Science.gov

Sample records for chlormequat

  1. Chlormequat chloride retards rat embryo growth in vitro.

    PubMed

    Xiagedeer, Bayindala; Wu, Shuang; Liu, Yingjuan; Hao, Weidong

    2016-08-01

    Chlormequat chloride is the most widely used plant growth regulator in agriculture to promote sturdier growth of grain crops by avoidance of lodging. Therefore, human exposure to chlormequat chloride is very common, but its developmental toxicity has not been studied. Thus, we investigated the developmental toxicity of chlormequat chloride by applying rat whole embryo culture (WEC) model, limb bud micromass culture and 3T3 fibroblast cytotoxicity test. Chlormequat chloride at 150μg/ml (0.93mM) retarded the rat embryo growth without causing significant morphological malformations and at 500μg/ml (3.1mM) caused both retardation and morphological malformation of the embryos. However, the proliferation and differentiation of limb bud cells were not affected by chlormequat chloride at as high as up to 1000μg/ml (6.2mM) applied. This concentration of chlormequat chloride did not affect the cell viability as examined by 3T3 fibroblast cytotoxicity test either, suggesting that cellular toxicity may not play a role in chlormequat induced inhibition of rat embryo growth. Collectively, our results demonstrated that chlormequat chloride may affect embryo growth and development without inhibiting cell viability. PMID:27165806

  2. Suicide by self-injection of chlormequat trademark C5SUN(®).

    PubMed

    Boumrah, Yacine; Gicquel, Thomas; Hugbart, Chloé; Baert, Alain; Morel, Isabelle; Bouvet, Renaud

    2016-06-01

    Chlormequat is a quaternary ammonium used as plant growth regulating agent. We report here the first suicide case involving a 45 year-old farmer man who intentionally self-injected C5SUN(®), containing chlormequat and choline. An original liquid chromatography high resolution mass spectrometry method (LC-HR-MS), using a hybrid quadrupole-orbitrap mass spectrometer, was developed for qualitative and quantitative analysis of chlormequat in different biological matrices. Toxicological analyses of post-mortem samples highlighted the presence of chlormequat in the blood (2.25mg/L) and the urine (4.45mg/L), in addition to ethanol impregnation blood (1.15g/L). The route of administration (subcutaneous injection) was confirmed by the detection of chlormequat in the abdominal fat sample (chlormequat: 10.04mg/g) taken from the traumatic injury location, as well as in the syringe found at the death scene, close to the victim's body. Based on the results of these post-mortem investigations, the cause of death was determined to be consecutive to cardiac dysrhythmia and cardiac arrest following chlormequat self-injection. PMID:27020619

  3. Investigation of the herbicide glyphosate and the plant growth regulators chlormequat and mepiquat in cereals produced in Denmark.

    PubMed

    Granby, K; Vahl, M

    2001-10-01

    An LC-MS/MS method for analysing glyphosate and aminomethylphosphonic acid (AMPA) in cereals was developed. The method is based on extraction with water and detection of the ions from the fragmentation m/z 170-->88 (glyphosate) and m/z 112-->30 (AMPA), using electrospray interface in the positive mode. Investigation from the harvests of 1998 and 1999 showed residues of glyphosate and/or its degradation product AMPA in more than half of the cereal samples produced in Denmark. The average concentration of glyphosate in 46 samples from the 1999 harvest was 0.11 mg/kg compared with 0.08 mg/kg for the 1998 harvest (n = 49). Thus, the figures were well below the maximum residue limit (MRL) and no violations were observed. The plant growth regulators chlormequat and/or mepiquat were investigated in cereals from the Danish harvest of 1999 where 83% of the samples contained chlormequat (n = 46) compared with 87% of the samples from the 1997 harvest (n = 52). The average concentration of chlormequat in 1999 was 0.32 mg/kg compared with 0.23 mg/kg in 1997. At 2.9 mg/kg, one sample of wheat bran was exceeding the MRL of 2 mg/kg for wheat. The intakes of the pesticides through the diet of cereals were estimated to comprise 0.04% of the acceptable daily intake (ADI) for glyphosate and 1% of the ADI for chlormequat for an adult Dane. PMID:11569770

  4. Urinary biomarker concentrations of captan, chlormequat, chlorpyrifos and cypermethrin in UK adults and children living near agricultural land

    PubMed Central

    Galea, Karen S; MacCalman, Laura; Jones, Kate; Cocker, John; Teedon, Paul; Cherrie, John W; van Tongeren, Martie

