatric outpatients who cannot swallow tablets and need an oral solution. Moreover, there are no studies available which describe an extemporaneously prepared potassium chloride oral solution on which we can rely for assigning a beyond-use date. The aim of this study was to formulate an extemporaneous pediatric oral solution of potassium chloride and to determine the physical and chemical stability of this preparation. We prepared 1 mMoL/mL by withdrawing 25 mL of potassium chloride 14.9%. Ora-Sweet SF was added to 50 mL in a metered flask. The solution was kept refrigerated (2°C to 8°C). Samples were withdrawn to measure potassium concentration, pH, and microbial overgrowth. The test was performed by our biochemical laboratory. The oral solution of potassium chloride 1 mMoL/mL stored at 2°C to 8°C maintained at least 91% of the initial concentration for 28 days. There were no notable changes in pH, and the solution remained physically stable with no visual microbial growth. The oral solution of potassium chloride 1 mMoL/mL prepared in Ora-Sweet and stored at 2°C to 8°C in amber glass bottles is expected to remain stable for 28 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  6. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT... resulting from the production of ammonium chloride by the reaction of anhydrous ammonia with hydrogen...

  7. Salt, sodium chloride or sodium? Content and relationship with chemical, instrumental and sensory attributes in cooked meat products.

    PubMed

    Kameník, Josef; Saláková, Alena; Vyskočilová, Věra; Pechová, Alena; Haruštiaková, Danka

    2017-09-01

    The aim of this study was to determine the salt content in selected cooked meat products by the methods of determining the sodium content and the content of chlorides. The resulting data was compared with other chemical, instrumental and sensory parameters of the analysed samples. A total of 133 samples of 5 meat products were tested. The sodium content ranged from 558.0 to 1308.0mgNa/100g. Salt level determined by the two methods strongly correlated and did not differ in any meat product. Intensity of salty taste of the product was independent on its salt content. The salt (sodium) content may be reduced without a negative impact on sensory or instrumental properties of meat products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Safety in the Chemical Laboratory: Evaluation of Chemical Atmospheres in Science Laboratories.

    ERIC Educational Resources Information Center

    Renfrew, Malcolm M., Ed.; Bayer, Richard E.

    1980-01-01

    Recommends that science teachers make evaluations of chemical atmospheres in science laboratories so that serious health problems can be avoided. Uses data from methylene chloride to provide guidelines for understanding the effects of chemicals on the human body. (CS)

  9. Stability of penicillin G sodium diluted with 0.9% sodium chloride injection or 5% dextrose injection and stored in polyvinyl chloride bag containers and elastomeric pump containers.

    PubMed

    Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire

    2014-04-15

    The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.

  10. Assessment of the in vivo genotoxicity of cadmium chloride, chloroform, and D,L-menthol as coded test chemicals using the alkaline comet assay.

    PubMed

    Wada, Kunio; Fukuyama, Tomoki; Nakashima, Nobuaki; Matsumoto, Kyomu

    2015-07-01

    As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM) international validation study of in vivo rat alkaline comet assays, we examined cadmium chloride, chloroform, and D,L-menthol under blind conditions as coded chemicals in the liver and stomach of Sprague-Dawley rats after 3 days of administration. Cadmium chloride showed equivocal responses in the liver and stomach, supporting previous reports of its poor mutagenic potential and non-carcinogenic effects in these organs. Treatment with chloroform, which is a non-genotoxic carcinogen, did not induce DNA damage in the liver or stomach. Some histopathological changes, such as necrosis and degeneration, were observed in the liver; however, they did not affect the comet assay results. D,L-Menthol, a non-genotoxic non-carcinogen, did not induce liver or stomach DNA damage. These results indicate that the comet assay can reflect genotoxic properties under blind conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT... the production of sodium chloride by the solution brine-mining process and by the solar evaporation...

  12. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...

  13. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...

  14. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  15. Hydrocracking with molten zinc chloride catalyst containing 2-12% ferrous chloride

    DOEpatents

    Zielke, Clyde W.; Bagshaw, Gary H.

    1981-01-01

    In a process for hydrocracking heavy aromatic polynuclear carbonaceous feedstocks to produce hydrocarbon fuels boiling below about 475.degree. C. by contacting the feedstocks with hydrogen in the presence of a molten zinc chloride catalyst and thereafter separating at least a major portion of the hydrocarbon fuels from the spent molten zinc chloride catalyst, an improvement comprising: adjusting the FeCl.sub.2 content of the molten zinc chloride to from about 2 to about 12 mol percent based on the mixture of ferrous chloride and molten zinc chloride.

  16. Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides

    PubMed Central

    2012-01-01

    A general method is presented for the synthesis of alkylated arenes by the chemoselective combination of two electrophilic carbons. Under the optimized conditions, a variety of aryl and vinyl bromides are reductively coupled with alkyl bromides in high yields. Under similar conditions, activated aryl chlorides can also be coupled with bromoalkanes. The protocols are highly functional-group tolerant (−OH, −NHTs, −OAc, −OTs, −OTf, −COMe, −NHBoc, −NHCbz, −CN, −SO2Me), and the reactions are assembled on the benchtop with no special precautions to exclude air or moisture. The reaction displays different chemoselectivity than conventional cross-coupling reactions, such as the Suzuki–Miyaura, Stille, and Hiyama–Denmark reactions. Substrates bearing both an electrophilic and nucleophilic carbon result in selective coupling at the electrophilic carbon (R–X) and no reaction at the nucleophilic carbon (R–[M]) for organoboron (−Bpin), organotin (−SnMe3), and organosilicon (−SiMe2OH) containing organic halides (X–R–[M]). A Hammett study showed a linear correlation of σ and σ(−) parameters with the relative rate of reaction of substituted aryl bromides with bromoalkanes. The small ρ values for these correlations (1.2–1.7) indicate that oxidative addition of the bromoarene is not the turnover-frequency determining step. The rate of reaction has a positive dependence on the concentration of alkyl bromide and catalyst, no dependence upon the amount of zinc (reducing agent), and an inverse dependence upon aryl halide concentration. These results and studies with an organic reductant (TDAE) argue against the intermediacy of organozinc reagents. PMID:22463689

  17. Tool for the Reduction and Assessment of Chemical and other Environmental Impacts

    EPA Science Inventory

    TRACI, the Tool for the Reduction and Assessment of Chemical and other environmental Impacts, has been developed by the US Environmental Protection Agency’s National Risk Management Research Laboratory to facilitate the characterization of stressors that have potential effects, ...

  18. Raman spectroscopic studies of chemical speciation in calcium chloride melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, Charles F.; Lavender, Curt A.

    2005-02-01

    Raman spectroscopy was applied to CaCl2 melts at 900 degrees C under both non-electrolyzed and electrolyzed conditions. The later used titania cathodes supplied by TIMET, Inc. and graphite anodes. Use of pulse-gating to collect the Raman spectra successfully eliminated any interference from black-body radiation and other stray light. The spectrum of molten CaCl2 exhibited no distinct, resolvable bands that could be correlated with a calcium chloride complex similar to MgCl42- in MgCl2 melts. Rather, the low frequency region of the spectrum was dominated by a broad “tail” arising from collective oscillations of both charge and mass in the molten saltmore » “network.” Additions of both CaO and Ca at concentrations of a percent or two resulted in no new features in the spectra. Addition of CO2, both chemically and via electrolysis at concentrations dictated by stability and solubility at 900 degrees C and 1 bar pressure, also produced no new bands that could be correlated with either dissolved CO2 or the carbonate ion. These results indicated that Raman spectroscopy, at least under the conditions evaluated in the research, was not well suited for following the reactions and coordination chemistry of calcium ions, nor species such as dissolved metallic Ca and CO2 that are suspected to impact current efficiency in titanium electrolysis cells using molten CaCl2. Raman spectra of TIMET titania electrodes were successfully obtained as a function of temperature up to 900 degrees C, both in air and in-situ in CaCl2 melts. However, spectra of these electrodes could only be obtained when the material was in the unreduced state. When reduced, either with hydrogen or within an electrolysis cell, the resulting electrodes exhibited no measurable Raman bands under the conditions used in this work.« less

  19. IDENTIFYING INDICATORS OF REACTIVITY FOR CHEMICAL REDUCTANTS IN ANOXIC AND ANAEROBIC SEDIMENTS

    EPA Science Inventory

    To develop reaction transport models describing the movement of redox-active organic contaminants through contaminated sediments and aquifers, it is imperative to know the identity and reactivity of chemical reductants in natural sediments and to associate their reactivity with p...

  20. Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction.

    PubMed

    Shi, Hongfei; Wang, Can; Sun, Zhipei; Zhou, Yueliang; Jin, Kuijuan; Redfern, Simon A T; Yang, Guozhen

    2014-08-11

    Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.

  1. Heterogeneous Reduction Pathways for Hg(II) Species on Dry Aerosols: A First-Principles Computational Study

    DOE PAGES

    Tacey, Sean A.; Xu, Lang; Mavrikakis, Manos; ...

    2016-03-25

    Here, the atmospheric lifetime of mercury is greatly impacted by redox chemistry resulting from the high deposition rate of reactive mercury (Hg(II)) compared to elemental mercury (Hg 0). Recent laboratory and field studies have observed the reduction of Hg(II) but the chemical mechanism for this reaction has not been identified. Recent laboratory studies have shown that the reduction reaction is heterogeneous and can occur on iron and sodium chloride aerosol surfaces. This study explores the use of density functional theory calculations to discern the reduction pathways of HgCl 2, HgBr 2, Hg(NO 3) 2, and HgSO 4 on clean Fe(110),more » NaCl(100), and NaCl(111) Na surfaces. In doing so, potential energy surfaces have been prepared for the various reduction pathways, indicating that the reduction pathway leading to the production of gas-phase elemental mercury is highly favorable on Fe(110) and NaCl(111) Na. Moreover, the Fe(110) surface requires an external energy source of approximately 0.5 eV to desorb the reduced mercury, whereas the NaCl(111) Na surface requires no energy input. The results indicate that a number of mercury species can be reduced on metallic iron and sodium chloride surfaces, which are known aerosol components, and that a photochemical reaction involving the aerosol surface is likely needed for the reaction to be catalytic.« less

  2. Calcium phosphate stabilization of fly ash with chloride extraction.

    PubMed

    Nzihou, Ange; Sharrock, Patrick

    2002-01-01

    Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.

  3. Chloride/bromide ratios in leachate derived from farm-animal waste.

    PubMed

    Hudak, Paul F

    2003-01-01

    Ratios of conservative chemicals have been used to identify sources of groundwater contamination. While chloride/bromide ratios have been reported for several common sources of groundwater contamination, little work has been done on leachate derived from farm-animal waste. In this study, chloride/bromide ratios were measured in leachate derived from longhorn-cattle, quarterhorse, and pygme-goat waste at a farm in Abilene, Texas, USA. (Minimum, median, and maximum) chloride/bromide ratios of (66.5, 85.6, and 167), (119, 146, and 156), and (35.4, 57.8, and 165) were observed for cattle, horses, and goats, respectively. These ratios are below typical values for domestic wastewater and within the range commonly observed for oilfield brine. Results of this study have important implications for identifying sources of contaminated groundwater in settings with significant livestock and/or oil production.

  4. A personal historic perspective on the role of chloride in skeletal and cardiac muscle.

    PubMed

    Hutter, Otto F

    2017-03-01

    During the early decades of the last century, skeletal muscle was held to be impermeable to chloride ions. This theory, based on shaky grounds, was famously falsified by Boyle and Conway in 1941. Two decades later and onwards, the larger part of the resting conductance of skeletal muscle was found to be due to chloride ions, sensitive to the chemical environment, and to be time-and-voltage dependent. So, much of the groundwork for the physiological role of chloride ions in skeletal muscle was laid before the game-changing discovery of chloride channels. The early history of the role of chloride in cardiac muscle, and work on the relative permeability to foreign anions of different muscles are also here covered from a personal perspective. © 2017 The Author. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Performance of two swine manure treatment systems on chemical composition and on the reduction of pathogens.

    PubMed

    Viancelli, A; Kunz, A; Steinmetz, R L R; Kich, J D; Souza, C K; Canal, C W; Coldebella, A; Esteves, P A; Barardi, C R M

    2013-01-01

    Swine effluents must be correctly handled to avoid negative environmental impacts. In this study, the profiles of two swine manure treatment systems were evaluated: a solid-liquid separation step, followed by an anaerobic reactor, and an aerobic step (System 1); and a biodigester followed by serial lagoons (System 2). Both systems were described by the assessment of chemical, bacterial and viral parameters. The results showed that in System 1, there was reduction of chemicals (COD, phosphorus, total Kjeldhal nitrogen - TKN - and NH(3)), total coliforms and Escherichia coli; however, the same reduction was not observed for Salmonella sp. Viral particles were significantly reduced but not totally eliminated from the effluent. In System 2, there was a reduction of chemicals, bacteria and viruses with no detection of Salmonella sp., circovirus, parvovirus, and torque teno virus in the effluent. The chemical results indicate that the treated effluent can be reused for cleaning swine facilities. However, the microbiological results show a need of additional treatment to achieve a complete inactivation for cases when direct contact with animals is required. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  7. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex.

    PubMed

    Lengke, Maggy F; Ravel, Bruce; Fleet, Michael E; Wanger, Gregory; Gordon, Robert A; Southam, Gordon

    2006-10-15

    The mechanisms of gold bioaccumulation by cyanobacteria (Plectonema boryanum UTEX 485) from gold(III)-chloride solutions have been studied at three gold concentrations (0.8,1.7, and 7.6 mM) at 25 degrees C, using both fixed-time laboratory and real-time synchrotron radiation absorption spectroscopy (XAS) experiments. Interaction of cyanobacteria with aqueous gold(III)-chloride initially promoted the precipitation of nanoparticles of amorphous gold(I)-sulfide at the cell walls, and finally deposited metallic gold in the form of octahedral (111) platelets (approximately 10 nm to 6 microm) near cell surfaces and in solutions. The XAS results confirm that the reduction mechanism of gold(III)-chloride to metallic gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I)-sulfide.

  8. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels.

    PubMed

    Hill, J; Harris, A W; Manning, M; Chambers, A; Swanton, S W

    2006-01-01

    The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 degrees C compared to those prepared at 25 degrees C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium.

  9. Red blood cells donate electrons to methylene blue mediated chemical reduction of methemoglobin compartmentalized in liposomes in blood.

    PubMed

    Sakai, Hiromi; Li, Bing; Lim, Wei Lee; Iga, Yumika

    2014-07-16

    Electron-energy-rich coenzymes in cells, NADH and NADPH, are re-energized repeatedly through the Embden-Meyerhof and pentose-phosphate glycolytic pathways, respectively. This study demonstrates extraction of their electron energies in red blood cells (RBCs) for in vivo extracellular chemical reactions using an electron mediator shuttling across the biomembrane. Hemoglobin-vesicles (HbVs) are an artificial oxygen carrier encapsulating purified and concentrated Hb solution in liposomes. Because of the absence of a metHb-reducing enzymatic system in HbV, HbO2 gradually autoxidizes to form metHb. Wistar rats received HbV suspension (10 mL/kg body weight) intravenously. At the metHb level of around 50%, methylene blue [MB(+); 3,7-bis(dimethylamino)phenothiazinium chloride] was injected. The level of metHb quickly decreased to around 16% in 40 min, remaining for more than 5 h. In vitro mixing of HbV/MB(+) with RBCs recreated the in vivo metHb reduction, but not with plasma. NAD(P)H levels in RBCs decreased after metHb reduction. The addition of glucose facilitated metHb reduction. Liposome-encapsulated NAD(P)H, a model of RBC, reduced metHb in HbV in the presence of MB(+). These results indicate that (i) NAD(P)H in RBCs reacts with MB(+) to convert it to leukomethylene blue (MBH); (ii) MB(+) and MBH shuttle freely between RBC and HbV across the hydrophobic lipid membranes; and (iii) MBH is transferred into HbV and reduces metHb in HbV. Four other electron mediators with appropriate redox potentials appeared to be as effective as MB(+) was, indicating the possibility for further optimization of electron mediators. We established an indirect enzymatic metHb reducing system for HbV using unlimited endogenous electrons created in RBCs in combination with an effective electron mediator that prolongs the functional lifespan of HbV in blood circulation.

  10. High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process

    PubMed Central

    Some, Surajit; Kim, Youngmin; Yoon, Yeoheung; Yoo, HeeJoun; Lee, Saemi; Park, Younghun; Lee, Hyoyoung

    2013-01-01

    A new chemical dual-functional reducing agent, thiophene, was used to produce high-quality reduced graphene oxide (rGO) as a result of a chemical reduction of graphene oxide (GO) and the healing of rGO. Thiophene reduced GO by donation of electrons with acceptance of oxygen while it was converted into an intermediate oxidised polymerised thiophene that was eventually transformed into polyhydrocarbon by loss of sulphur atoms. Surprisingly, the polyhydrocarbon template helped to produce good-quality rGOC (chemically reduced) and high-quality rGOCT after thermal treatment. The resulting rGOCT nanosheets did not contain any nitrogen or sulphur impurities, were highly deoxygenated and showed a healing effect. Thus the electrical properties of the as-prepared rGOCT were superior to those of conventional hydrazine-produced rGO that require harsh reaction conditions. Our novel dual reduction and healing method with thiophene could potentially save energy and facilitate the commercial mass production of high-quality graphene. PMID:23722643

  11. Algicidal Activity of a Surface-Bonded Organosilicon Quaternary Ammonium Chloride

    PubMed Central

    Walters, P. A.; Abbott, E. A.; Isquith, A. J.

    1973-01-01

    The hydrolysis product of a quaternary amine-containing organosilicon salt, 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride, was found to exhibit algicidal activity while chemically bonded to a variety of substrates. Six representative species of Chlorophyta, Cyanophyta, and Chrysophyta were used to evaluate the algicidal activity. Substrate-bonded 14C-labeled organosilicon quaternary ammonium salt when attached to nonwoven fibers was durable to repeated washings, and algicidal activity could not be attributed to slow release of the chemical. Images PMID:4632852

  12. Acute health effects among firefighters exposed to a polyvinyl chloride (PVC) fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markowitz, J.S.; Gutterman, E.M.; Schwartz, S.

    1989-05-01

    Firefighters are frequently being called on to fight fires that are chemical in nature. In the aftermath of a chemical fire in Plainfield, New Jersey on March 20-21, 1985, the authors conducted a retrospective cohort study which surveyed 80 firefighters exposed to burning polyvinyl chloride (PVC) as well as 15 nonexposed firefighter subjects. By means of an 81-item symptom checklist, exposed firefighters reported more frequent and severe symptoms at 5-6 weeks post incident. This was true for a total symptomatology score as well as 19 individual items. Some of the items with an elevated risk were consistent with exposure tomore » hydrogen chloride, the main pyrolysis product of polyvinyl chloride. Other items with an elevated risk appeared to be related to smoke inhalation while others seemed psychosocial in nature. Analyses conducted within the exposed firefighter group showed that fighting the fire the first day, being a truckman, and residence within 1 mile (1.6 km) of the firehouse were significant risk factors for high total symptom scores. These risk factors may have been associated with level or duration of exposure to the toxic substances produced during the fire.« less

  13. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange.

    PubMed Central

    Star, R A; Burg, M B; Knepper, M A

    1985-01-01

    Cortical collecting ducts (CCD) from rabbits treated with deoxycorticosterone (DOC) actively secrete bicarbonate at high rates. To investigate the mechanism of bicarbonate secretion, we measured bicarbonate and chloride transport in CCD from rabbits treated with DOC for 9-24 d. Removal of chloride (replaced with gluconate) from both perfusate and bath inhibited bicarbonate secretion without changing transepithelial voltage. Removal of chloride only from the bath increased bicarbonate secretion, while removal of chloride only from the perfusate inhibited secretion. In contrast to the effect of removing chloride, removal of sodium from both the perfusate and bath (replacement with N-methyl-D-glucamine) did not change the rate of bicarbonate secretion. The rate of bicarbonate secretion equaled the rate of chloride absorption in tubules bathed with 0.1 mM ouabain to inhibit any cation-dependent chloride transport. Under these conditions, chloride absorption occurred against an electrochemical gradient. Removal of bicarbonate from both the perfusate and bath inhibited chloride absorption. Removal of bicarbonate only from the bath inhibited chloride absorption, while removal of bicarbonate from the lumen stimulated chloride absorption. We conclude that CCD from DOC-treated rabbits actively secrete bicarbonate and actively absorb chloride by an electroneutral mechanism involving 1:1 chloride/bicarbonate exchange. The process is independent of sodium. PMID:3930570

  14. Vinyl Chloride

    Cancer.gov

    Learn about vinyl chloride, which can raise the risk of a rare form of liver cancer, as well as brain and lung cancers, and leukemia and lymphoma. Vinyl chloride is used primarily to make PVC, a substance used in products such as pipes.

  15. Potential of tin (IV) chloride for treatment in Alor Pongsu as stabilized landfill leachate

    NASA Astrophysics Data System (ADS)

    Zainal, Sharifah Farah Fariza Syed; Aziz, Hamidi Abdul

    2017-10-01

    Leachate production from landfilling contributes crucial pollutants to the environment. This study examined the potential of tin (IV) chloride as coagulant that involved charge neutralization and sweep flocculation mechanisms. The negative charge of leachate is neutralized by adding tin (IV) chloride as cationic coagulant which resulted precipitation and swept most of the colloids and dissolved solids that entrapped in the settling as hydrous oxide floc. Parameters such as suspended solid (SS) content, color, and chemical oxygen demand (COD) were analyzed using standard jar test procedures. The best condition was observed at pH 8, with removal efficiencies of 75.99 %, 99.29 % and 98.36 % for COD, SS, and color, respectively. At optimum dosage, tin (IV) chloride successfully removed 98.40 % for color, 99.54 % for SS and 71.53 % for COD. These results indicated the satisfactory performance of tin (IV) chloride. Hence, tin (IV) chloride is a potential coagulant for the treatment of Alor Pongsu Landfill leachate.

  16. Corrosion Evaluation of Aircraft Depainting Chemicals

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Torres, Pablo

    1999-01-01

    The National Aeronautics and Space Administration is participating in an interagency task agreement with the Environmental Protection Agency and the United States Air Force to evaluate alternative technologies for aerospace depainting operations that do not adversely affect the environment. An element of this study is directed towards the evaluation of environmentally advantaged chemical paint strippers, specifically, paint strippers that do not contain methylene chloride. Eight environmentally advantaged, or alternative, chemical paint strippers and two methylene chloride, or baseline, paint strippers were obtained from various manufacturers and incorporated into the depainting study. In addition to being evaluated on their ability to remove paint, the potential of these chemicals to promote corrosion and hydrogen embrittlement was evaluated. The corrosion and hydrogen embrittlement potential of the chemical paint strippers are presented in this report.

  17. Adsorption properties of cationic rhodamine B dye onto metals chloride-activated castor bean residue carbons.

    PubMed

    Zhi, Lee Lin; Zaini, Muhammad Abbas Ahmad

    2017-02-01

    This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m 2 /g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.

  18. Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Konikow, Leonard F.

    1977-01-01

    A solute-transport model that can be used to predict the movement of dissolved chemicals in flowing ground water was applied to a problem of ground-water contamination at the Rocky Mountain Arsenal, near Denver, Colo. The model couples a finite-difference solution to the ground-water flow equation with the method-of-characteristics solution to the solute-transport equation. From 1943 to 1956 liquid industrial wastes containing high chloride concentrations were disposed into unlined ponds at the Arsenal. Wastes seeped out of the unlined disposal ponds and spread for many square miles in the underlying shallow alluvial aquifer. Since 1956 disposal has been into an asphalt-lined reservoir, which contributed to a decline in ground-water contamination by 1972. The simulation model quantitatively integrated the effects of the major factors that controlled changes in chloride concentrations and accurately reproduced the 30-year history of chloride ground-water contamination. Analysis of the simulation results indicates that the geologic framework of the area markedly restricted the transport and dispersion of dissolved chemicals in the alluvium. Dilution, from irrigation recharge and seepage from unlined canals, was an important factor in reducing the level of chloride concentrations downgradient from the Arsenal. Similarly, recharge of uncontaminated water from the unlined ponds since 1956 has helped to dilute and flush the contaminated ground water.

  19. Stability of bromine, iodine monochloride, copper (II) chloride, and nickel (II) chloride intercalated pitch-based graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Shaffer, Nanette

    1987-01-01

    Four different grades of pitch-based graphite fibers (Amoco P-55, P-75, P-100. and P-120) were intercalated with each of four different intercalates: bromine (Br2), iodine monochloride (ICl), copper (II) chloride (CuCl2), and nickel (II) chloride (NiCl2). The P-55 fibers did not react with Br2 or NiCl2, and the P-75 did not react with NiCl2. The stability of the electrical resistance of the intercalated fibers was monitored over long periods of time in ambient, high humidity (100 percent at 60 C), vacuum (10 to the -6 torr), and high temperature (up to 400 C) conditions. Fibers with lower graphitization form graphite intercalation compounds (GIC's) which are more stable than those with higher graphitization (i.e., P-55 (most stable) greater than P-75 greater than P-100 greater than P-120 (least stable). Br2 formed the most stable GIC's followed in order of decreasing stability by ICl, CuCl2, and NiCl2. While Br2 GIC's had the most stability, ICl had the advantages of forming GIC's with slightly greater reduction in resistance (by about 10%) than Br2, and the ability to intercalate P-55 fiber. Transition metal chlorides are susceptible to water vapor and high temperature. The stability of fibers in composites differs.

  20. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment.

    PubMed

    Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R

    2014-02-18

    We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.

  1. Temporal changes in sulfate, chloride, and sodium concentrations in four eastern Pennsylvania streams

    USGS Publications Warehouse

    Barker, J.L.

