Science.gov

Sample records for chlorophyll fluorescence estimation

  1. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.

    PubMed

    Zarco-Tejada, P J; Miller, J R; Mohammed, G H; Noland, T L; Sampson, P H

    2002-01-01

    Physical principles applied to remote sensing data are key to successfully quantifying vegetation physiological condition from the study of the light interaction with the canopy under observation. We used the fluorescence-reflectance-transmittance (FRT) and PROSPECT leaf models to simulate reflectance as a function of leaf biochemical and fluorescence variables. A series of laboratory measurements of spectral reflectance at leaf and canopy levels and a modeling study were conducted, demonstrating that effects of chlorophyll fluorescence (CF) can be detected by remote sensing. The coupled FRT and PROSPECT model enabled CF and chlorophyll a + b (Ca + b) content to be estimated by inversion. Laboratory measurements of leaf reflectance (r) and transmittance (t) from leaves with constant Ca + b allowed the study of CF effects on specific fluorescence-sensitive indices calculated in the Photosystem I (PS-I) and Photosystem II (PS-II) optical region, such as the curvature index [CUR; (R675.R690)/R2(683)]. Dark-adapted and steady-state fluorescence measurements, such as the ratio of variable to maximal fluorescence (Fv/Fm), steady state maximal fluorescence (F'm), steady state fluorescence (Ft), and the effective quantum yield (delta F/F'm) are accurately estimated by inverting the FRT-PROSPECT model. A double peak in the derivative reflectance (DR) was related to increased CF and Ca + b concentration. These results were consistent with imagery collected with a compact airborne spectrographic imager (CASI) sensor from sites of sugar maple (Acer saccharum Marshall) of high and low stress conditions, showing a double peak on canopy derivative reflectance in the red-edge spectral region. We developed a derivative chlorophyll index (DCI; calculated as D705/D722), a function of the combined effects of CF and Ca + b content, and used it to detect vegetation stress. PMID:12371159

  2. Improving the estimation of terrestrial gross primary productivity by downscaling global sun-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Cescatti, A.; Duveiller, G.

    2015-12-01

    The synoptic nature of satellite remote sensing makes this technique a key tool to contribute to estimating the amount of Carbon fixed by vegetation at global scale. From the various types of information that can be derived from space, the recent capacity to create global datasets of sun-induced chlorophyll fluorescence (SIF) may prove to be a game-changer. SIF is a signal emitted by the photosynthetic machinery itself that, under the illumination conditions in which it can be estimated by satellite, has been shown to be proportional to gross primary productivity (GPP). However, this relationship is dependent on vegetation types that are typically spatially mixed at the coarse spatial resolution of SIF datasets (at best 0.5°), which in turn is a consequence of the complexity of the SIF retrieval itself. This study demonstrates how 0.5° SIF derived from GOME-2 data can be downscaled to a more adequate spatial resolution of 0.05° by combining 3 explanatory biophysical variables derived from the MODIS sensor (NDVI, land surface temperature and evapotranspiration) under a semi-empirical light-use efficiency framework. The finer spatial resolution results in a cleaner signal when aggregating it per land cover type. The signal is also better correlated in time with GPP estimated from flux towers, reaching the same level of performance than global GPP products calibrated on such flux towers and driven by meteorological and remote sensing variables (other than SIF). Establishing linear relationships between SIF and flux-tower GPP at vegetation type level allows to estimate values of global terrestrial vegetation gross productivity that have different magnitude but similar temporal patterns as other GPP products. Based on downscaled SIF, the mean global GPP values over the period 2007 to 2013 are (for deciduous broadleaf and mixed forests) 13.7, (for evergreen needleleaf forests) 2.5, (for grasslands) 12.5 and (savannahs and woody savannas) 36.8 Pg of Carbon per year.

  3. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves

    PubMed Central

    Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji

    2015-01-01

    This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530

  4. Estimation of the depth of sunlight penetration in natural waters for the remote sensing of chlorophyll a via in vivo fluorescence

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1979-01-01

    In attempting to measure remotely the constituents of the ocean through spectral analysis of diffusely reflected sunlight, it is important to know the depth over which constituent concentrations can be estimated. Recently, considerable interest has been generated in the use of sunlight-excited fluorescence of chlorophyll a contained in photoplankton (in vivo) to determine remotely the chlorophyll a concentration in surface waters. In the present paper an estimate is provided for the depth to which chlorophyll a concentration can be determined from observations of the fluorescence.

  5. Efficient Chlorophyll Fluorescence Measurements of Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with many crops, chlorophyll fluorescence emission is a promising tool for measuring responses of sugarcane (Saccharum spp.) to biotic and abiotic stresses. Chlorophyll fluorescence can be easily measured using portable fluorometers. However, several factors should be considered in order to op...

  6. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models.

    PubMed

    Zhang, Yongguang; Guanter, Luis; Berry, Joseph A; Joiner, Joanna; van der Tol, Christiaan; Huete, Alfredo; Gitelson, Anatoly; Voigt, Maximilian; Köhler, Philipp

    2014-12-01

    Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar's model, in which the maximum rate of carboxylation (Vcmax ) is a key control parameter of photosynthetic capacity. Even though Vcmax is known to vary substantially in space and time in response to environmental controls, it is typically parameterized in models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially continuous and temporally resolved view on photosynthetic efficiency, but traditional vegetation observations based on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space-borne measurements of sun-induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simulations. Here, we show that top-of-canopy SIF measurements from space are sensitive to Vcmax at the ecosystem level, and present an approach to invert Vcmax from SIF data. We use the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model to derive empirical relationships between seasonal Vcmax and SIF which are used to solve the inverse problem. We evaluate our Vcmax estimation method at six agricultural flux tower sites in the midwestern US using spaced-based SIF retrievals. Our Vcmax estimates agree well with literature values for corn and soybean plants (average values of 37 and 101 μmol m(-2)  s(-1) , respectively) and show plausible seasonal patterns. The effect of the updated seasonally varying Vcmax parameterization on simulated gross primary productivity (GPP) is tested by comparing to simulations with fixed Vcmax values. Validation against flux tower observations demonstrate that simulations of GPP and light use efficiency improve significantly when our time-resolved Vcmax estimates from SIF are used, with R(2) for GPP comparisons increasing from 0.85 to 0.93, and for light use efficiency from 0.44 to 0.83. Our results support the use of

  7. Bowel perforation detection using metabolic fluorescent chlorophylls

    NASA Astrophysics Data System (ADS)

    Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Choi, Sujeong; Kang, Hoonsoo; Kim, Yong-Chul; Hwang, In-Wook

    2016-03-01

    Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.

  8. Comparison of sun-induced chlorophyll fluorescence estimates from commercial spectroradiometers: an optimal setup for field measurement and aerial product validation.

    NASA Astrophysics Data System (ADS)

    Celesti, Marco; Rossini, Micol; Cogliati, Sergio; Panigada, Cinzia; Tagliabue, Giulia; Fava, Francesco; Julitta, Tommaso; MacArthur, Alasdair; Colombo, Roberto

    2016-04-01

    Sun-induced chlorophyll fluorescence signal is explored as a novel remote sensing method, notable for its potential to be used as a direct indicator of photosynthetic efficiency. In the last years, there was an increasing interest of the scientific community on the remote sensing of Sun-Induced chlorophyll Fluorescence (SIF). Several SIF estimates in the far-red region have been produced from spaceborne sensors, and the future FLEX satellite mission (European Space Agency, Earth-Explorer 8) aims to detect canopy level SIF in both red and far-red regions at global scale. In the context of FLEX calibration/validation activities, a network of ground station to calibrate/validate SIF estimates from space can be considered crucial, but few studies have proposed optimal technical requirements for commercially available spectroradiometers. At canopy level, SIF is traditionally retrieved from incoming and upwelling radiance measurements, exploiting two narrow oxygen absorption bands, within the O2-B and O2-A spectral regions. Only recently, the feasibility of retrieving the SIF spectrum was demonstrated. The rationale behind the exploitation of narrow spectral regions, characterized by strong absorptions, resides in the higher contribution of SIF with respect to the reflected radiance. In order to detect the signal in those narrow spectral regions, high spectral resolution observation is needed. In this study, we compared several high resolution field spectroradiometers with different Full Width at Half Maximum (FWHM), Spectral Sampling Interval (SSI) and Signal-to-Noise Ratio (SNR), to evaluate their performance in SIF estimates. We applied several state-of-the-art, radiance-based retrieval algorithms to radiance measurements taken with the FluoWAT. This device allows to measure leaf reflected and transmitted radiance, solar incident radiance and, upward and downward leaf fluorescence spectrum by means of a low pass filter, that were used as a reference.. Results show

  9. Chlorophyll a + b content and chlorophyll fluorescence in avocado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One Tonnage (T) and one Simmonds (S) avocado tree and four TxS crosses were evaluated for differences in chlorophyll content and maximal quantum yield of photosystem II in sun and shade-type leaves. Total chlorophyll content by area (Chl a+bar) ranged from 981 mg m-2 in TxS240 to 4339 mg m-2 in Simm...

  10. Mapping intercellular CO2 mole fraction (Ci) in rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance Of ci estimated from leaf gas exchange

    PubMed

    Meyer; Genty

    1998-03-01

    Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 mol mol-1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low. PMID:9501127

  11. Remote sensing of chlorophyll fluorescence with GOSAT

    NASA Astrophysics Data System (ADS)

    Somkuti, Peter; Boesch, Hartmut; Parker, Robert

    2015-04-01

    Sun-induced chlorophyll fluorescence (Fs) emitted by plants as a by-product during photosynthesis carries information about their photosynthetic activity. It is possible to exploit space-based remote sensing measurements to retrieve the fluorescence signal and thus indirectly study carbon fluxes on a global scale. We implement a fluorescence retrieval based on the method pioneered by Frankenberg et al. (2011) into the framework of the University of Leicester Full-Physics GOSAT CO2 retrieval (UoL-FP). This physically-based approach is applied to high-resolution spectra at the edges of the O2 A-Band in the red to NIR range, that feature strong solar as well as a few weak O2 absorption lines. The fluorescence signal, which acts as an additional source, results in an in-filling of the measured solar absorption lines that are used to distinguish Fs from reflectance effects. By analysing GOSAT soundings from 2009 onwards, we examine global and regional long-term trends of Fs and compare them with parameters related to plant physiology, such as spectral vegetation indices and MODIS-derived model GPP values. Following Guanter et al. (2012) and Frankenberg et al. (2011), different regions and biomes are considered and we find that seasonal trends of both model GPP data as well as greenness indicators are well reproduced by our GOSAT-retrieved Fs.

  12. Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation

    PubMed Central

    Campbell, Douglas; Hurry, Vaughan; Clarke, Adrian K.; Gustafsson, Petter; Öquist, Gunnar

    1998-01-01

    Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity. PMID:9729605

  13. Canopy chlorophyll estimation with hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Jincheng

    In this research, proximal measurements of hyperspectral reflectance were used to develop models for estimating chlorophyll content in tallgrass prairie at leaf and canopy scales. Models were generated at the leaf scale and then extended to the canopy scale. Three chlorphyll estimation models were developed, one based on reflectance spectra and two derived from derivative transformations of the reflectance spectra. The triangle chlorophyll index (TCI) model was derived from the reflectance spectrum, whereas the first and second derivative indices (FDI and SDI) models were developed from the derivative transformed spectra. The three models were found to be well-correlated with the chlorophyll content measured with solvent extraction. The result indicated that the three models were effective for the leaf scale estimates of chlorophyll content. The three chlorophyll models developed at the leaf scale were further extended to the canopy scale and fine-scale images. The three models were found to be conditionally effective for estimating canopy chlorophyll content. The TCI model was more effective in dense vegetation, and the FDI and SDI models were better in sparser vegetation. This research suggests that the extension of chlorophyll models from the leaf scale to canopy scale is complex and affected not only by soil background, but also by canopy structure and components.

  14. Modulated Chlorophyll "a" Fluorescence: A Tool for Teaching Photosynthesis

    ERIC Educational Resources Information Center

    Marques da Silva, Jorge; Bernardes da Silva, Anabela; Padua, Mario

    2007-01-01

    "In vivo" chlorophyll "a" fluorescence is a key technique in photosynthesis research. The recent release of a low cost, commercial, modulated fluorometer enables this powerful technology to be used in education. Modulated chlorophyll a fluorescence measurement "in vivo" is here proposed as a tool to demonstrate basic photosynthesis phenomena to…

  15. Sun-induced Chlorophyll fluorescence and PRI improve remote sensing GPP estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-07-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different Nitrogen (N) and Phosphorous (P) availability. Sun-induced chlorophyll Fluorescence yield computed at 760 nm (Fy760), scaled-photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and Normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy-chambers on the same locations sampled by the spectrometers. We hypothesized that light-use efficiency (LUE) models driven by remote sensing quantities (RSM) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as proxy for LUE and NDVI or MTCI as fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed significantly higher GPP in the N fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was tightly related to plant N content (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments but it is affected by N availability. Results from a cross validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv = 140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses

  16. Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-11-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv =140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However

  17. An overview of remote sensing of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  18. Interpreting chlorophyll fluorescence signals: the effects of leaf age

    NASA Astrophysics Data System (ADS)

    Albert, L.; Vergeli, P.; Martins, G.; Saleska, S. R.; Huxman, T. E.

    2015-12-01

    Remote sensing of sun-induced chlorophyll fluorescence (SIF) promises robust estimation of carbon uptake across landscapes, as studies of plant physiology have shown that fluorescence emission is directly linked to photosynthesis at the leaf level. Yet most leaf-level studies demonstrating the link between chlorophyll fluorescence and photosynthesis have studied leaves in their prime: leaves that recently finished expansion and have yet to senesce. By contrast, remote sensing of landscapes involves observing leaves of different ages. For example, broadleaf deciduous forests and annual plant communities in temperate regions have leaves that develop and then senesce over the course of a growing season. In this experiment, we explored how leaf age and moisture availability affect steady-state fluoresence (Fs) at the leaf level. We simultaneously measured net photosynthesis (Anet) and Fs for leaves of known ages on greenhouse-grown dwarf Helianthus Annuus (sunflowers) from two watering treatments. To monitor plant water status, we measured pre-dawn water potential, and, for a subset of leaves, osmotic potential. Fully expanded or near-fully expanded leaves (~8 to ~23 days old) had higher Anet at saturating light than young, expanding leaves (less than 8 days old) or old leaves nearing senescence (>23 days old). We found a positive relationship between Fs and Anet, suggesting that the link between fluorescence emission and photosynthesis is robust across leaves of different ages. However, leaf age had marked effects on the light response curve of photosynthesis and fluorescence metrics. These results suggest that leaf age distribution, and changes in leaf age distribution due to phenology, should be considered when interpreting SIF at the landscape level.

  19. The Validity Chlorophyll-a Estimation by Sun Induced Fluorescence in Estuarine Waters: An Analysis of Long-term (2003-2011) Water Quality Data from Tampa Bay, Florida (USA)

    NASA Technical Reports Server (NTRS)

    Moreno-Madrinan, Max Jacobo; Fischer, Andrew

    2012-01-01

    Satellite observation of phytoplankton concentration or chlorophyll-a is an important characteristic, critically integral to monitoring coastal water quality. However, the optical properties of estuarine and coastal waters are highly variable and complex and pose a great challenge for accurate analysis. Constituents such as suspended solids and dissolved organic matter and the overlapping and uncorrelated absorptions in the blue region of the spectrum renders the blue-green ratio algorithms for estimating chlorophyll-a inaccurate. Measurement of sun-induced chlorophyll fluorescence, on the other hand, which utilizes the near infrared portion of the electromagnetic spectrum, may provide a better estimate of phytoplankton concentrations. While modelling and laboratory studies have illustrated both the utility and limitations of satellite baseline algorithms based on the sun induced chlorophyll fluorescence signal, few have examined the empirical validity of these algorithms using a comprehensive long term in situ data set. In an unprecedented analysis of a long term (2003-2011) in situ monitoring data from Tampa Bay, Florida (USA), we assess the validity of the FLH product from the Moderate Resolution Imaging Spectrometer (MODIS) against chlorophyll ]a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions within the estuary including water depth, distance from shore and structures and eight water quality parameters. From the 39 station for which data was derived, 22 stations showed significant correlations when the FLH product was matched with in situ chlorophyll-alpha data. The correlations (r2) for individual stations within Tampa Bay ranged between 0.67 (n=28, pless than 0.01) and-0.457 (n=12, p=.016), indicating that

  20. Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis

    NASA Astrophysics Data System (ADS)

    Rossini, M.; Nedbal, L.; Guanter, L.; Ač, A.; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Hanus, J.; Janoutova, R.; Julitta, T.; Kokkalis, P.; Moreno, J.; Novotny, J.; Panigada, C.; Pinto, F.; Schickling, A.; Schüttemeyer, D.; Zemek, F.; Rascher, U.

    2015-03-01

    Remote estimation of Sun-induced chlorophyll fluorescence emitted by terrestrial vegetation can provide an unparalleled opportunity to track spatiotemporal variations of photosynthetic efficiency. Here we provide the first direct experimental evidence that the two peaks of the chlorophyll fluorescence spectrum can be accurately mapped from high-resolution radiance spectra and that the signal is linked to variations in actual photosynthetic efficiency. Red and far red fluorescence measured using a novel airborne imaging spectrometer over a grass carpet treated with an herbicide known to inhibit photosynthesis was significantly higher than the corresponding signal from an equivalent untreated grass carpet. The reflectance signal of the two grass carpets was indistinguishable, confirming that the fast dynamic changes in fluorescence emission were related to variations in the functional status of actual photosynthesis induced by herbicide application. Our results from a controlled experiment at the local scale illustrate the potential for the global mapping of terrestrial photosynthesis through space-borne measurements of chlorophyll fluorescence.

  1. Measurement of Sun Induced Chlorophyll Fluorescence Using Hyperspectral Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Irteza, S. M.; Nichol, J. E.

    2016-06-01

    Solar Induced Chlorophyll Fluorescence (SIF), can be used as an indicator of stress in vegetation. Several scientific approaches have been made and there is considerable evidence that steady state Chlorophyll fluorescence is an accurate indicator of plant stress hence a reliable tool to monitor vegetation health status. Retrieval of Chlorophyll fluorescence provides an insight into photochemical and carbon sequestration processes within vegetation. Detection of Chlorophyll fluorescence has been well understood in the laboratory and field measurement. Fluorescence retrieval methods were applied in and around the atmospheric absorption bands 02B (Red wavelength) approximately 690 nm and 02A (Far red wavelengths) 740 nm. Hyperion satellite images were acquired for the years 2012 to 2015 in different seasons. Atmospheric corrections were applied using the 6S Model. The Fraunhofer Line Discrimanator (FLD) method was applied for retrieval of SIF from the Hyperion images by measuring the signal around the absorption bands in both vegetated and non vegetated land cover types. Absorption values were extracted in all the selected bands and the fluorescence signal was detected. The relationships between NDVI and Fluorescence derived from the satellite images are investigated to understand vegetation response within the absorption bands.

  2. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    PubMed Central

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  3. Contribution of Chlorophyll Fluorescence to the Apparent Reflectance of Vegetation

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. Entcheva; Middleton, E. M.; Kim, M. S.

    2007-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to determine the relative R and CF fractions contributing to Ra from the vegetation in the red to near-infrared region of the spectrum. The practical objectives of the study are to: 1) evaluate t he relationship between CF and R at the foliar level for corn, soybean, maple; and 2) for corn, determine if the relationship established f or healthy (optimal N) vegetation changes under N defiiency. To obtai n generally applicable results, experimental measurements were conducted on unrelated crop and tree species (maple, soybean and corn), unde r controlled conditions and a gradient of inorganic N fertilization l evels. Optical R spectra and actively induced CF emissions were obtained on the same foliar samples, in conjunction with measurements of p hotosynthetic function, pigment levels, and C and N content. The comm on spectral trends or similarities were examined. On average, 10-20% of apparent R at 685 nm was actually due to CF. The spectral trends in steady and maximum F varied significantly, with Fs (especially red) showing higher ability for species and treatment separation. The relative contribution of ChF to R varied significantly among species, with maple emitting much higher F amounts, as

  4. Ambiguous dependence of fluorescence intensity of trees on chlorophyll concentration

    NASA Astrophysics Data System (ADS)

    Zavoruev, Valeriy V.; Zavorueva, Elena N.

    2014-11-01

    Using fluorimetry Junior PAM (Heinz Walz GmbH, Germany) fluorescence parameters of leaves Prinsepia sinensis, Crataegus chlorocarca M, Acer negúndo, Bétula péndula are studied. It was found that the dependence of maximum fluorescence (Fm) plants on the concentration of chlorophyll depends on the sampling method during of vegetation. The correctness of sampling proves during vegetation is substantiated.

  5. Effects of bisphenol A on chlorophyll fluorescence in five plants.

    PubMed

    Zhang, Jiazhi; Wang, Lihong; Li, Man; Jiao, Liya; Zhou, Qing; Huang, Xiaohua

    2015-11-01

    The aim of this study was to evaluate the effects of bisphenol A (BPA) on plant photosynthesis and determine whether the photosynthetic response to BPA exposure varies in different plants. Chlorophyll fluorescence techniques were used to investigate the effects of BPA on chlorophyll fluorescence parameters in tomato (Lycopersicum esculentum), lettuce (Lactuca sativa), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa) seedlings. Low-dose (1.5 or 3.0 mg L(-1)) BPA exposure improved photosystem II efficiency, increased the absorption and conversion efficiency of primary light energy, and accelerated photosynthetic electron transport in each plant, all of which increased photosynthesis. These effects weakened or disappeared after the withdrawal of BPA. High-dose (10.0 mg L(-1)) BPA exposure damaged the photosystem II reaction center, inhibited the photochemical reaction, and caused excess energy to be released as heat. These effects were more evident after the highest BPA dose (17.2 mg L(-1)), but they weakened after the withdrawal of BPA. The magnitude of BPA exposure effects on the chlorophyll fluorescence parameters in the five plants followed the order: lettuce > tomato > soybean > maize > rice. The opposite order was observed following the removal of BPA. In conclusion, the chlorophyll fluorescence response in plants exposed to BPA depended on BPA dose and plant species. PMID:26154046

  6. Photoinhibition of Photosystems I and II Using Chlorophyll Fluorescence Measurements

    ERIC Educational Resources Information Center

    Quiles, Maria Jose

    2005-01-01

    In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat ("Avena sativa," var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown…

  7. Modelling GPP and chlorophyll fluorescence using SCOPE (Invited)

    NASA Astrophysics Data System (ADS)

    van der Tol, C.; Verhoef, W.

    2009-12-01

    Chlorophyll fluorescence of Photosystem II (PSII) is a measure for photosynthetic processes and the functional state of the vegetation. Research in the past has focused on the active (light-induced) measurement of fluorescence at leaf and field scale. Current research focuses on the potential of satellite remote sensing of passive (solar-induced) chlorophyll fluorescence of PSII to monitor photosynthetic processes of terrestrial vegetation at large spatial scales. This research includes the relationship between top-of-canopy (TOC) fluorescence and gross primary production (GPP). The recently developed model SCOPE simulates this relationship using three sub-models. The first sub-model (FLUSPECT) is based on PROSPECT and describes leaf fluorescence spectra as a function of their chemical composition. The second sub-model describes the effects of leaf temperature, humidity and irradiance on these spectra and on actual photosynthesis. The third sub-model is a canopy level radiative transfer model, which calculates the scattering and absorption of solar radiation and fluorescence within a canopy, and computes the TOC spectrum of fluorescence in observation direction. A sensitivity analysis of the model shows a strong relationship between solar induced fluorescence and GPP at canopy level. This relationship is consistent with data from field campaigns. Fluorescence and GPP are sensitive to stress conditions including high leaf temperatures and water stress.

  8. Photosynthetic bark: Use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NASA Astrophysics Data System (ADS)

    Girma, Atkilt; Skidmore, Andrew K.; de Bie, C. A. J. M.; Bongers, Frans; Schlerf, Martin

    2013-08-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not available. We set out to assess Boswellia papyrifera tree bark chlorophyll content and to provide an appropriate bark chlorophyll estimation technique using hyperspectral remote sensing techniques. In contrast to the leaves, the bark of B. papyrifera has several outer layers masking the inner photosynthetic bark layer. Thus, our interest includes understanding how much light energy is transmitted to the photosynthetic inner bark and to what extent the inner photosynthetic bark chlorophyll activity could be remotely sensed during both the wet and the dry season. In this study, chlorophyll estimation using the chlorophyll absorption continuum index (CACI) yielded a higher R2 (0.87) than others indices and methods, such as the use of single band, simple ratios, normalized differences, and conventional red edge position (REP) based estimation techniques. The chlorophyll absorption continuum index approach considers the increase or widening in area of the chlorophyll absorption region, attributed to high concentrations of chlorophyll causing spectral shifts in both the yellow and the red edge. During the wet season B. papyrifera trees contain more bark layers than during the dry season. Having less bark layers during the dry season (leaf off condition) is an advantage for the plants as then their inner photosynthetic bark is more exposed to light, enabling them to trap light energy. It is concluded that B. papyrifera bark chlorophyll content can be reliably estimated using the chlorophyll absorption continuum index analysis. Further research on the use of bark signatures is recommended, in order to discriminate the deciduous B. papyrifera from other species during the dry season.

  9. Fluorescence sensitization and quenching in a particulate chlorophyll model system

    SciTech Connect

    Seely, G.R.; Senthilathipan, V.

    1983-01-01

    The success of photosynthesis as an energy-conversion process is largely owing to the manner in which the light-gathering and reaction center pigments are arranged within the thylakoid membrane. A particularly important condition in the construction of model systems based on these pigments is the need to avoid quenching of fluorescence until useful electron transfer takes place. In the model system under investigation, concentration quenching of chlorophyll is prevented by embedding the pigment molecules, along with certain amphiphiles, in the viscous hydrocarbon surface layer of swollen particles of polyethylene. Triplet state photoreactivity of chlorophyll on these particles can readily be demonstrated. Quinones such as Vitamin K/sub 1/ do not quench the fluorescence of chlorophyll even when incorporated at high concentration in the particles. But specially made amphiphiles, containing an amide group to ligate the Mg of chlorophyll, and a reducible group such as quinone, quench the fluorescence even at modest concentrations. The photochemistry of these systems is under investigation. 6 references, 3 figures.

  10. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence

    PubMed Central

    van der Tol, C; Berry, J A; Campbell, P K E; Rascher, U

    2014-01-01

    We have extended a conventional photosynthesis model to simulate field and laboratory measurements of chlorophyll fluorescence at the leaf scale. The fluorescence paramaterization is based on a close nonlinear relationship between the relative light saturation of photosynthesis and nonradiative energy dissipation in plants of different species. This relationship diverged only among examined data sets under stressed (strongly light saturated) conditions, possibly caused by differences in xanthophyll pigment concentrations. The relationship was quantified after analyzing data sets of pulse amplitude modulated measurements of chlorophyll fluorescence and gas exchange of leaves of different species exposed to different levels of light, CO2, temperature, nitrogen fertilization treatments, and drought. We used this relationship in a photosynthesis model. The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions. Key Points Light saturation of photosynthesis determines quenching of leaf fluorescence We incorporated steady state leaf fluorescence in a photosynthesis model PMID:27398266

  11. Quenching of chlorophyll fluorescence induced by silver nanoparticles.

    PubMed

    Queiroz, A M; Mezacasa, A V; Graciano, D E; Falco, W F; M'Peko, J-C; Guimarães, F E G; Lawson, T; Colbeck, I; Oliveira, S L; Caires, A R L

    2016-11-01

    The interaction between chlorophyll (Chl) and silver nanoparticles (AgNPs) was evaluated by analyzing the optical behavior of Chl molecules surrounded by different concentrations of AgNPs (10, 60, and 100nm of diameter). UV-Vis absorption, steady state and time-resolved fluorescence measurements were performed for Chl in the presence and absence of these nanoparticles. AgNPs strongly suppressed the Chl fluorescence intensity at 678nm. The Stern-Volmer constant (KSV) showed that fluorescence suppression is driven by the dynamic quenching process. In particular, KSV was nanoparticle size-dependent with an exponential decrease as a function of the nanoparticle diameter. Finally, changes in the Chl fluorescence lifetime in the presence of nanoparticles demonstrated that the fluorescence quenching may be induced by the excited electron transfer from the Chl molecules to the metal nanoparticles. PMID:27280858

  12. Chlorophyll fluorescence control in microalgae by biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Miyashita, Yuito; Iwasaka, Masakazu; Endo, Hirotoshi

    2015-05-01

    Magnetic fields were applied to water suspensions of guanine crystals to induce changes in light scattering as a possible way to control photosynthesis in microalgae. The effect of guanine microcrystals with and without an applied magnetic field on the photosynthesis of a unicellular microalgae (plant), Pleurochrysis. carterae (P. carterae), was investigated by examining chlorophyll fluorescence. The fluorescence intensity at 600-700 nm of the photosynthetic cells increased remarkably when the concentration ratio of guanine microcrystals was 10 times larger than that of the cells. This increase in fluorescence occurred reproducibly and was proportional to the amount of guanine microcrystals added. It is speculated that the guanine microcrystals enhance the intensity of the excitation light on the cells by concentrating the excitation light or prolonging the time of light exposure to the cells. Moreover, applying a 500-mT magnetic field allowed modulation of the fluorescence intensity, depending on the direction of the fluorescence light.

  13. Sterile measurement on the characteristics of chlorophyll fluorescence in plantlets in vitro preserved under low temperature condition

    NASA Astrophysics Data System (ADS)

    Wu, Yanyou; Xing, Deke

    Micro-environment such as temperature influenced the growth and quality of plantlets in vitro. Chlorophyll fluorescence (ChlF) parameter is an important one for photosynthesis capacity in plant. The modulated chlorophyll fluorescence imaging system can be used for obtaining ChlF imaging and signal of plantlet in vitro because the container has light permeability. Therefore, the biological activity and growth condition of plantlet in vitro can be estimated by sterilely measuring the characteristics of chlorophyll fluorescence. This study determined the parameter of chlorophyll fluorescence in Orychophragmus violaceus plantlets in vitro preserved under different temperature levels (0, 4, and 8°C). The results showed that photosynthesis capacity in Orychophragmus violaceus plantlets in vitro preserved under 4°C condition were higher than that under 0°C or 8°C conditions. The plantlets in vitro preserved under 4°C condition maintained a high vitality to be subcultured.

  14. Chlorophyll fluorescence analysis and imaging in plant stress and disease

    SciTech Connect

    Daley, P.F.

    1994-12-01

    Quantitative analysis of chlorophyll fluorescence transients and quenching has evolved rapidly in the last decade. Instrumentation capable of fluorescence detection in bright actinic light has been used in conjunction with gas exchange analysis to build an empirical foundation relating quenching parameters to photosynthetic electron transport, the state of the photoapparatus, and carbon fixation. We have developed several instruments that collect video images of chlorophyll fluorescence. Digitized versions of these images can be manipulated as numerical data arrays, supporting generation of quenching maps that represent the spatial distribution of photosynthetic activity in leaves. We have applied this technology to analysis of fluorescence quenching during application of stress hormones, herbicides, physical stresses including drought and sudden changes in humidity of the atmosphere surrounding leaves, and during stomatal oscillations in high CO{sub 2}. We describe a recently completed portable fluorescence imaging system utilizing LED illumination and a consumer-grade camcorder, that will be used in long-term, non-destructive field studies of plant virus infections.

  15. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress.

    PubMed

    Cherif, Jaouhra; Derbel, Najoua; Nakkach, Mohamed; Bergmann, Hubertus von; Jemal, Fatma; Lakhdar, Zohra Ben

    2010-12-01

    The effects of zinc (Zn) on plant chlorophyll fluorescence were investigated in 10-day-old tomato (Solanum lycopersicum) seedlings subjected for 7 days to a series of zinc (10, 50, 100 and 150μM) applied via the nutrient solution. The chlorophyll fluorescence spectra of leaves were recorded in the spectral region 650-800nm using the spectroscopic technique of ultraviolet light emitting diode induced fluorescence spectroscopy (UV-LED IFS). These spectra have been used to analyze the effect of several doses of zinc on the photosynthetic activities of tomato plants. The fluorescence intensity ratios (FIR) at the two maxima (F(690)/F(735)) of control as well as treated tomato plants were calculated by evaluating curve-fitted parameters using a Gaussian spectral function. The variable chlorophyll fluorescence decrease ratio (R(Fd)) values were determined from the fluorescence induction kinetics curves recorded at 690nm and 735nm. In addition, Zn accumulation in plants, plant growth, photosynthetic pigments content and malondialdehyde level (MDA, an index of lipid peroxidation) were also estimated. The results indicated that the plants treated with 10μM of zinc exhibited better growth, however, higher concentrations of zinc were harmful for plants. Excess Zn induced a decrease in the R(Fd) values, which was associated with a strong decline of the total chlorophylls content and an increase of MDA level. The total chlorophylls content decline could also be followed via an increase of the chlorophyll fluorescence ratio F(690)/F(735). PMID:20829059

  16. Modelling canopy scale solar induced chlorophyll fluorescence simulated by the three dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Nagai, S.; Inoue, T.; Yang, W.; Ichii, K.

    2014-12-01

    Recent studies show that the vegetation canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellite. To understand how the canopy scale bidirectional fluorescence observations are related to three-dimensional fluorescence distribution within a plant canopy, it is necessary to evaluate canopy scale fluorescence emission using a detailed plant canopy radiative transfer model. In this study, we developed a three-dimensional plant canopy radiative transfer model that can simulate the bidirectional chlorophyll fluorescence radiance and show several preliminary results of fluorescence distribution at the tree level. To simulate the three dimensional variations in chlorophyll fluorescence from trees, we measured tree structures using a terrestrial LiDAR instrument. The measurements were conducted in Yokohama, Japan (35°22'49" N 139°37'29" E). Three Japanese cherry trees (Cerasus Speciosa) were chosen for our study (Figure 1). Leaf-level sun-induced chlorophyll fluorescence (SIF) is also necessary as an input of radiative transfer model. To measure the leaf-level SIF, we used high spectral resolution spectroradiometer (HR 4000, Ocean Optics Inc. USA). The spectral resolution of this instrument is 0.05 nm (full width half maximum). The spectral range measured was 720 to 780 nm. From the spectral radiance measurements, we estimated SIF using the three band Fraunhofer Line Depth (3FLD) method. The effect of solar and view zenith angles, multiple scattering depends on many factors such as back ground reflectance, leaf reflectance transmittance and landscape structures. To understand how the SIF from both sparse and dense forest stands vary with sun and view angles and optical variables, it is necessary to conduct further sensitivity analysis. Radiative transfer simulation will help understand SIF emission at variety of forest canopy cases.

  17. [Estimation of canopy chlorophyll content using hyperspectral data].

    PubMed

    Dong, Jing-Jing; Wang, Li; Niu, Zheng

    2009-11-01

    Many researches have developed models to estimate chlorophyl content at leaf and canopy level, but they were species-specific. The objective of the present paper was to develop a new model. First, canopy reflectance was simulated for different species and different canopy architecture using radiative transfer models. Based on the simulated canopy reflectance, the relationship between canopy reflectance and canopy chlorophyll content was studied, and then a chlorophyll estimation model was built using the method of spectral index. The coefficient of determination (R2) between spectral index based model and canopy chlorophyll content reached 0.75 for simulated data. To investigate the applicability of this chlorophyll model, the authors chose a field sample area in Gansu Province to carry out the measurement of leaf chlorophyll content, canopy reflectance and other parameters. Besides, the authors also ordered the synchronous Hyperion data, a hyperspectral image with a spatial resolution of 30 m. Canopy reflectance from field measurment and reflectance from Hyperion image were respectively used as the input parameter for the chlorophyll estimation model. Both of them got good results, which indicated that the model could be used for accurate canopy chlorophyll estimation using canopy reflectance. However, while using spaceborne hyperspectral data to estimate canopy chlorophyll content, good atmospheric correction is required. PMID:20101973

  18. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Tol, C.; Berry, J. A.; Campbell, P. K. E.; Rascher, U.

    2014-12-01

    We have extended a conventional photosynthesis model to simulate field and laboratory measurements of chlorophyll fluorescence at the leaf scale. The fluorescence paramaterization is based on a close nonlinear relationship between the relative light saturation of photosynthesis and nonradiative energy dissipation in plants of different species. This relationship diverged only among examined data sets under stressed (strongly light saturated) conditions, possibly caused by differences in xanthophyll pigment concentrations. The relationship was quantified after analyzing data sets of pulse amplitude modulated measurements of chlorophyll fluorescence and gas exchange of leaves of different species exposed to different levels of light, CO2, temperature, nitrogen fertilization treatments, and drought. We used this relationship in a photosynthesis model. The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions.

  19. Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration.

    PubMed

    Chekalyuk, Alexander; Hafez, Mark

    2011-11-01

    Photo-physiological variability of in vivo chlorophyll fluorescence (CF) per unit of chlorophyll concentration (CC) is analyzed using a biophysical model to improve the accuracy of CC assessments. Field measurements of CF and photosystem II (PSII) photochemical yield (PY) with the Advanced Laser Fluorometer (ALF) in the Delaware and Chesapeake Bays are analyzed vs. high-performance liquid chromatography (HPLC) CC retrievals. It is shown that isolation from ambient light, PSII saturating excitation, optimized phytoplankton exposure to excitation, and phytoplankton dark adaptation may provide accurate in vivo CC fluorescence measurements (R2 = 0.90-0.95 vs. HPLC retrievals). For in situ or flow-through measurements that do not allow for dark adaptation, concurrent PY measurements can be used to adjust for CF non-photochemical quenching (NPQ) and improve the accuracy of CC fluorescence assessments. Field evaluation has shown the NPQ-invariance of CF/PY and CF(PY-1-1) parameters and their high correlation with HPLC CC retrievals (R2 = 0.74-0.96), while the NPQ-affected CF measurements correlated poorly with CC (R2 = -0.22). PMID:22109145

  20. Model systems for chlorophyll photochemistry: retention of fluorescence at high chlorophyll density at a hydrophobic-hydrophilic interface

    SciTech Connect

    Seely, G.R.; Senthilathipan, V.

    1983-01-01

    Many model systems containing chlorophyll show concentration quenching of fluorescence at quite moderate occupancies of the available phase space. A new kind of model system has been introduced, involving adsorption of chlorophyll and certain other amphiphilic substances to particles of polyethylene swollen with hydrocarbons, in which fluorescence is retained at coverages approaching a monolayer. In the example illustrated, the fluorescence lifetime is undiminished in spite of evidence for the presence of associated chlorophyll species along with the monomer. The preservation of fluorescence is probably owing to a combination of high viscosity in the swollen polyethylene phase and the presence of a surfactant to keep the chlorophyll in monomeric and well-defined associated forms.

  1. Model systems for chlorophyll photochemistry: retention of fluorescence at high chlorophyll density at a hydrophobic-hydrophilic interface

    SciTech Connect

    Seely, G.R.; Senthilathipan, V.

    1982-01-01

    Many model systems containing chlorophyll show concentration quenching of fluorescence at quite moderate occupancies of the available phase space. A new kind of model system has been introduced, involving adsorption of chlorophyll and certain other amphiphilic substances to particles of polyethylene swollen with hydrocarbons, in which fluorescence is retained at coverages approaching a monolayer. In the example illustrated, the fluorescence lifetime is undiminished in spite of evidence for the prescence of associated chlorophyll species along with the monomer. The preservation of fluorescence is probably owing to a combination of high viscosity in the swollen polyethylene phase and the presence of a surfactant to keep the chlorophyll in monomeric and well-defined associated forms.

  2. Laser and sunlight-induced fluorescence from chlorophyll pigments

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Brown, K. S.

    1986-01-01

    Fluorescence properties of chlorophyll pigment bearing plant foliage utilizing a 337 nm nitrogen laser and integrating sphere were studied. Measured yields, in terms of number of photons emitted per 100 photons absorbed, range from 1.5 to 0.1 for the 685 nm peak, and from 4.2 to 0.2 for the 730 nm peak. Decreasing order of magnitude puts herbaceous leaves ahead of all others followed by broad leaves of hardwoods and coniferous needles. Meaningful quantization for the fluorescence peaks at 430 and 530 nm could not be attained. Passive monitoring of these fluorescence peaks is successful only for the 685 nm from the ocean surface. Field data show the reflectance changes at 685 nm due to the algae presence amounts to 1% at most.

  3. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  4. Fluorescent indices of oak and wheat leaves in dependence on chlorophyll content

    NASA Astrophysics Data System (ADS)

    Kalmatskaya, Olesya Ð. ń.; Karavaev, Vladimir A.; Gunar, Lyudmila E.

    2016-04-01

    Fluorescence spectra and fluorescence induction curves of the leaves of two plant species in dependence on chlorophyll content were studied. Red oak (Quercus rubra L.) leaves upon the autumn chlorophyll degradation, as well as wheat leaves (Triticum aestivum L.) at various stages of ontogenesis showed linear dependence between the ratio ω = F740 / F685 (the ratio of the maximum values of fluorescence at respective wavelengths) and chlorophyll content. In both cases, parameter Fv / Fm (the relative value of the variable fluorescence) remained almost unchanged up to significant reduction of chlorophyll content, indicating on maintaining the high photochemical activity of photosystem 2.

  5. A Passive Method for Detecting Vegetation Stress from Orbit: Chlorophyll Fluorescence Spectra from Fraunhofer Lines

    NASA Technical Reports Server (NTRS)

    Theisen, Arnold F.

    2000-01-01

    Solar-stimulated chlorophyll fluorescence measured with the Fraunhofer line depth method has correlated well with vegetation stress in previous studies. However, the instruments used in those studies were limited to a single solar absorption line (e.g. 656.3 nm), obviating the red/far-red ratio (R/FR) method. Optics and detector technology have reached the level whereby multiple, very narrow Fraunhofer lines are resolvable. Thirteen such lines span the visible spectrum in the red to far-red region where chlorophyll fluorescence occurs. Fluorescence intensities at the 13 Fraunhofer line wavelengths were used to model emission spectra. The source data were collected for summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. The intensities were adjusted to account for Fraunhofer line depth and atmospheric transmittance. Multiple R/FR fluorescence ratios, calculated from the modeled fluorescence spectra, correlated strongly with leaf chlorophyll concentration and well with applied nitrogen. The ratio yielding the best correlation with chlorophyll utilized red fluorescence at the 694.5 nm Fraunhofer line and farred fluorescence at the 755.6 nm Fraunhofer line. Twenty R/FR ratios, each evaluated for the maximum differential between low and high (optimal) nitrogen treatments, ranked higher in some cases and lower in others, possibly related to the time of year the crops were grown and the stage of growth of the crops. Ratios with 728.9 nm and 738.9 nm in the denominator consistently ranked in the lowest and next lowest quartile, respectively. Ratios of the 656.3 nm Fraunhofer line and the 755.6 nm line consistently ranked highest for the summer crop. Ratios with 755.6 nm in the denominator ranked in the upper quartile for 10 out of 12 measurement dates. Differences in ratio ranking indicate that physiological conditions may be estimated using selected ratios of Fraunhofer lines within the context of R/FR analysis. A

  6. Retrieval of aerosol parameters from the oxygen A band in the presence of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.

    2013-10-01

    We have investigated the precision of retrieved aerosol parameters for a generic aerosol retrieval algorithm over vegetated land using the O2 A band. Chlorophyll fluorescence is taken into account in the forward model. Fluorescence emissions are modeled as isotropic contributions to the upwelling radiance field at the surface and they are retrieved along with aerosol parameters. Precision is calculated by propagating measurement errors and a priori errors, including model parameter errors, using the forward model's derivatives. Measurement errors consist of noise and calibration errors. The model parameter errors considered are related to the single scattering albedo, surface pressure and temperature profile. We assume that measurement noise is dominated by shot noise; thus, results apply to grating spectrometers in particular. We describe precision for various atmospheric states, observation geometries and spectral resolutions of the instrument in a number of retrieval simulations. These precision levels can be compared with user requirements. A comparison of precision estimates with the literature and an analysis of the dependence on the a priori error in the fluorescence emission indicate that aerosol parameters can be retrieved in the presence of chlorophyll fluorescence: if fluorescence is present, fluorescence emissions should be included in the state vector to avoid biases in retrieved aerosol parameters.

  7. Chlorophyll fluorescence from creosote-exposed plants in mesocosms: Validation of a bioindicator

    SciTech Connect

    Marwood, C.A.; Harris, M.L.; Day, K.E.; Greenberg, B.M.; Solomon, K.R.

    1995-12-31

    The chlorophyll fluorescence assay is a rapid, sensitive measure of photosynthetic competence in higher plants and algae that can be used to detect the impact of toxicants at many sites in the plant cell. Chlorophyll fluorescence was examined in plants exposed to PAHs as part of a study to validate chlorophyll fluorescence as a bioindicator by correlating effects on fluorescence with population-level effects in outdoor mesocosms. The wood preservative creosote was used as a mixed PAH source. Two species of aquatic plants, Lemna gibba and Myriophyllum sp., were exposed to 0.1--100 uL/L of creosote in 12,000 L artificial ponds. Creosote was introduced into the mesocosms using different dosing schemes to simulate leaching and spill events. The pulse amplitude modulated fluorescence technique was used to measure several parameters from plants in situ during a 60-day exposure. Chlorophyll fluorescence parameters were compared to creosote effects on population-level growth. Chlorophyll fluorescence was inhibited by creosote at concentrations above 3 uL/L, which also caused a similar inhibition of plant growth in the mesocosms. However, chlorophyll fluorescence was more sensitive than growth endpoints at low creosote concentrations. The chlorophyll fluorescence assay also detected damage to the photosynthetic apparatus in plants after only a few days exposure to creosote. Thus, chlorophyll fluorescence from plants exposed to creosote was well correlated with environmentally relevant endpoints at the population level. The effects of the different dosing schemes on creosote toxicity will also be discussed.

  8. Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.

    2000-01-01

    In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.

  9. Continental shelf fish production estimation from CZCS chlorophyll data

    NASA Technical Reports Server (NTRS)

    Iverson, Richard L.

    1989-01-01

    A method for ocean fish production estimation was proposed for development. The method was to use data acquired with the Coastal Zone Color Scanner, and processed into chlorophyll concentrations by the GSFC ocean Sciences Division, in combination with fish production and primary production data acquired from different ocean areas. A linear relation exits between annual fish production and annual phytoplankton carbon production for a wide range of coastal ocean environments. The uses of several existing algorithms which relate primary production to CZCS chlorophyll data as input to the fish production regression model is proposed. A question relating phytoplankton production to CZCS chlorophyll was obtained by Eppley (1984) using chlorophyll data obtained from field samples, equivalent to chlorophyll data obtained from CZCS imagery, and primary production data obtained from ship-board observations on a wide variety of coastal and open ocean environments. This equation was modified with additional data and was successfully tested using CZCS data and field chlorophyll and phytoplankton production data obtained from northeastern North American continental shelf waters and Atlantic open ocean waters. The modified Eppley (1984) relation also estimated phytoplankton annual carbon production in the Sargasso Sea within the confidence limits of a mean value obtained from the Eppley (1984) equation for oceanic waters that provide about 90 percent of total ocean primary production. The modified Eppley production formula applied to CZCS chlorophyll data obtained from several northeastern North American coastal environments gave phytoplankton annual carbon production values similar to the values used in the fish production regression equation.

  10. Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium.

    PubMed

    Hu, Huiqing; Wang, Lihong; Wang, Qingqing; Jiao, Liya; Hua, Weiqi; Zhou, Qing; Huang, Xiaohua

    2014-11-01

    Bisphenol A (BPA) is ubiquitous in the environment because of its continual application in plastics and the epoxy resin industry. Cadmium (Cd) is a highly toxic heavy metal element mainly used in smelting, electroplating, and plastic and dye manufacturing. Pollution as a result of BPA and Cd exists simultaneously in many agricultural regions. However, little information is available regarding the combined effects of BPA and Cd on plants. The combined effects of BPA and Cd on the photosynthesis, chlorophyll fluorescence, and chlorophyll content of soybean seedlings were investigated using noninvasive technology. Combined treatment with 1.5 mg/L BPA and 0.2 mg/L Cd synergistically improved the net photosynthetic rate (Pn ), initial fluorescence (F0 ), maximal photochemical efficiency (Fv /Fm ), effective quantum yield of photosystem II (ΦPSII ), photosynthetic electron transport rate (ETR), and chlorophyll content. Combined treatment with 1.5 mg/L BPA and 3.0 mg/L Cd increased the F0 and decreased the Pn , Fv /Fm , ΦPSII , and ETR, whereas BPA and Cd exhibited an antagonistic effect. Furthermore, combined treatment with 17.2/50.0 mg/L BPA and 3.0/10.0 mg/L Cd synergistically decreased the Pn , Fv /Fm , ΦPSII , ETR, and chlorophyll content, although it increased the F0 . Finally, the effects of BPA and Cd on photosynthesis, chlorophyll fluorescence, and chlorophyll content ceased when BPA stress was stopped. PMID:25113627

  11. Visualizing photosynthesis through processing of chlorophyll fluorescence images

    NASA Astrophysics Data System (ADS)

    Daley, Paul F.; Ball, J. Timothy; Berry, Joseph A.; Patzke, Juergen; Raschke, Klaus E.

    1990-05-01

    Measurements of terrestrial plant photosynthesis frequently exploit sensing of gas exchange from leaves enclosed in gas-tight, climate controlled chambers. These methods are typically slow, and do not resolve variation in photosynthesis below the whole leaf level. A photosynthesis visualization technique is presented that uses images of leaves employing light from chlorophyll (Chl) fluorescence. Images of Chl fluorescence from whole leaves undergoing steady-state photosynthesis, photosynthesis induction, or response to stress agents were digitized during light flashes that saturated photochemical reactions. Use of saturating flashes permitted deconvolution of photochemical energy use from biochemical quenching mechanisms (qN) that dissipate excess excitation energy, otherwise damaging to the light harvesting apparatus. Combination of the digital image frames of variable fluorescence with reference frames obtained from the same leaves when dark-adapted permitted derivation of frames in which grey scale represented the magnitude of qN. Simultaneous measurements with gas-exchange apparatus provided data for non-linear calibration filters for subsequent rendering of grey-scale "images" of photosynthesis. In several experiments significant non-homogeneity of photosynthetic activity was observed following treatment with growth hormones, or shifts in light or humidity, and following infection by virus. The technique provides a rapid, non-invasive probe for stress physiology and plant disease detection.

  12. Canopy Level Chlorophyll Fluorescence and the PRI in a Cornfield

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Corp, Lawrence A.; Campbell, Petya K. E.; Huemmrich, K. Fred; Zhang, Qingyuan; Kustas, William P.

    2012-01-01

    Two bio-indicators, the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (SIF), were derived from directional hyperspectral observations and studied in a cornfield on two contrasting days in the growing season. Both red and far-red SIF exhibited higher values on the day when the canopy in the early senescent stage, but only the far-red SIF showed sensitivity to viewing geometry. Consequently, the red/far-red SIF ratio varied greatly among azimuth positions while the largest values were obtained for the "hotspot" at both growth stages. This ratio was lower (approx.0.88 +/- 0.4) in early July than in August when the ratio approached equivalence (near approx.1). In concert, the PRI exhibited stronger responses to both zenith and azimuth angles and different values on the two growth stages. The potential of using these indices to monitor photosynthetic activities needs further investigation

  13. Contribution of Chlorophyll Fluorescence to the Reflectance of Corn Foliage

    NASA Technical Reports Server (NTRS)

    Campbell, Petya K. Entcheva; Middleton, Elizabeth M.; Corp, L. A.; McMurtrey, J. E.; Kim, M. S.; Chappelle, E. W.; Butcher, L. M.; Ranson, K. Jon (Technical Monitor)

    2002-01-01

    To assess the contribution of chlorophyll fluorescence (ChlF) to apparent reflectance (Ra) in the red/far-red, spectra were collected on a C4 agricultural species (corn, Zea Mays L.) under conditions ranging from nitrogen deficiency to excess. A significant contribution of ChlF to Ra was observed, with on average 10-25% at 685nm and 2-6% at 740nm of Ra being due to ChlF. Higher ChlF was consistently measured from the abaxial leaf surface as compared to the adaxial. Using 350-665nm excitation, the study confirms the trends in three ChlF ratios established previously by active F technology, suggesting that the ChlF utility this technology has developed for monitoring vegetation physiological status is likely applicable also under natural solar illumination.

  14. Effects of Salinity on Chlorophyll Fluorescence of Nitrogen Fixing Soybean Plants (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Iliev, Ilko Ts.; Krezhova, Dora D.; Yanev, Tony K.; Kirova, Elisaveta B.

    2010-01-01

    Leaf chlorophyll ffluorescence was measured in order to assess the effect of salinity on nitrogen fixing soybean plants. Three day's seedlings were inoculated with suspension of Bradyrhizobium japonicum strain 273. The plants were grown at nutrient solution of Helrigel and salinyzed at stage of 2nd trifoliate expanded leaves by adding of NaCl at concentrations 40 mM and 80 mM. The chlorophyll fluorescence was registered by an USB2000 spectrometer in the spectral range 600-850 nm. As a source of actinic light a light emitting diode with the maximum of the light output at 470 nm was used. The course of the fluorescence spectra and the slow transient fluorescence kinetics were investigated. The Student's t-criterion and discriminant analysis were applied to estimate the changes between fluorescence spectra of control and treated soybean plants in five characteristic wavelengths in the spectral range 600-850 nm. Statistically significant differences were established by the t-criterion at p<0.05 for data at the first three wavelengths (at the middle of the leading edge, first maximum and at the middle of the first and second maximum) for both NaCl concentrations. The discriminant analysis confirmed these findings. A comparative analysis was performed with leaf spectral reflectance of the same plants collected in the spectral range 450-850 nm by the same spectrometer. All measurements were performed on the 14th day after the salinity treatment. The results from the implementation of the two remote sensing techniques (chlorophyll fluorescence and spectral reflectance) revealed that both NaCl concentrations brought to salinity stress in the nitrogen fixing soybean plants.

  15. In vivo chlorophyll fluorescence study of hazardous waste site vegetation under field and controlled conditions

    SciTech Connect

    Mayasich, S.A.; Zygmont, N.J. CDM Federal Programs Corp., South Plainfield, NJ )

    1993-06-01

    Cattail (Typha sp.) and Arrow Arum (Peltandra virginica) were studied to determine the effects of cadmium and nickel contamination in a freshwater tidal marsh. An in vivo chlorophyll fluorescence instrument was used in the field to estimate photosynthetic capacity. No definitive effects on photosynthesis were observed. A laboratory study was then designed to determine whether fluorescence could detect sublethal impacts of cadmium and whether tolerant plants had developed in the contaminated area. Arrow Arum seeds collected from a reference wetland and from the contaminated wetland were grown in horticultural vermiculite with cadmium concentrations of 0, 1, 2, 5 and 10 mg/L. Results indicate that, regardless of seed origin, fluorescence can detect an effect at cadmium levels at which there are no visual signs of stress. However, the plants from the contaminated wetland exhibited reduced growth, and deformities in several individuals.

  16. A Graphical User Interface for Parameterizing Biochemical Models of Photosynthesis and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Kornfeld, A.; Van der Tol, C.; Berry, J. A.

    2015-12-01

    Recent advances in optical remote sensing of photosynthesis offer great promise for estimating gross primary productivity (GPP) at leaf, canopy and even global scale. These methods -including solar-induced chlorophyll fluorescence (SIF) emission, fluorescence spectra, and hyperspectral features such as the red edge and the photochemical reflectance index (PRI) - can be used to greatly enhance the predictive power of global circulation models (GCMs) by providing better constraints on GPP. The way to use measured optical data to parameterize existing models such as SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) is not trivial, however. We have therefore extended a biochemical model to include fluorescence and other parameters in a coupled treatment. To help parameterize the model, we then use nonlinear curve-fitting routines to determine the parameter set that enables model results to best fit leaf-level gas exchange and optical data measurements. To make the tool more accessible to all practitioners, we have further designed a graphical user interface (GUI) based front-end to allow researchers to analyze data with a minimum of effort while, at the same time, allowing them to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. Here we discuss the tool and its effectiveness, using recently-gathered leaf-level data.

  17. Ocean color spectral variability studies using solar-induced chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Swift, Robert N.

    1987-01-01

    It is suggested that chlorophyll-induced ocean color spectral variability can be studied using only a passive airborne spectroradiometer instrument, with solar-induced chlorophyll fluorescence used as the standard against which all correlations are performed. The intraspectral correlation (ISC) method is demonstrated with results obtained during an airborne mapping mission in the New York Bight. The curvature algorithm is applied to the solar-induced chlorophyll fluorescence at about 690 nm, and good agreement is found with results obtained using active-passive correlation spectroscopy. The ISC method has application to spectral variability and resulting chlorophyll concentration measurement in different environmental conditions and in different water types.

  18. Bark and leaf chlorophyll fluorescence are linked to wood structural changes in Eucalyptus saligna

    PubMed Central

    Johnstone, Denise; Tausz, Michael; Moore, Gregory; Nicolas, Marc

    2014-01-01

    Wood structure and wood anatomy are usually considered to be largely independent of the physiological processes that govern tree growth. This paper reports a statistical relationship between leaf and bark chlorophyll fluorescence and wood density. A relationship between leaf and bark chlorophyll fluorescence and the quantity of wood decay in a tree is also described. There was a statistically significant relationship between the leaf chlorophyll fluorescence parameter Fv/Fm and wood density and the quantity of wood decay in summer, but not in spring or autumn. Leaf chlorophyll fluorescence at 0.05 ms (the O step) could predict the quantity of wood decay in trees in spring. Bark chlorophyll fluorescence could predict wood density in spring using the Fv/Fm parameter, but not in summer or autumn. There was a consistent statistical relationship in spring, summer and autumn between the bark chlorophyll fluorescence parameter Fv/Fm and wood decay. This study indicates a relationship between chlorophyll fluorescence and wood structural changes, particularly with bark chlorenchyma. PMID:24790120

  19. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration

    NASA Astrophysics Data System (ADS)

    Mignot, A.; Claustre, H.; D'Ortenzio, F.; Xing, X.; Poteau, A.; Ras, J.

    2011-04-01

    In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m-3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m-3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape

  20. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration

    NASA Astrophysics Data System (ADS)

    Mignot, A.; Claustre, H.; D'Ortenzio, F.; Xing, X.; Poteau, A.; Ras, J.

    2011-08-01

    In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence, although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m-3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m-3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape

  1. Optical properties of intact leaves for estimating chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2002-01-01

    Changes in leaf chlorophyll content can serve as relative indicators of plant vigor and environmental quality. This study identified reflectance, transmittance, and absorptance wavebands and band ratios within the 400- to 850-nm range for intact leaves that could be used to estimate extracted leaf chlorophyll per unit leaf area (areal concentration) with minimal error. Leaf optical properties along with chlorophyll a, b, and a + b concentrations were measured for the planar-leaved sweetgum (Liquidambar styraciflua L.), red maple (Acer rubrum L.), wild grape (Vitis rotundifolia Michx.), and switchcane [Arundinaria gigantea (Walter) Muhl.], and for needles of longleaf pine (Pinus palustris Miller). Generally, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentrations at wavelengths near 700 nm, although regressions were also strong in the 550- to 625-nm range. A power function was superior to a simple linear function in yielding low standard deviations of the estimate (s). When data were combined among the planar-leaved species, s values were low at approximately 50 mumol/m2 out of a 940 mumol/m2 range in chlorophyll a + b at best-fit wavelengths of 707 to 709 nm. Minimal s values for chlorophyll a + b ranged from 32 to 62 mumol/m2 across species when band ratios having numerator wavelengths of 693 to 720 nm were used with the application of a power function. Optimal denominator wavelengths for the band ratios were 850 nm for reflectance and transmittance and 400 nm for absorptance. This information can be applied in designing field portable chlorophyll meters and in the landscape-scale remote sensing of plant responses to the environment.

  2. Millimeter scale profiles of chlorophyll fluorescence: Deciphering the microscale spatial structure of phytoplankton

    NASA Astrophysics Data System (ADS)

    Doubell, Mark J.; Prairie, Jennifer C.; Yamazaki, Hidekatsu

    2014-03-01

    Marine food webs and biogeochemical cycles are driven by interactions between individual phytoplankton and other micro-organisms embedded within turbulent flows. Understanding the causes and ecological consequences of these interactions requires measurement of the spatial distribution of organisms across sub-meter scales relevant to their activities. However, estimates of many microscale processes (e.g., encounter rates, competition) are implicitly based on a random distribution of plankton despite increasing evidence of patchy distributions of turbulence and phytoplankton at the oceans microscale. Further complicating our understanding of microscale phytoplankton ecology, recent studies have suggested that the high levels of fluorescence variability measured at sub-centimeter scales may be due to the detection of separate, large phytoplankton particles (i.e. large cells, chains and aggregates) rather than 'patches' of increased cell abundances. By comparing coincident fluorescence estimates measured with millimeter (μL) and centimeter (mL) scale resolution, we show that estimates of phytoplankton biomass made at centimeter scales are consistent with averaging discrete variations in fluorescence measured at millimeter scales and that a critical scale exists where measures of fluorescence variability transitions from representing an individual to a patch. Application of nearest neighbor analysis to the discrete fluorescence patterns showed deviations from complete spatial randomness towards clustering across scales of millimeters to tens of centimeters. The strength of the deviation from random increased significantly in regions of elevated phytoplankton concentrations. No relationship was observed between fluorescent particle concentrations or nearest neighbor distances with the rate of dissipation of turbulent kinetic energy. Our results provide empirical evidence that the scale at which phytoplankton distributions are estimated by chlorophyll fluorescence may be

  3. Remote Sensing of Chlorophyll Fluorescence by the Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Yee, J. H.; Boldt, J.; Cook, W. B.; Morgan, F., II; Demajistre, R.; Cook, B. D.; Corp, L. A.

    2014-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the amount of fill-in of strong O2 absorption lines or Fraunhofer lines in the reflected solar spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is designed and constructed specifically for airborne and groundbased ChlF measurements using the line fill-in ChlF measurement technique. In this paper, we will present the design of this triple etalon Fabry-Perot imaging instrument and the results of its vegetation fluorescence measurements obtained from the ground in the laboratory and from a NASA Langley King Air during our 2014 airborne campaign over vegetated targets in North Carolina and Virginia.

  4. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  5. Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll- a detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhao, Chaofang; Ma, Youjun; Liu, Zhishen

    2014-08-01

    A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll- a (Chl- a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl- a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl- a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels ( I 495/ I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl- a concentrations in the upper layer of the ocean. A comparison of relative Chl- a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl- a in the upper layer of ocean water.

  6. [Photosynthetic Parameters Inversion Algorithm Study Based on Chlorophyll Fluorescence Induction Kinetics Curve].

    PubMed

    Qiu, Xiao-han; Zhang, Yu-jun; Yin, Gao-fang; Shi, Chao-yi; Yu, Xiao-ya; Zhao, Nan-jing; Liu, Wen-qing

    2015-08-01

    The fast chlorophyll fluorescence induction curve contains rich information of photosynthesis. It can reflect various information of vegetation, such as, the survival status, the pathological condition and the physiology trends under the stress state. Through the acquisition of algae fluorescence and induced optical signal, the fast phase of chlorophyll fluorescence kinetics curve was fitted. Based on least square fitting method, we introduced adaptive minimum error approaching method for fast multivariate nonlinear regression fitting toward chlorophyll fluorescence kinetics curve. We realized Fo (fixedfluorescent), Fm (maximum fluorescence yield), σPSII (PSII functional absorption cross section) details parameters inversion and the photosynthetic parameters inversion of Chlorella pyrenoidosa. And we also studied physiological variation of Chlorella pyrenoidosa under the stress of Cu(2+). PMID:26672292

  7. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  8. Chlorophyll Fluorescence Near the Shoreline: Connections to Waves and Wave-Driven Currents

    NASA Astrophysics Data System (ADS)

    Omand, M. M.; Leichter, J. J.; Feddersen, F.; Franks, P. J.; McKenna, M. F.; Rippy, M.; Guza, R.

    2006-12-01

    Coastal phytoplankton communities may be significantly affected by breaking internal and surface gravity waves. For example, internal surges have been implicated in cross-shore transport, and rip currents (generated in the surf zone by breaking surface waves) are associated with mixing of water and organisms between the surf zone and the inner shelf. A month-long study at Huntington Beach CA in Fall 2006 will explore the connections between breaking wave driven currents and nutrients, chlorophyll-a fluorescence, phytoplankton taxa and abundance in the nearshore water. Two cross-shore mooring transects (deployed by USGS and Orange County Sanitation District) will sample the vertical structure of currents, temperature and salinity between 8 and 50 m water depth. Surface gravity waves will be measured with a directional wave buoy in 22 m depth. We will acquire additional small boat CTD+F, optical nitrate, Wire-Walker CTD+F, and bottle estimates of macronutrients, phytoplankton taxa and biomass. Different observing techniques are required in the surfzone. Currents, temperature, and waves will be measured on 7 durable, bottom-mounted tripods deployed between the shoreline and 4m depth. In situ chlorophyll-a fluorescence will be observed at 4 cross-shore locations. A novel jetski platform will provide high spatial resolution maps of chlorophyll and temperature, 20 cm below the water surface. Strong stratification is expected during the experiment, and results relevant to the propagation of internal waves and effects for phytoplankton and nutrients fluxes in the surfzone will be presented. Funded by CA Seagrant, CA Coastal Conservancy, and ONR.