    2015-01-01

    There is limited information on the exposure to pesticides experienced by UK residents living near agricultural land. This study aimed to investigate their pesticide exposure in relation to spray events. Farmers treating crops with captan, chlormequat, chlorpyrifos or cypermethrin provided spray event information. Adults and children residing ≤100 m from sprayed fields provided first-morning void urine samples during and outwith the spray season. Selected samples (1–2 days after a spray event and at other times (background samples)) were analysed and creatinine adjusted. Generalised Linear Mixed Models were used to investigate if urinary biomarkers of these pesticides were elevated after spray events. The final data set for statistical analysis contained 1518 urine samples from 140 participants, consisting of 523 spray event and 995 background samples which were analysed for pesticide urinary biomarkers. For captan and cypermethrin, the proportion of values below the limit of detection was greater than 80%, with no difference between spray event and background samples. For chlormequat and chlorpyrifos, the geometric mean urinary biomarker concentrations following spray events were 15.4 μg/g creatinine and 2.5 μg/g creatinine, respectively, compared with 16.5 μg/g creatinine and 3.0 μg/g creatinine for background samples within the spraying season. Outwith the spraying season, concentrations for chlorpyrifos were the same as those within spraying season backgrounds, but for chlormequat, lower concentrations were observed outwith the spraying season (12.3 μg/g creatinine). Overall, we observed no evidence indicative of additional urinary pesticide biomarker excretion as a result of spray events, suggesting that sources other than local spraying are responsible for the relatively low urinary pesticide biomarkers detected in the study population. PMID:26374656

  5. Rapid determination of chlormequat in meat by dispersive solid-phase extraction and hydrophilic interaction liquid chromatography (HILIC)-electrospray tandem mass spectrometry.

    PubMed

    Li, Chunmei; Jin, Fen; Yu, Zhiyong; Qi, Yamei; Shi, Xiaomei; Wang, Miao; Shao, Hua; Jin, Maojun; Wang, Jing; Yang, Mingqi

    2012-07-11

    A rapid method for analyzing trace levels of chlormequat (CQ) in meat samples by hydrophilic interaction liquid chromatography (HILIC)-electrospray tandem mass spectrometry was developed. The samples were extracted with acetonitrile, followed by a rapid cleanup through a dispersive solid-phase extraction (DSPE) technique with octadecyl (C18) DSPE sorbents. The chromatographic separation was achieved within 6 min using a HILIC column with 10 mM ammonium acetate and 0.1% (v/v) formic acid in water/acetonitrile (v/v, 40:60) as the mobile phase. Quantification was performed using a matrix-matched calibration curve, which was linear in the range of the 0.05-100 μg/L. The limit of detection (LOD) was estimated at 0.03 μg/kg for CQ on the basis of a peak to peak signal noise (S/N = 3). The limit of quantification (LOQ) was 0.1 μg/kg on the basis of the lowest spiked concentration with suitable precision and accuracy. The average recovery of CQ in spiked meat samples was 86.4-94.7% at 2, 20, and 200 μg/kg. Finally, this method was applied to determine CQ in the livestock and poultry meats purchased from markets in Beijing in 2011. CQ was detected in all 12 samples, and the concentration was 0.4-636.0 μg/kg. Concentrations in a chicken sample (636.0 μg/kg) and a goat meat sample (486.0 μg/kg) were found to be 15.9 and 2.43 times the corresponding Codex maximum residue limits, respectively. PMID:22686367

  6. Rapid detection of pesticides not amenable to multi-residue methods by flow injection-tandem mass spectrometry.

    PubMed

    Mol, Hans G J; van Dam, Ruud C J

    2014-11-01

    Flow injection combined with tandem mass spectrometry (MS/MS) was investigated for the rapid detection of highly polar pesticides that are not amenable to multi-residue methods because they do not partition into organic solvents and require dedicated chromatographic conditions. The pesticides included in this study were amitrole, chlormequat, cyromazine, daminozide, diquat, ethephon, fosetyl-Al, glufosinate, glyphosate and its metabolite aminomethylphosphonic acid, maleic hydrazide, mepiquat and paraquat. The composition of the flow-injection solvent was optimized to achieve maximum MS/MS sensitivity. Instrumental limits of detection varied between <0.05 and 1 pg. Fruit, vegetable, cereal, milk and kidney samples were extracted with water (1% formic acid in case of paraquat/diquat) and ten times diluted in either methanol/0.1% formic acid, methanol/0.1% ammonia or acetonitrile/0.1% ammonia, depending on the pesticide. The ion suppression observed depended strongly on both the matrix and the pesticide. This could be largely compensated for by matrix-matched calibration, but more accurate quantification was obtained by using isotopically labelled standards (commercially available for most of the pesticides studied). The method detection limits ranged from 0.02 mg/kg for chlormequat and mepiquat to 2 mg/kg for maleic hydrazide and were 0.05-0.2 mg/kg for most other pesticide/matrix combinations. This was sufficiently low to test compliance with EU maximum residue limits for many relevant pesticide/commodity combinations. The method substantially reduces the liquid chromatography-MS/MS capacity demand which for many laboratories is prohibitive for inclusion of these pesticides in their monitoring and surveillance programmes. PMID:24518902