    1986-01-01

    Trend analyses of 20 years or more of chemical quality and streamflow data for four streams in eastern Pennsylvania indicate that sulfate has decreased significantly in three of the four basins studied, while sodium and chloride have generally increased. The majority of chemical quality changes occurred in the late 1950 's and early 1960 's coincident with significant cultural changes. It is believed that these chemical quality changes are presently of little or no environmental consequence, as the concentrations are well within the range of those found in natural waters. Decreases in sulfate follow a regional trend concurrent with the conversion of home and industrial heating units from high to low sulfur coal, gas, and oil. The most significant decreases were observed in those basins severely affected by mine-drainage where pumpage has decreased significantly in the past 25 years, thereby further reducing the sulfur content of the streams. The observed increases in chloride and sodium are attributed to population increases and shifts from rural to suburban communities with concurrent increase in the percentage of the population using municipal waste treatment facilities and the increased use of salt on roadways. The concentrations of dissolved chloride, which are from two to three times higher in recent years, reach a peak in January, coincident with the application of salt to melt ice on the roadways. (USGS)

  2. A Review of Sodium-Metal Chloride Battery Activity At JPL

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Following the disclosures by Coetzer et al. on the use of transition metal chlorides in chloroaluminates as alternate cathodes to sulfur in rechargeable sodium batteries, several laboratories, including the Jet Propulsion Laboratory, focused their attention on these systems. These systems have certain distinct advantages over sodium-sulfur batteries such as increased safety, inherent overcharge capability, and lower operating temperatures. Two systems, i.e., Na/FeCl2 and NaNiCl2, were developed extensively and evaluated in various applications including electric vehicles and space. Their performance has been very encouraging and warrants a detailed fundamental study on these cathodes. At the Jet Propulsion Laboratory a program was initiated two years back to understand the electrochemical behavior of FeCl2 and NiCl2, and to identify and evaluate other transition metal chlorides of promise. The initial efforts focused on the methods of fabrication of the electrodes and their electrochemical characterization. Subsequent studies were aimed at establishing the reaction mechanism, determining the kinetics, and identifying the rate-limiting processes in te reduction of metal chloride cathodes. Nickel chloride emerged form these studies as the most promising candidate material and was taken up for further detailed study on its passivation- a rate limiting process-under different experimental conditions. Also, the feasibility of using copper chloride, which is expected to have a higher energy density, has been assessed. On the basis of the criteria established from the voltammetric response of FeCl2, NiCl2, and CuCl2, several other transition metal chlorides were screened. Of these, molybdenum and cobalt appear promising.

  3. The chemistry of sodium chloride involvement in processes related to hot corrosion. [in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Thermodynamic and mass transport calculations, and laboratory experiments elucidating the behavior of sodium chloride in combustion environments, in the deposition process, and in reactions with certain oxides on the surfaces of superalloys are summarized. It was found that some of the ingested salt is separated out of the air stream by the compressor. However, sodium chloride does pass from the compressor to the combustor where numerous chemical reactions take place. Here some of the salt is vaporized to yield gaseous sodium chloride molecules. Hydrogen and oxygen atoms present in the combustion products react with some sodium chloride to yield other gaseous species such as sodium, and a fraction of the salt remains as particulates. Both the gas phase and condensed sodium chloride can lead to sodium sulfate formation by various routes, all of which involve reaction with sulfur oxides and oxygen. In addition to contributing to the formation of sodium sulfate, the sodium chloride can contribute to corrosion directly.

  4. Environmental Impact of Ionic Liquids: Automated Evaluation of the Chemical Oxygen Demand of Photochemically Degraded Compounds.

    PubMed

    Costa, Susana P F; Pereira, Sarah A P; Pinto, Paula C A G; Araujo, André R T S; Passos, Marieta L C; Saraiva, M Lúcia M F S

    2017-05-19

    A novel automated fluorimetric technique was developed for the assessment of the chemical oxygen demand (COD) of ionic liquids (ILs) and combined with a photodegradation step to promote IL degradation. The method was implemented on a sequential injection analysis (SIA) system and is based on the reduction of cerium(IV) in the presence of irradiated ILs. Compounds incorporating the chloride anion were found to exhibit higher COD values and 1-butyl-3-methylimidazolium chloride ([bmim] + [Cl] - ), 1-butyl-1-methylpyrrolidinium chloride ([bmpyr] + [Cl] - ), and1-hexyl-3-methylimidazolium chloride ([hmim] + [Cl] - ) also exhibited considerable photodegradability, whereas the cholinium cation and methanesulfonate and tetrafluoroborate anions showed resistance to photolysis. The developed methodology proved to be a simple, affordable, and robust method, showing good repeatability under the tested conditions (rsd <3.5 %, n=10). Therefore, it is expected that the developed approach can be used as a screening method for the preliminary evaluation of compounds' potential impact in the aquatic field. Additionally, the photolysis step presents an attractive option to promote degradation of ILs prior to their release into wastewater. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes.

    PubMed

    Rybnikova, V; Usman, M; Hanna, K

    2016-09-01

    Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and <500 μm), no PCB degradation was observed in the finest fraction (≤250 μm) having higher organic matter content. These findings

  6. A Microfluidic Long-Period Fiber Grating Sensor Platform for Chloride Ion Concentration Measurement

    PubMed Central

    Wang, Jian-Neng

    2011-01-01

    Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG) capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO) water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975) was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10−6 mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10−5−2.769 × 10−3 mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%–1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of −0.8569 mW/ h to −0

  7. Electrospray ionization time-of-flight mass spectrum analysis method of polyaluminum chloride flocculants.

    PubMed

    Feng, Chenghong; Bi, Zhe; Tang, Hongxiao

    2015-01-06

    Electrospray mass spectrometry has been reported as a novel technique for Al species identification, but to date, the working mechanism is not clear and no unanimous method exists for spectrum analysis of traditional Al salt flocculants, let alone for analysis of polyaluminum chloride (PAC) flocculants. Therefore, this paper introduces a novel theoretical calculation method to identify Al species from a mass spectrum, based on deducing changes in m/z (mass-to-charge ratio) and molecular formulas of oligomers in five typical PAC flocculants. The use of reference chemical species was specially proposed in the method to guarantee the uniqueness of the assigned species. The charge and mass reduction of the Al cluster was found to proceed by hydrolysis, gasification, and change of hydroxyl on the oxy bridge. The novel method was validated both qualitatively and quantitatively by comparing the results to those obtained with the (27)Al NMR spectrometry.

  8. Model reduction of multiscale chemical langevin equations: a numerical case study.

    PubMed

    Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N

    2009-01-01

    Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.

  9. Anion-induced reconstitution of a self-assembling system to express a chloride-binding Co10L15 pentagonal prism.

    PubMed

    Riddell, Imogen A; Smulders, Maarten M J; Clegg, Jack K; Hristova, Yana R; Breiner, Boris; Thoburn, John D; Nitschke, Jonathan R

    2012-09-01

    Biochemical systems are adaptable, capable of reconstitution at all levels to achieve the functions associated with life. Synthetic chemical systems are more limited in their ability to reorganize to achieve new functions; they can reconfigure to bind an added substrate (template effect) or one binding event may modulate a receptor's affinity for a second substrate (allosteric effect). Here we describe a synthetic chemical system that is capable of structural reconstitution on receipt of one anionic signal (perchlorate) to create a tight binding pocket for another anion (chloride). The complex, barrel-like structure of the chloride receptor is templated by five perchlorate anions. This second-order templation phenomenon allows chemical networks to be envisaged that express more complex responses to chemical signals than is currently feasible.

  10. The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penza, M.; Jeremic, M.; Marrazzo, E.

    2011-08-15

    Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimatedmore » human intake (0.5 {mu}g/kg). At higher doses (50-500 {mu}g/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ER{alpha} or ER{beta}, TBT (in a dose range of 1-100 nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ER{alpha} in undifferentiated preadipocytic cells and by ER{beta} in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed. - Research Highlights: > The environmental organotin tributyltin chloride shows dose-dependent estrogenic and adipogenic activities in mice. > The duration and extent of these effects depend on the sex and the dose of the compound. > The estrogenic and adipogenic effects of TBT occur at doses

  11. Taste aversion learning produced by combined treatment with subthreshold radiation and lithium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-08-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride didmore » produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion.« less

  12. Taste aversion learning produced by combined treatment with subthreshold radiation and lithium chloride.

    PubMed

    Rabin, B M; Hunt, W A; Lee, J

    1987-08-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion.

  13. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar.

    PubMed

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-04-30

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel's salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO₂ - in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel's salt. More research is needed to confirm the mechanisms.

  14. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    PubMed Central

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-01-01

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms. PMID:28788625

  15. Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO 2 Reduction Catalysts

    DOE PAGES

    Manbeck, Gerald F.; Muckerman, James T.; Szalda, David J.; ...

    2015-02-19

    Proton responsive ligands offer control of catalytic reactions through modulation of pH-dependent properties, second coordination sphere stabilization of transition states, or by providing a local proton source for multi-proton, multi-electron reactions. Two fac-[ReI(α-diimine)(CO)₃Cl] complexes with α-diimine = 4,4'- (or 6,6'-) dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP) have been prepared and analyzed as electrocatalysts for reduction of carbon dioxide. Consecutive electrochemical reduction of these complexes yields species identical to those obtained by chemical deprotonation. An energetically feasible mechanism for reductive deprotonation is proposed in which the bpy anion is protonated followed by loss of H₂ and 2H⁺. Cyclic voltammetry reveals a two-electron, three-wavemore » system owing to competing EEC and ECE pathways. The chemical step of the ECE pathway might be attributed to the reductive deprotonation. but cannot be distinguished from chloride dissociation. The rate obtained by digital simulation is approximately 8 s⁻¹. Under CO₂, these competing reactions generate a two-slope catalytic waveform with onset potential of –1.65 V vs Ag/AgCl. Reduction of CO₂ to CO by the [ReI (4DHBP–2H⁺)(CO)₃]⁻ suggests the interaction of CO₂ with the deprotonated species or a third reduction followed by catalysis. Conversely, the reduced form of [Re(6DHBP)(CO)₃Cl] converts CO₂ to CO with a single turnover.« less

  16. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    PubMed

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Sulfur reduction in sediments of marine and evaporite environments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.; Boston, P.; Francois, R.; Gyure, R. A.; Javor, B.; Tribble, G.; Vairavamurthy, A.

    1985-01-01

    Transformations of sulfur in sediments of ponds ranging in salinities from that of normal seawater to those of brines saturated with sodium chloride were examined. The chemistry of the sediment and pore waters were focused on with emphasis on the fate of sulfate reduction. The effects of increasing salinity on both forms of sulfur and microbial activity were determined. A unique set of chemical profiles and sulfate-reducing activity was found for the sediments of each of the sites examined. The quantity of organic matter in the salt pond sediments was significantly greater than that occurring in the adjacent intertidal site. The total quantitative and qualitative distribution of volatile fatty acids was also greater in the salt ponds. Volatile fatty acids increased with salinity.

  18. Effect of three ophthalmic solutions on chemical conjunctivitis in the neonate.

    PubMed

    Yasunaga, S

    1977-02-01

    In an attempt to reduce chemical conjunctivitis after silver nitrate prophylaxis, three different ophthalmic solutions (sodium chloride, sterile water, and a boric acid-sodium borate solution) were used to irrigate the eyes immediately after prophylaxis in 450 neonates. Sterile water significantly reduced (P less than .02) the prevalence of chemical conjunctivitis when compared to the conventional sodium chloride rinse. A significantly greater prevalence of chemical irritation in low-birth-weight infants was also noted (P less than .02).

  19. Determination of Benzalkonium Chloride in Commercial Disinfectant Formulations by Quantitative NMR Spectroscopy

    DTIC Science & Technology

    2012-11-01

    disinfectant solutions containing benzalkonium chloride (BAC); a molluscicide and antifouling chemical. In order to determine the efficacy of this...formulations. The methods and results presented herein will be used in a separate study to assess the efficacy of BACs as antifouling agents under

  20. Documents for SBAR Panel: Methylene Chloride and N-Methylpyrrolidone; Regulation of Certain Uses Under TSCA Section 6(a)

    EPA Pesticide Factsheets

    SBAR panel to to address the risks resulting from the manufacture, import, processing, distribution in commerce, and use of chemicals, as well as any manner or method of disposal of chemicals: n-methylpyrrolidone (NMP) and methylene chloride

  1. Mercuric chloride poisoning

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002474.htm Mercuric chloride poisoning To use the sharing features on this page, please enable JavaScript. Mercuric chloride is a very poisonous form of mercury. It ...

  2. Chloride test - blood

    MedlinePlus

    Serum chloride test ... A greater-than-normal level of chloride is called hyperchloremia. It may be due to: Carbonic anhydrase inhibitors (used to treat glaucoma) Diarrhea Metabolic acidosis Respiratory alkalosis (compensated) Renal ...

  3. TRACI - THE TOOL FOR THE REDUCTION AND ASSESSMENT OF CHEMICAL AND OTHER ENVIRONMENTAL IMPACTS

    EPA Science Inventory

    TRACI, The Tool for the Reduction and Assessment of Chemical and other environmental Impacts, is described along with its history, the underlying research, methodologies, and insights within individual impact categories. TRACI facilitates the characterization of stressors that ma...

  4. Antarctic polar stratospheric aerosols: The roles of nitrates, chlorides and sulfates

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Goodman, J. K.; Ferry, G. V.; Oberbeck, V. R.; Verma, S.; Fong, W.

    1988-01-01

    Nitric and hydrochloric acids have been postulated to condense in the winter polar stratosphere to become an important component of polar stratospheric clouds. One implication is that the removal of NO(y) from the gas phase by this mechanism allows high Cl(x) concentrations to react with O3, because the formation of ClNO3 is inhibited. Contributions of NO3 and Cl to the stratospheric aerosol were determined during the 1987 Airborne Antarctic Ozone Experiment by testing for the presence of nitrates and chlorides in the condensed phase. Aerosol particles were collected on four 500 micron diameter gold wires, each pretreated differently to give results that were specific to certain physical and chemical aerosol properties. One wire was carbon-coated for concentration and size analyses by scanning electron microscopy; X-ray energy dispersive analyses permitted the detection of S and Cl in individual particles. Three more wires were coated with Nitron, barium chloride and silver nitrate, respectively, to detect nitrate, sulfate and chloride in aerosol particles. All three ions, viz., sulfates, nitrates and chlorides were detected in the Antarctic stratospheric aerosol. In terms of number concentrations, the aerosol was dominated by sulfates, followed by chlorides and nitrates. An inverse linear regression can be established between nitrate concentrations and ozone mixing ratio, and between temperature and nitrates.

  5. The effect of pH and chloride concentration on the stability and antimicrobial activity of chlorine-based sanitizers.

    PubMed

    Waters, Brian W; Hung, Yen-Con

    2014-04-01

    Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine-containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in "aged" samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl(-) ) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (<1.0 log CFU/mL reduction) in aged samples with a low pH and high Cl(-) . Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy. © 2014 Institute of Food Technologists®

  6. Charge Transport in the ClC-type Chloride-Proton Anti-porter from Escherichia coli*

    PubMed Central

    Kieseritzky, Gernot; Knapp, Ernst-Walter

    2011-01-01

    The first chloride transporter identified in the superfamily of ClC chloride channels was from Escherichia coli (EClC) (Accardi, A., and Miller, C. (2004) Nature 427, 803–807). Pathways, energetics, and mechanism of proton and chloride translocation and their coupling are up to now unclear. To bridge the hydrophobic gap of proton transport, we modeled four stable buried waters into both subunits of the WT EClC structure. Together they form a “water wire” connecting Glu-203 with the chloride at the central site, which in turn connects to Glu-148, the hypothetical proton exit site. Assuming the transient production of hydrochloride in the central chloride binding site of EClC, the water wire could establish a transmembrane proton transport pathway starting from Glu-203 all the way downstream onto Glu-148. We demonstrated by electrostatic and quantum chemical computations that protonation of the central chloride is energetically feasible. We characterized all chloride occupancies and protonation states possibly relevant for the proton-chloride transport cycle in EClC and constructed a working model. Accordingly, EClC evolves through states involving up to two excess protons and between one and three chlorides, which was required to fulfill the experimentally observed 2:1 stoichiometry. We show that the Y445F and E203H mutants of EClC can operate similarly, thus explaining why they exhibit almost WT activity levels. The proposed mechanism of coupled chloride-proton transport in EClC is consistent with available experimental data and allows predictions on the importance of specific amino acids, which may be probed by mutation experiments. PMID:21059656

  7. Technological, sensory and microbiological impacts of sodium reduction in frankfurters.

    PubMed

    Yotsuyanagi, Suzana E; Contreras-Castillo, Carmen J; Haguiwara, Marcia M H; Cipolli, Kátia M V A B; Lemos, Ana L S C; Morgano, Marcelo A; Yamada, Eunice A

    2016-05-01

    Initially, meat emulsions were studied in a model system to optimize phosphate and potassium chloride concentrations. In the second step, frankfurters containing 1.00%, 1.30% and 1.75% sodium chloride (NaCl) were processed and their stability was monitored over 56 days. In the emulsion tests, the best levels in relation to shear force found in model system were 0.85% and 0.25% of potassium chloride and phosphate, respectively. In the second step, treatments with 1.30% and 1.75% NaCl performed better in most of the analysis, particularly the sensory analysis. Consumers could identify the levels of salt, but this was not the factor that determined the overall acceptability. In some technological parameters, frankfurters with 1.30% NaCl were better than those with 1.75%. This represents a reduction of approximately 25% sodium chloride, or 18% reduction in sodium (916 mg/100g to 750 mg/100g), and it appears to be feasible from a technological, microbiological and sensory point of view. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Simultaneous Surface Modification and Chemical Reduction of Graphene Oxide Using Glucose.

    PubMed

    Pan, Hui; Liu, Ruiqi; Li, Guanglong; Wang, Xiaodong; Ding, Tao

    2018-05-01

    In this paper, we develop a simple and facile approach to prepare graphene nanosheets through chemical reduction with glucose as reducing agent and modification agent. The reduced and modified graphene by glucose (denoted as g-rGO) was characterized with techniques of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), etc. It is found that, besides the desired reduction capability to graphene oxide (denoted as GO), glucose plays an important role as a modifying reagent in stabilizing the as-prepared graphene nanosheets simultaneously and the g-rGO exhibits good dispersibility and stability in water and waterborne polyurethane matrix (denoted as WPU). Moreover, the g-rGO can improve evidently the mechanical properties, weather ability and water resistance of WPU.

  9. Chemical-garden formation, morphology, and composition. II. Chemical gardens in microgravity.

    PubMed

    Cartwright, Julyan H E; Escribano, Bruno; Sainz-Díaz, C Ignacio; Stodieck, Louis S

    2011-04-05

    We studied the growth of metal-ion silicate chemical gardens under Earth gravity (1 g) and microgravity (μg) conditions. Identical sets of reaction chambers from an automated system (the Silicate Garden Habitat or SGHab) were used in both cases. The μg experiment was performed on board the International Space Station (ISS) within a temperature-controlled setup that provided still and video images of the experiment downlinked to the ground. Calcium chloride, manganese chloride, cobalt chloride, and nickel sulfate were used as seed salts in sodium silicate solutions of several concentrations. The formation and growth of osmotic envelopes and microtubes was much slower under μg conditions. In 1 g, buoyancy forces caused tubes to grow upward, whereas a random orientation for tube growth was found under μg conditions.

  10. Chloride Transport in Heterogeneous Formation

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Holt, R. M.

    2017-12-01

    The chloride mass balance (CMB) is a commonly-used method for estimating groundwater recharge. Observations of the vertical distribution of pore-water chloride are related to the groundwater infiltration rates (i.e. recharge rates). In CMB method, the chloride distribution is attributed mainly to the assumption of one dimensional piston flow. In many places, however, the vertical distribution of chloride will be influenced by heterogeneity, leading to horizontal movement of infiltrating waters. The impact of heterogeneity will be particularly important when recharge is locally focused. When recharge is focused in an area, horizontal movement of chloride-bearing waters, coupled with upward movement driven by evapotranspiration, may lead to chloride bulges that could be misinterpreted if the CMB method is used to estimate recharge. We numerically simulate chloride transport and evaluate the validity of the CMB method in highly heterogeneous systems. This simulation is conducted for the unsaturated zone of Ogallala, Antlers, and Gatuna (OAG) formations in Andrews County, Texas. A two dimensional finite element model will show the movement of chloride through heterogeneous systems. We expect to see chloride bulges not only close to the surface but also at depths characterized by horizontal or upward movement. A comparative study of focused recharge estimates in this study with available recharge data will be presented.

  11. An extended chemical analysis of gallstone.

    PubMed

    Chandran, P; Kuchhal, N K; Garg, P; Pundir, C S

    2007-09-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble proteins, sodium potassium, magnesium, copper, oxalate and chlorides of biliary calculi (52 cholesterol, 76 mixed and 72 pigment) retrieved from surgical operation of 200 patients from Haryana state was carried out. Total cholesterol as the major component and total bilirubin, phospholipids, triglycerides, bile acids, fatty acids (esterified), soluble protein, calcium, magnesium, iron, copper, sodium, potassium, inorganic phosphate, oxalate and chloride as minor components were found in all types of calculi. The cholesterol stones had higher content of total cholesterol, phospholipids, fatty acids (esterified), inorganic phosphate and copper compared to mixed and pigment stones. The mixed stones had higher content of iron and triglycerides than to cholesterol and pigment stones. The pigment stones were richer in total bilirubin, bile acids, calcium, oxalate, magnesium, sodium, potassium, chloride and soluble protein compared to cholesterol and mixed stones. Although total cholesterol was a major component of cholesterol, mixed and pigment gall stone in Haryana, the content of most of the other lipids, cations and anions was different in different gall stones indicating their different mechanism of formation.

  12. Reduction of cytotoxicity of benzalkonium chloride and octenidine by Brilliant Blue G.

    PubMed

    Bartok, Melinda; Tandon, Rashmi; Alfaro-Espinoza, Gabriela; Ullrich, Matthias S; Gabel, Detlef

    2015-01-01

    The irritative effects of preservatives found in ophthalmologic solution, or of antiseptics used for skin disinfection is a consistent problem for the patients. The reduction of the toxic effects of these compounds is desired. Brilliant Blue G (BBG) has shown to meet the expected effect in presence of benzalkonium chloride (BAK), a well known preservative in ophthalmic solutions, and octenidine dihydrochloride (Oct), used as antiseptic in skin and wound disinfection. BBG shows a significant protective effect on human corneal epithelial (HCE) cells against BAK and Oct toxicity, increasing the cell survival up to 51 % at the highest BAK or Oct concentration tested, which is 0.01 %, both at 30 min incubation. Although BBG is described as a P2x7 receptor antagonist, other selective P2x7 receptor antagonists, OxATP (adenosine 5'-triphosphate-2',3'-dialdehyde) and DPPH (N'-(3,5-dichloropyridin-4-yl)-3-phenylpropanehydrazide), did not reduce the cytotoxicity of neither BAK nor Oct. Therefore we assume that the protective effect of BBG is not due to its action on the P2x7 receptor. Brilliant Blue R (BBR), a dye similar to BBG, was also tested for protective effect on BAK and Oct toxicity. In presence of BAK no significant protective effect was observed. Instead, with Oct a comparable protective effect was seen with that of BBG. To assure that the bacteriostatic effect is not affected by the combinations of BAK/BBG, Oct/BBG and Oct/BBR, bacterial growth inhibition was analyzed on different Gram-negative and Gram-positive bacteria. All combinations of BAK or Oct with BBG hinder growth of Gram-positive bacteria. The combinations of 0.001 % Oct and BBR above 0.025 % do not hinder the growth of B. subtilis. For Gram-negative bacteria, BBG and BBR reduce, but do not abolish, the antimicrobial effect of BAK nor of Oct. In conclusion, the addition of BBG at bacterial inhibitory concentrations is suggested in the ready-to-use ophthalmic preparations and antiseptic solutions.

  13. Reduction of cytotoxicity of benzalkonium chloride and octenidine by Brilliant Blue G

    PubMed Central

    Bartok, Melinda; Tandon, Rashmi; Alfaro-Espinoza, Gabriela; Ullrich, Matthias S.; Gabel, Detlef

    2015-01-01

    The irritative effects of preservatives found in ophthalmologic solution, or of antiseptics used for skin disinfection is a consistent problem for the patients. The reduction of the toxic effects of these compounds is desired. Brilliant Blue G (BBG) has shown to meet the expected effect in presence of benzalkonium chloride (BAK), a well known preservative in ophthalmic solutions, and octenidine dihydrochloride (Oct), used as antiseptic in skin and wound disinfection. BBG shows a significant protective effect on human corneal epithelial (HCE) cells against BAK and Oct toxicity, increasing the cell survival up to 51 % at the highest BAK or Oct concentration tested, which is 0.01 %, both at 30 min incubation. Although BBG is described as a P2x7 receptor antagonist, other selective P2x7 receptor antagonists, OxATP (adenosine 5’-triphosphate-2’,3’-dialdehyde) and DPPH (N’-(3,5-dichloropyridin-4-yl)-3-phenylpropanehydrazide), did not reduce the cytotoxicity of neither BAK nor Oct. Therefore we assume that the protective effect of BBG is not due to its action on the P2x7 receptor. Brilliant Blue R (BBR), a dye similar to BBG, was also tested for protective effect on BAK and Oct toxicity. In presence of BAK no significant protective effect was observed. Instead, with Oct a comparable protective effect was seen with that of BBG. To assure that the bacteriostatic effect is not affected by the combinations of BAK/BBG, Oct/BBG and Oct/BBR, bacterial growth inhibition was analyzed on different Gram-negative and Gram-positive bacteria. All combinations of BAK or Oct with BBG hinder growth of Gram-positive bacteria. The combinations of 0.001 % Oct and BBR above 0.025 % do not hinder the growth of B. subtilis. For Gram-negative bacteria, BBG and BBR reduce, but do not abolish, the antimicrobial effect of BAK nor of Oct. In conclusion, the addition of BBG at bacterial inhibitory concentrations is suggested in the ready-to-use ophthalmic preparations and antiseptic solutions

  14. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  15. IF-WS{sub 2} nanoparticles size design and synthesis via chemical reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoreishi, S.M., E-mail: ghoreshi@cc.iut.ac.ir; Meshkat, S.S.; Dadkhah, A.A.

    2010-05-15

    An innovative synthesis of inorganic fullerene-like disulfide tungsten (IF-WS{sub 2}) nanoparticles was developed using a chemical reduction reaction in a horizontal quartz reactor. In this process, first tungsten trisulfide (WS{sub 3}) was formed via a chemical reaction of tetra thiotungstate ammonium ((NH{sub 4}){sub 2}WS{sub 4}), polyethylene glycol (PEG), and hydrochloric acid (HCl) at ambient temperature and pressure. Subsequently, WS{sub 3} was reacted with hydrogen (H{sub 2}) at high temperature (1173-1373 K) in a quartz tube. The produced WS{sub 2} nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), and transmission electron microscopy (TEM). Themore » characterization results indicated that the high-purity (100%) IF-WS{sub 2} nanoparticles were produced. Moreover, addition of surfactant (PEG) and higher operating temperature (1173-1373 K) decreased the particles agglomeration, and consequently led to the reduction of average diameter of WS{sub 2} particles in the range of 50-78 nm. The developed method is simple, environmentally compatible, and cost-effective in contrast to the conventional techniques.« less

  16. One-pot production of chitin with high purity from lobster shells using choline chloride-malonic acid deep eutectic solvent.

    PubMed

    Zhu, Ping; Gu, Zhongji; Hong, Shu; Lian, Hailan

    2017-12-01

    For the first time in this study, chitin was solely extracted from lobster shells through a fast, easy and eco-friendly method using deep eutectic solvents (DESs), consisting of mixtures of choline chloride-thiourea (CCT), choline chloride-urea (CCU), choline chloride-glycerol (CCG) and choline chloride-malonic acid (CCMA). The physiochemical properties of the isolated chitins were compared with those of the chemically prepared one and commercial one from shrimp shells. Results showed that CCT, CCU and CCG DESs had no important effect on the elimination of proteins and minerals, while chitin obtained by CCMA DES showed a high purity. The yield (20.63±3.30%) of chitin isolated by CCMA DES was higher than that (16.53±2.35%) of the chemically prepared chitin. The chitin obtained by CCMA DES could be divided into two parts with different crystallinity (67.2% and 80.6%), which also had different thermal stability. Chitin from lobster shells showed porous structure, which is expected to be used for adsorption materials and tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM.

    PubMed

    Issa, Yousry M; Mohamed, Sabrein H; Baset, Mohamed Abd-El

    2016-08-01

    Chemically modified carbon-paste (CMCP) and membrane- sensors based on incorporating benzothonium-tetraphenylborate (BT-TPB) were constructed for the analysis of benzethonium chloride, and some other surfactants such as sodium lauryl ether sulphate (SLES), sodium dodecyl sulphate (SDS), and linear alkylbenzene sulphonic acid (LABSA). All sensors showed good sensitivity and reverse wide linearity over a concentration range of 5.97×10(-7) to 1.00×10(-3) and 5.96×10(-7) to 3.03×10(-3)molL(-1) with limit of detection of 3.92×10(-7)and 3.40×10(-7)molL(-1) for membrane and chemically modified carbon paste sensors, respectively, with respect to benzethonium chloride (BT.Cl). They could be used over a wide pH range of 2.0-10.0. The thermal coefficients of membrane and CMCP sensors are 5.40×10(-4), 1.17×10(-4)V/°C, respectively. The sensors indicated a wide selectivity over different inorganic cations. The effect of soaking on the surface morphology of the membrane sensor was studied using EDX-SEM and AFM techniques. The response time was <10s The freshly prepared, exhausted membrane, and CMCP sensors were successfully applied for the potentiometric determination of the pure BT.Cl solution. They were also used for the determination of its pharmaceutical formulation Dermoplast(®) antibacterial spray (20% benzocaine+0.2% benzethonium chloride) with recovery values ranging from 97.54±1.70 to 101.25±1.12 and from 96.32±2.49 to 101.23±2.15%. The second goal of these sensors is the potentiometric determination of different surfactants such as SLES, SDS, and LABSA with good recovery values using BT.Cl as a titrant in their pure forms, and in samples containing one of them (shampoo, Touri(®) dishwashing liquid, and waste water). The statistical analysis of the obtained data was studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect

    PubMed Central

    Russo, Michael A.; Högenauer, Christoph; Coates, Stephen W.; Santa Ana, Carol A.; Porter, Jack L.; Rosenblatt, Randall L.; Emmett, Michael; Fordtran, John S.

    2003-01-01

    Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF. PMID:12840066

  19. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  20. Manufacture of low-sodium Minas fresh cheese: effect of the partial replacement of sodium chloride with potassium chloride.

    PubMed

    Gomes, A P; Cruz, A G; Cadena, R S; Celeghini, R M S; Faria, J A F; Bolini, H M A; Pollonio, M A R; Granato, D

    2011-06-01

    We investigated the effect of sodium reduction by partial substitution of sodium chloride (NaCl) with potassium chloride (KCl) on the manufacture of Minas fresh cheese during 21 d of refrigerated storage. Four treatments of low-sodium Minas fresh cheese were manufactured, with partial replacement of NaCl by KCl at 0, 25, 50, and 75% (wt/wt), respectively. The cheeses showed differences in the content of moisture, ash, protein, salt, and lipid contents, as well as on the extent of proteolysis and hardness throughout the storage period. However, no difference was observed among treatments within each storage day tested. The partial substitution of NaCl by KCl decreased up to 51.8% the sodium concentration of the cheeses produced. The consumer test indicated that it is possible to manufacture a low-sodium Minas fresh cheese that is acceptable to consumers by partial substitution of NaCl by KCl at 25% (wt/wt) in the salting step. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology.

    PubMed

    Sahu, J N; Acharya, Jyotikusum; Meikap, B C

    2010-03-01

    The low-cost activated carbon was prepared from Tamarind wood an agricultural waste material, by chemical activation with zinc chloride. Activated carbon adsorption is an effective means for reducing organic chemicals, chlorine, heavy metals and unpleasant tastes and odours in effluent or colored substances from gas or liquid streams. Central composite design (CCD) was applied to study the influence of activation temperature, chemical ratio of zinc chloride to Tamarind wood and activation time on the chemical activation process of Tamarind wood. Two quadratic models were developed for yield of activated carbon and adsorption of malachite green oxalate using Design-Expert software. The models were used to calculate the optimum operating conditions for production of activated carbon providing a compromise between yield and adsorption of the process. The yield (45.26 wt.%) and adsorption (99.9%) of the activated carbon produced at these operating conditions showed an excellent agreement with the amounts predicted by the models. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...

  3. Mechanisms of sulfate removal from subsurface calcium chloride brines: Heletz-Kokhav oilfields, Israel

    NASA Astrophysics Data System (ADS)

    Gavrieli, Ittai; Starinsky, Avraham; Spiro, Baruch; Aizenshtat, Zeev; Nielsen, Heimo

    1995-09-01

    The evolution of the Ca-chloride brines in the Heletz Formation, Lower Cretaceous, in the southern coastal plain of Israel was reconstructed through the study of its sulfate concentration and isotopic composition. Particular emphasis was given to the brine-oil interaction in the oilfields and to the sulfate depletion and lower SO 4/Cl ratio in brines in contact with hydrocarbons (oil brines) relative to "oil-free" from dry wells in the same oilfields. A method is presented for a calculation of the amount of sulfate removed from the original seawater in the various stages of its evolution to Ca-chloride brine. These stages include evaporation, dolomitization, and sulfate reduction in different stages of its evolution, from early diagenetic processes to the contact with crude oil. In the present study, based on the δ34S SO 4 and SO 4/Cl ratio, it was found that in the Heletz brines most of the sulfate (80-94%) was removed from the original seawater prior to their interaction with the hydrocarbons and only a negligible fraction of few percent of the sulfate was removed during the crude oil-water contact. The Ca-chloride brines evolved from Messinian (Upper Miocene) seawater that underwent evaporation during the desiccation of the Mediterranean. Sulfate was removed from Messinian lagoon (s) during gypsum precipitation due to evaporation and dolomitization. Bacterial sulfate reduction further depleted the brine in sulfate and changed its isotopic composition, from its original Miocene seawater composition of δ34S SO 4 ˜ 20%o, 26%o. Overall, some 50% of the original sulfate, as normalized to chloride, was removed from the original lagoon through the above processes, mostly by gypsum precipitation. Eastward migration of the Messinian Ca-Chloride brine into the Heletz Formation was accompanied by dolomitization of the country rock. Final depletion of sulfate from the brines took place, and possibly still occurs, in the presence of crude oil in the oilfields. The two oil

  4. A Quick Reference on Chloride.

    PubMed

    Bohn, Andrea A; de Morais, Helio Autran

    2017-03-01

    Chloride is an essential element, playing important roles in digestion, muscular activity, regulation of body fluids, and acid-base balance. As the most abundant anion in extracellular fluid, chloride plays a major role in maintaining electroneutrality. Chloride is intrinsically linked to sodium in maintaining osmolality and fluid balance and has an inverse relationship with bicarbonate in maintaining acid-base balance. It is likely because of these close ties that chloride does not get the individual attention it deserves; we can use these facts to simplify and interpret changes in serum chloride concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Chemical compositions of sulfate and chloride salts over the last termination reconstructed from the Dome Fuji ice core, inland Antarctica

    NASA Astrophysics Data System (ADS)

    Oyabu, Ikumi; Iizuka, Yoshinori; Uemura, Ryu; Miyake, Takayuki; Hirabayashi, Motohiro; Motoyama, Hideaki; Sakurai, Toshimitsu; Suzuki, Toshitaka; Hondoh, Takeo

    2014-12-01

    The flux and chemical composition of aerosols impact the climate. Antarctic ice cores preserve the record of past atmospheric aerosols, providing useful information about past atmospheric environments. However, few studies have directly measured the chemical composition of aerosol particles preserved in ice cores. Here we present the chemical compositions of sulfate and chloride salts from aerosol particles in the Dome Fuji ice core. The analysis method involves ice sublimation, and the period covers the last termination, 25.0-11.0 thousand years before present (kyr B.P.), with a 350 year resolution. The major components of the soluble particles are CaSO4, Na2SO4, and NaCl. The dominant sulfate salt changes at 16.8 kyr B.P. from CaSO4, a glacial type, to Na2SO4, an interglacial type. The sulfate salt flux (CaSO4 plus Na2SO4) inversely correlates with δ18O in Dome Fuji over millennial timescales. This correlation is consistent with the idea that sulfate salt aerosols contributed to the last deglacial warming of inland Antarctica by reducing the aerosol indirect effect. Between 16.3 and 11.0 kyr B.P., the presence of NaCl suggests that winter atmospheric aerosols are preserved. A high NaCl/Na2SO4 fraction between 12.3 and 11.0 kyr B.P. indicates that the contribution from the transport of winter atmospheric aerosols increased during this period.

  6. Controlling the Maillard reaction by reactant encapsulation: sodium chloride in cookies.

    PubMed

    Fiore, Alberto; Troise, Antonio Dario; Ataç Mogol, Burçe; Roullier, Victor; Gourdon, Anthony; El Mafadi Jian, Samira; Hamzalioğlu, Berat Aytül; Gökmen, Vural; Fogliano, Vincenzo

    2012-10-31

    Formation of Maillard reaction products (MRPs) including 5-hydroxymethylfurfural (HMF) and acrylamide has been an intensive area of research in recent decades. The presence of reactants such as sodium chloride may influence the Maillard reaction (MR) pathways through the dehydration of various key intermediates. The aim of this work was to test the potential of ingredient encapsulation to mitigate the MR by investigating the case of sodium chloride encapsulation on the HMF formation in cookies. Thirteen cookies were prepared with recipes containing free or encapsulated NaCl. Increasing NaCl concentration from 0 to 0.65% increases HMF concentration up to 75%, whereas in the presence of encapsulated NaCl the reduction of HMF varied from 18 to 61% due to the inhibition of sucrose pyrolytic decomposition and the fructofuranosyl cation formation. Data demonstrated that the more heat-resistant the lipid-based coating was, the more pronounced the reduction of HMF formation. The results showed that encapsulation represents a useful approach to prevent the formation of potentially harmful compounds in thermally processed foods.

  7. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    USGS Publications Warehouse

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  8. Understanding the Science Behind How Methylene Chloride/Phenolic Chemical Paint Strippers Remove Coatings

    DTIC Science & Technology

    2011-10-01

    general terms the use of alternative paint strippers formulated with water, formic acids, benzyl alcohol, and peroxides . Facilities testing these...based on benzyl alcohol and peroxide .6 In this system the benzyl alcohol serves as a carrier to penetrate and soften the coating while the peroxide ...34 27. FTIR spectrum of the epoxy primer exposed to 20% benzyl alcohol in methylene chloride

  9. Crystal structure of Halobacterium salinarum halorhodopsin with a partially depopulated primary chloride-binding site.

    PubMed

    Schreiner, Madeleine; Schlesinger, Ramona; Heberle, Joachim; Niemann, Hartmut H

    2016-09-01

    The transmembrane pump halorhodopsin in halophilic archaea translocates chloride ions from the extracellular to the cytoplasmic side upon illumination. In the ground state a tightly bound chloride ion occupies the primary chloride-binding site (CBS I) close to the protonated Schiff base that links the retinal chromophore to the protein. The light-triggered trans-cis isomerization of retinal causes structural changes in the protein associated with movement of the chloride ion. In reverse, chemical depletion of CBS I in Natronomonas pharaonis halorhodopsin (NpHR) through deprotonation of the Schiff base results in conformational changes of the protein: a state thought to mimic late stages of the photocycle. Here, crystals of Halobacterium salinarum halorhodopsin (HsHR) were soaked at high pH to provoke deprotonation of the Schiff base and loss of chloride. The crystals changed colour from purple to yellow and the occupancy of CBS I was reduced from 1 to about 0.5. In contrast to NpHR, this chloride depletion did not cause substantial conformational changes in the protein. Nevertheless, two observations indicate that chloride depletion could eventually result in structural changes similar to those found in NpHR. Firstly, the partially chloride-depleted form of HsHR has increased normalized B factors in the region of helix C that is close to CBS I and changes its conformation in NpHR. Secondly, prolonged soaking of HsHR crystals at high pH resulted in loss of diffraction. In conclusion, the conformation of the chloride-free protein may not be compatible with this crystal form of HsHR despite a packing arrangement that hardly restrains helices E and F that presumably move during ion transport.

  10. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.

  11. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics

    NASA Astrophysics Data System (ADS)

    Roden, Eric E.

    2004-08-01

    Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to

  12. Structure of complexes between aluminum chloride and other chlorides, 2: Alkali-(chloroaluminates). Gaseous complexes

    NASA Technical Reports Server (NTRS)

    Hargittai, M.

    1980-01-01

    The structural chemistry of complexes between aluminum chloride and other metal chlorides is important both for practice and theory. Condensed-phase as well as vapor-phase complexes are of interest. Structural information on such complexes is reviewed. The first emphasis is given to the molten state because of its practical importance. Aluminum chloride forms volatile complexes with other metal chlorides and these vapor-phase complexes are dealt with in the second part. Finally, the variations in molecular shape and geometrical parameters are summarized.

  13. Gene expression in Listeria monocytogenes exposed to sublethal concentration of benzalkonium chloride.

    PubMed

    Tamburro, Manuela; Ripabelli, Giancarlo; Vitullo, Monia; Dallman, Timothy James; Pontello, Mirella; Amar, Corinne Francoise Laurence; Sammarco, Michela Lucia

    2015-06-01

    In this study, tolerance at sublethal concentration of benzalkonium chloride and transcription levels of mdrL, ladR, lde, sigB and bcrABC genes in Listeria monocytogenes strains were evaluated. Viable cells reduction occurred in 45% of strains and clinical isolates showed lower sensitivity than isolates from foods. An increased transcription of an efflux system encoding gene was found in 60% of strains, and simultaneous mdrL overexpression and ladR underexpression occurred in 30% of isolates. A significant association between reduced benzalkonium chloride activity and both mdrL and sigB overexpression was observed; sigB expression also correlated with both mdrL and ladR genes. The bcrABC gene was only found in six strains, all isolated from foods and sensitive to benzalkonium chloride, and in four strains an underexpression was observed. Disinfection at sublethal concentration was less effective in clinical isolates, and mdrL and sigB expression was significantly affected by disinfection. Further insights are needed to understand the adaptation to benzalkonium chloride and to evaluate whether changes in gene expression could affect the L. monocytogenes virulence traits and persistence in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Efficacy of formalin, hydrogen-peroxide, and sodium-chloride on fungal-infected rainbow-trout eggs

    USGS Publications Warehouse

    Schreier, Theresa M.; Rach, J.J.; Howe, G.E.

    1996-01-01

    Antifungal agents are essential for the maintenance of healthy stocks of fish and their eggs in intensive aquaculture operations. In the usa, formalin is the only fungicide approved for use in fish culture, however, hydrogen peroxide and sodium chloride have been granted low regulatory priority drug status by the united states food and drug administration (fda) and their use is allowed. We evaluated the efficacy of these fungicides for controlling fungal infections on rainbow trout eggs. A pilot study was conducted to determine the minimum water flow rate required to administer test chemicals accurately in heath incubators. A minimum water flow rate of 7.6 1 min(-1) was necessary to maintain treatment concentrations during flow-through chemical exposures, the antifungal activity of formalin, hydrogen peroxide, and sodium chloride was evaluated by treating uninfected and 10% fungal-infected (saprolegnia parasitica) rainbow trout eggs (oncorhynchus mykiss) for 15 min every other day until hatch. There were no significant differences among treatments in percent hatch or final infection for uninfected eggs receiving prophylactic chemical treatments, eggs of the negative control group (uninfected and untreated) had a mean hatch exceeding 86%, all chemical treatments conducted on the infected egg groups controlled the spread of fungus and improved hatching success compared with the positive control groups (infected and untreated), formalin treatments of 1000 and 1500 mu l 1(-1) and hydrogen peroxide treatments of 500 and 1000 mu l 1(-1) were the most effective. Sodium chloride treatments of 30000 mg 1(-1) improved fry hatch, but the compound was less effective at inhibiting fungal growths compared with hydrogen peroxide and formalin treatments.

  15. The effect of sodium reduction with and without potassium chloride on the survival of Listeria monocytogenes in Cheddar cheese.

    PubMed

    Hystead, E; Diez-Gonzalez, F; Schoenfuss, T C

    2013-10-01

    Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5 °C, respectively). In cheese inoculated with 4 log₁₀ cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log₁₀ cfu/g in all treatments over 60 d. When inoculated with 5 log₁₀ cfu/g at 3mo of cheese age, L. monocytogenes counts in Cheddar cheese were also

  16. Chloride: the queen of electrolytes?

    PubMed

    Berend, Kenrick; van Hulsteijn, Leonard Hendrik; Gans, Rijk O B

    2012-04-01

    Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general do not allocate chapters exclusively on hypochloremia or hyperchloremia and information on chloride other than channelopathies is scattered in the literature. To systematically review the function of chloride in man, data for this review include searches of MEDLINE, PubMed, and references from relevant articles including the search terms "chloride," "HCl," "chloride channel" "acid-base," "acidosis," "alkalosis," "anion gap" "strong anion gap" "Stewart," "base excess" and "lactate." In addition, internal medicine, critical care, nephrology and gastroenterology textbooks were evaluated on topics pertaining the assessment and management of acid-base disorders, including reference lists from journals or textbooks. Chloride is, after sodium, the most abundant electrolyte in serum, with a key role in the regulation of body fluids, electrolyte balance, the preservation of electrical neutrality, acid-base status and it is an essential component for the assessment of many pathological conditions. When assessing serum electrolytes, abnormal chloride levels alone usually signify a more serious underlying metabolic disorder, such as metabolic acidosis or alkalosis. Chloride is an important component of diagnostic tests in a wide array of clinical situations. In these cases, chloride can be tested in sweat, serum, urine and feces. Abnormalities in chloride channel expression and function in many organs can cause a range of disorders. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  17. "Cold" synthesis of carbon from polyvinyl chloride with the use of an electron beam ejected into the atmosphere

    NASA Astrophysics Data System (ADS)

    Kryazhev, Yu. G.; Vorob'ev, M. S.; Koval', N. N.; Trenikhin, M. V.; Solodovnichenko, V. S.; Sulakshin, S. A.; Likholobov, V. A.

    2016-10-01

    This work shows the possibility in principle of forming hydrocarbon structures in polyvinyl chloride films free of admixtures and polyvinyl chloride films modified with 5-mass % ferrocene via a radiation chemical transformation in the atmosphere with the use of an electron accelerator with a plasma cathode operating in the pulsed-periodic mode maximal electron energy no higher than 160 keV, pulse length of 40 μs, and current density of 5 mA/cm2. According to the results of semiquantitative X-ray microanalysis, an irradiated polyvinyl chloride film free of admixtures contains 92 of carbon, 6 of oxygen, and 2 mass % of chlorine; the irradiated polyvinyl chloride is an amorphous carbon material. A possible mechanism of the phenomenon is discussed.

  18. LOW TEMPERATURE PROCESS FOR THE REMOVAL AND RECOVERY OF CHLORIDES AND NITRATES FROM AQUEOUS NITRATE SOLUTIONS

    DOEpatents

    Savolainen, J.E.

    1963-01-29

    A method is described for reducing the chloride content of a solution derived from the dissolution of a stainless steel clad nuclear fuel element with an aqua regia dissolution medium. The solutlon is adjusted to a nitric acid concentration in the range 5 to 10 M and is countercurrently contacted at room temperature with a gaseous oxide of nitrogen selected from NO, NO/sub 2/, N/sub 2/ O/sub 3/, and N/sub 2/O/sub 4/. Chlo ride is recovered from the contacted solution as nitrosyl chloride. After reduction of the chloride content, the solution is then contacted with gaseous NO to reduce the nitric acid molarity to a desired level. (AEC)

  19. SUMMARY REVIEW OF HEALTH EFFECTS ASSOCIATED WITH MERCURIC CHLORIDE: HEALTH ISSUE ASSESSMENT

    EPA Science Inventory

    Mercuric chloride (HgCl2) is a white crystalline substance that is currently used as a catalyst or reagent in various chemical reactions, and to a lesser extent as a disinfectant or pesticide. ercury exists in various valence states and forms (e.g., He, Hgo, Hg2 2+, and organic m...

  20. Understanding microwave vessel contamination by chloride species.

    PubMed

    Recchia, Sandro; Spanu, Davide; Bianchi, Davide; Dossi, Carlo; Pozzi, Andrea; Monticelli, Damiano

    2016-10-01

    Microwaves are widely used to assist digestion, general sample treatment and synthesis. The use of aqua regia is extensively adopted for the closed vessel mineralization of samples prior to trace element detection, leading to the contamination of microwave vessels by chlorine containing species. The latter are entrapped in the polymeric matrix of the vessels, leading to memory effects that are difficult to remove, among which the risk of silver incomplete recoveries by removal of the sparingly soluble chloride is the predominant one. In the present paper, we determined by mass spectrometry that hydrogen chloride is the species entrapped in the polymeric matrix and responsible for vessel contamination. Moreover, several decontamination treatments were considered to assess their efficiency, demonstrating that several cleaning cycles with water, nitric acid or silver nitrate in nitric acid were inefficient in removing chloride contamination (contamination reduction around 90%). Better results (≈95% decrease) were achieved by a single decontamination step in alkaline environment (sodium hydroxide or ammonia). Finally, a thermal treatment in a common laboratory oven (i.e. without vacuum and ventilation) was tested: a one hour heating at 150°C leads to a 98.5% decontamination, a figure higher than the ones obtained by wet treatments which requires comparable time. The latter treatment is a major advancement with respect to existing treatments as it avoids the need of a vacuum oven for at least 17h as presently proposed in the literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride

    USDA-ARS?s Scientific Manuscript database

    Generation of waste water containing sodium chloride from cucumber fermentation tank yards could be eliminated if cucumbers were fermented in brines that did not contain this salt. To determine if this is feasible, cucumbers were fermented in brines that contained only calcium chloride to maintain f...

  2. Oxygen Reduction Reaction Affected by Sulfate-Reducing Bacteria: Different Roles of Bacterial Cells and Metabolites.

    PubMed

    Wu, Jiajia; Liu, Huaiqun; Wang, Peng; Zhang, Dun; Sun, Yan; Li, Ee

    2017-09-01

    Sulfate-reducing bacteria (SRB) were found to be capable of tolerating a certain amount of oxygen (O 2 ), but how they affect oxygen reduction reaction (ORR) has not been clear. The present work investigated the impact of SRB on ORR in 3.5 wt% sodium chloride solution with the cyclic voltammetry method. The addition of SRB culture solution hampered both the reduction of O 2 to superoxide (O 2 ·- ) and hydrogen peroxide (H 2 O 2 ) to water (H 2 O), and the influence of SRB metabolites was much larger than that of bacterial cells. Sulfide and extracellular polymeric substances (EPS), typical inorganic and organic metabolic products, had great impact on ORR. Sulfide played an important role in the decrease of cathodic current for H 2 O 2 reduction due to its hydrolysis and chemical reaction activity with H 2 O 2 . EPS were sticky, easy to adsorb on the electrode surface and abundant in functional groups, which hindered the transformation of O 2 into O 2 ·- and favored the reduction of H 2 O 2 to H 2 O.

  3. Stability of methacholine chloride in isotonic sodium chloride using a capillary electrophoresis assay.

    PubMed

    Henn, S; Monfort, P; Vigneron, J H; Hoffman, M A; Hoffman, M

    1999-10-01

    To investigate the stability of methacholine chloride in 0.9% sodium chloride solutions. Methacholine powder was mixed with diluent to a final concentration of 5 and 10 mg/ml. Duplicates of each admixture were divided and stored in glass vials at 25 degrees C, 4 degrees C and -20 degrees C for 12 months. At appropriate times intervals, samples were removed from solutions and analysed. Methacholine concentrations were measured using a high performance capillary electrophoresis assay. No colour or other visual changes were seen in any sample. However, an additional peak was observed in some samples. Methacholine chloride solutions 5 mg/ml were stable in isotonic sodium chloride after refrigeration or freezing over a period of one year; methacholine chloride solutions 10 mg/ml were stable for one year after freezing. The solutions stored at ambient temperature were stable for 35 days and for less than 14 days, respectively, for the 5 and the 10 mg/ml solutions.

  4. Electrochemical reduction of (U-40Pu-5Np)O 2 in molten LiCl electrolyte

    NASA Astrophysics Data System (ADS)

    Iizuka, Masatoshi; Sakamura, Yoshiharu; Inoue, Tadashi

    2006-12-01

    The electrochemical reduction of neptunium-containing MOX ((U-40Pu-5Np)O 2) was performed in molten lithium chloride melt at 923 K to investigate fundamental behavior of the transuranium elements and applicability of the method to reduction process for these materials. The Np-MOX was electrochemically reduced at the potential lower than -0.6 V vs. Bi-35 mol% Li reference electrode. The reduced metal grains in the surface region of the sample cohered with each other and made the layer of relatively high density, although it did not prevent the reduction of the sample toward the center. Complete reduction of the Np-MOX was shown by the weight change measurement through the electrochemical reduction and also by SEM-EDX observation. The chemical composition of the reduction products was homogeneous and agreed to that of the initial Np-MOX, which indicates that the reduction was completed and not selective among the actinides. The concentrations of the actinide elements, especially plutonium and americium in the electrolyte, increased with the progress of the tests, although their absolute values were very small. It is quite likely that plutonium and americium dissolve into the melt in the same manner as the lanthanide elements in the lithium reduction process.

  5. Two-dimensional free-energy surface on the exchange reaction of alkyl chloride/chloride using the QM/MM-MC method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohisa, M.; Yamataka, H.; Dupuis, Michel

    2007-12-05

    Two-dimensional free-energy surfaces are calculated for alkyl chloride/chloride exchange/inversion reactions: Cl- + RCl (R = Me and t-Bu) surrounded by one hundred H2O molecules as a model of solvent. The methodology of free-energy calculation by perturbation theory based on a mixed-Hamiltonian model (QM/MM) combined with Monte Carlo sampling of the solvent configurations was used to obtain the changes in solvation free energy. We devised a special procedure to analyze the two-dimensional free-energy surfaces to gain unique insight into the differences in the reaction mechanisms between the two systems. The inversion reaction path for R = t-Bu on the free-energy surfacemore » is found to proceed in an asynchronous way within a concerted framework via the ion-pair region. This is in contrast to the R = Me system that proceeds as a typical SN2 reaction. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  6. Toxicity of chloride under winter low-flow conditions in an urban watershed in central Missouri, USA.

    PubMed

    Allert, Ann L; Cole-Neal, Cavelle L; Fairchild, James F

    2012-08-01

    Deicers such as sodium chloride and calcium chloride are used to treat snow and ice on road surfaces and have been identified as potential stressors on aquatic life. Hinkson Creek is an urban stream on the Missouri 303(d) list of impaired waters and is classified as impaired due to urban non-point source pollution. A 7-day toxicity test using Ceriodaphnia dubia was conducted to assess the toxicity of stream water during snowmelt at seven sites within the Hinkson Creek watershed. Chloride concentrations at two sites (Site 6, 1252 mg Cl/L; Site 4, 301 mg Cl/L) exceeded the U.S. Environmental Protection Agency chronic criterion (230 mg Cl/L). Survival (30 %) and total reproduction (6.9 young/adult) of C. dubia at Site 6 was significantly lower than survival (100 %) and total reproduction (30.4 young/adult) at Site 1 (reference site). Results indicate that chloride concentrations are elevated above water-quality criteria and that chloride may be a significant chemical stressor for macroinvertebrate communities during winter low-flow conditions in the Hinkson Creek watershed.

  7. Toxicity of chloride under winter low-flow conditions in an urban watershed in central Missouri, USA

    USGS Publications Warehouse

    Allert, Ann L.; Cole-Neal, Cavelle L.; Fairchild, James F.

    2012-01-01

    Deicers such as sodium chloride and calcium chloride are used to treat snow and ice on road surfaces and have been identified as potential stressors on aquatic life. Hinkson Creek is an urban stream on the Missouri 303(d) list of impaired waters and is classified as impaired due to urban non-point source pollution. A 7-day toxicity test using Ceriodaphnia dubia was conducted to assess the toxicity of stream water during snowmelt at seven sites within the Hinkson Creek watershed. Chloride concentrations at two sites (Site 6, 1252 mg Cl/L; Site 4, 301 mg Cl/L) exceeded the U.S. Environmental Protection Agency chronic criterion (230 mg Cl/L). Survival (30 %) and total reproduction (6.9 young/adult) of C. dubia at Site 6 was significantly lower than survival (100 %) and total reproduction (30.4 young/adult) at Site 1 (reference site). Results indicate that chloride concentrations are elevated above water-quality criteria and that chloride may be a significant chemical stressor for macroinvertebrate communities during winter low-flow conditions in the Hinkson Creek watershed.

  8. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  9. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  10. 21 CFR 173.375 - Cetylpyridinium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c) The...

  11. Cobalt chloride administration in athletes: a new perspective in blood doping?

    PubMed

    Lippi, G; Franchini, M; Guidi, G C

    2005-11-01

    Blood doping is an illegal and unfair way of enhancing athletic performance by increasing the oxygen carrying capacity of the blood. Currently used methods usually involve stimulation of erythropoiesis. Gene therapy targeting the hypoxia inducible factor pathway may be an attractive alternative to traditional blood doping techniques. Hypoxia activates a large number of genes with essential roles in cell and tissue adaptation to low oxygen. Cobalt chloride is a well established chemical inducer of hypoxia-like responses such as erythropoiesis. Cobalt supplementation is not banned and therefore would not be detected by current anti-doping testing. Although there is as yet no direct or anecdotal evidence of cobalt chloride administration to athletes, its use should be warned against as being not only unfair but potentially dangerous.

  12. [Determination of short chain chlorinated paraffins in polyvinyl chloride plastics by gas chromatography-negative chemical ion/mass spectrometry].

    PubMed

    Xing, Yuanna; Lin, Zhihui; Feng, Anhong; Wang, Xin; Gong, Yemeng; Chen, Zeyong

    2015-02-01

    A novel method was established to determine short chain chlorinated paraffins (SC-CPs) in polyvinyl chloride (PVC) plastics by gas chromatography-negative chemical ion/mass spectrometry (GC-NCI/MS). Ultrasonic extraction was used to extract SCCPs from PVC plastics. The optimal extraction time was 1.5 h, and concentrated sulfuric acid was adopted to purify the extracted solution. Finally, SCCPs in a sample were detected by GC-NCI/MS at 160 C and with methane reagent gas at 1. 5 mL/min. This method was not influenced by medium chain chlorinated paraffins (MCCPs) in the sample, and accurate quantitation was made for SCCPs. Twelve batches of samples were analyzed and SCCPs were detected in each batch with the contents from 0. 3 x 10(2)mg/kg to 3. 5 x 10(4)mg/kg. With respect to European limitation of SC-CPs (1%), four batches of samples did not comply with the European regulation, and they accounted for 33. 3%. Obviously, high SCCPs risk was presented in PVC plastics.

  13. Synthesis of Hierarchical Nanoporous Microstructures via the Kirkendall Effect in Chemical Reduction Process

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Pang, Chao; He, Dafang; Shen, Liming; Gupta, Arunava; Bao, Ningzhong

    2015-11-01

    A series of novel hierarchical nanoporous microstructures have been synthesized through one-step chemical reduction of micron size Cu2O and Co3O4 particles. By controlling the reduction time, non-porous Cu2O microcubes sequentially transform to nanoporous Cu/Cu2O/Cu dented cubic composites and hollow eightling-like Cu microparticles. The mechanism involved in the complex structural evolution is explained based on oxygen diffusion and Kirkendall effect. The nanoporous Cu/Cu2O/Cu dented cubic composites exhibit superior electrochemical performance as compared to solid Cu2O microcubes. The reduction of nonporous Co3O4 also exhibits a uniform sequential reduction process from nonporous Co3O4 to porous Co3O4/CoO composites, porous CoO, porous CoO/Co composites, and porous foam-like Co particles. Nanoscale channels originate from the particle surface and eventually develop inside the entire product, resulting in porous foam-like Co microparticles. The Kirkendall effect is believed to facilitate the formation of porous structures in both processes.

  14. Transformation of methyltin chlorides and stannic chloride under simulated landfill conditions.

    PubMed

    Björn, Annika; Hörsing, Maritha; Ejlertsson, Jörgen; Svensson, Bo H

    2011-12-01

    There is increasing concern regarding the fate of methyltins in the environment, particularly since large amounts of polyvinyl chloride (PVC) plastics are deposited in landfills. The potential transformation of methyltin chlorides and stannic chloride in landfills was investigated, by incubating the target substances at concentrations relevant to landfill conditions (100 and 500 µg Sn L(-1)). The amounts of methane formed in all treatment bottles, and controls, were measured to evaluate the general microbial activity of the inocula and possible effects of methyltins on the degradation of organic matter. The methyltins and stannic chloride were found to have no significant inhibitory effects on the activity of landfill micro-organisms, and the methanol used to disperse the tin compounds was completely degraded. In some experimental bottles, the methanol degradation gave rise to larger methane yields than expected, which was attributed to enhanced degradation of the waste material. Alkyltin analyses showed that monomethyltin trichloride at an initial concentration of 500 µg Sn L(-1) promoted methylation of inorganic tin present in the inoculum. No methylation activities were detected in the incubations with 100 µg Sn L(-1) methyltin chlorides (mono-, di- or tri-methyltin), but demethylation occurred instead. Levels of soluble inorganic tin increased during the incubation period, due partly to demethylation and partly to a release of tin from the waste inocula.

  15. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission standard for ethylene... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene dichloride...

  16. Increasing dissolution of trospium chloride by co-crystallization with urea

    NASA Astrophysics Data System (ADS)

    Skořepová, Eliška; Hušák, Michal; Čejka, Jan; Zámostný, Petr; Kratochvíl, Bohumil

    2014-08-01

    The search for various solid forms of an active pharmaceutical ingredient (API) is an important step in drug development. Our aim was to prepare co-crystals of trospium chloride, an anticholinergic drug used for the treatment of incontinence, and to investigate if they have advantageous properties for drug formulation. Phase identification was done by powder X-ray diffraction and single-crystal X-ray diffraction. The chemical composition was verified by solution NMR and the dissolution rate of the prepared phases was studied by IDR (intrinsic dissolution rate). For further analysis of phase stability and transitions, combined thermal analysis and temperature-resolved X-ray powder diffraction were used. Urea was selected as a co-crystallization partner. Trospium chloride urea (1:1) co-crystal was prepared by a solvent evaporation. From single-crystal data, the co-crystal structure was solved in a space group P21/c and compared to previously published structures of trospium chloride. Intrinsic dissolution rate revealed that the co-crystal dissolves 32% faster than pure API. However, its low thermal and pressure stability makes it a challenging choice for the final drug formulation.

  17. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass.

    PubMed

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid; Wu, Hao; Glarborg, Peter; Pelucchi, Matteo; Faravelli, Tiziano; Marshall, Paul

    2018-04-25

    Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride. In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4 for which data are scarce were studied by ab initio methods. The model was used to analyze the fate of methyl chloride in gasification processes. The results indicate that CH3Cl emissions will be negligible for most gasification technologies, but could be a concern for fluidized bed gasifiers, in particular in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale.

  18. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  19. 21 CFR 173.255 - Methylene chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methylene chloride. 173.255 Section 173.255 Food... Related Substances § 173.255 Methylene chloride. Methylene chloride may be present in food under the... label of the hops extract identifies the presence of the methylene chloride and provides for the use of...

  20. Detailed spectroscopic analysis of chloride salt deposits in Terra Sirenum, Mars

    NASA Astrophysics Data System (ADS)

    Osterloo, M. M.; Glotch, T. D.; Bandfield, J. L.

    2015-12-01

    Chloride salt-bearing deposits have been identified throughout the southern highlands of Mars [1] based on the lack of diagnostic spectral features of anhydrous chlorides in both the visible near infrared (VNIR) and middle infrared (MIR) wavelength ranges [1,2]. A puzzling aspect of martian chloride deposits is the apparent lack of other weathering or evaporite phases associated with most of the deposits. A global analysis over the chloride salt sites conducted by [3] found that only ~9% of the deposits they analyzed were associated with minerals such as phyllosilicates. Most of these occurrences are in Terra Sirenum where [4] noted that salt-bearing deposits lie stratigraphically above Noachian phyllosilicates. Although a variety of formation mechanisms have been proposed for these intriguing deposits, detailed geologic mapping by [5] suggests that surface water and evaporation played a dominant role. On Earth, evaporative settings are often characterized by a multitude of evaporite and phyllosilicate phases including carbonates, sulfates, and nitrates. [6] evaluated chemical divides and brine evolution for martian systems and their results indicate three pathways wherein late-stage brines favor chloride precipitation. In each case the pathway to chloride formation includes precipitation of carbonates (calcite, siderite, and/or magnesite) and sulfates (gypsum, melanterite, and/or epsomite). Here, we present the results of our detailed and systematic spectroscopic study to identify additional evaporite phases associated with salt/silicate mixtures in Terra Sirenum. [1] Osterloo et al. (2008) Science, 319, [2] Glotch, T. D. et al. (2013) Lunar and Planet. Sci. XLIV, abstract #1549 [3] Ruesch, O. et al. (2012), J. Geophys. Res., 117, E00J13 [4] Glotch, T. D. et al. (2010) Geophys. Res. Lett. 37, L16202, [5] Osterloo, M. M. and B. M Hynek (2015) Lunar and Planet. Sci XLVI. Abstract #1054 [6] Tosca, N. J. and S. M. McLennan (2006), Earth and Planet. Sci. Lett., 241.

  1. A comparison of the efficacy of organic and mixed-organic polymers with polyaluminium chloride in chemically assisted primary sedimentation (CAPS).

    PubMed

    De Feo, G; Galasso, M; Landi, R; Donnarumma, A; De Gisi, S

    2013-01-01

    CAPS is the acronym for chemically assisted primary sedimentation, which consists of adding chemicals to raw urban wastewater to increase the efficacy of coagulation, flocculation and sedimentation. The principal benefits of CAPS are: upgrading of urban wastewater treatment plants; increasing efficacy of primary sedimentation; and the major production of energy from the anaerobic digestion of primary sludge. Metal coagulants are usually used because they are both effective and cheap, but they can cause damage to the biological processes of anaerobic digestion. Generally, biodegradable compounds do not have these drawbacks, but they are comparatively more expensive. Both metal coagulants and biodegradable compounds have preferential and penalizing properties in terms of CAPS application. The problem can be solved by means of a multi-criteria analysis. For this purpose, a series of tests was performed in order to compare the efficacy of several organic and mixed-organic polymers with that of polyaluminium chloride (PACl) under specific conditions. The multi-criteria analysis was carried out coupling the simple additive weighting method with the paired comparison technique as a tool to evaluate the criteria priorities. Five criteria with the following priorities were used: chemical oxygen demand (COD) removal > turbidity, SV60 > coagulant dose, and coagulant cost. The PACl was the best alternative in 70% of the cases. The CAPS process using PACl made it possible to obtain an average COD removal of 68% compared with 38% obtained, on average, with natural sedimentation and 61% obtained, on average, with the best PACl alternatives (cationic polyacrylamide, natural cationic polymer, dicyandiamide resin).

  2. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  3. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  4. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg. No. 7447-40-7) is a white... manufacturing practice. Potassium chloride may be used in infant formula in accordance with section 412(g) of...

  5. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  6. Removal of chloride from MSWI fly ash.

    PubMed

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Calorimetry of 25 Ah lithium/thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Johnson, C. J.; Dawson, S.

    1991-01-01

    Heat flow measurements of 25-Ah lithium thionyl chloride cells provided a method to calculate an effective thermal potential, E(TP) of 3.907 V. The calculation is useful to determine specific heat generation of this cell chemistry and design. The E(TP) value includes heat generation by electrochemical cell reactions, competitive chemical reactions, and resistance heating at the tabs, connectors, and leads. Heat flow was measured while applying electrical loads to the cell in an isothermal calorimeter set at 0, 20, and 60 C.

  8. The association of the original OSHA chemical hazard communication standard with reductions in acute work injuries/illnesses in private industry and the industrial releases of chemical carcinogens.

    PubMed

    Oleinick, Arthur

    2014-02-01

    OSHA predicted the original chemical Hazard Communication Standard (HCS) would cumulatively reduce the lost workday acute injury/illness rate for exposure events by 20% over 20 years and reduce exposure to chemical carcinogens. JoinPoint trend software identified changes in the rate of change of BLS rates for days away from work for acute injuries/illnesses during 1992-2009 for manufacturing and nonmanufacturing industries for both chemical, noxious or allergenic injury exposure events and All other exposure events. The annual percent change in the rates was used to adjust observed numbers of cases to estimate their association with the standard. A case-control study of EPA's Toxic Release Inventory 1988-2009 data compared carcinogen and non-carcinogens' releases. The study estimates that the HCS was associated with a reduction in the number of acute injuries/illnesses due to chemical injury exposure events over the background rate in the range 107,569-459,395 (Hudson method/modified BIC model) depending on whether the HCS is treated as a marginal or sole factor in the decrease. Carcinogen releases have declined at a substantially faster rate than control non-carcinogens. The previous HCS standard was associated with significant reductions in chemical event acute injuries/illnesses and chemical carcinogen exposures. © 2013 Wiley Periodicals, Inc.

  9. The Impact of Hazardous Chemicals on Macrophages

    DTIC Science & Technology

    2012-04-01

    by inducing the activity of phase II detoxification enzymes in the urinary bladder. Arsenic {Ill) chloride [Ars(III)Cl]: Arsenic is one of the...agent used as raw materials for pharmaceuticals, analytical reagent as well as in organic synthesis and making iodine salts. 4,4’-Methylenebis ( 4𔃾...several factors. First, we sought to include hazardous chemicals with properties broadly representative of categories of TICs such as chlorides and

  10. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  11. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  12. Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride

    USDA-ARS?s Scientific Manuscript database

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride instead of NaCl...

  13. Lithium-Thionyl Chloride Battery.

    DTIC Science & Technology

    1981-04-01

    EEEElhIhEEEEEE 1111 1 - MI(CRO( fy Hl ff1Sf UIIIUN Ift I IA I~t Research and Development Technical Report DELET - TR - 78 - 0563 - F Cq LITHIUM -THIONYL CHLORIDE...2b(1110) S. TYPE OF REPORT & PERIOD COVERED Lithium -Thionyl Chloride Battery -10/1/78 - 11/30/80 6. PNING ORG. REPORT NUMBER Z %A a.~as B.,OWRACT OR...block number) Inorganic Electrolyte battery, Thionyl Chloride, lithium , high rate D cell, high rate flat cylindrical cell, laser designator battery. C//i

  14. Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

    NASA Astrophysics Data System (ADS)

    Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali

    2015-07-01

    The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.

  15. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially obtained as a byproduct in...

  16. Studies on the electrodeposition of tin from acidic chloride-gluconate solutions

    NASA Astrophysics Data System (ADS)

    Rudnik, Ewa; Włoch, Grzegorz

    2013-01-01

    Electrodeposition of tin from acidic chloride-gluconate baths was investigated. Equilibrium distribution of tin(II) species showed domination of Sn(II)-gluconate complexes, but for Sn2+ concentrations 50 mM or higher increased percentage of Sn(II)-chloride complexes was found. Cyclic voltammetry, anodic stripping analysis and potentiostatic measurements indicated that rate of the cathodic process is determined by the release of metal cations from gluconate complexes in diluted bath (5 mM), but for more concentrated solutions reduction of Sn(II) ions run under diffusion control. Studies of anodic response showed that it depends on the Sn(II)/Glu ratio in the bath and deposition potential due to development of different planes of metal crystal. Average effective diffusion coefficients of metal species were determined. Morphology and structure tin deposits were also presented.

  17. Electrolytic Reduction of Titania Slag in Molten Calcium Chloride Bath

    NASA Astrophysics Data System (ADS)

    Mohanty, Jayashree

    2012-05-01

    Ferro-titanium is prepared by direct electrolytic reduction of titania-rich slag obtained from plasma smelting of ilmenite in molten CaCl2. The product after electro-reduction is characterized by x-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The electrolysis is carried out at a cell voltage of 3.0 V, taking graphite as the electrolysis cell as well as the anode, and a titania-rich slag piece wrapped by a nichrome wire is used as the cathode.

  18. Improved COD Measurements for Organic Content in Flowback Water with High Chloride Concentrations.

    PubMed

    Cardona, Isabel; Park, Ho Il; Lin, Lian-Shin

    2016-03-01

    An improved method was used to determine chemical oxygen demand (COD) as a measure of organic content in water samples containing high chloride content. A contour plot of COD percent error in the Cl(-)-Cl(-):COD domain showed that COD errors increased with Cl(-):COD. Substantial errors (>10%) could occur in low Cl(-):COD regions (<300) for samples with low (<10 g/L) and high chloride concentrations (>25 g/L). Applying the method to flowback water samples resulted in COD concentrations ranging in 130 to 1060 mg/L, which were substantially lower than the previously reported values for flowback water samples from Marcellus Shale (228 to 21 900 mg/L). It is likely that overestimations of COD in the previous studies occurred as result of chloride interferences. Pretreatment with mercuric sulfate, and use of a low-strength digestion solution, and the contour plot to correct COD measurements are feasible steps to significantly improve the accuracy of COD measurements.

  19. Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides

    NASA Astrophysics Data System (ADS)

    Stepanov, V. P.

    2018-03-01

    Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.

  20. Post-harvest processing methods for reduction of silica and alkali metals in wheat straw.

    PubMed

    Thompson, David N; Shaw, Peter G; Lacey, Jeffrey A

    2003-01-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950 degrees C is desirable, corresponding to an SiO2:K2O weight ratio of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, % solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  1. Atmospheric Methyl Chloride

    DOE Data Explorer

    Khalil, M. A. K. [Portland State Univ., Portland, OR (United States); Rasmussen, R. A. [Oregon Graduate Institute, Portland, OR (USA)

    1999-01-01

    This data set provides monthly average concentrations of atmospheric methyl chloride taken from seven locations distributed among the polar, middle, and tropical latitudes of both hemispheres. The seven primary sites include Pt. Barrow, Alaska; Cape Kumukahi and Mauna Loa, Hawaii; Cape Matatula, Samoa; Cape Grim, Tasmania; and the South Pole and Palmer Station, Antarctica. Concentration measurements from these seven sites cover a period of 16 years, extending from 1981-1997. Monthly data taken between 1987-1989 from 20 short-term sites and vertical distribution measured at various latitudes are also provided. Air samples were collected from various sites in stainless steel flasks and methyl chloride concentrations were measured using an Electron Capture Gas Chromatograph. Concentrations are reported as mixing ratios in dry air. The concentrations are determined by using a set of calibration standards that are referenced against a primary standard which is also used to establish the absolute concentration. The primary standards were prepared by the investigators in the absence of an available standard from a centralized location. The data are useful in global methyl chloride budget analyses and for determining the atmospheric distribution and trends of methyl chloride and estimating the total emissions at various latitudes.

  2. Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO 2 Electroreduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Yu-Chi; Senanayake, Sanjaya D.; Zhang, Yu

    2015-09-04

    Metallic silver (Ag) is known as an efficient electrocatalyst for the conversion of carbon dioxide (CO 2) to carbon monoxide (CO) in aqueous or nonaqueous electrolytes. However, polycrystalline silver electrocatalysts require significant overpotentials in order to achieve high selectivity toward CO 2 reduction, as compared to the side reaction of hydrogen evolution. Here we report a high-surface-area Ag nanocoral catalyst, fabricated by an oxidation–reduction method in the presence of chloride anions in an aqueous medium, for the electro-reduction of CO 2 to CO with a current efficiency of 95% at the low overpotential of 0.37 V and the current densitymore » of 2 mA cm –2. A lower limit of TOF of 0.4 s –1 and TON > 8.8 × 10 4 (over 72 h) was estimated for the Ag nanocoral catalyst at an overpotential of 0.49 V. The Ag nanocoral catalyst demonstrated a 32-fold enhancement in surface-area-normalized activity, at an overpotential of 0.49 V, as compared to Ag foil. We found that, in addition to the effect on nanomorphology, the adsorbed chloride anions play a critical role in the observed enhanced activity and selectivity of the Ag nanocoral electrocatalyst toward CO 2 reduction. Synchrotron X-ray photoelectron spectroscopy (XPS) studies along with a series of control experiments suggest that the chloride anions, remaining adsorbed on the catalyst surface under electrocatalytic conditions, can effectively inhibit the side reaction of hydrogen evolution and enhance the catalytic performance for CO 2 reduction.« less

  3. Stability of buprenorphine, haloperidol and glycopyrrolate mixture in a 0.9% sodium chloride solution.

    PubMed

    Jäppinen, A; Kokki, H; Naaranlahti, T J; Rasi, A S

    1999-12-01

    Combinations of opioids and adjuvant drug solutions are often used in clinical practice while little information is available on their microbiological or chemical stability. Currently there are no commercially available, prepacked, ready-to-use epidural or subcutaneous mixtures. Thus, epidural and subcutaneous analgesic mixtures must be prepared in the pharmacy on an as-needed basis. Such mixtures are typically used for the treatment of severe pain in cancer patients. The aim of this study was to investigate the microbiological and chemical stability of a buprenorphine, haloperidol and glycopyrrolate mixture in a 0.9% sodium chloride solution. A high performance liquid chromatographic (HPLC) method and pH-meter were used to conduct the analyses. Antimicrobial activity of each component was studied by an agar dilution method. According to the results from the chemical and microbiological stability studies, this mixture can be stored in polypropylene (PP) syringes and polyvinyl chloride (PVC) medication cassettes for at least 30 days at either 21 degrees C or 4 degrees C, and for 16 days in PP syringes at 36 degrees C, and for 9 days in PVC medication cassettes at 36 degrees C.

  4. Repetitively Coupled Chemical Reduction and Galvanic Exchange as a Synthesis Strategy for Expanding Applicable Number of Pt Atoms in Dendrimer-Encapsulated Pt Nanoparticles.

    PubMed

    Cho, Taehoon; Yoon, Chang Won; Kim, Joohoon

    2018-06-13

    In this study, we report the controllable synthesis of dendrimer-encapsulated Pt nanoparticles (Pt DENs) utilizing repetitively coupled chemical reduction and galvanic exchange reactions. The synthesis strategy allows the expansion of the applicable number of Pt atoms encapsulated inside dendrimers to more than 1000 without being limited by the fixed number of complexation sites for Pt 2+ precursor ions in the dendrimers. The synthesis of Pt DENs is achieved in a short period of time (i.e., ∼10 min) simply by the coaddition of appropriate amounts of Cu 2+ and Pt 2+ precursors into aqueous dendrimer solution and subsequent addition of reducing agents such as BH 4 - , resulting in fast and selective complexation of Cu 2+ with the dendrimers and subsequent chemical reduction of the complexed Cu 2+ while uncomplexed Pt 2+ precursors remain oxidized. Interestingly, the chemical reduction of Cu 2+ , leading to the formation of Cu nanoparticles encapsulated inside the dendrimers, is coupled with the galvanic exchange of the Cu nanoparticles with the nearby Pt 2+ . This coupling repetitively proceeds until all of the added Pt 2+ ions form into Pt nanoparticles encapsulated inside the dendrimers. In contrast to the conventional method utilizing direct chemical reduction, this repetitively coupled chemical reduction and galvanic exchange enables a substantial increase in the applicable number of Pt atoms up to 1320 in Pt DENs while maintaining the unique features of DENs.

  5. Stability of Alprostadil in 0.9% Sodium Chloride Stored in Polyvinyl Chloride Containers.

    PubMed

    McCluskey, Susan V; Kirkham, Kylian; Munson, Jessica M

    2017-01-01

    The stability of alprostadil diluted in 0.9% sodium chloride stored in polyvinyl chloride (VIAFLEX) containers at refrigerated temperature, protected from light, is reported. Five solutions of alprostadil 11 mcg/mL were prepared in 250 mL 0.9% sodium chloride polyvinyl chloride (PL146) containers. The final concentration of alcohol was 2%. Samples were stored under refrigeration (2°C to 8°C) with protection from light. Two containers were submitted for potency testing and analyzed in duplicate with the stability-indicating high-performance liquid chromatography assay at specific time points over 14 days. Three containers were submitted for pH and visual testing at specific time points over 14 days. Stability was defined as retention of 90% to 110% of initial alprostadil concentration, with maintenance of the original clear, colorless, and visually particulate-free solution. Study results reported retention of 90% to 110% initial alprostadil concentration at all time points through day 10. One sample exceeded 110% potency at day 14. pH values did not change appreciably over the 14 days. There were no color changes or particle formation detected in the solutions over the study period. This study concluded that during refrigerated, light-protected storage in polyvinyl chloride (VIAFLEX) containers, a commercial alcohol-containing alprostadil formulation diluted to 11 mcg/mL with 0.9% sodium chloride 250 mL was stable for 10 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  6. Triphenylphosphine as Ligand for Room Temperature Ni(0)-Catalyzed Cross-Coupling Reactions of Aryl Chlorides with Arylboronic Acids

    PubMed Central

    Tang, Zhen-Yu; Hu, Qiao-Sheng

    2008-01-01

    Room temperature Ni(0)-catalyzed cross-coupling reactions of deactivated aryl chlorides with arylboronic acids with inexpensive triphenylphosphine (PPh3) as a supporting ligand have been accomplished in good to excellent yields. Air-stable Ni(PPh3)2Cl2 has also been established as catalyst precursor and highly active nickel catalysts were obtained when the reduction of Ni(PPh3)2Cl2 with n-BuLi was carried out in presence of an aryl chloride. PMID:16497011

  7. The Two Electron Oxidation of Cobalt Phthalocyanines by Thionyl Chloride: Implications for Lithium/Thionyl Chloride Batteries

    DTIC Science & Technology

    1989-10-20

    Phthalocyanines by Thionyl Chloride. Implications for Lithium /Thionyl Chloride Batteries By P.A. Bernstein and A.B.P. Lever* D T IC in NOV.0 3.1W9. M...Thionyl Chloride. Implications forI Lithium /Thionvl Chloride Batteries 12 PERSONAL AUTHOR(S) P.A. Bernstein and A.B.P. Lever* 13a. TYPE OF REPORT 13b...SUBJECT TERMS (Continue on reverse if necessary and identify by olock numoer) FIELD GROUP SUB-GROUP .’ Phthalocyanine," Lithium Battery, Thionyl

  8. A role for intracellular zinc in glioma alteration of neuronal chloride equilibrium

    PubMed Central

    Di Angelantonio, S; Murana, E; Cocco, S; Scala, F; Bertollini, C; Molinari, M G; Lauro, C; Bregestovski, P; Limatola, C; Ragozzino, D

    2014-01-01

    Glioma patients commonly suffer from epileptic seizures. However, the mechanisms of glioma-associated epilepsy are far to be completely understood. Using glioma-neurons co-cultures, we found that tumor cells are able to deeply influence neuronal chloride homeostasis, by depolarizing the reversal potential of γ-aminobutyric acid (GABA)-evoked currents (EGABA). EGABA depolarizing shift is due to zinc-dependent reduction of neuronal KCC2 activity and requires glutamate release from glioma cells. Consistently, intracellular zinc loading rapidly depolarizes EGABA in mouse hippocampal neurons, through the Src/Trk pathway and this effect is promptly reverted upon zinc chelation. This study provides a possible molecular mechanism linking glioma invasion to excitation/inhibition imbalance and epileptic seizures, through the zinc–mediated disruption of neuronal chloride homeostasis. PMID:25356870

  9. Racemization of Isobornyl Chloride via Carbocations: A Nonclassical Look at a Classic Mechanism

    ERIC Educational Resources Information Center

    Rzepa, Henry S.; Allan, Charlotte S. M.

    2010-01-01

    Our understanding of carbonium ions as intermediates in chemical reaction mechanisms derives from the early work of Julius Stieglitz and the more famous Hans Meerwein, the latter studying the racemization of isobornyl chloride when treated with Lewis acids. This review analyzes how key mechanistic concepts for this reaction evolved and gives the…

  10. Lithium-thionyl chloride battery

    NASA Astrophysics Data System (ADS)

    Wong, D.; Bowden, W.; Hamilton, N.; Cubbison, D.; Dey, A. N.

    1981-04-01

    The main objective is to develop, fabricate, test, and deliver safe high rate lithium-thionyl chloride batteries for various U.S. Army applications such as manpack ratios and GLLD Laser Designators. We have devoted our efforts in the following major areas: (1) Optimization of the spirally wound D cell for high rate applications, (2) Development of a 3 inch diameter flat cylindrical cell for the GLLD laser designator application, and (3) Investigation of the reduction mechanism of SOCl2. The rate capability of the spirally wound D cell previously developed by us has been optimized for both the manpack radio (BA5590) battery and GLLD laser designator battery application in this program. A flat cylindrical cell has also been developed for the GLLD laser designator application. It is 3 inches in diameter and 0.9 inch in height with extremely low internal cell impedance that minimizes cell heating and polarization on the GLLD load. Typical cell capacity was found to be 18.0-19.0 Ahr with a few cells delivering up to about 21.0 Ahr on the GLLD test load. Study of the reduction mechanism of SOCl2 using electrochemical and spectroscopic techniques has also been carried out in this program which may be directly relevant to the intrinsic safety of the system.

  11. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    EPA Science Inventory

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  12. Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies

    PubMed Central

    Saum, Stephan H; Müller, Volker

    2008-01-01

    The moderate halophile Halobacillus halophilus is the paradigm for chloride dependent growth in prokaryotes. Recent experiments shed light on the molecular basis of the chloride dependence that is reviewed here. In the presence of moderate salinities Halobacillus halophilus mainly accumulates glutamine and glutamate to adjust turgor. The transcription of glnA2 (encoding a glutamine synthetase) as well as the glutamine synthetase activity were identified as chloride dependent steps. Halobacillus halophilus switches its osmolyte strategy and produces proline as the main compatible solute at high salinities. Furthermore, Halobacillus halophilus also shifts its osmolyte strategy at the transition from the exponential to the stationary phase where proline is exchanged by ectoine. Glutamate was found as a “second messenger” essential for proline production. This observation leads to a new model of sensing salinity by sensing the physico-chemical properties of different anions. PMID:18442383

  13. Analysis and treatment of industrial wastewater through chemical coagulation-adsorption process-A case study of Clariant Pakistan limited

    NASA Astrophysics Data System (ADS)

    Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.

    2012-05-01

    Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.

  14. TRACI 2.0 - The Tool for the Reduction and Assessment of Chemical and other environmental Impacts

    EPA Science Inventory

    TRACI 2.0, the Tool for the Reduction and Assessment of Chemical and other environmental Impacts 2.0, has been expanded and developed for sustainability metrics, life cycle impact assessment, industrial ecology, and process design impact assessment for developing increasingly sus...

  15. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane.

    PubMed

    Yan, J; Rash, B A; Rainey, F A; Moe, W M

    2009-04-01

    Two strictly anaerobic bacterial strains were isolated from contaminated groundwater at a Superfund site located near Baton Rouge, LA, USA. These strains represent the first isolates reported to reductively dehalogenate 1,2,3-trichloropropane. Allyl chloride (3-chloro-1-propene), which is chemically unstable, was produced from 1,2,3-trichloropropane, and it was hydrolysed abiotically to allyl alcohol and also reacted with the sulfide- and cysteine-reducing agents in the medium to form various allyl sulfides. Both isolates also dehalogenated a variety of other vicinally chlorinated alkanes (1,2-dichloropropane, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,2,2- tetrachloroethane) via dichloroelimination reactions. A quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes indicated that both strains couple reductive dechlorination to cell growth. Growth was not observed in the absence of hydrogen (H2) as an electron donor and a polychlorinated alkane as an electron acceptor. Alkanes containing only a single chlorine substituent (1-chloropropane, 2-chloropropane), chlorinated alkenes (tetrachlorothene, trichlorothene, cisdichloroethene, trans-dichloroethene, vinyl chloride) and chlorinated benzenes (1-chlorobenzene and 1,2- dichlorobenzene) were not dechlorinated. Phylogenetic analysis based on 16S rRNA gene sequence data showed these isolates to represent a new lineage within the Chloroflexi. Their closest previously cultured relatives are 'Dehalococcoides' strains, with 16S rRNA gene sequence similarities of only 90%.

  16. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, S.J.; Thomas, T.R.

    1975-11-14

    A method is described for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel, and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  17. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, Steven J.; Thomas, Thomas R.

    1977-01-01

    The present invention provides a method for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  18. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-03

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials.

  19. Chloride: from Nutrient to Toxicant.

    PubMed

    Geilfus, Christoph-Martin

    2018-05-01

    In salinized soils in which chloride (Cl-) is the dominant salt anion, growth of plants that tolerate only low concentrations of salt (glycophytes) is disturbed by Cl- toxicity. Chlorotic discolorations precede necrotic lesions, causing yield reductions. Little is known about the effects of Cl- toxicity on these dysfunctions. A lack of understanding exists regarding (i) the molecular and physiological mechanisms that lead to Cl--induced damage and (ii) the adaptive aspects of induced tolerance to Cl- salinity. Here, mechanistic explanations for the Cl--induced stress responses are proposed and novel ideas and strategies by which glycophytic plants avoid the excessive accumulation of Cl- are reviewed. New experiments are suggested to test the proposed hypotheses. Cl- salinity constrains global food security and thus we urgently need more research into the causes and consequences of Cl- salinity.

  20. 49 CFR 173.322 - Ethyl chloride.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must be...

  1. Reduction of Campylobacter jejuni on chicken wings by chemical treatments.

    PubMed

    Zhao, Tong; Doyle, Michael P

    2006-04-01

    Eight chemicals, including glycerol monolaurate, hydrogen peroxide, acetic acid, lactic acid, sodium benzoate, sodium chlorate, sodium carbonate, and sodium hydroxide, were tested individually or in combination for their ability to inactivate Campylobacter jejuni at 4 degrees C in suspension. Results showed that treatment for up to 20 min with 0.01% glycerol monolaurate, 0.1% sodium benzoate, 50 or 100 mM sodium chlorate, or 1% lactic acid did not substantially (< or = 0.5 log CFU/ml) reduce C. jejuni populations but that 0.1 and 0.2% hydrogen peroxide for 20 min reduced C. jejuni populations by ca. 2.0 and 4.5 log CFU/ml, respectively. By contrast, treatments with 0.5, 1.0, 1.5, and 2.0% acetic acid, 25, 50, and 100 mM sodium carbonate, and 0.05 and 0.1 N sodium hydroxide reduced C. jejuni populations by >5 log CFU/ml within 2 min. A combination of 0.5% acetic acid plus 0.05% potassium sorbate or 0.5% acetic acid plus 0.05% sodium benzoate reduced C. jejuni populations by >5 log CFU/ml within 1 min; however, substituting 0.5% lactic acid for 0.5% acetic acid was not effective, with a reduction of C. jejuni of <0.5 log CFU/ml. A combination of acidic calcium sulfate, lactic acid, ethanol, sodium dodecyl sulfate, and polypropylene glycol (ACS-LA) also reduced C. jejuni in suspension by >5 log CFU/ml within 1 min. All chemicals or chemical combinations for which there was a >5-log/ml reduction of C. jejuni in suspension were further evaluated for C. jejuni inactivation on chicken wings. Treatments at 4 degrees C of 2% acetic acid, 100 mM sodium carbonate, or 0.1 N sodium hydroxide for up to 45 s reduced C. jejuni populations by ca. 1.4, 1.6, or 3.5 log CFU/g, respectively. Treatment with ACS-LA at 4 degrees C for 15 s reduced C. jejuni by >5 log CFU/g to an undetectable level. The ACS-LA treatment was highly effective in chilled water at killing C. jejuni on chicken and, if recycled, may be a useful treatment in chill water tanks for poultry processors to reduce

  2. 21 CFR 178.3290 - Chromic chloride complexes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromic chloride complexes. 178.3290 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3290 Chromic chloride complexes. Myristo chromic chloride complex and stearato chromic chloride complex may be safely used as release agents in the closure...

  3. Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions.

    PubMed

    Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel S; Al-Wabel, Mohammad I

    2017-09-18

    Biochar (BC) was produced from date palm tree leaves and its composites were prepared with nano zerovalent iron (nZVI-BC) and hen eggshell powder (EP-BC). The produced BC and its composites were characterized by SEM, XRD, BET, and FTIR for surface structural, mineralogical, and chemical groups and tested for their efficiency for nitrate removal from aqueous solutions in the presence and absence of chloride ions. The incidence of graphene and nano zerovalent iron (Fe 0 ) in the nZVI-BC composite was confirmed by XRD. The nZVI-BC composite possessed highest surface area (220.92 m 2  g -1 ), carbon (80.55%), nitrogen (3.78%), and hydrogen (11.09%) contents compared to other materials. Nitrate sorption data was fitted well to the Langmuir (R 2  = 0.93-0.98) and Freundlich (R 2  = 0.90-0.99) isotherms. The sorption kinetics was adequately explained by the pseudo-second-order, power function, and Elovich models. The nZVI-BC composite showed highest Langmuir predicted sorption capacity (148.10 mg g -1 ) followed by EP-BC composite (72.77 mg g -1 ). In addition to the high surface area, the higher nitrate removal capacity of nZVI-BC composite could be attributed to the combination of two processes, i.e., chemisorption (outer-sphere complexation) and reduction of nitrate to ammonia or nitrogen by Fe 0 . The appearance of Fe-O stretching and N-H bonds in post-sorption FTIR spectra of nZVI-BC composite suggested the occurrence of redox reaction and formation of Fe compound with N, such as ferric nitrate (Fe(NO 3 ) 3 ·9H 2 O). Coexistence of chloride ions negatively influenced the nitrate sorption. The decrease in nitrate sorption with increasing chloride ion concentration was observed, which could be due to the competition of free active sites on the sorbents between nitrate and chloride ions. The nZVI-BC composite exhibited higher nitrate removal efficiency compared to other materials even in the presence of highest concentration (100 mg L -1 ) of coexisting

  4. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  5. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  6. 21 CFR 582.3845 - Stannous chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Stannous chloride. 582.3845 Section 582.3845 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3845 Stannous chloride. (a) Product. Stannous chloride. (b) Tolerance. This substance is generally...

  7. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    EPA Science Inventory

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  8. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  9. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  10. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  11. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b...

  12. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  13. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  17. In vitro cytotoxic effects of benzalkonium chloride in corticosteroid injection suspension.

    PubMed

    Davis, Daniel; Cyriac, Mathew; Ge, Dongxia; You, Zongbing; Savoie, Felix H

    2010-01-01

    Some deleterious effects on cartilage and even severe arthropathy have been reported after intra-articular corticosteroid injections. The objective of the present in vitro study was to determine if an injectable corticosteroid suspension is toxic to articular chondrocytes and synovial cells. Human and bovine articular chondrocytes, bovine synovial cells, mouse C3H10T1/2 cells, and human osteosarcoma MG-63 cells were treated for thirty minutes in monolayer or suspension culture with an injectable corticosteroid suspension or its chemical components, including betamethasone sodium phosphate, betamethasone acetate, and benzalkonium chloride (as preservative). Cell viability was determined by means of microscopy or flow cytometry analysis. In monolayer culture, the betamethasone corticosteroids per se did not cause cell death, whereas benzalkonium chloride caused death of articular chondrocytes. In suspension culture, betamethasone sodium phosphate at dosages of as high as 6 mg/mL did not cause significant death of human or bovine articular chondrocytes (p > 0.05). In contrast, benzalkonium chloride caused a death rate of 10.6% in human articular chondrocytes at a dosage of 10 microg/mL (p < 0.01), 21.0% at a dosage of 13.3 microg/mL (p < 0.01), and 99.3% and 99.4% at dosages of 20 and 200 microg/mL, respectively (p < 0.001 for both). Similarly, benzalkonium chloride caused death of bovine articular chondrocytes, bovine synovial cells, C3H10T1/2 cells, and MG-63 cells in a dose-dependent manner. When treated with a combination of betamethasone sodium phosphate and 200 microg/mL benzalkonium chloride, >99% of human or bovine articular chondrocytes were dead (p < 0.001). The injectable corticosteroid suspension caused death in in vitro culture of human and bovine articular chondrocytes as well as bovine synovial cells because of its preservative benzalkonium chloride. The betamethasone corticosteroids per se did not cause significant chondrocyte death under the

  18. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance...

  19. 21 CFR 173.255 - Methylene chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methylene chloride. 173.255 Section 173.255 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.255 Methylene chloride. Methylene chloride may be present in food under the following conditions: (a) In spice oleoresins as a residue from...

  20. 21 CFR 173.255 - Methylene chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methylene chloride. 173.255 Section 173.255 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.255 Methylene chloride. Methylene chloride may be present in food under the following conditions: (a) In spice oleoresins as a residue from...

  1. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions...

  2. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  3. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  4. The chemical, microbial, sensory and technological effects of intermediate salt levels as a sodium reduction strategy in fresh pork sausages.

    PubMed

    Cluff, MacDonald; Steyn, Hannes; Charimba, George; Bothma, Carina; Hugo, Celia J; Hugo, Arno

    2016-09-01

    The reduction of sodium in processed meat products is synonymous with the use of salt replacers. Rarely has there been an assessment of the use of intermediate salt levels as a sodium reduction strategy in itself. In this study, 1 and 1.5% salt levels were compared with 0 and 2% controls in fresh pork sausages for effects on chemical, microbial, sensory and technological stability. Although significant (P < 0.001 to P < 0.01) differences were found between the 0 and 2% controls, no significant differences could be detected between the 2, 1.5 and 1% added NaCl treatments for the following: total bacteria counts on days 3, 6 and 9; TBARS of pork sausages stored at 4 °C on days 6 and 9 and stored at -18 °C on days 90 and 180; taste, texture and overall liking during sensory evaluation; and % cooking loss, % total loss and % refrigeration loss. Consumers were able to differentiate between the 2 and 1% added NaCl treatments in terms of saltiness. This study indicated that salt reduction to intermediate levels can be considered a sodium reduction strategy in itself but that further research with regards to product safety is needed. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Light-activated phenalen-1-one bactericides: efficacy, toxicity and mechanism compared with benzalkonium chloride.

    PubMed

    Muehler, Denise; Sommer, Kerstin; Wennige, Sara; Hiller, Karl-Anton; Cieplik, Fabian; Maisch, Tim; Späth, Andreas

    2017-11-01

    Five photoactive compounds with variable elongated alkyl-substituents in a phenalen-1-one structure were examined in view of structural similarity to the antimicrobial agent benzalkonium chloride (BAC). All phenalen-1-ones and BAC were evaluated for their antimicrobial properties against Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli, Pseudomonas aeruginosa and for their eukaryotic toxicity against normal human epidermal keratinocyte (NHEK) cells to narrow down the BAC-like effect and the photodynamic effect depending on the chemical structure. All compounds were investigated for effective concentration ranges, where a bacterial reduction of 5 log 10 is achieved, while an NHEK survival of 80% is ensured. Effective concentration ranges were found for four out of five photoactive compounds, but not for BAC and the compound with BAC-like alkyl chain length. Chain length size and polar area of the respective head-groups of phenalen-1-one compounds or BAC showed an influence on the incorporation inside lipid membranes and thus, head-groups may have an impact on the toxicity of antimicrobials.

  6. FIELD AND LABORATORY EVIDENCE FOR INTRINSIC BIODEGRADATION OF VINYL CHLORIDE CONTAMINATION IN A FE(III)-REDUCING AQUIFER

    EPA Science Inventory

    Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biod...

  7. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  8. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  9. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  10. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  11. 21 CFR 172.180 - Stannous chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used for color...

  12. Contact Electrification of Regolith Particles and Chloride Electrolysis: Synthesis of Perchlorates on Mars.

    PubMed

    Tennakone, K

    2016-10-01

    Contact electrification of chloride-impregnated martian regolith particles due to eolian agitation and moisture condensation on coalesced oppositely charged grains may lead to spontaneous electrolysis that generates hypochlorite, chlorite, chlorate, and perchlorate with a concomitant reduction of water to hydrogen. This process is not curtailed even if moisture condenses as ice because chloride ionizes on the surface of ice. Limitations dictated by potentials needed for electrolysis and breakdown electric fields enable estimation of the required regolith grain size. The estimated dimension turns out to be of the same order of magnitude as the expected median size of martian regolith, and a simple calculation yields the optimum rate of perchlorate production. Key Words: Mars oxidants-Perchlorate-Dust electrification-Electrolysis. Astrobiology 16, 811-816.

  13. Role of Chloride in the Corrosion and Fracture Behavior of Micro-Alloyed Steel in E80 Simulated Fuel Grade Ethanol Environment

    PubMed Central

    Joseph, Olufunmilayo O.; Loto, Cleophas A.; Sivaprasad, Seetharaman; Ajayi, John A.; Tarafder, Soumitra

    2016-01-01

    In this study, micro-alloyed steel (MAS) material normally used in the production of auto parts has been immersed in an E80 simulated fuel grade ethanol (SFGE) environment and its degradation mechanism in the presence of sodium chloride (NaCl) was evaluated. Corrosion behavior was determined through mass loss tests and electrochemical measurements with respect to a reference test in the absence of NaCl. Fracture behavior was determined via J-integral tests with three-point bend specimens at an ambient temperature of 27 °C. The mass loss of MAS increased in E80 with NaCl up to a concentration of 32 mg/L; beyond that threshold, the effect of increasing chloride was insignificant. MAS did not demonstrate distinct passivation behavior, as well as pitting potential with anodic polarization, in the range of the ethanol-chloride ratio. Chloride caused pitting in MAS. The fracture resistance of MAS reduced in E80 with increasing chloride. Crack tip blunting decreased with increasing chloride, thus accounting for the reduction in fracture toughness. PMID:28773601

  14. Salt, chloride, bleach, and innate host defense

    PubMed Central

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  15. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  16. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction.

  17. Complexes of metal chlorides with proton donors — promising polyfunctional catalysts for electrophilic processes

    NASA Astrophysics Data System (ADS)

    Minsker, Karl S.; Ivanova, S. R.; Biglova, Raisa Z.

    1995-05-01

    The Bronsted acids formed as a result of the interaction of aluminium chlorides with Group I and II metal chlorides in the presence of proton-donating compounds are promising polyfunctional catalysts for electrophilic processes (polymerisation, depolymerisation and degradation of macromolecules, alkylation, desulfurisation, and hydrogenation). The factor determing the electrophilic activity and selectivity of the action of the catalysts is their acidity. This makes it possible to predict the direction of the changes in the activity and selectivity of the catalyst in specific chemical processes in conformity with the opposite variation rule: with increase in the acidity of the electrophilic catalyst, their activity increases but the selectivity of their action diminishes. The bibliography includes 72 references.

  18. Survival of Serratia marcescens in benzalkonium chloride and in multiple-dose medication vials: relationship to epidemic septic arthritis.

    PubMed Central

    Nakashima, A K; Highsmith, A K; Martone, W J

    1987-01-01

    In an epidemic of septic arthritis due to Serratia marcescens, the intra-articular injection of contaminated methylprednisolone may have played a key role. The epidemic strain was found in used multiple-dose vials of methylprednisolone and in a canister of cotton balls soaked in benzalkonium chloride. The cotton balls had been used for antisepsis and disinfection. Growth characteristics of the epidemic strain of S. marcescens were compared with those of control strains of S. marcescens which had been obtained from unrelated nosocomial outbreaks. The epidemic strain was able to survive in 1:100 dilutions of benzalkonium chloride and was able to grow to greater than 10(5) CFU/ml in multiple-dose vials of methylprednisoline; control strains could not be recovered after 24 h in the same solutions. The preservative in methylprednisolone is gamma-myristyl picolinium chloride, a compound chemically related to benzalkonium chloride. We speculate that the epidemic strain of S. marcescens, which was resistant to benzalkonium chloride, had cross-resistance to gamma-myristyl picolinium chloride. If the cotton balls were used to disinfect the tops of the multiple-dose vials of methylprednisolone, small numbers of organisms subsequently introduced into the solution could have grown to high concentrations. PMID:3298309

  19. Reduction and Uncertainty Analysis of Chemical Mechanisms Based on Local and Global Sensitivities

    NASA Astrophysics Data System (ADS)

    Esposito, Gaetano

    Numerical simulations of critical reacting flow phenomena in hypersonic propulsion devices require accurate representation of finite-rate chemical kinetics. The chemical kinetic models available for hydrocarbon fuel combustion are rather large, involving hundreds of species and thousands of reactions. As a consequence, they cannot be used in multi-dimensional computational fluid dynamic calculations in the foreseeable future due to the prohibitive computational cost. In addition to the computational difficulties, it is also known that some fundamental chemical kinetic parameters of detailed models have significant level of uncertainty due to limited experimental data available and to poor understanding of interactions among kinetic parameters. In the present investigation, local and global sensitivity analysis techniques are employed to develop a systematic approach of reducing and analyzing detailed chemical kinetic models. Unlike previous studies in which skeletal model reduction was based on the separate analysis of simple cases, in this work a novel strategy based on Principal Component Analysis of local sensitivity values is presented. This new approach is capable of simultaneously taking into account all the relevant canonical combustion configurations over different composition, temperature and pressure conditions. Moreover, the procedure developed in this work represents the first documented inclusion of non-premixed extinction phenomena, which is of great relevance in hypersonic combustors, in an automated reduction algorithm. The application of the skeletal reduction to a detailed kinetic model consisting of 111 species in 784 reactions is demonstrated. The resulting reduced skeletal model of 37--38 species showed that the global ignition/propagation/extinction phenomena of ethylene-air mixtures can be predicted within an accuracy of 2% of the full detailed model. The problems of both understanding non-linear interactions between kinetic parameters and

  20. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS Reg. No. 7786-30-3) is a... prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous hydrochloric acid solution and...

  1. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous...

  2. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous...

  3. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS...

  4. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS...

  5. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS...

  6. Accurate RNA 5-methylcytosine site prediction based on heuristic physical-chemical properties reduction and classifier ensemble.

    PubMed

    Zhang, Ming; Xu, Yan; Li, Lei; Liu, Zi; Yang, Xibei; Yu, Dong-Jun

    2018-06-01

    RNA 5-methylcytosine (m 5 C) is an important post-transcriptional modification that plays an indispensable role in biological processes. The accurate identification of m 5 C sites from primary RNA sequences is especially useful for deeply understanding the mechanisms and functions of m 5 C. Due to the difficulty and expensive costs of identifying m 5 C sites with wet-lab techniques, developing fast and accurate machine-learning-based prediction methods is urgently needed. In this study, we proposed a new m 5 C site predictor, called M5C-HPCR, by introducing a novel heuristic nucleotide physicochemical property reduction (HPCR) algorithm and classifier ensemble. HPCR extracts multiple reducts of physical-chemical properties for encoding discriminative features, while the classifier ensemble is applied to integrate multiple base predictors, each of which is trained based on a separate reduct of the physical-chemical properties obtained from HPCR. Rigorous jackknife tests on two benchmark datasets demonstrate that M5C-HPCR outperforms state-of-the-art m 5 C site predictors, with the highest values of MCC (0.859) and AUC (0.962). We also implemented the webserver of M5C-HPCR, which is freely available at http://cslab.just.edu.cn:8080/M5C-HPCR/. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Synthesis and spectroscopic characterization of gold nanobipyramids prepared by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Phat Huynh, Trong; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Lam, Quang Vinh; Dat Huynh, Thanh

    2015-12-01

    Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO3 as capping agents. The product was characterized by ultraviolet-visible spectroscopy (UV-vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found.

  8. Chemical measurement of urine volume

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.

    1978-01-01

    Chemical method of measuring volume of urine samples using lithium chloride dilution technique, does not interfere with analysis, is faster, and more accurate than standard volumetric of specific gravity/weight techniques. Adaptation of procedure to urinalysis could prove generally practical for hospital mineral balance and catechoamine determinations.

  9. The in vitro reduction of sodium [36Cl]chlorate in bovine ruminal fluid.

    PubMed

    Oliver, C E; Bauer, M L; Caton, J S; Anderson, R C; Smith, D J

    2007-08-01

    Sodium chlorate effectively reduces or eliminates gram-negative pathogenic bacteria in the gastrointestinal tracts of live cattle. Limitations to the in vivo efficacy of chlorate are its rapid absorption from the gastrointestinal tract and its presumed reduction to chloride within the gastrointestinal tract. We hypothesized that chlorate would be reduced via ruminal bacteria in a ruminal in vitro system and that the reduction of chlorate would be influenced by the dietary for-age:concentrate ratio; thus, 4 ruminally cannulated steers were fed 20 or 80% concentrate diets in a crossover design. Ruminal fluid was collected in 2 periods and dispensed into in vitro tubes containing sodium [36Cl]chlorate, which was sufficient for 100 or 300 mg/L final chlorate concentrations. The tubes were incubated for 0, 1, 4, 8, 16, or 24 h; autoclaved, control ruminal fluid, fortified with sodium [36Cl]chlorate, was incubated for 24 h. Chlorate remaining in each sample was measured by liquid scintillation counting after [36Cl]chloride was precipitated with silver nitrate. A preliminary study indicated that chlorite, a possible intermediate in the reduction of chlorate, had a half-life of approximately 4.5 min in freshly collected (live) ruminal fluid; chlorite was, therefore, not specifically measured in ruminal incubations. The chlorate dose did not affect in vitro DM digestion (P > or = 0.11), whereas in vitro DM digestibility was decreased (P < or = 0.05) by 80% forage content. By 24 h, 57.5 +/- 2.6% of the chlorate remained in 100-mg/L incubations, whereas 78.2 +/- 2.6% of the chlorate remained in the 300-mg/L incubations. When the data were expressed on a concentration basis (mg/L), diet had no effect (P > or = 0.18) on chlorate reduction; however, when chlorate reduction was expressed on a percentage basis, chlorate reduction tended to be greater (P > or = 0.09) at 8 and 16 h in the incubations containing the low-concentrate diet. Chlorate remaining in autoclaved controls at

  10. Chloride Permeability of Damaged High-Performance Fiber-Reinforced Cement Composite by Repeated Compressive Loads.

    PubMed

    Lee, Byung Jae; Hyun, Jung Hwan; Kim, Yun Yong; Shin, Kyung Joon

    2014-08-11

    The development of cracking in concrete structures leads to significant permeability and to durability problems as a result. Approaches to controlling crack development and crack width in concrete structures have been widely debated. Recently, it was recognized that a high-performance fiber-reinforced cement composite (HPFRCC) provides a possible solution to this inherent problem of cracking by smearing one or several dominant cracks into many distributed microcracks under tensile loading conditions. However, the chloride permeability of HPFRCC under compressive loading conditions is not yet fully understood. Therefore, the goal of the present study is to explore the chloride diffusion characteristics of HPFRCC damaged by compressive loads. The chloride diffusivity of HPFRCC is measured after being subjected to various repeated loads. The results show that the residual axial strain, lateral strain and specific crack area of HPFRCC specimens increase with an increase in the damage induced by repeated loads. However, the chloride diffusion coefficient increases only up to 1.5-times, whereas the specific crack area increases up to 3-times with an increase in damage. Although HPFRCC shows smeared distributed cracks in tensile loads, a significant reduction in the diffusion coefficient of HPFRCC is not obtained compared to plain concrete when the cyclic compressive load is applied below 85% of the strength.

  11. Anion exchange membranes for electrochemical oxidation-reduction energy storage system

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.; Sheibley, D. W.; Gahn, R. F.

    1977-01-01

    Oxidation-reduction couples in concentrated solutions separated by appropriate ion selective membranes were considered as an attractive approach to bulk electrical energy storage. A key problem is the development of the membrane. Several promising types of anionic membranes are discussed which were developed and evaluated for redox energy storage systems. The copolymers of ethyleneglycoldimethacrylate with either 2-vinylpyridine or vinylbenzl chloride gave stable resistance values compared to the copolymer of vinylbenzlchloride and divinylbenzene which served as the baseline membrane. A polyvinylchloride film aminated with tetraethylenepentamine had a low resistance but a high ion transfer rate. A slurry coated vinylpyridine had the lowest ion transfer rate. All these membranes functioned well in laboratory cells at ambient temperatures with the acidic chloride oxidant/reductant system, Fe 3, Fe 2/Ti 3, Ti 4.

  12. Preparation of Copper Telluride Films by Co-Reduction of Cu(I) and Te(IV) Ions in Choline Chloride: Ethylene Glycol Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Golgovici, Florentina; Catrangiu, Adriana-Simona; Stoian, Andrei Bogdan; Anicai, Liana; Visan, Teodor

    2016-07-01

    Cathodic processes of direct co-reduction of Cu+ and Te4+ ions on Pt electrode at 60°C were investigated using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The ionic liquid as background electrolyte consisted of a mixture of choline chloride and ethylene glycol (ChCl-EG 1:2 mol ratio) in which 5-20 mM CuCl and 8 mM TeO2 were dissolved. The voltammograms exhibited the following successive cathodic processes: Cu2+/Cu+ reduction, Te underpotential deposition, simultaneous deposition of Cu metal and CuTe compound, and deposition of Te-rich CuTe compound at the most negative potentials (from -0.5 V to -0.8 V). Corresponding dissolution or oxidation peaks were recorded on the anodic branch. The voltammetric results were confirmed by electrochemical impedance spectra. Copper telluride films have been synthesized on platinum substrate via potentiostatic electrodeposition at 60°C. It was found from atomic force microscopy that CuTe film samples prepared from ChCl-EG + 5 mM CuCl + 8 mM TeO2 ionic liquid have high growth rates. The x-ray diffraction patterns of the deposited films from ChCl-EG + 10 mM CuCl + 8 mM TeO2 ionic liquid indicated the presence of a Cu2Te phase for film deposited at -0.7 V and a Cu0.656Te0.344 phase for film deposited at -0.6 V.

  13. Presence of Siloxanes in the Biogas of a Wastewater Treatment Plant Separation in Condensates and Influence of the Dose of Iron Chloride on its Elimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariano, García; Daniel, Prats; Arturo, Trapote, E-mail: atj@ua.es

    2015-12-21

    The siloxanes present in the biogas produced during anaerobic digestion damage the mechanism of cogeneration equipment and, consequently, negatively affect the energy valorization process. For this reason, the detection and elimination of these silicon-derived chemical compounds are a priority in the management of cogeneration facilities. In this regard, the objectives of this paper are, firstly, to characterize the siloxanes in the biogas and, secondly, to qualitatively evaluate the influence of the dose of iron chloride on its elimination. The research was performed at the Rincón de León Wastewater Treatment Plant (Alicante, Spain). The outflow biogas of the digesters and ofmore » the pressurized gasometers was sampled and analyzed. The results obtained made it possible to demonstrate, firstly, the absence of linear siloxanes and that, of the cyclic siloxanes, the predominant type was decamethylcyclopentasiloxane, and, secondly, that the addition of iron chloride in the digesters significantly reduces the siloxane content in the biogas. Additionally, it was demonstrated that the process of compression of the biogas, with the elimination of condensates, also produces significant reductions in the concentration of siloxanes in the biogas.« less

  14. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are described...

  15. The effect of formulation on the antimicrobial activity of cetylpyridinium chloride in candy based lozenges.

    PubMed

    Richards, R M; Xing, J Z; Weir, L F

    1996-04-01

    The purpose of this investigation was to determine the influence on the antimicrobial activity of cetylpyridinium chloride of the various components of the formulation of each of six candy based lozenges. In vivo activity was investigated using six volunteers by determining the reduction in colony forming units recoverable from the oropharynx after sucking each lozenge separately on different days. In vitro determinations investigated the relative activity of aqueous solutions of the lozenges, the effect on activity of additional active ingredients, pH and lozenge base ingredients against separate inocula of each of the test organisms Staphylococcus aureus, Streptococcus pyogenes and Candida albicans. Both in vivo and in vitro results showed that the pH of the dissolved lozenge solution was the single most influential readily adjustable formulation parameter which significantly influenced the activity of cetylpyridinium chloride activity in candy based lozenges. Lozenges containing cetylpyridinium chloride as the active ingredient should be formulated at a pH greater than 5.5.

  16. Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

    PubMed Central

    Fromm, Anja; Günzel, Dorothee

    2011-01-01

    Background and Purpose The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. Experimental Approach HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl− secretion by measuring short-circuit current (ISC) and tracer fluxes of 22Na+ and 36Cl−. Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na+/K+-ATPase and intracellular cAMP levels (ELISA) were measured. Key Results In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced ISC within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced ISC was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na+/K+-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na+/K+-ATPase. Conclusion and Implications Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na+/K+-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea. PMID:21479205

  17. Antimicrobial effects of electrolytic products of sodium chloride--comparative evaluation with sodium hypochlorite solution and efficacy in handwashing.

    PubMed

    Hitomi, S; Baba, S; Yano, H; Morisawa, Y; Kimura, S

    1998-11-01

    We examined the in vitro bactericidal effects and efficacy on handwashing of water containing electrolytic products of sodium chloride (electrolytic water). The electrolytic water, whose pH and concentration of free residual chlorine were 6.7-6.9 and 20-22 ppm, respectively, showed equal reduction of both Staphylococcus aureus and Escherichia coli to dilution of commercially available sodium hypochlorite containing 60 ppm of free residual chlorine. This bactericidal effect was calculated to be due to hypochlorous acid, based on the pH and the amount of chlorine in solution. Handwashing with the electrolytic water reduced the numbers of S. aureus on hands by 1/10(2), while running water and 0.2% benzalkonium chloride with 80% ethanol gave a 1/10 and 1/10(5) reduction, respectively. We conclude that electrolytic water might be applicable for handwashing in place of running water.

  18. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10056 Benzenemethanaminium, N-(3...

  19. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10056 Benzenemethanaminium, N-(3...

  20. Runaway chemical reaction exposes community to highly toxic chemicals.

    PubMed

    Kaszniak, Mark; Vorderbrueggen, John

    2008-11-15

    The U.S. Chemical Safety and Hazard Investigation Board (CSB) conducted a comprehensive investigation of a runaway chemical reaction at MFG Chemical (MFG) in Dalton, Georgia on April 12, 2004 that resulted in the uncontrolled release of a large quantity of highly toxic and flammable allyl alcohol and allyl chloride into the community. Five people were hospitalized and 154 people required decontamination and treatment for exposure to the chemicals. This included police officers attempting to evacuate the community and ambulance personnel who responded to 911 calls from residents exposed to the chemicals. This paper presents the findings of the CSB report (U.S. Chemical Safety and Hazard Investigation Board (CSB), Investigation Report: Toxic Chemical Vapor Cloud Release, Report No. 2004-09-I-GA, Washington DC, April 2006) including a discussion on tolling practices; scale-up of batch reaction processes; Process Safety Management (PSM) and Risk Management Plan (RMP) implementation; emergency planning by the company, county and the city; and emergency response and mitigation actions taken during the incident. The reactive chemical testing and atmospheric dispersion modeling conducted by CSB after the incident and recommendations adopted by the Board are also discussed.

  1. Electron Detachment Dissociation of Underivatized Chloride-Adducted Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Kornacki, James R.; Adamson, Julie T.; Håkansson, Kristina

    2012-11-01

    Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto- N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.

  2. Washing bridges to reduce chloride : final report.

    DOT National Transportation Integrated Search

    2005-07-01

    Chloride ions are known to promote the corrosion of steel in reinforced concrete. This project was undertaken to investigate the efficacy of washing, to reduce existing chloride content and chloride ion uptake. The project consisted of a laboratory c...

  3. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  4. Washing bridges to reduce chloride : interim report.

    DOT National Transportation Integrated Search

    2003-12-01

    Chloride ions are known to promote the corrosion of steel in reinforced concrete. This project was undertaken to investigate the efficacy of washing, to reduce chloride content and chloride ion uptake. The project consists of a laboratory and a field...

  5. SITE PROGRAM DEMONSTRATION ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS, BAY CITY, MICHIGAN TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The SITE Program funded a field demonstration to evaluate the Eco Logic Gas-Phase Chemical Reduction Process developed by ELI Eco Logic International Inc. (ELI), Ontario, Canada. The Demonstration took place at the Middleground Landfill in Bay City, Michigan using landfill wa...

  6. TRACI THE TOOL FOR THE REDUCTION AND ASSESSMENT OF CHEMICAL AND OTHER ENVIRONMENTAL IMPACTS - VERSION 2 CHANGES

    EPA Science Inventory

    The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) was developed to allow the quantification of environmental impacts for a variety of impact categories which are necessary for a comprehensive impact assessment. See Figure 1. TRACI is c...

  7. A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide.

    PubMed

    Dey, Ramendra Sundar; Hajra, Saumen; Sahu, Ranjan K; Raj, C Retna; Panigrahi, M K

    2012-02-07

    A rapid and facile route for the synthesis of reduced graphene oxide sheets (rGOs) at room temperature by the chemical reduction of graphene oxide using Zn/acid in aqueous solution is demonstrated. This journal is © The Royal Society of Chemistry 2012

  8. Metal chloride cathode for a battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Bankston, C. Perry (Inventor)

    1991-01-01

    A method of fabricating a rechargeable battery is disclosed which includes a positive electrode which contains a chloride of a selected metal when the electrode is in its active state. The improvement comprises fabricating the positive electrode by: providing a porous matrix composed of a metal; providing a solution of the chloride of the selected metal; and impregnating the matrix with the chloride from the solution.

  9. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride

    PubMed Central

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte. PMID:28773867

  10. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride.

    PubMed

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-09-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.

  11. Reduction of Iodine by Phosphorus(I): Integration of the Rate Equation

    ERIC Educational Resources Information Center

    Kustin, Kenneth; Ross, Edward W.

    2005-01-01

    A. D. Mitchell's work on the phosphorus(I) reduction of the halogens and of mercury(II) and copper(II) chlorides is examined. A review of some salient characteristics of the Mitchell mechanism is presented, together with a discussion on how a student might benefit from a case study of the phosphorus(I) reduction of iodine or the similarly behaving…

  12. Implications of salt and sodium reduction on microbial food safety.

    PubMed

    Taormina, Peter J

    2010-03-01

    Excess sodium consumption has been cited as a primary cause of hypertension and cardiovascular diseases. Salt (sodium chloride) is considered the main source of sodium in the human diet, and it is estimated that processed foods and restaurant foods contribute 80% of the daily intake of sodium in most of the Western world. However, ample research demonstrates the efficacy of sodium chloride against pathogenic and spoilage microorganisms in a variety of food systems. Notable examples of the utility and necessity of sodium chloride include the inhibition of growth and toxin production by Clostridium botulinum in processed meats and cheeses. Other sodium salts contributing to the overall sodium consumption are also very important in the prevention of spoilage and/or growth of microorganisms in foods. For example, sodium lactate and sodium diacetate are widely used in conjunction with sodium chloride to prevent the growth of Listeria monocytogenes and lactic acid bacteria in ready-to-eat meats. These and other examples underscore the necessity of sodium salts, particularly sodium chloride, for the production of safe, wholesome foods. Key literature on the antimicrobial properties of sodium chloride in foods is reviewed here to address the impact of salt and sodium reduction or replacement on microbiological food safety and quality.

  13. Experimental Evaluation of Sodium Silicate-Based Nanosilica against Chloride Effects in Offshore Concrete

    PubMed Central

    Kim, Kyoung-Min; Kim, Hak-Young; Heo, Young-Sun; Jung, Sang-Jin

    2014-01-01

    This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS), on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (−) charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45) is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete. PMID:25574486

  14. Experimental evaluation of sodium silicate-based nanosilica against chloride effects in offshore concrete.

    PubMed

    Kim, Kyoung-Min; Kim, Hak-Young; Heo, Young-Sun; Jung, Sang-Jin

    2014-01-01

    This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS), on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (-) charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45) is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete.

  15. Formation of dioxins during the combustion of newspapers in the presence of sodium chloride and poly(vinyl chloride).

    PubMed

    Yasuhara, A; Katami, T; Okuda, T; Ohno, N; Shibamoto, T

    2001-04-01

    Exhaust gases from the combustion of newspaper alone, from branches of London plane tree alone, and from newspapers mixed with sodium chloride (NaCl), polyethylene, or poly(vinyl chloride) (PVC) were collected. The samples were analyzed for dioxins by gas chromatography/mass spectrometry. Total amounts of dioxins found in the samples were 0.186 ng/g from newspapers alone, 1.42 ng/g from the branches of London plane, 102 ng/g from newspapers impregnated with sodium chloride (CI wt % = 3.1), 101 ng/g from newspapers impregnated with sodium chloride mixed with PVC (Cl wt % = 2.6), and 146 ng/g from newspapers mixed with PVC (Cl wt % = 5.1). Samples with a higher chloride content produced more dioxins, and there is a clear correlation between dioxin formation and chloride content. The amount of dioxins formed in the samples according to the number of chlorides was Cl5 > Cl4 > Cl6 > Cl7 > Cl8 in PCDD isomers and Cl4 > Cl5 > Cl6 > Cl7 > Cl8 in PCDF isomers, except in the case of newspapers alone. Benzofurans composed 78-92% of the total dioxins formed in the exhaust gases. The higher the number of the chlorides, the lower the production of benzofuran observed. NaCl vaporized at the temperature of the flame used for combustion of the samples (760-1080 degrees C). The results indicate that NaCl and PVC contribute significantly to dioxin formation from waste materials combusted in incinerators.

  16. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment

    NASA Astrophysics Data System (ADS)

    Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu

    2018-03-01

    For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.

  17. A chemical reduction approach to the synthesis of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Khan, Ayesha; Rashid, Audil; Younas, Rafia; Chong, Ren

    2016-11-01

    Development of improved methods for the synthesis of copper nanoparticles is of high priority for the advancement of material science and technology. Herein, starch-protected zero-valent copper (Cu) nanoparticles have been successfully synthesized by a novel facile route. The method is based on the chemical reduction in aqueous copper salt using ascorbic acid as reducing agent at low temperature (80 °C). X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements were taken to investigate the size, structure and composition of synthesized Cu nanocrystals, respectively. Average crystallite size of Cu nanocrystals calculated from the major diffraction peaks using the Scherrer formula is about 28.73 nm. It is expected that the outcomes of the study take us a step closer toward designing rational strategies for the synthesis of nascent Cu nanoparticles without inert gas protection.

  18. Chloride Fluxes in Isolated Dialyzed Barnacle Muscle Fibers

    PubMed Central

    DiPolo, R.

    1972-01-01

    Chloride outflux and influx has been studied in single isolated muscle fibers from the giant barnacle under constant internal composition by means of a dialysis perfusion technique. Membrane potential was continually recorded. The chloride outfluxes and influxes were 143 and 144 pmoles/cm2-sec (mean resting potential: 58 mv, temperature: 22°–24°C) with internal and external chloride concentrations of 30 and 541 mM, respectively. The chloride conductance calculated from tracer measurements using constant field assumptions is about fourfold greater than that calculated from published electrical data. Replacing 97% of the external chloride ions by propionate reduces the chloride efflux by 51%. Nitrate ions applied either to the internal or external surface of the membrane slows the chloride efflux. The external pH dependence of the chloride efflux follows the external pH dependence of the membrane conductance, in the range pH 3.9–4.7, increasing with decreasing pH. In the range pH 5–9, the chloride efflux increased with increasing pH, in a manner similar to that observed in frog muscle fibers. The titration curve for internal pH changes in the range 4.0–7.0 was quantitatively much different from that for external pH change, indicating significant asymmetry in the internal and external pH dependence of the chloride efflux. PMID:5074810

  19. Mapping the spatial distribution of chloride deposition across Australia

    NASA Astrophysics Data System (ADS)

    Davies, P. J.; Crosbie, R. S.

    2018-06-01

    The high solubility and conservative behaviour of chloride make it ideal for use as an environmental tracer of water and salt movement through the hydrologic cycle. For such use the spatial distribution of chloride deposition in rainfall at a suitable scale must be known. A number of authors have used point data acquired from field studies of chloride deposition around Australia to construct relationships to characterise chloride deposition as a function of distance from the coast; these relationships have allowed chloride deposition to be interpolated in different regions around Australia. In this paper we took this a step further and developed a chloride deposition map for all of Australia which includes a quantification of uncertainty. A previously developed four parameter model of chloride deposition as a function of distance from the coast for Australia was used as the basis for producing a continental scale chloride deposition map. Each of the four model parameters were made spatially variable by creating parameter surfaces that were interpolated using a pilot point regularisation approach within a parameter estimation software. The observations of chloride deposition were drawn from a literature review that identified 291 point measurements of chloride deposition over a period of 80 years spread unevenly across all Australian States and Territories. A best estimate chloride deposition map was developed from the resulting surfaces on a 0.05 degree grid. The uncertainty in the chloride deposition map was quantified as the 5th and 95th percentile of 1000 calibrated models produced via Null Space Monte Carlo analysis and the spatial variability of chloride deposition across the continent was consistent with landscape morphology. The temporal variability in chloride deposition on a decadal scale was investigated in the Murray-Darling Basin, this highlighted the need for long-term monitoring of chloride deposition if the uncertainty of the continental scale map is

  20. Chloride channels as tools for developing selective insecticides.

    PubMed

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for

  1. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.

    1995-12-31

    The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalystsmore » for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.« less

  2. Method for Derivatization and Detection of Chemical Weapons Convention Related Sulfur Chlorides via Electrophilic Addition with 3-Hexyne.

    PubMed

    Goud, D Raghavender; Pardasani, Deepak; Purohit, Ajay Kumar; Tak, Vijay; Dubey, Devendra Kumar

    2015-07-07

    Sulfur monochloride (S2Cl2) and sulfur dichloride (SCl2) are important precursors of the extremely toxic chemical warfare agent sulfur mustard and classified, respectively, into schedule 3.B.12 and 3.B.13 of the Chemical Weapons Convention (CWC). Hence, their detection and identification is of vital importance for verification of CWC. These chemicals are difficult to detect directly using chromatographic techniques as they decompose and do not elute. Until now, the use of gas chromatographic approaches to follow the derivatized sulfur chlorides is not reported in the literature. The electrophilic addition reaction of sulfur monochloride and sulfur dichloride toward 3-hexyne was explored for the development of a novel derivatization protocol, and the products were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. Among various unsaturated reagents like alkenes and alkynes, symmetrical alkyne 3-hexyne was optimized to be the suitable derivatizing agent for these analytes. Acetonitrile was found to be the suitable solvent for the derivatization reaction. The sample preparation protocol for the identification of these analytes from hexane spiked with petrol matrix was also optimized. Liquid-liquid extraction followed by derivatization was employed for the identification of these analytes from petrol matrix. Under the established conditions, the detection and quantification limits are 2.6 μg/mL, 8.6 μg/mL for S2Cl2 and 2.3 μg/mL, 7.7 μg/mL for SCl2, respectively, in selected ion monitoring (SIM) mode. The calibration curve had a linear relationship with y = 0.022x - 0.331 and r(2) = 0.992 for the working range of 10 to 500 μg/mL for S2Cl2 and y = 0.007x - 0.064 and r(2) = 0.991 for the working range of 10 to 100 μg/mL for SCl2, respectively. The intraday RSDs were between 4.80 to 6.41%, 2.73 to 6.44% and interday RSDs were between 2.20 to 7.25% and 2.34 to 5.95% for S2Cl2 and SCl2, respectively.

  3. Fabrication Of Metal Chloride Cathodes By Sintering

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Di Stefano, Salvador; Bankston, C. Perry

    1992-01-01

    Transition-metal chloride cathodes for use in high-temperature rechargeable sodium batteries prepared by sintering transition-metal powders mixed with sodium chloride. Need for difficult and dangerous chlorination process eliminated. Proportions of transition metal and sodium chloride in mixture adjusted to suit specific requirements. Cathodes integral to sodium/metal-chloride batteries, which have advantages over sodium/sulfur batteries including energy densities, increased safety, reduced material and thermal-management problems, and ease of operation and assembly. Being evaluated for supplying electrical power during peak demand and electric vehicles.

  4. Allergic contact dermatitis from ethyl chloride and benzocaine.

    PubMed

    Carazo, Juan Luis Anguita; Morera, Blanca Sáenz de San Pedro; Colom, Luis Palacios; Gálvez Lozano, José Manuel

    2009-01-01

    Ethyl chloride (EC) or chloroethane (C2H5Cl) is a volatile halogenated hydrocarbon. Reports of contact sensitivity to this gas are infrequent considering its widespread use as a local anesthetic, and it may have a relatively low sensitization potential. Benzocaine is another local anesthetic derivative of the ethyl ester of para-aminobenzoic acid, previously reported as a causative agent of delayed hypersensitivity reactions. We present a patient who developed a generalized itching dermatitis after the application of a medical aerosol containing EC, as well as facial angioedema and tongue swelling after the local application of benzocaine. Patch-test results were positive for EC "as is" (++), benzocaine 5% in petrolatum (++), and caine mix (+++) at 96 hours (day 4). The possibility of cross-sensitization between both drugs would not have been chemically plausible. We report the first published clinical case of contact allergic dermatitis from two chemically unrelated local anesthetics (EC and benzocaine) in the same patient.

  5. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat.

    PubMed

    Cinti, Stefano; Fiore, Luca; Massoud, Renato; Cortese, Claudio; Moscone, Danila; Palleschi, Giuseppe; Arduini, Fabiana

    2018-03-01

    The recent goal of sustainability in analytical chemistry has boosted the development of eco-designed analytical tools to deliver fast and cost-effective analysis with low economic and environmental impact. Due to the recent focus in sustainability, we report the use of low-cost filter paper as a sustainable material to print silver electrodes and to load reagents for a reagent-free electrochemical detection of chloride in biological samples, namely serum and sweat. The electrochemical detection of chloride ions was carried out by exploiting the reaction of the analyte (i.e. chloride) with the silver working electrode. During the oxidation wave in cyclic voltammetry the silver ions are produced, thus they react with chloride ions to form AgCl, while in the reduction wave, the following reaction occurs: AgCl + e - -->Ag + Cl - . These reactions at the electrode surface resulted in anodic/cathodic peaks directly proportional to the chloride ions in solution. Chloride ions were detected with the addition of only 10μL of the sample on the paper-based electrochemical cell, obtaining linearity up to 200mM with a detection limit equal to 1mM and relative standard deviation lower than 10%. The accuracy of the sensor was evaluated in serum and sweat samples, with percentage recoveries between 93 ± 10 and 108 ± 8%. Moreover, the results achieved with the paper-based device were positively compared with those obtained by using the gold standard method (Ion Selective Electrode) adopted in routine clinical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Corrosion behavior of a superduplex stainless steel in chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Dabalà, Manuele; Calliari, Irene; Variola, Alessandra

    2004-04-01

    Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.

  7. Use of bromide:Chloride ratios to differentiate potential sources of chloride in a shallow, unconfined aquifer affected by brackish-water intrusion

    USGS Publications Warehouse

    Andreasen, D.C.; Fleck, W.B.

    1997-01-01

    Brackish water from Chesapeake Bay and its tributaries has entered the Aquia aquifer in east-central Anne Arundel County, Maryland, USA. This determination was made based on chloride analyses of water samples collected in wells screened in the Aquia aquifer between October 1988 and May 1989. The Aquia aquifer, which is composed of fine- to medium-grained sand, is a shallow, unconfined aquifer in this area. Land use is primarily urban, consisting of a mixture of residential and light commercial areas. Associated with the urban setting is the potential for chloride contamination to enter the Aquia aquifer from anthropogenic sources, such as residential septic-tank effluent, leaky public sewer lines, road-deicing salt, stormwater infiltration basins, and domestic water-conditioning recharge effluent. In order to map the distribution of bay-water intrusion in the Aquia aquifer, chloride derived from Chesapeake Bay was differentiated from chloride derived from anthropogenic sources by comparing the ratio of dissolved bromide to dissolved chloride (bromide:chloride) in groundwater to the distinctive ratio in Chesapeake Bay water. Two additional factors considered in determining the source of the chloride were nitrogen concentrations and well-screen positions of sampled wells in relation to the estimated depth of the fresh-water/brackish-water interface. Of 36 Aquia-aquifer water samples with chloride concentrations greater than 30 mg/L, 22 had bromide:chloride ratios similar to the ratio in Chesapeake Bay water, an indication that bay water is the primary source of the chloride. Of the other 14 samples with bromide:chloride ratios dissimilar to the ratio in Chesapeake Bay water, seven were from wells where screen positions were substantially above the estimated fresh-water/brackish-water interface. Three of these samples had nitrogen concentrations (as nitrite plus nitrate) greater than 3.0 mg/L, an indication that chloride in these groundwater samples comes from

  8. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate.

    PubMed

    Kolb, Marit; Bahadir, Müfit; Teichgräber, Burkhard

    2017-10-01

    Worldwide, the standard methods for the determination of the important wastewater parameter chemical oxygen demand (COD) are still based on the use of the hazardous chemicals, mercury sulfate and chromium(VI). However, due to their properties they are meanwhile classified as "priority pollutants" and shall be phased out or banned in the frame of REACH (current European Chemical Law: Registration, Evaluation, Authorization and restriction of Chemicals) by the European Union. Hence, a new wet-chemical method free of mercury and chromium(VI) was developed. Manganese(III) was used as oxidant and silver nitrate for the removal of chloride ions. The quantification was performed by back titration of manganese(III) with iron(II) as done in the standard method. In order to minimize losses of organic substances during the precipitation of silver chloride, suspended and colloid organic matter had to be separated by precipitation of aluminum hydroxide in a first step. In these cases, two fractions, one of the suspended and colloid matters and a second of the dissolved organic substances, are prepared and oxidized separately. The method was tested with potassium hydrogen phthalate (KHP) as conventional COD reference substance and different types of wastewater samples. The oxidation of KHP was reproducible in a COD range of 20-500 mg/L with a mean recovery rate of 88.7% in comparison to the standard COD method (DIN 38409-41). Also in presence of 1000 mg/L chloride a recovery rate of 84.1% was reached. For a series of industrial and municipal wastewater samples a high correlation (R 2  = 0.9935) to the standard method with a mean recovery rate of 78.1% (±5.2%) was determined. Even though the results of the new method are not 100% of the standard method, its high correlation to the standard method and reproducibility offers an environmentally benign alternative method with no need to purchase new laboratory equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    PubMed

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  10. Ocular toxicity of beta-blockers and benzalkonium chloride in pigmented rabbits: electrophysiological and morphological studies.

    PubMed

    Chou, A; Hori, S; Takase, M

    1985-01-01

    Subconjunctival injection of 0.2 ml of the following solutions was carried out once a day for two weeks in the albino and pigmented rabbit: commercial 0.5% timolol or 1% befunolol ophthalmic solutions, both containing benzalkonium chloride, and also these drug solutions containing no preservative, ophthalmic base solutions containing benzalkonium chloride, physiological saline solution or phosphate buffer solution. One week after daily injections of the commercial drug solutions or base solutions with benzalkonium chloride, the electroretinogram (ERG) showed a marked reduction in the a- and b-wave amplitudes in the pigmented rabbit, but the ERG changes were slight in the albino rabbit. After two weeks of injections, histological studies of the pigmented rabbit eyes revealed retinal detachment, visual cell loss and atrophy of the retinal pigment epithelium and choroid; the changes in the albino rabbit eyes were minimal. Injections of the beta-blockers containing no benzalkonium resulted in no significant changes in the ERG or in the tissue structures of all rabbits. Injections of only physiological saline or phosphate buffer had no deleterious effects. Therefore, the ocular toxicity of the beta-blockers was thought to be minor and the toxic effects seen in this study were thought to be due to benzalkonium chloride, which possibly accumulates in the ocular pigments.

  11. Damage development, phase changes, transport properties, and freeze-thaw performance of cementitious materials exposed to chloride based salts

    NASA Astrophysics Data System (ADS)

    Farnam, Yaghoob

    Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical

  12. The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose.

    PubMed

    Penza, M; Jeremic, M; Marrazzo, E; Maggi, A; Ciana, P; Rando, G; Grigolato, P G; Di Lorenzo, D

    2011-08-15

    Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimated human intake (0.5μg/kg). At higher doses (50-500μg/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ERα or ERβ, TBT (in a dose range of 1-100nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ERα in undifferentiated preadipocytic cells and by ERβ in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Mechanisms of sulfate removal from subsurface calcium chloride brines: Heletz-Kokhav oilfields, Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrieli, I.; Starinsky, A.; Spiro, B.

    1995-09-01

    The evolution of the Ca-chloride brines in the Heletz Formation, Lower Cretaceous, in the southern coastal plain of Israel was reconstructed through the study of its sulfate concentration and isotopic composition. Particular emphasis was given to the brine-oil interaction in the oilfields and to the sulfate depletion and lower SO{sub 4}/Cl ratio in brines in contact with hydrocarbons (oil brines) relative to {open_quotes}oil-free{close_quotes} from dry wells in the same oilfields. A method is presented for a calculation of the amount of sulfate removed from the original seawater in the various stages of its evolution to Ca-chloride brine. Eastward migration ofmore » the Messinian Ca-Chloride brine into the Heletz Formation was accompanied by dolomitization of the country rock. Final depletion of sulfate from the brines took place, and possibly still occurs, in the presence of crude oil in the oilfields. The two oil-producing fields, Heletz and Kokhav, occupy different areas on a Rayleigh distillation diagram. Sulfate depletion in both fields is accompanied by an increase in {delta}{sup 34}S{sub SO}{sub 4}, which reaches a maximum values of 59{per_thousand}. The above correlation is explained by bacterial sulfate reduction facilitated by the contact with the crude. Samples collected from the same boreholes at time intervals of several months show two opposing trends: sulfate concentration decrease accompanied by increase in {delta}{sup 34}S{sub SO}{sub 4}, and vice versa. While the first can be explained as in situ bacterial sulfate reduction, the latter attest to subsurface brine migration, as would be expected in oil-producing fields.« less

  14. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  15. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  16. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  17. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  18. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  19. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  20. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  1. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  2. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  3. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  4. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  5. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  6. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  7. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  8. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  9. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acids to form amines that are subsequently reacted with methyl chloride to form the quaternary ammonium... then reacted with 2-ethylhexanal, reduced, methylated, and subsequently reacted with methyl chloride to...

  10. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acids to form amines that are subsequently reacted with methyl chloride to form the quaternary ammonium... then reacted with 2-ethylhexanal, reduced, methylated, and subsequently reacted with methyl chloride to...

  11. A Facile Preparation of Imidazolinium Chlorides

    PubMed Central

    Kuhn, Kevin M.; Grubbs, Robert H.

    2009-01-01

    A process for the preparation of symmetric and unsymmetric imidazolinium chlorides that involves reaction of a formamidine with dichloroethane and a base (a) is described. This method makes it possible to obtain numerous imidazolinium chlorides under solvent-free reaction conditions and in excellent yields with purification by simple filtration. Alternatively, symmetric imidazolinium chlorides can be prepared directly in moderate yields from substituted anilines by utilizing half of the formamidine intermediate as sacrificial base (b). PMID:18412354

  12. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  13. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  14. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  15. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  16. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. Copyright © 2016. Published by Elsevier B.V.

  17. Synthesis of nucleosides and oligonucleotides containing adducts of acrolein and vinyl chloride.

    PubMed

    Nechev, L V; Harris, C M; Harris, T M

    2000-05-01

    Vinyl chloride and acrolein are important industrial chemicals. Both form DNA adducts, vinyl chloride after enzymatic oxidation to chlorooxirane and acrolein by direct reaction. Reaction at the N(2) position of guanine is a major pathway. The resulting 2-oxoethyl and 3-oxopropyl adducts cyclize spontaneously to hydroxyethano and hydroxypropano derivatives, respectively. The two cyclic adducts have been detected in DNA exposed to these mutagens. A new method has been developed for the synthesis of deoxyguanosine adducts of chlorooxirane and acrolein, as well as oligonucleotides containing these adducts. Reaction of O(6)-[(trimethylsilyl)ethyl]-2-fluoro-2'-deoxyinosine with the appropriate aminodiol followed by oxidative cleavage of the diol with NaIO(4) gave the adducts in excellent yields. Reaction of oligonucleotides containing the halonucleoside with the aminodiols followed by NaIO(4) efficiently created the nucleosides in the oligonucleotides. Deoxyadenosine adducts were created similarly using 6-chloropurine 9-(2'-deoxyriboside).

  18. [Jejunal myenteric denervation induced by benzalkonium chloride].

    PubMed

    Ramalho, F S; Santos, G C; Ramalho, L N; Kajiwara, J K; Zucoloto, S

    1994-01-01

    The effects of benzalkonium chloride (BAC) on the number of myenteric neurons, muscle thickness and external perimeter after acute (until 10 days after BAC application) and chronic (30 and 60 days after BAC application) denervation of the proximal jejunum were determined in rats. There was a significant reduction in the number of myenteric neurons of all segments treated with BAC. The extent of denervation varied along the time, and it was reduced in the denervated segments of the chronic group in comparison with the acute group. This may be due to the neuroplasticity phenomenon appearing during the chronic phase. Myenteric denervation increased the thickness of the propria muscle layer, especially in the longitudinal muscle layer, suggesting a higher sensitivity of this layer to myenteric denervation.

  19. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    PubMed Central

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  20. High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.

    PubMed

    Dastidar, Subham; Egger, David A; Tan, Liang Z; Cromer, Samuel B; Dillon, Andrew D; Liu, Shi; Kronik, Leeor; Rappe, Andrew M; Fafarman, Aaron T

    2016-06-08

    Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.

  1. Skin sterility after application of ethyl chloride spray.

    PubMed

    Polishchuk, Daniil; Gehrmann, Robin; Tan, Virak

    2012-01-18

    Ethyl chloride topical anesthetic spray is labeled as nonsterile, yet it is widely used during injection procedures performed in an outpatient setting. The purpose of this study was to investigate the sterility of ethyl chloride topical anesthetic spray applied before an injection. Our a priori hypothesis was that application of the spray after the skin has been prepared would not alter the sterility of the injection site. We conducted a prospective, blinded, controlled study to assess the effect of ethyl chloride spray on skin sterility. Fifteen healthy adult subjects (age, twenty-three to sixty-one years) were prepared for mock injections into both shoulders and both knees, although no injection was actually performed. Three culture samples were obtained from each site on the skin: one before skin preparation with isopropyl alcohol, one after skin preparation and before application of ethyl chloride, and one after ethyl chloride had been sprayed on the site. In addition, the sterility of the ethyl chloride was tested directly by inoculating cultures with spray from the bottles. Growth occurred in 70% of the samples obtained before skin preparation, 3% of the samples obtained after skin preparation but before application of ethyl chloride, and 5% of the samples obtained after the injection site had been sprayed with ethyl chloride. The percentage of positive cultures did not increase significantly after application of ethyl chloride (p = 0.65). Spraying of ethyl chloride directly on agar plates resulted in growth on 13% of these plates compared with 11% of the control plates; this difference was also not significant (p = 0.80). Although ethyl chloride spray is not sterile, its application did not alter the sterility of the injection sites in the shoulder and knee.

  2. Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis

    USGS Publications Warehouse

    Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S.

    2008-01-01

    Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.

  3. Occupational asthma due to soft corrosive soldering fluxes containing zinc chloride and ammonium chloride.

    PubMed Central

    Weir, D C; Robertson, A S; Jones, S; Burge, P S

    1989-01-01

    Two cases of occupational asthma due to soft corrosive soldering fluxes used in metal jointing are described in which the diagnosis was based on work related deterioration in daily peak expiratory flow rate and positive responses in bronchial provocation tests. Both fluxes contained ammonium chloride and zinc chloride. Occupational asthma provoked by these agents has not previously been reported. PMID:2705153

  4. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    DOE PAGES

    Nagabandi, N.; Yegin, C.; Feng, X.; ...

    2018-01-31

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques; including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. Whilemore » the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3x10-6 m2/K-s for MBCA-BNNS and 8.5x10-7 m2/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.« less

  5. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials.

    PubMed

    Nagabandi, N; Yegin, C; Feng, X; King, C; Oh, J K; Scholar, E A; Narumanchi, S; Akbulut, M

    2018-03-09

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m -1 K and 306-321 W m -1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10 -6 m 2 K -1 s for MBCA-BNNS and 8.5 × 10 -7 m 2 K -1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  6. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    NASA Astrophysics Data System (ADS)

    Nagabandi, N.; Yegin, C.; Feng, X.; King, C.; Oh, J. K.; Scholar, E. A.; Narumanchi, S.; Akbulut, M.

    2018-03-01

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  7. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagabandi, N.; Yegin, C.; Feng, X.

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques; including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. Whilemore » the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3x10-6 m2/K-s for MBCA-BNNS and 8.5x10-7 m2/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.« less

  8. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    NASA Astrophysics Data System (ADS)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  9. Synthesis and characterization of CoPt nanoparticles prepared by room temperature chemical reduction with PAMAM dendrimer as template.

    PubMed

    Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C

    2010-08-01

    We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.

  10. Chloride Blood Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... https://medlineplus.gov/labtests/chloridebloodtest.html Chloride Blood Test To use the sharing features on this page, please enable JavaScript. What is a Chloride Blood Test? A chloride blood test measures the amount of ...

  11. Sodium chloride and hypertension.

    PubMed

    Huang, Y W

    1997-09-01

    The hypothesis that sodium chloride deficiency, and not its overuse, is prime cause of hypertension and arteriosclerosis is presented. In the author's home town--a farflung part of northern China--hypertension is a rare disease and arteriosclerosis is a virtually unknown condition. The average intake of sodium chloride for these people is > 30 g/day compared with the typical sodium chloride intake of 10-12 g per day in the USA. When the 10-12 g salt ingested is mixed with the average daily water intake (2100 ml), 0.47% to 0.57% saline mixture is produced, which is hypotonic to extracellular fluid in salt content. Thus sodium conservation becomes necessary. All the hormones and ions involved in sodium conservation are inducers of hypertension; these include aldosterone, angiotensin 11, glucocorticoids, catecholamine, and vasopression. Plus, potassium waste, induced under the influence of aldosterone excess, participates in the development of hypertension.

  12. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    USGS Publications Warehouse

    Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.

    2008-01-01

    Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.

  13. Atmospheric chloride: Its implication for foliar uptake and damage

    NASA Astrophysics Data System (ADS)

    McWilliams, E. L.; Sealy, R. L.

    Atmospheric chloride is inversely related to distance from the Texas coast; r2 = 0.86. Levels of atmospheric chloride are higher in the early summer than in the winter because of salt storms. Leaf chloride l'evels of Tillandsia usneoides L. (Spanish moss) reflect the atmospheric chloride levels; r2 = 0.78. The importance of considering the effect of atmospheric chloride on leaf damage to horticultural crops is discussed.

  14. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: possible allosteric regulation and a conserved structural motif for the chloride-binding site.

    PubMed

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-03-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  15. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, H.; Qiu, Y; Philo, J

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. Amore » new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.« less

  16. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: Possible allosteric regulation and a conserved structural motif for the chloride-binding site

    PubMed Central

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666

  17. [The toxic effect of methylmercuric chloride on the organism in light of research on the hematopoietic system and metabolism of carbohydrates and lipids in heart and liver].

    PubMed

    Janik, A

    1991-01-01

    The purpose of our experiments was to demonstrate possible changes in the activities of the hematopoietic system and the metabolism of the cardiac muscle and liver in the condition of the subacute poisoning with the methylmercuric acid. The tests were performed on 310 rats. The animals were administered the methylmercuric chloride per os in three different doses during three weeks. The activity of the hematopoietic system was analysed on the basis of selected factors concerning the erythrocytic system (the number of reticulocytes and erythrocytes, hematocrit, hemoglobin concentration and the osmotic resistance of erythrocytes), the leukocytic system (number, percentage composition and the osmotic resistance of leukocytes), and the thrombocytes. The alterations in the cardiac muscle and the liver were analysed on the basis of selected elements of the carbohydrate and lipid metabolisms. The indicators of the carbohydrate metabolism were glycogen, pyruvic, lactic, and citric acids. For the lipid metabolism we determined the concentration of free fatty acids, triglycerides, cholesterol and phospholipids. A tendency to increase the minimum osmotic resistance of erythrocytes appeared under the influence of the methylmercuric chloride, probably as a result of the binding between the absorbed methylmercury with lipids and with the proteins of the erythrocyte cell membranes. As to the percentage composition of leukocytes, we observed the reduction of the number of eosinophils in the peripheral blood. The rats poisoned with the methylmercuric chloride reacted to the administered foreign toxic substance with the excitation of their reticuloendothelial systems which was demonstrated by a very clear increase of the reticular cells number. We found a reduction of the content of the basic energy substrate in the cardiac muscle, i.e. the free fatty acids, with the parallel increase of triglyceride concentration. The reductions of the glycogen and lactic acid concentrations were

  18. Electron donor preference of a reductive dechlorinating consortium

    USGS Publications Warehouse

    Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.

    2005-01-01

    A wetland sediment-derived microbial consortium was developed by the USGS and propagated in vitro to large quantities by SiREM Laboratory for use in bioaugmentation applications. The consortium had the capacity to completely dechlorinate 1,1,2,2-tetrachloroethene, tetrachloroethylene, trichloroethylene, 1,1,2-trichloroethane, cis- and trans-1,2-dichoroethylene, 1.1-dichloroethylene, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride and chloroform. A suite of electron donors with characteristics useful for bioaugmentation applications was tested. The electron donors included lactate (the donor used during WBC-2 development), ethanol, chitin (Chitorem???), hydrogen releasing compound (HRC???), emulsified vegetable oil (Newman Zone???), and hydrogen gas. Ethanol, lactate, and chitin were particularly effective with respect to stimulating, supporting, and sustaining reductive dechlorination of the broad suite of chemicals that WBC-2 biodegraded. Chitorem??? was the most effective "slow release" electron donor tested. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  19. Acid Chlorides as Formal Carbon Dianion Linchpin Reagents in the Aluminum Chloride-Mediated Dieckmann Cyclization of Dicarboxylic Acids.

    PubMed

    Armaly, Ahlam M; Bar, Sukanta; Schindler, Corinna S

    2017-08-04

    The development of acid chlorides as formal dianion linchpin reagents that enable access to cyclic 2-alkyl- and 2-acyl-1,3-alkanediones from dicarboxylic acids is described herein. Mechanistic experiments relying on 13 C-labeling studies confirm the role of acid chlorides as carbon dianion linchpin reagents and have led to a revised reaction mechanism for the aluminum(III)-mediated Dieckmann cyclization of dicarboxylic acids with acid chlorides.

  20. [Forensic Analysis for 54 Cases of Suxamethonium Chloride Poisoning].

    PubMed

    Zhao, Y F; Zhao, B Q; Ma, K J; Zhang, J; Chen, F Y

    2017-08-01

    To observe and analyze the performance of forensic science in the cases of suxa- methonium chloride poisoning, and to improve the identification of suxamethonium chloride poisoning. Fifty-four cases of suxamethonium chloride poisoning were collected. The rules of determination of suxamethonium chloride poisoning were observed by the retrospective analysis of pathological and toxicological changes as well as case features. The pathological features of suxamethonium chloride poisoning were similar to the general changes of sudden death, which mainly included acute pulmonary congestion and edema, and partly showed myocardial disarray and fracture. Suxamethonium chloride could be detected in the heart blood of all cases and in skin tissue of part cases. Suxa-methonium chloride poisoning has the characteristics with fast death and covert means, which are difficult to rescue and easily miss inspection. For the cases of sudden death or suspicious death, determination of suxamethonium chloride should be taken as a routine detection index to prevent missing inspection. Copyright© by the Editorial Department of Journal of Forensic Medicine

  1. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... basis and analyzes the samples with gas chromatography or, if the owner or operator assumes that all... concentration of vinyl chloride in the exhaust gases does not exceed 10 ppm (average for 3-hour period), or... chloride in the exhaust gases does not exceed 10 ppm (average for 3-hour period), or equivalent as provided...

  2. [Axillary hyperhidrosis--efficacy and tolerability of an aluminium chloride antiperspirant. Prospective evaluation on 20 patients with idiopathic axillary hyperhidrosis].

    PubMed

    Streker, M; Reuther, T; Verst, S; Kerscher, M

    2010-02-01

    The purpose of this study was to evaluate the efficacy and tolerability of aluminium chloride gel for treatment of axillary hyperhidrosis. A total of 20 patients aged 22-38 (mean age: 26.9+/-4.3) with idiopathic axillary hyperhidrosis were included and treated with an antiperspirant (Sweat-off, Sweat-off GmbH, Hügelsheim). Study duration was 42 days. Treatment efficacy was evaluated clinically, as well as by starch-iodine test, gravimetric analysis and evaluation of the skin surface pH. After treatment there was a significant clinical improvement accompanied by significant qualitative and quantitative reduction of sweat as well as a significant reduction of skin surface pH. Except for slight skin irritation in 6 patients, there were no other side effects. Patient satisfaction improved markedly during the study. Treatment of axillary hyperhidrosis with aluminium chloride is an effective, safe and inexpensive treatment modality.

  3. Ferric chloride modified zeolite in wastewater on Cr (VI) adsorption characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqing; Zhang, Kang; Chen, Wen; Zhang, Hua

    2018-03-01

    Zeolite was modified by ferric chloride(Fe-Z) removal Cr (VI) ion from wastewater. The results showed that the effect of Cr(VI) adsorption on modified zeolite depended significantly on pH. It is favorable for the adsorption of Cr(VI) in acid condition. The Langmuir isotherm model has high fitting accuracy with experimental data, demonstrated that is monolayer adsorption and chemical adsorption.The pseudo-second-order equation provided the best correlation to the data. The model can describe the adsorption reaction process well.

  4. Electrostatic N-95 respirator filter media efficiency degradation resulting from intermittent sodium chloride aerosol exposure.

    PubMed

    Moyer, E S; Bergman, M S

    2000-08-01

    The effects of intermittently loading small masses of sodium chloride aerosol on the filtration efficiency of N-95 filtering facepiece respirators was investigated. The National Institute for Occupational Safety and Health (NIOSH) certifies that N-95 respirators must provide at least 95 percent filtration efficiency against a sodium chloride aerosol challenge as per the respirator certification (42 CFR 84) test criteria. N-95 respirators are specified for protection against solid and water-based particulates (i.e., non-oil aerosols). New N-95 respirators from three different manufacturers were loaded with 5 +/- 1 mg of sodium chloride aerosol one day a week, over a period of weeks. Aerosol loading and penetration measurements were performed using the TSI 8130 Filter Tester. Respirators were stored uncovered on an office desktop outside the laboratory. To investigate environmental and temporal effects of filters being stored without sodium chloride exposure, control respirators were stored on the desk for various lengths of time before being initiated into weekly testing. For all manufacturers' respirators, the controls showed similar initial penetrations on their day of initiation (day zero) to those of the study samples on day zero. As the controls were tested weekly, they showed similar degradation rates to those of the study samples. Results show that some of the manufacturers' models had penetrations of greater than 5 percent when intermittently exposed to sodium chloride aerosol. It is concluded that intermittent, low-level sodium chloride aerosol loading of N-95 respirators has a degrading effect on filter efficiency. This reduction in filter efficiency was not accompanied by a significant increase in breathing resistance that would signal the user that the filter needs to be replaced. Furthermore, it was noted that the effect of room storage time prior to initial exposure was much less significant.

  5. The Effect of WNK4 on the Na+-Cl- Cotransporter Is Modulated by Intracellular Chloride.

    PubMed

    Bazúa-Valenti, Silvana; Chávez-Canales, María; Rojas-Vega, Lorena; González-Rodríguez, Xochiquetzal; Vázquez, Norma; Rodríguez-Gama, Alejandro; Argaiz, Eduardo R; Melo, Zesergio; Plata, Consuelo; Ellison, David H; García-Valdés, Jesús; Hadchouel, Juliette; Gamba, Gerardo

    2015-08-01

    It is widely recognized that the phenotype of familial hyperkalemic hypertension is mainly a consequence of increased activity of the renal Na(+)-Cl(-) cotransporter (NCC) because of altered regulation by with no-lysine-kinase 1 (WNK1) or WNK4. The effect of WNK4 on NCC, however, has been controversial because both inhibition and activation have been reported. It has been recently shown that the long isoform of WNK1 (L-WNK1) is a chloride-sensitive kinase activated by a low Cl(-) concentration. Therefore, we hypothesized that WNK4 effects on NCC could be modulated by intracellular chloride concentration ([Cl(-)]i), and we tested this hypothesis in oocytes injected with NCC cRNA with or without WNK4 cRNA. At baseline in oocytes, [Cl(-)]i was near 50 mM, autophosphorylation of WNK4 was undetectable, and NCC activity was either decreased or unaffected by WNK4. A reduction of [Cl(-)]i, either by low chloride hypotonic stress or coinjection of oocytes with the solute carrier family 26 (anion exchanger)-member 9 (SLC26A9) cRNA, promoted WNK4 autophosphorylation and increased NCC-dependent Na(+) transport in a WNK4-dependent manner. Substitution of the leucine with phenylalanine at residue 322 of WNK4, homologous to the chloride-binding pocket in L-WNK1, converted WNK4 into a constitutively autophosphorylated kinase that activated NCC, even without chloride depletion. Elimination of the catalytic activity (D321A or D321K-K186D) or the autophosphorylation site (S335A) in mutant WNK4-L322F abrogated the positive effect on NCC. These observations suggest that WNK4 can exert differential effects on NCC, depending on the intracellular chloride concentration. Copyright © 2015 by the American Society of Nephrology.

  6. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application

    NASA Astrophysics Data System (ADS)

    Kolesar, Katheryn R.; Mattson, Claire N.; Peterson, Peter K.; May, Nathaniel W.; Prendergast, Rashad K.; Pratt, Kerri A.

    2018-03-01

    The application of salts and salty brines to roads is common practice during the winter in many urban environments. Road salts can become aerosolized, thereby injecting sodium and chloride particulate matter (PM) into the atmosphere. Here, data from the United States Environmental Protection Agency Chemical Speciation Monitoring Network were used to assess temporal trends of sodium and chloride PM2.5 (PM < 2.5 μm) at 25 locations across the United States to investigate the ubiquity of road salt aerosols. Sodium and chloride PM2.5 concentrations were an average of three times higher in the winter, as compared to the summer, for locations with greater than 25 cm of average annual snowfall. Winter urban chloride PM2.5 concentrations attributed to road salt can even sometimes rival those of coastal sea spray aerosol-influenced sites. In most snow-influenced cities, chloride and sodium PM2.5 concentrations were positively correlated with snowfall; however, this relationship is complicated by differences in state and local winter maintenance practices. This study highlights the ubiquity of road salt aerosols in the United States and their potential impact on wintertime urban air quality, particularly due to the potential for multiphase reactions to liberate chlorine from the particle-phase. Since road salt application is a common practice in wintertime urban environments across the world, it is imperative that road salt application emissions, currently not included in inventories, and its impacts be investigated through measurements and modeling.

  7. Facile Reductive Silylation of UO22+ to Uranium(IV) Chloride.

    PubMed

    Kiernicki, John J; Zeller, Matthias; Bart, Suzanne C

    2017-01-19

    General reductive silylation of the UO 2 2+ cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO 2 X 2 (L) 2 (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R 3 Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R 3 SiO) 2 UX 2 (L) 2 in high yields. Support is included for the key step in the process, reduction of U VI to U V . This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl 4 or two equivalents of Me 2 SiCl 2 results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Formation of 7-(2-oxoethyl) guanine from lipid peroxidation and vinyl chloride exposure in male sprague dawley rats.

    EPA Science Inventory

    With a development of a new sensitive LC-MS/MS method to analyze 7-(2-oxoethylguanine) (7OEG), we confirmed and differentiated 7-0EG DNA adduct formation endogenously from lipid peroxidation and exogenously from Vinyl Chloride (VC) exposure. VC is an industrial chemical that is ...

  9. Buried chloride stereochemistry in the Protein Data Bank

    PubMed Central

    2014-01-01

    Background Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. Results The analysis of a non-redundant set (pairwise sequence identity?chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. Conclusions The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions. PMID:25928393

  10. Buried chloride stereochemistry in the Protein Data Bank.

    PubMed

    Carugo, Oliviero

    2014-09-23

    Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. The analysis of a non-redundant set (pairwise sequence identity < 30%) of 1739 high resolution (<2 Å) crystal structures that contain at least one chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions.

  11. Investigation of oxygen reduction and methanol oxidation reaction activity of PtAu nano-alloy on surface modified porous hybrid nanocarbon supports

    NASA Astrophysics Data System (ADS)

    Parambath Vinayan, Bhaghavathi; Nagar, Rupali; Ramaprabhu, Sundara

    2016-09-01

    We investigate the electrocatalytic activity of PtAu alloy nanoparticles supported on various chemically modified carbon morphologies towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The surface-modification of graphene nanosheets (f-G), multi-walled carbon nanotubes (f-MWNTs) and (graphene nanosheets-carbon nanotubes) hybrid support (f-G-MWNTs) were carried out by soft functionalization method using a cationic polyelectrolyte poly-(diallyldimethyl ammonium chloride). The Pt and PtAu alloy nanoparticles were dispersed over chemically modified carbon supports by sodium-borohydride assisted modified polyol reduction method. The electrochemical performance of all electrocatalysts were studied by half- and full-cell proton exchange membrane fuel cell (PEMFC) measurements and PtAu/f-G-MWNTs catalyst comparatively yielded the best catalytic performance. PEMFC full cell measurements of PtAu/f-G-MWNTs cathode electrocatalyst yield a maximum power density of 319 mW cm-2 at 60 °C without any back pressure,which is 2.1 times higher than that of cathode electrocatalyst Pt on graphene support. The high ORR and MOR activity of PtAu/f-G-MWNTs electrocatalyst is due to the alloying effect and inherent beneficial properties of porous hybrid nanocarbon support.

  12. Highly Stable and Tunable Chemical Doping of Multilayer WS2 Field Effect Transistor: Reduction in Contact Resistance.

    PubMed

    Khalil, Hafiz M W; Khan, Muhammad Farooq; Eom, Jonghwa; Noh, Hwayong

    2015-10-28

    The development of low resistance contacts to 2D transition-metal dichalcogenides (TMDs) is still a big challenge for the future generation field effect transistors (FETs) and optoelectronic devices. Here, we report a chemical doping technique to achieve low contact resistance by keeping the intrinsic properties of few layers WS2. The transfer length method has been used to investigate the effect of chemical doping on contact resistance. After doping, the contact resistance (Rc) of multilayer (ML) WS2 has been reduced to 0.9 kΩ·μm. The significant reduction of the Rc is mainly due to the high electron doping density, thus a reduction in Schottky barrier height, which limits the device performance. The threshold voltage of ML-WS2 FETs confirms a negative shift upon the chemical doping, as further confirmed from the positions of E(1)2g and A1g peaks in Raman spectra. The n-doped samples possess a high drain current of 65 μA/μm, with an on/off ratio of 1.05 × 10(6) and a field effect mobility of 34.7 cm(2)/(V·s) at room temperature. Furthermore, the photoelectric properties of doped WS2 flakes were also measured under deep ultraviolet light. The potential of using LiF doping in contact engineering of TMDs opens new ways to improve the device performance.

  13. 46 CFR 154.1745 - Vinyl chloride: Transferring operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride: Transferring operations. 154.1745 Section 154.1745 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Operating Requirements § 154.1745 Vinyl chloride: Transferring operations. A vessel carrying vinyl chloride...

  14. Effect of sodium chloride on the glass transition of condensed starch systems.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert; Kasapis, Stefan

    2015-10-01

    The present investigation deals with the structural properties of condensed potato starch-sodium chloride systems undergoing a thermally induced glass transition. Sample preparation included hot pressing at 120°C for 7 min to produce extensive starch gelatinisation. Materials covered a range of moisture contents from 3.6% to 18.8%, which corresponded to relative humidity values of 11% and 75%. Salt addition was up to 6.0% in formulations. Instrumental work was carried out with dynamic mechanical analysis in tension, modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy and wide angle X-ray diffraction. Experimental conditions ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of sodium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Sodium ions interact with chemical moieties of the polysaccharide chain to alter considerably structural properties, as compared to the starch-water matrix. Copyright © 2015. Published by Elsevier Ltd.

  15. Reduction of Convection in Closed Tube Vapor Transport Experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Tan, Sarwa Bakti; Shin, In-Seok; Kim, Joo Soo

    2002-01-01

    The primary objective of this effort was to develop a method for suppressing convective flows during the growth of mercurous chloride crystals by vapor transport in closed tubes to levels approaching those obtained in the microgravity environment. Mercurous chloride was chosen because it is a technologically interesting acoustical optical material whose optical properties are believed to be affected by convective flows. Since the Grashof number scales as the cube of the smallest dimension in the flow system, reduction of the size scale can be extremely effective in reducing unwanted convective flows. However, since materials of practical interest must be grown at least on the cm scale, reduction of the overall growth system is not feasible. But if the region just above the growing crystal could be restricted to a few mm, considerable reduction in flow velocity would result. By suspending an effusive barrier in the growth ampoule just above the growth interface, it should be possible to reduce the convective velocity in this vicinity to levels approaching flows in microgravity. If successful, this growth technique will offer a screening test for proposed space experiments that involve vapor transport to see if reduction of convection will result in improved material and will set a new standard against which the improvements obtained in microgravity may be judged. In addition, it may provide an improved method for preparing materials on Earth whose growth is affected adversely by convection. If the properties of this material can be improved there is a potential commercial interest from Brimrose Inc., who has agreed to fabricate and test devices from the crystals we have grown. This report describes the development of the growth facility, the purification processes developed for preparing the starting material, and the results from growth experiments with and without the effusive baffle. Mercurous chloride turned out to be a more difficult material to deal with than

  16. TOLERANCE OF STAPHYLOCOCCUS AUREUS TO SODIUM CHLORIDE

    PubMed Central

    Parfentjev, I. A.; Catelli, Anna R.

    1964-01-01

    Parfentjev, I. A. (Institute of Applied Biology, New York, N.Y.), and Anna R. Catelli. Tolerance of Staphylococcus aureus to sodium chloride. J. Bacteriol. 88:1–3. 1964.—The tolerance of Staphylococcus aureus to high concentrations of sodium chloride in liquid medium has been reported. We found that S. aureus grows at 37 C in Tryptose Phosphate Broth saturated with sodium chloride. No difference was noticed between possibly pathogenic and nonpathogenic strains. Under the conditions of our tests, no changes in the original properties of S. aureus strains occurred. In contrast, solutions of sodium chloride in distilled water were injurious to staphylococci and killed most of these organisms in 1 hr. Staphylococci were killed faster at 37 C than at room temperature in a solution of 0.85% sodium chloride in water. Addition of traces of Tryptose Phosphate Broth had a protective effect and prolonged the life of these organisms in physiological saline. All tests were performed at pH 7.2. PMID:14197887

  17. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Quaternary ammonium chloride combination. 172.165... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food additive, quaternary ammonium chloride combination, may be safely used in food in accordance with the...

  18. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.7270 1-propanaminium, 3-amino-, N,N,N-trimethyl-N...

  19. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.7270 1-propanaminium, 3-amino-, N,N,N-trimethyl-N...

  20. Vinyl chloride

    Integrated Risk Information System (IRIS)

    EPA / 635R - 00 / 004 TOXICOLOGICAL REVIEW OF VINYL CHLORIDE ( CAS No . 75 - 01 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) May 2000 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in accordance w

  1. Electrochemical research in chemical hydrogen storage materials: Sodium borohydride and organotin hydrides

    NASA Astrophysics Data System (ADS)

    McLafferty, Jason

    Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from "spent fuel," i.e., the material remaining after discharge of hydrogen. In this thesis, some research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this thesis, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described.

  2. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  3. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  4. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  5. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  6. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  7. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  8. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  9. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  10. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  11. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  12. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  13. Reduction, partial evaporation, and spattering - Possible chemical and physical processes in fluid drop chondrule formation

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1983-01-01

    The major chemical differences between fluid drop chondrules and their probable parent materials may have resulted from the loss of volatiles such as S, H2O, Fe, and volatile siderophile elements by partial evaporation during the chondrule-forming process. Vertical access solar furnace experiments in vacuum and hydrogen have demonstrated such chemical fractionation trends using standard rock samples. The formation of immiscible iron droplets and spherules by in situ reduction of iron from silicate melt and the subsequent evaporation of the iron have been observed directly. During the time that the main sample bead is molten, many small spatter spherules are thrown off the main bead, thereby producing many additional chondrule-like melt spherules that cool rapidly and generate a population of spherules with size frequency distribution characteristics that closely approximate some populations of fluid drop chondrules in chondrites. It is possible that spatter-produced fluid drop chondrules dominate the meteoritic fluid drop chondrule populations. Such meteoritic chondrule populations should be chemically related by various relative amounts of iron and other volatile loss by vapor fractionation.

  14. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides

    PubMed Central

    Liu, Jun; Tang, Kaifeng; Qiu, Qiwen; Pan, Dong; Lei, Zongru; Xing, Feng

    2014-01-01

    In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i) in ordinary concrete without any fly ash, the leaching effect of the cement products is more evident than the cement hydration effect. From the experimental data, Ca(OH)2 is leached considerably with the increase in immersion time. The pore structure of concrete can also be affected by the formation of an oriented structure of water in concrete materials; (ii) incorporation of fly ash makes a difference for the performance of concrete submersed in solutions as the total porosity and the pore connectivity can be lower. Especially when the dosage of fly ash is up to 30%, the pores with the diameter of larger than 100 nm show significant decrease. It demonstrates that the pore properties are improved by fly ash, which enhances the resistance against the calcium leaching; (iii) chlorides have a significant impact on microstructure of concrete materials because of the chemical interactions between the chlorides and cement hydrates. PMID:28788204

  15. Verification of chloride adsorption effect of mortar with salt adsorbent

    NASA Astrophysics Data System (ADS)

    Hoshina, T.; Nakajima, N.; Sudo, H.; Date, S.

    2017-11-01

    In order to investigate the chloride adsorption effect of mortar mixed with chloride adsorbent, electrophoresis test using mortar specimen and immersion dry repeated test were conducted to evaluate chloride adsorption effect. As a result, it was confirmed that soluble salt content that causes corrosion of rebar in the specimen was reduced by the chloride adsorbent and corrosion inhibiting effect of the rebar was also obtained. It was also confirmed that by increasing dosage of the chloride adsorbent, the chloride adsorbing effect becomes larger as well..

  16. Chemistry and Spectroscopy of Frozen Chloride Salts on Icy Bodies

    NASA Astrophysics Data System (ADS)

    Johnson, P. V.; Thomas, E. C.; Hodyss, R. P.; Vu, T. H.; Choukroun, M.

    2016-12-01

    Understanding the habitability of Europa's ocean is of great interest to astrobiology and is the focus of missions currently being considered to explore Europa. Currently, our best means of constraining the subsurface ocean composition and its subsequent habitability is by further study of Europa's surface chemical composition. Analysis of existing (and future) remote sensing data is limited by the availability of spectral libraries of candidate materials under relevant conditions (temperature, thermal/radiation history, etc.). Geochemical predictions of Europa's ocean composition suggest that chloride salts are likely to exist on the surface of Europa as well as other ocean worlds. We have conducted a study of frozen chloride-salt brines prepared at temperatures, pressures and radiation conditions (UV) in order to simulate conditions on the surface of Europa and other airless bodies. Hydration states of various chloride salts as a function of temperature were determined using Raman spectroscopy. Near IR reflectance spectra of identically prepared samples were measured to provide reference spectra of the identified hydrated salts. We find that the freezing of NaCl at temperatures ranging from 80 K to 233 K forms hydrohalite. In contrast, KCl hydrates are not formed from the freezing of KCl brines. In addition, a stable hexahydrate forms from the freezing of MgCl2 solutions, while a hexahydrate, a tetrahydrate, and a dihydrate, form upon freezing of CaCl2 solutions. Salts were observed to dehydrated with increasing temperatures, leading to a succession of hydration states in the case of CaCl2. Irradiation with vacuum ultraviolet light was observed to lead to dehydration as well.

  17. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-0969-091) is the chloride salt of metallic tin that contains two...

  18. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-69-1) is the chloride salt of metallic tin that contains two...

  19. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-0969-091) is the chloride salt of metallic tin that contains two...

  20. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-69-1) is the chloride salt of metallic tin that contains two...

  1. Toxicity of ferric chloride sludge to aquatic organisms.

    PubMed

    Sotero-Santos, Rosana B; Rocha, Odete; Povinelli, Jurandyr

    2007-06-01

    Iron-rich sludge from a drinking water treatment plant (DWTP) was investigated regarding its toxicity to aquatic organisms and physical and chemical composition. In addition, the water quality of the receiving stream near the DWTP was evaluated. Experiments were carried out in August 1998, February 1999 and May 1999. Acute toxicity tests were carried out on a cladoceran (Daphnia similis), a midge (Chironomus xanthus) and a fish (Hyphessobrycon eques). Chronic tests were conducted only on D. similis. Acute sludge toxicity was not detected using any of the aquatic organisms, but chronic effects were observed upon the fecundity of D. similis. Although there were relatively few sample dates, the results suggested that the DWTP sludge had a negative effect on the receiving body as here was increased suspended matter, turbidity, conductivity, chemical oxygen demand (COD) and hardness in the water downstream of the DWTP effluent discharge. The ferric chloride sludge also exhibited high heavy metal concentrations revealing a further potential for pollution and harmful chronic effects on the aquatic biota when the sludge is disposed of without previous treatment.

  2. [Liver angiosarcoma from past exposure to vinyl chloride: a case report].

    PubMed

    Di Lorenzo, L; Corfiati, Marisa; Catacchio, Teresa

    2012-01-01

    Experimental data and large occupational cohort studies in polyvinyl chloride (PVC) manufacturing plants have shown that vinyl chloride monomer (VCM) at high environmental concentrations, such as those measured in western chemical companies at least until the mid-1970's can cause liver angiosarcoma. To describe a recent, accurately diagnosed case of fatal liver angiosarcoma, for which it was possible to establish the causal relationship with past VCM exposure. The deceased subject had been working as blue-collar for at least eleven years (1968-1979) in a PVC plant. VCM exposure was high on average and very high during autoclave cleaning, compared with VCM air measurements reported in those years at plants in Europe and the United States. The latency period was about 40 years. The duration of exposure, the cumulative exposure and the latency described were similar to those associated in the scientific literature with an excess risk for liver angiosarcoma. The Italian Workers' Compensation Authority (INAIL) has already acknowledged the occupational origin of this neoplastic disease with clear advantages for all parties concerned, not only in economical terms.

  3. 29 CFR 1926.1117 - Vinyl chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Vinyl chloride. 1926.1117 Section 1926.1117 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... chloride. Note: The requirements applicable to construction work under this section are identical to those...

  4. 29 CFR 1915.1017 - Vinyl chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Vinyl chloride. 1915.1017 Section 1915.1017 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1017 Vinyl chloride. Note: The requirements applicable to shipyard employment under this section...

  5. Levels of CEA among vinyl chloride and polyvinyl chloride exposed workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, H.A.; Snyder, J.; Lewinson, T.

    1978-09-01

    In 1974, vinyl chloride exposed workers were found to have an increased risk of malignant disease (hemangiosarcoma of the liver). We have examined 1,147 workers exposed to vinyl chloride monomer in three VC/PVC polymerization plants, and 269 workers from a PVC extrusion plant manufacturing PVC textile leather, exposed to much lower concentrations of vinyl chloride. Included among the comprehensive clinical and laboratory studies conducted was the CEA titer. We obtained, respectively, 1,115 and 248 CEA titers. Multiple factors were demonstrated which affected the distribution of CEA titers. Cigarette use had the greatest effect, followed by history of specific past illnessesmore » and alcohol intake history. After removing these possible confounding effects, the distribution of CEA titers among the polymerization workers was significantly different from the extrusion plant group and from an unexposed comparison group. Of the six job categories analyzed, only production and maintenance workers had CEA titer distributions significantly different from the comparison group and the extrusion workers. The investigation demonstrates that occupational exposures in VC/PVC polymerization plants can cause elevations in the CEA titers of otherwise healthy individuals. Prospective follow-up is necessary before conclusions can be drawn concerning the usefulness of the CEA titer as a predictive indicator of possible increased risk.« less

  6. 21 CFR 520.260 - n-Butyl chloride capsules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false n-Butyl chloride capsules. 520.260 Section 520.260... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.260 n-Butyl chloride capsules. (a)(1) Specifications. n-Butyl chloride capsules, veterinary contain 272 milligrams or 816 milligrams...

  7. High Intracellular Chloride Slows the Decay of Glycinergic Currents

    PubMed Central

    Pitt, Samantha J.; Sivilotti, Lucia G.; Beato, Marco

    2009-01-01

    The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm (“symmetrical” chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from ∼7ms to ∼3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions. PMID:18987182

  8. Benzalkonium chloride neutralizes the irritant effect of sodium dodecyl sulfate.

    PubMed

    McFadden, J P; Holloway, D B; Whittle, E G; Basketter, D A

    2000-11-01

    When benzalkonium chloride (BKC), a cationic surfactant, is added to sodium dodecyl sulfate (SDS), an anionic surfactant, and used in patch testing, on the basis of their known physicochemical interaction, it is possible to predict that there will be a tendency towards a reduction in the expected irritant response when compared to SDS alone. The aim of this study was to investigate whether BKC could reduce the irritant response to SDS when applied after the SDS exposure. 54 non-atopic adult volunteers were recruited for the study. 20% SDS was applied for 2 h under occlusion. 1% BKC was then applied to the same site. Various controls, including SDS application followed by water for 2 h, were included. The irritant reaction was assessed at 24 h and 48 h. 40 of the 54 subjects had some reaction when SDS was applied for 2 h followed by either benzalkonium chloride or water control under occlusion. In comparison to water control, where BKC was applied after SDS, 20 of the 40 responders had a weaker reaction but only 4 had a stronger response. This study shows that BKC applied to skin exposed to SDS attenuates the resulting irritant reaction.

  9. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    NASA Astrophysics Data System (ADS)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  10. No reduction with ageing of the number of myenteric neurons in benzalkonium chloride treated rats.

    PubMed

    Garcia, S B; Demarzo, M M P; Vinhadeli, W S; Llorach-Velludo, M A; Zoteli, J; Herrero, C F P S; Zucoloto, S

    2002-10-04

    The number of myenteric neurons may be reduced by topical serosal application of benzalkonium chloride (BAC). We studied the effects of ageing in the population of neurons that survive after the application of BAC. Ten treated and ten control animals were killed at intervals of 2, 6, 12 and 18 months after the surgery. We performed myenteric neurons counting in serially cut histological preparations of the descending colon. The control animals revealed a continuous loss of myenteric neurons number with increasing of age. Interestingly, contrary to control animals, the BAC-treated rats presented no neuron loss with ageing at any experimental time. The reasons for their survival with ageing could be related to a neuroplasticity phenomenon.

  11. 29 CFR 1910.1052 - Methylene Chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Methylene Chloride. 1910.1052 Section 1910.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1052 Methylene Chloride. This occupational...

  12. 29 CFR 1910.1052 - Methylene Chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 6 2013-07-01 2013-07-01 false Methylene Chloride. 1910.1052 Section 1910.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1052 Methylene Chloride. This occupational...

  13. 29 CFR 1910.1052 - Methylene Chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 6 2011-07-01 2011-07-01 false Methylene Chloride. 1910.1052 Section 1910.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1052 Methylene Chloride. This occupational...

  14. 29 CFR 1910.1052 - Methylene Chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Methylene Chloride. 1910.1052 Section 1910.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1052 Methylene Chloride. This occupational...

  15. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    PubMed

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Method for the regeneration of spent molten zinc chloride

    DOEpatents

    Zielke, Clyde W.; Rosenhoover, William A.

    1981-01-01

    In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

  17. Making Positive Electrodes For Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Bankston, C. Perry

    1992-01-01

    High coulombic yields provided by sodium/metal chloride battery in which cathode formed by impregnating sintered nickel plaque with saturated solution of nickel chloride. Charge/discharge cycling of nickel chloride electrode results in very little loss of capacity. Used in spacecraft, electric land vehicles, and other applications in which high-energy-density power systems required.

  18. Radiation-assisted grafting of vinylidene chloride onto high-density polyethylene

    NASA Astrophysics Data System (ADS)

    Nagesh, N.; Dokhale, P. A.; Bhoraskar, V. N.

    1999-06-01

    6 MeV electrons and Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays were used for grafting vinylidene chloride (VDC) onto high-density polyethylene (HDPE) samples. The HDPE samples were immersed in vinylidene chloride and irradiated either with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays or with 6 MeV electrons. In both cases, the radiation dose was varied in the range 1.25-7.5 kGy. The grafted samples were characterized by IR spectroscopy to obtain information about the chemical bonds and with the 14 MeV neutron activation analysis technique for estimating the number of chlorine atoms. The formation of stable bonds between the VDC molecules and the polymer chains could be achieved either with 6 MeV electrons or with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays. Both the number of chlorine atoms and the sample-surface conductivity increased with the radiation dose but the increases achieved with 6 MeV electrons were greater than those achieved with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays.

  19. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  20. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a...