  9. Chlorophyll fluorescence response to water and nitrogen deficit

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  10. A new indicator in early drought diagnosis of cucumber with chlorophyll fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Li, Haifeng; Xu, Liang; Liu, Xu

    2015-05-01

    Crop population growth information can more fully reflect the state of crop growth, eliminate individual differences, and reduce error in judgment. We have built a suitable plant population growth information online monitoring system with the plant chlorophyll fluorescence and spectral scanning imaging to get the crop growth status. On the basis of the fluorescence image detection, we have studied the early drought diagnosis of cucumber. The typical chlorophyll fluorescence parameters can not reflect the drought degree significantly. We define a new indication parameter (DI). With the drought deepening, DI declines. DI can enlarge the early manifestation of cucumber drought (3-5 days), indicate more significantly in the early drought diagnosis of cucumber.

  11. Chlorophyll Fluorescence Emissions of Vegetation Canopies From High Resolution Field Reflectance Spectra

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva

    2006-01-01

    A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also

  12. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    PubMed Central

    Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532

  13. Estimating global chlorophyll changes over the past century

    NASA Astrophysics Data System (ADS)

    Boyce, Daniel G.; Dowd, Michael; Lewis, Marlon R.; Worm, Boris

    2014-03-01

    Marine phytoplankton account for approximately half of the production of organic matter on earth, support virtually all marine ecosystems, constrain fisheries yields, and influence climate and weather. Despite this importance, long-term trajectories of phytoplankton abundance or biomass are difficult to estimate, and the extent of changes is unresolved. Here, we use a new, publicly-available database of historical shipboard oceanographic measurements to estimate long-term changes in chlorophyll concentration (Chl; a widely used proxy for phytoplankton biomass) from 1890 to 2010. This work builds upon an earlier analysis (Boyce et al., 2010) by taking published criticisms into account, and by using recalibrated data, and novel analysis methods. Rates of long-term chlorophyll change were estimated using generalized additive models within a multi-model inference framework, and post hoc sensitivity analyses were undertaken to test the robustness of results. Our analysis revealed statistically significant Chl declines over 62% of the global ocean surface area where data were present, and in 8 of 11 large ocean regions. While Chl increases have occurred in many locations, weighted syntheses of local- and regional-scale estimates confirmed that average chlorophyll concentrations have declined across the majority of the global ocean area over the past century. Sensitivity analyses indicate that these changes do not arise from any bias between data types, nor do they depend upon the method of spatial or temporal aggregation, nor the use of a particular statistical model. The wider consequences of this long-term decline of marine phytoplankton are presently unresolved, but will need to be considered in future studies of marine ecosystem structure, geochemical cycling, and fishery yields.

  14. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants.

    PubMed

    Ptushenko, V V; Ptushenko, O S; Tikhonov, A N

    2014-03-01

    Parameters of chlorophyll fluorescence induction (CFI) are widely used for assessment of the physiological state of higher plant leaves in biochemical, physiological, and ecological studies and in agricultural applications. In this work we have analyzed data on variability of some CFI parameters - ΦPSII(max) = Fv/Fm (relative value of variable fluorescence), qNPQ (non-photochemical quenching coefficient), RFd ("vitality index") - in autumnal leaves of ten arboreous plant species of the temperate climatic zone. The correlation between the chlorophyll content in the leaves and fluorescence parameters characterizing photosynthetic activity is shown for two representative species, the small-leaved linden Tilia cordata and the rowan tree Sorbus aucuparia. During the period of mass yellowing of the leaves, the ΦPSII(max) value can be used as an adequate characteristic of their photochemical activity, while in summer the qNPQ or RFd values are more informative. We have established a correlation between the ΦPSII(max) value, which characterizes the maximal photochemical activity of the photosystem II, and "chromaticity coordinates" of a leaf characterizing its color features. The chromaticity coordinates determined from the optical reflection spectra of the leaves serve as a quantitative measure of their hues, and this creates certain prerequisites for a visual expert assessment of the physiological state of the leaves. PMID:24821453

  15. MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis.

    PubMed

    Christ, Bastien; Schelbert, Silvia; Aubry, Sylvain; Süssenbacher, Iris; Müller, Thomas; Kräutler, Bernhard; Hörtensteiner, Stefan

    2012-02-01

    During leaf senescence, chlorophyll (Chl) is broken down to nonfluorescent chlorophyll catabolites (NCCs). These arise from intermediary fluorescent chlorophyll catabolites (FCCs) by an acid-catalyzed isomerization inside the vacuole. The chemical structures of NCCs from Arabidopsis (Arabidopsis thaliana) indicate the presence of an enzyme activity that demethylates the C13(2)-carboxymethyl group present at the isocyclic ring of Chl. Here, we identified this activity as methylesterase family member 16 (MES16; At4g16690). During senescence, mes16 leaves exhibited a strong ultraviolet-excitable fluorescence, which resulted from large amounts of different FCCs accumulating in the mutants. As confirmed by mass spectrometry, these FCCs had an intact carboxymethyl group, which slowed down their isomerization to respective NCCs. Like a homologous protein cloned from radish (Raphanus sativus) and named pheophorbidase, MES16 catalyzed the demethylation of pheophorbide, an early intermediate of Chl breakdown, in vitro, but MES16 also demethylated an FCC. To determine the in vivo substrate of MES16, we analyzed pheophorbide a oxygenase1 (pao1), which is deficient in pheophorbide catabolism and accumulates pheophorbide in the chloroplast, and a mes16pao1 double mutant. In the pao1 background, we additionally mistargeted MES16 to the chloroplast. Normally, MES16 localizes to the cytosol, as shown by analysis of a MES16-green fluorescent protein fusion. Analysis of the accumulating pigments in these lines revealed that pheophorbide is only accessible for demethylation when MES16 is targeted to the chloroplast. Together, these data demonstrate that MES16 is an integral component of Chl breakdown in Arabidopsis and specifically demethylates Chl catabolites at the level of FCCs in the cytosol. PMID:22147518

  16. In situ monitoring of ocean chlorophyll via laser-induced fluorescence backscattering through an optical fiber

    SciTech Connect

    Cowles, T.J.; Moum, J.N.; Desiderio, R.A.; Angel, S.M.

    1989-02-01

    The first seagoing test of a prototype laser/fiber-optic system for in situ detection of ocean chlorophyll fluorescence is described. Radiation at 488 nm originating from a shipboard argon laser was transmitted through 20 of 200-..mu..m core optical fiber to the distal tip mounted on the microstructure profiler, the Rapid Sampling Vertical Profiler. The backscattered fluorescence emission signal was collected through the same fiber and processed on board ship. A series of measurements indicated that (1) successful isolation of ship-induced vibrations could be achieved using our optical bench framework to maintain optical alignments; (2) ambient chlorophyll concentrations could be detected in situ; (3) a Raman scattering signal from water could also be detected and should provide an internal standard against which chlorophyll fluorescence may be calibrated.

  17. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana

    PubMed Central

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108

  18. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana.

    PubMed

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108

  19. Rapid, Noninvasive Screening for Perturbations of Metabolism and Plant Growth Using Chlorophyll Fluorescence Imaging1

    PubMed Central

    Barbagallo, Romina P.; Oxborough, Kevin; Pallett, Kenneth E.; Baker, Neil R.

    2003-01-01

    A rapid, noninvasive technique involving imaging of chlorophyll fluorescence parameters for detecting perturbations of leaf metabolism and growth in seedlings is described. Arabidopsis seedlings were grown in 96-well microtitre plates for 4 d and then treated with eight herbicides with differing modes of action to induce perturbations in a range of different metabolic processes. Imaging of chlorophyll fluorescence emissions from 96 seedlings growing on a microtitre plate enabled images of a number of fluorescence parameters to be rapidly and simultaneously produced for the plants in each well. Herbicideinduced perturbations in metabolism, even in metabolic reactions not directly associated with photosynthetic metabolism, were detected from the changes in the images of fluorescence parameters considerably before any visual effects on seedling growth were observed. Evaluations of seedling growth were made from measurements of the area of chlorophyll fluorescence emission in images of plants growing in the 96-well plates. Decreased seedling growth related directly to herbicideinduced changes in the imaged chlorophyll fluorescence parameters. The applicability of this rapid-screening technique for metabolic perturbations in monocotyledonous species was demonstrated by treating Agrostis tenuis seedlings with Imazapyr, an inhibitor of branched-chain amino acid synthesis. PMID:12805581

  20. Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants.

    PubMed

    Buonasera, K; Lambreva, M; Rea, G; Touloupakis, E; Giardi, M T

    2011-09-01

    Chlorophyll a fluorescence has been extensively studied over the last few years. As demonstrated, this phenomenon is closely related to the state of photosystem II, which plays a leading role in the photosynthetic process, and therefore it has become a powerful tool to investigate this complex and any damage occurring in it as a result of physical or chemical stresses. This means that by using photosynthetic organisms as biological probes, one can consider chlorophyll a fluorescence as one of the techniques of choice to reveal the presence of some hazardous toxicants widely spread in the environment. Herbicides, pesticides, and heavy metals, whose concentration in water and food products is generally subject to extremely severe restrictions, are a concrete example of compounds detectable by chlorophyll a fluorescence. These dangerous substances react with the photosystem II, modifying the fluorescence emitted and giving responses which vary in a concentration-dependent manner. The possibility of performing easy, fast, and direct measurements of the fluorescence, even under light conditions, has opened new frontiers for the analysis in situ of pollutants. The aim of this review is to give an overview of the different techniques based on chlorophyll a fluorescence spectrometry, focusing in particular on those which represented the starting point for applications addressed to the assessment of toxic compounds in environmental samples. PMID:21701849

  1. Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2

    NASA Technical Reports Server (NTRS)

    Frankenberg, Christian; Odell, Chris; Berry, Joseph; Guanter, Luis; Joiner, Joanna; Kohler, Philipp; Pollock, Randy; Taylor, Thomas E.

    2014-01-01

    The Orbiting Carbon Observatory-2 (OCO-2), scheduled to launch in July 2014, is a NASA mission designed to measure atmospheric CO2. Its main purpose is to allow inversions of net flux estimates of CO2 on regional to continental scales using the total column CO2 retrieved using high-resolution spectra in the 0.76, 1.6, and 2.0 nm ranges. Recently, it was shown that solar-induced chlorophyll fluorescence (SIF), a proxy for gross primary production (GPP, carbon uptake through photosynthesis), can be accurately retrieved from space using high spectral resolution radiances in the 750 nm range from the Japanese GOSAT and European GOME-2 instruments. Here, we use real OCO-2 thermal vacuum test data as well as a full repeat cycle (16 days) of simulated OCO-2 spectra under realistic conditions to evaluate the potential of OCO-2 for retrievals of chlorophyll fluorescence and also its dependence on clouds and aerosols. We find that the single-measurement precision is 0.3-0.5 Wm(exp -2)sr(exp -1) nm(exp -1) (15-25% of typical peak values), better than current measurements from space but still difficult to interpret on a single-sounding basis. The most significant advancement will come from smaller ground-pixel sizes and increased measurement frequency, with a 100-fold increase compared to GOSAT (and about 8 times higher than GOME-2). This will largely decrease the need for coarse spatial and temporal averaging in data analysis and pave the way to accurate local studies.We also find that the lack of full global mapping from the OCO-2 only incurs small representativeness errors on regional averages. Eventually, the combination of net ecosystem exchange (NEE) derived from CO2 source/sink inversions and SIF as proxy for GPP from the same satellite will provide a more process-based understanding of the global carbon cycle.

  2. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS): A New Airborne Instrument for Quantifying Solar-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Frankenberg, C.; Verma, M.; Berry, J. A.; Schimel, D.; Geier, S.; Schwochert, M.

    2015-12-01

    Recent demonstrations of the retrieval of vegetation solar-induced fluorescence (SIF) emission from satellite platforms have opened up the possibility of remotely monitoring photosynthetic function, in addition to the structural and biochemical parameters that characterize the current capabilities of vegetation observing systems. These satellite retrievals, from platforms such as GOSAT, GOME-2, and most recently NASA's Orbiting Carbon Observatory 2 (OCO-2), provide powerful evidence of the correlation between vegetation productivity and SIF at seasonal to annual timescales, and at spatial resolutions of tens to hundreds of kilometers. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS) was recently developed for OCO-2 validation purposes and provides an airborne capability to help fill the spatial gap between leaf- or canopy-level observations of SIF flux and extensive satellite footprints. The flexibility of an airborne instrument likewise allows for studies of the temporal variability of SIF emission over consecutive days, or with meteorological variability throughout a day. CFIS is a high resolution (<0.1nm) spectrometer covering the 740-770nm wavelength range, optimized for SIF quantification. Here we present an overview of the instrument design and capabilities, along with the retrieval methodology. An evaluation of data collected during initial campaigns conducted during the spring and summer of 2015 are also presented, demonstrating variability within and between days for campaigns spanning multiple days in the Midwest US and Northern California. Results will be compared to OCO-2 data as well as flux-tower measurements made during the CFIS flights.

  3. Chlorophyll Fluorescence as a Possible Tool for Salinity Tolerance Screening in Barley (Hordeum vulgare L.).

    PubMed Central

    Belkhodja, R.; Morales, F.; Abadia, A.; Gomez-Aparisi, J.; Abadia, J.

    1994-01-01

    The application of chlorophyll fluorescence measurements to screening barley (Hordeum vulgare L.) genotypes for salinity tolerance has been investigated. Excised barley leaves were cut under water and incubated with the cut end immersed in water or in a 100-mM NaCl solution, either in the dark or in high light. Changes in rapid fluorescence kinetics occurred in excised barley leaves exposed to the saline solution only when the incubation was carried out in the presence of high light. Fluorescence changes consisted of decreases in the variable to maximum fluorescence ratio and in increases in the relative proportion of variable fluorescence leading to point I in the Kautsky fluorescence induction curve. These relative increases in fluorescence at point I appeared to arise from a delayed plastoquinone reoxidation in the dark, since they disappeared after short, far-red illumination, which is known to excite photosystem I preferentially. We show that a significant correlation existed between some fluorescence parameters, measured after a combined salt and high-light treatment, and other independent measurements of salinity tolerance. These results suggest that chlorophyll fluorescence, and especially the relative fluorescence at point I in the Kautsky fluorescence induction curve, could be used for the screening of barley genotypes for salinity tolerance. PMID:12232117

  4. Photoadaptation in marine phytoplankton: changes in spectral absorption and excitation of chlorophyll a fluorescence

    SciTech Connect

    Neori, A.; Holm-Hansen, O.; Mitchell, B.G.; Kiefer, D.A.

    1984-10-01

    The optical properties of marine phytoplankton were examined by measuring the absorption spectra and fluorescence excitation spectra of chlorophyll a for natural marine particles collected on glass fiber filters. Samples were collected at different depths from stations in temperate waters of the Southern California Bight and in polar waters of the Scotia and Ross Seas. At all stations, phytoplankton fluorescence excitation and absorption spectra changed systematically with depth and vertical stability of the water columns. In samples from deeper waters, both absorption and chlorophyll a fluorescence excitation spectra showed enhancement in the blue-to-green portion of the spectrum (470-560 nm) relative to that at 440 nm. Since similar changes in absorption and excitation were induced by incubating sea water samples at different light intensities, the changes in optical properties can be attributed to photoadaptation of the phytoplankton. The data indicate that in the natural populations studied, shade adaptation caused increases in the concentration of photosynthetic accessory pigments relative to chlorophyll a. These changes in cellular pigment composition were detectable within less than 1 day. Comparisons of absorption spectra with fluorescence excitation spectra indicate an apparent increase in the efficiency of sensitization of chlorophyll a fluorescence in the blue and green spectral regions for low light populations. 30 references, 6 figures.

  5. Modeling regional cropland GPP by empirically incorporating sun-induced chlorophyll fluorescence into a coupled photosynthesis-fluorescence model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Guanter, L.; Van der Tol, C.; Joiner, J.; Berry, J. A.

    2015-12-01

    Global sun-induced chlorophyll fluorescence (SIF) retrievals are currently available from several satellites. SIF is intrinsically linked to photosynthesis, so the new data sets allow to link remotely-sensed vegetation parameters and the actual photosynthetic activity of plants. In this study, we used space measurements of SIF together with the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model in order to simulate regional photosynthetic uptake of croplands in the US corn belt. SCOPE couples fluorescence and photosynthesis at leaf and canopy levels. To do this, we first retrieved a key parameter of photosynthesis model, the maximum rate of carboxylation (Vcmax), from field measurements of CO2 and water flux during 2007-2012 at some crop eddy covariance flux sites in the Midwestern US. Then we empirically calibrated Vcmax with apparent fluorescence yield which is SIF divided by PAR. SIF retrievals are from the European GOME-2 instrument onboard the MetOp-A platform. The resulting apparent fluorescence yield shows a stronger relationship with Vcmax during the growing season than widely-used vegetation index, EVI and NDVI. New seasonal and regional Vcmax maps were derived based on the calibration model for the cropland of the corn belt. The uncertainties of Vcmax were also estimated through Gaussian error propagation. With the newly derived Vcmax maps, we modeled regional cropland GPP during the growing season for the Midwestern USA, with meteorological data from MERRA reanalysis data and LAI from MODIS product (MCD15A2). The results show the improvement in the seasonal and spatial patterns of cropland productivity in comparisons with both flux tower and agricultural inventory data.

  6. Designation of rapid detection system for chlorophyll fluorescence parameters based on LED irradiation

    NASA Astrophysics Data System (ADS)

    Li, Zhengming; Ji, Jianwei; Xu, Minghu

    2013-03-01

    Adopting high-power light-emitting diode (LED) as excitation light source, the study designed a rapid detection system for fluorescence parameters based on MINIPAM. The system uses a microcomputer as the core of the programmable power supply to provide constant current drive of the LED array, and the LED array as a fluorescence excitation light source produces light photochemical system needed. It also uses MINIPAM to detect the fluorescence, analyzing the fluorescence parameters of the mathematical model, studying the plant photosystem& light response curve. The System is of great significance in the evaluation of chlorophyll photosynthesis ability and the plant physiological stress response and the appropriate mechanism.

  7. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    PubMed

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring. PMID:25752061

  8. Diurnal and directional responses of chlorophyll fluorescence and pri in a cornfield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two high spectral resolution reflectance-based indices were used to assess whether vegetation in a cornfield was performing near-optimally or exhibiting symptoms of environmental stress. These were the Photochemical Reflectance Index (PRI) and solar-induced Chlorophyll Fluorescence (SIF). This study...

  9. Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficit limits net photosynthesis (Anet) and decreases crop yields. An important challenge for basic and applied research is to establish a rigorous landscape-scale indicator of Anet. Chlorophyll fluorescence (ChF) can be used at the field scale as an indirect measure of Anet in both healthy a...

  10. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global monitoring of agricultural productivity is critical in a world under a continuous increase of food demand. Here we have used new spaceborne retrievals of chlorophyll fluorescence, an emission quantity intrinsically linked to photosynthesis, to derive spatially explicit photosynthetic uptake r...

  11. Chlorophyll fluorescence as an indicator of plant water status in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various methods exist for the measurement of plant water status. Plant breeders value methods that are fast and inexpensive lending themselves to the efficient evaluation of large segregating populations. Chlorophyll fluorescence is a parameter commonly measured by plant physiologists when studying ...

  12. A new relative referencing method for crop monitoring using chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Norikane, J.; Goto, E.; Kurata, K.; Takakura, T.

    2003-01-01

    The measurement of plant chlorophyll fluorescence has been used for many years as a method to monitor a plant's health status. These types of methods have been mostly relegated to the laboratory. The newly developed Relative Referencing Method allows for the measurement of chlorophyll fluorescence under artificial lighting conditions. The fluorescence signal can be determined by first taking a reference signal measurement, then a second measurement with an additional fluorescence excitation source. The first signal can then be subtracted from the second and the plant's chlorophyll fluorescence due to the second lighting source can be determined. With this simple approach, a photosynthesizing plant can be monitored to detect signs of water stress. Using this approach experiments on tomato plants have shown that it was possible to detect water stress, while the plants were continuously illuminated by fluorescent lamps. This method is a promising tool for the remote monitoring of crops grown in a CELSS-type application. Published by Elsevier Science Ltd on behalf of COSPAR.

  13. [Monitoring of the Moskva River Water Using Microbiological Parameters and Chlorophyll a Fluorescence].

    PubMed

    Mosharova, I V; Il'inskii, V V; Matorin, D N; Mosharov, S A; Akulova, A Yu; Protopopov, F F

    2015-01-01

    The results of investigations of three Moskva River sites with different degree of pollution using a complex of microbiological characteristics and the parameters of chlorophyll a fluorescence are presented. We determined that the bacterioplankton seasonal dynamics at less polluted waters (Tushino and Vorobyovy Gory) were similar and differed significantly from one in more polluted waters (Dzerzhinskii). The number of bacteria with active electron transport chain, as well as their share in the bacterioplankton structure, was higher in the water of Dzerzhinskii (average annual values of 0.23 x 10(6) cells/mL and 14%), that in the less polluted water of Tushino and Vorobyovy Gory (0.14 x 10(6) cells/mL; 6% and 0.15 x 10(6) cells/mL; 7%, respectively). From April to October, the content of chlorophyll a and its photosynthetic activity were the highest in Tushino. In Dzerzhinskii, during spring the increase in photosynthetic activity commenced earlier and was more intensive that the increase in chlorophyll a content, i.e., the increase in phytoplankton biomass was temporarily suppressed. We suggest association of this phenomenon with suppression of organic matter synthesis by phytoplankton due to the high water pollution in Dzerzhinskii. The second autumn peak of chlorophyll a content, that was typical of clear water and was observed in Tushino, did not occur in Dzerzhinskii. We recommend combined application of these microbiological parameters and characteristics of chlorophyll a fluorescence for a monitoring. PMID:26964361

  14. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence.

    PubMed

    Kumar, K Suresh; Dahms, Hans-Uwe; Lee, Jae-Seong; Kim, Hyung Chul; Lee, Won Chan; Shin, Kyung-Hoon

    2014-06-01

    Chlorophyll a fluorescence is established as a rapid, non-intrusive technique to monitor photosynthetic performance of plants and algae, as well as to analyze their protective responses. Apart from its utility in determining the physiological status of photosynthesizers in the natural environment, chlorophyll a fluorescence-based methods are applied in ecophysiological and toxicological studies to examine the effect of environmental changes and pollutants on plants and algae (microalgae and seaweeds). Pollutants or environmental changes cause alteration of the photosynthetic capacity which could be evaluated by fluorescence kinetics. Hence, evaluating key fluorescence parameters and assessing photosynthetic performances would provide an insight regarding the probable causes of changes in photosynthetic performances. This technique quintessentially provides non-invasive determination of changes in the photosynthetic apparatus prior to the appearance of visible damage. It is reliable, economically feasible, time-saving, highly sensitive, versatile, accurate, non-invasive and portable; thereby comprising an excellent alternative for detecting pollution. The present review demonstrates the applicability of chlorophyll a fluorescence in determining photochemical responses of algae exposed to environmental toxicants (such as toxic metals and herbicides). PMID:24632123

  15. Computer Reconstruction of Plant Growth and Chlorophyll Fluorescence Emission in Three Spatial Dimensions

    PubMed Central

    Bellasio, Chandra; Olejníčková, Julie; Tesař, Radek; Šebela, David; Nedbal, Ladislav

    2012-01-01

    Plant leaves grow and change their orientation as well their emission of chlorophyll fluorescence in time. All these dynamic plant properties can be semi-automatically monitored by a 3D imaging system that generates plant models by the method of coded light illumination, fluorescence imaging and computer 3D reconstruction. Here, we describe the essentials of the method, as well as the system hardware. We show that the technique can reconstruct, with a high fidelity, the leaf size, the leaf angle and the plant height. The method fails with wilted plants when leaves overlap obscuring their true area. This effect, naturally, also interferes when the method is applied to measure plant growth under water stress. The method is, however, very potent in capturing the plant dynamics under mild stress and without stress. The 3D reconstruction is also highly effective in correcting geometrical factors that distort measurements of chlorophyll fluorescence emission of naturally positioned plant leaves. PMID:22368511

  16. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments.

    PubMed

    Cendrero-Mateo, M Pilar; Moran, M Susan; Papuga, Shirley A; Thorp, K R; Alonso, L; Moreno, J; Ponce-Campos, G; Rascher, U; Wang, G

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  17. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  18. Rapid algal toxicity assay using variable chlorophyll fluorescence for Chlorella kessleri (chlorophyta).

    PubMed

    Kvíderová, Jana

    2010-12-01

    Three methods of algal assays--the standard assay, microassay, and the proposed fluorescence assay--are compared from the point of view of reliability of EC50 detection, the minimum required time for the detection, sensitivity of individual measurement, i.e. at which cell density the particular assay can be used for EC50 estimation, and the time stability of the EC50 values. The assays were performed with green alga Chlorella kessleri strain LARG/1 growing in potassium dichromate solution in Z-medium ranging from 0.01 to 100 mg Cr L⁻¹. The inoculation cell density was set according to the standards to 10⁴ cells mL⁻¹ and according to spectrophotometer/plate reader detection limit. The average EC50 ranged from 0.096 to 0.649 mg Cr L⁻¹ and there were no significant differences in EC50 between the assay type and the inoculation methods with the exception of the significant difference between EC(c)50₇₂ (EC50 established from biomass measured as chlorophyll a concentration after 72 h of cultivation) in the standard assay and EC(r)50 (EC50 derived from growth rate) in the microassay in the standard inoculation experiment due to low variability of their values. The EC(f)50 (EC50 derived from variable fluorescence measurement) values correspond to EC50 values derived from the growth rates. Fluorescence measurement revealed the toxic effect of the chromium after 24 h of exposure at cell density of 5 x 10⁴ cells mL⁻¹, less by half than other used assay methods. The positive correlation of EC(f)50 and time was found in the standard inoculation experiment but opposite effect was observed at the spectrophotometric one. PMID:19551890

  19. First glimpse of solar induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2.

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.; O'Dell, C.

    2014-12-01

    In the past few years, space-borne retrievals of solar induced chlorophyll fluorescence, or SIF, have been enabled by the GOSAT, SCIAMACHY and GOME-2 satellite. Initial studies demonstrate that SIF often has a direct relationship with gross terrestrial carbon uptake, and therefore provides a complementary view of the carbon cycle to that provided by column carbon dioxide (XCO2) measurements. Accurate estimates of SIF have also been shown to be necessary for bias free estimates XCO2 itself. The OCO-2 O2 A-band channel allows us to perform SIF retrievals, and pre-launch sensitivity studies indicated that OCO-2 will provide an unprecedented SIF dataset along its orbit track, albeit at the expense of coverage. Compared to GOSAT, it will record 100 times more SIF data, which will significantly reduce the large random errors in present in GOSAT-based global maps of SIF. Here, we will show first SIF results from OCO-2 data with an initial comparison to previous retrievals from GOSAT. Owing to the low computational demand and relative simplicity of the SIF retrieval algorithm, we expect SIF data to mature somewhat earlier than the more complex XCO2 product. The focus of this presentation will be on quantifying the retrieval quality, showing potential issues, providing a comparison with cloud flags, and presenting the first global maps of SIF from OCO-2.

  20. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    PubMed Central

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle. PMID:24706867

  1. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  2. Mapping cropland GPP in the north temperate region with space measurements of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Huete, A. R.; Zarco-Tejada, P.; Frankenberg, C.; Lee, J.; Berry, J. A.; Moran, S. M.; Ponce-Campos, G.; Beer, C.; Camps-Valls, G.; Buchmann, N. C.; Gianelle, D.; Klumpp, K.; Cescatti, A.; Baker, J. M.; Griffis, T.

    2013-12-01

    Monitoring agricultural productivity is important for optimizing management practices in a world under a continuous increase of food and biofuel demand. We used new space measurements of sun-induced chlorophyll fluorescence (SIF), a vegetation parameter intrinsically linked to photosynthesis, to capture photosynthetic uptake of the crop belts in the north temperate region. The following data streams and procedures have been used in this analysis: (1) SIF retrievals have been derived from measurements of the MetOp-A / GOME-2 instrument in the 2007-2011 time period; (2) ensembles of process-based and data-driven biogeochemistry models have been analyzed in order to assess the capability of global models to represent crop gross primary production (GPP); (3) flux tower-based GPP estimates covering the 2007-2011 time period have been extracted over 18 cropland and grassland sites in the Midwest US and Western Europe from the Ameriflux and the European Fluxes Database networks; (4) large-scale NPP estimates have been derived by the agricultural inventory data sets developed by USDA-NASS and Monfreda et al. The strong linear correlation between the SIF space retrievals and the flux tower-based GPP, found to be significantly higher than that between reflectance-based vegetation indices (EVI, NDVI and MTCI) and GPP, has enabled the direct upscaling of SIF to cropland GPP maps at the synoptic scale. The new crop GPP estimates we derive from the scaling of SIF space retrievals are consistent with both flux tower GPP estimates and agricultural inventory data. These new GPP estimates show that crop productivity in the US Western Corn Belt, and most likely also in the rice production areas in the Indo-Gangetic plain and China, is up to 50-75% higher than estimates by state-of-the-art data-driven and process-oriented biogeochemistry models. From our analysis we conclude that current carbon models have difficulties in reproducing the special conditions of those highly productive

  3. Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii.

    PubMed

    Finazzi, Giovanni; Johnson, Giles N; Dall'Osto, Luca; Zito, Francesca; Bonente, Giulia; Bassi, Roberto; Wollman, Francis-André

    2006-02-01

    Unlike plants, Chlamydomonas reinhardtii shows a restricted ability to develop nonphotochemical quenching upon illumination. Most of this limited quenching is due to state transitions instead of DeltapH-driven high-energy state quenching, qE. The latter could only be observed when the ability of the cells to perform photosynthesis was impaired, either by lowering temperature to approximately 0 degrees C or in mutants lacking RubisCO activity. Two main features were identified that account for the low level of qE in Chlamydomonas. On one hand, the electrochemical proton gradient generated upon illumination is apparently not sufficient to promote fluorescence quenching. On the other hand, the capacity to transduce the presence of a DeltapH into a quenching response is also intrinsically decreased in this alga, when compared to plants. The possible mechanism leading to these differences is discussed. PMID:16445291

  4. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Costa, Ernande B.; Bueno, Luciano A.; Silva, Luciana M. H.; Granja, Manuela M. C.; Medeiros, Maria J. L.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2010-02-01

    Laser induced fluorescence is exploited to evaluate the effect of abiotic stresses upon the evolution and characteristics of in vivo chlorophyll emission spectra of leaves tissues of brazilian biofuel plants species(Saccharum officinarum and Jatropha curcas). The chlorophyll fluorescence spectra of 20 min predarkened intact leaves were studied employing several excitation wavelengths in the UV-VIS spectral region. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were analyzed as a function of the stress intensity and the time of illumination(Kautsky effect). The Chl fluorescence ratio Fr/FFr which is a valuable nondestructive indicator of the chlorophyll content of leaves was investigated during a period of time of 30 days. The dependence of the Chl fluorescence ratio Fr/FFr upon the intensity of the abiotic stress(salinity) was examined. The results indicated that the salinity plays a major hole in the chlorophyll concentration of leaves in both plants spieces, with a significant reduction in the chlorophyll content for NaCl concentrations in the 25 - 200 mM range. The laser induced chlorophyll fluorescence analysis allowed detection of damage caused by salinity in the early stages of the plants growing process, and can be used as an early-warning indicator of salinity stress

  5. Simultaneous Measurement of Oscillations in Oxygen Evolution and Chlorophyll a Fluorescence in Leaf Pieces 1

    PubMed Central

    Walker, David A.; Sivak, Mirta N.; Prinsley, Roslyn T.; Cheesbrough, John K.

    1983-01-01

    In spinach (Spinacia oleracea) and barley (Hordeum vulgare) leaves, chlorophyll a fluorescence and O2 evolution have been measured simultaneously following re-illumination after a dark interval or when steady state photosynthesis has been perturbed by changes in the gas phase. In high CO2 concentrations, both O2 and fluorescence can display marked dampening oscillations that are antiparallel but slightly out of phase (a rise or fall in fluorescence anticipating a corresponding fall or rise in O2 by about 10 to 15 seconds). Infrared gas analysis measurements showed that CO2 uptake behaved like O2 evolution both in the period of oscillation (about 1 minute) and in its relation to fluorescence. In the steady state, oscillations were initiated by increases in CO2 or by increases or decreases in O2. Oscillations in O2 or CO2 did not occur without associated oscillations in fluorescence and the latter were a sensitive indicator of the former. The relationship between such oscillations in photosynthetic carbon assimilation and chlorophyl a fluorescence is discussed in the context of the effect of ATP or NADPH consumption on known quenching mechanisms. PMID:16663255

  6. Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces.

    PubMed

    Walker, D A; Sivak, M N; Prinsley, R T; Cheesbrough, J K

    1983-11-01

    In spinach (Spinacia oleracea) and barley (Hordeum vulgare) leaves, chlorophyll a fluorescence and O(2) evolution have been measured simultaneously following re-illumination after a dark interval or when steady state photosynthesis has been perturbed by changes in the gas phase. In high CO(2) concentrations, both O(2) and fluorescence can display marked dampening oscillations that are antiparallel but slightly out of phase (a rise or fall in fluorescence anticipating a corresponding fall or rise in O(2) by about 10 to 15 seconds). Infrared gas analysis measurements showed that CO(2) uptake behaved like O(2) evolution both in the period of oscillation (about 1 minute) and in its relation to fluorescence. In the steady state, oscillations were initiated by increases in CO(2) or by increases or decreases in O(2). Oscillations in O(2) or CO(2) did not occur without associated oscillations in fluorescence and the latter were a sensitive indicator of the former. The relationship between such oscillations in photosynthetic carbon assimilation and chlorophyl a fluorescence is discussed in the context of the effect of ATP or NADPH consumption on known quenching mechanisms. PMID:16663255

  7. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    NASA Astrophysics Data System (ADS)

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    Recently, chlorophyll fluorescence (ChlF) retrievals in narrow spectral regions (< 1 nm, between 750-770 nm) of the near infrared (NIR) region of Earth's reflected radiation have been achieved from satellites, including the Japanese GOSAT and the European Space Agency's Sciamachy/Envisat. However, these retrievals sample the total full-spectrum ChlF and are made at non-optimal wavelengths since they are not located at the peak fluorescence emission features. We wish to estimate the total full-spectrum ChlF based on emissions obtained at selected wavelengths. For this, we drew upon leaf emission spectra measured on corn leaves obtained from a USDA experimental cornfield in MD (USA). These emission spectra were determined for the adaxial and abaxial (i.e., top and underside) surfaces of leaves measured throughout the 2008 and 2011 growing seasons (n>400) using a laboratory instrument (Fluorolog-3, Horiba Scientific, USA), recorded in either 1 nm or 5 nm increments with monochromatic excitation wavelengths of either 532 or 420 nm. The total ChlF signal was computed as the area under the continuous spectral emission curves, summing the emission intensities (counts per second) per waveband. The individual narrow (1 or 5 nm) waveband emission intensities were linearly related to full emission values, with variable success across the spectrum. Equations were developed to estimate total ChlF from these individual wavebands. Here, we report the results for the average adaxial/abaxial emissions. Very strong relationships were achieved for the relatively high fluorescence intensities at the red chlorophyll peak, centered at 685 nm (r2= 0.98, RMSE = 5.53 x 107 photons/s) and in the nearby O2-B atmospheric absorption feature centered at 688 nm (r2 = 0.94, RMSE = 4.04 x 107), as well as in the far-red peak centered at 740 nm (r2=0.94, RMSE = 5.98 x107). Very good retrieval success occurred for the O2-A atmospheric absorption feature on the declining NIR shoulder centered at 760

  8. Seasonal, Diurnal and Vertical Variation of Chlorophyll Fluorescence on Phyllostachys humilis in Ireland

    PubMed Central

    Van Goethem, Davina; De Smedt, Sebastiaan; Valcke, Roland; Potters, Geert; Samson, Roeland

    2013-01-01

    In recent years, temperate bamboo species have been introduced in Europe not only as an ornamental plant, but also as a new biomass crop. To measure adaptation stress of bamboo to the climate of Western Europe, chlorophyll fluorescence was measured on a diurnal and seasonal basis in Ballyboughal, Co. Dublin, Ireland. Measurements were attained on the leaves of each node of Phyllostachys humilis. The most frequently used parameter in chlorophyll fluorescence is the photosynthetic efficiency (Fv/Fm). A seasonal dip - as well as a larger variation - of Fv/Fm in spring compared to the rest of the year was observed. Over the year, the upper leaves of the plant perform better than the bottom leaves. These findings were linked to environmental factors such as light intensity, air temperature and precipitation, as increased light intensities, decreasing air temperatures and their interactions, also with precipitation levels have an effect on the photosynthetic efficiency (Fv/Fm) in these plants. PMID:23967282

  9. [Chlorophyll fluorescence spectrum analysis of greenhouse cucumber disease and insect damage].

    PubMed

    Sui, Yuan-yuan; Yu, Hai-ye; Zhang, Lei; Luo, Han; Ren, Shun; Zhao, Guo-gang

    2012-05-01

    The present paper is based on chlorophyll fluorescence spectrum analysis. The wavelength 685 nm was determined as the primary characteristic point for the analysis of healthy or disease and insect damaged leaf by spectrum configuration. Dimensionality reduction of the spectrum was achieved by combining simple intercorrelation bands selection and principal component analysis (PCA). The principal component factor was reduced from 10 to 5 while the spectrum information was kept reaching 99.999%. By comparing and analysing three modeling methods, namely the partial least square regression (PLSR), BP neural network (BP) and least square support vector machine regression (LSSVMR), regarding correlation coefficient of true value and predicted value as evaluation criterion, eventually, LSSVMR was confirmed as the appropriate method for modeling of greenhouse cucumber disease and insect damage chlorophyll fluorescence spectrum analysis. PMID:22827075

  10. Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star'.

    PubMed

    Ouzounis, Theoharis; Fretté, Xavier; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-06-01

    We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200 µmol m(-2)  s(-1) at plant height for 14 h per day and 24/18°C day/night temperature, respectively, from January to April 2013. The light treatments were (1) 40% blue in 60% red (40% B/R), (2) 0% blue in 100% red (0% B/R) and (3) white LEDs with 32% blue in white (32% B/W, control), with background daylight under shade screens. The plants were harvested twice for leaf growth and pigmentation. There was no clear pattern in the spectral effect on growth since the order of leaf size differed between harvests in March and April. Fv /Fm was in the range of 0.52-0.72, but overall slightly higher in the control, which indicated a permanent downregulation of PSII in the colored treatments. The fluorescence quenching showed no acclimation to color in 'Purple Star', while 'Vivien' had lower ETR and higher NPQ in the 40% B/R, resembling low light acclimation. The pigmentation showed corresponding spectral response with increasing concentration of lutein while increasing the fraction of blue light, which increased the light absorption in the green/yellow part of the spectrum. The permanent downregulation of PSII moved a substantial part of the thermal dissipation from the light regulated NPQ to non-regulated energy losses estimated by ΦNPQ and ΦNO and the difference found in the balance between ΦPSII and ΦNPQ in 'Vivien' disappeared when ΦNO was included in the thermal dissipation. PMID:25302638

  11. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    PubMed

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-01-01

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  12. Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America

    NASA Technical Reports Server (NTRS)

    Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; Qin, Yuanwei; Wang, Jie; Moore, Berrien, III

    2016-01-01

    Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.

  13. Genetic variability and heritability of chlorophyll a fluorescence parameters in Scots pine (Pinus sylvestris L.).

    PubMed

    Čepl, Jaroslav; Holá, Dana; Stejskal, Jan; Korecký, Jiří; Kočová, Marie; Lhotáková, Zuzana; Tomášková, Ivana; Palovská, Markéta; Rothová, Olga; Whetten, Ross W; Kaňák, Jan; Albrechtová, Jana; Lstibůrek, Milan

    2016-07-01

    Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is

  14. [Application of ANFIS in in-situ measured hyperspectral data for vegetation chlorophyll content estimation].

    PubMed

    Yao, Fu-qi; Zhang, Zhen-hua; Yang, Run-ya; Sun, Jin-wei; Wang, Hai-jiang; Ren, Shang-gang

    2010-07-01

    Hyperspectral reflectance and green degree of Platanus orientalis L. and Populus tomentosa Carr. leaves were measured by the ASD portable spectrometer and the portable chlorophyll meter SPAD-502, respectively. The chlorophyll concentration retrieval models based on 10 common vegetation indexes were established, and the ANN-BP model which used wave bands with larger correlation coefficient as input variables was established for chlorophyll content estimation. Finally, the ANFIS model was established to inverse vegetation chlorophyll content using hyperspectral data. The results showed that normalized difference vegetation index can inverse chlorophyll content better than other vegetation index, and the determination coefficients R2 of models of Platanus orientalis L. and Populus tomentosa Carr. were 0.795 7 and 0.754 6, respectively. The determination coefficients R2 between the predicted and the measured chlorophyll content based on ANN-BP models of Platanus orientalis L. and Populus tomentosa Carr. were 0.935 2 and 0.917 1, respectively. ANFIS model which is a good method to be applied to hyperspectral data for estimation of vegetation chlorophyll concentration can greatly improve vegetation chlorophyll concentration estimation accuracy, and the determination coefficients R2 between the predicted and the measured chlorophyll content of Platanus orientalis L. and Populus tomentosa Carr. were 0.935 2 and 0.917 1, respectively. PMID:20827981

  15. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.

    PubMed

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A; Guanter, Luis; Boyce, C Kevin; Fisher, Joshua B; Morrow, Eric; Worden, John R; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-06-22

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r(2) = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r(2) = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009. PMID:23760636

  16. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence

    PubMed Central

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A.; Guanter, Luis; Boyce, C. Kevin; Fisher, Joshua B.; Morrow, Eric; Worden, John R.; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-01-01

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r2 = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r2 = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009. PMID:23760636

  17. Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants.

    PubMed

    Iriel, Analia; Dundas, Gavin; Fernández Cirelli, Alicia; Lagorio, Maria G

    2015-01-01

    Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400 nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media. PMID:25150973

  18. Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Hamilton, Michael K.; Davis, Curtiss O.; Rhea, W. J.; Pilorz, Stuart H.; Carder, Kendall L.

    1993-01-01

    Data on chlorophyll content and bathymetry of Lake Tahoe obtained on August 9, 1990 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are compared to concurrent in situ surface and in-water measurements. Measured parameters included profiles of percent transmission of monochromatic light, stimulated chlorophyll fluorescence, photosynthetically available radiation, spectral upwelling and downwelling irradiance, and upwelling radiance. Several analyses were performed illustrating the utility of the AVIRIS over a dark water scene. Image-derived chlorophyll concentration compared extremely well with that measured with bottle samples. A bathymetry map of the shallow parts of the lake was constructed which compares favorably with published lake soundings.

  19. Measurement of chlorophyll a fluorescence with an airborne fluorosensor

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Brown, C. A., Jr.; Campbell, J. W.; Houghton, W. M.; Poole, L. R.

    1979-01-01

    Phytoplankton biomass and diversity among various algal species are important for marine productivity assessments. The spatial heterogeneity of phytoplankton in coastal and estuarine environments complicates estimates of total biomass using conventional surface sampling techniques. Since synoptic or near-synoptic data can be quite useful in these studies, this area is a natural focal point for development of remote sensors. However, it is very difficult to sense phytoplankton density and diversity with spacecraft-borne passive sensors primarily because modulation in the signal due to phytoplankton is of the same order as that of atmospheric effects. The same sensors mounted on aircraft may be able to detect and quantify high concentrations of phytoplankton (blooms), but the current lack of knowledge about the spectral reflectance signatures of the major phytoplankton color groups rules out any diversity measurements by this type of sensor. An active fluorosensor mounted on a low-flying aircraft or helicopter is not limited by any of these constraints. A brief survey of the four currently active systems is presented.

  20. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space: Status and Potential for Carbon Cycle Research

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Koehler, P.; Walther, S.; Zhang, Y.; Joiner, J.; Frankenberg, C.

    2015-12-01

    Gross primary production (GPP), or the amount of atmospheric CO2 fixed by vegetation through photosynthesis, represents the largest carbon flux between terrestrial ecosystems and the atmosphere. Despite its importance, large-scale estimates of GPP remain highly uncertain for some terrestrial ecosystems. In this context, measurements of sun-induced chlorophyll fluorescence (SIF), which is emitted in the 650-850nm spectral range by the photosynthetic apparatus of green plants, have the potential to provide a new view on vegetation photosynthesis. Global monitoring of SIF from space have been achieved in the last years by means of a number of atmospheric spectrometers, which have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission. This breakthorugh was followed by retrievals from the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B, which enable a continuous spatial sampling, and lately from ENVISAT/SCIAMACHY. This observational scenario is completed by the first SIF data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming Copernicus' Sentinel 5-Precursor to be launched by early 2016. OCO-2 and TROPOMI offer the possibility of monitoring SIF globally with a 100-fold improvement in spatial and temporal resolution with respect to GOSAT, GOME-2 and SCIAMACHY.In this contribution, we will provide an overview of global SIF monitoring and will illustrate the potential of SIF data to improve our knowledge of vegetation photosynthesis and GPP at the synoptic scale. We will show examples of ongoing research exploiting SIF data for an improved monitoring of photosynthetic activity at different ecosystems, highlighting the usefulness of SIF to constrain estimates of CO2 uptake by vegetation through photosynthesis.

  1. The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y; Garrity, S.; Middleton, E. M.; Huemmrich, K. F.; Gu, L.; Marchesini, L. Belelli

    2014-01-01

    Mapping of terrestrial chlorophyll uorescence from space has shown potentialfor providing global measurements related to gross primary productivity(GPP). In particular, space-based fluorescence may provide information onthe length of the carbon uptake period that can be of use for global carboncycle modeling. Here, we examine the seasonal cycle of photosynthesis asestimated from satellite fluorescence retrievals at wavelengths surroundingthe 740nm emission feature. These retrievals are from the Global OzoneMonitoring Experiment 2 (GOME-2) flying on the MetOp A satellite. Wecompare the fluorescence seasonal cycle with that of GPP as estimated froma diverse set of North American tower gas exchange measurements. Because the GOME-2 has a large ground footprint (40 x 80km2) as compared with that of the flux towers and requires averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP in the satellite averaging area surrounding the tower locations estimated from the Max Planck Institute for Biogeochemistry (MPI-BGC) machine learning algorithm. We also examine the seasonality of absorbed photosynthetically-active radiation(APAR) derived with reflectances from the MODerate-resolution Imaging Spectroradiometer (MODIS). Finally, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested sites(particularly deciduous broadleaf and mixed forests), the GOME-2 fluorescence captures the spring onset and autumn shutoff of photosynthesis as delineated by the tower-based GPP estimates. In contrast, the reflectance-based indicators and many of the models tend to overestimate the length of the photosynthetically-active period for these and other biomes as has been noted previously in the literature. Satellite fluorescence measurements therefore show potential for

  2. The Use of Chlorophyll Fluorescence Lifetime to Assess Phytoplankton Physiology within a River-Dominated Environment

    NASA Technical Reports Server (NTRS)

    Hall, Callie M.; Miller, Richard L.; Redalje, Donald G.; Fernandez, Salvador M.

    2002-01-01

    Chlorophyll a fluorescence lifetime was measured for phytoplankton populations inhabiting the three physical zones surrounding the Mississippi River's terminus in the Gulf of Mexico. Observations of river discharge volume, nitrate + nitrite, silicate, phosphate, PAR (Photosynthetically Active Radiation) diffuse attenuation within the water column, salinity, temperature, SPM, and chl a concentration were used to characterize the distribution of chl fluorescence lifetime within a given region within restricted periods of time. 33 stations extending from the Mississippi River plume to the shelf break of the Louisiana coast were surveyed for analysis of chlorophyll fluorescence lifetime during two cruises conducted March 31 - April 6, 2000, and October 24 - November 1, 2000. At each station, two to three depths were chosen for fluorescence lifetime measurement to represent the vertical characteristics of the water column. Where possible, samples were taken from just below the surface and from just above and below the pycnocline. All samples collected were within the 1% light level of the water column (the euphotic zone). Upon collection, samples were transferred to amber Nalgene bottles and left in the dark for at least 15 minutes to reduce the effects of non-photochemical quenching and to insure that photosynthetic reaction centers were open. Before measurements within the phase fluorometer were begun, the instrument was allowed to warm up for no less than one hour.

  3. A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence.

    PubMed

    Wang, Ying; Qu, Tongfei; Zhao, Xinyu; Tang, Xianghai; Xiao, Hui; Tang, Xuexi

    2016-01-01

    Green tides have occurred in the Yellow Sea, China, every year from 2007 to 2015. The free-floating Ulva prolifera (Müller) J. Agardh was the causative macroalgal species. The co-occurring, attached U. intestinalis was also observed. Photosynthetic capacities were determined using chlorophyll fluorescence in situ and after 7 days lab acclimation, and a significant differences were noted. Pigment composition showed no obvious differences, but concentrations varied significantly, especially chlorophyll b in U. prolifera two times increase was observed after acclimation. The optimal photochemical efficiency of PS II (Fv/Fm) was significantly higher in U. prolifera. Photosynthetic rate (α), maximum relative electron transport rate (rETRmax), and minimum saturating irradiance (Ek), obtained from rapid light response curves (RLCs), showed almost the same photosynthetic physiological status as Fv/Fm. Quenching coefficients and low temperature (77 K) chlorophyll fluorescence emission spectra of thylakoid membranes analysis showed U. prolifera has a better recovery activity and plasticity of PSII than U. intestinalis. Furthermore, energy dissipation via non-photochemical quenching (NPQ) and state transitions showed efficacious photoprotection solution especially in U. prolifera suffered from the severe stresses. Results in the present study suggested that U. prolifera's higher photosynthetic capacity would contribute to its free-floating proliferation, and efficacious photoprotection in addition to favorable oceanographic conditions and high nutrient levels support its growth and aggregation. PMID:27386261

  4. Effects of salinity and nutrients on the growth and chlorophyll fluorescence of Caulerpa lentillifera

    NASA Astrophysics Data System (ADS)

    Guo, Hui; Yao, Jianting; Sun, Zhongmin; Duan, Delin

    2015-03-01

    Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluorescence of the green algae cultured at different salinities and nutrient levels. The results indicated that C. lentillifera can survive in salinities ranging from 20 to 50, and can develop at salinities of 30 to 40. The maximum SGR for C. lentillifera occurred at a salinity of 35. Both chlorophyll content and the ratio of variable to maximum fluorescence ( F v/ F m) were also at a maximum at a salinity of 35. Photosynthesis was inhibited in salinities greater than 45 and less than 25. Both the maximum SGR and maximum chlorophyll content were found in algae treated with a concentration of 0.5 mmol/L of NO3-N and 0.1 mmol/L of PO4-P. The photosynthetic capacity of photosystem II (PSII) was inhibited in cultures of C. lentillifera at high nutrient levels. This occurred when NO3-N concentrations were greater than 1.0 mmol/L and when PO4-P concentrations were at 0.4 mmol/L. As there is strong need for large-scale cultivation of C. lentillifera, these data contribute important information to ensure optimal results.

  5. Quenching action of monofunctional sulfur mustard on chlorophyll fluorescence: towards an ultrasensitive biosensor.

    PubMed

    Kaur, Simerjit; Singh, Minni; Flora, Swaran Jeet Singh

    2013-11-01

    An ultrasensitive fluorimetric biosensor for the detection of chemical warfare agent sulfur mustard (SM) was developed using its monofunctional analogue. SM is a vesicant and a potent chemical threat owing to its direct toxic effects on eyes, lungs, skin and DNA. This work investigates the quenching action of the analyte on chlorophyll fluorescence as elucidated by nuclear magnetic resonance, Fourier transform infrared spectroscopy and mass spectrometry studies suggesting the electrophilic attack of carbonium ion on nitrogens of the porphyrin moiety of chlorophyll. The properties of immobilisation matrix were optimised and scanning electron microscope observations confirmed improvement in pore size of sol-gels by addition of 32 % (v/v) glycerol, a feature enabling enhanced sensitivity towards the analyte. Chlorophyll embedded sol-gel was treated with increasing concentrations of monofunctional SM and the corresponding drop in maximum fluorescence intensity as measured by emission at 673 nm was observed, which varied linearly and had a detection limit of 7.68 × 10(-16) M. The biosensor was found to be 6 orders of magnitude more sensitive than the glass microfibre-based disc biosensor previously reported by us. PMID:23955347

  6. Association of specific leaf weight, an estimate of chlorophyll, and chlorophyll concentration with apparent photosynthesis in soybean.

    PubMed

    Thompson, J A; Schweitzer, L E; Nelson, R L

    1996-07-01

    Increasing specific leaf weight (SLW) may improve leaf apparent photosynthesis (AP) in soybean [Glycine max (L.) Merr.] but screening for SLW and AP is laborious. The Objectives of this study were (i) to determine the time course of SLW and chlorophyll concentration in experimental lines selected for differences in SLW and (ii) to evaluate the potential use of the Minolta 502 SPAD meter as a rapid estimator of SLW, AP and chlorophyll concentration in leaves of soybean. In 1991 and 1992, sixteen experimental lines representing extremes in SLW were grown at Urbana, IL, and West Lafayette, IN, with three replications at each location. SPAD values, SLW and AP were measured at the R2 (full flower), R4 (full pod) and R5 (beginning seed) growth stages. In 1992 SLW, SPAD values and chlorophyll concentration were measured weekly. Seasonal patterns of SPAD values, SLW, and chlorophyll concentration were very similar through R5. After R5, SLW continued to increase but SPAD values and chlorophyll concentration declined. SPAD values and SLW were highly correlated at the R2, R4 and R5 stages at both locations and in both years. Environmental conditions during this research were not suitable for maximum AP expression, which is likely why AP and SPAD values were correlated only at the R4 growth stage at Urbana in 1992. SPAD measurements were consistent across diverse environments and effectively separated the high SLW lines from the low SLW lines. Measuring with the Minolta 502 SPAD meter is rapid, simple and non-destructive and could be an alternative method for direct selection for SLW. PMID:24271528

  7. Airborne Laser-Induced Oceanic Chlorophyll Fluorescence: Solar-Induced Quenching Corrections by use of Concurrent Downwelling Irradiance Measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1998-05-01

    Airborne laser-induced (and water Raman-normalized) spectral fluorescence emissions from oceanic chlorophyll were obtained during variable downwelling irradiance conditions induced by diurnal variability and patchy clouds. Chlorophyll fluorescence profiles along geographically repeated inbound and outbound flight track lines, separated in time by 3 6 h and subject to overlying cloud movement, were found to be identical after corrections made with concurrent downwelling irradiance measurements. The corrections were accomplished by a mathematical model containing an exponential of the ratio of the instantaneous-to-average downwelling irradiance. Concurrent laser-induced phycoerythrin fluorescence and chromophoric dissolved organic matter fluorescence were found to be invariant to downwelling irradiance and thus, along with sea-surface temperature, established the near constancy of the oceanic surface layer during the experiment and validated the need for chlorophyll fluorescence quenching corrections over wide areas of the ocean.

  8. Improving the modeling of the seasonal carbon cycle of the boreal forest with chlorophyll fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Thum, Tea; Aalto, Tuula; Aurela, Mika; Laurila, Tuomas; Zaehle, Sönke

    2014-05-01

    The boreal ecosystems are characterized a very strong seasonal cycle and they are very sensitive to the climatic variables. The vegetation's deep wintertime dormancy requires a long recovery time during spring before the plants reach their full photosynthetic capacity. During this recovery time the plants are highly susceptible the night frosts. The transition period is different during spring and autumn for the evergreen plants. During spring there is plenty of light, but cold air temperatures inhibit the photosynthesis. The plants therefore experience to high stress levels, as they need to protect their photosynthetic apparatus from intense light. In autumn the air temperature and light level decrease more concurrently. To have a realistic presentation of the carbon cycle in boreal forests it is important to have these characteristics properly modeled, so that also the implications of changing seasonality under climate change can be more reliably predicted. In this study, we focus on the CO2 exchange of a Scots pine forest Sodankylä located in Finnish Lapland, 100 km north from the Arctic Circle. Micrometeorological flux measurements provide information about the exchanges of carbon, energy and water between atmosphere and vegetation. To complement these fluxes, we use dark-adapted chlorophyll fluorescence (CF) measurements, which is an optical measurement and tracks the development of the photosynthetic capacity. These two approaches combined together are very useful when we want to improve the modeling of the forest's CO2 exchange. We used two models that describe the photosynthesis with the biochemical model of Farquhar et al. The FMI-CANOPY is a canopy level model that is feasible to use in parameter estimation. We used the CF measurements of Fv/Fm, that is a measure of the maximum photosynthetic capacity, to include a seasonal development in the base rate of the maximum carboxylation rate (Vc(max)) in FMI-CANOPY. The simulation results matched the

  9. Integrating fluorometer for the measurement of chlorophyll fluorescence induction in intact plants

    NASA Astrophysics Data System (ADS)

    Toivonen, Peter; Vidaver, William

    1984-10-01

    An economical device for monitoring the integrated chlorophyll fluorescence emission of plant material is described. The system, which uniquely incorporates an integrating sphere, light source, photographic shutter, optical filters, and a photodetector is applicable to intact plants, whole leaves, or other materials. It is noninvasive and a single sample may be repeatedly tested over time intervals of minutes to months. Data obtained provide information about the sample size (i.e., leaf area, total chlorophyll content), and the photosynthetic activity of the sample. Samples of from a few mm2 to several cm2 can be accommodated depending on the diameter of the integrating sphere and excitation light source intensity. The device should be of interest to workers in plant breeding, genetic engineering, tissue culture, horticulture, herbicides, pollution, pathology, and environmental stress.

  10. Dualex: A New Instrument for Field Measurements of Epidermal Ultraviolet Absorbance by Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Goulas, Yves; Cerovic, Zoran G.; Cartelat, Aurélie; Moya, Ismaël

    2004-08-01

    Dualex (dual excitation) is a field-portable instrument, hereby described, for the assessment of polyphenolic compounds in leaves from the measurement of UV absorbance of the leaf epidermis by double excitation of chlorophyll fluorescence. The instrument takes advantage of a feedback loop that equalizes the fluorescence level induced by a reference red light to the UV-light-induced fluorescence level. This allows quick measurement from attached leaves even under field conditions. The use of light-emitting diodes and of a leaf-clip configuration makes Dualex a user-friendly instrument with potential applications in ecophysiological research, light climate analysis, agriculture, forestry, horticulture, pest management, selection of medicinal plants, and wherever accumulation of leaf polyphenolics is involved in plant responses to the environment.

  11. Ocean Primary Production Estimates from Terra MODIS and Their Dependency on Satellite Chlorophyll Alpha Algorithms

    NASA Technical Reports Server (NTRS)

    Essias, Wayne E.; Abbott, Mark; Carder, Kendall; Campbell, Janet; Clark, Dennis; Evans, Robert; Brown, Otis; Kearns, Ed; Kilpatrick, Kay; Balch, W.

    2003-01-01

    Simplistic models relating global satellite ocean color, temperature, and light to ocean net primary production (ONPP) are sensitive to the accuracy and limitations of the satellite estimate of chlorophyll and other input fields, as well as the primary productivity model. The standard MODIS ONPP product uses the new semi-analytic chlorophyll algorithm as its input for two ONPP indexes. The three primary MODIS chlorophyll Q estimates from MODIS, as well as the SeaWiFS 4 chlorophyll product, were used to assess global and regional performance in estimating ONPP for the full mission, but concentrating on 2001. The two standard ONPP algorithms were examined with 8-day and 39 kilometer resolution to quantify chlorophyll algorithm dependency of ONPP. Ancillary data (MLD from FNMOC, MODIS SSTD1, and PAR from the GSFC DAO) were identical. The standard MODIS ONPP estimates for annual production in 2001 was 59 and 58 GT C for the two ONPP algorithms. Differences in ONPP using alternate chlorophylls were on the order of 10% for global annual ONPP, but ranged to 100% regionally. On all scales the differences in ONPP were smaller between MODIS and SeaWiFS than between ONPP models, or among chlorophyll algorithms within MODIS. Largest regional ONPP differences were found in the Southern Ocean (SO). In the SO, application of the semi-analytic chlorophyll resulted in not only a magnitude difference in ONPP (2x), but also a temporal shift in the time of maximum production compared to empirical algorithms when summed over standard oceanic areas. The resulting increase in global ONPP (6-7 GT) is supported by better performance of the semi-analytic chlorophyll in the SO and other high chlorophyll regions. The differences are significant in terms of understanding regional differences and dynamics of ocean carbon transformations.

  12. Inversion of a radiative transfer model for estimation of rice chlorophyll content using support vector machine

    NASA Astrophysics Data System (ADS)

    Lv, Jie; Yan, Zhenguo; Wei, Jingyi

    2014-11-01

    Accurate retrieval of crop chlorophyll content is of great importance for crop growth monitoring, crop stress situations, and the crop yield estimation. This study focused on retrieval of rice chlorophyll content from data through radiative transfer model inversion. A field campaign was carried out in September 2009 in the farmland of ChangChun, Jinlin province, China. A different set of 10 sites of the same species were used in 2009 for validation of methodologies. Reflectance of rice was collected using ASD field spectrometer for the solar reflective wavelengths (350-2500 nm), chlorophyll content of rice was measured by SPAD-502 chlorophyll meter. Each sample sites was recorded with a Global Position System (GPS).Firstly, the PROSPECT radiative transfer model was inverted using support vector machine in order to link rice spectrum and the corresponding chlorophyll content. Secondly, genetic algorithms were adopted to select parameters of support vector machine, then support vector machine was trained the training data set, in order to establish leaf chlorophyll content estimation model. Thirdly, a validation data set was established based on hyperspectral data, and the leaf chlorophyll content estimation model was applied to the validation data set to estimate leaf chlorophyll content of rice in the research area. Finally, the outcome of the inversion was evaluated using the calculated R2 and RMSE values with the field measurements. The results of the study highlight the significance of support vector machine in estimating leaf chlorophyll content of rice. Future research will concentrated on the view of the definition of satellite images and the selection of the best measurement configuration for accurate estimation of rice characteristics.

  13. Sensitive Detection of Phosphorus Deficiency in Plants Using Chlorophyll a Fluorescence.

    PubMed

    Frydenvang, Jens; van Maarschalkerweerd, Marie; Carstensen, Andreas; Mundus, Simon; Schmidt, Sidsel Birkelund; Pedas, Pai Rosager; Laursen, Kristian Holst; Schjoerring, Jan K; Husted, Søren

    2015-09-01

    Phosphorus (P) is a finite natural resource and an essential plant macronutrient with major impact on crop productivity and global food security. Here, we demonstrate that time-resolved chlorophyll a fluorescence is a unique tool to monitor bioactive P in plants and can be used to detect latent P deficiency. When plants suffer from P deficiency, the shape of the time-dependent fluorescence transients is altered distinctively, as the so-called I step gradually straightens and eventually disappears. This effect is shown to be fully reversible, as P resupply leads to a rapid restoration of the I step. The fading I step suggests that the electron transport at photosystem I (PSI) is affected in P-deficient plants. This is corroborated by the observation that differences at the I step in chlorophyll a fluorescence transients from healthy and P-deficient plants can be completely eliminated through prior reduction of PSI by far-red illumination. Moreover, it is observed that the barley (Hordeum vulgare) mutant Viridis-zb(63), which is devoid of PSI activity, similarly does not display the I step. Among the essential plant nutrients, the effect of P deficiency is shown to be specific and sufficiently sensitive to enable rapid in situ determination of latent P deficiency across different plant species, thereby providing a unique tool for timely remediation of P deficiency in agriculture. PMID:26162430

  14. Laser Induced Chlorophyll Fluorescence Spectra of Cajanus Cajan L Plant Growing Under Cadmium Stress

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Pandey, J. K.

    2010-06-01

    Laser-induced Chlorophyll fluorescence (LICF) spectra of Cajanus cajan L leaves treated with different concentrations of Cd (0.05, 0.5 and 1 mM) are recorded at 10 and 20 days after first treatment of cadmium. LICF spectra are recorded in the region of 650-780 nm using violet diode laser (405 nm). LICF spectra of plant leaves show two maxima near 685 and 730nm. Fluorescence induction kinetics (FIK) curve are recorded at 685 and 730 nm with red diode laser (635 nm) for excitation. The fluorescence intensity ratios (FIR) F685/F730 are calculated from LICF spectra and vitality index (Rfd) are determined from FIK curve. FIR and Rfd value are good stress indicator of plant health. These parameters along with chlorophyll content are used to analyze the effect of Cd on wheat plants. The result indicates that higher concentrations of Cd hazardous for photosynthetic activity and health of Arhar plants. The lower concentration of 0.05 mM shows stimulatory response up to 10 days while after 20 days this concentration also shows inhibitory response. R. Gopal, K. B. Mishra, M. Zeeshan, S. M. Prasad, and M. M. Joshi Curr. Sci., 83, 880, 2002 K. B. Mishra and R. Gopal Int. J. Rem. Sen., 29, 157, 2008 R. Maurya, S. M. Prasad, and R. Gopal J. Photochem. Photobio. C: Photochem. Rev., 9, 29, 2008

  15. Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP.

    PubMed

    Oukarroum, Abdallah; El Madidi, Saïd; Strasser, Reto J

    2016-08-01

    The objective of this study was to differentiate the heat tolerance in ten varieties of barley (Hordeum vulgare L.) originating from Morocco. Five modern varieties and five landraces (local varieties) collected at five different geographical localities in the south of Morocco were investigated in the present study. After two weeks of growth, detached leaves were short term exposure to various temperatures (25, 30, 35, 40, and 45 °C) for 10 min in the dark. Two chlorophyll a fluorescence parameters derived from chlorophyll a fluorescence transient (OKJIP) (performance index (PIABS) and relative variable fluorescence at the K-step (VK)) were analysed. Heat treatment had a significant effect on the PIABS and VK at 45 °C treatment and the analysis of variance for PIABS and VK is highly significant between all varieties. The slope of the relationship between logPIABS and VK named heat sensitivity index (HSI) was used to evaluate the thermotolerance of photosystem II (PSII) between the studied barley varieties. According to this approach, barley varieties were screened and ranked for improving heat tolerance. HSI was found to be a new indicator with regard to distinguishing heat tolerance of different barley cultivars. PMID:27093113

  16. Chlorophyll concentration estimates for coastal water using pixel-based atmospheric correction of Landsat images

    NASA Astrophysics Data System (ADS)

    Kouba, Eric

    Ocean color analysis is more challenging for coastal regions than the global ocean due the effects of optical brightness, shallow and turbid water, higher phytoplankton growth rates, and the complex geometry of coastal bays and estuaries. Also, one of the key atmospheric correction assumptions (zero water leaving radiance in the near infrared) is not valid for these complex conditions. This makes it difficult to estimate the spectral radiance noise caused by atmospheric aerosols, which can vary rapidly with time and space. This study conducts pixel-based atmospheric correction of Landsat-7 ETM+ images over the Texas coast. Precise satellite orbit data, operational weather data, and climate data are combined to create interpolated arrays of viewing angles and atmospheric profiles. These arrays vary with time and location, allowing calculation of the Rayleigh and aerosol radiances separately for all pixels. The resulting normalized water-leaving radiances are then compared with in situ chlorophyll fluorescence measurements from five locations inside a set of Texas coastal bays: the Mission-Aransas National Estuarine Research Reserve. Curve-fitting analysis shows it is possible to estimate chlorophyll-a surface area concentrations by using ETM+ water-leaving radiance values and a third-order polynomial equation. Two pairs of ETM+ bands are identified as inputs (Bands 1 and 3, and the Log10 values of Bands 3 and 4), both achieving good performance (R2 of 0.69). Further research efforts are recommended to obtain additional data, identify better curve fitting equations, and potentially extend the radiative transfer model into the water column.

  17. Chlorophyll Concentration Estimates for Coastal Waters using Pixel-Based Atmospheric Correction of Landsat Images

    NASA Astrophysics Data System (ADS)

    Kouba, E.; Xie, H.

    2014-12-01

    Ocean color analysis is more challenging for coastal regions than the global ocean due the effects of optical brightness, shallow and turbid water, higher phytoplankton growth rates, and the complex geometry of coastal bays and estuaries. Also, one of the key atmospheric correction assumptions (zero water leaving radiance in the near infrared) is not valid for these complex conditions. This makes it difficult to estimate the spectral radiance noise caused by atmospheric aerosols, which can vary rapidly with time and space. This project evaluated using Landsat-7 ETM+ observations over a set of coastal bays, and allowing atmospheric correction calculations to vary with time and location as much as practical. Precise satellite orbit vector data was combined with operational weather and climate data to create interpolated arrays of atmospheric profiles which varied with time and location, allowing separate calculation of the Rayleigh and aerosol radiance corrections for all pixels. The resulting normalized water-leaving radiance values were compared with chlorophyll fluorescence measurements made at five in-situ stations inside a set of Texas coastal bays: the Mission-Aransas National Estuarine Research Reserve. Curve-fitting analysis showed it was possible to estimate chlorophyll surface area concentrations by using ETM+ water-leaving radiance values and a third-order polynomial equation. Two pairs of ETM+ bands were identified as inputs (Bands 1 and 3, and the Log10 values of Bands 3 and 4), both achieving R2 of 0.69. Additional research efforts were recommended to obtain additional data, identify better curve fitting equations, and potentially extend the radiative transfer model into the water column.

  18. Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii.

    PubMed

    Rodrigues, Lisa J; Grottoli, Andréa G; Lesser, Michael P

    2008-08-01

    Chlorophyll fluorescence has been used to predict and monitor coral bleaching over short timescales (hours to days), but long-term changes during recovery remain largely unknown. To evaluate changes in fluorescence during long-term bleaching and recovery, Porites compressa and Montipora capitata corals were experimentally bleached in tanks at 30 degrees C for 1 month, while control fragments were maintained at 27 degrees C. A pulse amplitude modulated fluorometer measured the quantum yield of photosystem II fluorescence (Fv/Fm) of the zooxanthellae each week during bleaching, and after 0, 1.5, 4 and 8 months recovery. M. capitata appeared bleached 6 days sooner than P. compressa, yet their fluorescence patterns during bleaching did not significantly differ. Changes in minimum (Fo), maximum (Fm) and variable (Fv) fluorescence throughout bleaching and recovery indicated periods of initial photoprotection followed by photodamage in both species, with P. compressa requiring less time for photosystem II (PS II) repair than M. capitata. Fv/Fm fully recovered 6.5 months earlier in P. compressa than M. capitata, suggesting that the zooxanthellae of P. compressa were more resilient to bleaching stress. PMID:18626085

  19. Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses

    PubMed Central

    Żurek, Grzegorz; Rybka, Krystyna; Pogrzeba, Marta; Krzyżak, Jacek; Prokopiuk, Kamil

    2014-01-01

    Chlorophyll a fluorescence gives information about the plant physiological status due to its coupling to the photosynthetic electron transfer chain and to the further biochemical processes. Environmental stresses, which acts synergistically, disturbs the photosynthesis. The OJIP test, elaborated by Strasser and co-workers, enables comparison of the physiological status of plants grown on polluted vs. control areas. The paper shows that the Chl a measurements are very useful tool in evaluating of heavy metal ions influence on perennial grasses, tested as potential phytoremediators. Among 5 cultivars tested, the highest concentration of Cd and Zn ions, not associated with the yield reduction, was detected in the biomass of tall fescue cv. Rahela. Chl a fluorescence interpreted as double normalized curves pointed out Rahela as the outstanding cultivar under the HM ions stress. PMID:24633293

  20. Chlorophyll fluorescence: implementation in the full physics RemoTeC algorithm

    NASA Astrophysics Data System (ADS)

    Hahne, Philipp; Frankenberg, Christian; Hasekamp, Otto; Landgraf, Jochen; Butz, André

    2014-05-01

    Several operating and future satellite missions are dedicated to enhancing our understanding of the carbon cycle. They infer the atmospheric concentrations of carbon dioxide and methane from shortwave infrared absorption spectra of sunlight backscattered from Earth's atmosphere and surface. Exhibiting high spatial and temporal resolution, the inferred gas concentration databases provide valuable information for inverse modelling of source and sink processes at the Earth's surface. However, the inversion of sources and sinks requires highly accurate total column CO2 (XCO2) and CH4 (XCH4) measurements, which remains a challenge. Recently, Frankenberg et al., 2012, showed that - beside XCO2 and XCH4 - chlorophyll fluorescence can be retrieved from sounders such as GOSAT exploiting Fraunhofer lines in the vicinity of the O2 A-band. This has two implications: a) chlorophyll fluorescence itself being a proxy for photosynthetic activity yields new information on carbon cycle processes and b) the neglect of the fluorescence signal can induce errors in the retrieved greenhouse gas concentrations. Our RemoTeC full physics algorithm iteratively retrieves the target gas concentrations XCO2 and XCH4 along with atmospheric scattering properties and other auxiliary parameters. The radiative transfer model (RTM) LINTRAN provides RemoTeC with the single and multiple scattered intensity field and its analytically calculated derivatives. Here, we report on the implementation of a fluorescence light source at the lower boundary of our RTM. Processing three years of GOSAT data, we evaluate the performance of the refined retrieval method. To this end, we compare different retrieval configurations, using the s- and p-polarization detectors independently and combined, and validate to independent data sources.

  1. Hyperspectral solar-induced chlorophyll fluorescence of urban tree leaves: Analyses and applications

    NASA Astrophysics Data System (ADS)

    Van Wittenberghe, Shari

    Solar energy is the primary energy source for life on Earth which is converted into chemical energy through photosynthesis by plants, algae and cyanobacteria, releasing fuel for the organisms' activities. To dissipate excess of absorbed light energy, plants emit chlorophyll (Chl) fluorescence (650-850 nm) from the same location where photosynthesis takes place. Hence, it provides information on the efficiency of primary energy conversion. From this knowledge, many applications on vegetation and crop stress monitoring could be developed, a necessity for our planet under threat of a changing global climate. Even though the Chl fluorescence signal is weak against the intense reflected radiation background, methods for retrieving the solar-induced Chl fluorescence have been refined over the last years, both at leaf and airborne scale. However, a lack of studies on solar-induced Chl fluorescence gives difficulties for the interpretation of the signal. Within this thesis, hyperspectral upward and downward solar-induced Chl fluorescence is measured at leaf level. Fluorescence yield (FY) is calculated as well as different ratios characterizing the emitted Chl fluorescence shape. The research in this PhD dissertation illustrates the influence of several factors on the solar-induced Chl fluorescence signal. For instance, both the intensity of FY and its spectral shape of urban tree leaves are able to change under influence of stress factors such as traffic air pollution. This shows how solar-induced Chl fluorescence could function as an early stress indicator for vegetation. Further, it is shown that the signal contains information on the ultrastructure of the photosynthetic apparatus. Also, it is proven that the leaf anatomical structure and related light scattering properties play a role in the partitioning between upward and downward Chl fluorescence emission. All these findings indicate how the Chl fluorescence spectrum is influenced by factors which also influence

  2. Direct observation of energy transfer in a photosynthetic membrane: Chlorophyll b to chlorophyll a transfer in LHC

    SciTech Connect

    Eads, D.D.; Castner, E.W. Jr.; Alberte, R.S.; Mets, L.; Fleming, G.R. )

    1989-12-28

    Subpicosecond fluorescence upconversion has been used to measure the rate of chlorophyll b to chlorophyll a electronic energy transfer in situ within the LHC pigment proteins of Chlamydomonas reinhardtii mutant C2. The time scale of energy transfer is 0.5 {plus minus} 0.2 ps as determined from the rise time of chlorophyll a fluorescence following chlorophyll b excitation. Estimates of the energy-transfer rate based on Foerster weak coupling theory are discussed.

  3. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants

    PubMed Central

    Else, Mark A.; Janowiak, Franciszek; Atkinson, Christopher J.; Jackson, Michael B.

    2009-01-01

    Background and Aims An investigation was carried out to determine whether stomatal closure in flooded tomato plants (Solanum lycopersicum) results from decreased leaf water potentials (ψL), decreased photosynthetic capacity and attendant increases in internal CO2 (Ci) or from losses of root function such as cytokinin and gibberellin export. Methods Pot-grown plants were flooded when 1 month old. Leaf conductance was measured by diffusion porometry, the efficiency of photosystem II (PSII) was estimated by fluorimetry, and infrared gas analysis was used to determine Ci and related parameters. Key Results Flooding starting in the morning closed the stomata and increased ψL after a short-lived depression of ψL. The pattern of closure remained unchanged when ψ`L depression was avoided by starting flooding at the end rather than at the start of the photoperiod. Raising external CO2 concentrations by 100 µmol mol−1 also closed stomata rapidly. Five chlorophyll fluorescence parameters [Fq′/Fm′, Fq′/Fv′, Fv′/Fm′, non-photochemical quenching (NPQ) and Fv/Fm] were affected by flooding within 12–36 h and changes were linked to decreased Ci. Closing stomata by applying abscisic acid or increasing external CO2 substantially reproduced the effects of flooding on chlorophyll fluorescence. The presence of well-aerated adventitious roots partially inhibited stomatal closure of flooded plants. Allowing adventitious roots to form on plants flooded for >3 d promoted some stomatal re-opening. This effect of adventitious roots was not reproduced by foliar applications of benzyl adenine and gibberellic acid. Conclusions Stomata of flooded plants did not close in response to short-lived decreases in ψL or to increased Ci resulting from impaired PSII photochemistry. Instead, stomatal closure depressed Ci and this in turn largely explained subsequent changes in chlorophyll fluorescence parameters. Stomatal opening was promoted by the presence of well

  4. Detection of Photosynthetic Performance of Stipa bungeana Seedlings under Climatic Change using Chlorophyll Fluorescence Imaging

    PubMed Central

    Song, Xiliang; Zhou, Guangsheng; Xu, Zhenzhu; Lv, Xiaomin; Wang, Yuhui

    2016-01-01

    In this study, the impact of future climate change on photosynthetic efficiency as well as energy partitioning in the Stipa bungeana was investigated by using chlorophyll fluorescence imaging (CFI) technique. Two thermal regimes (room temperature, T0: 23.0/17.0°C; High temperature, T6: 29.0/23.0°C) and three water conditions (Control, W0; Water deficit, W−30; excess precipitation, W+30) were set up in artificial control chambers. The results showed that excess precipitation had no significant effect on chlorophyll fluorescence parameters, while water deficit decreased the maximal quantum yield of photosystem II (PSII) photochemistry for the dark-adapted state (Fv/Fm) by 16.7%, with no large change in maximal quantum yield of PSII photochemistry for the light-adapted state (FV′/FM′) and coefficient of the photochemical quenching (qP) at T0 condition. Under T6 condition, high temperature offset the negative effect of water deficit on Fv/Fm and enhanced the positive effect of excess precipitation on Fv/Fm, Fv′/Fm′, and qP, the values of which all increased. This indicates that the temperature higher by 6°C will be beneficial to the photosynthetic performance of S. bungeana. Spatial changes of photosynthetic performance were monitored in three areas of interest (AOIs) located on the bottom, middle and upper position of leaf. Chlorophyll fluorescence images (Fv/Fm, actual quantum yield of PSII photochemistry for the light-adapted state (ΦPSII), quantum yield of non-regulated energy dissipation for the light-adapted state (ΦNO) at T0 condition, and ΦPSII at T6 condition) showed a large spatial variation, with greater value of ΦNO and lower values of Fv/Fm and ΦPSII in the upper position of leaves. Moreover, there was a closer relationship between ΦPSII and ΦNO, suggesting that the energy dissipation by non-regulated quenching mechanisms played a dominant role in the yield of PSII photochemistry. It was also found that, among all measured fluorescence

  5. Estimation of chlorophyll contents in leaves and canopy of steppe vegetation using hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Wei, Dandan; Xiao, Chenchao; Zhang, Zhenhua; Wei, Hongyan; Shang, Kun

    2016-04-01

    As an important part of the Eurasian Steppe, the temperate typical steppe in Inner Mongolia is highly representative of the Eurasian vegetation. Compared to multispectral remote sensing, hyperspectral remote sensing is more sensitive in monitoring some characteristics of vegetation. However, the research on the typical temperate steppe in Inner Mongolia is still not perfect, so we selected three sampling zones with different dominant species on the typical steppe in Xilinhot of Inner Mongolia. We collected spectrum of leaves and canopy separately to estimate content of chlorophyll of steppe vegetation. In addition, we compared and analyzed the advantage and feasibility of different estimation methods in estimating chlorophyll contents of meadows which have different dominant species through cross validation. The conclusions drawn in this research are as follows: Due to significant discontinuity, maximum first derivative method and Lagrange interpolation method are not suitable for estimation of chlorophyll of typical steppe. Compared with other methods, the red edge position calculated with four points linear interpolation obviously migrates to long wave direction. Inverted Gaussian model and four points linear interpolation both show low sensitivity for Stipa grandis steppe zone (with Stipa grandis as dominant species) where chlorophyll concentration is low and there is saturation phenomenon and weak stability (obvious variation of R2) for Leymus chinensis steppe (with Leymus chinensis as dominant species) where chlorophyll concentration is high, so they are also not the best choice. Linear extrapolation and polynomial fitting show certain saturation for high concentration of chlorophyll and also high correlation coefficient for both leaves and canopy, so they are suitable for estimation of chlorophyll concentration of leaves and canopy on the steppe. The different methods of extracting red edge are better at estimating chlorophyll of leaves than canopy and the

  6. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodiesel

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Oliveira, Ronaldo A.; Cunha, Patrícia C.; Costa, Ernande B.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2011-02-01

    Light-emitting-diode induced chlorophyll fluorescence analysis is employed to investigate the effect of water and salt stress upon the growth process of physicnut(jatropha curcas) grain oil plants for biofuel. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were observed and examined as a function of the stress intensity(salt concentration and water deficit) for a period of time of 30 days. The chlorophyll fluorescence(ChlF) ratio Fr/FFr which is a valuable nondestructive and nonintrusive indicator of the chlorophyll content of leaves was exploited to monitor the level of stress experienced by the jatropha plants. The ChlF technique data indicated that salinity plays a minor role in the chlorophyll concentration of leaves tissues for NaCl concentrations in the 25 to 200 mM range, and results agreed quite well with those obtained using conventional destructive spectrophotometric methods. Nevertheless, for higher NaCl concentrations a noticeable decrease in the Chl content was observed. The Chl fluorescence ratio analysis also permitted detection of damage caused by water deficit in the early stages of the plants growing process. A significant variation of the Fr/FFr ratio was observed sample in the first 10 days of the experiment when one compared control and nonwatered samples. The results suggest that the technique may potentially be applied as an early-warning indicator of stress caused by water deficit.

  7. A Method for Chlorophyll Fluorescence Imaging Control of the Vegetation under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Krumov, A.; Vassilev, V.; Vassilev, N.

    term space exploration and flights. The goal is to provide a more natural environment on physiological, psychological and even esthetical levels for the astronauts. One of the important issues to be solved is development of methodologies and apparatus for continuous in-flight monitoring the biophysical status of the vegetation in order to assure it within the required physiological conditions. performed in the last years. There, applying qualitative observations and/or measurement of certain physiological parameters on different vegetation samples, the monitoring of the plant biostatus is done. These samples are prepared and characterized directly on board of the spacecraft, or are sent back to Earth, usually in a dried condition, for further investigation. In such a way, it is not possible to have a quick, real time control of the dynamics of the vegetation bioprocesses. When sudden plant stress condition appears, this can lead to a delayed and improper intervention by the operator and to irreversible changes in the physiological functions of the vegetation. A very promising approach for controlling the vegetation physiological processes and early detection of stress conditions is using the light induced chlorophyll fluorescence as an indicator for the plant biostatus. the registration of the intensity and the spatial distribution of the chlorophyll fluorescence, induced by a discrete spectrum light flux. The use of discontinuous spectrum is implied by the fact that the fluorescence irradiated by the vegetation is of much lower intensity than the one of the incident light. When the incident flux has a wide continuos spectrum, including the spectral bands of florescence, the latter is difficult to detect directly. We suggest to measure the fluorescence in bands of approximately 10nm width, centered at the maximum intensity fluorescence wave lengths, in which the spectrum of the incident light to be discontinued. These maxima of fluorescence are at 440nm and 520nm

  8. Remote Sensing of chlorophyll fluorescence and the impact of clouds on the retrival

    NASA Astrophysics Data System (ADS)

    Köhler, Philipp; Guanter, Luis; Frankenberg, Christian

    2013-04-01

    Remote sensing of sun-induced chlorophyll fluorescence (SIF) is a new, alternative option to gain information about terrestrial photosynthesis and CO2 assimilation on a global scale. The SIF is an electromagnetic signal emitted in the aprox. 650-800 nm spectral window by the photosynthesis apparatus, and can therefore be considered as a direct indicator of plant biochemical processes. The general approach to measure SIF from space is the evaluation of the in-filling of solar Fraunhofer lines or atmospheric absorption bands by SIF. To distinguish the SIF signal from the total incoming radiance at the sensor, which is about 100 times more intense, is a challenge and high resolution measurements are required. The high spectral resolution (approx. 0.02 nm) of the Fourier Transform Spectrometer (FTS) on-board the Greenhouse Gases Observing Satellite (GOSAT) enables such a measurement of SIF by means of the evaluation of the in-filling of solar Fraunhofer lines by SIF. The narrow wavelength band from 755 to 759 nm and around 770 nm can be used for this purpose because they are free from atmospheric absorption features, the solar radiation shows several Fraunhofer lines and the SIF values in this region are relatively high. A new SIF retrieval approach (GARLiC, for GOSAT Retrieval of cholorphyll fluorescence) will be presented in this contribution. This method is intended to simplify some of the assumptions of existing retrieval approaches without a loss in accuracy. The comparison of the GARLiC fluorescence retrievals with two state-of-the-art SIR retrieval methods such as those by Frankenberg et al. (2011) and Guanter et al. (2012) from GOSAT data shows corresponding and feasible results. In addition to the basics of SIF remote sensing, this contribution will assess the effect of clouds in the retrieval. To do this, the SIF retrieval has been coupled to a cloud optical thickness (COT) retrieval algorithm adapted to GOSAT-FTS O2A-band measurements, so that SIF and COT

  9. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa.

    PubMed

    Piniak, Gregory A; Brown, Eric K

    2009-02-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa-a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F(v)/F(m)), higher light-adapted effective quantum yield (DeltaF/F'(m)), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat-temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in F(v)/F(m) between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. PMID:19218492

  10. Chlorophyll a fluorescence lifetime reveals reversible UV-induced photosynthetic activity in the green algae Tetraselmis.

    PubMed

    Kristoffersen, Arne S; Hamre, Børge; Frette, Øyvind; Erga, Svein R

    2016-04-01

    The fluorescence lifetime is a very useful parameter for investigating biological materials on the molecular level as it is mostly independent of the fluorophore concentration. The green alga Tetraselmis blooms in summer, and therefore its response to UV irradiation is of particular interest. In vivo fluorescence lifetimes of chlorophyll a were measured under both normal and UV-stressed conditions of Tetraselmis. Fluorescence was induced by two-photon excitation using a femtosecond laser and laser scanning microscope. The lifetimes were measured in the time domain by time-correlated single-photon counting. Under normal conditions, the fluorescence lifetime was 262 ps, while after 2 h of exposure to UV radiation the lifetime increased to 389 ps, indicating decreased photochemical quenching, likely caused by a damaged and down-regulated photosynthetic apparatus. This was supported by a similar increase in the lifetime to 425 ps when inhibiting photosynthesis chemically using DCMU. Furthermore, the UV-stressed sample was dark-adapted overnight, resulting in a return of the lifetime to 280 ps, revealing that the damage caused by UV radiation is repairable on a relatively short time scale. This reversal of photosynthetic activity was also confirmed by [Formula: see text] measurements. PMID:26538330

  11. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa

    USGS Publications Warehouse

    Piniak, G.A.; Brown, E.K.

    2009-01-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.

  12. Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yang, W.; Ichii, K.

    2015-12-01

    Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.

  13. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis

    PubMed Central

    2013-01-01

    Background In order to select for quantitative plant resistance to pathogens, high throughput approaches that can precisely quantify disease severity are needed. Automation and use of calibrated image analysis should provide more accurate, objective and faster analyses than visual assessments. In contrast to conventional visible imaging, chlorophyll fluorescence imaging is not sensitive to environmental light variations and provides single-channel images prone to a segmentation analysis by simple thresholding approaches. Among the various parameters used in chlorophyll fluorescence imaging, the maximum quantum yield of photosystem II photochemistry (Fv/Fm) is well adapted to phenotyping disease severity. Fv/Fm is an indicator of plant stress that displays a robust contrast between infected and healthy tissues. In the present paper, we aimed at the segmentation of Fv/Fm images to quantify disease severity. Results Based on the Fv/Fm values of each pixel of the image, a thresholding approach was developed to delimit diseased areas. A first step consisted in setting up thresholds to reproduce visual observations by trained raters of symptoms caused by Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R on Phaseolus vulgaris cv. Flavert. In order to develop a thresholding approach valuable on any cultivars or species, a second step was based on modeling pixel-wise Fv/Fm-distributions as mixtures of Gaussian distributions. Such a modeling may discriminate various stages of the symptom development but over-weights artifacts that can occur on mock-inoculated samples. Therefore, we developed a thresholding approach based on the probability of misclassification of a healthy pixel. Then, a clustering step is performed on the diseased areas to discriminate between various stages of alteration of plant tissues. Notably, the use of chlorophyll fluorescence imaging could detect pre-symptomatic area. The interest of this image analysis procedure for assessing the levels of

  14. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency. PMID:27228602

  15. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.

    PubMed

    Junker, Laura Verena; Ensminger, Ingo

    2016-06-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species such as sugar maple (Acer saccharum Marsh.) undergo senescence, which is associated with downregulation of photosynthesis and a change of leaf color. The remote sensing of leaf color by spectral reflectance measurements and digital repeat images is increasingly used to improve models of growing season length and seasonal variation in carbon sequestration. Vegetation indices derived from spectral reflectance measurements and digital repeat images might not adequately reflect photosynthetic efficiency of red-senescing tree species during autumn due to the changes in foliar pigment content associated with autumn phenology. In this study, we aimed to assess how effectively several widely used vegetation indices capture autumn phenology and reflect the changes in physiology and photosynthetic pigments during autumn. Chlorophyll fluorescence and pigment content of green, yellow, orange and red leaves were measured to represent leaf senescence during autumn and used as a reference to validate and compare vegetation indices derived from leaf-level spectral reflectance measurements and color analysis of digital images. Vegetation indices varied in their suitability to track the decrease of photosynthetic efficiency and chlorophyll content despite increasing anthocyanin content. Commonly used spectral reflectance indices such as the normalized difference vegetation index and photochemical reflectance index showed major constraints arising from a limited representation of gradual decreases in chlorophyll content and an influence of high foliar anthocyanin levels. The excess green index and green-red vegetation index were more suitable to assess the process of senescence. Similarly, digital image analysis revealed that vegetation

  16. Examination of chlorophyll fluorescence decay kinetics in sulfur deprived algae Chlamydomonas reinhardtii.

    PubMed

    Volgusheva, A A; Zagidullin, V E; Antal, T K; Korvatovsky, B N; Krendeleva, T E; Paschenko, V Z; Rubin, A B

    2007-06-01

    Chlorophyll fluorescence decay kinetics was measured in sulfur deprived cells of green alga Chlamydomonas reinhardtii with a home made picosecond fluorescence laser spectrometer. The measurements were carried out on samples either shortly adapted to the dark ('Fo conditions') or treated to reduce Qa ('Fm conditions'). Bi-exponential fitting of decay kinetics was applied to distinguish two components one of them related to energy trapping (fast component) and the other to charge stabilization and recombination in PS 2 reaction centers (slow component). It was found that the slow component yield increased by 2.0 and 1.2 times when measured under 'Fo' and 'Fm conditions', respectively, in sulfur deprived cells as compared to control ones. An additional rapid rise of the slow component yield was observed when incubation was carried out in a sealed bioreactor and cell culture turned to anaerobic conditions. The obtained results strongly indicate the existence of the redox control of PS 2 activity during multiphase adaptation of C. reinhardtii to sulfur deficiency stress. Probable mechanisms responsible for the observed increased recombinant fluorescence yield in starved cells are discussed. PMID:17543273

  17. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor.

    PubMed

    Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor

    2015-04-01

    The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants. PMID:25708622

  18. Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo

    PubMed Central

    Matsubara, Shizue; Chow, Wah Soon

    2004-01-01

    Photosystem (PS) II centers, which split water into oxygen, protons, and electrons during photosynthesis, require light but are paradoxically inactivated by it. Prolonged light exposure concomitantly decreased both the functional fraction of PSII reaction centers and the integral PSII chlorophyll (Chl) a fluorescence lifetime in leaf segments of Capsicum annuum L. Acceleration of photoinactivation of PSII by a pretreatment with the inhibitors/uncoupler lincomycin, DTT, or nigericin further reduced PSII Chl a fluorescence lifetimes. A global analysis of fluorescence lifetime distributions revealed the presence of at least two distinct populations of photoinactivated PSII centers, one at 1.25 ns, and the other at 0.58 ns. Light treatment first increased the 1.25-ns component, a weak quencher, at the expense of a component at 2.22 ns corresponding to functional PSII centers. The 0.58-ns component, a strong quencher, emerged later than the 1.25-ns component. The strongly quenching PSII reaction centers could serve to avoid further damage to themselves and protect their functional neighbors by acting as strong energy sinks. PMID:15601775

  19. [Remote sensing of chlorophyll fluorescence at airborne level based on unmanned airship platform and hyperspectral sensor].

    PubMed

    Yang, Pei-Qi; Liu, Zhi-Gang; Ni, Zhuo-Ya; Wang, Ran; Wang, Qing-Shan

    2013-11-01

    The solar-induced chlorophyll fluorescence (ChlF) has a close relationship with photosynthetic and is considered as a probe of plant photosynthetic activity. In this study, an airborne fluorescence detecting system was constructed by using a hyperspectral imager on board an unmanned airship. Both Fraunhofer Line Discriminator (FLD) and 3FLD used to extract ChlF require the incident solar irradiance, which is always difficult to receive at airborne level. Alternative FLD (aFLD) can overcome the problem by selecting non-fluorescent emitter in the image. However, aFLD is based on the assumption that reflectance is identical around the Fraunhofer line, which is not realistic. A new method, a3FLD, is proposed, which assumes that reflectance varies linearly with the wavelength around Fraunhofer line. The result of simulated data shows that ChlF retrieval error of a3FLD is significantly lower than that of aFLD when vegetation reflectance varies near the Fraunhofer line. The results of hyperspectral remote sensing data with the airborne fluorescence detecting system show that the relative values of retrieved ChlF of 5 kinds of plants extracted by both aFLD and a3FLD are consistent with vegetation growth stage and the ground-level ChlF. The ChlF values of aFLD are about 15% greater than a3FLD. In addition, using aFLD, some non-fluorescent objects have considerable ChlF value, while a3FLD can effectively overcome the problem. PMID:24555390

  20. Does sun-induced Chlorophyll fluorescence well capture canopy photosynthesis in a rice paddy?

    NASA Astrophysics Data System (ADS)

    Kimm, H.; Ryu, Y.; Kang, M.; Kim, J.

    2015-12-01

    Sun-induced chlorophyll fluorescence (SiF) has emerged as a convincing indicator of carbon assimilation rates under diverse environmental conditions. Here, we present a continuous observation system of SiF at a sporadically irrigated rice paddy site in South Korea. Our site also includes automatic observation systems for eddy covariance, water table depth, and spectral sensors which are composed of LED sensors, and RGB- and NIR cameras. Additionally, we conducted manual observations of photosynthetic parameters (Li-6400), leaf area index (LAI-2200), NDVI and PRI (ASD FieldSpec) once per ten days on average. By analyzing manual- and automatic field observations, we quantify carbon budget of the site. Finally, we investigate how accurately SiF detects canopy photosynthesis, and discuss what factors mainly control canopy photosynthesis.

  1. Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat.

    PubMed

    Sharma, Dew Kumari; Fernández, Juan Olivares; Rosenqvist, Eva; Ottosen, Carl-Otto; Andersen, Sven Bode

    2014-05-01

    The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat treatment affect chlorophyll fluorescence parameters. A set of 41 spring wheat cultivars differing in their maximum photochemical efficiency of photosystem (PS) II (Fv/Fm) under heat stress conditions was used. These cultivars were previously evaluated based on the heat treatment of intact plants. The responses of the same cultivars to heat stress were compared between the two methods of heat treatment. The results showed that in detached leaves, all of the fluorescence parameters remained almost unaffected in control (20°C at all durations tested), indicating that the detachment itself did not affect the fluorescence parameters. In contrast, heat induced reduction in the maximum photochemical efficiency of PSII of detached leaves occurred within 2h at 40°C and within 30min at 45°C, and the response was more pronounced than when intact plants were heat stressed for three days at 40°C. The proportion of total variation that can be ascribed to the genetic differences among cultivars for a trait was estimated as genetic determination. During heat treatment, the genetic determination of most of the fluorescence parameters was lower in detached leaves than in intact plants. In addition, the correlation of the cultivar response in intact plants versus detached leaves was low (r=0.13 (with expt.1) and 0.02 with expt.2). The most important difference between the two methods was the pronounced difference in time scale of reaction, which may indicate the involvement of different physiological mechanisms in response to high temperatures. Further, the results suggest that genetic factors associated with cultivar differences are different for the two methods of heat treatment. PMID

  2. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges.

    PubMed

    Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A

    2014-08-01

    Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal. PMID:24868038

  3. Optimal Estimates of Global Terrestrial GPP from Fluorescence and DGVMs

    NASA Astrophysics Data System (ADS)

    Parazoo, Nicholas; Bowman, Kevin; Fisher, Joshua; Frankenberg, Christian; Jones, Dylan; Cescatti, Alessandro; Perez-Priego, Oscar; Wohlfahrt, Georg; Montagnani, Leonardo

    2014-05-01

    Changes in the processes that control terrestrial carbon uptake are highly uncertain but likely to have a significant influence on future atmospheric CO2 levels. RECCAP aims to improve process understanding by reconciling fluxes from top-down CO2 inversions and bottom-up estimates from an ensemble of DGVMs. As these models are typically used in projections of climate change a key part of this effort is benchmarking models and evaluating drivers of net carbon exchange within the current climate. Of particular importance are the spatial distribution and time rate of change of GPP. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence opens up a new possibility to directly measure planetary photosynthesis on spatially resolved scales. Here, we discuss a new methodology for estimating GPP and uncertainty from an optimal combination of an ensemble of DGVMs from the TRENDY project with satellite-based fluorescence observations from GOSAT. Prior uncertainty is estimated from the spread of DGVMs and updated through assimilation of fluorescence. We evaluate optimized fluxes against flux tower data in N. America, Europe, and S. America, benchmark TRENDY models using updated uncertainty estimates, and examine changes in the structure of the seasonal cycle. We find this methodology provides a novel way to evaluate models used in climate projections.

  4. [Effects of controlled-release fertilizer on chrysanthemum leaf chlorophyll fluorescence characteristics and ornamental quality].

    PubMed

    Song, Xu-xu; Zheng, Cheng-shu; Sun, Xia; Ma, Hai-yan

    2011-07-01

    Taking cut flower chrysanthemum 'Baima' as test material, a pot experiment was conducted to study the effects of controlled-release fertilizer on the leaf chlorophyll fluorescence parameters, chlorophyll and nutrient contents, and ornamental quality of chrysanthemum. Under no fertilization, the maximal photochemical efficiency of PS II in dark (F(v)/F(m)), potential photochemical efficiency of PS II (F(v)/F(0)), and quantum yield of PS II electron transport (phi(PS II)) decreased significantly, compared with those under fertilization. With the application of conventional compound fertilizers CCFA (N:P:K=20:8:10) and CCFB (N:P:K= 14:14:14), the F(v)/F(m), F(v)/F(0) and phi(PS II) had a slight increase in early period (30-60 d) but a remarkable decrease in mid and later periods (75 - 120 d), compared with those under the application of controlled-release fertilizers CRFA (N:P:K = 20:8:10) and CRFB (N:P:K= 14:14:14). Under the application of CRFA, the F(v)/F(m), phi(PS II), and photochemical quenching (q(P)) had somewhat increase, as compared with the application of CRFB. The non-photochemical quenching (NPQ) under the application of CRFA and CRFB decreased significantly, compared with that under the application of CCFA and CCFB and the control. The chlorophyll content had a similar change trend with F(v)/F(m), F(v)/F(0), and phi(PS II). The leaf N, P, and K contents, flower stalk length and stalk diameter, flower diameter, and flower fresh and dry mass at harvest stage all increased under the application of CRFA and CRFB, compared with those under the application of CCFA and CCFB and the control, and the flower fresh and dry mass was significantly higher under the application of CRFA than of CRFB. This study showed that controlled-release fertilizer could improve the ornamental quality of chrysanthemum via improving the leaf chlorophyll content, photochemical transduction rate, and nutrient uptake, and CRFA had better effects than CRFB. PMID:22007449

  5. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors

    PubMed Central

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-01-01

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis. PMID:27023550

  6. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    PubMed

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-01-01

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis. PMID:27023550

  7. Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis, and nutrient efficiency of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the combined effects of phosphorus nutrition and CO2 on photosynthetic and chlorophyll fluorescence (CF) processes, and nutrient utilization and uptake, two controlled environment experiments were conducted using 0.20, 0.05 and 0.01 mM external phosphate (Pi) nutrition each at ambient and...

  8. Detection of the onset of glyphosate-induced soybean plant injury through chlorophyll fluorescence signal extraction and measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, Chlorophyll Fluorescence (ChlF) was used to detect the onset of soybean plant injury from glyphosate, the most widely used herbicide. Thirty-six pots of non-glyphosate-resistant soybean (cultivar FM955LL) were randomly divided into three groups and treated with different doses of glyp...

  9. Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin ain Marine and Freshwater Algae by Fluorescence

    EPA Science Inventory

    This method provides a procedure for low level determination of chlorophyll a (chl a) and its magnesium free derivative, pheophytin a (pheo a), in marine and freshwater phytoplankton using fluorescence detection.(1,2) Phaeophorbides present in the sample are determined collective...

  10. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  11. [Effects of simulating acid rain on photosynthesis and chlorophyll fluorescence parameters of Quercus glauca Quercus glauca].

    PubMed

    Wang, Sai; Yi, Li-Ta; Yu, Shu-Quan; Zhang, Chao; Shi, Jing-Jing

    2014-08-01

    At three levels of simulated acid rainfall intensities with pH values of 2.5 (severe), 40 (medium) and 5.6 (light) respectively, the responses of chlorophyll fluorescence and photosynthetic parameters of Quercus glauca seedlings were studied in three acid rainfall treatments, i. e. only the aboveground of seedlings exposed to acid rain (T1), both of the seedlings and soil exposed to acid rain (T2), only the soil exposed to acid rain (T3) compared with blank control (CK). Under the severe acid rainfall, T1 significantly inhibited chlorophyll synthesis, and thus reduced the primary photochemical efficiency of PS II ( F(v)/F(m)), potential activity of PS II (F(v)/F(o)) , apparent quantum (Y), net photosynthetic rate (P(n)), and transpiration rate (T(r)), but increased the light compensation point (LCP) and dark respiration rate (R(d)) of Q. glauca seedlings. T2 inhibited, but T3 played a little enhancement on the aforementioned parameters of Q. glauca seedlings. Under the conditions of medium and light acid rainfall intensities, the above parameters in the three treatments were higher than that of CK, except with lower R(d). The chlorophyll fluorescence and photosynthetic parameters showed a similar tendency in the three treatments, i. e. T2>T3 >T1. It indicated that T1 had the strongest inhibition on seedlings in condition of the severe acid rainfall, while T2 had the most dramatic facilitating effect on seedlings under the medium and light acid rainfall. Intensity of acid rainfall had significant influences on SPAD, F(v)/F(m), F(v)/F(o), Y, P(n), T(r), and maximum photosynthetic rate (A(max)), whereas treatments of acid rainfall affected SPAD, F(v)/F(m), Y, P(n), T(r), A(max) and light saturation point (LSP). The interaction of acid rainfall intensities and treatments played significant effects on SPAD, F(v)/F(m), Y, P(n) and A(max). PMID:25509066

  12. [Estimation and forecast of chlorophyll a concentration in Taihu Lake based on ensemble square root filters].

    PubMed

    Li, Yuan; Li, Yun-Mei; Wang, Qiao; Zhang, Zhuo; Guo, Fei; Lü, Heng; Bi, Kun; Huang, Chang-Chun; Guo, Yu-Long

    2013-01-01

    Chlorophyll a concentration is one of the important parameters for the characterization of water quality, which reflects the degree of eutrophication and algae content in the water body. It is also an important factor in determining water spectral reflectance. Chlorophyll a concentration is an important water quality parameter in water quality remote sensing. Remote sensing quantitative retrieval of chlorophyll a concentration can provide new ideas and methods for the monitoring and evaluation of lake water quality. In this work, we developed a data assimilation scheme based on ensemble square root filters and three-dimensional numerical modeling for wind-driven circulation and pollutant transport to assimilate the concentration of chlorophyll a. We also conducted some assimilation experiments using buoy observation data on May 20, 2010. We estimated the concentration of chlorophyll a in Taihu Lake, and then used this result to forecast the concentration of chlorophyll a. During the assimilation stage, the root mean square error reduced from 1.58, 1.025, and 2.76 to 0.465, 0.276, and 1.01, respectively, and the average relative error reduced from 0.2 to 0.05, 0.046, and 0.069, respectively. During the prediction stage, the root mean square error reduced from 1.486, 1.143, and 2.38 to 0.017, 0.147, and 0.23, respectively, and the average relative error reduced from 0.2 to 0.002, 0.025, and 0.019, respectively. The final results indicate that the method of data assimilation can significantly improve the accuracy in the estimation and prediction of chlorophyll a concentration in Taihu Lake. PMID:23487919

  13. Multispectral In-situ Measurements of Organic Matter and Chlorophyll Fluorescence in Seawater: Documenting the Intrusion of the Mississippi River Plume in the West Florida Shelf

    NASA Technical Reports Server (NTRS)

    DelCastillo, Carlos E.; Coble, Paula G.; Conmy, Robyn N.; Mueller-Karger, Frank E.; Vanderbloomen, Lisa; Vargo, Gabriel A.

    2000-01-01

    We performed multispectral in-situ fluorescence measurement of colored dissolved organic matter and chlorophyll in surface water of the West Florida Shelf using West Labs Spectral absorption and Fluorescence Instrument (SAFIre). Continuous measurements underway allowed us to simultaneously map the dispersion of riverine organic material and chlorophyll on the shelf. By using two fluorescence emission ratios we were able to differentiate between riverine and marine CDOM. Our data also showed unusually high concentrations of CDOM offshore. These were attributed to an intrusion of the Mississippi River Plume. We performed limited comparisons between in-situ chlorophyll concentrations measured with SAFIre and chlorophyll values obtained from SeaWiFS satellite data using OC4 and MODIS algorithm. Our results show that, although both algorithms overestimated chlorophyll, MODIS performed better than OC4, particularly in areas with high CDOM concentrations. Analysis of the relationship between chlorophyll and CDOM concentrations within the study area showed regional variability causes by differences in river source.

  14. The fluorescence of chlorophyll and yellow substances in natural waters: A note on the problems of measurement and the importance of their remote sensing

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.

    1975-01-01

    There are two chromophylls which, if sensed remotely from high altitude, would revolutionize the ability to survey large areas of the world's oceans. The chromophylls of importance are: the photosynthetic pigments of plankton algae and a group of organic materials frequently termed dissolved yellow substances. These are derived from plants and carried into the ocean by fresh water inflow. The attenuation of light by phytoplankton is characterized by two distinctive bands (450, 675 nm) which represent absorption by chloroplastic pigments. Yellow substances are characterized by a strong ultraviolet absorption which tails over into the visible region. It is emphasized that chlorophyll determination could be a unique technique for estimating the extent of eutrophication in coastal waters, and that a high altitude observer equipped with temperature, chlorophyll and yellow substance sensors has the possibility of detecting the magnitude of eutrophication and its sources by using laser induced fluorescent devices.

  15. Volatile fractions of landfill leachates and their effect on Chlamydomonas reinhardtii: In vivo chlorophyll a fluorescence

    SciTech Connect

    Brack, W.; Rottler, H.; Frank, H.

    1998-10-01

    Volatile organic compounds such as short-chain halogenated hydrocarbons and alkylated benzenes are widely used as solvents or as intermediates in the chemical industry, and some of them are fuel components. Dichloromethane, trichloroethene, 1,1,1-trichloroethane, and tetrachloroethene have been produced in amounts of 500,000 to 1 million t/year, 80 to 100% of which are released to the environment. The production of toluene, a major component of fuels for internal combustion engines, amounts to about 30 million t/year. A method for identification of toxic volatile constituents of landfill leachates is presented that combines bioassay-compatible sample preparation, chemical analysis, and a bioassay based on in vivo chlorophyll a fluorescence of the green alga Chlamydomonas reinhardtii. Two major pathways of toxicity were identified by comparing fluorescence patterns: specific toxicity of hydrogen sulfide, and narcotic action of nonreactive organic compounds. For quantification, the contributions of identified compounds were calculated using toxic units. The ecotoxicologic relevance of volatile fractions from hazardous waste leachates was shown.

  16. Diffuse reflectance of the ocean - The theory of its augmentation by chlorophyll a fluorescence at 685 nm

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1979-01-01

    The radiative transfer equation is modified to include the effect of fluorescent substances and solved in the quasi-single scattering approximation for a homogeneous ocean containing fluorescent particles with wavelength independent quantum efficiency and a Gaussian shaped emission line. The results are applied to the in vivo fluorescence of chlorophyll a (in phytoplankton) in the ocean to determine if the observed quantum efficiencies are large enough to explain the enhancement of the ocean's diffuse reflectance near 685 nm in chlorophyll rich waters without resorting to anomalous dispersion. The computations indicate that the required efficiencies are sufficiently low to account completely for the enhanced reflectance. The validity of the theory is further demonstrated by deriving values for the upwelling irradiance attenuation coefficient at 685 nm which are in close agreement with the observations.

  17. Potential of chlorophyll fluorescence imaging for assessing bio-viability changes of biodeteriogen growths on stone monuments

    NASA Astrophysics Data System (ADS)

    Osticioli, I.; Mascalchi, M.; Pinna, D.; Siano, S.

    2013-05-01

    A systematic study on the use of Chlorophyll Fluorescence (CF) imaging in Pulsed Amplitude Modulated (PAM) for assessing viability changes of biodeteriogen on stone artifacts has been carried out. The experimentation has been performed on different phototrophic organisms of gravestone slabs from the monumental British Cemetery of Florence (Italy). Since the viability of these organisms and then their chlorophyll fluorescence emission is strongly dependent on the environmental conditions, a preliminary study on the effects of local patterns during the season was carried out. The trend of the fluorescence quantum yield (QYmax) at different dark adapted times in different periods of the year was determined. The results achieved in our work proves the effectiveness of the CF-PAM imaging for in situ lichen characterizations in conservation studies and defines an optimized application protocol.

  18. PhotoSpec - Ground-based Remote Sensing of Solar-Induced Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Grossmann, K.; Frankenberg, C.; Seibt, U.; Hurlock, S. C.; Pivovaroff, A.; Stutz, J.

    2015-12-01

    Solar-Induced Chlorophyll Fluorescence (SIF) emitted from vegetation can be used as a constraint for photosynthetic activity and is now observable on a global scale from space. However, many issues on a leaf-to-canopy scale remain poorly understood, such as influences on the SIF signal of environmental conditions, water stress, or radiation. Here, we report on the development and characterization of a novel ground-based spectrometer system for measuring SIF from natural ecosystems (http://www.kiss.caltech.edu/study/photosynthesis/technology.html). The instrumental set-up, requirements, and measurement technique are based on decades of experience using Differential Optical Absorption Spectroscopy (DOAS), an established method to measure atmospheric trace gases. The instrument consists of three thermally stabilized commercial spectrometers that are linked to a 2D scanning telescope unit via optical fiber bundles. The spectrometers cover an SIF retrieval wavelength range at high spectral resolution (670 - 780 nm, 0.1 nm FWHM), but also provide moderate resolution spectra (400 - 800 nm, 1.5 nm FWHM) in order to retrieve vegetation indices and the photochemical reflectance index (PRI). In addition to the instrumental set-up, we will show initial results of test and field measurements with the new instrument that examine the diurnal cycle of the SIF signal of different California native and non-native plants and its correlation with CO2 fluxes. Observations were made under different environmental conditions, variable water and nutrient stress, and with different viewing geometries. We also used concurrent observations by a photosynthetically active radiation (PAR) sensor and a portable chlorophyll fluorometer (PAM) to link the SIF signal to plant metabolism and carbon cycling under a range of environmental conditions.

  19. Deriving chlorophyll fluorescence emissions of vegetation canopies from high resolution field reflectance spectra

    NASA Astrophysics Data System (ADS)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Daughtry, Craig S.; Entcheva Campbell, Petya K.; Butcher, L. Maryn

    2005-11-01

    Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll fluorescence (ChlF) peaks centered at 685 nm and 735 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SIF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops and small tree plots of three deciduous species (red maple, tulip poplar, sweet gum). Leaf level measurements were also made of foliage which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and nitrogen (N) contents). As part of ongoing experiments, measurements were made on N application plots within corn (280, 140, 70, and 0 kg N/ha) and tree (0, 37.5, 75, 112.5, 150 kg N /ha) sites at the USDA/Agriculture Research Service in Beltsville, MD. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrow- band regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red SIF ratio (SIFratio) derived from these field reflectance spectra successfully discriminated foliar pigment ratios altered by N application rates in both corn crops. This ratio was also positively correlated to the C/N ratio at leaf and canopy levels, for the available corn data (e.g., 2004). No consistent N treatment or species differences in SIF were detected in the tree foliage, but additional 2005 data are forthcoming. This study has relevance to future passive satellite remote sensing approaches to monitoring C dynamics from space.

  20. Color measurements as a reliable method for estimating chlorophyll degradation to phaeopigments.

    PubMed

    Sanmartín, P; Villa, F; Silva, B; Cappitelli, F; Prieto, B

    2011-07-01

    The application of biocides is a traditional method of controlling biodecay of outdoor cultural heritage. Chlorophyll degradation to phaeopigments is used to test the biocidal efficacy of the antimicrobial agents. In the present study, the usefulness of color measurements in estimating chlorophyll degradation was investigated. An aeroterrestrial stone biofilm-forming cyanobacterium of the genus Nostoc was chosen as test organism, comparing its different behaviour in both planktonic and biofilm mode of growth against the isothiazoline biocide Biotin T®. Changes in A(435 nm)/A(415 nm) and A(665 nm)/A(665a nm) and in the chlorophyll a and adenosine triphosphate (ATP) cell content were compared with the variations in the CIELAB color parameters (L*, a*, b*, C*(ab) and h(ab)). Our findings showed that both the phaeophytination indexes are useful in describing degradation of chlorophyl a to phaeopigments. Moreover, the CIELAB color parameters represented an effective tool in describing chlorophyll degradation. L* CIELAB parameter appeared to be the most informative parameter in describing the biocidal activity of Biotin T® against Nostoc sp. in both planktonic and biofilm mode of growth. PMID:20714920

  1. Hardware-software complex for chlorophyll estimation in phytocenoses under field conditions

    NASA Astrophysics Data System (ADS)

    Yatsenko, V.; Kochubey, S.; Donets, V.; Kazantsev, T.

    2005-10-01

    Vegetation is a sensitive indicator suitable for testing of ecological stresses and natural anomalies of the technogenic character. First, it is determined by the prompt response of photosynthetic apparatus to changes of environmental conditions, mainly by change of green pigment (chlorophyll) content in leaves. Second, the specific kind of a reflectance spectrum of leaves is due to chlorophyll presence in them, and the area in the range of 500-80 nm is extremely sensitive to variations of its pigment content. Thirdly, there are interesting results now concerning spectral properties of leaves and crops canopies obtaining with high-resolution spectroscopy. The data are high informative in relation to content of chlorophyll and some other biochemical constituents of a cell. The high resistance to various types of noises is inherent to methods developed on the basis of such spectral data. We have developed a method for chlorophyll estimation using the 1-st derivative plots of reflectance spectral curves. The method gives good results for plant-soil systems with both for 100% and incomplete projective covering as our simulation models show. Field measurements of chlorophyll content in closed and open canopies crops confirm the results. A hardware-software complex has been produced by us for chlorophyll determining under field conditions. It consists of spectral and computing blocks. First of them is a two-beam spectrometer of high resolution supplied by a system to visualize of measured object. The irradiance and temperature sensors are included to the spectral block as well as GPS-receiver. The following technical characteristics are inherent to the block: spectral range 500-800 nm, band-pass 1.5 nm, field of view 16x16o, scanning time 0.1-1.0 s, dynamic range of signal 1:1024 (10 bit), signal/noise ratio 400, amount of pixels in image 1240, range of estimated chlorophyll concentrations 1.5-8.0 mg/dm2, supply voltage 12 V, weight 8 kg. Computing block is intended for

  2. Steady-state chlorophyll fluorescence (Fs) as a tool to monitor plant heat and drought stress

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, M.; Carmo-Silva, A.; Salvucci, M.; Moran, S. M.; Hernandez, M.

    2012-12-01

    Crop yield decreases when photosynthesis is limited by heat or drought conditions. Yet farmers do not monitor crop photosynthesis because it is difficult to measure at the field scale in real time. Steady-state chlorophyll fluorescence (Fs) can be used at the field level as an indirect measure of photosynthetic activity in both healthy and physiologically-perturbed vegetation. In addition, Fs can be measured by satellite-based sensors on a regular basis over large agricultural regions. In this study, plants of Camelina sativa grown under controlled conditions were subjected to heat and drought stress. Gas exchange and Fs were measured simultaneously with a portable photosynthesis system under light limiting and saturating conditions. Results showed that Fs was directly correlated with net CO2 assimilation (A) and inversely correlated with non-photochemical quenching (NPQ). Analysis of the relationship between Fs and Photosynthetically Active Radiation (PAR) revealed significant differences between control and stressed plants that could be used to track the status, resilience, and recovery of photochemical processes. In summary, the results provide evidence that Fs measurements, even without normalization, are an easy means to monitor changes in plant photosynthesis, and therefore, provide a rapid assessment of plant stress to guide farmers in resource applications. Figure1. Net CO2 assimilation rate (A) of Camelina sativa plants under control conditions and after heat stress exposure for 1 or 3 days (1d-HS and 3d-HS, respectively) (right) and control, drought and re-watering conditions (left). Conditions for infra-red gas analysis were: reference CO2 = 380 μmol mol-1, PPFD = 500 μmol m-2 s-1 and Tleaf set to 25°C (control, drought and re-water) or 35°C (HS). Different letters denote significant differences at the α=0.05 level. Values are means±SEM (n=10). Figure 2. Stable chlorophyll fluorescence (Fs) of Camelina sativa plants under control conditions and

  3. Scaling effect on the estimation of chlorophyll content using narrow band NDVIs based on radiative transfer model

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Shi, Runhe; Liu, Pudong; Cong, Zhou

    2015-09-01

    The aim of this work is to use narrow band normalized difference vegetation indices to compare the estimations of chlorophyll contents at foliar level and canopy level, through a large number of simulated canopy reflectance spectra under different chlorophyll contents based on PROSPECT model and SAIL model. 10 narrow band NDVIs were selected at the identified ranges that can effectively assess foliar chlorophyll content. We analyzed the correlations between canopy chlorophyll contents and the ten narrow band NDVIs firstly, and then analyze these indices' sensitivities to all canopy parameters, the adaptation of the 10 narrow band NDVIs used in assessing the canopy chlorophyll content were evaluated finally. We found that only two narrow band NDVIs (i.e., NDVI(875, 725) and NDVI(900,720)) can be applied for the estimation of chlorophyll contents at canopy level.

  4. Estimating canopy chlorophyll and nitrogen concentration of rice from EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Chen, Junying; Tian, Qingjiu

    2006-09-01

    In this study, investigation was designed to find an effective method for estimating chlorophyll and nitrogen concentration in the canopies of rice from hyperspectral EO-1 Hyperion image. Continuum-removal analysis enables the isolation of absorption features and minimizes the background influence, thus absorption features stand out. We applied stepwise regression analysis and absorption feature analysis to the field measured foliage and canopy continuum-removed spectra. The results showed that the continuum-removed spectra from the whole range could be broke down into four isolated wavelength ranges and the first wavelength range was centered at 670nm. The area of the wavelength range centered at 670nm based on the BNC spectra was strongly correlated with the chlorophyll and nitrogen concentration. It was validated by EO-1 Hyperion image data, the results showed that the multiple correlation coefficients (R2) between the area of the wavelength range centered at 670nm based on the BNC image spectra and chlorophyll and nitrogen concentration were 0.485 and 0.783 separately. Then the estimation equations were applied to the rice pixels of image which were recognized through Normalized Difference Vegetation Index (NDVI), Land Surface Water Index (LSWI) and Enhanced Vegetation Index (EVI). Thus the chlorophyll and nitrogen concentration distribution maps were obtained. The values in the maps were quite consistent with those of field measurements.

  5. Satellite Solar-induced Chlorophyll Fluorescence Reveals Drought Onset Mechanisms: Insights from Two Contrasting Extreme Events

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Fu, R.; Dickinson, R. E.; Joiner, J.; Frankenberg, C.; Gu, L.; Xia, Y.; Fernando, N.

    2015-12-01

    This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Instrument 2 (GOME-2) closely resembled drought intensity maps from the US Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root-zone soil moisture caused by year-long below-normal precipitation. In contrast, for the central Great Plains drought, warmer temperatures and ample precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root-zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation (fPAR) and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.

  6. Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching.

    PubMed Central

    Niyogi, K. K.; Bjorkman, O.; Grossman, A. R.

    1997-01-01

    The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the [delta]pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, [delta]pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all [delta]pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light. PMID:12237386

  7. [Cucumber downy mildew prediction model based on analysis of chlorophyll fluorescence spectrum].

    PubMed

    Sui, Yuan-Yuan; Yu, Hai-Ye; Zhang, Lei; Qu, Jian-Wei; Wu, Hai-Wei; Luo, Han

    2011-11-01

    In order to achieve quick and nondestructive prediction of cucumber disease, a prediction model of greenhouse cucumber downy mildew has been established and it is based on analysis technology of laser-induced chlorophyll fluorescence spectrum. By assaying the spectrum curve of healthy leaves, leaves inoculated with bacteria for three days and six days and after feature information extraction of those three groups of spectrum data using first-order derivative spectrum preprocessing with principal components and data reduction, principal components score scatter diagram has been built, and according to accumulation contribution rate, ten principal components have been selected to replace derivative spectrum curve, and then classification and prediction has been done by support vector machine. According to the training of 105 samples from the three groups, classification and prediction of 44 samples and comparing the classification capacities of four kernel function support vector machines, the consequence is that RBF has high quality in classification and identification and the accuracy rate in classification and prediction of cucumber downy mildew reaches 97.73%. PMID:22242501

  8. Effects of selenite on chlorophyll fluorescence, starch content and fatty acid in the duckweed Landoltia punctata.

    PubMed

    Zhong, Yu; Li, Yang; Cheng, Jay J

    2016-09-01

    Developing a Se-enriched feed for animal has become a considerable effort. In this study, Landoltia punctata 7449 was grown over a 12 day period under concentrations of selenite (Na2SeO3) from 0 to 80 μmol L(-1). The growth rate, the chlorophyll fluorescence, the starch content and fatty acid were measured. Se at low concentrations of ≤20 μmol L(-1) had positive effects also on growth rate, fatty acid content and yield of the L. punctata. The appropriate Se treatment enhanced the activity of the photosynthetic system by increasing Fv, Fm, Fv/Fm and Fv/Fo and decreasing Fo. However, negative impact to the L. punctata was observed when the duckweed was exposed to high Se concentrations (≥40 μmol L(-1)). Significant increases in starch content in the duckweed were observed after Se application. The present study suggests that the changes in growth rate, the photosynthetic system, the starch content and the fatty acid were closely associated with the application of Se. An increased Se concentration (0-20 μmol L(-1)) in duckweed could positively induce photosynthesis, thereby increasing the yield of L. punctata and could be a resource for high nutritive quality Se-enrich feed. PMID:27400684

  9. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement.

    PubMed

    Massoz, Simon; Larosa, Véronique; Horrion, Bastien; Matagne, René F; Remacle, Claire; Cardol, Pierre

    2015-12-10

    The unicellular green alga Chlamydomonas reinhardtii is a model organism for studying energetic metabolism. Most mitochondrial respiratory-deficient mutants characterized to date have been isolated on the basis of their reduced ability to grow in heterotrophic conditions. Mitochondrial deficiencies are usually partly compensated by adjustment of photosynthetic activity and more particularly by transition to state 2. In this work, we explored the opportunity to select mutants impaired in respiration and/or altered in dark metabolism by measuring maximum photosynthetic efficiency by chlorophyll fluorescence analyses (FV/FM). Out of about 2900 hygromycin-resistant insertional mutants generated from wild type or from a mutant strain deficient in state transitions (stt7 strain), 22 were found to grow slowly in heterotrophic conditions and 8 of them also showed a lower FV/FM value. Several disrupted coding sequences were identified, including genes coding for three different subunits of respiratory-chain complex I (NUO9, NUOA9, NUOP4) or for isocitrate lyase (ICL1). Overall, the comparison of respiratory mutants obtained in wild-type or stt7 genetic backgrounds indicated that the FV/FM value can be used to isolate mutants severely impaired in dark metabolism. PMID:26022424

  10. Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor).

    PubMed

    Senavirathna, Mudalige Don Hiranya Jayasanka; Takashi, Asaeda; Kimura, Yuichi

    2014-12-01

    Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8 GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30 min, 1 h and 24 h durations with electric field strength of 45-50 V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal. PMID:24131393

  11. Effect of seabuckthorn extract on delayed chlorophyll fluorescence on Cd and Co ions treated wheat seedlings.

    PubMed

    Ganiyeva, R A; Novruzov, E M; Bayramova, S A; Kurbanova, I M; Hasanov, R A

    2009-11-01

    The protecting effect of "Hypporamine PL" compound isolated from dry leaves of seabuckthorn (Hippophae rhamneides L.) on photosystem 2 (PS2) activity suppression induced by CdCl2 and CoCl2 treatment in the 7-day-old wheat seedlings (Triticum aestivum L.) under different pH of growth medium was investigated by measurement of millisecond delayed fluorescence (ms-DF) of chlorophyll intact leaves. The value o-i/p-s of ms-DF ratio was reduced under the Cd2+ and Co2+ treatments on 60 and 65% respectively at pH 6.7. Acidification of medium (pH 5.0) results in decreasing of ratio o-i/p-s only approximately on 30% in average. In the alkaline medium the lowering of o-i/p-s on 41% is observed in both ions treatments. This decreasing of o-i/p-s ratio occurred due to decreasing of fast phase o-i amplitude. At the same time the widening and increasing of slow phase p-s amplitude was observed. The compound "Hypporamine PL" limited the decrease of ms-DF components induced by heavy metals. It is suggested that the protective effect of "Hypporamine PL" on the photochemical reactions in the PS2 is due to catechins, epicatechins, quercetin and other polyphenols, containing in this compound, preventing the free radicals formation in the PS2 under treatment by heavy metal ions. PMID:20329404

  12. An in situ antimicrobial susceptibility testing method based on in vivo measurements of chlorophyll α fluorescence.

    PubMed

    Heliopoulos, Nikolaos S; Galeou, Angeliki; Papageorgiou, Sergios K; Favvas, Evangelos P; Katsaros, Fotios K; Stamatakis, Kostas

    2015-05-01

    Up to now antimicrobial susceptibility testing (AST) methods are indirect and generally involve the manual counting of bacterial colonies following the extraction of microorganisms from the surface under study and their inoculation in a separate procedure. In this work, an in situ, direct and instrumental method for the evaluation and assessment of antibacterial properties of materials and surfaces is proposed. Instead of indirectly determining antibacterial activity using the typical gram(-) test organisms with the subsequent manual colony count or inhibition zone measurement, the proposed procedure, employs photosynthetic gram(-) cyanobacteria deposited directly onto the surface under study and assesses cell proliferation and viability by a quick, accurate and reproducible instrumental chlorophyll fluorescence spectrophotometric technique. In contrast with existing methods of determination of antibacterial properties, it produces high resolution and quantitative results and is so versatile that it could be used to evaluate the antibacterial properties of any compound (organic, inorganic, natural or man-made) under any experimental conditions, depending on the targeted application. PMID:25771834

  13. Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4.

    PubMed

    Lee, Jung-Eun; Berry, Joseph A; van der Tol, Christiaan; Yang, Xi; Guanter, Luis; Damm, Alexander; Baker, Ian; Frankenberg, Christian

    2015-09-01

    Several studies have shown that satellite retrievals of solar-induced chlorophyll fluorescence (SIF) provide useful information on terrestrial photosynthesis or gross primary production (GPP). Here, we have incorporated equations coupling SIF to photosynthesis in a land surface model, the National Center for Atmospheric Research Community Land Model version 4 (NCAR CLM4), and have demonstrated its use as a diagnostic tool for evaluating the calculation of photosynthesis, a key process in a land surface model that strongly influences the carbon, water, and energy cycles. By comparing forward simulations of SIF, essentially as a byproduct of photosynthesis, in CLM4 with observations of actual SIF, it is possible to check whether the model is accurately representing photosynthesis and the processes coupled to it. We provide some background on how SIF is coupled to photosynthesis, describe how SIF was incorporated into CLM4, and demonstrate that our simulated relationship between SIF and GPP values are reasonable when compared with satellite (Greenhouse gases Observing SATellite; GOSAT) and in situ flux-tower measurements. CLM4 overestimates SIF in tropical forests, and we show that this error can be corrected by adjusting the maximum carboxylation rate (Vmax ) specified for tropical forests in CLM4. Our study confirms that SIF has the potential to improve photosynthesis simulation and thereby can play a critical role in improving land surface and carbon cycle models. PMID:25881891

  14. Wavelet analysis of pulse-amplitude-modulated chlorophyll fluorescence for differentiation of plant samples.

    PubMed

    Guo, Ya; Zhou, Yesen; Tan, Jinglu

    2015-04-01

    Pulse-amplitude-modulated (PAM) chlorophyll fluorescence (ChlF) from photosystem II (PSII) of plants has been routinely measured for the analysis of photosynthesis and environmental changes. PAM ChlF from PSII is non-stationary and has time-varying frequency characteristics; however, existing analysis of PAM ChlF has been limited to selected characteristic values in the time domain. Wavelet transform is recognized as an efficient tool for analyzing non-stationary signals. In this research, an attempt was made to analyze PAM ChlF through wavelet transform. Features of PAM ChlF signals were computed from wavelet decomposition to classify two tree species and to detect chilling and detachment stresses. The wavelet-based features were compared with the commonly-used maximal PSII efficiency Fv/Fm. Both the wavelet-based features and Fv/Fm could effectively classify two tree species, but the former showed superiority than the latter in detecting the stresses. Wavelet transform revealed chilling stress earlier than Fv/Fm and detected detachment stress Fv/Fm failed to show. The results show that wavelet transform is a useful technique for analysis of PAM ChlF. PMID:25665719

  15. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Guanter, L.; Joiner, J.

    2015-06-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last few years by means of a number of space-borne atmospheric spectrometers. Here, we present a new retrieval method for medium spectral resolution instruments such as the Global Ozone Monitoring Experiment-2 (GOME-2) and the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY). Building upon the previous work by Guanter et al. (2013) and Joiner et al. (2013), our approach provides a solution for the selection of the number of free parameters. In particular, a backward elimination algorithm is applied to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF at 740 nm from real spectra from GOME-2 and for the first time, from SCIAMACHY. We find a good correspondence of the absolute SIF values and the spatial patterns from the two sensors, which suggests the robustness of the proposed retrieval method. In addition, we compare our results to existing SIF data sets, examine uncertainties and use our GOME-2 retrievals to show empirically the relatively low sensitivity of the SIF retrieval to cloud contamination.

  16. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Guanter, L.; Joiner, J.

    2014-12-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last years by means of a number of space-borne atmospheric spectrometers. Here, we present a new retrieval method for medium spectral resolution instruments such as the Global Ozone Monitoring Experiment (GOME-2) and the SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY). Building upon the previous work by Joiner et al. (2013), our approach solves existing issues in the retrieval such as the non-linearity of the forward model and the arbitrary selection of the number of free parameters. In particular, we use a backward elimination algorithm to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF from real spectra from GOME-2 and for the first time, from SCIAMACHY. We find a good correspondence of the absolute SIF values and the spatial patterns from the two sensors, which suggests the robustness of the proposed retrieval method. In addition, we examine uncertainties and use our GOME-2 retrievals to show empirically the low sensitivity of the SIF retrieval to cloud contamination.

  17. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.; Lee, Jung-Eun; Rossini, Micol; Joiner, Joanna; Munger, J. William; Kornfeld, Ari; Richardson, Andrew D.

    2015-04-01

    Previous studies have suggested that solar-induced chlorophyll fluorescence (SIF) is correlated with Gross Primary Production (GPP). However, it remains unclear to what extent this relationship is due to absorbed photosynthetically active radiation (APAR) and/or light use efficiency (LUE). Here we present the first time series of near-surface measurement of canopy-scale SIF at 760 nm in temperate deciduous forests. SIF correlated with GPP estimated with eddy covariance at diurnal and seasonal scales (r2 = 0.82 and 0.73, respectively), as well as with APAR diurnally and seasonally (r2 = 0.90 and 0.80, respectively). SIF/APAR is significantly positively correlated with LUE and is higher during cloudy days than sunny days. Weekly tower-based SIF agreed with SIF from the Global Ozone Monitoring Experiment-2 (r2 = 0.82). Our results provide ground-based evidence that SIF is directly related to both APAR and LUE and thus GPP, and confirm that satellite SIF can be used as a proxy for GPP.

  18. [Influence of dehydration and diurnal variation on characteristics of chlorophyll fluorescence of leaves in Haloxylon ammodendron and H. persicum].

    PubMed

    Shen, Liang; Chen, Jun; Liu, Sai; Xu, Rong; Xu, Chang-qing; Liu, Tong-ning

    2015-08-01

    To evaluate the ecological adaptation mechanism of Haloxylon ammodendron and H. persicum from Ningxia, the host of Cistanche deserticola, the chlorophyll fluorescence under dehydration and diurnal variation was determined by IMAGING-PAM method. The results showed that H. ammodendron had higher photosynthetic electron transport activity (Fv/Fm), photosynthetic efficiency (qP), and PS II electron transport activity (ETR) than H. persicum. After 48 h dehydration, the chlorophyll fluorescence and water-retaining property of H. ammodendron were significantly higher than those of H. persicum. The significant difference in diurnal variation between H. ammo- dendron and H. persicum was observed and a 'V' trend was exhibited. It suggested that H. ammodendron had a stronger ability to adapt to the environment and had wider distribution, while H. persicum was limited by water and light and had narrow distribution. PMID:26685594

  19. [Effects of perchlorate on growth and chlorophyll fluorescence parameters of Alternanthera philoxeroides].

    PubMed

    Xie, Yin-feng; Cai, Xian-lei; Liu, Wei-long; Deng, Wei

    2009-08-15

    Perchlorate is a new emerging persistent pollutant, while no studies about its effects on plants have been reported both home and abroad. In order to explore the effects of perchlorate on growth and physiology of aquatic plant, Alternanthera philoxeroides were treated by 1/20 Hoagland nutrient solution with different concentrations (0, 1, 5, 20, 100, 500 mg/L) of ClO4- under the controlled conditions. The results showed as follow. (1) Under perchlorate treatment, relative growth yield,dry weight of root,shoot and leaves were inhibited at different degrees, in which root biomass under different treatments showed significant difference to the control. After treatment for 40 d, relative growth yield of different treatments at concentration from 1 mg/L to 500 mg/L were about 61.6%, 60.8%, 53.1%, 20.4% and 3.3% separately of the control. And the order of variation coefficients of biomass in different organ were as follows: leaf > root biomass > stem; the relationship of biomass allocation in different organs of Alternanthera philoxeroides under perchlorate treatment changed, and the proportion of stem biomass increased,while leaf decreased, in which 100 and 500 mg/L ClO4- treatment showed significant difference to the control. (2) Under perchlorate treatment, young leaves of Alternanthera philoxeroides presented injury symptoms (such as parietal roiling reversely, leaf edge getting black and withered etc), and the damaged degree of Alternanthera philoxeroides increased with the increase of treatment concentration and time. (3) Under perchlorate treatment, the relative chlorophyll content (SPAD value), primary maximal PSII efficiency(Fv/Fm), efficiency of excitation capture by open PSII centre (F'v,/F'm), actual photochemical efficiency of PSII (phi(PS II)), electron transport rate (ETR), maximal electron transport rate(ETR ,) and other indexes were inhibited at different degrees. SPAD and chlorophyll fluorescence parameters (phi(PS II)) etc. could be used as sensitive

  20. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A

    PubMed Central

    Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon

    2015-01-01

    Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864

  1. Spectral Feature Analysis for Quantitative Estimation of Cyanobacteria Chlorophyll-A

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Ye, Zhanglin; Zhang, Yugan; Yu, Jie

    2016-06-01

    In recent years, lake eutrophication caused a large of Cyanobacteria bloom which not only brought serious ecological disaster but also restricted the sustainable development of regional economy in our country. Chlorophyll-a is a very important environmental factor to monitor water quality, especially for lake eutrophication. Remote sensed technique has been widely utilized in estimating the concentration of chlorophyll-a by different kind of vegetation indices and monitoring its distribution in lakes, rivers or along coastline. For each vegetation index, its quantitative estimation accuracy for different satellite data might change since there might be a discrepancy of spectral resolution and channel center between different satellites. The purpose this paper is to analyze the spectral feature of chlorophyll-a with hyperspectral data (totally 651 bands) and use the result to choose the optimal band combination for different satellites. The analysis method developed here in this study could be useful to recognize and monitor cyanobacteria bloom automatically and accrately. In our experiment, the reflectance (from 350nm to 1000nm) of wild cyanobacteria in different consistency (from 0 to 1362.11ug/L) and the corresponding chlorophyll-a concentration were measured simultaneously. Two kinds of hyperspectral vegetation indices were applied in this study: simple ratio (SR) and narrow band normalized difference vegetation index (NDVI), both of which consists of any two bands in the entire 651 narrow bands. Then multivariate statistical analysis was used to construct the linear, power and exponential models. After analyzing the correlation between chlorophyll-a and single band reflectance, SR, NDVI respetively, the optimal spectral index for quantitative estimation of cyanobacteria chlorophyll-a, as well corresponding central wavelength and band width were extracted. Results show that: Under the condition of water disturbance, SR and NDVI are both suitable for quantitative

  2. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    SciTech Connect

    Gilmore, A.M.; Hazlett, T.L.; Govindjee

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  3. Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: Does activity of photosystem I play any role in OJIP rise?

    PubMed

    Zivcak, Marek; Brestic, Marian; Kunderlikova, Kristyna; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2015-11-01

    Interpretation of the fast chlorophyll a fluorescence induction is still a subject of continuing discussion. One of the contentious issues is the influence of photosystem I (PSI) activity on the kinetics of the thermal JIP-phase of OJIP rise. To demonstrate this influence, we realized a series of measurements in wheat leaves subjected to PSI photoinactivation by the sequence of red saturation pulses (15,000 μmol photons m(-2) s(-1) for 0.3 s, every 10 s) applied in darkness. Such a treatment led to a moderate decrease of maximum quantum efficiency of PSII (by ~8%), but a strong decrease of the number of oxidizable PSI (by ~55%), which considerably limited linear electron transport and CO2 assimilation. Surprisingly, the PSI photoinactivation had low effects on OJIP kinetics of variable fluorescence. In particular, the amplitude of variable fluorescence of IP-step (ΔVIP), which has been considered to be a measure of PSI content, was not decreased, despite the low content of photooxidizable PSI. On the other hand, the slower relaxation of chlorophyll fluorescence after saturation pulse as well as the results of the double-hit method suggest that PSI inactivation treatment led to an increase of the fraction of QB-nonreducing PSII reaction centers. Our results somewhat challenge the mainstream interpretations of JIP-thermal phase, and at least suggest that the IP amplitude cannot serve to estimate reliably the PSI content or the PSI to PSII ratio. Moreover, these results recommend the use of the novel method of PSI inactivation, which might help clarify some important issues needed for the correct understanding of the OJIP fluorescence rise. PMID:26388470

  4. Fluorescence and photoelectrochemical behavior of chlorophyll {ital a} adsorbed on a nanocrystalline SnO{sub 2} film

    SciTech Connect

    Bedja, I.; Kamat, P.V.; Hotchandani, S.

    1996-10-01

    Fluorescence and photoelectrochemical studies of chlorophyll {ital a} (Chl {ital a}) adsorbed on nanocrystalline SnO{sub 2} film were carried out. The results of fluorescence and incident photon to current conversion efficiency (IPCE) as a function of applied bias suggest that the fluorescence quenching and the photocarrier generation are interrelated. Fluorescence quenching has thus been utilized to determine the photogeneration efficiency, {eta}({ital e}), of charges in a SnO{sub 2}/Chl {ital a} based photoelectrochemical cell. A value of 0.75 was obtained for {eta}({ital e}) for unbiased cells. With an IPCE of 13{percent}, {eta}({ital e}) of 75{percent}, and a light harvesting efficiency of 70{percent}, the charge collection efficiency of {approximately}23{percent} was evaluated. These results suggest that the losses due to the charge recombination are a major factor that limit the efficiency of the cells. {copyright} {ital 1996 American Institute of Physics.}

  5. Dynamic Response of Plant Chlorophyll Fluorescence to Light, Water and Nutrient Availability

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, M. D. P.; Moran, S. M.; Porcar-Castell, A.; Carmo-Silva, A. E.; Papuga, S. A.; Matveeva, M.; Wieneke, S.; Rascher, U.

    2014-12-01

    Photosynthesis is the most important exchange process of CO2 between the atmosphere and the land-surface. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions e.g. light, water, and nutrient availability. Chlorophyll fluorescence (ChF) has been proposed as a direct indicator of photosynthesis, and several studies have demonstrated its relationship with vegetation functioning at leaf and canopy level. In this study, two overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF?; Q2) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? The results of this study indicated that when the differences between treatments (water or nitrogen) drive the relationship between photosynthesis and ChF, ChF has a direct relationship with photosynthesis. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a simple linear function due to the complex physiological relation between photosynthesis and ChF. Our study showed that at times in the season when nitrogen was sufficient and photosynthesis was highest, ChF decreased because these two processes compete for available energy. The results from this study demonstrated that ChF is a reliable indicator of plant stress and has great potential as a tool for better understand where, when, and how CO2 is exchanged between the land and atmosphere.

  6. In situ effects of elevated CO 2 on chlorophyll fluorescences and chloroplast pigments of alpine plant

    NASA Astrophysics Data System (ADS)

    Thron, Ch.; Hahn, K.; Lütz, C.

    Alpine vegetation responds to elevated CO 2 with downward adjustment of photosynthesis. The experiments should show if doubling of ambient CO 2 reduces the maximum quantum yield and the chlorophylls thus altering the pigment composition of the thylakoid membranes in typical species of an alpine grassland ( Caricetum curvulae). The studies were part of a CO 2 enrichment experiment with open-top chambers in the Swiss Central Alps in 2 470 m altitude over a period of four years. The leaves of Carex curvula and Trifolium alpinum were analysed in situ under ambient (355 μl/l) or elevated (680 μl/l) CO 2 and at two different nutrient levels. In each vegetation period both species showed a tendency to lower ratios of variable to maximum fluorescence (F v/F m) in plants with elevated CO 2 treatment compared to the ambient variants. These reductions in F v/F m were statistically different only for Carex curvula in 1993 and 1995. CO 2 enrichment caused reductions of leaf pigment concentrations of 10-30% especially for Trifolium alpinum whereas Carex curvula was less affected. The lower pigment contents per leaf were probably due to reductions of thylakoid membranes. In most cases, the influences of elevated CO 2 or of nutrient treatments on pigment composition and primary photochemistry were very small. This indicates that the downward regulation begins at early stages in the photosynthetic process. Some changes of the photosynthetic apparatus are species-specific and possibly reflect different strategies of protective acclimation processes of alpine vegetation.

  7. [Effects of suspended silts in waters on the growth and chlorophyll fluorescence characteristics of Hydrilla verticillata].

    PubMed

    Li, Qiang; Wang, Guo-Xiang

    2009-10-01

    Silt particles smaller than 100 microm in diameter were used to make the waters with a turbidity of 30 NTU, 60 NTU, and 90 NTU. Hydrilla verticillata seedlings were planted in the turbid waters, and their branch length, branch number, and fresh mass were measured at definite periods of time. In the meanwhile, the leaf chlorophyll fluorescence parameters were determined in situ by a submersible pulse-amplitude modulated (PAM) fluorometer (Walz GmbH, Effeltrich, Germany). With the increase of water turbidity, the branch number of the seedlings decreased remarkably, biomass also decreased, but branch length increased significantly. In turbid waters, the Fv/Fm value decreased with time, but was still higher than that in the control waters. Under the actinic light of 17 micromol x m(-2) x s(-1) PPFD, the effective quantum yield (DeltaFv'/Fm') of seedling leaves on the 60th day in the waters with turbidity of 30 NTU, 60 NTU, and 90 NTU increased by 48.9%, 36.8%, and 17.2% (P < 0.01), and the relative electron transport rate (rETR) increased by 56.7%, 42.2%, and 21.4% (P < 0.01), respectively, compared with those on the 30th day. However, under the actinic light of 104 micromol x m(-2) s(-1) PPFD, the DeltaFv'/Fm', qp, and rETR on the 60th day decreased significantly, and the heat dissipation capability (qN) also reduced evidently. All the results suggested that the H. verticillata seedlings in turbid waters could adapt to low light environment, but their leaves were easy to be damaged under high light intensity. Therefore, it would be possible to introduce H. verticillata seedlings in shallow turbid waters. PMID:20077711

  8. Sun-induced chlorophyll fluorescence reveals strong representation of photosynthesis at ecosystem level in rice paddy field in Japan

    NASA Astrophysics Data System (ADS)

    Kato, T.; Tsujimoto, K.; Nasahara, K. N.; Akitsu, T.; Ono, K.; Miyata, A.

    2015-12-01

    Chlorophyll fluorescence emission from ecosystem induced by sunlight (Sun-Induced Fluorescence: SIF) is now a key factor to accurately estimate the ecosystem-level photosynthesis activity as suggested by satellite studies, and has been recently detected by satellites [Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2013] and measured at field stations [Daumard et al., 2010; Porcar-Castell, 2011]. However, the few example of field-based assessment on the representation ability reduces its value for the availability to better understand the dynamics in CO2uptake by land ecosystem. To elucidate the potential of SIF to estimate ecosystem GPP in typical Asian crop type, the canopy-top SIF was calculated from the spectrum data in Japanese rice paddy field in Mase in central Japan (36°03'N, 140°01'E, 11 m a.s.l.), and compared with eddy-tower measured GPP on half-hourly and daily bases during seven years from 2006 to 2012. The rice (Oriza sativa L.; cultivar Koshihikari) was transplanted in May and harvested in September normally. The SIF was estimated from the spectrums of downward Sun irradiance and upward canopy-reflected radiance measured at the height of 3m above ground by HemiSpherical Spectro-Radiometer (HSSR), consisting of the spectroradiometer (MS-700, Eko inc., Tokyo, Japan) with the full-width at half maximum (FWHM) of 10 nm and wavelength interval of 3.3 nm. The SIF around 760nm (O2-A band: Fs760) was calculated according to the Fraunhofer Line Depth principle [Maier et al., 2003] with several additional arrangements. The GPP increased almost linearly as both Fs760 and APAR (Absorbed Photosyntethically Active Radiation) increased based on monthly-averaged diurnal courses during the growing season in 2006. The slopes of their regression lines differed much among the months in APAR, but in Fs760. These nearly constant relationships among the months between GPP and Fs760 were kept for all the observation years. Daily averaged GPP and Fs760

  9. Spectral reflectance, chlorophyll fluorescence and virological investigations of tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Hristova, Dimitrina; Iliev, Ilko; Yanev, Tony

    Application of multispectral remote sensing techniques to plant condition monitoring has been adopted for various purposes. Remote sensing is a reliable tool for detecting signs of vege-tation stress and diseases. Spectral reflectance and chlorophyll fluorescence are functions of tissue optical properties and biological status of the plants, and illumination conditions. The mean reflectance spectrum depends on the relative composition of all the pigments in the leaf including chlorophylls, carotenoids etc. Chlorophyll fluorescence results from the primary re-actions of photosynthesis and during the last decade it finds widening application as a means for revelation of stress and diseases. The changes in chlorophyll function take place before the alteration in chlorophyll content to occur so that changes in the fluorescence signal arise before any visible signs are apparent. The aim of our investigations was to study the development and spreading out of a viral infection on the leaves of two cultivars tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV). We applied two remote sensing tech-niques (spectral reflectance and chlorophyll fluorescence measurements) for evaluation of the changes in the optical properties of the plants in accordance to their physiological status. The serological analyses via the Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) were made with appropriate kits (Leowe, Germany) for quantitative assessment of the concentration of viruses in the plants. The tobacco plants were grown in green house under controlled conditions. The first cultivar Nevrocop 1146 is known as resistive to the TMV, i.e. it shows hypersensitive response. The second cultivar named Krumovgrad is normally sen-sitive to the TMV. At growth stage 4-6 expanded leaf, up to one leaf from 20 plants for each cultivar were inoculated with TMV. The leaves opposite to the infected ones formed the group of control (untreated) leaves. The

  10. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies.

    PubMed

    Zhou, Xijia; Liu, Zhigang; Xu, Shan; Zhang, Weiwei; Wu, Jun

    2016-01-01

    Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O₂-A and O₂-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O₂-A and O₂-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is

  11. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies

    PubMed Central

    Zhou, Xijia; Liu, Zhigang; Xu, Shan; Zhang, Weiwei; Wu, Jun

    2016-01-01

    Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O2-A and O2-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O2-A and O2-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is basically same

  12. The drought impact on satellite solar-induced chlorophyll fluorescence in China during 2007-2015

    NASA Astrophysics Data System (ADS)

    Li, Ruitao

    2016-04-01

    Drought is one of the most damaging and complicated natural hazards in the world. China is one of the countries which are most severely affected by drought. And there is a severe drought event in China every 2-3 years. From the beginning of the 1980s, some vegetation indices have been used to monitor vegetation under water stress. With the development of remote sensing technology, satellite solar-induced chlorophyll fluorescence (SIF) has emerged as a new method to monitor vegetation in recent years. Some studies have shown that compared with vegetation indices, SIF is more sensitive for vegetation functioning. However, the related studies using the satellite SIF is relatively limited in China. The objective of this study is to investigate the impact of drought on SIF by analyzing the relationships of SIF and crucial land surface parameter under the drought condition and to assess the adaption of satellite SIF in China. The SIF data are from the Global Ozone Monitoring Experiment 2 (GOME-2). Firstly, the widely used Palmer Drought Severity Index (PDSI) was used for drought events identification from 2007 to 2015 in China. On the basis of the identification results, we chose a number of areas of interest according to different land cover types and drought intensity. Then, we analyzed the relationships of SIF and land surface variables, i.e. normalized difference vegetation index (NDVI), the fraction of absorbed photosynthetically active radiation (fPAR), root-zone soil moisture (SMC) and surface skin temperatures (Tskin). The results show that the spatial patterns of negative SIF anomalies are closely relevant to the drought intensity. The decrease of SIF is aggravated in the phase of drought occurs. Moreover we find that the GOME-2 SIF is sensitive to fPAR and fluorescence yield. And the SIF is strongly correlated with SMC, Tskin and NDVI. But the SIF decreases more rapidly during the early time of drought events than NDVI. In other words, the SIF can well capture

  13. Spatial and temporal patterns of solar-induced chlorophyll fluorescence from a Finnish boreal landscape: Comparisons from the ground up to space

    NASA Astrophysics Data System (ADS)

    Drolet, G.; Nichol, C. J.; Wade, T. J.; Porcar-Castell, A.; Nikinmaa, E.; Middleton, E.; Ong, L.; Vesala, T.; Levula, J.; Moncrieff, J. B.

    2010-12-01

    Remote sensing of the solar-induced chlorophyll fluorescence (F) by vegetation has the potential to provide important information about carbon uptake dynamics in terrestrial ecosystems. Because of the strong physiological link between F and the photosynthetic status, accurate and timely estimates of F over large areas could significantly improve the understanding and predictions of how terrestrial ecosystems respond to climate change. In the past few decades, a number of different techniques and models aimed at retrieving F from remotely sensed measurements of vegetation reflectance were developed and in this study, we took advantage of these new developments to look at the spatial and temporal patterns of F in boreal coniferous forests. The results we present here are part of a larger research project aimed at improving reflectance-based estimates of photosynthesis efficiency and carbon uptake using space-based observations of boreal vegetation. During the summer of 2010, we continuously measured Scots pine (Pinus sylvestris) canopy reflectance using a tower-based spectrometer system (USB-2000+, Ocean Optics, USA) and leaf-level fluorescence using an automated multi channel chlorophyll fluorescence system (MONI-PAM, Heinz Walz GmbH, Germany). These measurements allowed studying the temporal dynamics of canopy-level F and testing methods for extracting F from canopy reflectance. During an intensive airborne campaign in July 2010, we used the University of Edinburgh’s research aircraft equipped with a dual field-of-view spectrometer system (FieldSpec Pro, Analytical Spectral Devices, USA) to repeatedly measure vegetation hyperspectral reflectance over a large area of boreal forest which encompassed the forest canopy sampled by the tower-based system. Airborne- and tower-based estimates of F where correlated to enable studying the spatial and temporal patterns of chlorophyll fluorescence and photosynthetic status over a larger extent of this boreal landscape in

  14. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, Philipp; Guanter, Luis; Joiner, Joanna

    2015-04-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last several years by means of space-borne atmospheric spectrometers. SIF is an electromagnetic signal emitted by the chlorophyll-a of photosynthetically active vegetation in the 650-850 nm spectral range. It represents a part of the excess energy during the process of photosynthesis and provides a measure of photosynthetic activity. The key challenge to retrieve SIF from space is to isolate the signal from the about 100 times more intense reflected solar radiation in the measured top of atmosphere (TOA) radiance spectrum. Nevertheless, it has been demonstrated that a number of satellite sensors provide the necessary spectral and radiometric performance to evaluate the in-filling of solar Fraunhofer lines and/or atmospheric absorption features by SIF. We will present recent developments for the retrieval of SIF from medium spectral resolution space-borne spectrometers such as the Global Ozone Monitoring Experiment (GOME-2) and the Scanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY). Building upon the previous work by Joiner et al. 2013, our approach solves existing issues in the retrieval such as the non-linearity of the forward model and the arbitrary selection of the number of free parameters. In particular, we use a backward elimination algorithm to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF from real spectra from GOME-2 and for the first time, from SCIAMACHY. We are able to present a time series of GOME-2 SIF results covering the 2007-2011 time period and SCIAMACHY SIF results between 2003-2011. This represents an almost one decade long record of global SIF. We

  15. Vegetation Red-edge Spectral Modeling for Solar-induced Chlorophyll Fluorescence Retrieval at O2-B Band

    NASA Astrophysics Data System (ADS)

    Huang, C.; Zhang, L.; Qiao, N.; Zhang, X.; Li, Y.

    2015-12-01

    Remotely sensed solar-induced chlorophyll fluorescence (SIF) has been considered an ideal probe in monitoring global vegetation photosynthesis. However, challenges in accurate estimate of faint SIF (less than 5% of the total reflected radiation in near infrared bands) from the observed apparent reflected radiation greatly limit its wide applications. Currently, the telluric O2-B (~688nm) and O2-A (~761nm) have been proved to be capable of SIF retrieval based on Fraunhofer line depth (FLD) principle. They may still work well even using conventional ground-based commercial spectrometers with typical spectral resolutions of 2~5 nm and high enough signal-to-noise ratio (e.g., the ASD spectrometer). Nevertheless, almost all current FLD based algorithms were mainly developed for O2-A, a few concentrating on the other SIF emission peak in O2-B. One of the critical reasons is that it is very difficult to model the sudden varying reflectance around O2-B band located in the red-edge spectral region (about 680-800 nm). This study investigates a new method by combining the established inverted Gaussian reflectance model (IGM) and FLD principle using diurnal canopy spectra with relative low spectral resolutions of 1 nm (FluorMOD simulations) and 3 nm (measured by ASD spectrometer) respectively. The IGM has been reported to be an objective and good method to characterize the entire vegetation red-edge reflectance. Consequently, the proposed SIF retrieval method (hereinafter called IGMFLD) could exploit all the spectral information along the whole red-edge (680-800 nm) to obtain more reasonable reflectance and fluorescence correction coefficients than traditional FLD methods such as the iFLD. Initial results show that the IGMFLD can better capture the spectrally non-linear characterization of the reflectance in 680-800 nm and thereby yields much more accurate SIFs in O2-B than typical FLD methods, including sFLD, 3FLD and iFLD (see figure 1). Finally, uncertainties and prospect

  16. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels

    NASA Astrophysics Data System (ADS)

    Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D.

    2013-12-01

    Leaf and canopy nitrogen (N) status relates strongly to leaf and canopy chlorophyll (Chl) content. Remote sensing is a tool that has the potential to assess N content at leaf, plant, field, regional and global scales. In this study, remote sensing techniques were applied to estimate N and Chl contents of irrigated maize (Zea mays L.) fertilized at five N rates. Leaf N and Chl contents were determined using the red-edge chlorophyll index with R2 of 0.74 and 0.94, respectively. Results showed that at the canopy level, Chl and N contents can be accurately retrieved using green and red-edge Chl indices using near infrared (780-800 nm) and either green (540-560 nm) or red-edge (730-750 nm) spectral bands. Spectral bands that were found optimal for Chl and N estimations coincide well with the red-edge band of the MSI sensor onboard the near future Sentinel-2 satellite. The coefficient of determination for the relationships between the red-edge chlorophyll index, simulated in Sentinel-2 bands, and Chl and N content was 0.90 and 0.87, respectively.

  17. Atrazine and Methyl Viologen Effects on Chlorophyll-a Fluorescence Revisited-Implications in Photosystems Emission and Ecotoxicity Assessment.

    PubMed

    Iriel, Analia; Novo, Johanna M; Cordon, Gabriela B; Lagorio, María G

    2014-01-01

    In this work, we use the effect of herbicides that affect the photosynthetic chain at defined sites in the photosynthetic reaction steps to derive information about the fluorescence emission of photosystems. The interpretation of spectral data from treated and control plants, after correction for light reabsorption processes, allowed us to elucidate current controversies in the subject. Results were compatible with the fact that a nonnegligible Photosystem I contribution to chlorophyll fluorescence in plants at room temperature does exist. In another aspect, variable and nonvariable chlorophyll fluorescence were comparatively tested as bioindicators for detection of both herbicides in aquatic environment. Both methodologies were appropriate tools for this purpose. However, they showed better sensitivity for pollutants disconnecting Photosystem II-Photosystem I by blocking the electron transport between them as Atrazine. Specifically, changes in the (experimental and corrected by light reabsorption) red to far red fluorescence ratio, in the maximum photochemical quantum yield and in the quantum efficiency of Photosytem II for increasing concentrations of herbicides have been measured and compared. The most sensitive bioindicator for both herbicides was the quantum efficiency of Photosystem II. PMID:23869421

  18. Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients.

    PubMed

    Pospísil, Pavel; Dau, Holger

    2002-04-22

    Upon sudden exposure of plants to an actinic light of saturating intensity, the yield of chlorophyll fluorescence increases typically by 200-400% of the initial O-level. At least three distinct phases of these O-J-I-P transients can be resolved: O-J (0.05-5 ms), J-I (5-50 ms), and I-P (50-1000 ms). In thylakoid membranes, the J-I increase accounts for approximately 30% of the total fluorescence increase; in Photosystem II membranes, the J-I phase is always lacking. In the presence of the ionophore valinomycin, which is known to inhibit specifically the formation of membrane voltages, the magnitude of the J-I phase is clearly diminished; in the presence of valinomycin supplemented by potassium, the J-I phase is fully suppressed. We conclude that the light-driven formation of the thylakoid-membrane voltage results in an increase of the chlorophyll excited-state lifetime, a phenomenon explainable by the electric-field-induced shift of the free-energy level of the primary radical pair [Dau and Sauer, Biochim. Biophys. Acta 1102 (1992) 91]. The assignment of the J-I increase in the fluorescence yield enhances the potential of using O-J-I-P fluorescence transients for investigations on photosynthesis in intact organisms. A putative role of thylakoid voltages in protection of PSII against photoinhibitory damage is discussed. PMID:12034474

  19. Monitoring the Photosynthetic Apparatus During Space Flight: Interspecific Variation in Chlorophyll Fluorescence Signatures Induced by Different Root Zone Stresses

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Patterson, Mark T.; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Chlorophyll fluorescence has been used extensively as a tool to indicate stress to the photosynthetic apparatus in green plants. A rise in fluorescence has been attributed to the blockage of photosystem II photochemistry, and patterns of fluorescence decay (quenching) from dark adapted leaves can be related to specific photochemical and non-photochemical deexcitation pathways of light trapped by the photosynthetic apparatus and thus result in characteristically different fluorescence signatures. Four distantly related plant species, Hypocharis radicata (Asteraceae), Brassica rapa (Brassicaceae), Spinacea oleracea (Chenopodiaceae) and Triticum aestivum (Poaceae), were grown hydroponically for three weeks before the initiation of three different root zone stresses (10 mM Cu, 100 mM NaCl and nitrogen deficient nutrition). After 10 days, characteristic fluorescence signatures for each stress could be noted although the degree varied between species. Fast kinetics analysis showed a reduction in plastoquinone pool size for copper and nitrogen stress for all species but a more species specific result with NaCl stress. Photochemical quenching kinetics varied between species and stress treatments from no quenching in S. oleracea in copper treatments to increased photochemical quenching in NaCl treatments. Non-photochemical quenching kinetics demonstrated a distinct pattern between stresses for all species. Copper treatments characteristically exhibited a shallow, flat non-photochemical quenching profile suggesting a general blockage of electron transport whereas NaCl treatments exhibited a slow rising profile that suggested damage to thylakoid acidification kinetics and nitrogen deficiency exhibited a fast rising and declining profile that suggested an altered state 1-state 2 transition regulated by the phosphorylation of LHCII. These results demonstrate characteristic fluorescence signatures for specific plant stresses that may be applied to different, unrelated plant

  20. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize.

    PubMed

    Wagle, Pradeep; Zhang, Yongguang; Jin, Cui; Xiao, Xiangming

    2016-06-01

    Accurately quantifying cropland gross primary production (GPP) is of great importance to monitor cropland status and carbon budgets. Satellite-based light-use efficiency (LUE) models and process-based terrestrial biosphere models (TBMs) have been widely used to quantify cropland GPP at different scales in past decades. However, model estimates of GPP are still subject to large uncertainties, especially for croplands. More recently, space-borne solar-induced chlorophyll fluorescence (SIF) has shown the ability to monitor photosynthesis from space, providing new insights into actual photosynthesis monitoring. In this study, we examined the potential of SIF data to describe maize phenology and evaluated three GPP modeling approaches (space-borne SIF retrievals, a LUE-based vegetation photosynthesis model [VPM], and a process-based soil canopy observation of photochemistry and energy flux [SCOPE] model constrained by SIF) at a maize (Zea mays L.) site in Mead, Nebraska, USA. The result shows that SIF captured the seasonal variations (particularly during the early and late growing season) of tower-derived GPP (GPP_EC) much better than did satellite-based vegetation indices (enhanced vegetation index [EVI] and land surface water index [LSWI]). Consequently, SIF was strongly correlated with GPP_EC than were EVI and LSWI. Evaluation of GPP estimates against GPP_EC during the growing season demonstrated that all three modeling approaches provided reasonable estimates of maize GPP, with Pearson's correlation coefficients (r) of 0.97, 0.94, and 0.93 for the SCOPE, VPM, and SIF models, respectively. The SCOPE model provided the best simulation of maize GPP when SIF observations were incorporated through optimizing the key parameter of maximum carboxylation capacity (Vcmax). Our results illustrate the potential of SIF data to offer an additional way to investigate the seasonality of photosynthetic activity, to constrain process-based models for improving GPP estimates, and to

  1. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-04-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted in phytoplankton biomass (i.e. chlorophyll a concentration) and size-based community composition (i.e. microphytoplankton, nanophytoplankton and picophytoplankton), using a~method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over five decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available in open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485.

  2. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition:

  3. The Chlorophyll a Fluorescence Modulated by All-Trans-β-Carotene in the Process of Photosystem II

    PubMed Central

    Li, Tianyu; Zhang, Ye; Gong, Nan; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2016-01-01

    Modulating the chlorophyll a (Chl-a) fluorescence by all-trans-β-Carotene (β-Car) in the polarity and non-polarity solutions was investigated. The fluorescence intensity of Chl-a decreased as the concentration of β-Car increased. The excited electronic levels of Chl-a and β-Car became much closer owing to the solvent effect, which led to the electron transfer between both two molecules. A electron-separated pair Chl−·Chl+ that is not luminous was formed due to electron transfer. The solution of Chl-a and β-car in C3H6O was similar to the internal environment of chloroplast. We conclude that the polar solvent is good for the fluorescent modulation in photosystem II. PMID:27338363

  4. The Chlorophyll a Fluorescence Modulated by All-Trans-β-Carotene in the Process of Photosystem II.

    PubMed

    Li, Tianyu; Zhang, Ye; Gong, Nan; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2016-01-01

    Modulating the chlorophyll a (Chl-a) fluorescence by all-trans-β-Carotene (β-Car) in the polarity and non-polarity solutions was investigated. The fluorescence intensity of Chl-a decreased as the concentration of β-Car increased. The excited electronic levels of Chl-a and β-Car became much closer owing to the solvent effect, which led to the electron transfer between both two molecules. A electron-separated pair Chl(-)·Chl⁺ that is not luminous was formed due to electron transfer. The solution of Chl-a and β-car in C₃H₆O was similar to the internal environment of chloroplast. We conclude that the polar solvent is good for the fluorescent modulation in photosystem II. PMID:27338363

  5. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat.

    PubMed

    Bürling, Kathrin; Hunsche, Mauricio; Noga, Georg

    2011-09-15

    In recent years, several sensor-based approaches have been established to early detect single plant stresses, but the challenge of discriminating between simultaneously occurring stressors still remains. Earlier studies on wheat plants strongly affected by pathogens and nitrogen deficiency indicated that chlorophyll fluorescence might be suited to distinguish between the two stressors. Nevertheless, there is lack of information on the pre-symptomatic detection of synchronized occurrence of slight N-deficiency and the early stages of pathogen infection. The usefulness of the blue, green, and yellow fluorescence signals in this context has not yet been explored. We hypothesized that differentiation between wheat plants' physiological reaction due to N-deficiency and leaf rust (Puccinia triticina) as well as N-deficiency and powdery mildew (Blumeria graminis f. sp. tritici) might be accomplished by means of UV laser-induced fluorescence spectral measurements between 370 and 620nm in addition to chlorophyll fluorescence (640-800nm). Plants were provided with either a normal or a modified Hoagland nutrient solution in order to induce a slight N deficit. Pathogen inoculation was carried out on the second fully developed leaf. Four experimental groups were evaluated: (a) N-full-supply [N+]; (b) N-deficiency [N-]; (c) N-full-supply+pathogen [N+/LR] or [N+/PM]; (d) N-deficiency+pathogen [N-/LR] or [N-/PM]. The results revealed that, in addition to the amplitude ratio of R/FR fluorescence, B/G fluorescence also facilitated reliable and robust discrimination among the four experimental groups. The discrimination among the experimental groups was accomplished as early as one and two days after inoculation for powdery mildew and leaf rust infection, respectively. During the 3days evaluation period, the differences among the treatment groups became more evident. Moreover, several other amplitude ratios and half-bandwidth ratios proved to be suited to early detect fungal

  6. Optimal estimator for tomographic fluorescence lifetime multiplexing

    PubMed Central

    Hou, Steven S.; Bacskai, Brian J.; Kumar, Anand T. N.

    2016-01-01

    We use the model resolution matrix to analytically derive an optimal Bayesian estimator for multiparameter inverse problems that simultaneously minimizes inter-parameter cross talk and the total reconstruction error. Application of this estimator to time-domain diffuse fluorescence imaging shows that the optimal estimator for lifetime multiplexing is identical to a previously developed asymptotic time-domain (ATD) approach, except for the inclusion of a diagonal regularization term containing decay amplitude uncertainties. We show that, while the optimal estimator and ATD provide zero cross talk, the optimal estimator provides lower reconstruction error, while ATD results in superior relative quantitation. The framework presented here is generally applicable to other multiplexing problems where the simultaneous and accurate relative quantitation of multiple parameters is of interest. PMID:27192234

  7. Estimation of time averages from irregularly spaced observations - With application to coastal zone color scanner estimates of chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.; Schlax, Michael G.

    1991-01-01

    The sampling error of an arbitrary linear estimate of a time-averaged quantity constructed from a time series of irregularly spaced observations at a fixed located is quantified through a formalism. The method is applied to satellite observations of chlorophyll from the coastal zone color scanner. The two specific linear estimates under consideration are the composite average formed from the simple average of all observations within the averaging period and the optimal estimate formed by minimizing the mean squared error of the temporal average based on all the observations in the time series. The resulting suboptimal estimates are shown to be more accurate than composite averages. Suboptimal estimates are also found to be nearly as accurate as optimal estimates using the correct signal and measurement error variances and correlation functions for realistic ranges of these parameters, which makes it a viable practical alternative to the composite average method generally employed at present.

  8. Chlorophyll Fluorescence Is a Better Proxy for Sunlit Leaf Than Total Canopy Photosynthesis

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Wang, Z.; Zhang, F.; Mo, G.

    2015-12-01

    Chlorophyll fluorescence (CF) results from non-photochemical quenching during plant photosynthesis under excessive radiation. We explore the relationship between gross primary productivity (GPP) and CF using a process ecosystem model, which separates a vegetation canopy into sunlit and shaded leaf groups and simulates the total canopy GPP as the sum of sunlit and shaded leaf GPP. Using GOME-2 and GOSAT data acquired in 2010 over the global land surface, we found that measured CF signals gridded in 1 degree resolution are well correlated with simulated total GPP and its sunlit and shaded components, but the correlation coefficients (R) are largest for the sunlit GPP and smallest for shaded GPP. The seasonal R2 values vary from 0.57 to 0.74, 0.58 to 0.71, and 0.48 to 0.56 for sunlit, total and shaded GPP, respectively. The significance levels for these correlations are all greater than p<0.01. Averaged over the globe, the total simulated shaded GPP is 39% of the total GPP. Theoretically, CF from vegetation comes mostly from sunlit leaves. The significant correlation between measured canopy-level CF and the shaded GPP is likely due to the correlation between shaded and sunlit GPP as both increase with leaf area index. Our simulation confirms the validity of using canopy-level CF measurements to assess the total GPP as the first approximation, although these measurements are a consistently better indicator of sunlit GPP than total GPP. In previous studies, the R2 values for the correlation between CF and total GPP were found to range from 0.76 to 0.88, 0.56 to 0.78, and 0.57 to 0.77 for MPI-BGC, MODIS and CASA model results, respectively. These values are similar or larger than those for sunlit GPP simulated in our study, but are considerably larger than those for total GPP in our study because the correlation for total GPP is contaminated by the inclusion of shaded GPP. All these three models use canopy total light use efficiency without considering the differences

  9. Diurnal and Directional Responses of Chlorophyll Fluorescence and the PRI in a Cornfield

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth; Cheng, Y. B.; Corp, L.; Campbell, P.; Kustas, W.

    2010-01-01

    Determining the health and vigor of vegetation using high spectral resolution remote sensing is an important goal which has application to monitoring agriculture and ecosystem productivity and carbon exchange. Two spectral indices used to assess whether vegetation is performing near-optimally or exhibiting symptoms of environmental stress (e.g., drought or nutrient deficiency, non-optimal temperatures, etc.) are the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (Fs). Both the PRI and Fs capture the dynamics of photoprotection mechanisms within green foliage: the PRI is based on the association of the reflected radiation in the green spectrum with the xanthophyll cycle, whereas Fs measures the emitted radiation in the red and far-red spectrum. Fs was determined from retrievals in the atmospheric oxygen absorption features centered at 688 and 760 nm using a modified Fraunhofer Line Depth (FLD) method. We previously demonstrated diurnal and seasonal PRI differences for sunlit vs. shaded foliage in a conifer forest canopy, as expressed in the hotspot and darkspot of the Bidirectional Reflectance Function (BRF). In a USDA-ARS experimental field site located in Beltsville, MD, USA, measurements were acquired over a corn crop from a nadir view in 2008 with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc., Boulder, CO, USA) to study the behavior of the PRI for sunlit and shaded foliage as captured in reflectance variations associated with the BRF, in a I m tall canopy in the vegetative growth stage. Those observations were compared to simulations obtained from two radiative transfer models. Measurements were then acquired to examine whether the PRI and Fs were influenced by view zenith and azimuth geometries at different times of day. Those measurements were made in 2010 with the Ocean Optics USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics Inc., Dunedin, Florida, USA) at several times during the day on

  10. [A Three Band Chlorophyll-a Concentration Estimation Model Based on GOCI Imagery].

    PubMed

    Guo, Yu-long; Li, Yun-mei; Li, Yuan; Lü, Heng; Liu, Ge; Wang, Xu-dong; Zhang, Si-min

    2015-09-01

    A GOCI-based three band model is proposed for chlorophyll-a concentration estimation based on the classical three band model. The model was built based on 289 in-situ measured chlorophyll-a concentration and hyperspectral spectrums-simulated GOCI spectrums, and was compared with MERIS-based three band model and GOCI band ratio model. At last, the model was validated using several GOCI images and an independent in-situ sampling dataset. The results showed that: (1) For the current dataset, the ratio of aph (680) and aph (660) was relatively stable. (2) The GOCI-based three band algorithm had a similar performance with MERIS-based three band algorithm in the modeling dataset. The R2 value of the GOCI-based three band model was 0. 809, which was a little lower than that of the MERIS-based three band model (R2 = 0. 820), but was obviously higher than that of GOCI band ratio model (R2 = 0. 450). (3) The performance of GOCI-based three band model in the validation dataset was similar with that in the modeling dataset, which was close to that of the MERIS-based three band model, and significantly better than that of GOCI band ratio model. (4) The GOCI image data validation indicated that GOCI band ratio model would clearly underestimate chlorophyll-a concentration in Taihu Lake. The spatial difference of chlorophyll-a concentration that yielded by the band ratio model was not clear. Compared with the widely used band ratio algorithm, the GOCI-based three band algorithm has higher stability, better accuracy, and stronger potential in application. PMID:26717676

  11. Spatial distribution and seasonal variability of chlorophyll-a concentration in the Azov Sea turbid waters by means of remote sensing and continuous fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Saprygin, V. V.

    2011-12-01

    The goal of this study was to apply continuous fluorometric and remote estimation of chlorophyll-a concentration (Cchl) techniques to complex turbid waters of Azov Sea and explore Cchl temporal variation and spatial pattern. Azov Sea is the shallowest sea in the world with maximum depth below 15 m. Its maximum salinity is about 14%; total suspended solids and chlorophyll-a concentrations reach 120 [tex]g m^{-3}[/tex] and 100 [tex]mg m^{-3}[/tex] respectively in Taganrog Bay, daily production varies up to 3.5 [tex]gC_{org} m^{-3}[/tex]. Chlorophyll-a concentrations were measured in 2008-2010 year-round spectrophotometrically, 446 water samples were taken to calibrate fluorometerical and remote sensing data. The highest recorded concentration was 149.3, the lowest - 0.3 [tex]mg m^{-3}[/tex]. Continuous-flow fluorometer was applied in the course of 3 expeditions to Taganrog Bay to measure chlorophyll-a fluorescence (Fchl) each 30 meters along the ship path. Two-cuvette fluorometer was used to discount the influence of dissolved organic matter. Fchl measurements were calibrated and Cchl profiles derieved to estimate Cchl spatial heterogeneity in close scale. Fchl measurements were also made during moorings each 6 seconds to estimate temporal Cchl variability. Recently published algorithm based on reflectance in the red and the near-infrared (NIR) spectral regions was applied to MERIS data for the remote estimation of Cchl. Taking in account fluorometric Cchl spatial heterogeneity estimation, the algorithm for culling the outliers in Cchl fields derived from satellite data was developed. 74 images were processed to Cchl maps and then averaged monthly. Consequently, Cchl spatial distribution and seasonal variability were studied. Spectrophotometric, flourumetric measurements and values obtained by NIR-red algorithm showed strong correlation in turbid Case II waters of Azov Sea. Fluorometric and remote measurements showed high Cchl variations in short and long terms

  12. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment. PMID:27556995

  13. Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence.

    PubMed

    Guidi, Lucia; Mori, Sauro; Degl'Innocenti, Elena; Pecchia, Susanna

    2007-01-01

    Chlorophyll fluorescence has been used routinely to investigate photosynthetic activity in plants subjected to both biotic and abiotic stresses. The aim of this work was to compare the perturbations in photosynthesis induced by ozone and by a pathogen. By using a conventional fluorometer a similar response pattern was observed in inoculated and O(3)-fumigated leaves. The application of chlorophyll fluorescence imaging provided further detailed information on the spatial-temporal heterogeneity of the response of white lupin leaves to fungal pathogen or to ozone fumigation. In particular, 48 h after artificial inoculation with the necrotrophic fungal pathogen Pleiochaeta setosa, the leaves showed a remarkable alteration in PSII operating efficiency (Phi(PSII)), which affected the whole surface. Afterwards, the infection site was surrounded by a ring of increased photosynthetic activity. The response of ozonated leaves was quite different. The reduction in Phi(PSII) was already evident 24h after fumigation; moreover, a distinct heterogeneity of the fluorescence yield was observed and the major veins displayed a lowered Phi(PSII). PMID:17900916

  14. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].

    PubMed

    Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She

    2013-09-01

    By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control. PMID:24417104

  15. Seasonal and intraspecific variability of chlorophyll fluorescence, pigmentation and growth of Pinus ponderosa subjected to elevated CO{sub 2}

    SciTech Connect

    Houpis, J.L.J.; Anschel, D.; Pushnik, J.C.; Demaree, R.S.; Anderson, P.D.

    1994-12-01

    Atmospheric CO{sub 2}2 is expected to double in the next century, and these increases will have substantial impact on forest ecosystems. However, the database on the effects of elevated CO{sub 2} on forests is limited, and the extent of intraspecific variability remains unknown. We are investigating the effects of elevated CO{sub 2} on the intraspecific variability of quantum yield (as measured through chlorophyll fluorescence Fv/Fm ratio) and pigmentation, and how these are correlated to variability in growth. Four-year-old Pinus ponderosa seedlings were obtained from nine different sources across California. These seedlings were grown in standard outdoor exposure chambers for sixteen months at either ambient levels of CO{sub 2}, ambient+175ppm CO{sub 2}, or ambient+350ppm CO{sub 2}. The seedlings were periodically measured for growth, pigmentation, and chlorophyll fluorescence. The results showed a variable growth response of the nine sources during all measurement periods. Increasing CO{sub 2} resulted in a decrease in Fv/Fm among sources ranging from {minus}2.1% to {minus}23.2% in February, and 3.1% to {minus}12.5% in June. The source that had the best growth throughout the study, also had a minimal reduction in quantum yield (Fv/Fm) in the presence of elevated CO{sub 2}. For the seedlings of fastest growing sources, the correspondence between total growth and chlorophyll fluorescence was strongest during the February measurement period. Our results also showed a significant reduction in pigmentation due to increased CO{sub 2}. There are at least three explanations for the different responses during each measurement periods. First, the trees could be adapting favorably to increasing CO{sub 2}. Secondly, 1993 needles could be under less physiological stress than the current year needles. Third, there is a seasonal effect dependent upon temperature or light which is influencing the Fv/Fm ratio and pigmentation.

  16. Heavy metal stress detection and monitoring via LED-induced chlorophyll fluorescence analysis of Zea mays L. seedlings aimed at polluted soil phytoremediation

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2012-03-01

    Chlorophyll fluorescence spectroscopy is employed to detect and study the time evolution of metal stress of Zea mays L. seedlings aiming polluted soil phytoremediation. The chlorophyll fluorescence spectra of intact leaves are analyzed using 405 nm LED excitation. Red (Fr) and far-red (FFr) emissions around 685 nm and 735 nm, respectively, are examined as a function of the heavy metal concentration. The fluorescence ratio Fr/FFr was employed to monitor the effect of heavy metal upon the physiological state of the plants before signs of visual stress became apparent. The chlorophyll fluorescence analysis permitted detection and evaluation of the damage caused by heavy metal soil contamination in the early stages of the plants growing process, which is not feasible using conventional in vitro spectral analysis.

  17. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence.

    PubMed

    Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel

    2017-01-01

    The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied. PMID:27450121

  18. Spectral analysis on origination of the bands at 437 nm and 475.5 nm of chlorophyll fluorescence excitation spectrum in Arabidopsis chloroplasts.

    PubMed

    Zeng, Lizhang; Wang, Yongqiang; Zhou, Jun

    2016-05-01

    Chlorophyll fluorescence has been often used as an intrinsic optical molecular probe to study photosynthesis. In this study, the origin of bands at 437 and 475.5 nm in the chlorophyll fluorescence excitation spectrum for emission at 685 nm in Arabidopsis chloroplasts was investigated using various optical analysis methods. The results revealed that this fluorescence excitation spectrum was related to the absorption characteristics of pigment molecules in PSII complexes. Moreover, the excitation band centred at 475.5 nm had a blue shift, but the excitation band at 437 nm changed relatively less due to induction of non-photochemical quenching (NPQ). Furthermore, fluorescence emission spectra showed that this blue shift occurred when excitation energy transfer from both chlorophyll b (Chl b) and carotenoids (Cars) to chlorophyll a (Chl a) was blocked. These results demonstrate that the excitation band at 437 nm was mainly contributed by Chl a, while the excitation band at 475.5 nm was mainly contributed by Chl b and Cars. The chlorophyll fluorescence excitation spectrum, therefore, could serve as a useful tool to describe specific characteristics of light absorption and energy transfer between light-harvesting pigments. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26358732

  19. Theoretical investigation of fluorescence concentration quenching in two-dimensional disordered systems. Application to chlorophyll a in monolayers of dioleylphosphatidylcholine

    SciTech Connect

    Boulu, L.G.; Patterson, L.K.; Chauvet, J.P.; Kozak, J.J.

    1987-01-15

    A master equation approach is used for investigating energy transfer and trapping in two-dimensional disordered systems, where the traps are statistical pairs of pigment molecules closer than a critical distance R/sub c/. Fluorescence decay curves are calculated over a range of concentrations as a function of R/sub c/ and the Foerster transfer radius R-bar/sub 0/. The concentration dependence of the lifetimes is compared to the fluorescence self-quenching data that Chauvet et al. obtained from real-time measurements in monolayers of chlorophyll a and dioleylphosphatidylcholine (DOL). This dependence is found to be close to second order and for a choice of R/sub c/ = 10 A the experimental data are fit if R-bar/sub 0/ = 78 +- 2 A. This value is in close agreement with those found in the literature from depolarization measurements.

  20. Influence of CO/sub 2/ enrichment and phosphorus deficiency on chlorophyll A fluorescence, photosynthesis and growth of Pinus Radiata

    SciTech Connect

    Conroy, J.; Smillie, R.; Kuppers, M.; Barlow, S.

    1987-04-01

    Needles from phosphorus (P) deficient seedlings of P.radiata grown for 8 weeks at either 330 or 660 ul CO/sub 2/1/sup -1/ displayed chlorophyll fluorescence induction kinetics characteristic of structural changes within the chloroplast thylakoid membrane. The effect was greatest in plants grown at 660 ul CO/sub 2/1/sup -1/. By week 22, at 330 ul CO/sub 2/1/sup -1/, acclimation to P deficiency had occurred as shown by the similarity between the deficient and adequate P plants in their fluorescence and photosynthetic characteristics. Acclimation did not occur at 660 ul CO/sub 2/1/sup -1/. The light saturated rate of photosynthesis was higher at 660 ul CO/sub 2/1/sup -1/ when P was adequate but not when it was deficient. Similarly, growth was only enhanced by high CO/sub 2/ when P was adequate.

  1. Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model

    NASA Astrophysics Data System (ADS)

    Botha, Elizabeth J.; Leblon, Brigitte; Zebarth, Bernie; Watmough, James

    2007-12-01

    Optimizing nitrogen (N) fertilization in crop production by in-season measurements of crop N status may improve fertilizer N use efficiency. Hyperspectral measurements may be used to assess crop N status by estimating leaf chlorophyll content. This study evaluated the ability of the PROSAIL canopy-level reflectance model to predict leaf chlorophyll content. Trials were conducted with two potato cultivars under different N fertility rates (0-300 kg N ha -1). Canopy reflectance, leaf area index (LAI) and leaf chlorophyll and N contents were measured. The PROSAIL model was able to predict leaf chlorophyll content with reasonable accuracy later in the growing season. The low estimation accuracy earlier in the growing season could be due to model sensitivity to non-homogenous canopy architecture and soil background interference before full canopy closure. Canopy chlorophyll content (leaf chlorophyll content × LAI) was predicted less accurately than leaf chlrophyll content due to the low estimation accuracy of LAI for values higher than 4.5.

  2. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.

    PubMed

    Kalaji, Hazem M; Oukarroum, Abdallah; Alexandrov, Vladimir; Kouzmanova, Margarita; Brestic, Marian; Zivcak, Marek; Samborska, Izabela A; Cetner, Magdalena D; Allakhverdiev, Suleyman I; Goltsev, Vasilij

    2014-08-01

    The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records. PMID:24811616

  3. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    PubMed

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. PMID:27161580

  4. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

    NASA Astrophysics Data System (ADS)

    Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-04-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. In addition, fluorescence can contaminate photon path estimates from the O2 A-band that has become an integral part of missions to accurately measure greenhouse gas concentrations. Global mapping of far-red (~ 755-770 nm) terrestrial vegetation solar-induced fluorescence from space has been accomplished using the high spectral resolution (ν/Δ ν > 35 000) interferometer on the Japanese Greenhouse gases Observing SATellite (GOSAT). These satellite retrievals of fluorescence rely solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data to disentangle the spectral signatures of three basic components in and surrounding the O2 A-band: atmospheric absorption, surface reflectance, and fluorescence radiance. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate spectral resolution measurements with a relatively high signal-to-noise ratio within and outside the O2 A-band can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with GOSAT. GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. It should be noted that

  5. Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas).

    PubMed

    Marques, Marise Conceição; do Nascimento, Clístenes Williams Araújo

    2013-10-01

    The vegetation of metal-contaminated soils using non-edible crops can be a safe and economical technique for Cd immobilization and the remediation of contaminated sites. Jatropha (Jatropha curcas L.) exhibits a relative tolerance to heavy metals and potential for biofuel production. The study was performed to monitor the Cd-induced alterations in jatropha plants by X-ray chlorophyll fluorescence. The Cd effects on photosynthetic pigments, the mineral composition of plants, defense enzyme activity and soluble proteins were also studied. Plants were grown for 20days in a nutrient solution with five Cd contents: 5, 10, 20, 30 and 40μmolL(-1); a control with no Cd addition was also monitored. The analysis of the chlorophyll fluorescence spectra allowed detecting alterations caused by Cd toxicity in the jatropha plants. The mineral composition of the plants was affected by the Cd doses; however, the Fe and Mg contents were not significantly reduced, which most likely improved the effects on the contents of the photosynthetic pigments. Because of its relative tolerance to Cd, Jatropha curcas may be a promising species to revegetate Cd-contaminated sites. Considering the long period needed to phytoremediate soils, the combination of remediation with bioenergy production could be an attractive option. PMID:23968996

  6. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    PubMed Central

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-01-01

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532

  7. Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence

    SciTech Connect

    Adams, W.W. III; Winter, K.; Schreiber, U. ); Schramel, P. )

    1990-04-01

    The loss of chlorophyll and total leaf nitrogen during autumnal senescence of leaves from the deciduous tree Platanus occidentalis L. was accompanied by a marked decline in the photosynthetic capacity of O{sub 2} evolution on a leaf area basis. When expressed on a chlorophyll basis, however, the capacity for light- and CO{sub 2}-saturated O{sub 2} evolution did not decline, but rather increased as leaf chlorophyll content decreased. The photon yield of O{sub 2} evolution in white light (400-700 nanometers) declined markedly with decreases in leaf chlorophyll content below 150 milligrams of chlorophyll per square meter on both an incident and an absorbed basis, due largely to the absorption of light by nonphotosynthetic pigments which were not degraded as rapidly as the chlorophylls. Data indicate that the efficiency for photochemical energy conversion of the remaining functional components was maintained at a high level during the natural course of autumnal senescence, and are consistent with previous studies which have characterized leaf senescence as being a controlled process. The loss of chlorophyll during senescence was also accompanied by a decline in fluorescence emanating from PSI, whereas there was little change in PSII fluorescence (measured at 77 Kelvin), presumably due to decreased reabsorption of PSII fluorescence by chlorophyll. Nitrogen was the only element examined to exhibit a decline with senescence on a dry weight basis. However, on a leaf area basis, all elements (C, Ca, K, Mg, N, P, S) declined in senescent leaves, although the contents of sulfur and calcium, which are not easily retranslocated, decreased to the smallest extent.

  8. Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley.

    PubMed Central

    Gilmor, A M; Itoh, S; Govindjee

    2000-01-01

    This study presents a novel measurement, and simulation, of the time-resolved room temperature chlorophyll a fluorescence emission spectra from leaves of the barley wild-type and chlorophyll-b-deficient chlorina (clo) f2 and f104 mutants. The primary data were collected with a streak-camera-based picosecond-pulsed fluorometer that simultaneously records the spectral distribution and time dependence of the fluorescence decay. A new global spectral-kinetic analysis programme method, termed the double convolution integral (DCI) method, was developed to convolve the exciting laser pulse shape with a multimodal-distributed decay profile function that is again convolved with the spectral emission band amplitude functions. We report several key results obtained by the simultaneous spectral-kinetic acquisition and DCI methods. First, under conditions of dark-level fluorescence, when photosystem II (PS II) photochemistry is at a maximum at room temperature, both the clo f2 and clo f104 mutants exhibit very similar PS II spectral-decay contours as the wild-type (wt), with the main band centred around 685 nm. Second, dark-level fluorescence is strongly influenced beyond 700 nm by broad emission bands from PS I, and its associated antennae proteins, which exhibit much more rapid decay kinetics and strong integrated amplitudes. In particular a 705-720 nm band is present in all three samples, with a 710 nm band predominating in the clo f2 leaves. When the PS II photochemistry becomes inhibited, maximizing the fluorescence yield, both the clo f104 mutant and the wt exhibit lifetime increases for their major distribution modes from the minimal 205-500 ps range to the maximal 1500-2500 ps range for both the 685 nm and 740 nm bands. The clo f2 mutant, however, exhibits several unique spectral-kinetic properties, attributed to its unique PS I antennae and thylakoid structure, indicating changes in both PS II fluorescence reabsorption and PS II to PS I energy transfer pathways

  9. Herbivory of wild Manduca sexta causes fast down-regulation of photosynthetic efficiency in Datura wrightii: an early signaling cascade visualized by chlorophyll fluorescence.

    PubMed

    Barron-Gafford, Greg A; Rascher, Uwe; Bronstein, Judith L; Davidowitz, Goggy; Chaszar, Brian; Huxman, Travis E

    2012-09-01

    Plants experiencing herbivory suffer indirect costs beyond direct loss of leaf area, but differentially so based on the herbivore involved. We used a combination of chlorophyll fluorescence imaging and gas exchange techniques to quantify photosynthetic performance, the efficiency of photochemistry, and heat dissipation to examine immediate and longer-term physiological responses in the desert perennial Datura wrightii to herbivory by tobacco hornworm, Manduca sexta. Herbivory by colony-reared larvae yielded no significant reduction in carbon assimilation, whereas herbivory by wild larvae induced a fast and spreading down-regulation of photosynthetic efficiency, resulting in significant losses in carbon assimilation in eaten and uneaten leaves. We found both an 89 % reduction in net photosynthetic rates in herbivore-damaged leaves and a whole-plant response (79 % decrease in undamaged leaves from adjacent branches). Consequently, herbivory costs are higher than previously estimated in this well-studied plant-insect interaction. We used chlorophyll fluorescence imaging to elucidate the mechanisms of this down-regulation. Quantum yield decreased up to 70 % in a small concentric band surrounding the feeding area within minutes of the onset of herbivory. Non-photochemical energy dissipation by the plant to avoid permanent damage was elevated near the wound, and increased systematically in distant areas of the leaf away from the wound over subsequent hours. Together, the results underscore not only potential differences between colony-reared and wild-caught herbivores in experimental studies of herbivory but also the benefits of quantifying physiological responses of plants in unattacked leaves. PMID:22576017

  10. Linking chlorophyll fluorescence, hyperspectral reflectance and plant physiological responses to detect stress using the photochemical reflectance index (PRI) (Invited)

    NASA Astrophysics Data System (ADS)

    Naumann, J. C.; Young, D.; Anderson, J.

    2009-12-01

    The concept of using vegetation as sentinels to indicate natural or anthropogenic stress is not new and could potentially provide an ideal mechanism for large-scale detection. Advances in fluorescence spectroscopy and reflectance-derived fluorescence have made possible earlier detection of stress in plants, especially before changes in chlorophyll content are visible. Our studies have been used to fuse leaf fluorescence and reflectance characteristics to remotely sense and rapidly detect vegetation stress and terrain characteristics. Laboratory studies have indicated that light-adapted fluorescence (ΔF/F‧m) measurements have been successful in all experiments at detecting stress from flooding, salinity, drought, herbicide and TNT contamination prior to visible signs of damage. ΔF/F‧m was related to plant physiological status in natural stress conditions, as seen in the relationships with stomatal conductance and photosynthesis The photochemical reflectance index (PRI) and other reflectance ratios were effective at tracking changes in ΔF/F‧m at the leaf and canopy-level scales. At the landscape-level, chlorophyll fluorescence and airborne reflectance imagery were used to evaluate spatial variations in stress in the dominant shrub on a barrier island, Myrica cerifera, during a severe drought and compared to an extremely wet year. Measurements of relative water content and the water band index (WBI970) indicated that water stress did not vary across the island. In contrast, there were significant differences in tissue chlorides across sites. Using PRI we were able to detect salinity stress across the landscape. PRI did not differ between wet and dry years. There was a positive relationship between PRI and ΔF/F‧m for M. cerifera (r2 = 0.79). The normalized difference vegetation index (NDVI), the chlorophyll index (CI) and WBI970 were higher during the wet summer but varied little across the island. PRI was not significantly related to NDVI, suggesting that