  7. GROWTH RETARDANTS: Effects on Gibberellin Biosynthesis and Other Metabolic Pathways.

    PubMed

    Rademacher, Wilhelm

    2000-06-01

    Plant growth retardants are applied in agronomic and horticultural crops to reduce unwanted longitudinal shoot growth without lowering plant productivity. Most growth retardants act by inhibiting gibberellin (GA) biosynthesis. To date, four different types of such inhibitors are known: (a) Onium compounds, such as chlormequat chloride, mepiquat chloride, chlorphonium, and AMO-1618, which block the cyclases copalyl-diphosphate synthase and ent-kaurene synthase involved in the early steps of GA metabolism. (b) Compounds with an N-containing heterocycle, e.g. ancymidol, flurprimidol, tetcyclacis, paclobutrazol, uniconazole-P, and inabenfide. These retardants block cytochrome P450-dependent monooxygenases, thereby inhibiting oxidation of ent-kaurene into ent-kaurenoic acid. (c) Structural mimics of 2-oxoglutaric acid, which is the co-substrate of dioxygenases that catalyze late steps of GA formation. Acylcyclohexanediones, e.g. prohexadione-Ca and trinexapac-ethyl and daminozide, block particularly 3ss-hydroxylation, thereby inhibiting the formation of highly active GAs from inactive precursors, and (d) 16,17-Dihydro-GA5 and related structures act most likely by mimicking the GA precursor substrate of the same dioxygenases. Enzymes, similar to the ones involved in GA biosynthesis, are also of importance in the formation of abscisic acid, ethylene, sterols, flavonoids, and other plant constituents. Changes in the levels of these compounds found after treatment with growth retardants can mostly be explained by side activities on such enzymes. PMID:15012200

  8. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity

    SciTech Connect

    Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie

    2013-10-15

    The endocrine-disrupting potential of pesticides is of health concern, since they are found ubiquitously in the environment and in food items. We investigated in vitro effects on estrogen receptor (ER) and androgen receptor (AR) transactivity, and aromatase enzyme activity, of the following pesticides: 2-methyl-4-chlorophenoxyacetic acid (MCPA), terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb, cypermethrin, tau fluvalinate, malathion and the metabolite ethylene thiourea (ETU). The pesticides were analyzed alone and in selected mixtures. Effects of the pesticides on ER and AR function were assessed in human breast carcinoma MVLN cells and hamster ovary CHO-K1 cells, respectively, using luciferase reporter gene assays. Effects on aromatase enzyme activity were analyzed in human choriocarcinoma JEG-3 cells, employing the classical [{sup 3}H]{sub 2}O method. Five pesticides (terbuthylazine, propiconazole, prothioconazole, cypermethrin and malathion) weakly induced the ER transactivity, and three pesticides (bitertanol, propiconazole and mancozeb) antagonized the AR activity in a concentration-dependent manner. Three pesticides (terbuthylazine, propiconazole and prothioconazole) weakly induced the aromatase activity. In addition, two mixtures, consisting of three pesticides (bitertanol, propiconazole, cypermethrin) and five pesticides (terbuthylazine, bitertanol, propiconazole, cypermethrin, malathion), respectively, induced the ER transactivity and aromatase activity, and additively antagonized the AR transactivity. In conclusion, our data suggest that currently used pesticides possess endocrine-disrupting potential in vitro which can be mediated via ER, AR and aromatase activities. The observed mixture effects emphasize the importance of considering the combined action of pesticides in order to assure proper estimations of related health effect risks

  9. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture.

    PubMed

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark

  10. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale.

    PubMed

    Kodešová, Radka; Kočárek, Martin; Kodeš, Vít; Drábek, Ondřej; Kozák, Josef; Hejtmánková, Kateřina

    2011-02-15

    Study was focused on the evaluation of pesticide adsorption in soils, as one of the parameters, which are necessary to know when assessing possible groundwater contamination caused by pesticides commonly used in agriculture. Batch sorption tests were performed for 11 selected pesticides and 13 representative soils. The Freundlich equations were used to describe adsorption isotherms. Multiple-linear regressions were used to predict the Freundlich adsorption coefficients from measured soil properties. Resulting functions and a soil map of the Czech Republic were used to generate maps of the coefficient distribution. The multiple linear regressions showed that the K(F) coefficient depended on: (a) combination of OM (organic matter content), pH(KCl) and CEC (cation exchange capacity), or OM, SCS (sorption complex saturation) and salinity (terbuthylazine), (b) combination of OM and pH(KCl), or OM, SCS and salinity (prometryne), (c) combination of OM and pH(KCl), or OM and ρ(z) (metribuzin), (d) combination of OM, CEC and clay content, or clay content, CEC and salinity (hexazinone), (e) combination of OM and pH(KCl), or OM and SCS (metolachlor), (f) OM or combination of OM and CaCO(3) (chlorotoluron), (g) OM (azoxystrobin), (h) combination of OM and pH(KCl) (trifluralin), (i) combination of OM and clay content (fipronil), (j) combination of OM and pH(KCl), or OM, pH(KCl) and CaCO(3) (thiacloprid), (k) combination of OM, pH(KCl) and CEC, or sand content, pH(KCl) and salinity (chlormequat chloride). PMID:21144657

  11. [Determination of 21 plant growth regulator residues in fruits by QuEChERS-high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Huang, Hehe; Zhang, Jin; Xu, Dunming; Zhou, Yu; Luo, Jia; Li, Meiling; Chen, Shubin; Wang, Lianzhu

    2014-07-01

    A method for the simultaneous detection of 21 plant growth regulators in fruits by QuEChERS-high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The samples were initially extracted with acetonitrile containing 1% (v/v) acetic acid, followed by clean-up using the powder of magnesium sulfate and C18. The resulting samples were separated on a C18 column, and detected under positive and negative multiple reactions monitoring (MRM) mode through polarity switching between time segments. The matrix-matched external standard calibration curves were used for quantitative analysis. The linearities of chlormequat chloride, mepiquat chloride, choline chloride, cyclanilide, forchlorfenuron, thidiazuron, inabenfide, paclobutrazol, uniconazole and triapenthenol were in the concentration range of 0.1-500 microg/L, daminozide and 6-benzylaminopurine in the concentration range of 1.0-500 microg/L, 2,3,5-triiodobenzoic acid, 2,4-D, cloprop, 4-chlorophenoxyacetic acid (4-CPA) and trinexapac-ethyl in the concentration range of 2.0-1 000 microg/L, abscisic acid (ABA), gibberellic acid (GA3), 1-naphthaleneacetic acid (NAA) and indol-3-ylacetic acid (IAA) in the concentration range of 10-1000 microg/L, with the correlation coefficients higher than 0.990. The limits of detection and the limits of quantification of the method were 0.020-6.0 microg/kg and 0.10-15.0 microg/kg, respectively. For all the samples, the average spiked recoveries ranged from 73.0% to 111.0%, and the relative standard deviations (RSDs, n = 6) were in the range of 3.0% - 17.2%. The method is quick, easy, effective, sensitive and accurate, and can meet the requirements for the determination of the 21 plant growth regulator residues in fruits. PMID:25255562

  12. Assessment of ABCG2-mediated transport of pesticides across the rabbit placenta barrier using a novel MDCKII in vitro model.

    PubMed

    Halwachs, Sandra; Schäfer, Ingo; Kneuer, Carsten; Seibel, Peter; Honscha, Walther

    2016-08-15

    In humans, the ATP-binding cassette efflux transporter ABCG2 contributes to the fetoprotective barrier function of the placenta, potentially limiting the toxicity of transporter substrates to the fetus. During testing of chemicals including pesticides, developmental toxicity studies are performed in rabbit. Despite its toxicological relevance, ABCG2-mediated transport of pesticides in rabbit placenta has not been yet elucidated. We therefore generated polarized MDCK II cells expressing the ABCG2 transporter from rabbit placenta (rbABCG2) and evaluated interaction of the efflux transporter with selected insecticides, fungicides, and herbicides. The Hoechst H33342 accumulation assay indicated that 13 widely used pesticidal active substances including azoxystrobin, carbendazim, chlorpyrifos, chlormequat, diflufenican, dimethoate, dimethomorph, dithianon, ioxynil, methiocarb, propamocarb, rimsulfuron and toclofos-methyl may be rbABCG2 inhibitors and/or substrates. No such evidence was obtained for chlorpyrifos-methyl, epoxiconazole, glyphosate, imazalil and thiacloprid. Moreover, chlorpyrifos (CPF), dimethomorph, tolclofos-methyl and rimsulfuron showed concentration-dependent inhibition of H33342 excretion in rbABCG2-transduced MDCKII cells. To further evaluate the role of rbABCG2 in pesticide transport across the placenta barrier, we generated polarized MDCKII-rbABCG2 monolayers. Confocal microscopy confirmed correct localization of rbABCG2 protein in the apical plasma membrane. In transepithelial flux studies, we showed the time-dependent preferential basolateral to apical (B>A) directed transport of [(14)C] CPF across polarized MDCKII-rbABCG2 monolayers which was significantly inhibited by the ABCG2 inhibitor fumitremorgin C (FTC). Using this novel in vitro cell culture model, we altogether showed functional secretory activity of the ABCG2 transporter from rabbit placenta and identified several pesticides like the insecticide CPF as potential rbABCG2 substrates

  13. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture

    SciTech Connect

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark