Science.gov

Sample records for chlorophyll fluorescence signals

  1. Interpreting chlorophyll fluorescence signals: the effects of leaf age

    NASA Astrophysics Data System (ADS)

    Albert, L.; Vergeli, P.; Martins, G.; Saleska, S. R.; Huxman, T. E.

    2015-12-01

    Remote sensing of sun-induced chlorophyll fluorescence (SIF) promises robust estimation of carbon uptake across landscapes, as studies of plant physiology have shown that fluorescence emission is directly linked to photosynthesis at the leaf level. Yet most leaf-level studies demonstrating the link between chlorophyll fluorescence and photosynthesis have studied leaves in their prime: leaves that recently finished expansion and have yet to senesce. By contrast, remote sensing of landscapes involves observing leaves of different ages. For example, broadleaf deciduous forests and annual plant communities in temperate regions have leaves that develop and then senesce over the course of a growing season. In this experiment, we explored how leaf age and moisture availability affect steady-state fluoresence (Fs) at the leaf level. We simultaneously measured net photosynthesis (Anet) and Fs for leaves of known ages on greenhouse-grown dwarf Helianthus Annuus (sunflowers) from two watering treatments. To monitor plant water status, we measured pre-dawn water potential, and, for a subset of leaves, osmotic potential. Fully expanded or near-fully expanded leaves (~8 to ~23 days old) had higher Anet at saturating light than young, expanding leaves (less than 8 days old) or old leaves nearing senescence (>23 days old). We found a positive relationship between Fs and Anet, suggesting that the link between fluorescence emission and photosynthesis is robust across leaves of different ages. However, leaf age had marked effects on the light response curve of photosynthesis and fluorescence metrics. These results suggest that leaf age distribution, and changes in leaf age distribution due to phenology, should be considered when interpreting SIF at the landscape level.

  2. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants

    PubMed Central

    Else, Mark A.; Janowiak, Franciszek; Atkinson, Christopher J.; Jackson, Michael B.

    2009-01-01

    Background and Aims An investigation was carried out to determine whether stomatal closure in flooded tomato plants (Solanum lycopersicum) results from decreased leaf water potentials (ψL), decreased photosynthetic capacity and attendant increases in internal CO2 (Ci) or from losses of root function such as cytokinin and gibberellin export. Methods Pot-grown plants were flooded when 1 month old. Leaf conductance was measured by diffusion porometry, the efficiency of photosystem II (PSII) was estimated by fluorimetry, and infrared gas analysis was used to determine Ci and related parameters. Key Results Flooding starting in the morning closed the stomata and increased ψL after a short-lived depression of ψL. The pattern of closure remained unchanged when ψ`L depression was avoided by starting flooding at the end rather than at the start of the photoperiod. Raising external CO2 concentrations by 100 µmol mol−1 also closed stomata rapidly. Five chlorophyll fluorescence parameters [Fq′/Fm′, Fq′/Fv′, Fv′/Fm′, non-photochemical quenching (NPQ) and Fv/Fm] were affected by flooding within 12–36 h and changes were linked to decreased Ci. Closing stomata by applying abscisic acid or increasing external CO2 substantially reproduced the effects of flooding on chlorophyll fluorescence. The presence of well-aerated adventitious roots partially inhibited stomatal closure of flooded plants. Allowing adventitious roots to form on plants flooded for >3 d promoted some stomatal re-opening. This effect of adventitious roots was not reproduced by foliar applications of benzyl adenine and gibberellic acid. Conclusions Stomata of flooded plants did not close in response to short-lived decreases in ψL or to increased Ci resulting from impaired PSII photochemistry. Instead, stomatal closure depressed Ci and this in turn largely explained subsequent changes in chlorophyll fluorescence parameters. Stomatal opening was promoted by the presence of well

  3. Detection of the onset of glyphosate-induced soybean plant injury through chlorophyll fluorescence signal extraction and measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, Chlorophyll Fluorescence (ChlF) was used to detect the onset of soybean plant injury from glyphosate, the most widely used herbicide. Thirty-six pots of non-glyphosate-resistant soybean (cultivar FM955LL) were randomly divided into three groups and treated with different doses of glyp...

  4. Efficient Chlorophyll Fluorescence Measurements of Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with many crops, chlorophyll fluorescence emission is a promising tool for measuring responses of sugarcane (Saccharum spp.) to biotic and abiotic stresses. Chlorophyll fluorescence can be easily measured using portable fluorometers. However, several factors should be considered in order to op...

  5. Remote sensing of chlorophyll fluorescence with GOSAT

    NASA Astrophysics Data System (ADS)

    Somkuti, Peter; Boesch, Hartmut; Parker, Robert

    2015-04-01

    Sun-induced chlorophyll fluorescence (Fs) emitted by plants as a by-product during photosynthesis carries information about their photosynthetic activity. It is possible to exploit space-based remote sensing measurements to retrieve the fluorescence signal and thus indirectly study carbon fluxes on a global scale. We implement a fluorescence retrieval based on the method pioneered by Frankenberg et al. (2011) into the framework of the University of Leicester Full-Physics GOSAT CO2 retrieval (UoL-FP). This physically-based approach is applied to high-resolution spectra at the edges of the O2 A-Band in the red to NIR range, that feature strong solar as well as a few weak O2 absorption lines. The fluorescence signal, which acts as an additional source, results in an in-filling of the measured solar absorption lines that are used to distinguish Fs from reflectance effects. By analysing GOSAT soundings from 2009 onwards, we examine global and regional long-term trends of Fs and compare them with parameters related to plant physiology, such as spectral vegetation indices and MODIS-derived model GPP values. Following Guanter et al. (2012) and Frankenberg et al. (2011), different regions and biomes are considered and we find that seasonal trends of both model GPP data as well as greenness indicators are well reproduced by our GOSAT-retrieved Fs.

  6. Bowel perforation detection using metabolic fluorescent chlorophylls

    NASA Astrophysics Data System (ADS)

    Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Choi, Sujeong; Kang, Hoonsoo; Kim, Yong-Chul; Hwang, In-Wook

    2016-03-01

    Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.

  7. Detection of the onset of glyphosate-induced soybean plant injury through chlorophyll fluorescence signal extraction and measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Guo, Yiqing; Huang, Yanbo; Reddy, Krishna N.; Zhao, Yanhua; Molin, William T.

    2015-01-01

    In this study, chlorophyll fluorescence (ChlF) was used to detect the onset of soybean plant injury from treatment of glyphosate, the most widely used herbicide. Thirty-six pots of nonglyphosate-resistant soybean were randomly divided into three groups and treated with different doses of glyphosate solutions. The three treatment groups were control (CTRL) group (with no glyphosate treatment), 0.25X group (treated with 0.217 kg.ae/ha solution of glyphosate), and 0.5X group (treated with 0.433 kg.ae/ha solution of glyphosate). Three kinds of fluorescence measurements, steady-state fluorescence spectra, Kautsky effect parameters, and ChlF-related spectral indices were extracted and generated from the measurements in the glyphosate treatment experiment. The mean values of these fluorescence measurements for each of the CTRL group, the 0.25X group, and the 0.5X group were calculated. Glyphosate-induced leaf injury was then analyzed by examining the separability of these mean values at 6, 24, 48, and 72 hours after the treatment (HAT). Results indicate that the peak position of far-red ChlF shows an obvious blue shift for glyphosate-treated soybean, and peak values of steady-state fluorescence spectra for the three groups can be significantly distinguished from each other at 48 HAT and later. Four Kautsky effect parameters, Fv, Fv/Fm, Area, and PI, are parameters sensitive to glyphosate treatment, showing some differences between the CTRL group and treated groups at 24 HAT, and significant differences among the three groups at and beyond 48 HAT. Moreover, ChlF-related spectral indices, R6832/(R675.R690) and R690/R655, are also shown to be useful in detection of the glyphosate injury, though they are less effective than the steady-state fluorescence spectra and the Kautsky effect parameters. Based on the presented results, it can be concluded that glyphosate-induced soybean injury can be detected in a timely manner by the ChlF measurements, and this method has the

  8. Measurement of Sun Induced Chlorophyll Fluorescence Using Hyperspectral Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Irteza, S. M.; Nichol, J. E.

    2016-06-01

    Solar Induced Chlorophyll Fluorescence (SIF), can be used as an indicator of stress in vegetation. Several scientific approaches have been made and there is considerable evidence that steady state Chlorophyll fluorescence is an accurate indicator of plant stress hence a reliable tool to monitor vegetation health status. Retrieval of Chlorophyll fluorescence provides an insight into photochemical and carbon sequestration processes within vegetation. Detection of Chlorophyll fluorescence has been well understood in the laboratory and field measurement. Fluorescence retrieval methods were applied in and around the atmospheric absorption bands 02B (Red wavelength) approximately 690 nm and 02A (Far red wavelengths) 740 nm. Hyperion satellite images were acquired for the years 2012 to 2015 in different seasons. Atmospheric corrections were applied using the 6S Model. The Fraunhofer Line Discrimanator (FLD) method was applied for retrieval of SIF from the Hyperion images by measuring the signal around the absorption bands in both vegetated and non vegetated land cover types. Absorption values were extracted in all the selected bands and the fluorescence signal was detected. The relationships between NDVI and Fluorescence derived from the satellite images are investigated to understand vegetation response within the absorption bands.

  9. Simulated laser fluorosensor signals from subsurface chlorophyll distributions

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Khatun, S.; Punjabi, A.; Poole, L.

    1986-01-01

    A semianalytic Monte Carlo model has been used to simulate laser fluorosensor signals returned from subsurface distributions of chlorophyll. This study assumes the only constituent of the ocean medium is the common coastal zone dinoflagellate Prorocentrum minimum. The concentration is represented by Gaussian distributions in which the location of the distribution maximum and the standard deviation are variable. Most of the qualitative features observed in the fluorescence signal for total chlorophyll concentrations up to 1.0 microg/liter can be accounted for with a simple analytic solution assuming a rectangular chlorophyll distribution function.

  10. Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation

    PubMed Central

    Campbell, Douglas; Hurry, Vaughan; Clarke, Adrian K.; Gustafsson, Petter; Öquist, Gunnar

    1998-01-01

    Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity. PMID:9729605

  11. Chlorophyll a + b content and chlorophyll fluorescence in avocado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One Tonnage (T) and one Simmonds (S) avocado tree and four TxS crosses were evaluated for differences in chlorophyll content and maximal quantum yield of photosystem II in sun and shade-type leaves. Total chlorophyll content by area (Chl a+bar) ranged from 981 mg m-2 in TxS240 to 4339 mg m-2 in Simm...

  12. Modulated Chlorophyll "a" Fluorescence: A Tool for Teaching Photosynthesis

    ERIC Educational Resources Information Center

    Marques da Silva, Jorge; Bernardes da Silva, Anabela; Padua, Mario

    2007-01-01

    "In vivo" chlorophyll "a" fluorescence is a key technique in photosynthesis research. The recent release of a low cost, commercial, modulated fluorometer enables this powerful technology to be used in education. Modulated chlorophyll a fluorescence measurement "in vivo" is here proposed as a tool to demonstrate basic photosynthesis phenomena to…

  13. Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis

    NASA Astrophysics Data System (ADS)

    Rossini, M.; Nedbal, L.; Guanter, L.; Ač, A.; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Hanus, J.; Janoutova, R.; Julitta, T.; Kokkalis, P.; Moreno, J.; Novotny, J.; Panigada, C.; Pinto, F.; Schickling, A.; Schüttemeyer, D.; Zemek, F.; Rascher, U.

    2015-03-01

    Remote estimation of Sun-induced chlorophyll fluorescence emitted by terrestrial vegetation can provide an unparalleled opportunity to track spatiotemporal variations of photosynthetic efficiency. Here we provide the first direct experimental evidence that the two peaks of the chlorophyll fluorescence spectrum can be accurately mapped from high-resolution radiance spectra and that the signal is linked to variations in actual photosynthetic efficiency. Red and far red fluorescence measured using a novel airborne imaging spectrometer over a grass carpet treated with an herbicide known to inhibit photosynthesis was significantly higher than the corresponding signal from an equivalent untreated grass carpet. The reflectance signal of the two grass carpets was indistinguishable, confirming that the fast dynamic changes in fluorescence emission were related to variations in the functional status of actual photosynthesis induced by herbicide application. Our results from a controlled experiment at the local scale illustrate the potential for the global mapping of terrestrial photosynthesis through space-borne measurements of chlorophyll fluorescence.

  14. Herbivory of wild Manduca sexta causes fast down-regulation of photosynthetic efficiency in Datura wrightii: an early signaling cascade visualized by chlorophyll fluorescence.

    PubMed

    Barron-Gafford, Greg A; Rascher, Uwe; Bronstein, Judith L; Davidowitz, Goggy; Chaszar, Brian; Huxman, Travis E

    2012-09-01

    Plants experiencing herbivory suffer indirect costs beyond direct loss of leaf area, but differentially so based on the herbivore involved. We used a combination of chlorophyll fluorescence imaging and gas exchange techniques to quantify photosynthetic performance, the efficiency of photochemistry, and heat dissipation to examine immediate and longer-term physiological responses in the desert perennial Datura wrightii to herbivory by tobacco hornworm, Manduca sexta. Herbivory by colony-reared larvae yielded no significant reduction in carbon assimilation, whereas herbivory by wild larvae induced a fast and spreading down-regulation of photosynthetic efficiency, resulting in significant losses in carbon assimilation in eaten and uneaten leaves. We found both an 89 % reduction in net photosynthetic rates in herbivore-damaged leaves and a whole-plant response (79 % decrease in undamaged leaves from adjacent branches). Consequently, herbivory costs are higher than previously estimated in this well-studied plant-insect interaction. We used chlorophyll fluorescence imaging to elucidate the mechanisms of this down-regulation. Quantum yield decreased up to 70 % in a small concentric band surrounding the feeding area within minutes of the onset of herbivory. Non-photochemical energy dissipation by the plant to avoid permanent damage was elevated near the wound, and increased systematically in distant areas of the leaf away from the wound over subsequent hours. Together, the results underscore not only potential differences between colony-reared and wild-caught herbivores in experimental studies of herbivory but also the benefits of quantifying physiological responses of plants in unattacked leaves. PMID:22576017

  15. An overview of remote sensing of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  16. [Photosynthetic Parameters Inversion Algorithm Study Based on Chlorophyll Fluorescence Induction Kinetics Curve].

    PubMed

    Qiu, Xiao-han; Zhang, Yu-jun; Yin, Gao-fang; Shi, Chao-yi; Yu, Xiao-ya; Zhao, Nan-jing; Liu, Wen-qing

    2015-08-01

    The fast chlorophyll fluorescence induction curve contains rich information of photosynthesis. It can reflect various information of vegetation, such as, the survival status, the pathological condition and the physiology trends under the stress state. Through the acquisition of algae fluorescence and induced optical signal, the fast phase of chlorophyll fluorescence kinetics curve was fitted. Based on least square fitting method, we introduced adaptive minimum error approaching method for fast multivariate nonlinear regression fitting toward chlorophyll fluorescence kinetics curve. We realized Fo (fixedfluorescent), Fm (maximum fluorescence yield), σPSII (PSII functional absorption cross section) details parameters inversion and the photosynthetic parameters inversion of Chlorella pyrenoidosa. And we also studied physiological variation of Chlorella pyrenoidosa under the stress of Cu(2+). PMID:26672292

  17. In situ monitoring of ocean chlorophyll via laser-induced fluorescence backscattering through an optical fiber

    SciTech Connect

    Cowles, T.J.; Moum, J.N.; Desiderio, R.A.; Angel, S.M.

    1989-02-01

    The first seagoing test of a prototype laser/fiber-optic system for in situ detection of ocean chlorophyll fluorescence is described. Radiation at 488 nm originating from a shipboard argon laser was transmitted through 20 of 200-..mu..m core optical fiber to the distal tip mounted on the microstructure profiler, the Rapid Sampling Vertical Profiler. The backscattered fluorescence emission signal was collected through the same fiber and processed on board ship. A series of measurements indicated that (1) successful isolation of ship-induced vibrations could be achieved using our optical bench framework to maintain optical alignments; (2) ambient chlorophyll concentrations could be detected in situ; (3) a Raman scattering signal from water could also be detected and should provide an internal standard against which chlorophyll fluorescence may be calibrated.

  18. Remote Sensing of Chlorophyll Fluorescence by the Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Yee, J. H.; Boldt, J.; Cook, W. B.; Morgan, F., II; Demajistre, R.; Cook, B. D.; Corp, L. A.

    2014-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the amount of fill-in of strong O2 absorption lines or Fraunhofer lines in the reflected solar spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is designed and constructed specifically for airborne and groundbased ChlF measurements using the line fill-in ChlF measurement technique. In this paper, we will present the design of this triple etalon Fabry-Perot imaging instrument and the results of its vegetation fluorescence measurements obtained from the ground in the laboratory and from a NASA Langley King Air during our 2014 airborne campaign over vegetated targets in North Carolina and Virginia.

  19. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    PubMed Central

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  20. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    PubMed Central

    Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532

  1. Ambiguous dependence of fluorescence intensity of trees on chlorophyll concentration

    NASA Astrophysics Data System (ADS)

    Zavoruev, Valeriy V.; Zavorueva, Elena N.

    2014-11-01

    Using fluorimetry Junior PAM (Heinz Walz GmbH, Germany) fluorescence parameters of leaves Prinsepia sinensis, Crataegus chlorocarca M, Acer negúndo, Bétula péndula are studied. It was found that the dependence of maximum fluorescence (Fm) plants on the concentration of chlorophyll depends on the sampling method during of vegetation. The correctness of sampling proves during vegetation is substantiated.

  2. Photoinhibition of Photosystems I and II Using Chlorophyll Fluorescence Measurements

    ERIC Educational Resources Information Center

    Quiles, Maria Jose

    2005-01-01

    In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat ("Avena sativa," var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown…

  3. Effects of bisphenol A on chlorophyll fluorescence in five plants.

    PubMed

    Zhang, Jiazhi; Wang, Lihong; Li, Man; Jiao, Liya; Zhou, Qing; Huang, Xiaohua

    2015-11-01

    The aim of this study was to evaluate the effects of bisphenol A (BPA) on plant photosynthesis and determine whether the photosynthetic response to BPA exposure varies in different plants. Chlorophyll fluorescence techniques were used to investigate the effects of BPA on chlorophyll fluorescence parameters in tomato (Lycopersicum esculentum), lettuce (Lactuca sativa), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa) seedlings. Low-dose (1.5 or 3.0 mg L(-1)) BPA exposure improved photosystem II efficiency, increased the absorption and conversion efficiency of primary light energy, and accelerated photosynthetic electron transport in each plant, all of which increased photosynthesis. These effects weakened or disappeared after the withdrawal of BPA. High-dose (10.0 mg L(-1)) BPA exposure damaged the photosystem II reaction center, inhibited the photochemical reaction, and caused excess energy to be released as heat. These effects were more evident after the highest BPA dose (17.2 mg L(-1)), but they weakened after the withdrawal of BPA. The magnitude of BPA exposure effects on the chlorophyll fluorescence parameters in the five plants followed the order: lettuce > tomato > soybean > maize > rice. The opposite order was observed following the removal of BPA. In conclusion, the chlorophyll fluorescence response in plants exposed to BPA depended on BPA dose and plant species. PMID:26154046

  4. A new relative referencing method for crop monitoring using chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Norikane, J.; Goto, E.; Kurata, K.; Takakura, T.

    2003-01-01

    The measurement of plant chlorophyll fluorescence has been used for many years as a method to monitor a plant's health status. These types of methods have been mostly relegated to the laboratory. The newly developed Relative Referencing Method allows for the measurement of chlorophyll fluorescence under artificial lighting conditions. The fluorescence signal can be determined by first taking a reference signal measurement, then a second measurement with an additional fluorescence excitation source. The first signal can then be subtracted from the second and the plant's chlorophyll fluorescence due to the second lighting source can be determined. With this simple approach, a photosynthesizing plant can be monitored to detect signs of water stress. Using this approach experiments on tomato plants have shown that it was possible to detect water stress, while the plants were continuously illuminated by fluorescent lamps. This method is a promising tool for the remote monitoring of crops grown in a CELSS-type application. Published by Elsevier Science Ltd on behalf of COSPAR.

  5. Modelling GPP and chlorophyll fluorescence using SCOPE (Invited)

    NASA Astrophysics Data System (ADS)

    van der Tol, C.; Verhoef, W.

    2009-12-01

    Chlorophyll fluorescence of Photosystem II (PSII) is a measure for photosynthetic processes and the functional state of the vegetation. Research in the past has focused on the active (light-induced) measurement of fluorescence at leaf and field scale. Current research focuses on the potential of satellite remote sensing of passive (solar-induced) chlorophyll fluorescence of PSII to monitor photosynthetic processes of terrestrial vegetation at large spatial scales. This research includes the relationship between top-of-canopy (TOC) fluorescence and gross primary production (GPP). The recently developed model SCOPE simulates this relationship using three sub-models. The first sub-model (FLUSPECT) is based on PROSPECT and describes leaf fluorescence spectra as a function of their chemical composition. The second sub-model describes the effects of leaf temperature, humidity and irradiance on these spectra and on actual photosynthesis. The third sub-model is a canopy level radiative transfer model, which calculates the scattering and absorption of solar radiation and fluorescence within a canopy, and computes the TOC spectrum of fluorescence in observation direction. A sensitivity analysis of the model shows a strong relationship between solar induced fluorescence and GPP at canopy level. This relationship is consistent with data from field campaigns. Fluorescence and GPP are sensitive to stress conditions including high leaf temperatures and water stress.

  6. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  7. Fluorescence sensitization and quenching in a particulate chlorophyll model system

    SciTech Connect

    Seely, G.R.; Senthilathipan, V.

    1983-01-01

    The success of photosynthesis as an energy-conversion process is largely owing to the manner in which the light-gathering and reaction center pigments are arranged within the thylakoid membrane. A particularly important condition in the construction of model systems based on these pigments is the need to avoid quenching of fluorescence until useful electron transfer takes place. In the model system under investigation, concentration quenching of chlorophyll is prevented by embedding the pigment molecules, along with certain amphiphiles, in the viscous hydrocarbon surface layer of swollen particles of polyethylene. Triplet state photoreactivity of chlorophyll on these particles can readily be demonstrated. Quinones such as Vitamin K/sub 1/ do not quench the fluorescence of chlorophyll even when incorporated at high concentration in the particles. But specially made amphiphiles, containing an amide group to ligate the Mg of chlorophyll, and a reducible group such as quinone, quench the fluorescence even at modest concentrations. The photochemistry of these systems is under investigation. 6 references, 3 figures.

  8. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence

    PubMed Central

    van der Tol, C; Berry, J A; Campbell, P K E; Rascher, U

    2014-01-01

    We have extended a conventional photosynthesis model to simulate field and laboratory measurements of chlorophyll fluorescence at the leaf scale. The fluorescence paramaterization is based on a close nonlinear relationship between the relative light saturation of photosynthesis and nonradiative energy dissipation in plants of different species. This relationship diverged only among examined data sets under stressed (strongly light saturated) conditions, possibly caused by differences in xanthophyll pigment concentrations. The relationship was quantified after analyzing data sets of pulse amplitude modulated measurements of chlorophyll fluorescence and gas exchange of leaves of different species exposed to different levels of light, CO2, temperature, nitrogen fertilization treatments, and drought. We used this relationship in a photosynthesis model. The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions. Key Points Light saturation of photosynthesis determines quenching of leaf fluorescence We incorporated steady state leaf fluorescence in a photosynthesis model PMID:27398266

  9. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Costa, Ernande B.; Bueno, Luciano A.; Silva, Luciana M. H.; Granja, Manuela M. C.; Medeiros, Maria J. L.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2010-02-01

    Laser induced fluorescence is exploited to evaluate the effect of abiotic stresses upon the evolution and characteristics of in vivo chlorophyll emission spectra of leaves tissues of brazilian biofuel plants species(Saccharum officinarum and Jatropha curcas). The chlorophyll fluorescence spectra of 20 min predarkened intact leaves were studied employing several excitation wavelengths in the UV-VIS spectral region. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were analyzed as a function of the stress intensity and the time of illumination(Kautsky effect). The Chl fluorescence ratio Fr/FFr which is a valuable nondestructive indicator of the chlorophyll content of leaves was investigated during a period of time of 30 days. The dependence of the Chl fluorescence ratio Fr/FFr upon the intensity of the abiotic stress(salinity) was examined. The results indicated that the salinity plays a major hole in the chlorophyll concentration of leaves in both plants spieces, with a significant reduction in the chlorophyll content for NaCl concentrations in the 25 - 200 mM range. The laser induced chlorophyll fluorescence analysis allowed detection of damage caused by salinity in the early stages of the plants growing process, and can be used as an early-warning indicator of salinity stress

  10. Sterile measurement on the characteristics of chlorophyll fluorescence in plantlets in vitro preserved under low temperature condition

    NASA Astrophysics Data System (ADS)

    Wu, Yanyou; Xing, Deke

    Micro-environment such as temperature influenced the growth and quality of plantlets in vitro. Chlorophyll fluorescence (ChlF) parameter is an important one for photosynthesis capacity in plant. The modulated chlorophyll fluorescence imaging system can be used for obtaining ChlF imaging and signal of plantlet in vitro because the container has light permeability. Therefore, the biological activity and growth condition of plantlet in vitro can be estimated by sterilely measuring the characteristics of chlorophyll fluorescence. This study determined the parameter of chlorophyll fluorescence in Orychophragmus violaceus plantlets in vitro preserved under different temperature levels (0, 4, and 8°C). The results showed that photosynthesis capacity in Orychophragmus violaceus plantlets in vitro preserved under 4°C condition were higher than that under 0°C or 8°C conditions. The plantlets in vitro preserved under 4°C condition maintained a high vitality to be subcultured.

  11. Chlorophyll fluorescence control in microalgae by biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Miyashita, Yuito; Iwasaka, Masakazu; Endo, Hirotoshi

    2015-05-01

    Magnetic fields were applied to water suspensions of guanine crystals to induce changes in light scattering as a possible way to control photosynthesis in microalgae. The effect of guanine microcrystals with and without an applied magnetic field on the photosynthesis of a unicellular microalgae (plant), Pleurochrysis. carterae (P. carterae), was investigated by examining chlorophyll fluorescence. The fluorescence intensity at 600-700 nm of the photosynthetic cells increased remarkably when the concentration ratio of guanine microcrystals was 10 times larger than that of the cells. This increase in fluorescence occurred reproducibly and was proportional to the amount of guanine microcrystals added. It is speculated that the guanine microcrystals enhance the intensity of the excitation light on the cells by concentrating the excitation light or prolonging the time of light exposure to the cells. Moreover, applying a 500-mT magnetic field allowed modulation of the fluorescence intensity, depending on the direction of the fluorescence light.

  12. Quenching of chlorophyll fluorescence induced by silver nanoparticles.

    PubMed

    Queiroz, A M; Mezacasa, A V; Graciano, D E; Falco, W F; M'Peko, J-C; Guimarães, F E G; Lawson, T; Colbeck, I; Oliveira, S L; Caires, A R L

    2016-11-01

    The interaction between chlorophyll (Chl) and silver nanoparticles (AgNPs) was evaluated by analyzing the optical behavior of Chl molecules surrounded by different concentrations of AgNPs (10, 60, and 100nm of diameter). UV-Vis absorption, steady state and time-resolved fluorescence measurements were performed for Chl in the presence and absence of these nanoparticles. AgNPs strongly suppressed the Chl fluorescence intensity at 678nm. The Stern-Volmer constant (KSV) showed that fluorescence suppression is driven by the dynamic quenching process. In particular, KSV was nanoparticle size-dependent with an exponential decrease as a function of the nanoparticle diameter. Finally, changes in the Chl fluorescence lifetime in the presence of nanoparticles demonstrated that the fluorescence quenching may be induced by the excited electron transfer from the Chl molecules to the metal nanoparticles. PMID:27280858

  13. Chlorophyll fluorescence analysis and imaging in plant stress and disease

    SciTech Connect

    Daley, P.F.

    1994-12-01

    Quantitative analysis of chlorophyll fluorescence transients and quenching has evolved rapidly in the last decade. Instrumentation capable of fluorescence detection in bright actinic light has been used in conjunction with gas exchange analysis to build an empirical foundation relating quenching parameters to photosynthetic electron transport, the state of the photoapparatus, and carbon fixation. We have developed several instruments that collect video images of chlorophyll fluorescence. Digitized versions of these images can be manipulated as numerical data arrays, supporting generation of quenching maps that represent the spatial distribution of photosynthetic activity in leaves. We have applied this technology to analysis of fluorescence quenching during application of stress hormones, herbicides, physical stresses including drought and sudden changes in humidity of the atmosphere surrounding leaves, and during stomatal oscillations in high CO{sub 2}. We describe a recently completed portable fluorescence imaging system utilizing LED illumination and a consumer-grade camcorder, that will be used in long-term, non-destructive field studies of plant virus infections.

  14. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Tol, C.; Berry, J. A.; Campbell, P. K. E.; Rascher, U.

    2014-12-01

    We have extended a conventional photosynthesis model to simulate field and laboratory measurements of chlorophyll fluorescence at the leaf scale. The fluorescence paramaterization is based on a close nonlinear relationship between the relative light saturation of photosynthesis and nonradiative energy dissipation in plants of different species. This relationship diverged only among examined data sets under stressed (strongly light saturated) conditions, possibly caused by differences in xanthophyll pigment concentrations. The relationship was quantified after analyzing data sets of pulse amplitude modulated measurements of chlorophyll fluorescence and gas exchange of leaves of different species exposed to different levels of light, CO2, temperature, nitrogen fertilization treatments, and drought. We used this relationship in a photosynthesis model. The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions.

  15. Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration.

    PubMed

    Chekalyuk, Alexander; Hafez, Mark

    2011-11-01

    Photo-physiological variability of in vivo chlorophyll fluorescence (CF) per unit of chlorophyll concentration (CC) is analyzed using a biophysical model to improve the accuracy of CC assessments. Field measurements of CF and photosystem II (PSII) photochemical yield (PY) with the Advanced Laser Fluorometer (ALF) in the Delaware and Chesapeake Bays are analyzed vs. high-performance liquid chromatography (HPLC) CC retrievals. It is shown that isolation from ambient light, PSII saturating excitation, optimized phytoplankton exposure to excitation, and phytoplankton dark adaptation may provide accurate in vivo CC fluorescence measurements (R2 = 0.90-0.95 vs. HPLC retrievals). For in situ or flow-through measurements that do not allow for dark adaptation, concurrent PY measurements can be used to adjust for CF non-photochemical quenching (NPQ) and improve the accuracy of CC fluorescence assessments. Field evaluation has shown the NPQ-invariance of CF/PY and CF(PY-1-1) parameters and their high correlation with HPLC CC retrievals (R2 = 0.74-0.96), while the NPQ-affected CF measurements correlated poorly with CC (R2 = -0.22). PMID:22109145

  16. Model systems for chlorophyll photochemistry: retention of fluorescence at high chlorophyll density at a hydrophobic-hydrophilic interface

    SciTech Connect

    Seely, G.R.; Senthilathipan, V.

    1983-01-01

    Many model systems containing chlorophyll show concentration quenching of fluorescence at quite moderate occupancies of the available phase space. A new kind of model system has been introduced, involving adsorption of chlorophyll and certain other amphiphilic substances to particles of polyethylene swollen with hydrocarbons, in which fluorescence is retained at coverages approaching a monolayer. In the example illustrated, the fluorescence lifetime is undiminished in spite of evidence for the presence of associated chlorophyll species along with the monomer. The preservation of fluorescence is probably owing to a combination of high viscosity in the swollen polyethylene phase and the presence of a surfactant to keep the chlorophyll in monomeric and well-defined associated forms.

  17. Model systems for chlorophyll photochemistry: retention of fluorescence at high chlorophyll density at a hydrophobic-hydrophilic interface

    SciTech Connect

    Seely, G.R.; Senthilathipan, V.

    1982-01-01

    Many model systems containing chlorophyll show concentration quenching of fluorescence at quite moderate occupancies of the available phase space. A new kind of model system has been introduced, involving adsorption of chlorophyll and certain other amphiphilic substances to particles of polyethylene swollen with hydrocarbons, in which fluorescence is retained at coverages approaching a monolayer. In the example illustrated, the fluorescence lifetime is undiminished in spite of evidence for the prescence of associated chlorophyll species along with the monomer. The preservation of fluorescence is probably owing to a combination of high viscosity in the swollen polyethylene phase and the presence of a surfactant to keep the chlorophyll in monomeric and well-defined associated forms.

  18. Laser and sunlight-induced fluorescence from chlorophyll pigments

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Brown, K. S.

    1986-01-01

    Fluorescence properties of chlorophyll pigment bearing plant foliage utilizing a 337 nm nitrogen laser and integrating sphere were studied. Measured yields, in terms of number of photons emitted per 100 photons absorbed, range from 1.5 to 0.1 for the 685 nm peak, and from 4.2 to 0.2 for the 730 nm peak. Decreasing order of magnitude puts herbaceous leaves ahead of all others followed by broad leaves of hardwoods and coniferous needles. Meaningful quantization for the fluorescence peaks at 430 and 530 nm could not be attained. Passive monitoring of these fluorescence peaks is successful only for the 685 nm from the ocean surface. Field data show the reflectance changes at 685 nm due to the algae presence amounts to 1% at most.

  19. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  20. Fluorescent indices of oak and wheat leaves in dependence on chlorophyll content

    NASA Astrophysics Data System (ADS)

    Kalmatskaya, Olesya Ð. ń.; Karavaev, Vladimir A.; Gunar, Lyudmila E.

    2016-04-01

    Fluorescence spectra and fluorescence induction curves of the leaves of two plant species in dependence on chlorophyll content were studied. Red oak (Quercus rubra L.) leaves upon the autumn chlorophyll degradation, as well as wheat leaves (Triticum aestivum L.) at various stages of ontogenesis showed linear dependence between the ratio ω = F740 / F685 (the ratio of the maximum values of fluorescence at respective wavelengths) and chlorophyll content. In both cases, parameter Fv / Fm (the relative value of the variable fluorescence) remained almost unchanged up to significant reduction of chlorophyll content, indicating on maintaining the high photochemical activity of photosystem 2.

  1. Chlorophyll fluorescence from creosote-exposed plants in mesocosms: Validation of a bioindicator

    SciTech Connect

    Marwood, C.A.; Harris, M.L.; Day, K.E.; Greenberg, B.M.; Solomon, K.R.

    1995-12-31

    The chlorophyll fluorescence assay is a rapid, sensitive measure of photosynthetic competence in higher plants and algae that can be used to detect the impact of toxicants at many sites in the plant cell. Chlorophyll fluorescence was examined in plants exposed to PAHs as part of a study to validate chlorophyll fluorescence as a bioindicator by correlating effects on fluorescence with population-level effects in outdoor mesocosms. The wood preservative creosote was used as a mixed PAH source. Two species of aquatic plants, Lemna gibba and Myriophyllum sp., were exposed to 0.1--100 uL/L of creosote in 12,000 L artificial ponds. Creosote was introduced into the mesocosms using different dosing schemes to simulate leaching and spill events. The pulse amplitude modulated fluorescence technique was used to measure several parameters from plants in situ during a 60-day exposure. Chlorophyll fluorescence parameters were compared to creosote effects on population-level growth. Chlorophyll fluorescence was inhibited by creosote at concentrations above 3 uL/L, which also caused a similar inhibition of plant growth in the mesocosms. However, chlorophyll fluorescence was more sensitive than growth endpoints at low creosote concentrations. The chlorophyll fluorescence assay also detected damage to the photosynthetic apparatus in plants after only a few days exposure to creosote. Thus, chlorophyll fluorescence from plants exposed to creosote was well correlated with environmentally relevant endpoints at the population level. The effects of the different dosing schemes on creosote toxicity will also be discussed.

  2. Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium.

    PubMed

    Hu, Huiqing; Wang, Lihong; Wang, Qingqing; Jiao, Liya; Hua, Weiqi; Zhou, Qing; Huang, Xiaohua

    2014-11-01

    Bisphenol A (BPA) is ubiquitous in the environment because of its continual application in plastics and the epoxy resin industry. Cadmium (Cd) is a highly toxic heavy metal element mainly used in smelting, electroplating, and plastic and dye manufacturing. Pollution as a result of BPA and Cd exists simultaneously in many agricultural regions. However, little information is available regarding the combined effects of BPA and Cd on plants. The combined effects of BPA and Cd on the photosynthesis, chlorophyll fluorescence, and chlorophyll content of soybean seedlings were investigated using noninvasive technology. Combined treatment with 1.5 mg/L BPA and 0.2 mg/L Cd synergistically improved the net photosynthetic rate (Pn ), initial fluorescence (F0 ), maximal photochemical efficiency (Fv /Fm ), effective quantum yield of photosystem II (ΦPSII ), photosynthetic electron transport rate (ETR), and chlorophyll content. Combined treatment with 1.5 mg/L BPA and 3.0 mg/L Cd increased the F0 and decreased the Pn , Fv /Fm , ΦPSII , and ETR, whereas BPA and Cd exhibited an antagonistic effect. Furthermore, combined treatment with 17.2/50.0 mg/L BPA and 3.0/10.0 mg/L Cd synergistically decreased the Pn , Fv /Fm , ΦPSII , ETR, and chlorophyll content, although it increased the F0 . Finally, the effects of BPA and Cd on photosynthesis, chlorophyll fluorescence, and chlorophyll content ceased when BPA stress was stopped. PMID:25113627

  3. Visualizing photosynthesis through processing of chlorophyll fluorescence images

    NASA Astrophysics Data System (ADS)

    Daley, Paul F.; Ball, J. Timothy; Berry, Joseph A.; Patzke, Juergen; Raschke, Klaus E.

    1990-05-01

    Measurements of terrestrial plant photosynthesis frequently exploit sensing of gas exchange from leaves enclosed in gas-tight, climate controlled chambers. These methods are typically slow, and do not resolve variation in photosynthesis below the whole leaf level. A photosynthesis visualization technique is presented that uses images of leaves employing light from chlorophyll (Chl) fluorescence. Images of Chl fluorescence from whole leaves undergoing steady-state photosynthesis, photosynthesis induction, or response to stress agents were digitized during light flashes that saturated photochemical reactions. Use of saturating flashes permitted deconvolution of photochemical energy use from biochemical quenching mechanisms (qN) that dissipate excess excitation energy, otherwise damaging to the light harvesting apparatus. Combination of the digital image frames of variable fluorescence with reference frames obtained from the same leaves when dark-adapted permitted derivation of frames in which grey scale represented the magnitude of qN. Simultaneous measurements with gas-exchange apparatus provided data for non-linear calibration filters for subsequent rendering of grey-scale "images" of photosynthesis. In several experiments significant non-homogeneity of photosynthetic activity was observed following treatment with growth hormones, or shifts in light or humidity, and following infection by virus. The technique provides a rapid, non-invasive probe for stress physiology and plant disease detection.

  4. Canopy Level Chlorophyll Fluorescence and the PRI in a Cornfield

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Corp, Lawrence A.; Campbell, Petya K. E.; Huemmrich, K. Fred; Zhang, Qingyuan; Kustas, William P.

    2012-01-01

    Two bio-indicators, the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (SIF), were derived from directional hyperspectral observations and studied in a cornfield on two contrasting days in the growing season. Both red and far-red SIF exhibited higher values on the day when the canopy in the early senescent stage, but only the far-red SIF showed sensitivity to viewing geometry. Consequently, the red/far-red SIF ratio varied greatly among azimuth positions while the largest values were obtained for the "hotspot" at both growth stages. This ratio was lower (approx.0.88 +/- 0.4) in early July than in August when the ratio approached equivalence (near approx.1). In concert, the PRI exhibited stronger responses to both zenith and azimuth angles and different values on the two growth stages. The potential of using these indices to monitor photosynthetic activities needs further investigation

  5. Contribution of Chlorophyll Fluorescence to the Reflectance of Corn Foliage

    NASA Technical Reports Server (NTRS)

    Campbell, Petya K. Entcheva; Middleton, Elizabeth M.; Corp, L. A.; McMurtrey, J. E.; Kim, M. S.; Chappelle, E. W.; Butcher, L. M.; Ranson, K. Jon (Technical Monitor)

    2002-01-01

    To assess the contribution of chlorophyll fluorescence (ChlF) to apparent reflectance (Ra) in the red/far-red, spectra were collected on a C4 agricultural species (corn, Zea Mays L.) under conditions ranging from nitrogen deficiency to excess. A significant contribution of ChlF to Ra was observed, with on average 10-25% at 685nm and 2-6% at 740nm of Ra being due to ChlF. Higher ChlF was consistently measured from the abaxial leaf surface as compared to the adaxial. Using 350-665nm excitation, the study confirms the trends in three ChlF ratios established previously by active F technology, suggesting that the ChlF utility this technology has developed for monitoring vegetation physiological status is likely applicable also under natural solar illumination.

  6. Contribution of Chlorophyll Fluorescence to the Apparent Reflectance of Vegetation

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. Entcheva; Middleton, E. M.; Kim, M. S.

    2007-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to determine the relative R and CF fractions contributing to Ra from the vegetation in the red to near-infrared region of the spectrum. The practical objectives of the study are to: 1) evaluate t he relationship between CF and R at the foliar level for corn, soybean, maple; and 2) for corn, determine if the relationship established f or healthy (optimal N) vegetation changes under N defiiency. To obtai n generally applicable results, experimental measurements were conducted on unrelated crop and tree species (maple, soybean and corn), unde r controlled conditions and a gradient of inorganic N fertilization l evels. Optical R spectra and actively induced CF emissions were obtained on the same foliar samples, in conjunction with measurements of p hotosynthetic function, pigment levels, and C and N content. The comm on spectral trends or similarities were examined. On average, 10-20% of apparent R at 685 nm was actually due to CF. The spectral trends in steady and maximum F varied significantly, with Fs (especially red) showing higher ability for species and treatment separation. The relative contribution of ChF to R varied significantly among species, with maple emitting much higher F amounts, as

  7. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodiesel

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Oliveira, Ronaldo A.; Cunha, Patrícia C.; Costa, Ernande B.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2011-02-01

    Light-emitting-diode induced chlorophyll fluorescence analysis is employed to investigate the effect of water and salt stress upon the growth process of physicnut(jatropha curcas) grain oil plants for biofuel. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were observed and examined as a function of the stress intensity(salt concentration and water deficit) for a period of time of 30 days. The chlorophyll fluorescence(ChlF) ratio Fr/FFr which is a valuable nondestructive and nonintrusive indicator of the chlorophyll content of leaves was exploited to monitor the level of stress experienced by the jatropha plants. The ChlF technique data indicated that salinity plays a minor role in the chlorophyll concentration of leaves tissues for NaCl concentrations in the 25 to 200 mM range, and results agreed quite well with those obtained using conventional destructive spectrophotometric methods. Nevertheless, for higher NaCl concentrations a noticeable decrease in the Chl content was observed. The Chl fluorescence ratio analysis also permitted detection of damage caused by water deficit in the early stages of the plants growing process. A significant variation of the Fr/FFr ratio was observed sample in the first 10 days of the experiment when one compared control and nonwatered samples. The results suggest that the technique may potentially be applied as an early-warning indicator of stress caused by water deficit.

  8. Hyperspectral solar-induced chlorophyll fluorescence of urban tree leaves: Analyses and applications

    NASA Astrophysics Data System (ADS)

    Van Wittenberghe, Shari

    Solar energy is the primary energy source for life on Earth which is converted into chemical energy through photosynthesis by plants, algae and cyanobacteria, releasing fuel for the organisms' activities. To dissipate excess of absorbed light energy, plants emit chlorophyll (Chl) fluorescence (650-850 nm) from the same location where photosynthesis takes place. Hence, it provides information on the efficiency of primary energy conversion. From this knowledge, many applications on vegetation and crop stress monitoring could be developed, a necessity for our planet under threat of a changing global climate. Even though the Chl fluorescence signal is weak against the intense reflected radiation background, methods for retrieving the solar-induced Chl fluorescence have been refined over the last years, both at leaf and airborne scale. However, a lack of studies on solar-induced Chl fluorescence gives difficulties for the interpretation of the signal. Within this thesis, hyperspectral upward and downward solar-induced Chl fluorescence is measured at leaf level. Fluorescence yield (FY) is calculated as well as different ratios characterizing the emitted Chl fluorescence shape. The research in this PhD dissertation illustrates the influence of several factors on the solar-induced Chl fluorescence signal. For instance, both the intensity of FY and its spectral shape of urban tree leaves are able to change under influence of stress factors such as traffic air pollution. This shows how solar-induced Chl fluorescence could function as an early stress indicator for vegetation. Further, it is shown that the signal contains information on the ultrastructure of the photosynthetic apparatus. Also, it is proven that the leaf anatomical structure and related light scattering properties play a role in the partitioning between upward and downward Chl fluorescence emission. All these findings indicate how the Chl fluorescence spectrum is influenced by factors which also influence

  9. Ocean color spectral variability studies using solar-induced chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Swift, Robert N.

    1987-01-01

    It is suggested that chlorophyll-induced ocean color spectral variability can be studied using only a passive airborne spectroradiometer instrument, with solar-induced chlorophyll fluorescence used as the standard against which all correlations are performed. The intraspectral correlation (ISC) method is demonstrated with results obtained during an airborne mapping mission in the New York Bight. The curvature algorithm is applied to the solar-induced chlorophyll fluorescence at about 690 nm, and good agreement is found with results obtained using active-passive correlation spectroscopy. The ISC method has application to spectral variability and resulting chlorophyll concentration measurement in different environmental conditions and in different water types.

  10. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration

    NASA Astrophysics Data System (ADS)

    Mignot, A.; Claustre, H.; D'Ortenzio, F.; Xing, X.; Poteau, A.; Ras, J.

    2011-04-01

    In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m-3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m-3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape

  11. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration

    NASA Astrophysics Data System (ADS)

    Mignot, A.; Claustre, H.; D'Ortenzio, F.; Xing, X.; Poteau, A.; Ras, J.

    2011-08-01

    In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence, although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m-3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m-3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape

  12. Bark and leaf chlorophyll fluorescence are linked to wood structural changes in Eucalyptus saligna

    PubMed Central

    Johnstone, Denise; Tausz, Michael; Moore, Gregory; Nicolas, Marc

    2014-01-01

    Wood structure and wood anatomy are usually considered to be largely independent of the physiological processes that govern tree growth. This paper reports a statistical relationship between leaf and bark chlorophyll fluorescence and wood density. A relationship between leaf and bark chlorophyll fluorescence and the quantity of wood decay in a tree is also described. There was a statistically significant relationship between the leaf chlorophyll fluorescence parameter Fv/Fm and wood density and the quantity of wood decay in summer, but not in spring or autumn. Leaf chlorophyll fluorescence at 0.05 ms (the O step) could predict the quantity of wood decay in trees in spring. Bark chlorophyll fluorescence could predict wood density in spring using the Fv/Fm parameter, but not in summer or autumn. There was a consistent statistical relationship in spring, summer and autumn between the bark chlorophyll fluorescence parameter Fv/Fm and wood decay. This study indicates a relationship between chlorophyll fluorescence and wood structural changes, particularly with bark chlorenchyma. PMID:24790120

  13. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges.

    PubMed

    Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A

    2014-08-01

    Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal. PMID:24868038

  14. Chlorophyll fluorescence: implementation in the full physics RemoTeC algorithm

    NASA Astrophysics Data System (ADS)

    Hahne, Philipp; Frankenberg, Christian; Hasekamp, Otto; Landgraf, Jochen; Butz, André

    2014-05-01

    Several operating and future satellite missions are dedicated to enhancing our understanding of the carbon cycle. They infer the atmospheric concentrations of carbon dioxide and methane from shortwave infrared absorption spectra of sunlight backscattered from Earth's atmosphere and surface. Exhibiting high spatial and temporal resolution, the inferred gas concentration databases provide valuable information for inverse modelling of source and sink processes at the Earth's surface. However, the inversion of sources and sinks requires highly accurate total column CO2 (XCO2) and CH4 (XCH4) measurements, which remains a challenge. Recently, Frankenberg et al., 2012, showed that - beside XCO2 and XCH4 - chlorophyll fluorescence can be retrieved from sounders such as GOSAT exploiting Fraunhofer lines in the vicinity of the O2 A-band. This has two implications: a) chlorophyll fluorescence itself being a proxy for photosynthetic activity yields new information on carbon cycle processes and b) the neglect of the fluorescence signal can induce errors in the retrieved greenhouse gas concentrations. Our RemoTeC full physics algorithm iteratively retrieves the target gas concentrations XCO2 and XCH4 along with atmospheric scattering properties and other auxiliary parameters. The radiative transfer model (RTM) LINTRAN provides RemoTeC with the single and multiple scattered intensity field and its analytically calculated derivatives. Here, we report on the implementation of a fluorescence light source at the lower boundary of our RTM. Processing three years of GOSAT data, we evaluate the performance of the refined retrieval method. To this end, we compare different retrieval configurations, using the s- and p-polarization detectors independently and combined, and validate to independent data sources.

  15. Chlorophyll fluorescence response to water and nitrogen deficit

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  16. A new indicator in early drought diagnosis of cucumber with chlorophyll fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Li, Haifeng; Xu, Liang; Liu, Xu

    2015-05-01

    Crop population growth information can more fully reflect the state of crop growth, eliminate individual differences, and reduce error in judgment. We have built a suitable plant population growth information online monitoring system with the plant chlorophyll fluorescence and spectral scanning imaging to get the crop growth status. On the basis of the fluorescence image detection, we have studied the early drought diagnosis of cucumber. The typical chlorophyll fluorescence parameters can not reflect the drought degree significantly. We define a new indication parameter (DI). With the drought deepening, DI declines. DI can enlarge the early manifestation of cucumber drought (3-5 days), indicate more significantly in the early drought diagnosis of cucumber.

  17. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants.

    PubMed

    Ptushenko, V V; Ptushenko, O S; Tikhonov, A N

    2014-03-01

    Parameters of chlorophyll fluorescence induction (CFI) are widely used for assessment of the physiological state of higher plant leaves in biochemical, physiological, and ecological studies and in agricultural applications. In this work we have analyzed data on variability of some CFI parameters - ΦPSII(max) = Fv/Fm (relative value of variable fluorescence), qNPQ (non-photochemical quenching coefficient), RFd ("vitality index") - in autumnal leaves of ten arboreous plant species of the temperate climatic zone. The correlation between the chlorophyll content in the leaves and fluorescence parameters characterizing photosynthetic activity is shown for two representative species, the small-leaved linden Tilia cordata and the rowan tree Sorbus aucuparia. During the period of mass yellowing of the leaves, the ΦPSII(max) value can be used as an adequate characteristic of their photochemical activity, while in summer the qNPQ or RFd values are more informative. We have established a correlation between the ΦPSII(max) value, which characterizes the maximal photochemical activity of the photosystem II, and "chromaticity coordinates" of a leaf characterizing its color features. The chromaticity coordinates determined from the optical reflection spectra of the leaves serve as a quantitative measure of their hues, and this creates certain prerequisites for a visual expert assessment of the physiological state of the leaves. PMID:24821453

  18. MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis.

    PubMed

    Christ, Bastien; Schelbert, Silvia; Aubry, Sylvain; Süssenbacher, Iris; Müller, Thomas; Kräutler, Bernhard; Hörtensteiner, Stefan

    2012-02-01

    During leaf senescence, chlorophyll (Chl) is broken down to nonfluorescent chlorophyll catabolites (NCCs). These arise from intermediary fluorescent chlorophyll catabolites (FCCs) by an acid-catalyzed isomerization inside the vacuole. The chemical structures of NCCs from Arabidopsis (Arabidopsis thaliana) indicate the presence of an enzyme activity that demethylates the C13(2)-carboxymethyl group present at the isocyclic ring of Chl. Here, we identified this activity as methylesterase family member 16 (MES16; At4g16690). During senescence, mes16 leaves exhibited a strong ultraviolet-excitable fluorescence, which resulted from large amounts of different FCCs accumulating in the mutants. As confirmed by mass spectrometry, these FCCs had an intact carboxymethyl group, which slowed down their isomerization to respective NCCs. Like a homologous protein cloned from radish (Raphanus sativus) and named pheophorbidase, MES16 catalyzed the demethylation of pheophorbide, an early intermediate of Chl breakdown, in vitro, but MES16 also demethylated an FCC. To determine the in vivo substrate of MES16, we analyzed pheophorbide a oxygenase1 (pao1), which is deficient in pheophorbide catabolism and accumulates pheophorbide in the chloroplast, and a mes16pao1 double mutant. In the pao1 background, we additionally mistargeted MES16 to the chloroplast. Normally, MES16 localizes to the cytosol, as shown by analysis of a MES16-green fluorescent protein fusion. Analysis of the accumulating pigments in these lines revealed that pheophorbide is only accessible for demethylation when MES16 is targeted to the chloroplast. Together, these data demonstrate that MES16 is an integral component of Chl breakdown in Arabidopsis and specifically demethylates Chl catabolites at the level of FCCs in the cytosol. PMID:22147518

  19. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana

    PubMed Central

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108

  20. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana.

    PubMed

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108

  1. PhotoSpec - Ground-based Remote Sensing of Solar-Induced Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Grossmann, K.; Frankenberg, C.; Seibt, U.; Hurlock, S. C.; Pivovaroff, A.; Stutz, J.

    2015-12-01

    Solar-Induced Chlorophyll Fluorescence (SIF) emitted from vegetation can be used as a constraint for photosynthetic activity and is now observable on a global scale from space. However, many issues on a leaf-to-canopy scale remain poorly understood, such as influences on the SIF signal of environmental conditions, water stress, or radiation. Here, we report on the development and characterization of a novel ground-based spectrometer system for measuring SIF from natural ecosystems (http://www.kiss.caltech.edu/study/photosynthesis/technology.html). The instrumental set-up, requirements, and measurement technique are based on decades of experience using Differential Optical Absorption Spectroscopy (DOAS), an established method to measure atmospheric trace gases. The instrument consists of three thermally stabilized commercial spectrometers that are linked to a 2D scanning telescope unit via optical fiber bundles. The spectrometers cover an SIF retrieval wavelength range at high spectral resolution (670 - 780 nm, 0.1 nm FWHM), but also provide moderate resolution spectra (400 - 800 nm, 1.5 nm FWHM) in order to retrieve vegetation indices and the photochemical reflectance index (PRI). In addition to the instrumental set-up, we will show initial results of test and field measurements with the new instrument that examine the diurnal cycle of the SIF signal of different California native and non-native plants and its correlation with CO2 fluxes. Observations were made under different environmental conditions, variable water and nutrient stress, and with different viewing geometries. We also used concurrent observations by a photosynthetically active radiation (PAR) sensor and a portable chlorophyll fluorometer (PAM) to link the SIF signal to plant metabolism and carbon cycling under a range of environmental conditions.

  2. Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants.

    PubMed

    Buonasera, K; Lambreva, M; Rea, G; Touloupakis, E; Giardi, M T

    2011-09-01

    Chlorophyll a fluorescence has been extensively studied over the last few years. As demonstrated, this phenomenon is closely related to the state of photosystem II, which plays a leading role in the photosynthetic process, and therefore it has become a powerful tool to investigate this complex and any damage occurring in it as a result of physical or chemical stresses. This means that by using photosynthetic organisms as biological probes, one can consider chlorophyll a fluorescence as one of the techniques of choice to reveal the presence of some hazardous toxicants widely spread in the environment. Herbicides, pesticides, and heavy metals, whose concentration in water and food products is generally subject to extremely severe restrictions, are a concrete example of compounds detectable by chlorophyll a fluorescence. These dangerous substances react with the photosystem II, modifying the fluorescence emitted and giving responses which vary in a concentration-dependent manner. The possibility of performing easy, fast, and direct measurements of the fluorescence, even under light conditions, has opened new frontiers for the analysis in situ of pollutants. The aim of this review is to give an overview of the different techniques based on chlorophyll a fluorescence spectrometry, focusing in particular on those which represented the starting point for applications addressed to the assessment of toxic compounds in environmental samples. PMID:21701849

  3. Rapid, Noninvasive Screening for Perturbations of Metabolism and Plant Growth Using Chlorophyll Fluorescence Imaging1

    PubMed Central

    Barbagallo, Romina P.; Oxborough, Kevin; Pallett, Kenneth E.; Baker, Neil R.

    2003-01-01

    A rapid, noninvasive technique involving imaging of chlorophyll fluorescence parameters for detecting perturbations of leaf metabolism and growth in seedlings is described. Arabidopsis seedlings were grown in 96-well microtitre plates for 4 d and then treated with eight herbicides with differing modes of action to induce perturbations in a range of different metabolic processes. Imaging of chlorophyll fluorescence emissions from 96 seedlings growing on a microtitre plate enabled images of a number of fluorescence parameters to be rapidly and simultaneously produced for the plants in each well. Herbicideinduced perturbations in metabolism, even in metabolic reactions not directly associated with photosynthetic metabolism, were detected from the changes in the images of fluorescence parameters considerably before any visual effects on seedling growth were observed. Evaluations of seedling growth were made from measurements of the area of chlorophyll fluorescence emission in images of plants growing in the 96-well plates. Decreased seedling growth related directly to herbicideinduced changes in the imaged chlorophyll fluorescence parameters. The applicability of this rapid-screening technique for metabolic perturbations in monocotyledonous species was demonstrated by treating Agrostis tenuis seedlings with Imazapyr, an inhibitor of branched-chain amino acid synthesis. PMID:12805581

  4. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS): A New Airborne Instrument for Quantifying Solar-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Frankenberg, C.; Verma, M.; Berry, J. A.; Schimel, D.; Geier, S.; Schwochert, M.

    2015-12-01

    Recent demonstrations of the retrieval of vegetation solar-induced fluorescence (SIF) emission from satellite platforms have opened up the possibility of remotely monitoring photosynthetic function, in addition to the structural and biochemical parameters that characterize the current capabilities of vegetation observing systems. These satellite retrievals, from platforms such as GOSAT, GOME-2, and most recently NASA's Orbiting Carbon Observatory 2 (OCO-2), provide powerful evidence of the correlation between vegetation productivity and SIF at seasonal to annual timescales, and at spatial resolutions of tens to hundreds of kilometers. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS) was recently developed for OCO-2 validation purposes and provides an airborne capability to help fill the spatial gap between leaf- or canopy-level observations of SIF flux and extensive satellite footprints. The flexibility of an airborne instrument likewise allows for studies of the temporal variability of SIF emission over consecutive days, or with meteorological variability throughout a day. CFIS is a high resolution (<0.1nm) spectrometer covering the 740-770nm wavelength range, optimized for SIF quantification. Here we present an overview of the instrument design and capabilities, along with the retrieval methodology. An evaluation of data collected during initial campaigns conducted during the spring and summer of 2015 are also presented, demonstrating variability within and between days for campaigns spanning multiple days in the Midwest US and Northern California. Results will be compared to OCO-2 data as well as flux-tower measurements made during the CFIS flights.

  5. Chlorophyll Fluorescence as a Possible Tool for Salinity Tolerance Screening in Barley (Hordeum vulgare L.).

    PubMed Central

    Belkhodja, R.; Morales, F.; Abadia, A.; Gomez-Aparisi, J.; Abadia, J.

    1994-01-01

    The application of chlorophyll fluorescence measurements to screening barley (Hordeum vulgare L.) genotypes for salinity tolerance has been investigated. Excised barley leaves were cut under water and incubated with the cut end immersed in water or in a 100-mM NaCl solution, either in the dark or in high light. Changes in rapid fluorescence kinetics occurred in excised barley leaves exposed to the saline solution only when the incubation was carried out in the presence of high light. Fluorescence changes consisted of decreases in the variable to maximum fluorescence ratio and in increases in the relative proportion of variable fluorescence leading to point I in the Kautsky fluorescence induction curve. These relative increases in fluorescence at point I appeared to arise from a delayed plastoquinone reoxidation in the dark, since they disappeared after short, far-red illumination, which is known to excite photosystem I preferentially. We show that a significant correlation existed between some fluorescence parameters, measured after a combined salt and high-light treatment, and other independent measurements of salinity tolerance. These results suggest that chlorophyll fluorescence, and especially the relative fluorescence at point I in the Kautsky fluorescence induction curve, could be used for the screening of barley genotypes for salinity tolerance. PMID:12232117

  6. Photoadaptation in marine phytoplankton: changes in spectral absorption and excitation of chlorophyll a fluorescence

    SciTech Connect

    Neori, A.; Holm-Hansen, O.; Mitchell, B.G.; Kiefer, D.A.

    1984-10-01

    The optical properties of marine phytoplankton were examined by measuring the absorption spectra and fluorescence excitation spectra of chlorophyll a for natural marine particles collected on glass fiber filters. Samples were collected at different depths from stations in temperate waters of the Southern California Bight and in polar waters of the Scotia and Ross Seas. At all stations, phytoplankton fluorescence excitation and absorption spectra changed systematically with depth and vertical stability of the water columns. In samples from deeper waters, both absorption and chlorophyll a fluorescence excitation spectra showed enhancement in the blue-to-green portion of the spectrum (470-560 nm) relative to that at 440 nm. Since similar changes in absorption and excitation were induced by incubating sea water samples at different light intensities, the changes in optical properties can be attributed to photoadaptation of the phytoplankton. The data indicate that in the natural populations studied, shade adaptation caused increases in the concentration of photosynthetic accessory pigments relative to chlorophyll a. These changes in cellular pigment composition were detectable within less than 1 day. Comparisons of absorption spectra with fluorescence excitation spectra indicate an apparent increase in the efficiency of sensitization of chlorophyll a fluorescence in the blue and green spectral regions for low light populations. 30 references, 6 figures.

  7. Designation of rapid detection system for chlorophyll fluorescence parameters based on LED irradiation

    NASA Astrophysics Data System (ADS)

    Li, Zhengming; Ji, Jianwei; Xu, Minghu

    2013-03-01

    Adopting high-power light-emitting diode (LED) as excitation light source, the study designed a rapid detection system for fluorescence parameters based on MINIPAM. The system uses a microcomputer as the core of the programmable power supply to provide constant current drive of the LED array, and the LED array as a fluorescence excitation light source produces light photochemical system needed. It also uses MINIPAM to detect the fluorescence, analyzing the fluorescence parameters of the mathematical model, studying the plant photosystem& light response curve. The System is of great significance in the evaluation of chlorophyll photosynthesis ability and the plant physiological stress response and the appropriate mechanism.

  8. Modelling canopy scale solar induced chlorophyll fluorescence simulated by the three dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Nagai, S.; Inoue, T.; Yang, W.; Ichii, K.

    2014-12-01

    Recent studies show that the vegetation canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellite. To understand how the canopy scale bidirectional fluorescence observations are related to three-dimensional fluorescence distribution within a plant canopy, it is necessary to evaluate canopy scale fluorescence emission using a detailed plant canopy radiative transfer model. In this study, we developed a three-dimensional plant canopy radiative transfer model that can simulate the bidirectional chlorophyll fluorescence radiance and show several preliminary results of fluorescence distribution at the tree level. To simulate the three dimensional variations in chlorophyll fluorescence from trees, we measured tree structures using a terrestrial LiDAR instrument. The measurements were conducted in Yokohama, Japan (35°22'49" N 139°37'29" E). Three Japanese cherry trees (Cerasus Speciosa) were chosen for our study (Figure 1). Leaf-level sun-induced chlorophyll fluorescence (SIF) is also necessary as an input of radiative transfer model. To measure the leaf-level SIF, we used high spectral resolution spectroradiometer (HR 4000, Ocean Optics Inc. USA). The spectral resolution of this instrument is 0.05 nm (full width half maximum). The spectral range measured was 720 to 780 nm. From the spectral radiance measurements, we estimated SIF using the three band Fraunhofer Line Depth (3FLD) method. The effect of solar and view zenith angles, multiple scattering depends on many factors such as back ground reflectance, leaf reflectance transmittance and landscape structures. To understand how the SIF from both sparse and dense forest stands vary with sun and view angles and optical variables, it is necessary to conduct further sensitivity analysis. Radiative transfer simulation will help understand SIF emission at variety of forest canopy cases.

  9. Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficit limits net photosynthesis (Anet) and decreases crop yields. An important challenge for basic and applied research is to establish a rigorous landscape-scale indicator of Anet. Chlorophyll fluorescence (ChF) can be used at the field scale as an indirect measure of Anet in both healthy a...

  10. Diurnal and directional responses of chlorophyll fluorescence and pri in a cornfield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two high spectral resolution reflectance-based indices were used to assess whether vegetation in a cornfield was performing near-optimally or exhibiting symptoms of environmental stress. These were the Photochemical Reflectance Index (PRI) and solar-induced Chlorophyll Fluorescence (SIF). This study...

  11. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global monitoring of agricultural productivity is critical in a world under a continuous increase of food demand. Here we have used new spaceborne retrievals of chlorophyll fluorescence, an emission quantity intrinsically linked to photosynthesis, to derive spatially explicit photosynthetic uptake r...

  12. Chlorophyll fluorescence as an indicator of plant water status in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various methods exist for the measurement of plant water status. Plant breeders value methods that are fast and inexpensive lending themselves to the efficient evaluation of large segregating populations. Chlorophyll fluorescence is a parameter commonly measured by plant physiologists when studying ...

  13. Wavelet analysis of pulse-amplitude-modulated chlorophyll fluorescence for differentiation of plant samples.

    PubMed

    Guo, Ya; Zhou, Yesen; Tan, Jinglu

    2015-04-01

    Pulse-amplitude-modulated (PAM) chlorophyll fluorescence (ChlF) from photosystem II (PSII) of plants has been routinely measured for the analysis of photosynthesis and environmental changes. PAM ChlF from PSII is non-stationary and has time-varying frequency characteristics; however, existing analysis of PAM ChlF has been limited to selected characteristic values in the time domain. Wavelet transform is recognized as an efficient tool for analyzing non-stationary signals. In this research, an attempt was made to analyze PAM ChlF through wavelet transform. Features of PAM ChlF signals were computed from wavelet decomposition to classify two tree species and to detect chilling and detachment stresses. The wavelet-based features were compared with the commonly-used maximal PSII efficiency Fv/Fm. Both the wavelet-based features and Fv/Fm could effectively classify two tree species, but the former showed superiority than the latter in detecting the stresses. Wavelet transform revealed chilling stress earlier than Fv/Fm and detected detachment stress Fv/Fm failed to show. The results show that wavelet transform is a useful technique for analysis of PAM ChlF. PMID:25665719

  14. [Monitoring of the Moskva River Water Using Microbiological Parameters and Chlorophyll a Fluorescence].

    PubMed

    Mosharova, I V; Il'inskii, V V; Matorin, D N; Mosharov, S A; Akulova, A Yu; Protopopov, F F

    2015-01-01

    The results of investigations of three Moskva River sites with different degree of pollution using a complex of microbiological characteristics and the parameters of chlorophyll a fluorescence are presented. We determined that the bacterioplankton seasonal dynamics at less polluted waters (Tushino and Vorobyovy Gory) were similar and differed significantly from one in more polluted waters (Dzerzhinskii). The number of bacteria with active electron transport chain, as well as their share in the bacterioplankton structure, was higher in the water of Dzerzhinskii (average annual values of 0.23 x 10(6) cells/mL and 14%), that in the less polluted water of Tushino and Vorobyovy Gory (0.14 x 10(6) cells/mL; 6% and 0.15 x 10(6) cells/mL; 7%, respectively). From April to October, the content of chlorophyll a and its photosynthetic activity were the highest in Tushino. In Dzerzhinskii, during spring the increase in photosynthetic activity commenced earlier and was more intensive that the increase in chlorophyll a content, i.e., the increase in phytoplankton biomass was temporarily suppressed. We suggest association of this phenomenon with suppression of organic matter synthesis by phytoplankton due to the high water pollution in Dzerzhinskii. The second autumn peak of chlorophyll a content, that was typical of clear water and was observed in Tushino, did not occur in Dzerzhinskii. We recommend combined application of these microbiological parameters and characteristics of chlorophyll a fluorescence for a monitoring. PMID:26964361

  15. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence.

    PubMed

    Kumar, K Suresh; Dahms, Hans-Uwe; Lee, Jae-Seong; Kim, Hyung Chul; Lee, Won Chan; Shin, Kyung-Hoon

    2014-06-01

    Chlorophyll a fluorescence is established as a rapid, non-intrusive technique to monitor photosynthetic performance of plants and algae, as well as to analyze their protective responses. Apart from its utility in determining the physiological status of photosynthesizers in the natural environment, chlorophyll a fluorescence-based methods are applied in ecophysiological and toxicological studies to examine the effect of environmental changes and pollutants on plants and algae (microalgae and seaweeds). Pollutants or environmental changes cause alteration of the photosynthetic capacity which could be evaluated by fluorescence kinetics. Hence, evaluating key fluorescence parameters and assessing photosynthetic performances would provide an insight regarding the probable causes of changes in photosynthetic performances. This technique quintessentially provides non-invasive determination of changes in the photosynthetic apparatus prior to the appearance of visible damage. It is reliable, economically feasible, time-saving, highly sensitive, versatile, accurate, non-invasive and portable; thereby comprising an excellent alternative for detecting pollution. The present review demonstrates the applicability of chlorophyll a fluorescence in determining photochemical responses of algae exposed to environmental toxicants (such as toxic metals and herbicides). PMID:24632123

  16. Computer Reconstruction of Plant Growth and Chlorophyll Fluorescence Emission in Three Spatial Dimensions

    PubMed Central

    Bellasio, Chandra; Olejníčková, Julie; Tesař, Radek; Šebela, David; Nedbal, Ladislav

    2012-01-01

    Plant leaves grow and change their orientation as well their emission of chlorophyll fluorescence in time. All these dynamic plant properties can be semi-automatically monitored by a 3D imaging system that generates plant models by the method of coded light illumination, fluorescence imaging and computer 3D reconstruction. Here, we describe the essentials of the method, as well as the system hardware. We show that the technique can reconstruct, with a high fidelity, the leaf size, the leaf angle and the plant height. The method fails with wilted plants when leaves overlap obscuring their true area. This effect, naturally, also interferes when the method is applied to measure plant growth under water stress. The method is, however, very potent in capturing the plant dynamics under mild stress and without stress. The 3D reconstruction is also highly effective in correcting geometrical factors that distort measurements of chlorophyll fluorescence emission of naturally positioned plant leaves. PMID:22368511

  17. Spectral reflectance, chlorophyll fluorescence and virological investigations of tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Hristova, Dimitrina; Iliev, Ilko; Yanev, Tony

    Application of multispectral remote sensing techniques to plant condition monitoring has been adopted for various purposes. Remote sensing is a reliable tool for detecting signs of vege-tation stress and diseases. Spectral reflectance and chlorophyll fluorescence are functions of tissue optical properties and biological status of the plants, and illumination conditions. The mean reflectance spectrum depends on the relative composition of all the pigments in the leaf including chlorophylls, carotenoids etc. Chlorophyll fluorescence results from the primary re-actions of photosynthesis and during the last decade it finds widening application as a means for revelation of stress and diseases. The changes in chlorophyll function take place before the alteration in chlorophyll content to occur so that changes in the fluorescence signal arise before any visible signs are apparent. The aim of our investigations was to study the development and spreading out of a viral infection on the leaves of two cultivars tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV). We applied two remote sensing tech-niques (spectral reflectance and chlorophyll fluorescence measurements) for evaluation of the changes in the optical properties of the plants in accordance to their physiological status. The serological analyses via the Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) were made with appropriate kits (Leowe, Germany) for quantitative assessment of the concentration of viruses in the plants. The tobacco plants were grown in green house under controlled conditions. The first cultivar Nevrocop 1146 is known as resistive to the TMV, i.e. it shows hypersensitive response. The second cultivar named Krumovgrad is normally sen-sitive to the TMV. At growth stage 4-6 expanded leaf, up to one leaf from 20 plants for each cultivar were inoculated with TMV. The leaves opposite to the infected ones formed the group of control (untreated) leaves. The

  18. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.

    PubMed

    Zarco-Tejada, P J; Miller, J R; Mohammed, G H; Noland, T L; Sampson, P H

    2002-01-01

    Physical principles applied to remote sensing data are key to successfully quantifying vegetation physiological condition from the study of the light interaction with the canopy under observation. We used the fluorescence-reflectance-transmittance (FRT) and PROSPECT leaf models to simulate reflectance as a function of leaf biochemical and fluorescence variables. A series of laboratory measurements of spectral reflectance at leaf and canopy levels and a modeling study were conducted, demonstrating that effects of chlorophyll fluorescence (CF) can be detected by remote sensing. The coupled FRT and PROSPECT model enabled CF and chlorophyll a + b (Ca + b) content to be estimated by inversion. Laboratory measurements of leaf reflectance (r) and transmittance (t) from leaves with constant Ca + b allowed the study of CF effects on specific fluorescence-sensitive indices calculated in the Photosystem I (PS-I) and Photosystem II (PS-II) optical region, such as the curvature index [CUR; (R675.R690)/R2(683)]. Dark-adapted and steady-state fluorescence measurements, such as the ratio of variable to maximal fluorescence (Fv/Fm), steady state maximal fluorescence (F'm), steady state fluorescence (Ft), and the effective quantum yield (delta F/F'm) are accurately estimated by inverting the FRT-PROSPECT model. A double peak in the derivative reflectance (DR) was related to increased CF and Ca + b concentration. These results were consistent with imagery collected with a compact airborne spectrographic imager (CASI) sensor from sites of sugar maple (Acer saccharum Marshall) of high and low stress conditions, showing a double peak on canopy derivative reflectance in the red-edge spectral region. We developed a derivative chlorophyll index (DCI; calculated as D705/D722), a function of the combined effects of CF and Ca + b content, and used it to detect vegetation stress. PMID:12371159

  19. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat.

    PubMed

    Bürling, Kathrin; Hunsche, Mauricio; Noga, Georg

    2011-09-15

    In recent years, several sensor-based approaches have been established to early detect single plant stresses, but the challenge of discriminating between simultaneously occurring stressors still remains. Earlier studies on wheat plants strongly affected by pathogens and nitrogen deficiency indicated that chlorophyll fluorescence might be suited to distinguish between the two stressors. Nevertheless, there is lack of information on the pre-symptomatic detection of synchronized occurrence of slight N-deficiency and the early stages of pathogen infection. The usefulness of the blue, green, and yellow fluorescence signals in this context has not yet been explored. We hypothesized that differentiation between wheat plants' physiological reaction due to N-deficiency and leaf rust (Puccinia triticina) as well as N-deficiency and powdery mildew (Blumeria graminis f. sp. tritici) might be accomplished by means of UV laser-induced fluorescence spectral measurements between 370 and 620nm in addition to chlorophyll fluorescence (640-800nm). Plants were provided with either a normal or a modified Hoagland nutrient solution in order to induce a slight N deficit. Pathogen inoculation was carried out on the second fully developed leaf. Four experimental groups were evaluated: (a) N-full-supply [N+]; (b) N-deficiency [N-]; (c) N-full-supply+pathogen [N+/LR] or [N+/PM]; (d) N-deficiency+pathogen [N-/LR] or [N-/PM]. The results revealed that, in addition to the amplitude ratio of R/FR fluorescence, B/G fluorescence also facilitated reliable and robust discrimination among the four experimental groups. The discrimination among the experimental groups was accomplished as early as one and two days after inoculation for powdery mildew and leaf rust infection, respectively. During the 3days evaluation period, the differences among the treatment groups became more evident. Moreover, several other amplitude ratios and half-bandwidth ratios proved to be suited to early detect fungal

  20. A Passive Method for Detecting Vegetation Stress from Orbit: Chlorophyll Fluorescence Spectra from Fraunhofer Lines

    NASA Technical Reports Server (NTRS)

    Theisen, Arnold F.

    2000-01-01

    Solar-stimulated chlorophyll fluorescence measured with the Fraunhofer line depth method has correlated well with vegetation stress in previous studies. However, the instruments used in those studies were limited to a single solar absorption line (e.g. 656.3 nm), obviating the red/far-red ratio (R/FR) method. Optics and detector technology have reached the level whereby multiple, very narrow Fraunhofer lines are resolvable. Thirteen such lines span the visible spectrum in the red to far-red region where chlorophyll fluorescence occurs. Fluorescence intensities at the 13 Fraunhofer line wavelengths were used to model emission spectra. The source data were collected for summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. The intensities were adjusted to account for Fraunhofer line depth and atmospheric transmittance. Multiple R/FR fluorescence ratios, calculated from the modeled fluorescence spectra, correlated strongly with leaf chlorophyll concentration and well with applied nitrogen. The ratio yielding the best correlation with chlorophyll utilized red fluorescence at the 694.5 nm Fraunhofer line and farred fluorescence at the 755.6 nm Fraunhofer line. Twenty R/FR ratios, each evaluated for the maximum differential between low and high (optimal) nitrogen treatments, ranked higher in some cases and lower in others, possibly related to the time of year the crops were grown and the stage of growth of the crops. Ratios with 728.9 nm and 738.9 nm in the denominator consistently ranked in the lowest and next lowest quartile, respectively. Ratios of the 656.3 nm Fraunhofer line and the 755.6 nm line consistently ranked highest for the summer crop. Ratios with 755.6 nm in the denominator ranked in the upper quartile for 10 out of 12 measurement dates. Differences in ratio ranking indicate that physiological conditions may be estimated using selected ratios of Fraunhofer lines within the context of R/FR analysis. A

  1. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    NASA Astrophysics Data System (ADS)

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    Recently, chlorophyll fluorescence (ChlF) retrievals in narrow spectral regions (< 1 nm, between 750-770 nm) of the near infrared (NIR) region of Earth's reflected radiation have been achieved from satellites, including the Japanese GOSAT and the European Space Agency's Sciamachy/Envisat. However, these retrievals sample the total full-spectrum ChlF and are made at non-optimal wavelengths since they are not located at the peak fluorescence emission features. We wish to estimate the total full-spectrum ChlF based on emissions obtained at selected wavelengths. For this, we drew upon leaf emission spectra measured on corn leaves obtained from a USDA experimental cornfield in MD (USA). These emission spectra were determined for the adaxial and abaxial (i.e., top and underside) surfaces of leaves measured throughout the 2008 and 2011 growing seasons (n>400) using a laboratory instrument (Fluorolog-3, Horiba Scientific, USA), recorded in either 1 nm or 5 nm increments with monochromatic excitation wavelengths of either 532 or 420 nm. The total ChlF signal was computed as the area under the continuous spectral emission curves, summing the emission intensities (counts per second) per waveband. The individual narrow (1 or 5 nm) waveband emission intensities were linearly related to full emission values, with variable success across the spectrum. Equations were developed to estimate total ChlF from these individual wavebands. Here, we report the results for the average adaxial/abaxial emissions. Very strong relationships were achieved for the relatively high fluorescence intensities at the red chlorophyll peak, centered at 685 nm (r2= 0.98, RMSE = 5.53 x 107 photons/s) and in the nearby O2-B atmospheric absorption feature centered at 688 nm (r2 = 0.94, RMSE = 4.04 x 107), as well as in the far-red peak centered at 740 nm (r2=0.94, RMSE = 5.98 x107). Very good retrieval success occurred for the O2-A atmospheric absorption feature on the declining NIR shoulder centered at 760

  2. Improving the estimation of terrestrial gross primary productivity by downscaling global sun-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Cescatti, A.; Duveiller, G.

    2015-12-01

    The synoptic nature of satellite remote sensing makes this technique a key tool to contribute to estimating the amount of Carbon fixed by vegetation at global scale. From the various types of information that can be derived from space, the recent capacity to create global datasets of sun-induced chlorophyll fluorescence (SIF) may prove to be a game-changer. SIF is a signal emitted by the photosynthetic machinery itself that, under the illumination conditions in which it can be estimated by satellite, has been shown to be proportional to gross primary productivity (GPP). However, this relationship is dependent on vegetation types that are typically spatially mixed at the coarse spatial resolution of SIF datasets (at best 0.5°), which in turn is a consequence of the complexity of the SIF retrieval itself. This study demonstrates how 0.5° SIF derived from GOME-2 data can be downscaled to a more adequate spatial resolution of 0.05° by combining 3 explanatory biophysical variables derived from the MODIS sensor (NDVI, land surface temperature and evapotranspiration) under a semi-empirical light-use efficiency framework. The finer spatial resolution results in a cleaner signal when aggregating it per land cover type. The signal is also better correlated in time with GPP estimated from flux towers, reaching the same level of performance than global GPP products calibrated on such flux towers and driven by meteorological and remote sensing variables (other than SIF). Establishing linear relationships between SIF and flux-tower GPP at vegetation type level allows to estimate values of global terrestrial vegetation gross productivity that have different magnitude but similar temporal patterns as other GPP products. Based on downscaled SIF, the mean global GPP values over the period 2007 to 2013 are (for deciduous broadleaf and mixed forests) 13.7, (for evergreen needleleaf forests) 2.5, (for grasslands) 12.5 and (savannahs and woody savannas) 36.8 Pg of Carbon per year.

  3. Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii.

    PubMed

    Finazzi, Giovanni; Johnson, Giles N; Dall'Osto, Luca; Zito, Francesca; Bonente, Giulia; Bassi, Roberto; Wollman, Francis-André

    2006-02-01

    Unlike plants, Chlamydomonas reinhardtii shows a restricted ability to develop nonphotochemical quenching upon illumination. Most of this limited quenching is due to state transitions instead of DeltapH-driven high-energy state quenching, qE. The latter could only be observed when the ability of the cells to perform photosynthesis was impaired, either by lowering temperature to approximately 0 degrees C or in mutants lacking RubisCO activity. Two main features were identified that account for the low level of qE in Chlamydomonas. On one hand, the electrochemical proton gradient generated upon illumination is apparently not sufficient to promote fluorescence quenching. On the other hand, the capacity to transduce the presence of a DeltapH into a quenching response is also intrinsically decreased in this alga, when compared to plants. The possible mechanism leading to these differences is discussed. PMID:16445291

  4. Simultaneous Measurement of Oscillations in Oxygen Evolution and Chlorophyll a Fluorescence in Leaf Pieces 1

    PubMed Central

    Walker, David A.; Sivak, Mirta N.; Prinsley, Roslyn T.; Cheesbrough, John K.

    1983-01-01

    In spinach (Spinacia oleracea) and barley (Hordeum vulgare) leaves, chlorophyll a fluorescence and O2 evolution have been measured simultaneously following re-illumination after a dark interval or when steady state photosynthesis has been perturbed by changes in the gas phase. In high CO2 concentrations, both O2 and fluorescence can display marked dampening oscillations that are antiparallel but slightly out of phase (a rise or fall in fluorescence anticipating a corresponding fall or rise in O2 by about 10 to 15 seconds). Infrared gas analysis measurements showed that CO2 uptake behaved like O2 evolution both in the period of oscillation (about 1 minute) and in its relation to fluorescence. In the steady state, oscillations were initiated by increases in CO2 or by increases or decreases in O2. Oscillations in O2 or CO2 did not occur without associated oscillations in fluorescence and the latter were a sensitive indicator of the former. The relationship between such oscillations in photosynthetic carbon assimilation and chlorophyl a fluorescence is discussed in the context of the effect of ATP or NADPH consumption on known quenching mechanisms. PMID:16663255

  5. Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces.

    PubMed

    Walker, D A; Sivak, M N; Prinsley, R T; Cheesbrough, J K

    1983-11-01

    In spinach (Spinacia oleracea) and barley (Hordeum vulgare) leaves, chlorophyll a fluorescence and O(2) evolution have been measured simultaneously following re-illumination after a dark interval or when steady state photosynthesis has been perturbed by changes in the gas phase. In high CO(2) concentrations, both O(2) and fluorescence can display marked dampening oscillations that are antiparallel but slightly out of phase (a rise or fall in fluorescence anticipating a corresponding fall or rise in O(2) by about 10 to 15 seconds). Infrared gas analysis measurements showed that CO(2) uptake behaved like O(2) evolution both in the period of oscillation (about 1 minute) and in its relation to fluorescence. In the steady state, oscillations were initiated by increases in CO(2) or by increases or decreases in O(2). Oscillations in O(2) or CO(2) did not occur without associated oscillations in fluorescence and the latter were a sensitive indicator of the former. The relationship between such oscillations in photosynthetic carbon assimilation and chlorophyl a fluorescence is discussed in the context of the effect of ATP or NADPH consumption on known quenching mechanisms. PMID:16663255

  6. Retrieval of aerosol parameters from the oxygen A band in the presence of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.

    2013-10-01

    We have investigated the precision of retrieved aerosol parameters for a generic aerosol retrieval algorithm over vegetated land using the O2 A band. Chlorophyll fluorescence is taken into account in the forward model. Fluorescence emissions are modeled as isotropic contributions to the upwelling radiance field at the surface and they are retrieved along with aerosol parameters. Precision is calculated by propagating measurement errors and a priori errors, including model parameter errors, using the forward model's derivatives. Measurement errors consist of noise and calibration errors. The model parameter errors considered are related to the single scattering albedo, surface pressure and temperature profile. We assume that measurement noise is dominated by shot noise; thus, results apply to grating spectrometers in particular. We describe precision for various atmospheric states, observation geometries and spectral resolutions of the instrument in a number of retrieval simulations. These precision levels can be compared with user requirements. A comparison of precision estimates with the literature and an analysis of the dependence on the a priori error in the fluorescence emission indicate that aerosol parameters can be retrieved in the presence of chlorophyll fluorescence: if fluorescence is present, fluorescence emissions should be included in the state vector to avoid biases in retrieved aerosol parameters.

  7. [Chlorophyll fluorescence spectrum analysis of greenhouse cucumber disease and insect damage].

    PubMed

    Sui, Yuan-yuan; Yu, Hai-ye; Zhang, Lei; Luo, Han; Ren, Shun; Zhao, Guo-gang

    2012-05-01

    The present paper is based on chlorophyll fluorescence spectrum analysis. The wavelength 685 nm was determined as the primary characteristic point for the analysis of healthy or disease and insect damaged leaf by spectrum configuration. Dimensionality reduction of the spectrum was achieved by combining simple intercorrelation bands selection and principal component analysis (PCA). The principal component factor was reduced from 10 to 5 while the spectrum information was kept reaching 99.999%. By comparing and analysing three modeling methods, namely the partial least square regression (PLSR), BP neural network (BP) and least square support vector machine regression (LSSVMR), regarding correlation coefficient of true value and predicted value as evaluation criterion, eventually, LSSVMR was confirmed as the appropriate method for modeling of greenhouse cucumber disease and insect damage chlorophyll fluorescence spectrum analysis. PMID:22827075

  8. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  9. Seasonal, Diurnal and Vertical Variation of Chlorophyll Fluorescence on Phyllostachys humilis in Ireland

    PubMed Central

    Van Goethem, Davina; De Smedt, Sebastiaan; Valcke, Roland; Potters, Geert; Samson, Roeland

    2013-01-01

    In recent years, temperate bamboo species have been introduced in Europe not only as an ornamental plant, but also as a new biomass crop. To measure adaptation stress of bamboo to the climate of Western Europe, chlorophyll fluorescence was measured on a diurnal and seasonal basis in Ballyboughal, Co. Dublin, Ireland. Measurements were attained on the leaves of each node of Phyllostachys humilis. The most frequently used parameter in chlorophyll fluorescence is the photosynthetic efficiency (Fv/Fm). A seasonal dip - as well as a larger variation - of Fv/Fm in spring compared to the rest of the year was observed. Over the year, the upper leaves of the plant perform better than the bottom leaves. These findings were linked to environmental factors such as light intensity, air temperature and precipitation, as increased light intensities, decreasing air temperatures and their interactions, also with precipitation levels have an effect on the photosynthetic efficiency (Fv/Fm) in these plants. PMID:23967282

  10. The relation far-red to red chlorophyll fluorescence of phototrofs as a parameter of concentration of the reactionary centers of the first photosystem

    NASA Astrophysics Data System (ADS)

    Zavorueva, E. N.; Zavoruev, V. V.

    2006-11-01

    Literary data of relations of intensities of far-red to the red fluorescence measured at temperature of liquid nitrogen in culture of blue-green algae and leaves of peas are analysed. Own experimental results of determination of the fluorescent signals received at room temperature on leaves of wheat, depending on amount of the reactionary centers of the first photosystem, are presented. It is shown, that the relation of maxima of red chlorophyll fluorescence linearly increase with increase in concentration of the reactionary centers. It is judged, that the received dependence is characteristic for all photosynthesizing organisms allocating oxygen.

  11. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence.

    PubMed

    Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel

    2017-01-01

    The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied. PMID:27450121

  12. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    PubMed

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-01-01

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  13. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress.

    PubMed

    Cherif, Jaouhra; Derbel, Najoua; Nakkach, Mohamed; Bergmann, Hubertus von; Jemal, Fatma; Lakhdar, Zohra Ben

    2010-12-01

    The effects of zinc (Zn) on plant chlorophyll fluorescence were investigated in 10-day-old tomato (Solanum lycopersicum) seedlings subjected for 7 days to a series of zinc (10, 50, 100 and 150μM) applied via the nutrient solution. The chlorophyll fluorescence spectra of leaves were recorded in the spectral region 650-800nm using the spectroscopic technique of ultraviolet light emitting diode induced fluorescence spectroscopy (UV-LED IFS). These spectra have been used to analyze the effect of several doses of zinc on the photosynthetic activities of tomato plants. The fluorescence intensity ratios (FIR) at the two maxima (F(690)/F(735)) of control as well as treated tomato plants were calculated by evaluating curve-fitted parameters using a Gaussian spectral function. The variable chlorophyll fluorescence decrease ratio (R(Fd)) values were determined from the fluorescence induction kinetics curves recorded at 690nm and 735nm. In addition, Zn accumulation in plants, plant growth, photosynthetic pigments content and malondialdehyde level (MDA, an index of lipid peroxidation) were also estimated. The results indicated that the plants treated with 10μM of zinc exhibited better growth, however, higher concentrations of zinc were harmful for plants. Excess Zn induced a decrease in the R(Fd) values, which was associated with a strong decline of the total chlorophylls content and an increase of MDA level. The total chlorophylls content decline could also be followed via an increase of the chlorophyll fluorescence ratio F(690)/F(735). PMID:20829059

  14. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.

    PubMed

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A; Guanter, Luis; Boyce, C Kevin; Fisher, Joshua B; Morrow, Eric; Worden, John R; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-06-22

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r(2) = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r(2) = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009. PMID:23760636

  15. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence

    PubMed Central

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A.; Guanter, Luis; Boyce, C. Kevin; Fisher, Joshua B.; Morrow, Eric; Worden, John R.; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-01-01

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r2 = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r2 = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009. PMID:23760636

  16. Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants.

    PubMed

    Iriel, Analia; Dundas, Gavin; Fernández Cirelli, Alicia; Lagorio, Maria G

    2015-01-01

    Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400 nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media. PMID:25150973

  17. Measurement of chlorophyll a fluorescence with an airborne fluorosensor

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Brown, C. A., Jr.; Campbell, J. W.; Houghton, W. M.; Poole, L. R.

    1979-01-01

    Phytoplankton biomass and diversity among various algal species are important for marine productivity assessments. The spatial heterogeneity of phytoplankton in coastal and estuarine environments complicates estimates of total biomass using conventional surface sampling techniques. Since synoptic or near-synoptic data can be quite useful in these studies, this area is a natural focal point for development of remote sensors. However, it is very difficult to sense phytoplankton density and diversity with spacecraft-borne passive sensors primarily because modulation in the signal due to phytoplankton is of the same order as that of atmospheric effects. The same sensors mounted on aircraft may be able to detect and quantify high concentrations of phytoplankton (blooms), but the current lack of knowledge about the spectral reflectance signatures of the major phytoplankton color groups rules out any diversity measurements by this type of sensor. An active fluorosensor mounted on a low-flying aircraft or helicopter is not limited by any of these constraints. A brief survey of the four currently active systems is presented.

  18. Effects of Salinity on Chlorophyll Fluorescence of Nitrogen Fixing Soybean Plants (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Iliev, Ilko Ts.; Krezhova, Dora D.; Yanev, Tony K.; Kirova, Elisaveta B.

    2010-01-01

    Leaf chlorophyll ffluorescence was measured in order to assess the effect of salinity on nitrogen fixing soybean plants. Three day's seedlings were inoculated with suspension of Bradyrhizobium japonicum strain 273. The plants were grown at nutrient solution of Helrigel and salinyzed at stage of 2nd trifoliate expanded leaves by adding of NaCl at concentrations 40 mM and 80 mM. The chlorophyll fluorescence was registered by an USB2000 spectrometer in the spectral range 600-850 nm. As a source of actinic light a light emitting diode with the maximum of the light output at 470 nm was used. The course of the fluorescence spectra and the slow transient fluorescence kinetics were investigated. The Student's t-criterion and discriminant analysis were applied to estimate the changes between fluorescence spectra of control and treated soybean plants in five characteristic wavelengths in the spectral range 600-850 nm. Statistically significant differences were established by the t-criterion at p<0.05 for data at the first three wavelengths (at the middle of the leading edge, first maximum and at the middle of the first and second maximum) for both NaCl concentrations. The discriminant analysis confirmed these findings. A comparative analysis was performed with leaf spectral reflectance of the same plants collected in the spectral range 450-850 nm by the same spectrometer. All measurements were performed on the 14th day after the salinity treatment. The results from the implementation of the two remote sensing techniques (chlorophyll fluorescence and spectral reflectance) revealed that both NaCl concentrations brought to salinity stress in the nitrogen fixing soybean plants.

  19. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    PubMed Central

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-01-01

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532

  20. A Graphical User Interface for Parameterizing Biochemical Models of Photosynthesis and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Kornfeld, A.; Van der Tol, C.; Berry, J. A.

    2015-12-01

    Recent advances in optical remote sensing of photosynthesis offer great promise for estimating gross primary productivity (GPP) at leaf, canopy and even global scale. These methods -including solar-induced chlorophyll fluorescence (SIF) emission, fluorescence spectra, and hyperspectral features such as the red edge and the photochemical reflectance index (PRI) - can be used to greatly enhance the predictive power of global circulation models (GCMs) by providing better constraints on GPP. The way to use measured optical data to parameterize existing models such as SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) is not trivial, however. We have therefore extended a biochemical model to include fluorescence and other parameters in a coupled treatment. To help parameterize the model, we then use nonlinear curve-fitting routines to determine the parameter set that enables model results to best fit leaf-level gas exchange and optical data measurements. To make the tool more accessible to all practitioners, we have further designed a graphical user interface (GUI) based front-end to allow researchers to analyze data with a minimum of effort while, at the same time, allowing them to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. Here we discuss the tool and its effectiveness, using recently-gathered leaf-level data.

  1. The Use of Chlorophyll Fluorescence Lifetime to Assess Phytoplankton Physiology within a River-Dominated Environment

    NASA Technical Reports Server (NTRS)

    Hall, Callie M.; Miller, Richard L.; Redalje, Donald G.; Fernandez, Salvador M.

    2002-01-01

    Chlorophyll a fluorescence lifetime was measured for phytoplankton populations inhabiting the three physical zones surrounding the Mississippi River's terminus in the Gulf of Mexico. Observations of river discharge volume, nitrate + nitrite, silicate, phosphate, PAR (Photosynthetically Active Radiation) diffuse attenuation within the water column, salinity, temperature, SPM, and chl a concentration were used to characterize the distribution of chl fluorescence lifetime within a given region within restricted periods of time. 33 stations extending from the Mississippi River plume to the shelf break of the Louisiana coast were surveyed for analysis of chlorophyll fluorescence lifetime during two cruises conducted March 31 - April 6, 2000, and October 24 - November 1, 2000. At each station, two to three depths were chosen for fluorescence lifetime measurement to represent the vertical characteristics of the water column. Where possible, samples were taken from just below the surface and from just above and below the pycnocline. All samples collected were within the 1% light level of the water column (the euphotic zone). Upon collection, samples were transferred to amber Nalgene bottles and left in the dark for at least 15 minutes to reduce the effects of non-photochemical quenching and to insure that photosynthetic reaction centers were open. Before measurements within the phase fluorometer were begun, the instrument was allowed to warm up for no less than one hour.

  2. A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence.

    PubMed

    Wang, Ying; Qu, Tongfei; Zhao, Xinyu; Tang, Xianghai; Xiao, Hui; Tang, Xuexi

    2016-01-01

    Green tides have occurred in the Yellow Sea, China, every year from 2007 to 2015. The free-floating Ulva prolifera (Müller) J. Agardh was the causative macroalgal species. The co-occurring, attached U. intestinalis was also observed. Photosynthetic capacities were determined using chlorophyll fluorescence in situ and after 7 days lab acclimation, and a significant differences were noted. Pigment composition showed no obvious differences, but concentrations varied significantly, especially chlorophyll b in U. prolifera two times increase was observed after acclimation. The optimal photochemical efficiency of PS II (Fv/Fm) was significantly higher in U. prolifera. Photosynthetic rate (α), maximum relative electron transport rate (rETRmax), and minimum saturating irradiance (Ek), obtained from rapid light response curves (RLCs), showed almost the same photosynthetic physiological status as Fv/Fm. Quenching coefficients and low temperature (77 K) chlorophyll fluorescence emission spectra of thylakoid membranes analysis showed U. prolifera has a better recovery activity and plasticity of PSII than U. intestinalis. Furthermore, energy dissipation via non-photochemical quenching (NPQ) and state transitions showed efficacious photoprotection solution especially in U. prolifera suffered from the severe stresses. Results in the present study suggested that U. prolifera's higher photosynthetic capacity would contribute to its free-floating proliferation, and efficacious photoprotection in addition to favorable oceanographic conditions and high nutrient levels support its growth and aggregation. PMID:27386261

  3. Quenching action of monofunctional sulfur mustard on chlorophyll fluorescence: towards an ultrasensitive biosensor.

    PubMed

    Kaur, Simerjit; Singh, Minni; Flora, Swaran Jeet Singh

    2013-11-01

    An ultrasensitive fluorimetric biosensor for the detection of chemical warfare agent sulfur mustard (SM) was developed using its monofunctional analogue. SM is a vesicant and a potent chemical threat owing to its direct toxic effects on eyes, lungs, skin and DNA. This work investigates the quenching action of the analyte on chlorophyll fluorescence as elucidated by nuclear magnetic resonance, Fourier transform infrared spectroscopy and mass spectrometry studies suggesting the electrophilic attack of carbonium ion on nitrogens of the porphyrin moiety of chlorophyll. The properties of immobilisation matrix were optimised and scanning electron microscope observations confirmed improvement in pore size of sol-gels by addition of 32 % (v/v) glycerol, a feature enabling enhanced sensitivity towards the analyte. Chlorophyll embedded sol-gel was treated with increasing concentrations of monofunctional SM and the corresponding drop in maximum fluorescence intensity as measured by emission at 673 nm was observed, which varied linearly and had a detection limit of 7.68 × 10(-16) M. The biosensor was found to be 6 orders of magnitude more sensitive than the glass microfibre-based disc biosensor previously reported by us. PMID:23955347

  4. Effects of salinity and nutrients on the growth and chlorophyll fluorescence of Caulerpa lentillifera

    NASA Astrophysics Data System (ADS)

    Guo, Hui; Yao, Jianting; Sun, Zhongmin; Duan, Delin

    2015-03-01

    Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluorescence of the green algae cultured at different salinities and nutrient levels. The results indicated that C. lentillifera can survive in salinities ranging from 20 to 50, and can develop at salinities of 30 to 40. The maximum SGR for C. lentillifera occurred at a salinity of 35. Both chlorophyll content and the ratio of variable to maximum fluorescence ( F v/ F m) were also at a maximum at a salinity of 35. Photosynthesis was inhibited in salinities greater than 45 and less than 25. Both the maximum SGR and maximum chlorophyll content were found in algae treated with a concentration of 0.5 mmol/L of NO3-N and 0.1 mmol/L of PO4-P. The photosynthetic capacity of photosystem II (PSII) was inhibited in cultures of C. lentillifera at high nutrient levels. This occurred when NO3-N concentrations were greater than 1.0 mmol/L and when PO4-P concentrations were at 0.4 mmol/L. As there is strong need for large-scale cultivation of C. lentillifera, these data contribute important information to ensure optimal results.

  5. Airborne Laser-Induced Oceanic Chlorophyll Fluorescence: Solar-Induced Quenching Corrections by use of Concurrent Downwelling Irradiance Measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1998-05-01

    Airborne laser-induced (and water Raman-normalized) spectral fluorescence emissions from oceanic chlorophyll were obtained during variable downwelling irradiance conditions induced by diurnal variability and patchy clouds. Chlorophyll fluorescence profiles along geographically repeated inbound and outbound flight track lines, separated in time by 3 6 h and subject to overlying cloud movement, were found to be identical after corrections made with concurrent downwelling irradiance measurements. The corrections were accomplished by a mathematical model containing an exponential of the ratio of the instantaneous-to-average downwelling irradiance. Concurrent laser-induced phycoerythrin fluorescence and chromophoric dissolved organic matter fluorescence were found to be invariant to downwelling irradiance and thus, along with sea-surface temperature, established the near constancy of the oceanic surface layer during the experiment and validated the need for chlorophyll fluorescence quenching corrections over wide areas of the ocean.

  6. Remote Sensing of chlorophyll fluorescence and the impact of clouds on the retrival

    NASA Astrophysics Data System (ADS)

    Köhler, Philipp; Guanter, Luis; Frankenberg, Christian

    2013-04-01

    Remote sensing of sun-induced chlorophyll fluorescence (SIF) is a new, alternative option to gain information about terrestrial photosynthesis and CO2 assimilation on a global scale. The SIF is an electromagnetic signal emitted in the aprox. 650-800 nm spectral window by the photosynthesis apparatus, and can therefore be considered as a direct indicator of plant biochemical processes. The general approach to measure SIF from space is the evaluation of the in-filling of solar Fraunhofer lines or atmospheric absorption bands by SIF. To distinguish the SIF signal from the total incoming radiance at the sensor, which is about 100 times more intense, is a challenge and high resolution measurements are required. The high spectral resolution (approx. 0.02 nm) of the Fourier Transform Spectrometer (FTS) on-board the Greenhouse Gases Observing Satellite (GOSAT) enables such a measurement of SIF by means of the evaluation of the in-filling of solar Fraunhofer lines by SIF. The narrow wavelength band from 755 to 759 nm and around 770 nm can be used for this purpose because they are free from atmospheric absorption features, the solar radiation shows several Fraunhofer lines and the SIF values in this region are relatively high. A new SIF retrieval approach (GARLiC, for GOSAT Retrieval of cholorphyll fluorescence) will be presented in this contribution. This method is intended to simplify some of the assumptions of existing retrieval approaches without a loss in accuracy. The comparison of the GARLiC fluorescence retrievals with two state-of-the-art SIR retrieval methods such as those by Frankenberg et al. (2011) and Guanter et al. (2012) from GOSAT data shows corresponding and feasible results. In addition to the basics of SIF remote sensing, this contribution will assess the effect of clouds in the retrieval. To do this, the SIF retrieval has been coupled to a cloud optical thickness (COT) retrieval algorithm adapted to GOSAT-FTS O2A-band measurements, so that SIF and COT

  7. Integrating fluorometer for the measurement of chlorophyll fluorescence induction in intact plants

    NASA Astrophysics Data System (ADS)

    Toivonen, Peter; Vidaver, William

    1984-10-01

    An economical device for monitoring the integrated chlorophyll fluorescence emission of plant material is described. The system, which uniquely incorporates an integrating sphere, light source, photographic shutter, optical filters, and a photodetector is applicable to intact plants, whole leaves, or other materials. It is noninvasive and a single sample may be repeatedly tested over time intervals of minutes to months. Data obtained provide information about the sample size (i.e., leaf area, total chlorophyll content), and the photosynthetic activity of the sample. Samples of from a few mm2 to several cm2 can be accommodated depending on the diameter of the integrating sphere and excitation light source intensity. The device should be of interest to workers in plant breeding, genetic engineering, tissue culture, horticulture, herbicides, pollution, pathology, and environmental stress.

  8. Dualex: A New Instrument for Field Measurements of Epidermal Ultraviolet Absorbance by Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Goulas, Yves; Cerovic, Zoran G.; Cartelat, Aurélie; Moya, Ismaël

    2004-08-01

    Dualex (dual excitation) is a field-portable instrument, hereby described, for the assessment of polyphenolic compounds in leaves from the measurement of UV absorbance of the leaf epidermis by double excitation of chlorophyll fluorescence. The instrument takes advantage of a feedback loop that equalizes the fluorescence level induced by a reference red light to the UV-light-induced fluorescence level. This allows quick measurement from attached leaves even under field conditions. The use of light-emitting diodes and of a leaf-clip configuration makes Dualex a user-friendly instrument with potential applications in ecophysiological research, light climate analysis, agriculture, forestry, horticulture, pest management, selection of medicinal plants, and wherever accumulation of leaf polyphenolics is involved in plant responses to the environment.

  9. In vivo chlorophyll fluorescence study of hazardous waste site vegetation under field and controlled conditions

    SciTech Connect

    Mayasich, S.A.; Zygmont, N.J. CDM Federal Programs Corp., South Plainfield, NJ )

    1993-06-01

    Cattail (Typha sp.) and Arrow Arum (Peltandra virginica) were studied to determine the effects of cadmium and nickel contamination in a freshwater tidal marsh. An in vivo chlorophyll fluorescence instrument was used in the field to estimate photosynthetic capacity. No definitive effects on photosynthesis were observed. A laboratory study was then designed to determine whether fluorescence could detect sublethal impacts of cadmium and whether tolerant plants had developed in the contaminated area. Arrow Arum seeds collected from a reference wetland and from the contaminated wetland were grown in horticultural vermiculite with cadmium concentrations of 0, 1, 2, 5 and 10 mg/L. Results indicate that, regardless of seed origin, fluorescence can detect an effect at cadmium levels at which there are no visual signs of stress. However, the plants from the contaminated wetland exhibited reduced growth, and deformities in several individuals.

  10. Plant Chlorophyll Content Imager with Reference Detection Signals

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)

    2000-01-01

    A portable plant chlorophyll imaging system is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels is processed using synchronized video cameras. A controller provided in the system compares the level of light of video images reflected from a target plant with a reference level of light from a source illuminating the plant. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio video image which indicates a relative level of plant chlorophyll content and physiological stress. Multiple display modes are described for viewing the video images.

  11. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies.

    PubMed

    Zhou, Xijia; Liu, Zhigang; Xu, Shan; Zhang, Weiwei; Wu, Jun

    2016-01-01

    Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O₂-A and O₂-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O₂-A and O₂-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is

  12. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies

    PubMed Central

    Zhou, Xijia; Liu, Zhigang; Xu, Shan; Zhang, Weiwei; Wu, Jun

    2016-01-01

    Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O2-A and O2-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O2-A and O2-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is basically same

  13. Sensitive Detection of Phosphorus Deficiency in Plants Using Chlorophyll a Fluorescence.

    PubMed

    Frydenvang, Jens; van Maarschalkerweerd, Marie; Carstensen, Andreas; Mundus, Simon; Schmidt, Sidsel Birkelund; Pedas, Pai Rosager; Laursen, Kristian Holst; Schjoerring, Jan K; Husted, Søren

    2015-09-01

    Phosphorus (P) is a finite natural resource and an essential plant macronutrient with major impact on crop productivity and global food security. Here, we demonstrate that time-resolved chlorophyll a fluorescence is a unique tool to monitor bioactive P in plants and can be used to detect latent P deficiency. When plants suffer from P deficiency, the shape of the time-dependent fluorescence transients is altered distinctively, as the so-called I step gradually straightens and eventually disappears. This effect is shown to be fully reversible, as P resupply leads to a rapid restoration of the I step. The fading I step suggests that the electron transport at photosystem I (PSI) is affected in P-deficient plants. This is corroborated by the observation that differences at the I step in chlorophyll a fluorescence transients from healthy and P-deficient plants can be completely eliminated through prior reduction of PSI by far-red illumination. Moreover, it is observed that the barley (Hordeum vulgare) mutant Viridis-zb(63), which is devoid of PSI activity, similarly does not display the I step. Among the essential plant nutrients, the effect of P deficiency is shown to be specific and sufficiently sensitive to enable rapid in situ determination of latent P deficiency across different plant species, thereby providing a unique tool for timely remediation of P deficiency in agriculture. PMID:26162430

  14. Laser Induced Chlorophyll Fluorescence Spectra of Cajanus Cajan L Plant Growing Under Cadmium Stress

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Pandey, J. K.

    2010-06-01

    Laser-induced Chlorophyll fluorescence (LICF) spectra of Cajanus cajan L leaves treated with different concentrations of Cd (0.05, 0.5 and 1 mM) are recorded at 10 and 20 days after first treatment of cadmium. LICF spectra are recorded in the region of 650-780 nm using violet diode laser (405 nm). LICF spectra of plant leaves show two maxima near 685 and 730nm. Fluorescence induction kinetics (FIK) curve are recorded at 685 and 730 nm with red diode laser (635 nm) for excitation. The fluorescence intensity ratios (FIR) F685/F730 are calculated from LICF spectra and vitality index (Rfd) are determined from FIK curve. FIR and Rfd value are good stress indicator of plant health. These parameters along with chlorophyll content are used to analyze the effect of Cd on wheat plants. The result indicates that higher concentrations of Cd hazardous for photosynthetic activity and health of Arhar plants. The lower concentration of 0.05 mM shows stimulatory response up to 10 days while after 20 days this concentration also shows inhibitory response. R. Gopal, K. B. Mishra, M. Zeeshan, S. M. Prasad, and M. M. Joshi Curr. Sci., 83, 880, 2002 K. B. Mishra and R. Gopal Int. J. Rem. Sen., 29, 157, 2008 R. Maurya, S. M. Prasad, and R. Gopal J. Photochem. Photobio. C: Photochem. Rev., 9, 29, 2008

  15. Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP.

    PubMed

    Oukarroum, Abdallah; El Madidi, Saïd; Strasser, Reto J

    2016-08-01

    The objective of this study was to differentiate the heat tolerance in ten varieties of barley (Hordeum vulgare L.) originating from Morocco. Five modern varieties and five landraces (local varieties) collected at five different geographical localities in the south of Morocco were investigated in the present study. After two weeks of growth, detached leaves were short term exposure to various temperatures (25, 30, 35, 40, and 45 °C) for 10 min in the dark. Two chlorophyll a fluorescence parameters derived from chlorophyll a fluorescence transient (OKJIP) (performance index (PIABS) and relative variable fluorescence at the K-step (VK)) were analysed. Heat treatment had a significant effect on the PIABS and VK at 45 °C treatment and the analysis of variance for PIABS and VK is highly significant between all varieties. The slope of the relationship between logPIABS and VK named heat sensitivity index (HSI) was used to evaluate the thermotolerance of photosystem II (PSII) between the studied barley varieties. According to this approach, barley varieties were screened and ranked for improving heat tolerance. HSI was found to be a new indicator with regard to distinguishing heat tolerance of different barley cultivars. PMID:27093113

  16. Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.

    2000-01-01

    In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.

  17. Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll- a detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhao, Chaofang; Ma, Youjun; Liu, Zhishen

    2014-08-01

    A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll- a (Chl- a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl- a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl- a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels ( I 495/ I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl- a concentrations in the upper layer of the ocean. A comparison of relative Chl- a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl- a in the upper layer of ocean water.

  18. Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii.

    PubMed

    Rodrigues, Lisa J; Grottoli, Andréa G; Lesser, Michael P

    2008-08-01

    Chlorophyll fluorescence has been used to predict and monitor coral bleaching over short timescales (hours to days), but long-term changes during recovery remain largely unknown. To evaluate changes in fluorescence during long-term bleaching and recovery, Porites compressa and Montipora capitata corals were experimentally bleached in tanks at 30 degrees C for 1 month, while control fragments were maintained at 27 degrees C. A pulse amplitude modulated fluorometer measured the quantum yield of photosystem II fluorescence (Fv/Fm) of the zooxanthellae each week during bleaching, and after 0, 1.5, 4 and 8 months recovery. M. capitata appeared bleached 6 days sooner than P. compressa, yet their fluorescence patterns during bleaching did not significantly differ. Changes in minimum (Fo), maximum (Fm) and variable (Fv) fluorescence throughout bleaching and recovery indicated periods of initial photoprotection followed by photodamage in both species, with P. compressa requiring less time for photosystem II (PS II) repair than M. capitata. Fv/Fm fully recovered 6.5 months earlier in P. compressa than M. capitata, suggesting that the zooxanthellae of P. compressa were more resilient to bleaching stress. PMID:18626085

  19. Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses

    PubMed Central

    Żurek, Grzegorz; Rybka, Krystyna; Pogrzeba, Marta; Krzyżak, Jacek; Prokopiuk, Kamil

    2014-01-01

    Chlorophyll a fluorescence gives information about the plant physiological status due to its coupling to the photosynthetic electron transfer chain and to the further biochemical processes. Environmental stresses, which acts synergistically, disturbs the photosynthesis. The OJIP test, elaborated by Strasser and co-workers, enables comparison of the physiological status of plants grown on polluted vs. control areas. The paper shows that the Chl a measurements are very useful tool in evaluating of heavy metal ions influence on perennial grasses, tested as potential phytoremediators. Among 5 cultivars tested, the highest concentration of Cd and Zn ions, not associated with the yield reduction, was detected in the biomass of tall fescue cv. Rahela. Chl a fluorescence interpreted as double normalized curves pointed out Rahela as the outstanding cultivar under the HM ions stress. PMID:24633293

  20. Chlorophyll Fluorescence Near the Shoreline: Connections to Waves and Wave-Driven Currents

    NASA Astrophysics Data System (ADS)

    Omand, M. M.; Leichter, J. J.; Feddersen, F.; Franks, P. J.; McKenna, M. F.; Rippy, M.; Guza, R.

    2006-12-01

    Coastal phytoplankton communities may be significantly affected by breaking internal and surface gravity waves. For example, internal surges have been implicated in cross-shore transport, and rip currents (generated in the surf zone by breaking surface waves) are associated with mixing of water and organisms between the surf zone and the inner shelf. A month-long study at Huntington Beach CA in Fall 2006 will explore the connections between breaking wave driven currents and nutrients, chlorophyll-a fluorescence, phytoplankton taxa and abundance in the nearshore water. Two cross-shore mooring transects (deployed by USGS and Orange County Sanitation District) will sample the vertical structure of currents, temperature and salinity between 8 and 50 m water depth. Surface gravity waves will be measured with a directional wave buoy in 22 m depth. We will acquire additional small boat CTD+F, optical nitrate, Wire-Walker CTD+F, and bottle estimates of macronutrients, phytoplankton taxa and biomass. Different observing techniques are required in the surfzone. Currents, temperature, and waves will be measured on 7 durable, bottom-mounted tripods deployed between the shoreline and 4m depth. In situ chlorophyll-a fluorescence will be observed at 4 cross-shore locations. A novel jetski platform will provide high spatial resolution maps of chlorophyll and temperature, 20 cm below the water surface. Strong stratification is expected during the experiment, and results relevant to the propagation of internal waves and effects for phytoplankton and nutrients fluxes in the surfzone will be presented. Funded by CA Seagrant, CA Coastal Conservancy, and ONR.

  1. Millimeter scale profiles of chlorophyll fluorescence: Deciphering the microscale spatial structure of phytoplankton

    NASA Astrophysics Data System (ADS)

    Doubell, Mark J.; Prairie, Jennifer C.; Yamazaki, Hidekatsu

    2014-03-01

    Marine food webs and biogeochemical cycles are driven by interactions between individual phytoplankton and other micro-organisms embedded within turbulent flows. Understanding the causes and ecological consequences of these interactions requires measurement of the spatial distribution of organisms across sub-meter scales relevant to their activities. However, estimates of many microscale processes (e.g., encounter rates, competition) are implicitly based on a random distribution of plankton despite increasing evidence of patchy distributions of turbulence and phytoplankton at the oceans microscale. Further complicating our understanding of microscale phytoplankton ecology, recent studies have suggested that the high levels of fluorescence variability measured at sub-centimeter scales may be due to the detection of separate, large phytoplankton particles (i.e. large cells, chains and aggregates) rather than 'patches' of increased cell abundances. By comparing coincident fluorescence estimates measured with millimeter (μL) and centimeter (mL) scale resolution, we show that estimates of phytoplankton biomass made at centimeter scales are consistent with averaging discrete variations in fluorescence measured at millimeter scales and that a critical scale exists where measures of fluorescence variability transitions from representing an individual to a patch. Application of nearest neighbor analysis to the discrete fluorescence patterns showed deviations from complete spatial randomness towards clustering across scales of millimeters to tens of centimeters. The strength of the deviation from random increased significantly in regions of elevated phytoplankton concentrations. No relationship was observed between fluorescent particle concentrations or nearest neighbor distances with the rate of dissipation of turbulent kinetic energy. Our results provide empirical evidence that the scale at which phytoplankton distributions are estimated by chlorophyll fluorescence may be

  2. Chlorophyll Fluorescence Is a Better Proxy for Sunlit Leaf Than Total Canopy Photosynthesis

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Wang, Z.; Zhang, F.; Mo, G.

    2015-12-01

    Chlorophyll fluorescence (CF) results from non-photochemical quenching during plant photosynthesis under excessive radiation. We explore the relationship between gross primary productivity (GPP) and CF using a process ecosystem model, which separates a vegetation canopy into sunlit and shaded leaf groups and simulates the total canopy GPP as the sum of sunlit and shaded leaf GPP. Using GOME-2 and GOSAT data acquired in 2010 over the global land surface, we found that measured CF signals gridded in 1 degree resolution are well correlated with simulated total GPP and its sunlit and shaded components, but the correlation coefficients (R) are largest for the sunlit GPP and smallest for shaded GPP. The seasonal R2 values vary from 0.57 to 0.74, 0.58 to 0.71, and 0.48 to 0.56 for sunlit, total and shaded GPP, respectively. The significance levels for these correlations are all greater than p<0.01. Averaged over the globe, the total simulated shaded GPP is 39% of the total GPP. Theoretically, CF from vegetation comes mostly from sunlit leaves. The significant correlation between measured canopy-level CF and the shaded GPP is likely due to the correlation between shaded and sunlit GPP as both increase with leaf area index. Our simulation confirms the validity of using canopy-level CF measurements to assess the total GPP as the first approximation, although these measurements are a consistently better indicator of sunlit GPP than total GPP. In previous studies, the R2 values for the correlation between CF and total GPP were found to range from 0.76 to 0.88, 0.56 to 0.78, and 0.57 to 0.77 for MPI-BGC, MODIS and CASA model results, respectively. These values are similar or larger than those for sunlit GPP simulated in our study, but are considerably larger than those for total GPP in our study because the correlation for total GPP is contaminated by the inclusion of shaded GPP. All these three models use canopy total light use efficiency without considering the differences

  3. Detection of Photosynthetic Performance of Stipa bungeana Seedlings under Climatic Change using Chlorophyll Fluorescence Imaging

    PubMed Central

    Song, Xiliang; Zhou, Guangsheng; Xu, Zhenzhu; Lv, Xiaomin; Wang, Yuhui

    2016-01-01

    In this study, the impact of future climate change on photosynthetic efficiency as well as energy partitioning in the Stipa bungeana was investigated by using chlorophyll fluorescence imaging (CFI) technique. Two thermal regimes (room temperature, T0: 23.0/17.0°C; High temperature, T6: 29.0/23.0°C) and three water conditions (Control, W0; Water deficit, W−30; excess precipitation, W+30) were set up in artificial control chambers. The results showed that excess precipitation had no significant effect on chlorophyll fluorescence parameters, while water deficit decreased the maximal quantum yield of photosystem II (PSII) photochemistry for the dark-adapted state (Fv/Fm) by 16.7%, with no large change in maximal quantum yield of PSII photochemistry for the light-adapted state (FV′/FM′) and coefficient of the photochemical quenching (qP) at T0 condition. Under T6 condition, high temperature offset the negative effect of water deficit on Fv/Fm and enhanced the positive effect of excess precipitation on Fv/Fm, Fv′/Fm′, and qP, the values of which all increased. This indicates that the temperature higher by 6°C will be beneficial to the photosynthetic performance of S. bungeana. Spatial changes of photosynthetic performance were monitored in three areas of interest (AOIs) located on the bottom, middle and upper position of leaf. Chlorophyll fluorescence images (Fv/Fm, actual quantum yield of PSII photochemistry for the light-adapted state (ΦPSII), quantum yield of non-regulated energy dissipation for the light-adapted state (ΦNO) at T0 condition, and ΦPSII at T6 condition) showed a large spatial variation, with greater value of ΦNO and lower values of Fv/Fm and ΦPSII in the upper position of leaves. Moreover, there was a closer relationship between ΦPSII and ΦNO, suggesting that the energy dissipation by non-regulated quenching mechanisms played a dominant role in the yield of PSII photochemistry. It was also found that, among all measured fluorescence

  4. Chlorophyll Fluorescence Emissions of Vegetation Canopies From High Resolution Field Reflectance Spectra

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva

    2006-01-01

    A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also

  5. A Method for Chlorophyll Fluorescence Imaging Control of the Vegetation under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Krumov, A.; Vassilev, V.; Vassilev, N.

    term space exploration and flights. The goal is to provide a more natural environment on physiological, psychological and even esthetical levels for the astronauts. One of the important issues to be solved is development of methodologies and apparatus for continuous in-flight monitoring the biophysical status of the vegetation in order to assure it within the required physiological conditions. performed in the last years. There, applying qualitative observations and/or measurement of certain physiological parameters on different vegetation samples, the monitoring of the plant biostatus is done. These samples are prepared and characterized directly on board of the spacecraft, or are sent back to Earth, usually in a dried condition, for further investigation. In such a way, it is not possible to have a quick, real time control of the dynamics of the vegetation bioprocesses. When sudden plant stress condition appears, this can lead to a delayed and improper intervention by the operator and to irreversible changes in the physiological functions of the vegetation. A very promising approach for controlling the vegetation physiological processes and early detection of stress conditions is using the light induced chlorophyll fluorescence as an indicator for the plant biostatus. the registration of the intensity and the spatial distribution of the chlorophyll fluorescence, induced by a discrete spectrum light flux. The use of discontinuous spectrum is implied by the fact that the fluorescence irradiated by the vegetation is of much lower intensity than the one of the incident light. When the incident flux has a wide continuos spectrum, including the spectral bands of florescence, the latter is difficult to detect directly. We suggest to measure the fluorescence in bands of approximately 10nm width, centered at the maximum intensity fluorescence wave lengths, in which the spectrum of the incident light to be discontinued. These maxima of fluorescence are at 440nm and 520nm

  6. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa.

    PubMed

    Piniak, Gregory A; Brown, Eric K

    2009-02-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa-a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F(v)/F(m)), higher light-adapted effective quantum yield (DeltaF/F'(m)), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat-temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in F(v)/F(m) between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. PMID:19218492

  7. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa

    USGS Publications Warehouse

    Piniak, G.A.; Brown, E.K.

    2009-01-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.

  8. Chlorophyll a fluorescence lifetime reveals reversible UV-induced photosynthetic activity in the green algae Tetraselmis.

    PubMed

    Kristoffersen, Arne S; Hamre, Børge; Frette, Øyvind; Erga, Svein R

    2016-04-01

    The fluorescence lifetime is a very useful parameter for investigating biological materials on the molecular level as it is mostly independent of the fluorophore concentration. The green alga Tetraselmis blooms in summer, and therefore its response to UV irradiation is of particular interest. In vivo fluorescence lifetimes of chlorophyll a were measured under both normal and UV-stressed conditions of Tetraselmis. Fluorescence was induced by two-photon excitation using a femtosecond laser and laser scanning microscope. The lifetimes were measured in the time domain by time-correlated single-photon counting. Under normal conditions, the fluorescence lifetime was 262 ps, while after 2 h of exposure to UV radiation the lifetime increased to 389 ps, indicating decreased photochemical quenching, likely caused by a damaged and down-regulated photosynthetic apparatus. This was supported by a similar increase in the lifetime to 425 ps when inhibiting photosynthesis chemically using DCMU. Furthermore, the UV-stressed sample was dark-adapted overnight, resulting in a return of the lifetime to 280 ps, revealing that the damage caused by UV radiation is repairable on a relatively short time scale. This reversal of photosynthetic activity was also confirmed by [Formula: see text] measurements. PMID:26538330

  9. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis

    PubMed Central

    Ciszak, Kamil; Kulasek, Milena; Barczak, Anna; Grzelak, Justyna; Maćkowski, Sebastian; Karpiński, Stanisław

    2015-01-01

    Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4–1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4–1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4–1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4–1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4–1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress. PMID:25654166

  10. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis

    PubMed Central

    2013-01-01

    Background In order to select for quantitative plant resistance to pathogens, high throughput approaches that can precisely quantify disease severity are needed. Automation and use of calibrated image analysis should provide more accurate, objective and faster analyses than visual assessments. In contrast to conventional visible imaging, chlorophyll fluorescence imaging is not sensitive to environmental light variations and provides single-channel images prone to a segmentation analysis by simple thresholding approaches. Among the various parameters used in chlorophyll fluorescence imaging, the maximum quantum yield of photosystem II photochemistry (Fv/Fm) is well adapted to phenotyping disease severity. Fv/Fm is an indicator of plant stress that displays a robust contrast between infected and healthy tissues. In the present paper, we aimed at the segmentation of Fv/Fm images to quantify disease severity. Results Based on the Fv/Fm values of each pixel of the image, a thresholding approach was developed to delimit diseased areas. A first step consisted in setting up thresholds to reproduce visual observations by trained raters of symptoms caused by Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R on Phaseolus vulgaris cv. Flavert. In order to develop a thresholding approach valuable on any cultivars or species, a second step was based on modeling pixel-wise Fv/Fm-distributions as mixtures of Gaussian distributions. Such a modeling may discriminate various stages of the symptom development but over-weights artifacts that can occur on mock-inoculated samples. Therefore, we developed a thresholding approach based on the probability of misclassification of a healthy pixel. Then, a clustering step is performed on the diseased areas to discriminate between various stages of alteration of plant tissues. Notably, the use of chlorophyll fluorescence imaging could detect pre-symptomatic area. The interest of this image analysis procedure for assessing the levels of

  11. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency. PMID:27228602

  12. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.

    PubMed

    Junker, Laura Verena; Ensminger, Ingo

    2016-06-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species such as sugar maple (Acer saccharum Marsh.) undergo senescence, which is associated with downregulation of photosynthesis and a change of leaf color. The remote sensing of leaf color by spectral reflectance measurements and digital repeat images is increasingly used to improve models of growing season length and seasonal variation in carbon sequestration. Vegetation indices derived from spectral reflectance measurements and digital repeat images might not adequately reflect photosynthetic efficiency of red-senescing tree species during autumn due to the changes in foliar pigment content associated with autumn phenology. In this study, we aimed to assess how effectively several widely used vegetation indices capture autumn phenology and reflect the changes in physiology and photosynthetic pigments during autumn. Chlorophyll fluorescence and pigment content of green, yellow, orange and red leaves were measured to represent leaf senescence during autumn and used as a reference to validate and compare vegetation indices derived from leaf-level spectral reflectance measurements and color analysis of digital images. Vegetation indices varied in their suitability to track the decrease of photosynthetic efficiency and chlorophyll content despite increasing anthocyanin content. Commonly used spectral reflectance indices such as the normalized difference vegetation index and photochemical reflectance index showed major constraints arising from a limited representation of gradual decreases in chlorophyll content and an influence of high foliar anthocyanin levels. The excess green index and green-red vegetation index were more suitable to assess the process of senescence. Similarly, digital image analysis revealed that vegetation

  13. High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione.

    PubMed

    Barták, M; Hájek, J; Vráblíková, H; Dubová, J

    2004-05-01

    The effect of high light on spatial distribution of chlorophyll (Chl) fluorescence parameters over a lichen thallus (Umbilicaria antarctica) was investigated by imaging of Chl fluorescence parameters before and after exposure to high light (1500 micro mol m (-2) s (-1), 30 min at 5 degrees C). False colour images of F (V)/F (M) and Phi (II) distribution, taken over thallus with 0.1 mm (2) resolution, showed that maximum F (V)/F (M) and Phi (II) values were located close to the thallus centre. Minimum values were typical for thallus margins. After exposure to high light, a differential response of F (V)/F (M) and Phi (II) was found. The marginal thallus part exhibited a loss of photosynthetic activity, manifested as a lack of Chl fluorescence signal, and close-to-centre parts showed a different extent of F (V)/F (M) and Phi (II) decrease. Subsequent recovery in the dark led to a gradual return of F (V)/F (M) and Phi (II) to their initial values. Fast (30 min) and slow (1 - 22 h) phase of recovery were distinguished, suggesting a sufficient capacity of photoprotective mechanisms in U. antarctica to cope with low-temperature photoinhibition. Glutathione and xanthophyll cycle pigments were analyzed by HPLC. High light led to an increase in oxidized glutathione (GSSG), and a conversion of violaxanthin to zeaxanthin, expressed as their de-epoxidation state (DEPS). The responses of GSSG and DEPS were reversible during subsequent recovery in the dark. GSSG and DEPS were highly correlated to non-photochemical quenching (NPQ), indicating involvement of these antioxidants in the resistance of U. antarctica to high-light stress. Heterogeneity of Chl fluorescence parameters over the thallus and differential response to high light are discussed in relation to thallus anatomy and intrathalline distribution of the symbiotic alga Trebouxia sp. PMID:15143442

  14. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor.

    PubMed

    Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor

    2015-04-01

    The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants. PMID:25708622

  15. Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo

    PubMed Central

    Matsubara, Shizue; Chow, Wah Soon

    2004-01-01

    Photosystem (PS) II centers, which split water into oxygen, protons, and electrons during photosynthesis, require light but are paradoxically inactivated by it. Prolonged light exposure concomitantly decreased both the functional fraction of PSII reaction centers and the integral PSII chlorophyll (Chl) a fluorescence lifetime in leaf segments of Capsicum annuum L. Acceleration of photoinactivation of PSII by a pretreatment with the inhibitors/uncoupler lincomycin, DTT, or nigericin further reduced PSII Chl a fluorescence lifetimes. A global analysis of fluorescence lifetime distributions revealed the presence of at least two distinct populations of photoinactivated PSII centers, one at 1.25 ns, and the other at 0.58 ns. Light treatment first increased the 1.25-ns component, a weak quencher, at the expense of a component at 2.22 ns corresponding to functional PSII centers. The 0.58-ns component, a strong quencher, emerged later than the 1.25-ns component. The strongly quenching PSII reaction centers could serve to avoid further damage to themselves and protect their functional neighbors by acting as strong energy sinks. PMID:15601775

  16. Examination of chlorophyll fluorescence decay kinetics in sulfur deprived algae Chlamydomonas reinhardtii.

    PubMed

    Volgusheva, A A; Zagidullin, V E; Antal, T K; Korvatovsky, B N; Krendeleva, T E; Paschenko, V Z; Rubin, A B

    2007-06-01

    Chlorophyll fluorescence decay kinetics was measured in sulfur deprived cells of green alga Chlamydomonas reinhardtii with a home made picosecond fluorescence laser spectrometer. The measurements were carried out on samples either shortly adapted to the dark ('Fo conditions') or treated to reduce Qa ('Fm conditions'). Bi-exponential fitting of decay kinetics was applied to distinguish two components one of them related to energy trapping (fast component) and the other to charge stabilization and recombination in PS 2 reaction centers (slow component). It was found that the slow component yield increased by 2.0 and 1.2 times when measured under 'Fo' and 'Fm conditions', respectively, in sulfur deprived cells as compared to control ones. An additional rapid rise of the slow component yield was observed when incubation was carried out in a sealed bioreactor and cell culture turned to anaerobic conditions. The obtained results strongly indicate the existence of the redox control of PS 2 activity during multiphase adaptation of C. reinhardtii to sulfur deficiency stress. Probable mechanisms responsible for the observed increased recombinant fluorescence yield in starved cells are discussed. PMID:17543273

  17. [Remote sensing of chlorophyll fluorescence at airborne level based on unmanned airship platform and hyperspectral sensor].

    PubMed

    Yang, Pei-Qi; Liu, Zhi-Gang; Ni, Zhuo-Ya; Wang, Ran; Wang, Qing-Shan

    2013-11-01

    The solar-induced chlorophyll fluorescence (ChlF) has a close relationship with photosynthetic and is considered as a probe of plant photosynthetic activity. In this study, an airborne fluorescence detecting system was constructed by using a hyperspectral imager on board an unmanned airship. Both Fraunhofer Line Discriminator (FLD) and 3FLD used to extract ChlF require the incident solar irradiance, which is always difficult to receive at airborne level. Alternative FLD (aFLD) can overcome the problem by selecting non-fluorescent emitter in the image. However, aFLD is based on the assumption that reflectance is identical around the Fraunhofer line, which is not realistic. A new method, a3FLD, is proposed, which assumes that reflectance varies linearly with the wavelength around Fraunhofer line. The result of simulated data shows that ChlF retrieval error of a3FLD is significantly lower than that of aFLD when vegetation reflectance varies near the Fraunhofer line. The results of hyperspectral remote sensing data with the airborne fluorescence detecting system show that the relative values of retrieved ChlF of 5 kinds of plants extracted by both aFLD and a3FLD are consistent with vegetation growth stage and the ground-level ChlF. The ChlF values of aFLD are about 15% greater than a3FLD. In addition, using aFLD, some non-fluorescent objects have considerable ChlF value, while a3FLD can effectively overcome the problem. PMID:24555390

  18. Does sun-induced Chlorophyll fluorescence well capture canopy photosynthesis in a rice paddy?

    NASA Astrophysics Data System (ADS)

    Kimm, H.; Ryu, Y.; Kang, M.; Kim, J.

    2015-12-01

    Sun-induced chlorophyll fluorescence (SiF) has emerged as a convincing indicator of carbon assimilation rates under diverse environmental conditions. Here, we present a continuous observation system of SiF at a sporadically irrigated rice paddy site in South Korea. Our site also includes automatic observation systems for eddy covariance, water table depth, and spectral sensors which are composed of LED sensors, and RGB- and NIR cameras. Additionally, we conducted manual observations of photosynthetic parameters (Li-6400), leaf area index (LAI-2200), NDVI and PRI (ASD FieldSpec) once per ten days on average. By analyzing manual- and automatic field observations, we quantify carbon budget of the site. Finally, we investigate how accurately SiF detects canopy photosynthesis, and discuss what factors mainly control canopy photosynthesis.

  19. Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2

    NASA Technical Reports Server (NTRS)

    Frankenberg, Christian; Odell, Chris; Berry, Joseph; Guanter, Luis; Joiner, Joanna; Kohler, Philipp; Pollock, Randy; Taylor, Thomas E.

    2014-01-01

    The Orbiting Carbon Observatory-2 (OCO-2), scheduled to launch in July 2014, is a NASA mission designed to measure atmospheric CO2. Its main purpose is to allow inversions of net flux estimates of CO2 on regional to continental scales using the total column CO2 retrieved using high-resolution spectra in the 0.76, 1.6, and 2.0 nm ranges. Recently, it was shown that solar-induced chlorophyll fluorescence (SIF), a proxy for gross primary production (GPP, carbon uptake through photosynthesis), can be accurately retrieved from space using high spectral resolution radiances in the 750 nm range from the Japanese GOSAT and European GOME-2 instruments. Here, we use real OCO-2 thermal vacuum test data as well as a full repeat cycle (16 days) of simulated OCO-2 spectra under realistic conditions to evaluate the potential of OCO-2 for retrievals of chlorophyll fluorescence and also its dependence on clouds and aerosols. We find that the single-measurement precision is 0.3-0.5 Wm(exp -2)sr(exp -1) nm(exp -1) (15-25% of typical peak values), better than current measurements from space but still difficult to interpret on a single-sounding basis. The most significant advancement will come from smaller ground-pixel sizes and increased measurement frequency, with a 100-fold increase compared to GOSAT (and about 8 times higher than GOME-2). This will largely decrease the need for coarse spatial and temporal averaging in data analysis and pave the way to accurate local studies.We also find that the lack of full global mapping from the OCO-2 only incurs small representativeness errors on regional averages. Eventually, the combination of net ecosystem exchange (NEE) derived from CO2 source/sink inversions and SIF as proxy for GPP from the same satellite will provide a more process-based understanding of the global carbon cycle.

  20. Modeling regional cropland GPP by empirically incorporating sun-induced chlorophyll fluorescence into a coupled photosynthesis-fluorescence model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Guanter, L.; Van der Tol, C.; Joiner, J.; Berry, J. A.

    2015-12-01

    Global sun-induced chlorophyll fluorescence (SIF) retrievals are currently available from several satellites. SIF is intrinsically linked to photosynthesis, so the new data sets allow to link remotely-sensed vegetation parameters and the actual photosynthetic activity of plants. In this study, we used space measurements of SIF together with the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model in order to simulate regional photosynthetic uptake of croplands in the US corn belt. SCOPE couples fluorescence and photosynthesis at leaf and canopy levels. To do this, we first retrieved a key parameter of photosynthesis model, the maximum rate of carboxylation (Vcmax), from field measurements of CO2 and water flux during 2007-2012 at some crop eddy covariance flux sites in the Midwestern US. Then we empirically calibrated Vcmax with apparent fluorescence yield which is SIF divided by PAR. SIF retrievals are from the European GOME-2 instrument onboard the MetOp-A platform. The resulting apparent fluorescence yield shows a stronger relationship with Vcmax during the growing season than widely-used vegetation index, EVI and NDVI. New seasonal and regional Vcmax maps were derived based on the calibration model for the cropland of the corn belt. The uncertainties of Vcmax were also estimated through Gaussian error propagation. With the newly derived Vcmax maps, we modeled regional cropland GPP during the growing season for the Midwestern USA, with meteorological data from MERRA reanalysis data and LAI from MODIS product (MCD15A2). The results show the improvement in the seasonal and spatial patterns of cropland productivity in comparisons with both flux tower and agricultural inventory data.

  1. [Effects of controlled-release fertilizer on chrysanthemum leaf chlorophyll fluorescence characteristics and ornamental quality].

    PubMed

    Song, Xu-xu; Zheng, Cheng-shu; Sun, Xia; Ma, Hai-yan

    2011-07-01

    Taking cut flower chrysanthemum 'Baima' as test material, a pot experiment was conducted to study the effects of controlled-release fertilizer on the leaf chlorophyll fluorescence parameters, chlorophyll and nutrient contents, and ornamental quality of chrysanthemum. Under no fertilization, the maximal photochemical efficiency of PS II in dark (F(v)/F(m)), potential photochemical efficiency of PS II (F(v)/F(0)), and quantum yield of PS II electron transport (phi(PS II)) decreased significantly, compared with those under fertilization. With the application of conventional compound fertilizers CCFA (N:P:K=20:8:10) and CCFB (N:P:K= 14:14:14), the F(v)/F(m), F(v)/F(0) and phi(PS II) had a slight increase in early period (30-60 d) but a remarkable decrease in mid and later periods (75 - 120 d), compared with those under the application of controlled-release fertilizers CRFA (N:P:K = 20:8:10) and CRFB (N:P:K= 14:14:14). Under the application of CRFA, the F(v)/F(m), phi(PS II), and photochemical quenching (q(P)) had somewhat increase, as compared with the application of CRFB. The non-photochemical quenching (NPQ) under the application of CRFA and CRFB decreased significantly, compared with that under the application of CCFA and CCFB and the control. The chlorophyll content had a similar change trend with F(v)/F(m), F(v)/F(0), and phi(PS II). The leaf N, P, and K contents, flower stalk length and stalk diameter, flower diameter, and flower fresh and dry mass at harvest stage all increased under the application of CRFA and CRFB, compared with those under the application of CCFA and CCFB and the control, and the flower fresh and dry mass was significantly higher under the application of CRFA than of CRFB. This study showed that controlled-release fertilizer could improve the ornamental quality of chrysanthemum via improving the leaf chlorophyll content, photochemical transduction rate, and nutrient uptake, and CRFA had better effects than CRFB. PMID:22007449

  2. Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin ain Marine and Freshwater Algae by Fluorescence

    EPA Science Inventory

    This method provides a procedure for low level determination of chlorophyll a (chl a) and its magnesium free derivative, pheophytin a (pheo a), in marine and freshwater phytoplankton using fluorescence detection.(1,2) Phaeophorbides present in the sample are determined collective...

  3. Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis, and nutrient efficiency of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the combined effects of phosphorus nutrition and CO2 on photosynthetic and chlorophyll fluorescence (CF) processes, and nutrient utilization and uptake, two controlled environment experiments were conducted using 0.20, 0.05 and 0.01 mM external phosphate (Pi) nutrition each at ambient and...

  4. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  5. [Effects of simulating acid rain on photosynthesis and chlorophyll fluorescence parameters of Quercus glauca Quercus glauca].

    PubMed

    Wang, Sai; Yi, Li-Ta; Yu, Shu-Quan; Zhang, Chao; Shi, Jing-Jing

    2014-08-01

    At three levels of simulated acid rainfall intensities with pH values of 2.5 (severe), 40 (medium) and 5.6 (light) respectively, the responses of chlorophyll fluorescence and photosynthetic parameters of Quercus glauca seedlings were studied in three acid rainfall treatments, i. e. only the aboveground of seedlings exposed to acid rain (T1), both of the seedlings and soil exposed to acid rain (T2), only the soil exposed to acid rain (T3) compared with blank control (CK). Under the severe acid rainfall, T1 significantly inhibited chlorophyll synthesis, and thus reduced the primary photochemical efficiency of PS II ( F(v)/F(m)), potential activity of PS II (F(v)/F(o)) , apparent quantum (Y), net photosynthetic rate (P(n)), and transpiration rate (T(r)), but increased the light compensation point (LCP) and dark respiration rate (R(d)) of Q. glauca seedlings. T2 inhibited, but T3 played a little enhancement on the aforementioned parameters of Q. glauca seedlings. Under the conditions of medium and light acid rainfall intensities, the above parameters in the three treatments were higher than that of CK, except with lower R(d). The chlorophyll fluorescence and photosynthetic parameters showed a similar tendency in the three treatments, i. e. T2>T3 >T1. It indicated that T1 had the strongest inhibition on seedlings in condition of the severe acid rainfall, while T2 had the most dramatic facilitating effect on seedlings under the medium and light acid rainfall. Intensity of acid rainfall had significant influences on SPAD, F(v)/F(m), F(v)/F(o), Y, P(n), T(r), and maximum photosynthetic rate (A(max)), whereas treatments of acid rainfall affected SPAD, F(v)/F(m), Y, P(n), T(r), A(max) and light saturation point (LSP). The interaction of acid rainfall intensities and treatments played significant effects on SPAD, F(v)/F(m), Y, P(n) and A(max). PMID:25509066

  6. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO42− Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System

    PubMed Central

    Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying

    2016-01-01

    A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO42− in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05′40′′ N, 120°31′32′′ E) in October 2014. To detect chl-a, CDOM, carotenoids and SO42−, the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO42−. To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO42− concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO42− in the ocean. PMID:27420071

  7. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO₄(2-) Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System.

    PubMed

    Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying

    2016-01-01

    A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO₄(2-) in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05'40'' N, 120°31'32'' E) in October 2014. To detect chl-a, CDOM, carotenoids and SO₄(2-), the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO₄(2-). To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO₄(2-) concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO₄(2-) in the ocean. PMID:27420071

  8. Multispectral In-situ Measurements of Organic Matter and Chlorophyll Fluorescence in Seawater: Documenting the Intrusion of the Mississippi River Plume in the West Florida Shelf

    NASA Technical Reports Server (NTRS)

    DelCastillo, Carlos E.; Coble, Paula G.; Conmy, Robyn N.; Mueller-Karger, Frank E.; Vanderbloomen, Lisa; Vargo, Gabriel A.

    2000-01-01

    We performed multispectral in-situ fluorescence measurement of colored dissolved organic matter and chlorophyll in surface water of the West Florida Shelf using West Labs Spectral absorption and Fluorescence Instrument (SAFIre). Continuous measurements underway allowed us to simultaneously map the dispersion of riverine organic material and chlorophyll on the shelf. By using two fluorescence emission ratios we were able to differentiate between riverine and marine CDOM. Our data also showed unusually high concentrations of CDOM offshore. These were attributed to an intrusion of the Mississippi River Plume. We performed limited comparisons between in-situ chlorophyll concentrations measured with SAFIre and chlorophyll values obtained from SeaWiFS satellite data using OC4 and MODIS algorithm. Our results show that, although both algorithms overestimated chlorophyll, MODIS performed better than OC4, particularly in areas with high CDOM concentrations. Analysis of the relationship between chlorophyll and CDOM concentrations within the study area showed regional variability causes by differences in river source.

  9. Volatile fractions of landfill leachates and their effect on Chlamydomonas reinhardtii: In vivo chlorophyll a fluorescence

    SciTech Connect

    Brack, W.; Rottler, H.; Frank, H.

    1998-10-01

    Volatile organic compounds such as short-chain halogenated hydrocarbons and alkylated benzenes are widely used as solvents or as intermediates in the chemical industry, and some of them are fuel components. Dichloromethane, trichloroethene, 1,1,1-trichloroethane, and tetrachloroethene have been produced in amounts of 500,000 to 1 million t/year, 80 to 100% of which are released to the environment. The production of toluene, a major component of fuels for internal combustion engines, amounts to about 30 million t/year. A method for identification of toxic volatile constituents of landfill leachates is presented that combines bioassay-compatible sample preparation, chemical analysis, and a bioassay based on in vivo chlorophyll a fluorescence of the green alga Chlamydomonas reinhardtii. Two major pathways of toxicity were identified by comparing fluorescence patterns: specific toxicity of hydrogen sulfide, and narcotic action of nonreactive organic compounds. For quantification, the contributions of identified compounds were calculated using toxic units. The ecotoxicologic relevance of volatile fractions from hazardous waste leachates was shown.

  10. Diffuse reflectance of the ocean - The theory of its augmentation by chlorophyll a fluorescence at 685 nm

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1979-01-01

    The radiative transfer equation is modified to include the effect of fluorescent substances and solved in the quasi-single scattering approximation for a homogeneous ocean containing fluorescent particles with wavelength independent quantum efficiency and a Gaussian shaped emission line. The results are applied to the in vivo fluorescence of chlorophyll a (in phytoplankton) in the ocean to determine if the observed quantum efficiencies are large enough to explain the enhancement of the ocean's diffuse reflectance near 685 nm in chlorophyll rich waters without resorting to anomalous dispersion. The computations indicate that the required efficiencies are sufficiently low to account completely for the enhanced reflectance. The validity of the theory is further demonstrated by deriving values for the upwelling irradiance attenuation coefficient at 685 nm which are in close agreement with the observations.

  11. Potential of chlorophyll fluorescence imaging for assessing bio-viability changes of biodeteriogen growths on stone monuments

    NASA Astrophysics Data System (ADS)

    Osticioli, I.; Mascalchi, M.; Pinna, D.; Siano, S.

    2013-05-01

    A systematic study on the use of Chlorophyll Fluorescence (CF) imaging in Pulsed Amplitude Modulated (PAM) for assessing viability changes of biodeteriogen on stone artifacts has been carried out. The experimentation has been performed on different phototrophic organisms of gravestone slabs from the monumental British Cemetery of Florence (Italy). Since the viability of these organisms and then their chlorophyll fluorescence emission is strongly dependent on the environmental conditions, a preliminary study on the effects of local patterns during the season was carried out. The trend of the fluorescence quantum yield (QYmax) at different dark adapted times in different periods of the year was determined. The results achieved in our work proves the effectiveness of the CF-PAM imaging for in situ lichen characterizations in conservation studies and defines an optimized application protocol.

  12. Natural faecal fluorophores and the potential of chlorophyll based markers to optimise fluorescence as a real-time solution for the detection of faecal contamination on carcasses.

    PubMed

    Lee, M R F; Theobald, V J; Ougham, H J; Dahl, A Veberg; Lundby, F; Scollan, N D; Wold, J-P

    2010-12-01

    More accurate and sensitive visualisation of faecal contamination in the abattoir would significantly reduce the risk posed by harbouring pathogenic micro-organisms. We carried out a preliminary investigation of the range of fluorophores found naturally in faeces from typical ruminant diets. Sixteen ewes were offered either: i) fresh forage (FF), ii) grass silage (GS), iii) grass hay (GH) or iv) concentrate and barley straw (CB). Animals offered FF diets had a greater concentration (P<0.001) of chlorophyll based compounds in their faeces and subsequent fluorescent emission spectra. In a second experiment we investigated a range of fluorescent markers against a basal concentrate and barley straw diet. Ten Cheviot sheep were split into five treatment groups during a duplicate 5 × 5 Latin square design. Four of the groups received a chlorophyll based marker at a rate of 2g/d: i) Mg-Chlorophyllin (MgC), ii) Fe-Chlorophyllin (FeC), iii) Zn-Chlorophyllin (ZnC) or iv) Spirulina (Chlorophyll a extract from blue green algae, Sp). The last group received no supplement as the control (Con). The appearance of chlorophyllin markers and their derivatives in faeces was similar with mean concentrations of 3.1 and 7.2 μg/g DM, respectively. The most intense fluorescent signal was shown with MgC followed by ZnC, FeC, Sp and Con at 685 nm. The use of markers in pre-slaughter diets would improve the accuracy of faecal detection as a result of greater fluorescence and specific emission wavelengths which do not overlap with natural meat components to help with visualisation. PMID:20813464

  13. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  14. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments.

    PubMed

    Cendrero-Mateo, M Pilar; Moran, M Susan; Papuga, Shirley A; Thorp, K R; Alonso, L; Moreno, J; Ponce-Campos, G; Rascher, U; Wang, G

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  15. Deriving chlorophyll fluorescence emissions of vegetation canopies from high resolution field reflectance spectra

    NASA Astrophysics Data System (ADS)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Daughtry, Craig S.; Entcheva Campbell, Petya K.; Butcher, L. Maryn

    2005-11-01

    Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll fluorescence (ChlF) peaks centered at 685 nm and 735 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SIF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops and small tree plots of three deciduous species (red maple, tulip poplar, sweet gum). Leaf level measurements were also made of foliage which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and nitrogen (N) contents). As part of ongoing experiments, measurements were made on N application plots within corn (280, 140, 70, and 0 kg N/ha) and tree (0, 37.5, 75, 112.5, 150 kg N /ha) sites at the USDA/Agriculture Research Service in Beltsville, MD. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrow- band regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red SIF ratio (SIFratio) derived from these field reflectance spectra successfully discriminated foliar pigment ratios altered by N application rates in both corn crops. This ratio was also positively correlated to the C/N ratio at leaf and canopy levels, for the available corn data (e.g., 2004). No consistent N treatment or species differences in SIF were detected in the tree foliage, but additional 2005 data are forthcoming. This study has relevance to future passive satellite remote sensing approaches to monitoring C dynamics from space.

  16. Rapid algal toxicity assay using variable chlorophyll fluorescence for Chlorella kessleri (chlorophyta).

    PubMed

    Kvíderová, Jana

    2010-12-01

    Three methods of algal assays--the standard assay, microassay, and the proposed fluorescence assay--are compared from the point of view of reliability of EC50 detection, the minimum required time for the detection, sensitivity of individual measurement, i.e. at which cell density the particular assay can be used for EC50 estimation, and the time stability of the EC50 values. The assays were performed with green alga Chlorella kessleri strain LARG/1 growing in potassium dichromate solution in Z-medium ranging from 0.01 to 100 mg Cr L⁻¹. The inoculation cell density was set according to the standards to 10⁴ cells mL⁻¹ and according to spectrophotometer/plate reader detection limit. The average EC50 ranged from 0.096 to 0.649 mg Cr L⁻¹ and there were no significant differences in EC50 between the assay type and the inoculation methods with the exception of the significant difference between EC(c)50₇₂ (EC50 established from biomass measured as chlorophyll a concentration after 72 h of cultivation) in the standard assay and EC(r)50 (EC50 derived from growth rate) in the microassay in the standard inoculation experiment due to low variability of their values. The EC(f)50 (EC50 derived from variable fluorescence measurement) values correspond to EC50 values derived from the growth rates. Fluorescence measurement revealed the toxic effect of the chromium after 24 h of exposure at cell density of 5 x 10⁴ cells mL⁻¹, less by half than other used assay methods. The positive correlation of EC(f)50 and time was found in the standard inoculation experiment but opposite effect was observed at the spectrophotometric one. PMID:19551890

  17. Fluorescence polarization assays in signal transduction discovery.

    PubMed

    Sportsman, J Richard; Daijo, Janet; Gaudet, Elizabeth A

    2003-05-01

    Fluorescence polarization (FP) has become widely employed for high throughput screening used in pharmaceutical drug discovery. Assays of important signal transduction targets are now adapted to FP. In this review we examine assays for cyclic adenosine monophosphate, phosphodiesterases, and protein kinases and phosphatases using FP competitive immunoassays and a direct enzymatic method called IMAP. PMID:12678698

  18. Steady-state chlorophyll fluorescence (Fs) as a tool to monitor plant heat and drought stress

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, M.; Carmo-Silva, A.; Salvucci, M.; Moran, S. M.; Hernandez, M.

    2012-12-01

    Crop yield decreases when photosynthesis is limited by heat or drought conditions. Yet farmers do not monitor crop photosynthesis because it is difficult to measure at the field scale in real time. Steady-state chlorophyll fluorescence (Fs) can be used at the field level as an indirect measure of photosynthetic activity in both healthy and physiologically-perturbed vegetation. In addition, Fs can be measured by satellite-based sensors on a regular basis over large agricultural regions. In this study, plants of Camelina sativa grown under controlled conditions were subjected to heat and drought stress. Gas exchange and Fs were measured simultaneously with a portable photosynthesis system under light limiting and saturating conditions. Results showed that Fs was directly correlated with net CO2 assimilation (A) and inversely correlated with non-photochemical quenching (NPQ). Analysis of the relationship between Fs and Photosynthetically Active Radiation (PAR) revealed significant differences between control and stressed plants that could be used to track the status, resilience, and recovery of photochemical processes. In summary, the results provide evidence that Fs measurements, even without normalization, are an easy means to monitor changes in plant photosynthesis, and therefore, provide a rapid assessment of plant stress to guide farmers in resource applications. Figure1. Net CO2 assimilation rate (A) of Camelina sativa plants under control conditions and after heat stress exposure for 1 or 3 days (1d-HS and 3d-HS, respectively) (right) and control, drought and re-watering conditions (left). Conditions for infra-red gas analysis were: reference CO2 = 380 μmol mol-1, PPFD = 500 μmol m-2 s-1 and Tleaf set to 25°C (control, drought and re-water) or 35°C (HS). Different letters denote significant differences at the α=0.05 level. Values are means±SEM (n=10). Figure 2. Stable chlorophyll fluorescence (Fs) of Camelina sativa plants under control conditions and

  19. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves

    PubMed Central

    Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji

    2015-01-01

    This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530

  20. Assessing boreal forest photosynthetic dynamics through space-borne measurements of greenness, chlorophyll fluorescence and model GPP

    NASA Astrophysics Data System (ADS)

    Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna

    2015-04-01

    sophia.walther@gfz-potsdam.de The seasonality of photosynthesis of boreal forests is an essential driver of the terrestrial carbon, water and energy cycles. However, current carbon cycle model results only poorly represent interannual variability and predict very different magnitudes and timings of carbon fluxes between the atmosphere and the land surface (e.g. Jung et al. 2011, Richardson et al. 2012). Reflectance-based satellite measurements, which give an indication of the amount of green biomass on the Earth's surface, have so far been used as input to global carbon cycle simulations, but they have limitations as they are not directly linked to instantaneous photosynthesis. As an alternative, space-borne retrievals of sun-induced chlorophyll fluorescence (SIF) boast the potential to provide a direct indication of the seasonality of boreal forest photosynthetic activity and thus to improve carbon model performances. SIF is a small electromagnetic signal that is re-emitted from the photosystems in the chloroplasts, which results in a direct relationship to photosynthetic efficiency. In this contribution we examine the seasonality of the boreal forests with three different vegetation parameters, namely greenness, SIF and model simulations of gross primary production (gross carbon flux into the plants by photosynthesis, GPP). We use the enhanced vegetation index (EVI) to represent green biomass. EVI is calculated from NBAR MODIS reflectance measurements (0.05deg, 16 days temporal resolution) for the time from January 2007-May 2013. SIF data originate from GOME-2 measurements on board the MetOp-A satellite in a spatial resolution of 0.5deg for the time from 2007-2011 (Joiner et al. (2013), Köhler et al. (2014)). As a third data source, data-driven GPP model results are used for the time from 2006-2012 with 0.5deg spatial resolution. The method to quantify phenology developed by Gonsamo et al. (2013) is applied to infer the main phenological phases (greenup/onset of

  1. Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star'.

    PubMed

    Ouzounis, Theoharis; Fretté, Xavier; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-06-01

    We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200 µmol m(-2)  s(-1) at plant height for 14 h per day and 24/18°C day/night temperature, respectively, from January to April 2013. The light treatments were (1) 40% blue in 60% red (40% B/R), (2) 0% blue in 100% red (0% B/R) and (3) white LEDs with 32% blue in white (32% B/W, control), with background daylight under shade screens. The plants were harvested twice for leaf growth and pigmentation. There was no clear pattern in the spectral effect on growth since the order of leaf size differed between harvests in March and April. Fv /Fm was in the range of 0.52-0.72, but overall slightly higher in the control, which indicated a permanent downregulation of PSII in the colored treatments. The fluorescence quenching showed no acclimation to color in 'Purple Star', while 'Vivien' had lower ETR and higher NPQ in the 40% B/R, resembling low light acclimation. The pigmentation showed corresponding spectral response with increasing concentration of lutein while increasing the fraction of blue light, which increased the light absorption in the green/yellow part of the spectrum. The permanent downregulation of PSII moved a substantial part of the thermal dissipation from the light regulated NPQ to non-regulated energy losses estimated by ΦNPQ and ΦNO and the difference found in the balance between ΦPSII and ΦNPQ in 'Vivien' disappeared when ΦNO was included in the thermal dissipation. PMID:25302638

  2. Satellite Solar-induced Chlorophyll Fluorescence Reveals Drought Onset Mechanisms: Insights from Two Contrasting Extreme Events

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Fu, R.; Dickinson, R. E.; Joiner, J.; Frankenberg, C.; Gu, L.; Xia, Y.; Fernando, N.

    2015-12-01

    This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Instrument 2 (GOME-2) closely resembled drought intensity maps from the US Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root-zone soil moisture caused by year-long below-normal precipitation. In contrast, for the central Great Plains drought, warmer temperatures and ample precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root-zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation (fPAR) and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.

  3. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    PubMed Central

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle. PMID:24706867

  4. Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching.

    PubMed Central

    Niyogi, K. K.; Bjorkman, O.; Grossman, A. R.

    1997-01-01

    The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the [delta]pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, [delta]pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all [delta]pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light. PMID:12237386

  5. First glimpse of solar induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2.

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.; O'Dell, C.

    2014-12-01

    In the past few years, space-borne retrievals of solar induced chlorophyll fluorescence, or SIF, have been enabled by the GOSAT, SCIAMACHY and GOME-2 satellite. Initial studies demonstrate that SIF often has a direct relationship with gross terrestrial carbon uptake, and therefore provides a complementary view of the carbon cycle to that provided by column carbon dioxide (XCO2) measurements. Accurate estimates of SIF have also been shown to be necessary for bias free estimates XCO2 itself. The OCO-2 O2 A-band channel allows us to perform SIF retrievals, and pre-launch sensitivity studies indicated that OCO-2 will provide an unprecedented SIF dataset along its orbit track, albeit at the expense of coverage. Compared to GOSAT, it will record 100 times more SIF data, which will significantly reduce the large random errors in present in GOSAT-based global maps of SIF. Here, we will show first SIF results from OCO-2 data with an initial comparison to previous retrievals from GOSAT. Owing to the low computational demand and relative simplicity of the SIF retrieval algorithm, we expect SIF data to mature somewhat earlier than the more complex XCO2 product. The focus of this presentation will be on quantifying the retrieval quality, showing potential issues, providing a comparison with cloud flags, and presenting the first global maps of SIF from OCO-2.

  6. [Cucumber downy mildew prediction model based on analysis of chlorophyll fluorescence spectrum].

    PubMed

    Sui, Yuan-Yuan; Yu, Hai-Ye; Zhang, Lei; Qu, Jian-Wei; Wu, Hai-Wei; Luo, Han

    2011-11-01

    In order to achieve quick and nondestructive prediction of cucumber disease, a prediction model of greenhouse cucumber downy mildew has been established and it is based on analysis technology of laser-induced chlorophyll fluorescence spectrum. By assaying the spectrum curve of healthy leaves, leaves inoculated with bacteria for three days and six days and after feature information extraction of those three groups of spectrum data using first-order derivative spectrum preprocessing with principal components and data reduction, principal components score scatter diagram has been built, and according to accumulation contribution rate, ten principal components have been selected to replace derivative spectrum curve, and then classification and prediction has been done by support vector machine. According to the training of 105 samples from the three groups, classification and prediction of 44 samples and comparing the classification capacities of four kernel function support vector machines, the consequence is that RBF has high quality in classification and identification and the accuracy rate in classification and prediction of cucumber downy mildew reaches 97.73%. PMID:22242501

  7. Effects of selenite on chlorophyll fluorescence, starch content and fatty acid in the duckweed Landoltia punctata.

    PubMed

    Zhong, Yu; Li, Yang; Cheng, Jay J

    2016-09-01

    Developing a Se-enriched feed for animal has become a considerable effort. In this study, Landoltia punctata 7449 was grown over a 12 day period under concentrations of selenite (Na2SeO3) from 0 to 80 μmol L(-1). The growth rate, the chlorophyll fluorescence, the starch content and fatty acid were measured. Se at low concentrations of ≤20 μmol L(-1) had positive effects also on growth rate, fatty acid content and yield of the L. punctata. The appropriate Se treatment enhanced the activity of the photosynthetic system by increasing Fv, Fm, Fv/Fm and Fv/Fo and decreasing Fo. However, negative impact to the L. punctata was observed when the duckweed was exposed to high Se concentrations (≥40 μmol L(-1)). Significant increases in starch content in the duckweed were observed after Se application. The present study suggests that the changes in growth rate, the photosynthetic system, the starch content and the fatty acid were closely associated with the application of Se. An increased Se concentration (0-20 μmol L(-1)) in duckweed could positively induce photosynthesis, thereby increasing the yield of L. punctata and could be a resource for high nutritive quality Se-enrich feed. PMID:27400684

  8. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement.

    PubMed

    Massoz, Simon; Larosa, Véronique; Horrion, Bastien; Matagne, René F; Remacle, Claire; Cardol, Pierre

    2015-12-10

    The unicellular green alga Chlamydomonas reinhardtii is a model organism for studying energetic metabolism. Most mitochondrial respiratory-deficient mutants characterized to date have been isolated on the basis of their reduced ability to grow in heterotrophic conditions. Mitochondrial deficiencies are usually partly compensated by adjustment of photosynthetic activity and more particularly by transition to state 2. In this work, we explored the opportunity to select mutants impaired in respiration and/or altered in dark metabolism by measuring maximum photosynthetic efficiency by chlorophyll fluorescence analyses (FV/FM). Out of about 2900 hygromycin-resistant insertional mutants generated from wild type or from a mutant strain deficient in state transitions (stt7 strain), 22 were found to grow slowly in heterotrophic conditions and 8 of them also showed a lower FV/FM value. Several disrupted coding sequences were identified, including genes coding for three different subunits of respiratory-chain complex I (NUO9, NUOA9, NUOP4) or for isocitrate lyase (ICL1). Overall, the comparison of respiratory mutants obtained in wild-type or stt7 genetic backgrounds indicated that the FV/FM value can be used to isolate mutants severely impaired in dark metabolism. PMID:26022424

  9. Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor).

    PubMed

    Senavirathna, Mudalige Don Hiranya Jayasanka; Takashi, Asaeda; Kimura, Yuichi

    2014-12-01

    Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8 GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30 min, 1 h and 24 h durations with electric field strength of 45-50 V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal. PMID:24131393

  10. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  11. An in situ antimicrobial susceptibility testing method based on in vivo measurements of chlorophyll α fluorescence.

    PubMed

    Heliopoulos, Nikolaos S; Galeou, Angeliki; Papageorgiou, Sergios K; Favvas, Evangelos P; Katsaros, Fotios K; Stamatakis, Kostas

    2015-05-01

    Up to now antimicrobial susceptibility testing (AST) methods are indirect and generally involve the manual counting of bacterial colonies following the extraction of microorganisms from the surface under study and their inoculation in a separate procedure. In this work, an in situ, direct and instrumental method for the evaluation and assessment of antibacterial properties of materials and surfaces is proposed. Instead of indirectly determining antibacterial activity using the typical gram(-) test organisms with the subsequent manual colony count or inhibition zone measurement, the proposed procedure, employs photosynthetic gram(-) cyanobacteria deposited directly onto the surface under study and assesses cell proliferation and viability by a quick, accurate and reproducible instrumental chlorophyll fluorescence spectrophotometric technique. In contrast with existing methods of determination of antibacterial properties, it produces high resolution and quantitative results and is so versatile that it could be used to evaluate the antibacterial properties of any compound (organic, inorganic, natural or man-made) under any experimental conditions, depending on the targeted application. PMID:25771834

  12. Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4.

    PubMed

    Lee, Jung-Eun; Berry, Joseph A; van der Tol, Christiaan; Yang, Xi; Guanter, Luis; Damm, Alexander; Baker, Ian; Frankenberg, Christian

    2015-09-01

    Several studies have shown that satellite retrievals of solar-induced chlorophyll fluorescence (SIF) provide useful information on terrestrial photosynthesis or gross primary production (GPP). Here, we have incorporated equations coupling SIF to photosynthesis in a land surface model, the National Center for Atmospheric Research Community Land Model version 4 (NCAR CLM4), and have demonstrated its use as a diagnostic tool for evaluating the calculation of photosynthesis, a key process in a land surface model that strongly influences the carbon, water, and energy cycles. By comparing forward simulations of SIF, essentially as a byproduct of photosynthesis, in CLM4 with observations of actual SIF, it is possible to check whether the model is accurately representing photosynthesis and the processes coupled to it. We provide some background on how SIF is coupled to photosynthesis, describe how SIF was incorporated into CLM4, and demonstrate that our simulated relationship between SIF and GPP values are reasonable when compared with satellite (Greenhouse gases Observing SATellite; GOSAT) and in situ flux-tower measurements. CLM4 overestimates SIF in tropical forests, and we show that this error can be corrected by adjusting the maximum carboxylation rate (Vmax ) specified for tropical forests in CLM4. Our study confirms that SIF has the potential to improve photosynthesis simulation and thereby can play a critical role in improving land surface and carbon cycle models. PMID:25881891

  13. Effect of seabuckthorn extract on delayed chlorophyll fluorescence on Cd and Co ions treated wheat seedlings.

    PubMed

    Ganiyeva, R A; Novruzov, E M; Bayramova, S A; Kurbanova, I M; Hasanov, R A

    2009-11-01

    The protecting effect of "Hypporamine PL" compound isolated from dry leaves of seabuckthorn (Hippophae rhamneides L.) on photosystem 2 (PS2) activity suppression induced by CdCl2 and CoCl2 treatment in the 7-day-old wheat seedlings (Triticum aestivum L.) under different pH of growth medium was investigated by measurement of millisecond delayed fluorescence (ms-DF) of chlorophyll intact leaves. The value o-i/p-s of ms-DF ratio was reduced under the Cd2+ and Co2+ treatments on 60 and 65% respectively at pH 6.7. Acidification of medium (pH 5.0) results in decreasing of ratio o-i/p-s only approximately on 30% in average. In the alkaline medium the lowering of o-i/p-s on 41% is observed in both ions treatments. This decreasing of o-i/p-s ratio occurred due to decreasing of fast phase o-i amplitude. At the same time the widening and increasing of slow phase p-s amplitude was observed. The compound "Hypporamine PL" limited the decrease of ms-DF components induced by heavy metals. It is suggested that the protective effect of "Hypporamine PL" on the photochemical reactions in the PS2 is due to catechins, epicatechins, quercetin and other polyphenols, containing in this compound, preventing the free radicals formation in the PS2 under treatment by heavy metal ions. PMID:20329404

  14. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, Philipp; Guanter, Luis; Joiner, Joanna

    2015-04-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last several years by means of space-borne atmospheric spectrometers. SIF is an electromagnetic signal emitted by the chlorophyll-a of photosynthetically active vegetation in the 650-850 nm spectral range. It represents a part of the excess energy during the process of photosynthesis and provides a measure of photosynthetic activity. The key challenge to retrieve SIF from space is to isolate the signal from the about 100 times more intense reflected solar radiation in the measured top of atmosphere (TOA) radiance spectrum. Nevertheless, it has been demonstrated that a number of satellite sensors provide the necessary spectral and radiometric performance to evaluate the in-filling of solar Fraunhofer lines and/or atmospheric absorption features by SIF. We will present recent developments for the retrieval of SIF from medium spectral resolution space-borne spectrometers such as the Global Ozone Monitoring Experiment (GOME-2) and the Scanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY). Building upon the previous work by Joiner et al. 2013, our approach solves existing issues in the retrieval such as the non-linearity of the forward model and the arbitrary selection of the number of free parameters. In particular, we use a backward elimination algorithm to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF from real spectra from GOME-2 and for the first time, from SCIAMACHY. We are able to present a time series of GOME-2 SIF results covering the 2007-2011 time period and SCIAMACHY SIF results between 2003-2011. This represents an almost one decade long record of global SIF. We

  15. [Influence of dehydration and diurnal variation on characteristics of chlorophyll fluorescence of leaves in Haloxylon ammodendron and H. persicum].

    PubMed

    Shen, Liang; Chen, Jun; Liu, Sai; Xu, Rong; Xu, Chang-qing; Liu, Tong-ning

    2015-08-01

    To evaluate the ecological adaptation mechanism of Haloxylon ammodendron and H. persicum from Ningxia, the host of Cistanche deserticola, the chlorophyll fluorescence under dehydration and diurnal variation was determined by IMAGING-PAM method. The results showed that H. ammodendron had higher photosynthetic electron transport activity (Fv/Fm), photosynthetic efficiency (qP), and PS II electron transport activity (ETR) than H. persicum. After 48 h dehydration, the chlorophyll fluorescence and water-retaining property of H. ammodendron were significantly higher than those of H. persicum. The significant difference in diurnal variation between H. ammo- dendron and H. persicum was observed and a 'V' trend was exhibited. It suggested that H. ammodendron had a stronger ability to adapt to the environment and had wider distribution, while H. persicum was limited by water and light and had narrow distribution. PMID:26685594

  16. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-Spectral-Resolution Near-Infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 0.5. We also show

  17. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  18. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

    NASA Astrophysics Data System (ADS)

    Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-10-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5° × 0.5°. We

  19. [Effects of perchlorate on growth and chlorophyll fluorescence parameters of Alternanthera philoxeroides].

    PubMed

    Xie, Yin-feng; Cai, Xian-lei; Liu, Wei-long; Deng, Wei

    2009-08-15

    Perchlorate is a new emerging persistent pollutant, while no studies about its effects on plants have been reported both home and abroad. In order to explore the effects of perchlorate on growth and physiology of aquatic plant, Alternanthera philoxeroides were treated by 1/20 Hoagland nutrient solution with different concentrations (0, 1, 5, 20, 100, 500 mg/L) of ClO4- under the controlled conditions. The results showed as follow. (1) Under perchlorate treatment, relative growth yield,dry weight of root,shoot and leaves were inhibited at different degrees, in which root biomass under different treatments showed significant difference to the control. After treatment for 40 d, relative growth yield of different treatments at concentration from 1 mg/L to 500 mg/L were about 61.6%, 60.8%, 53.1%, 20.4% and 3.3% separately of the control. And the order of variation coefficients of biomass in different organ were as follows: leaf > root biomass > stem; the relationship of biomass allocation in different organs of Alternanthera philoxeroides under perchlorate treatment changed, and the proportion of stem biomass increased,while leaf decreased, in which 100 and 500 mg/L ClO4- treatment showed significant difference to the control. (2) Under perchlorate treatment, young leaves of Alternanthera philoxeroides presented injury symptoms (such as parietal roiling reversely, leaf edge getting black and withered etc), and the damaged degree of Alternanthera philoxeroides increased with the increase of treatment concentration and time. (3) Under perchlorate treatment, the relative chlorophyll content (SPAD value), primary maximal PSII efficiency(Fv/Fm), efficiency of excitation capture by open PSII centre (F'v,/F'm), actual photochemical efficiency of PSII (phi(PS II)), electron transport rate (ETR), maximal electron transport rate(ETR ,) and other indexes were inhibited at different degrees. SPAD and chlorophyll fluorescence parameters (phi(PS II)) etc. could be used as sensitive

  20. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A

    PubMed Central

    Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon

    2015-01-01

    Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864

  1. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    SciTech Connect

    Gilmore, A.M.; Hazlett, T.L.; Govindjee

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  2. VERTEX: biological implications of total attenuation and chlorophyll and phycoerythrin fluorescence distributions along a 2000 m deep section in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Broenkow, William W.; Yuen, Marilyn A.; Yarbrough, Mark A.

    1992-04-01

    A 2000 m deep section of total attenuation and chlorophyll and phycoerythrin fluorescence from 26° to 59°N latitude in the northeast Pacific is discussed in terms of inferred biological processes. Photic zone distributions of these quantities vary from nutrient-limited conditions in the subtropics to light-limited conditions in the subarctic. Phycoerythrin-containing organisms, probably Synechococcus, contribute to a strong, near-surface orange fluorescence signal in the Gulf of Alaska. We now recognize that the fluorescence minimum (about 300 m) between the photic zone and the tertiary fluorescence maximum may be related to secondary producers that "repackage" organic matter produced in the photic zone. The tertiary fluorescence maximum (about 1000 m) is a continuous feature of the oxygen minimum zone in the North Pacific. The presence of phycoerythrin in the tertiary maximum is consistent with heterotrophic cyanobacteria and other unidentified microbial assemblages in the oxygen minimum, though there is no strong biological evidence that this is true.

  3. Fluorescence and photoelectrochemical behavior of chlorophyll {ital a} adsorbed on a nanocrystalline SnO{sub 2} film

    SciTech Connect

    Bedja, I.; Kamat, P.V.; Hotchandani, S.

    1996-10-01

    Fluorescence and photoelectrochemical studies of chlorophyll {ital a} (Chl {ital a}) adsorbed on nanocrystalline SnO{sub 2} film were carried out. The results of fluorescence and incident photon to current conversion efficiency (IPCE) as a function of applied bias suggest that the fluorescence quenching and the photocarrier generation are interrelated. Fluorescence quenching has thus been utilized to determine the photogeneration efficiency, {eta}({ital e}), of charges in a SnO{sub 2}/Chl {ital a} based photoelectrochemical cell. A value of 0.75 was obtained for {eta}({ital e}) for unbiased cells. With an IPCE of 13{percent}, {eta}({ital e}) of 75{percent}, and a light harvesting efficiency of 70{percent}, the charge collection efficiency of {approximately}23{percent} was evaluated. These results suggest that the losses due to the charge recombination are a major factor that limit the efficiency of the cells. {copyright} {ital 1996 American Institute of Physics.}

  4. Vegetation Red-edge Spectral Modeling for Solar-induced Chlorophyll Fluorescence Retrieval at O2-B Band

    NASA Astrophysics Data System (ADS)

    Huang, C.; Zhang, L.; Qiao, N.; Zhang, X.; Li, Y.

    2015-12-01

    Remotely sensed solar-induced chlorophyll fluorescence (SIF) has been considered an ideal probe in monitoring global vegetation photosynthesis. However, challenges in accurate estimate of faint SIF (less than 5% of the total reflected radiation in near infrared bands) from the observed apparent reflected radiation greatly limit its wide applications. Currently, the telluric O2-B (~688nm) and O2-A (~761nm) have been proved to be capable of SIF retrieval based on Fraunhofer line depth (FLD) principle. They may still work well even using conventional ground-based commercial spectrometers with typical spectral resolutions of 2~5 nm and high enough signal-to-noise ratio (e.g., the ASD spectrometer). Nevertheless, almost all current FLD based algorithms were mainly developed for O2-A, a few concentrating on the other SIF emission peak in O2-B. One of the critical reasons is that it is very difficult to model the sudden varying reflectance around O2-B band located in the red-edge spectral region (about 680-800 nm). This study investigates a new method by combining the established inverted Gaussian reflectance model (IGM) and FLD principle using diurnal canopy spectra with relative low spectral resolutions of 1 nm (FluorMOD simulations) and 3 nm (measured by ASD spectrometer) respectively. The IGM has been reported to be an objective and good method to characterize the entire vegetation red-edge reflectance. Consequently, the proposed SIF retrieval method (hereinafter called IGMFLD) could exploit all the spectral information along the whole red-edge (680-800 nm) to obtain more reasonable reflectance and fluorescence correction coefficients than traditional FLD methods such as the iFLD. Initial results show that the IGMFLD can better capture the spectrally non-linear characterization of the reflectance in 680-800 nm and thereby yields much more accurate SIFs in O2-B than typical FLD methods, including sFLD, 3FLD and iFLD (see figure 1). Finally, uncertainties and prospect

  5. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space: Status and Potential for Carbon Cycle Research

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Koehler, P.; Walther, S.; Zhang, Y.; Joiner, J.; Frankenberg, C.

    2015-12-01

    Gross primary production (GPP), or the amount of atmospheric CO2 fixed by vegetation through photosynthesis, represents the largest carbon flux between terrestrial ecosystems and the atmosphere. Despite its importance, large-scale estimates of GPP remain highly uncertain for some terrestrial ecosystems. In this context, measurements of sun-induced chlorophyll fluorescence (SIF), which is emitted in the 650-850nm spectral range by the photosynthetic apparatus of green plants, have the potential to provide a new view on vegetation photosynthesis. Global monitoring of SIF from space have been achieved in the last years by means of a number of atmospheric spectrometers, which have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission. This breakthorugh was followed by retrievals from the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B, which enable a continuous spatial sampling, and lately from ENVISAT/SCIAMACHY. This observational scenario is completed by the first SIF data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming Copernicus' Sentinel 5-Precursor to be launched by early 2016. OCO-2 and TROPOMI offer the possibility of monitoring SIF globally with a 100-fold improvement in spatial and temporal resolution with respect to GOSAT, GOME-2 and SCIAMACHY.In this contribution, we will provide an overview of global SIF monitoring and will illustrate the potential of SIF data to improve our knowledge of vegetation photosynthesis and GPP at the synoptic scale. We will show examples of ongoing research exploiting SIF data for an improved monitoring of photosynthetic activity at different ecosystems, highlighting the usefulness of SIF to constrain estimates of CO2 uptake by vegetation through photosynthesis.

  6. Dynamic Response of Plant Chlorophyll Fluorescence to Light, Water and Nutrient Availability

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, M. D. P.; Moran, S. M.; Porcar-Castell, A.; Carmo-Silva, A. E.; Papuga, S. A.; Matveeva, M.; Wieneke, S.; Rascher, U.

    2014-12-01

    Photosynthesis is the most important exchange process of CO2 between the atmosphere and the land-surface. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions e.g. light, water, and nutrient availability. Chlorophyll fluorescence (ChF) has been proposed as a direct indicator of photosynthesis, and several studies have demonstrated its relationship with vegetation functioning at leaf and canopy level. In this study, two overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF?; Q2) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? The results of this study indicated that when the differences between treatments (water or nitrogen) drive the relationship between photosynthesis and ChF, ChF has a direct relationship with photosynthesis. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a simple linear function due to the complex physiological relation between photosynthesis and ChF. Our study showed that at times in the season when nitrogen was sufficient and photosynthesis was highest, ChF decreased because these two processes compete for available energy. The results from this study demonstrated that ChF is a reliable indicator of plant stress and has great potential as a tool for better understand where, when, and how CO2 is exchanged between the land and atmosphere.

  7. In situ effects of elevated CO 2 on chlorophyll fluorescences and chloroplast pigments of alpine plant

    NASA Astrophysics Data System (ADS)

    Thron, Ch.; Hahn, K.; Lütz, C.

    Alpine vegetation responds to elevated CO 2 with downward adjustment of photosynthesis. The experiments should show if doubling of ambient CO 2 reduces the maximum quantum yield and the chlorophylls thus altering the pigment composition of the thylakoid membranes in typical species of an alpine grassland ( Caricetum curvulae). The studies were part of a CO 2 enrichment experiment with open-top chambers in the Swiss Central Alps in 2 470 m altitude over a period of four years. The leaves of Carex curvula and Trifolium alpinum were analysed in situ under ambient (355 μl/l) or elevated (680 μl/l) CO 2 and at two different nutrient levels. In each vegetation period both species showed a tendency to lower ratios of variable to maximum fluorescence (F v/F m) in plants with elevated CO 2 treatment compared to the ambient variants. These reductions in F v/F m were statistically different only for Carex curvula in 1993 and 1995. CO 2 enrichment caused reductions of leaf pigment concentrations of 10-30% especially for Trifolium alpinum whereas Carex curvula was less affected. The lower pigment contents per leaf were probably due to reductions of thylakoid membranes. In most cases, the influences of elevated CO 2 or of nutrient treatments on pigment composition and primary photochemistry were very small. This indicates that the downward regulation begins at early stages in the photosynthetic process. Some changes of the photosynthetic apparatus are species-specific and possibly reflect different strategies of protective acclimation processes of alpine vegetation.

  8. [Effects of suspended silts in waters on the growth and chlorophyll fluorescence characteristics of Hydrilla verticillata].

    PubMed

    Li, Qiang; Wang, Guo-Xiang

    2009-10-01

    Silt particles smaller than 100 microm in diameter were used to make the waters with a turbidity of 30 NTU, 60 NTU, and 90 NTU. Hydrilla verticillata seedlings were planted in the turbid waters, and their branch length, branch number, and fresh mass were measured at definite periods of time. In the meanwhile, the leaf chlorophyll fluorescence parameters were determined in situ by a submersible pulse-amplitude modulated (PAM) fluorometer (Walz GmbH, Effeltrich, Germany). With the increase of water turbidity, the branch number of the seedlings decreased remarkably, biomass also decreased, but branch length increased significantly. In turbid waters, the Fv/Fm value decreased with time, but was still higher than that in the control waters. Under the actinic light of 17 micromol x m(-2) x s(-1) PPFD, the effective quantum yield (DeltaFv'/Fm') of seedling leaves on the 60th day in the waters with turbidity of 30 NTU, 60 NTU, and 90 NTU increased by 48.9%, 36.8%, and 17.2% (P < 0.01), and the relative electron transport rate (rETR) increased by 56.7%, 42.2%, and 21.4% (P < 0.01), respectively, compared with those on the 30th day. However, under the actinic light of 104 micromol x m(-2) s(-1) PPFD, the DeltaFv'/Fm', qp, and rETR on the 60th day decreased significantly, and the heat dissipation capability (qN) also reduced evidently. All the results suggested that the H. verticillata seedlings in turbid waters could adapt to low light environment, but their leaves were easy to be damaged under high light intensity. Therefore, it would be possible to introduce H. verticillata seedlings in shallow turbid waters. PMID:20077711

  9. Genetic variability and heritability of chlorophyll a fluorescence parameters in Scots pine (Pinus sylvestris L.).

    PubMed

    Čepl, Jaroslav; Holá, Dana; Stejskal, Jan; Korecký, Jiří; Kočová, Marie; Lhotáková, Zuzana; Tomášková, Ivana; Palovská, Markéta; Rothová, Olga; Whetten, Ross W; Kaňák, Jan; Albrechtová, Jana; Lstibůrek, Milan

    2016-07-01

    Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is

  10. Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America

    NASA Technical Reports Server (NTRS)

    Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; Qin, Yuanwei; Wang, Jie; Moore, Berrien, III

    2016-01-01

    Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.

  11. Mapping cropland GPP in the north temperate region with space measurements of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Huete, A. R.; Zarco-Tejada, P.; Frankenberg, C.; Lee, J.; Berry, J. A.; Moran, S. M.; Ponce-Campos, G.; Beer, C.; Camps-Valls, G.; Buchmann, N. C.; Gianelle, D.; Klumpp, K.; Cescatti, A.; Baker, J. M.; Griffis, T.

    2013-12-01

    Monitoring agricultural productivity is important for optimizing management practices in a world under a continuous increase of food and biofuel demand. We used new space measurements of sun-induced chlorophyll fluorescence (SIF), a vegetation parameter intrinsically linked to photosynthesis, to capture photosynthetic uptake of the crop belts in the north temperate region. The following data streams and procedures have been used in this analysis: (1) SIF retrievals have been derived from measurements of the MetOp-A / GOME-2 instrument in the 2007-2011 time period; (2) ensembles of process-based and data-driven biogeochemistry models have been analyzed in order to assess the capability of global models to represent crop gross primary production (GPP); (3) flux tower-based GPP estimates covering the 2007-2011 time period have been extracted over 18 cropland and grassland sites in the Midwest US and Western Europe from the Ameriflux and the European Fluxes Database networks; (4) large-scale NPP estimates have been derived by the agricultural inventory data sets developed by USDA-NASS and Monfreda et al. The strong linear correlation between the SIF space retrievals and the flux tower-based GPP, found to be significantly higher than that between reflectance-based vegetation indices (EVI, NDVI and MTCI) and GPP, has enabled the direct upscaling of SIF to cropland GPP maps at the synoptic scale. The new crop GPP estimates we derive from the scaling of SIF space retrievals are consistent with both flux tower GPP estimates and agricultural inventory data. These new GPP estimates show that crop productivity in the US Western Corn Belt, and most likely also in the rice production areas in the Indo-Gangetic plain and China, is up to 50-75% higher than estimates by state-of-the-art data-driven and process-oriented biogeochemistry models. From our analysis we conclude that current carbon models have difficulties in reproducing the special conditions of those highly productive

  12. The drought impact on satellite solar-induced chlorophyll fluorescence in China during 2007-2015

    NASA Astrophysics Data System (ADS)

    Li, Ruitao

    2016-04-01

    Drought is one of the most damaging and complicated natural hazards in the world. China is one of the countries which are most severely affected by drought. And there is a severe drought event in China every 2-3 years. From the beginning of the 1980s, some vegetation indices have been used to monitor vegetation under water stress. With the development of remote sensing technology, satellite solar-induced chlorophyll fluorescence (SIF) has emerged as a new method to monitor vegetation in recent years. Some studies have shown that compared with vegetation indices, SIF is more sensitive for vegetation functioning. However, the related studies using the satellite SIF is relatively limited in China. The objective of this study is to investigate the impact of drought on SIF by analyzing the relationships of SIF and crucial land surface parameter under the drought condition and to assess the adaption of satellite SIF in China. The SIF data are from the Global Ozone Monitoring Experiment 2 (GOME-2). Firstly, the widely used Palmer Drought Severity Index (PDSI) was used for drought events identification from 2007 to 2015 in China. On the basis of the identification results, we chose a number of areas of interest according to different land cover types and drought intensity. Then, we analyzed the relationships of SIF and land surface variables, i.e. normalized difference vegetation index (NDVI), the fraction of absorbed photosynthetically active radiation (fPAR), root-zone soil moisture (SMC) and surface skin temperatures (Tskin). The results show that the spatial patterns of negative SIF anomalies are closely relevant to the drought intensity. The decrease of SIF is aggravated in the phase of drought occurs. Moreover we find that the GOME-2 SIF is sensitive to fPAR and fluorescence yield. And the SIF is strongly correlated with SMC, Tskin and NDVI. But the SIF decreases more rapidly during the early time of drought events than NDVI. In other words, the SIF can well capture

  13. Improving the modeling of the seasonal carbon cycle of the boreal forest with chlorophyll fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Thum, Tea; Aalto, Tuula; Aurela, Mika; Laurila, Tuomas; Zaehle, Sönke

    2014-05-01

    The boreal ecosystems are characterized a very strong seasonal cycle and they are very sensitive to the climatic variables. The vegetation's deep wintertime dormancy requires a long recovery time during spring before the plants reach their full photosynthetic capacity. During this recovery time the plants are highly susceptible the night frosts. The transition period is different during spring and autumn for the evergreen plants. During spring there is plenty of light, but cold air temperatures inhibit the photosynthesis. The plants therefore experience to high stress levels, as they need to protect their photosynthetic apparatus from intense light. In autumn the air temperature and light level decrease more concurrently. To have a realistic presentation of the carbon cycle in boreal forests it is important to have these characteristics properly modeled, so that also the implications of changing seasonality under climate change can be more reliably predicted. In this study, we focus on the CO2 exchange of a Scots pine forest Sodankylä located in Finnish Lapland, 100 km north from the Arctic Circle. Micrometeorological flux measurements provide information about the exchanges of carbon, energy and water between atmosphere and vegetation. To complement these fluxes, we use dark-adapted chlorophyll fluorescence (CF) measurements, which is an optical measurement and tracks the development of the photosynthetic capacity. These two approaches combined together are very useful when we want to improve the modeling of the forest's CO2 exchange. We used two models that describe the photosynthesis with the biochemical model of Farquhar et al. The FMI-CANOPY is a canopy level model that is feasible to use in parameter estimation. We used the CF measurements of Fv/Fm, that is a measure of the maximum photosynthetic capacity, to include a seasonal development in the base rate of the maximum carboxylation rate (Vc(max)) in FMI-CANOPY. The simulation results matched the

  14. Estimation of the depth of sunlight penetration in natural waters for the remote sensing of chlorophyll a via in vivo fluorescence

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1979-01-01

    In attempting to measure remotely the constituents of the ocean through spectral analysis of diffusely reflected sunlight, it is important to know the depth over which constituent concentrations can be estimated. Recently, considerable interest has been generated in the use of sunlight-excited fluorescence of chlorophyll a contained in photoplankton (in vivo) to determine remotely the chlorophyll a concentration in surface waters. In the present paper an estimate is provided for the depth to which chlorophyll a concentration can be determined from observations of the fluorescence.

  15. UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components.

    PubMed

    Vass, I; Sass, L; Spetea, C; Bakou, A; Ghanotakis, D F; Petrouleas, V

    1996-07-01

    Inhibition of photosystem II electron transport by UV-B radiation has been studied in isolated spinach photosystem II membrane particles using low-temperature EPR spectroscopy and chlorophyll fluorescence measurements. UV-B irradiation results in the rapid inhibition of oxygen evolution and the decline of variable chlorophyll fluorescence. These effects are accompanied by the loss of the multiline EPR signal arising from the S2 state of the water-oxidizing complex and the induction of Signal IIfast originating from stabilized Try-Z+. The EPR signals from the QA-Fe2+ acceptor complex, Tyr-D+, and the oxidized non-heme iron (Fe3+) are also decreased during the course of UV-B irradiation, but at a significantly slower rate than oxygen evolution and the multiline signal. The decrease of the Fe3+ signal at high g values (g = 8.06, g = 5.6) is accompanied by the induction of another EPR signal at g = 4.26 that arises most likely from the same Fe3+ ion in a modified ligand environment. UV-B irradiation also affects cytochrome b-559. The g = 2.94 EPR signal that arises from the dark- oxidized form is enhanced, whereas the light inducible g = 3.04 signal that arises from the photo-oxidizable population of cytochrome b-559 is diminished. UV-B irradiation also induces the degradation of the D1 reaction center protein. The rate of the D1 protein loss is slower than the inhibition of oxygen evolution and of the multiline signal but follows closely the loss of Signal IIslow, the QA-Fe2+ and the Fe3+ EPR signals, as well as the release of protein-bound manganese. It is concluded from the results that UV-B radiation affects photosystem II redox components at both the donor and acceptor side. The primary damage occurs at the water-oxidizing complex. Modification and/or inactivation of tyrosine-D, cytochrome b-559, and the QAFe2+ acceptor complex are subsequent events that coincide more closely with the UV-B-induced damage to the protein structure of the photosystem II reaction

  16. Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients.

    PubMed

    Pospísil, Pavel; Dau, Holger

    2002-04-22

    Upon sudden exposure of plants to an actinic light of saturating intensity, the yield of chlorophyll fluorescence increases typically by 200-400% of the initial O-level. At least three distinct phases of these O-J-I-P transients can be resolved: O-J (0.05-5 ms), J-I (5-50 ms), and I-P (50-1000 ms). In thylakoid membranes, the J-I increase accounts for approximately 30% of the total fluorescence increase; in Photosystem II membranes, the J-I phase is always lacking. In the presence of the ionophore valinomycin, which is known to inhibit specifically the formation of membrane voltages, the magnitude of the J-I phase is clearly diminished; in the presence of valinomycin supplemented by potassium, the J-I phase is fully suppressed. We conclude that the light-driven formation of the thylakoid-membrane voltage results in an increase of the chlorophyll excited-state lifetime, a phenomenon explainable by the electric-field-induced shift of the free-energy level of the primary radical pair [Dau and Sauer, Biochim. Biophys. Acta 1102 (1992) 91]. The assignment of the J-I increase in the fluorescence yield enhances the potential of using O-J-I-P fluorescence transients for investigations on photosynthesis in intact organisms. A putative role of thylakoid voltages in protection of PSII against photoinhibitory damage is discussed. PMID:12034474

  17. Atrazine and Methyl Viologen Effects on Chlorophyll-a Fluorescence Revisited-Implications in Photosystems Emission and Ecotoxicity Assessment.

    PubMed

    Iriel, Analia; Novo, Johanna M; Cordon, Gabriela B; Lagorio, María G

    2014-01-01

    In this work, we use the effect of herbicides that affect the photosynthetic chain at defined sites in the photosynthetic reaction steps to derive information about the fluorescence emission of photosystems. The interpretation of spectral data from treated and control plants, after correction for light reabsorption processes, allowed us to elucidate current controversies in the subject. Results were compatible with the fact that a nonnegligible Photosystem I contribution to chlorophyll fluorescence in plants at room temperature does exist. In another aspect, variable and nonvariable chlorophyll fluorescence were comparatively tested as bioindicators for detection of both herbicides in aquatic environment. Both methodologies were appropriate tools for this purpose. However, they showed better sensitivity for pollutants disconnecting Photosystem II-Photosystem I by blocking the electron transport between them as Atrazine. Specifically, changes in the (experimental and corrected by light reabsorption) red to far red fluorescence ratio, in the maximum photochemical quantum yield and in the quantum efficiency of Photosytem II for increasing concentrations of herbicides have been measured and compared. The most sensitive bioindicator for both herbicides was the quantum efficiency of Photosystem II. PMID:23869421

  18. Monitoring the Photosynthetic Apparatus During Space Flight: Interspecific Variation in Chlorophyll Fluorescence Signatures Induced by Different Root Zone Stresses

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Patterson, Mark T.; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Chlorophyll fluorescence has been used extensively as a tool to indicate stress to the photosynthetic apparatus in green plants. A rise in fluorescence has been attributed to the blockage of photosystem II photochemistry, and patterns of fluorescence decay (quenching) from dark adapted leaves can be related to specific photochemical and non-photochemical deexcitation pathways of light trapped by the photosynthetic apparatus and thus result in characteristically different fluorescence signatures. Four distantly related plant species, Hypocharis radicata (Asteraceae), Brassica rapa (Brassicaceae), Spinacea oleracea (Chenopodiaceae) and Triticum aestivum (Poaceae), were grown hydroponically for three weeks before the initiation of three different root zone stresses (10 mM Cu, 100 mM NaCl and nitrogen deficient nutrition). After 10 days, characteristic fluorescence signatures for each stress could be noted although the degree varied between species. Fast kinetics analysis showed a reduction in plastoquinone pool size for copper and nitrogen stress for all species but a more species specific result with NaCl stress. Photochemical quenching kinetics varied between species and stress treatments from no quenching in S. oleracea in copper treatments to increased photochemical quenching in NaCl treatments. Non-photochemical quenching kinetics demonstrated a distinct pattern between stresses for all species. Copper treatments characteristically exhibited a shallow, flat non-photochemical quenching profile suggesting a general blockage of electron transport whereas NaCl treatments exhibited a slow rising profile that suggested damage to thylakoid acidification kinetics and nitrogen deficiency exhibited a fast rising and declining profile that suggested an altered state 1-state 2 transition regulated by the phosphorylation of LHCII. These results demonstrate characteristic fluorescence signatures for specific plant stresses that may be applied to different, unrelated plant

  19. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests.

    PubMed

    Walther, Sophia; Voigt, Maximilian; Thum, Tea; Gonsamo, Alemu; Zhang, Yongguang; Köhler, Philipp; Jung, Martin; Varlagin, Andrej; Guanter, Luis

    2016-09-01

    Mid-to-high latitude forests play an important role in the terrestrial carbon cycle, but the representation of photosynthesis in boreal forests by current modelling and observational methods is still challenging. In particular, the applicability of existing satellite-based proxies of greenness to indicate photosynthetic activity is hindered by small annual changes in green biomass of the often evergreen tree population and by the confounding effects of background materials such as snow. As an alternative, satellite measurements of sun-induced chlorophyll fluorescence (SIF) can be used as a direct proxy of photosynthetic activity. In this study, the start and end of the photosynthetically active season of the main boreal forests are analysed using spaceborne SIF measurements retrieved from the GOME-2 instrument and compared to that of green biomass, proxied by vegetation indices including the Enhanced Vegetation Index (EVI) derived from MODIS data. We find that photosynthesis and greenness show a similar seasonality in deciduous forests. In high-latitude evergreen needleleaf forests, however, the length of the photosynthetically active period indicated by SIF is up to 6 weeks longer than the green biomass changing period proxied by EVI, with SIF showing a start-of-season of approximately 1 month earlier than EVI. On average, the photosynthetic spring recovery as signalled by SIF occurs as soon as air temperatures exceed the freezing point (2-3 °C) and when the snow on the ground has not yet completely melted. These findings are supported by model data of gross primary production and a number of other studies which evaluated in situ observations of CO2 fluxes, meteorology and the physiological state of the needles. Our results demonstrate the sensitivity of space-based SIF measurements to light-use efficiency of boreal forests and their potential for an unbiased detection of photosynthetic activity even under the challenging conditions interposed by evergreen

  20. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-04-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted in phytoplankton biomass (i.e. chlorophyll a concentration) and size-based community composition (i.e. microphytoplankton, nanophytoplankton and picophytoplankton), using a~method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over five decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available in open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485.

  1. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition:

  2. The Chlorophyll a Fluorescence Modulated by All-Trans-β-Carotene in the Process of Photosystem II.

    PubMed

    Li, Tianyu; Zhang, Ye; Gong, Nan; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2016-01-01

    Modulating the chlorophyll a (Chl-a) fluorescence by all-trans-β-Carotene (β-Car) in the polarity and non-polarity solutions was investigated. The fluorescence intensity of Chl-a decreased as the concentration of β-Car increased. The excited electronic levels of Chl-a and β-Car became much closer owing to the solvent effect, which led to the electron transfer between both two molecules. A electron-separated pair Chl(-)·Chl⁺ that is not luminous was formed due to electron transfer. The solution of Chl-a and β-car in C₃H₆O was similar to the internal environment of chloroplast. We conclude that the polar solvent is good for the fluorescent modulation in photosystem II. PMID:27338363

  3. The Chlorophyll a Fluorescence Modulated by All-Trans-β-Carotene in the Process of Photosystem II

    PubMed Central

    Li, Tianyu; Zhang, Ye; Gong, Nan; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2016-01-01

    Modulating the chlorophyll a (Chl-a) fluorescence by all-trans-β-Carotene (β-Car) in the polarity and non-polarity solutions was investigated. The fluorescence intensity of Chl-a decreased as the concentration of β-Car increased. The excited electronic levels of Chl-a and β-Car became much closer owing to the solvent effect, which led to the electron transfer between both two molecules. A electron-separated pair Chl−·Chl+ that is not luminous was formed due to electron transfer. The solution of Chl-a and β-car in C3H6O was similar to the internal environment of chloroplast. We conclude that the polar solvent is good for the fluorescent modulation in photosystem II. PMID:27338363

  4. Comparison of sun-induced chlorophyll fluorescence estimates from commercial spectroradiometers: an optimal setup for field measurement and aerial product validation.

    NASA Astrophysics Data System (ADS)

    Celesti, Marco; Rossini, Micol; Cogliati, Sergio; Panigada, Cinzia; Tagliabue, Giulia; Fava, Francesco; Julitta, Tommaso; MacArthur, Alasdair; Colombo, Roberto

    2016-04-01

    Sun-induced chlorophyll fluorescence signal is explored as a novel remote sensing method, notable for its potential to be used as a direct indicator of photosynthetic efficiency. In the last years, there was an increasing interest of the scientific community on the remote sensing of Sun-Induced chlorophyll Fluorescence (SIF). Several SIF estimates in the far-red region have been produced from spaceborne sensors, and the future FLEX satellite mission (European Space Agency, Earth-Explorer 8) aims to detect canopy level SIF in both red and far-red regions at global scale. In the context of FLEX calibration/validation activities, a network of ground station to calibrate/validate SIF estimates from space can be considered crucial, but few studies have proposed optimal technical requirements for commercially available spectroradiometers. At canopy level, SIF is traditionally retrieved from incoming and upwelling radiance measurements, exploiting two narrow oxygen absorption bands, within the O2-B and O2-A spectral regions. Only recently, the feasibility of retrieving the SIF spectrum was demonstrated. The rationale behind the exploitation of narrow spectral regions, characterized by strong absorptions, resides in the higher contribution of SIF with respect to the reflected radiance. In order to detect the signal in those narrow spectral regions, high spectral resolution observation is needed. In this study, we compared several high resolution field spectroradiometers with different Full Width at Half Maximum (FWHM), Spectral Sampling Interval (SSI) and Signal-to-Noise Ratio (SNR), to evaluate their performance in SIF estimates. We applied several state-of-the-art, radiance-based retrieval algorithms to radiance measurements taken with the FluoWAT. This device allows to measure leaf reflected and transmitted radiance, solar incident radiance and, upward and downward leaf fluorescence spectrum by means of a low pass filter, that were used as a reference.. Results show

  5. Diurnal and Directional Responses of Chlorophyll Fluorescence and the PRI in a Cornfield

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth; Cheng, Y. B.; Corp, L.; Campbell, P.; Kustas, W.

    2010-01-01

    Determining the health and vigor of vegetation using high spectral resolution remote sensing is an important goal which has application to monitoring agriculture and ecosystem productivity and carbon exchange. Two spectral indices used to assess whether vegetation is performing near-optimally or exhibiting symptoms of environmental stress (e.g., drought or nutrient deficiency, non-optimal temperatures, etc.) are the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (Fs). Both the PRI and Fs capture the dynamics of photoprotection mechanisms within green foliage: the PRI is based on the association of the reflected radiation in the green spectrum with the xanthophyll cycle, whereas Fs measures the emitted radiation in the red and far-red spectrum. Fs was determined from retrievals in the atmospheric oxygen absorption features centered at 688 and 760 nm using a modified Fraunhofer Line Depth (FLD) method. We previously demonstrated diurnal and seasonal PRI differences for sunlit vs. shaded foliage in a conifer forest canopy, as expressed in the hotspot and darkspot of the Bidirectional Reflectance Function (BRF). In a USDA-ARS experimental field site located in Beltsville, MD, USA, measurements were acquired over a corn crop from a nadir view in 2008 with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc., Boulder, CO, USA) to study the behavior of the PRI for sunlit and shaded foliage as captured in reflectance variations associated with the BRF, in a I m tall canopy in the vegetative growth stage. Those observations were compared to simulations obtained from two radiative transfer models. Measurements were then acquired to examine whether the PRI and Fs were influenced by view zenith and azimuth geometries at different times of day. Those measurements were made in 2010 with the Ocean Optics USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics Inc., Dunedin, Florida, USA) at several times during the day on

  6. Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence.

    PubMed

    Guidi, Lucia; Mori, Sauro; Degl'Innocenti, Elena; Pecchia, Susanna

    2007-01-01

    Chlorophyll fluorescence has been used routinely to investigate photosynthetic activity in plants subjected to both biotic and abiotic stresses. The aim of this work was to compare the perturbations in photosynthesis induced by ozone and by a pathogen. By using a conventional fluorometer a similar response pattern was observed in inoculated and O(3)-fumigated leaves. The application of chlorophyll fluorescence imaging provided further detailed information on the spatial-temporal heterogeneity of the response of white lupin leaves to fungal pathogen or to ozone fumigation. In particular, 48 h after artificial inoculation with the necrotrophic fungal pathogen Pleiochaeta setosa, the leaves showed a remarkable alteration in PSII operating efficiency (Phi(PSII)), which affected the whole surface. Afterwards, the infection site was surrounded by a ring of increased photosynthetic activity. The response of ozonated leaves was quite different. The reduction in Phi(PSII) was already evident 24h after fumigation; moreover, a distinct heterogeneity of the fluorescence yield was observed and the major veins displayed a lowered Phi(PSII). PMID:17900916

  7. Seasonal and intraspecific variability of chlorophyll fluorescence, pigmentation and growth of Pinus ponderosa subjected to elevated CO{sub 2}

    SciTech Connect

    Houpis, J.L.J.; Anschel, D.; Pushnik, J.C.; Demaree, R.S.; Anderson, P.D.

    1994-12-01

    Atmospheric CO{sub 2}2 is expected to double in the next century, and these increases will have substantial impact on forest ecosystems. However, the database on the effects of elevated CO{sub 2} on forests is limited, and the extent of intraspecific variability remains unknown. We are investigating the effects of elevated CO{sub 2} on the intraspecific variability of quantum yield (as measured through chlorophyll fluorescence Fv/Fm ratio) and pigmentation, and how these are correlated to variability in growth. Four-year-old Pinus ponderosa seedlings were obtained from nine different sources across California. These seedlings were grown in standard outdoor exposure chambers for sixteen months at either ambient levels of CO{sub 2}, ambient+175ppm CO{sub 2}, or ambient+350ppm CO{sub 2}. The seedlings were periodically measured for growth, pigmentation, and chlorophyll fluorescence. The results showed a variable growth response of the nine sources during all measurement periods. Increasing CO{sub 2} resulted in a decrease in Fv/Fm among sources ranging from {minus}2.1% to {minus}23.2% in February, and 3.1% to {minus}12.5% in June. The source that had the best growth throughout the study, also had a minimal reduction in quantum yield (Fv/Fm) in the presence of elevated CO{sub 2}. For the seedlings of fastest growing sources, the correspondence between total growth and chlorophyll fluorescence was strongest during the February measurement period. Our results also showed a significant reduction in pigmentation due to increased CO{sub 2}. There are at least three explanations for the different responses during each measurement periods. First, the trees could be adapting favorably to increasing CO{sub 2}. Secondly, 1993 needles could be under less physiological stress than the current year needles. Third, there is a seasonal effect dependent upon temperature or light which is influencing the Fv/Fm ratio and pigmentation.

  8. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].

    PubMed

    Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She

    2013-09-01

    By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control. PMID:24417104

  9. Heavy metal stress detection and monitoring via LED-induced chlorophyll fluorescence analysis of Zea mays L. seedlings aimed at polluted soil phytoremediation

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2012-03-01

    Chlorophyll fluorescence spectroscopy is employed to detect and study the time evolution of metal stress of Zea mays L. seedlings aiming polluted soil phytoremediation. The chlorophyll fluorescence spectra of intact leaves are analyzed using 405 nm LED excitation. Red (Fr) and far-red (FFr) emissions around 685 nm and 735 nm, respectively, are examined as a function of the heavy metal concentration. The fluorescence ratio Fr/FFr was employed to monitor the effect of heavy metal upon the physiological state of the plants before signs of visual stress became apparent. The chlorophyll fluorescence analysis permitted detection and evaluation of the damage caused by heavy metal soil contamination in the early stages of the plants growing process, which is not feasible using conventional in vitro spectral analysis.

  10. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

    NASA Astrophysics Data System (ADS)

    Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-04-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. In addition, fluorescence can contaminate photon path estimates from the O2 A-band that has become an integral part of missions to accurately measure greenhouse gas concentrations. Global mapping of far-red (~ 755-770 nm) terrestrial vegetation solar-induced fluorescence from space has been accomplished using the high spectral resolution (ν/Δ ν > 35 000) interferometer on the Japanese Greenhouse gases Observing SATellite (GOSAT). These satellite retrievals of fluorescence rely solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data to disentangle the spectral signatures of three basic components in and surrounding the O2 A-band: atmospheric absorption, surface reflectance, and fluorescence radiance. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate spectral resolution measurements with a relatively high signal-to-noise ratio within and outside the O2 A-band can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with GOSAT. GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. It should be noted that

  11. Lhcb transcription is coordinated with cell size and chlorophyll accumulation. Studies on fluorescence-activated, cell-sorter-purified single cells from wild-type and immutans Arabidopsis thaliana

    SciTech Connect

    Meehan, L.; Harkins, K.; Rodermel, S.

    1996-11-01

    To study the mechanisms that integrate pigment and chlorophyll a/b-binding apoprotein biosynthesis during light-harvesting complex II assembly, we have examined {beta}-glucuronidase (GUS) enzyme activities, cell-sorting-separated single cells sizes in fluorescence activated, cell-sorting-separated single cells from transgenic Arabidopsis thaliana wild-type and immutans variegation mutant plants that express an Lhcb (photosystem II chlorophyll a/b-binding polypeptide gene)/GUS promoter fusion. We found that GUS activities are positively correlated with chlorophyll content and cell size in green cells from the control and immutans plants, indicating that Lhcb gene transcription is coordinated with cell size in this species. Compared with the control plants, however, chlorophyll production is enhanced in the green cells of immutans; this may represent part of a strategy to maximize photosynthesis in the white sectors of the mutant. Lhcb transcription is significantly higher in pure-white cells of the transgenic immutans plants than in pure-white cells from norflurazon-treated, photooxidized A. thaliana leaves. This suggests that immutans partially uncouples Lhcb transcription from its normal dependence on chlorophyll accumulation and chloroplast development. We conclude that immutans may play a role in regulating Lhcb transcription, and may be a key component in the signal transduction pathways that control chloroplast biogenesis. 58 refs., 5 figs., 2 tabs.

  12. Spectral analysis on origination of the bands at 437 nm and 475.5 nm of chlorophyll fluorescence excitation spectrum in Arabidopsis chloroplasts.

    PubMed

    Zeng, Lizhang; Wang, Yongqiang; Zhou, Jun

    2016-05-01

    Chlorophyll fluorescence has been often used as an intrinsic optical molecular probe to study photosynthesis. In this study, the origin of bands at 437 and 475.5 nm in the chlorophyll fluorescence excitation spectrum for emission at 685 nm in Arabidopsis chloroplasts was investigated using various optical analysis methods. The results revealed that this fluorescence excitation spectrum was related to the absorption characteristics of pigment molecules in PSII complexes. Moreover, the excitation band centred at 475.5 nm had a blue shift, but the excitation band at 437 nm changed relatively less due to induction of non-photochemical quenching (NPQ). Furthermore, fluorescence emission spectra showed that this blue shift occurred when excitation energy transfer from both chlorophyll b (Chl b) and carotenoids (Cars) to chlorophyll a (Chl a) was blocked. These results demonstrate that the excitation band at 437 nm was mainly contributed by Chl a, while the excitation band at 475.5 nm was mainly contributed by Chl b and Cars. The chlorophyll fluorescence excitation spectrum, therefore, could serve as a useful tool to describe specific characteristics of light absorption and energy transfer between light-harvesting pigments. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26358732

  13. Influence of CO/sub 2/ enrichment and phosphorus deficiency on chlorophyll A fluorescence, photosynthesis and growth of Pinus Radiata

    SciTech Connect

    Conroy, J.; Smillie, R.; Kuppers, M.; Barlow, S.

    1987-04-01

    Needles from phosphorus (P) deficient seedlings of P.radiata grown for 8 weeks at either 330 or 660 ul CO/sub 2/1/sup -1/ displayed chlorophyll fluorescence induction kinetics characteristic of structural changes within the chloroplast thylakoid membrane. The effect was greatest in plants grown at 660 ul CO/sub 2/1/sup -1/. By week 22, at 330 ul CO/sub 2/1/sup -1/, acclimation to P deficiency had occurred as shown by the similarity between the deficient and adequate P plants in their fluorescence and photosynthetic characteristics. Acclimation did not occur at 660 ul CO/sub 2/1/sup -1/. The light saturated rate of photosynthesis was higher at 660 ul CO/sub 2/1/sup -1/ when P was adequate but not when it was deficient. Similarly, growth was only enhanced by high CO/sub 2/ when P was adequate.

  14. Theoretical investigation of fluorescence concentration quenching in two-dimensional disordered systems. Application to chlorophyll a in monolayers of dioleylphosphatidylcholine

    SciTech Connect

    Boulu, L.G.; Patterson, L.K.; Chauvet, J.P.; Kozak, J.J.

    1987-01-15

    A master equation approach is used for investigating energy transfer and trapping in two-dimensional disordered systems, where the traps are statistical pairs of pigment molecules closer than a critical distance R/sub c/. Fluorescence decay curves are calculated over a range of concentrations as a function of R/sub c/ and the Foerster transfer radius R-bar/sub 0/. The concentration dependence of the lifetimes is compared to the fluorescence self-quenching data that Chauvet et al. obtained from real-time measurements in monolayers of chlorophyll a and dioleylphosphatidylcholine (DOL). This dependence is found to be close to second order and for a choice of R/sub c/ = 10 A the experimental data are fit if R-bar/sub 0/ = 78 +- 2 A. This value is in close agreement with those found in the literature from depolarization measurements.

  15. Fluorescence Ratio Imaging Of Dynamic Intracellular Signals

    NASA Astrophysics Data System (ADS)

    Harootunian, Alec T.; Kao, J. P.; Tsien, Roger Y.

    1989-12-01

    Traditional biochemical assays of cellular messengers require grinding up thousands or millions of cells for each data point. Such destructive measurements use up large amounts of tissue, have poor time resolution, and cannot assess heterogeneity between individual cells or dynamic spatial localizations. Recent technical advances now enable important ionic signals to be continuously imaged inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+. Binding of these ions shifts the fluorescence excitation spectrum of the corresponding indicator. The ratio of excitation amplitudes at two wavelengths measures the free ion concentration while canceling out intensity variations due to nonuniform cell thickness or dye content. By rapidly alternating between the two ion-sensitive excitation wavelengths, a fluorescence microscope equipped with a low-light television camera and digital image processor can produce dynamic images of intracellular messenger levels. In many populations of cells traditionally assumed to be homogeneous, we find that neighboring individual cells can differ enormously in their cytosolic Ca2+ response to agonist stimulation, some ignoring the stimulus, others raising cytosolic Ca2+ transiently, others showing oscillations. Oscillations have been speculated to be important as a basis for frequency-coding of oscillations. Oscillations have been speculated to be important as a basis for frequency-coding of graded inputs; we are investigating the mechanism of their generation using light flashes to generate pulses of intracellular messengers. Spatial gradients of cytosolic Ca t+ within single cells have been observed in embryos during fertilization and development, neurons exposed to electrical or drug stimulation and in cytotoxic T lymphocytes during killing of target

  16. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    PubMed

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. PMID:27161580

  17. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.

    PubMed

    Kalaji, Hazem M; Oukarroum, Abdallah; Alexandrov, Vladimir; Kouzmanova, Margarita; Brestic, Marian; Zivcak, Marek; Samborska, Izabela A; Cetner, Magdalena D; Allakhverdiev, Suleyman I; Goltsev, Vasilij

    2014-08-01

    The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records. PMID:24811616

  18. Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas).

    PubMed

    Marques, Marise Conceição; do Nascimento, Clístenes Williams Araújo

    2013-10-01

    The vegetation of metal-contaminated soils using non-edible crops can be a safe and economical technique for Cd immobilization and the remediation of contaminated sites. Jatropha (Jatropha curcas L.) exhibits a relative tolerance to heavy metals and potential for biofuel production. The study was performed to monitor the Cd-induced alterations in jatropha plants by X-ray chlorophyll fluorescence. The Cd effects on photosynthetic pigments, the mineral composition of plants, defense enzyme activity and soluble proteins were also studied. Plants were grown for 20days in a nutrient solution with five Cd contents: 5, 10, 20, 30 and 40μmolL(-1); a control with no Cd addition was also monitored. The analysis of the chlorophyll fluorescence spectra allowed detecting alterations caused by Cd toxicity in the jatropha plants. The mineral composition of the plants was affected by the Cd doses; however, the Fe and Mg contents were not significantly reduced, which most likely improved the effects on the contents of the photosynthetic pigments. Because of its relative tolerance to Cd, Jatropha curcas may be a promising species to revegetate Cd-contaminated sites. Considering the long period needed to phytoremediate soils, the combination of remediation with bioenergy production could be an attractive option. PMID:23968996

  19. Optical fiber underwater fluorometer for measuring chlorophyll-a concentration

    NASA Astrophysics Data System (ADS)

    Zheng, Longjiang; Hou, Peiguo; Wang, Yutian

    2000-10-01

    This paper describes an efficient method for in-situ measurement of chlorophyll-a concentration in the seawater with fluorescence method and optical fiber techniques. The instrument uses the pulsed xenon lamp as the excited light resources. Both the exciting light and the fluorescence from algae chlorophyll-a are transmitted along two fiber bundles. The fluorescent signal is detected by using the relevant pulsed detecting technology. The minimal detecting concentration of chlorophyll-a in the ocean can reach 1x10-5mg/cm3. The system has advantages of simple structure, passive sensor head and high sensitivity. The experimental results show that this measurement method is realizable.

  20. Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence

    SciTech Connect

    Adams, W.W. III; Winter, K.; Schreiber, U. ); Schramel, P. )

    1990-04-01

    The loss of chlorophyll and total leaf nitrogen during autumnal senescence of leaves from the deciduous tree Platanus occidentalis L. was accompanied by a marked decline in the photosynthetic capacity of O{sub 2} evolution on a leaf area basis. When expressed on a chlorophyll basis, however, the capacity for light- and CO{sub 2}-saturated O{sub 2} evolution did not decline, but rather increased as leaf chlorophyll content decreased. The photon yield of O{sub 2} evolution in white light (400-700 nanometers) declined markedly with decreases in leaf chlorophyll content below 150 milligrams of chlorophyll per square meter on both an incident and an absorbed basis, due largely to the absorption of light by nonphotosynthetic pigments which were not degraded as rapidly as the chlorophylls. Data indicate that the efficiency for photochemical energy conversion of the remaining functional components was maintained at a high level during the natural course of autumnal senescence, and are consistent with previous studies which have characterized leaf senescence as being a controlled process. The loss of chlorophyll during senescence was also accompanied by a decline in fluorescence emanating from PSI, whereas there was little change in PSII fluorescence (measured at 77 Kelvin), presumably due to decreased reabsorption of PSII fluorescence by chlorophyll. Nitrogen was the only element examined to exhibit a decline with senescence on a dry weight basis. However, on a leaf area basis, all elements (C, Ca, K, Mg, N, P, S) declined in senescent leaves, although the contents of sulfur and calcium, which are not easily retranslocated, decreased to the smallest extent.

  1. Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley.

    PubMed Central

    Gilmor, A M; Itoh, S; Govindjee

    2000-01-01

    This study presents a novel measurement, and simulation, of the time-resolved room temperature chlorophyll a fluorescence emission spectra from leaves of the barley wild-type and chlorophyll-b-deficient chlorina (clo) f2 and f104 mutants. The primary data were collected with a streak-camera-based picosecond-pulsed fluorometer that simultaneously records the spectral distribution and time dependence of the fluorescence decay. A new global spectral-kinetic analysis programme method, termed the double convolution integral (DCI) method, was developed to convolve the exciting laser pulse shape with a multimodal-distributed decay profile function that is again convolved with the spectral emission band amplitude functions. We report several key results obtained by the simultaneous spectral-kinetic acquisition and DCI methods. First, under conditions of dark-level fluorescence, when photosystem II (PS II) photochemistry is at a maximum at room temperature, both the clo f2 and clo f104 mutants exhibit very similar PS II spectral-decay contours as the wild-type (wt), with the main band centred around 685 nm. Second, dark-level fluorescence is strongly influenced beyond 700 nm by broad emission bands from PS I, and its associated antennae proteins, which exhibit much more rapid decay kinetics and strong integrated amplitudes. In particular a 705-720 nm band is present in all three samples, with a 710 nm band predominating in the clo f2 leaves. When the PS II photochemistry becomes inhibited, maximizing the fluorescence yield, both the clo f104 mutant and the wt exhibit lifetime increases for their major distribution modes from the minimal 205-500 ps range to the maximal 1500-2500 ps range for both the 685 nm and 740 nm bands. The clo f2 mutant, however, exhibits several unique spectral-kinetic properties, attributed to its unique PS I antennae and thylakoid structure, indicating changes in both PS II fluorescence reabsorption and PS II to PS I energy transfer pathways

  2. Linking chlorophyll fluorescence, hyperspectral reflectance and plant physiological responses to detect stress using the photochemical reflectance index (PRI) (Invited)

    NASA Astrophysics Data System (ADS)

    Naumann, J. C.; Young, D.; Anderson, J.

    2009-12-01

    The concept of using vegetation as sentinels to indicate natural or anthropogenic stress is not new and could potentially provide an ideal mechanism for large-scale detection. Advances in fluorescence spectroscopy and reflectance-derived fluorescence have made possible earlier detection of stress in plants, especially before changes in chlorophyll content are visible. Our studies have been used to fuse leaf fluorescence and reflectance characteristics to remotely sense and rapidly detect vegetation stress and terrain characteristics. Laboratory studies have indicated that light-adapted fluorescence (ΔF/F‧m) measurements have been successful in all experiments at detecting stress from flooding, salinity, drought, herbicide and TNT contamination prior to visible signs of damage. ΔF/F‧m was related to plant physiological status in natural stress conditions, as seen in the relationships with stomatal conductance and photosynthesis The photochemical reflectance index (PRI) and other reflectance ratios were effective at tracking changes in ΔF/F‧m at the leaf and canopy-level scales. At the landscape-level, chlorophyll fluorescence and airborne reflectance imagery were used to evaluate spatial variations in stress in the dominant shrub on a barrier island, Myrica cerifera, during a severe drought and compared to an extremely wet year. Measurements of relative water content and the water band index (WBI970) indicated that water stress did not vary across the island. In contrast, there were significant differences in tissue chlorides across sites. Using PRI we were able to detect salinity stress across the landscape. PRI did not differ between wet and dry years. There was a positive relationship between PRI and ΔF/F‧m for M. cerifera (r2 = 0.79). The normalized difference vegetation index (NDVI), the chlorophyll index (CI) and WBI970 were higher during the wet summer but varied little across the island. PRI was not significantly related to NDVI, suggesting that

  3. Soils as environmental fluorescence database to explain the speleothem fluorescence signal.

    NASA Astrophysics Data System (ADS)

    Quiers, Marine; Perrette, Yves; Poulenard, Jérôme; Chalmin, Emilie; Revol, Morgane

    2014-05-01

    In this study, we propose to use soils water-extracted organic matter (OM) as a database of fluorescence signal, to interpret quantitatively the the fluorescence of speleothems OM. Due to its efficiency to described dissolved organic matter (DOM) characteritics, fluorescence has been used to determined DOM signatures in natural systems, water circulations, OM transfer from soils, OM evolution in soils or recently, DOM changes in engineered treatment systems. Fluorescence has also been used in speleothems studies, mainly as a growth indicator. Only few studies interpret it as an environmental proxy. Speleothem fluorescence can be used as an environmental proxy, to record the past soil evolutions. Qualitative changes of OM are easily measured. However, it's today complicated to quantify the fluorescence signal of speleothems due to the analytical method generally used. That's why we propose to interpret quantitatively the fluorescence signal of speleothems, using soil fluorescence as a database of fluorescence signal. 3 different samples of stalagmites from french northern Prealps were used. To allow the quantification of the fluorescence signal, we need to measure the fluorescence and the quantity of organic matter on the same sample. OM of speleothems was extracted by an acid digestion method and analysed with a spectrofluorimeter. However, it was not possible to quantify directly the OM, as the extract solvant was a high-concentrated acid. To solve this problem, a calibration using soil extracts was realised. Soils were chosen in order to represent the diversity of OM present in the environment above the caves. Attention was focused on soil and vegetation types, and landuse. Organic material was water extracted from soils and its fluorescence was also measured. Total organic carbon was performed on the same samples. This allow to compare the two fluorescence signals. A range of OM concentrations can be then attributed to the speleothem signal. Fluorescence

  4. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with the Normalized Differential Vegetation Index (NDVI)

    NASA Technical Reports Server (NTRS)

    Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J. -E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y.

    2015-01-01

    We examine satellite-based measurements of chlorophyll solar-induced fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been used for decades to measure photosynthetic capacity, SIF measurements are sensitive to the fraction of absorbed photosynthetically-active radiation (fPAR). However, in addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic yield. Both SIF and NDVI from satellite data show drought-related declines early in the growing season in 2010 as compared to other years between 2007 and 2013 for areas dominated by crops and grasslands. This suggests an early manifestation of the dry conditions on fPAR. We also simulated SIF using a global land surface model driven by observation-based meteorological fields. The model provides a reasonable simulation of the drought and heat impacts on SIF in terms of the timing and spatial extents of anomalies, but there are some differences between modeled and observed SIF. The model may potentially be improved through data assimilation or parameter estimation using satellite observations of SIF (as well as NDVI). The model simulations also offer the opportunity to examine separately the different components of the SIF signal and relationships with Gross Primary Productivity (GPP).

  5. The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y; Garrity, S.; Middleton, E. M.; Huemmrich, K. F.; Gu, L.; Marchesini, L. Belelli

    2014-01-01

    Mapping of terrestrial chlorophyll uorescence from space has shown potentialfor providing global measurements related to gross primary productivity(GPP). In particular, space-based fluorescence may provide information onthe length of the carbon uptake period that can be of use for global carboncycle modeling. Here, we examine the seasonal cycle of photosynthesis asestimated from satellite fluorescence retrievals at wavelengths surroundingthe 740nm emission feature. These retrievals are from the Global OzoneMonitoring Experiment 2 (GOME-2) flying on the MetOp A satellite. Wecompare the fluorescence seasonal cycle with that of GPP as estimated froma diverse set of North American tower gas exchange measurements. Because the GOME-2 has a large ground footprint (40 x 80km2) as compared with that of the flux towers and requires averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP in the satellite averaging area surrounding the tower locations estimated from the Max Planck Institute for Biogeochemistry (MPI-BGC) machine learning algorithm. We also examine the seasonality of absorbed photosynthetically-active radiation(APAR) derived with reflectances from the MODerate-resolution Imaging Spectroradiometer (MODIS). Finally, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested sites(particularly deciduous broadleaf and mixed forests), the GOME-2 fluorescence captures the spring onset and autumn shutoff of photosynthesis as delineated by the tower-based GPP estimates. In contrast, the reflectance-based indicators and many of the models tend to overestimate the length of the photosynthetically-active period for these and other biomes as has been noted previously in the literature. Satellite fluorescence measurements therefore show potential for

  6. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis.

    PubMed

    Zhang, Da-Wei; Yuan, Shu; Xu, Fei; Zhu, Feng; Yuan, Ming; Ye, Hua-Xun; Guo, Hong-Qing; Lv, Xin; Yin, Yanhai; Lin, Hong-Hui

    2016-01-01

    Although mitochondrial alternative oxidase (AOX) has been proposed to play essential roles in high light stress tolerance, the effects of AOX on chlorophyll synthesis are unclear. Previous studies indicated that during greening, chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide-resistant respiration was inhibited by knocking out nuclear encoded AOX gene. Here, we showed that this delay of chlorophyll accumulation was more significant under high light condition. Inhibition of cyanide-resistant respiration was also accompanied by the increase of plastid NADPH/NADP(+) ratio, especially under high light treatment which subsequently blocked the import of multiple plastidial proteins, such as some components of the photosynthetic electron transport chain, the Calvin-Benson cycle enzymes and malate/oxaloacetate shuttle components. Overexpression of AOX1a rescued the aox1a mutant phenotype, including the chlorophyll accumulation during greening and plastidial protein import. It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal, the AOX-derived plastidial NADPH/NADP(+) ratio change. Further, our results thus revealed a molecular mechanism of chloroplast-mitochondria interactions. PMID:25158995

  7. Chlorophyll fluorescence quenching during ozone exposure of leaves of Phaseolus vulgaris (pinto)

    SciTech Connect

    Guralnick, L.J. ); Miller, R.; Heath, R.L. )

    1990-05-01

    During ozone exposure, observations have noted an initial decrease in CO{sub 2} uptake followed by a decrease in stomatal conductance. We examined this response utilizing the technique of fluorescence quenching. Fourteen day old plants were exposed to 0.3 ul/l ozone for 1 hour. Fluorescence quenching was monitored using the Hanstech modulated fluorescence system. This enabled us to measure changes in photochemical quenching (qQ) and non-photochemical quenching (qE) in control and ozone treated plants. Results have indicated no differences in qQ and qE between ozone treated and control plants. We are initiating further studies utilizing different ozone levels.

  8. Photodynamic cancer therapy: fluorescence localization and light absorption spectra of chlorophyll-derived photosensitizers inside cancer cells

    NASA Astrophysics Data System (ADS)

    Moser, Joerg G.; Rueck, Angelika C.; Schwarzmaier, Hans-Joachim; Westphal-Frosch, Christel

    1992-07-01

    The first prerequisite for an optimum effect of photodynamic therapy with chlorophyll- derived photosensitizers is irradiation at the S1 absorption maximum in the red spectral region. This absorption maximum changes its position due to molecular association by 20 to 100 nm depending on the subcellular environment, and must be determined by direct absorption spectrometry in the region of subcellular sensitizer localization. Fluorescence- intensifying video microscopy allows for localization of the sensitizer storage site at or near the Galgi apparatus of OAT 75 small-cell lung carcinoma cells. The absorption maximum at 760 nm taken from spectra of single cells and cell layers determines the postulated optimum condition for dye laser irradiation with bacteriopheophorbide-a-methyl-ester as the sensitizer.

  9. [Extraction and analysis of solar-induced chlorophyll fluorescence of wheat with ground-based hyperspectral imaging system].

    PubMed

    Wang, Ran; Liu, Zhi-gang; Feng, Hai-kuan; Yang, Pei-qi; Wang, Qing-shan; Ni, Zhuo-ya

    2013-09-01

    Dataset simulated with FluorMOD and images of wheat in heading stage taken by a ground-based hyperspectral imaging system with 3.3 nm spectral resolution and 0. 71-0. 74 nm spectral sampling interval were used test the feasibility and accuracy of three FLD methods (named FLD, 3FLD and iFLD). The results show that when spectral resolution is 3.3 nm, solar-induced chlorophyll fluorescence could be extracted effectively in O2-A band (around 760 nm) instead of O2-B band (around 687 nm). As to the extraction results of data with noises, both FLD and 3FLD are stabler than iFLD method. The results of FLD tend to be higher than true value. PMID:24369651

  10. LETTERS TO THE EDITOR: Emission of fluorescence from chlorophyll a in vivo due to nanosecond pulsed laser excitation

    NASA Astrophysics Data System (ADS)

    Bunin, D. K.; Gorbunov, M. Yu; Fadeev, V. V.; Chekalyuk, A. M.

    1992-05-01

    A model was proposed and tested experimentally to describe the emission of fluorescence by chlorophyll a in vivo as a result of pulsed laser excitation. This model takes into account the migration of excitons between various photosynthetic units, singlet-singlet annihilation of excitons, pigment bleaching, and also the influence of various states of the photosystem II reaction centers. A method was developed to measure the average number of excitons reaching a photosystem II reaction center during a pulse. This involved two-pulse laser excitation. It was found that the rates of exciton capture by the reaction centers were the same for the PIQ and P +IQ - states of the photosystem II reaction centers, whereas the rate of exciton capture in the P +I -Q - state was half that for the PIQ - state.

  11. Effects of UVB radiation on Photosynthesis Activity of Wolffia arrhiza as Probed by Chlorophyll Fluorescence Transient

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Chen, Kun; Liu, Yongding

    UV radiation is one major environmental stress for growth of Wolffia arrhiza which is regarded as a good candidate producer for establishing CELSS during extraterrestrial colonization and spaceflight. In this study, we found that UVB radiation inhibited photosynthetic CO2 assimilation activity significantly, and the content of chlorophyll a, chlorophyll b and carotenoids decreased obviously when plants were exposed to UVB radiation for 6 h. High UVB radiation also declined the quantum yield of primary photochemistry (φPo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (ψo) in the cells of Wolffia arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction center per absorption (RC/ABS) had the same changes under UV-B radiation stress. These results indicated that the effects of UV- B radiation on photosynthesis of Wolffia arrhiza maybe functioned by inhibition the electron transport and inactivation of reaction centers, but the inhibition maybe happen in more than one site in photosynthetic apparatus which is different to that in salt adaptation.

  12. Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yang, W.; Ichii, K.

    2015-12-01

    Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.

  13. Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium culmorum on the Photosynthetic Integrity of Infected Wheat Ears

    PubMed Central

    Bauriegel, Elke; Giebel, Antje; Herppich, Werner B.

    2011-01-01

    Head blight on wheat, caused by Fusarium spp., is a serious problem for both farmers and food production due to the concomitant production of highly toxic mycotoxins in infected cereals. For selective mycotoxin analyses, information about the on-field status of infestation would be helpful. Early symptom detection directly on ears, together with the corresponding geographic position, would be important for selective harvesting. Hence, the capabilities of various digital imaging methods to detect head blight disease on winter wheat were tested. Time series of images of healthy and artificially Fusarium-infected ears were recorded with a laboratory hyperspectral imaging system (wavelength range: 400 nm to 1,000 nm). Disease-specific spectral signatures were evaluated with an imaging software. Applying the ‘Spectral Angle Mapper’ method, healthy and infected ear tissue could be clearly classified. Simultaneously, chlorophyll fluorescence imaging of healthy and infected ears, and visual rating of the severity of disease was performed. Between six and eleven days after artificial inoculation, photosynthetic efficiency of infected compared to healthy ears decreased. The severity of disease highly correlated with photosynthetic efficiency. Above an infection limit of 5% severity of disease, chlorophyll fluorescence imaging reliably recognised infected ears. With this technique, differentiation of the severity of disease was successful in steps of 10%. Depending on the quality of chosen regions of interests, hyperspectral imaging readily detects head blight 7 d after inoculation up to a severity of disease of 50%. After beginning of ripening, healthy and diseased ears were hardly distinguishable with the evaluated methods. PMID:22163820

  14. Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa.

    PubMed

    Lin, Li; Feng, Cong; Li, Qingyun; Wu, Min; Zhao, Liangyuan

    2015-10-01

    Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa were investigated in order to reveal the mechanisms of electrolytic inhibition of algae. Threshold of current density was found under a certain initial no. of algae cell. When current density was equal to or higher than the threshold (fixed electrolysis time), growth of algae was inhibited completely and the algae lost the ability to survive. Effect of algal solution volume on algal inhibition was insignificant. Thresholds of current density were 8, 10, 14, 20, and 22 mA cm(-2) at 2.5 × 10(7), 5 × 10(7), 1 × 10(8), 2.5 × 10(8), and 5 × 10(8) cells mL(-1) initial no. of algae cell, respectively. Correlativity between threshold of current and initial no. of algae cells was established for scale-up and determining operating conditions. Changes of chlorophyll fluorescence parameters demonstrated that photosystem (PS) II of algae was damaged by electrolysis but still maintained relatively high activity when algal solution was treated by current densities lower than the threshold. The activity of algae recovered completely after 6 days of cultivation. On the contrary, when current density was higher than the threshold, connection of phycobilisome (PBS) and PS II core complexes was destroyed, PS II system of algae was damaged irreversibly, and algae could not survive thoroughly. The inactivation of M. aeruginosa by electrolysis can be attributed to irreversible separation of PBS from PS II core complexes and the damage of PS II of M. aeruginosa. PMID:25997810

  15. On the chlorophyll a fluorescence yield in chloroplasts upon excitation with twin turnover flashes (TTF) and high frequency flash trains.

    PubMed

    Vredenberg, Wim; Durchan, Milan; Prasil, Ondrej

    2007-01-01

    Chlorophyll fluorescence is routinely taken as a quantifiable measure of the redox state of the primary quinone acceptor Q(A) of PSII. The variable fluorescence in thylakoids increases in a single turnover flash (STF) from its low dark level F (o) towards a maximum F (m) (STF) when Q(A) becomes reduced. We found, using twin single turnover flashes (TTFs) that the fluorescence increase induced by the first twin-partner is followed by a 20-30% increase when the second partner is applied within 20-100 micros after the first one. The amplitude of the twin response shows a period-of-four oscillation associated with the 4-step oxidation of water in the Kok cycle (S states) and originates from two different trapped states with a life time of 0.2-0.4 and 2-5 ms, respectively. The oscillation is supplemented with a binary oscillation associated with the two-electron gate mechanism at the PSII acceptor side. The F(t) response in high frequency flash trains (1-4 kHz) shows (i) in the first 3-4 flashes a transient overshoot 20-30% above the F (m) (STF) = 3*F (o) level reached in the 1st flash with a partial decline towards a dip D in the next 2-3 ms, independent of the flash frequency, and (ii) a frequency independent rise to F (m) = 5*F (o) in the 3-60 ms time range. The initial overshoot is interpreted to be due to electron trapping in the S(0) fraction with Q(B)-nonreducing centers and the dip to the subsequent recovery accompanying the reoxidation of the double reduced acceptor pair in these RCs after trapping. The rise after the overshoot is, in agreement with earlier findings, interpreted to indicate a photo-electrochemical control of the chlorophyll fluorescence yield of PSII. It is anticipated that the double exciton and electron trapping property of PSII is advantageous for the plant. It serves to alleviate the depression of electron transport in single reduced Q(B)-nonreducing RCs, associated with electrochemically coupled proton transport, by an increased electron

  16. Responses of ‘d’Anjou’ Pear (Pyrus communis L.) fruit to storage at low oxygen setpoints determined by monitoring fruit chlorophyll fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘d’Anjou’ pears, a superficial scald-susceptible cultivar, were stored in air or controlled atmospheres containing 1.5 kPa O2 or a minimal partial pressure determined using real-time monitoring of fruit chlorophyll fluorescence. In two experiments, the low O2 setpoints were 0.4 and 0.5 kPa. During...

  17. Effects of molecular organization on photophysical behavior. Steady-state and real-time behavior of chlorophyll a fluorescence in spread monolayers of dipalmitoylphosphatidylcholine

    SciTech Connect

    Chauvet, J.P.; Agrawal, M.; Patterson, L.K.

    1988-07-14

    Fluorescence spectra, intensities, and lifetimes of chlorophyll a have been determined in monolayers of dipalmitoylphosphatidylcholine as functions of chlorophyll concentration and monolayer compression over the range of (0.5-20) x 10/sup 12/ molecules/cm/sup 2/ and 2-30 dyn/cm surface pressure. This lipid exhibits three different phases over the surface pressure region examined: liquid-expanded, liquid-condensed, and solid-condensed. The fluorescence spectrum observed at 680 nm indicates that monomeric chlorophyll a is the predominant fluorescent form throughout. However, fluorescence intensities and lifetimes both respond dramatically to changes in lipid phase. In the region of the transition from liquid-expanded to liquid-condensed phase, intensity falls dramatically while lifetime shows no response to phase change. In the second transition from liquid-condensed to solid-condensed, the intensity again increases somewhat, while the lifetime exhibits two-component decay, one dependent on surface pressure and one essentially constant, exhibiting the value expected in dilute systems. These variations are interpreted in terms of changing interactions among chlorophyll molecules with alterations in the microenvironment.

  18. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical phosphorus concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the response of CO2 assimilation (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition soybean plants were grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) P supply under ambient and elevated CO2 (a...

  19. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    PubMed

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices. PMID:25228224

  20. The development of chlorophyll-based markers in poultry diets to aid detection of fluorescent fecal contamination.

    PubMed

    Lee, M R F; Leemans, D; Theobald, V J; Fleming, H R; Gay, A P

    2013-12-01

    Incidents of foodborne illness associated with consuming undercooked or raw chicken are often linked to 2 causative pathogens: Campylobacter spp. or Salmonella spp. Numerous studies have shown that contamination of carcasses results when pathogens are transferred from the intestinal tract or fecal material on feet and feathers to the dressed carcass. Ultraviolet spectral imaging to detect surface fecal and ingesta contamination on poultry carcasses may provide a solution to aid detection. However, poultry diets do not provide sufficiently high levels of natural fluorophores for this system to be reliable. This study investigated the potential of chlorophyll-based feed additives to improve fluorescence of the feces and narrow the excitation and emission wavelengths to aid in the development of a simple visualization system. Twenty-four hens (Gallus gallus domesticus) were allocated at random to 1 of 4 treatments: control (C, no marker), Zn chlorophyllin, Mg chlorophyllin, or Fe chlorophyllin. All markers were incorporated into mash before pelleting at a rate of 1 g/kg of DM. The experiment consisted of two 4 × 4 Latin squares with each period consisting of 2 wk. Feces were collected and extracted in acetone:water (50:50; vol/vol) with fecal fluorescence emission spectra determined using a Jasco FP-6200 Spectrofluorometer with excitation at 382 nm. A main peak evolved at wavelength 670 nm with the total area under the peak used as fluorescence intensity. Following 7 d of marker supplementation, the 3 markers improved the fluorescence intensity by ×14.8, 12.8, and 6.9 for Fe, Mg, and Zn chlorophyllin, respectively, compared with the control. The addition of feces containing Mg chlorophyllin to chicken carcass increased detection of the feces compared with feces with no marker. Also, due to the plain background of chicken skin, a simple image at 675 nm with appropriate thresholds would allow detection of contaminated carcasses at the current slaughter line speed

  1. Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat.

    PubMed

    Sharma, Dew Kumari; Fernández, Juan Olivares; Rosenqvist, Eva; Ottosen, Carl-Otto; Andersen, Sven Bode

    2014-05-01

    The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat treatment affect chlorophyll fluorescence parameters. A set of 41 spring wheat cultivars differing in their maximum photochemical efficiency of photosystem (PS) II (Fv/Fm) under heat stress conditions was used. These cultivars were previously evaluated based on the heat treatment of intact plants. The responses of the same cultivars to heat stress were compared between the two methods of heat treatment. The results showed that in detached leaves, all of the fluorescence parameters remained almost unaffected in control (20°C at all durations tested), indicating that the detachment itself did not affect the fluorescence parameters. In contrast, heat induced reduction in the maximum photochemical efficiency of PSII of detached leaves occurred within 2h at 40°C and within 30min at 45°C, and the response was more pronounced than when intact plants were heat stressed for three days at 40°C. The proportion of total variation that can be ascribed to the genetic differences among cultivars for a trait was estimated as genetic determination. During heat treatment, the genetic determination of most of the fluorescence parameters was lower in detached leaves than in intact plants. In addition, the correlation of the cultivar response in intact plants versus detached leaves was low (r=0.13 (with expt.1) and 0.02 with expt.2). The most important difference between the two methods was the pronounced difference in time scale of reaction, which may indicate the involvement of different physiological mechanisms in response to high temperatures. Further, the results suggest that genetic factors associated with cultivar differences are different for the two methods of heat treatment. PMID

  2. Remotely Measured Terrestrial Chlorophyll Fluorescence Using Airborne G-LiHT and APFS Sensors

    NASA Astrophysics Data System (ADS)

    Cook, W. B.; Yee, J. H.; Corp, L. A.; Cook, B. D.; Huemmrich, K. F.

    2014-12-01

    In September 2014 the Goddard Lidar, Hyperspectral and Thermal (G-LiHT) and the APL/JHU Airborne Plant Fluorescence Sensor (APFS) were flown together on a NASA Langley King Air over vegetated targets in North Carolina and Virginia. The instruments provided high spatial and spectral resolution data in the visible and near infrared, down-welling irradiance, elevation maps, and thermal imagery. Ground validation data was also collected concurrently. Here we report the results of these measurements and show the feasibility of using these types of instruments for collection the fluorescence and other information essential for ecological and carbon cycle studies.

  3. Polyacrylamide-based biocompatible Nanoplatform enhances the tumor uptake, PET/fluorescence imaging and anticancer activity of a chlorophyll analog.

    PubMed

    Gupta, Anurag; Wang, Shouyan; Marko, Aimee; Joshi, Penny; Ethirajan, Manivannan; Chen, Yihui; Yao, Rutao; Sajjad, Munawwar; Kopelman, Raoul; Pandey, Ravindra K

    2014-01-01

    In this report we demonstrate the outstanding advantages of multifunctional nanoplatforms for cancer-imaging and therapy. The non-toxic polyacrylamide (PAA) nanoparticles (size:18-25 nm) formulation drastically changed the pharmacokinetic profile of the ¹²⁴I- labeled chlorophyll-a derivative (formulated in 10% ethanol in PBS) with a remarkable enhancement in tumor uptake, and significantly reduced uptake in spleen and liver. Among the various nanoformulations investigated, the ¹²⁴I- labeled photosensitizer (dose: 0.6142 MBq), and the cyanine dye-nanoparticles (CD-NP) conjugate (dose 0.3 μmol/kg) in combination showed great potential for tumor imaging (PET/NIR fluorescence) in BALB/c mice bearing Colon26 tumors. Compared to free non-labeled photosensitizer, the corresponding PAA nanoformulation under similar treatment parameters showed a remarkable enhancement in long-term tumor cure by PDT (photodynamic therapy) and provides an opportunity to develop a single nanoplatform for tumor-imaging (PET/fluorescence) and phototherapy, a practical "See and Treat" approach. PMID:24723983

  4. Polyacrylamide-Based Biocompatible Nanoplatform Enhances the Tumor Uptake, PET/fluorescence Imaging and Anticancer Activity of a Chlorophyll Analog

    PubMed Central

    Gupta, Anurag; Wang, Shouyan; Marko, Aimee; Joshi, Penny; Ethirajan, Manivannan; Chen, Yihui; Yao, Rutao; Sajjad, Munawwar; Kopelman, Raoul; Pandey, Ravindra K.

    2014-01-01

    In this report we demonstrate the outstanding advantages of multifunctional nanoplatforms for cancer-imaging and therapy. The non-toxic polyacrylamide (PAA) nanoparticles (size:18-25 nm) formulation drastically changed the pharmacokinetic profile of the 124I- labeled chlorophyll-a derivative (formulated in 10% ethanol in PBS) with a remarkable enhancement in tumor uptake, and significantly reduced uptake in spleen and liver. Among the various nanoformulations investigated, the 124I- labeled photosensitizer (dose: 0.6142 MBq), and the cyanine dye-nanoparticles (CD-NP) conjugate (dose 0.3 μmol/kg) in combination showed great potential for tumor imaging (PET/NIR fluorescence) in BALB/c mice bearing Colon26 tumors. Compared to free non-labeled photosensitizer, the corresponding PAA nanoformulation under similar treatment parameters showed a remarkable enhancement in long-term tumor cure by PDT (photodynamic therapy) and provides an opportunity to develop a single nanoplatform for tumor-imaging (PET/fluorescence) and phototherapy, a practical “See and Treat” approach. PMID:24723983

  5. Effect of high temperature on photosynthesis in beans. I. Oxygen evolution and chlorophyll fluorescence

    SciTech Connect

    Pastenes, C.; Horton, P.

    1996-11-01

    We studied the effect of increasing temperature on photosynthesis in two bean (Phaseolus vulgaris L.) varieties known to differ in their resistance to extreme high temperatures, Blue Lake (BL), commercially available in the United Kingdom, and Barbucho (BA), noncommercially bred in Chile. We paid particular attention to the energy-transducing mechanisms and structural responses inferred from fluorescence kinetics. The study was conducted in non-photorespiratory conditions. Increases in temperature resulted in changes in the fluorescence parameters nonphotochemical quenching (qN) and photochemical quenching (qP) in both varieties, but to a different extent. In BL and BA the increase in qP and the decrease in qN were either completed at 30{degrees}C. No indication of photoinhibition was detected at any temperature, and the ratio of the quantum efficiencies of photosystem II (PSII) and O{sub 2} evolution remained constant from 20 to 35{degrees}C. Measurements of 77-K fluorescence showed an increase in the photosystem I (PSI)/PSII ratio with temperature, suggesting an increase in the state transitions. In addition, measurements of fast-induction fluorescence revealed that the proportion of PSII{sub {beta}} centers increased with increasing temperatures. The extent of both changes were maximum at 30 to 35{degrees}C, coinciding with the ratio of rates at temperatures differing by 10{degrees}C for oxygen evolution. 40 refs., 4 figs.

  6. Effect of High Temperature on Photosynthesis in Beans (I. Oxygen Evolution and Chlorophyll Fluorescence).

    PubMed Central

    Pastenes, C.; Horton, P.

    1996-01-01

    We studied the effect of increasing temperature on photosynthesis in two bean (Phaseolus vulgaris L.) varieties known to differ in their resistance to extreme high temperatures, Blue Lake (BL), commercially available in the United Kingdom, and Barbucho (BA), noncommercially bred in Chile. We paid particular attention to the energy-transducing mechanisms and structural responses inferred from fluorescence kinetics. The study was conducted in non-photorespiratory conditions. Increases in temperature resulted in changes in the fluorescence parameters nonphotochemical quenching (qN) and photochemical quenching (qP) in both varieties, but to a different extent. In BL and BA the increase in qP and the decrease in qN were either completed at 30[deg]C or slightly changed following increases from 30 to 35[deg]C. No indication of photoinhibition was detected at any temperature, and the ratio of the quantum efficiencies of photosystem II (PSII) and O2 evolution remained constant from 20 to 35[deg]C. Measurements of 77-K fluorescence showed an increase in the photosystem I (PSI)/PSII ratio with temperature, suggesting an increase in the state transitions. In addition, measurements of fast-induction fluorescence revealed that the proportion of PSII[beta] centers increased with increasing temperatures. The extent of both changes were maximum at 30 to 35[deg]C, coinciding with the ratio of rates at temperatures differing by 10[deg]C for oxygen evolution. PMID:12226442

  7. Vegetation stress from soil moisture and chlorophyll fluorescence: synergy between SMAP and FLEX approaches

    NASA Astrophysics Data System (ADS)

    Moreno, Jose; Moran, Susan

    2014-05-01

    Vegetation stress detection continues being a focal objective for remote sensing techniques. It has implications not only for practical applications such as irrigation optimization or precision agriculture, but also for global climate models, providing data to better link water and carbon exchanges between the surface and the atmospheric and improved parameterization of the role of terrestrial vegetation in the coupling of water and carbon cycles. Traditional approaches to map vegetation stress using remote sensing techniques have been based on measurements of soil moisture status, canopy (radiometric) temperature and, to a lesser extent, canopy water content, but new techniques such as the dynamics of vegetation fluorescence emission, are also now available. Within the context of the preparatory activities for the SMAP and FLEX missions, a number of initiatives have been put in place to combine modelling activities and field experiments in order to look for alternative and more efficient ways of detecting vegetation stress, with emphasis on synergistic remote sensing approaches. The potential of solar-induced vegetation fluorescence as an early indicator of stress has been widely demonstrated, for different type of stress conditions: light amount (excess illumination) and conditions (direct/diffuse), temperature extremes (low and high), soil water availability (soil moisture), soil nutrients (nitrogen), atmospheric water vapour and atmospheric CO2 concentration. The effects caused by different stress conditions are sometimes difficult to be decoupled, also because different causes are often combined, but in general they then to change the overall fluorescence emission (modulating amplitude) or changing the relative contributions of photosystems PSI and PSII or the relative fluorescence re-absorption effects caused by modifications in the structure of pigment bed responsible for light absorption, in particular for acclimation for persistent stress conditions. While

  8. Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Tremblay, Jean-ÉRic; Simpson, Kyle; Martin, Johannie; Miller, Lisa; Gratton, Yves; Barber, David; Price, Neil M.

    2008-07-01

    The first quasi-annual time series of nutrients and chlorophyll fluorescence in the southeast Beaufort Sea showed that mixing, whether driven by wind, local convection, or brine rejection, and the ensuing replenishment of nutrients at the surface were minimal during autumn and winter. Anomalously high inventories of nutrients were observed briefly in late December, coinciding with the passage of an eddy generated offshore. The concentrations of NO3- in the upper mixed layer were otherwise low and increased slowly from January to April. The coincident decline of NO2- suggested nitrification near the surface. The vernal drawdown of NO3- in 2004 began at the ice-water interface during May, leaving as little as 0.9 μM of NO3- when the ice broke up. A subsurface chlorophyll maximum (SCM) developed promptly and deepened with the nitracline until early August. The diatom-dominated SCM possibly mediated half of the seasonal NO3- consumption while generating the primary NO2- maximum. Dissolved inorganic carbon and soluble reactive phosphorus above the SCM continued to decline after NO3- was depleted, indicating that net community production (NCP) exceeded NO3- -based new production. These dynamics contrast with those of productive Arctic waters where nutrient replenishment in the upper euphotic zone is extensive and NCP is fueled primarily by allochthonous NO3-. The projected increase in the supply of heat and freshwater to the Arctic should bolster vertical stability, further reduce NO3- -based new production, and increase the relative contribution of the SCM. This trend might be reversed locally or regionally by the physical forcing events that episodically deliver nutrients to the upper euphotic zone.

  9. The Validity Chlorophyll-a Estimation by Sun Induced Fluorescence in Estuarine Waters: An Analysis of Long-term (2003-2011) Water Quality Data from Tampa Bay, Florida (USA)

    NASA Technical Reports Server (NTRS)

    Moreno-Madrinan, Max Jacobo; Fischer, Andrew

    2012-01-01

    Satellite observation of phytoplankton concentration or chlorophyll-a is an important characteristic, critically integral to monitoring coastal water quality. However, the optical properties of estuarine and coastal waters are highly variable and complex and pose a great challenge for accurate analysis. Constituents such as suspended solids and dissolved organic matter and the overlapping and uncorrelated absorptions in the blue region of the spectrum renders the blue-green ratio algorithms for estimating chlorophyll-a inaccurate. Measurement of sun-induced chlorophyll fluorescence, on the other hand, which utilizes the near infrared portion of the electromagnetic spectrum, may provide a better estimate of phytoplankton concentrations. While modelling and laboratory studies have illustrated both the utility and limitations of satellite baseline algorithms based on the sun induced chlorophyll fluorescence signal, few have examined the empirical validity of these algorithms using a comprehensive long term in situ data set. In an unprecedented analysis of a long term (2003-2011) in situ monitoring data from Tampa Bay, Florida (USA), we assess the validity of the FLH product from the Moderate Resolution Imaging Spectrometer (MODIS) against chlorophyll ]a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions within the estuary including water depth, distance from shore and structures and eight water quality parameters. From the 39 station for which data was derived, 22 stations showed significant correlations when the FLH product was matched with in situ chlorophyll-alpha data. The correlations (r2) for individual stations within Tampa Bay ranged between 0.67 (n=28, pless than 0.01) and-0.457 (n=12, p=.016), indicating that

  10. Electron-Vibrational Coupling and Fluorescence Spectra of Tetra-, Penta-, and Hexacoordinated Chlorophylls c1 and c2.

    PubMed

    Etinski, Mihajlo; Petković, Milena; Ristić, Miroslav M; Marian, Christel M

    2015-08-13

    Chlorophylls (Chls) are a group of pigments related to light absorption, excitation energy, and electron transfer in photosynthetic complexes. Given the importance of intramolecular nuclear motion for these electronic processes, many experimental studies were performed in order to relate its coupling to electronic coordinates of these pigments, but a detailed analysis is still lacking for isolated Chls c1 and c2. To gain insight into the intramolecular motion and fluoroscence spectra of these two pigments in tetra-, penta-, and hexacoodinated states, we performed a quantum chemical study based on density functional theory and multimode harmonic approximation with displaced, distorted, and rotated normal modes. In order to benchmark the employed methods, we simulated the high-resolution fluorescence spectra of tetracoodinated Chls a, b, and d and compared them with available experimental spectra obtained with fluorescence line-narrowing techniques. Although the experimental spectra were obtained for ligand coordinated Chls, qualitatively good agreement was found between the simulated and experimental spectra. Almost all resonances were reproduced in the spectroscopically interesting region from 200 to 1700 cm(-1). The significance of mode distortion and rotation for the simulated spectra is discussed. The fluorescence spectra of Chls c1 and c2 consist of a group of peaks in the 200-450 cm(-1) spectral range, a group of weak peaks from 700 to 1000 cm(-1), and a large group of strong peaks from 1100 to 1600 cm(-1). Ligand effects are also addressed, and a mode is identified as a sensitive probe for the coordination state of Chls c1 and c2. PMID:26189597

  11. Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals.

    PubMed

    Gilmore, Adam M; Larkum, Anthony W D; Salih, Anya; Itoh, Shigeru; Shibata, Yutaka; Bena, Chiaki; Yamasaki, Hideo; Papina, Marina; Van Woesik, Robert

    2003-05-01

    Light is absorbed by photosynthetic algal symbionts (i.e. zooxanthellae) and by chromophoric fluorescent proteins (FP) in reef-building coral tissue. We used a streak-camera spectrograph equipped with a pulsed, blue laser diode (50 ps, 405 nm) to simultaneously resolve the fluorescence spectra and kinetics for both the FP and the zooxanthellae. Shallow water (<9 m)-dwelling Acropora spp. and Plesiastrea versipora specimens were collected from Okinawa, Japan, and Sydney, Australia, respectively. The main FP emitted light in the blue, blue-green and green emission regions with each species exhibiting distinct color morphs and spectra. All corals showed rapidly decaying species and reciprocal rises in greener emission components indicating Förster resonance energy transfer (FRET) between FP populations. The energy transfer modes were around 250 ps, and the main decay modes of the acceptor FP were typically 1900-2800 ps. All zooxanthellae emitted similar spectra and kinetics with peak emission (approximately 683 nm) mainly from photosystem II (PSII) chlorophyll (chl) a. Compared with the FP, the PSII emission exhibited similar rise times but much faster decay times, typically around 640-760 ps. The fluorescence kinetics and excitation versus emission mapping indicated that the FP emission played only a minor role, if any, in chl excitation. We thus suggest the FP could only indirectly act to absorb, screen and scatter light to protect PSII and underlying and surrounding animal tissue from excess visible and UV light. We conclude that our time-resolved spectral analysis and simulation revealed new FP emission components that would not be easily resolved at steady state because of their relatively rapid decays due to efficient FRET. We believe the methods show promise for future studies of coral bleaching and for potentially identifying FP species for use as genetic markers and FRET partners, like the related green FP from Aequorea spp. PMID:12812294

  12. Relationship between efficiency of photosynthetic energy conversion and chlorophyll fluorescence quenching in upland cotton (Gossypium hirsutum L.).

    PubMed

    Schäfer, C; Björkman, O

    1989-06-01

    The relationship between components of non-photochemical quenching of chlorophyll fluorescence yield (qNP) and dissipation of excessive excitation energy was determined in cotton leaves using concurrent measurements of fluorescence and gas-exchange at 2% and 20% O2 under a range of photon flux densities and CO2 pressures. A nearly stoichiometric relationship was obtained between dissipation of energy not used in photosynthetic CO2 fixation or photorespiration and qNP provided that a component, probably associated with state transitions, was not included in qNP. Although two distinct components of qNP were resolved on the basis of their relaxation kinetics, both components appear effective in energy dissipation. The photon yield of "open" photosystem-II reaction centers decreased linearly with increases in qNP, indicating that much of the energy dissipation occurs in the pigment bed. However, increases in qNP appear dependent on the redox state of these centers. The results are discussed in relation to current hypotheses of the molecular basis of non-radiative energy dissipation. It is concluded that determinations of qNP can provide a quantitative measure of the dissipation of excessive excitation energy if precautions are taken to ensure that the maximum fluorescence yield is measured under conditions that provide complete closure of the photosystem-II reaction centers. It is also concluded that such dissipation can prevent photoinhibitory damage in cotton leaves even under extreme conditions where as much as 80% of the excitation energy is excessive. PMID:24212903

  13. The interrelationship between the lower oxygen limit, chlorophyll fluorescence and the xanthophyll cycle in plants.

    PubMed

    Wright, A Harrison; DeLong, John M; Gunawardena, Arunika H L A N; Prange, Robert K

    2011-03-01

    The lower oxygen limit (LOL) in plants may be identified through the measure of respiratory gases [i.e. the anaerobic compensation point (ACP) or the respiratory quotient breakpoint (RQB)], but recent work shows it may also be identified by a sudden rise in dark minimum fluorescence (F(o)). The interrelationship between aerobic respiration and fermentative metabolism, which occur in the mitochondria and cytosol, respectively, and fluorescence, which emanates from the chloroplasts, is not well documented in the literature. Using spinach (Spinacia oleracea), this study showed that F(o) and photochemical quenching (q(P)) remained relatively unchanged until O(2) levels dropped below the LOL. An over-reduction of the plastoquinone (PQ) pool is believed to increase F(o) under dark + anoxic conditions. It is proposed that excess cytosolic reductant due to inhibition of the mitochondria's cytochrome oxidase under low-O(2), may be the primary reductant source. The maximum fluorescence (F(m)) is largely unaffected by low-O(2) in the dark, but was severely quenched, mirroring changes to the xanthophyll de-epoxidation state (DEPS), under even low-intensity light (≈4 μmol m(-2) s(-1)). In low light, the low-O(2)-induced increase in F(o) was also quenched, likely by non-photochemical and photochemical means. The degree of quenching in the light was negatively correlated with the level of ethanol fermentation in the dark. A discussion detailing the possible roles of cyclic electron flow, the xanthophyll cycle, chlororespiration and a pathway we termed 'chlorofermentation' were used to interpret fluorescence phenomena of both spinach and apple (Malus domestica) over a range of atmospheric conditions under both dark and low-light. PMID:21290261

  14. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?

    PubMed

    Edwards, G E; Baker, N R

    1993-08-01

    Analysis is made of the energetics of CO2 fixation, the photochemical quantum requirement per CO2 fixed, and sinks for utilising reductive power in the C4 plant maize. CO2 assimilation is the primary sink for energy derived from photochemistry, whereas photorespiration and nitrogen assimilation are relatively small sinks, particularly in developed leaves. Measurement of O2 exchange by mass spectrometry and CO2 exchange by infrared gas analysis under varying levels of CO2 indicate that there is a very close relationship between the true rate of O2 evolution from PS II and the net rate of CO2 fixation. Consideration is given to measurements of the quantum yields of PS II (φ PS II) from fluorescence analysis and of CO2 assimilation ([Formula: see text]) in maize over a wide range of conditions. The[Formula: see text] ratio was found to remain reasonably constant (ca. 12) over a range of physiological conditions in developed leaves, with varying temperature, CO2 concentrations, light intensities (from 5% to 100% of full sunlight), and following photoinhibition under high light and low temperature. A simple model for predicting CO2 assimilation from fluorescence parameters is presented and evaluated. It is concluded that under a wide range of conditions fluorescence parameters can be used to predict accurately and rapidly CO2 assimilation rates in maize. PMID:24317706

  15. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.

    PubMed

    Stirbet, Alexandrina; Govindjee

    2012-09-01

    The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence

  16. Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background We have studied the impact of carbohydrate-starvation on the acclimation response to high light using Arabidopsis thaliana double mutants strongly impaired in the day- and night path of photoassimilate export from the chloroplast. A complete knock-out mutant of the triose phosphate/phosphate translocator (TPT; tpt-2 mutant) was crossed to mutants defective in (i) starch biosynthesis (adg1-1, pgm1 and pgi1-1; knock-outs of ADP-glucose pyrophosphorylase, plastidial phosphoglucomutase and phosphoglucose isomerase) or (ii) starch mobilization (sex1-3, knock-out of glucan water dikinase) as well as in (iii) maltose export from the chloroplast (mex1-2). Results All double mutants were viable and indistinguishable from the wild type when grown under low light conditions, but - except for sex1-3/tpt-2 - developed a high chlorophyll fluorescence (HCF) phenotype and growth retardation when grown in high light. Immunoblots of thylakoid proteins, Blue-Native gel electrophoresis and chlorophyll fluorescence emission analyses at 77 Kelvin with the adg1-1/tpt-2 double mutant revealed that HCF was linked to a specific decrease in plastome-encoded core proteins of both photosystems (with the exception of the PSII component cytochrome b559), whereas nuclear-encoded antennae (LHCs) accumulated normally, but were predominantly not attached to their photosystems. Uncoupled antennae are the major cause for HCF of dark-adapted plants. Feeding of sucrose or glucose to high light-grown adg1-1/tpt-2 plants rescued the HCF- and growth phenotypes. Elevated sugar levels induce the expression of the glucose-6-phosphate/phosphate translocator2 (GPT2), which in principle could compensate for the deficiency in the TPT. A triple mutant with an additional defect in GPT2 (adg1-1/tpt-2/gpt2-1) exhibited an identical rescue of the HCF- and growth phenotype in response to sugar feeding as the adg1-1/tpt-2 double mutant, indicating that this rescue is independent from the sugar

  17. Signal Improvement Strategies for Fluorescence Detection of Biomacromolecules.

    PubMed

    Luan, Chengxin; Yang, Zixue; Chen, Baoan

    2016-05-01

    For analysis of biomacromolecules, a sensitive, specified and reliable method is indispensable. Fluorescent dyes or fluorophores have been widely used as mediums to obtain readout signals in various assays or bioimaging because of their versatilities such as biocompatibility. Those fluorescent dyes based techniques manipulate many molecular interactions for analysis of biomacromolecules including antibody-protein interaction, base complementation, glycan-lectin interaction, etc. The strategies to manipulate those molecular interactions are various and always updating due to the development of biotechnological tools and instruments. In this minireview, we summarize the state of the art of signal improvement techniques for fluorescence detection of biomacromolecules especially proteins and nucleic acids. We focus on the principle and mechanism of those techniques for fluorescence detection of biomacromolecules. We also discuss the future trend of the techniques for fluorescence detection of biomacromolecules. PMID:27063869

  18. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass.

    PubMed

    Dąbrowski, P; Baczewska, A H; Pawluśkiewicz, B; Paunov, M; Alexantrov, V; Goltsev, V; Kalaji, M H

    2016-04-01

    Perennial ryegrass (Lolium perenne L.) is one of the most popular grass species in Europe. It is commonly used for establishing the lawns in urban areas, where the salt stress is one of the major environmental conditions limiting its growth. The basic aim of this study was the detailed in vivo analysis of the changes in photosynthetic efficiency, induced by salt stress, of two lawn varieties of Perennial ryegrass and to find out the variety of better properties to create lawn on the soils contaminated with salt. Two lawn varieties of L. perenne L. were used: Nira and Roadrunner. The salinization was applied 8 weeks after sowing by adding NaCl in water solution (0, 0.15, and 0.30 M). The measurements were carried out 8 times: 0, 24, 48, 96, 144, 192, 240 and 288 h after salinization. Our results revealed that the disturbance of PSII function could easily be estimated by measuring chlorophyll a fluorescence and analyzing that signal by JIP-test. Our work allowed to identify various limiting parameters of photosynthetic efficiency of perennial ryegrass lawn varieties grown under salt stress conditions. This knowledge can allow for selection of plants with a higher potential photosynthetic efficiency (vitality) during salt stress conditions, that can be used successfully neighboring roads, where salt is applied. PMID:26878219

  19. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Fu, Rong; Dickinson, Robert; Joiner, Joanna; Frankenberg, Christian; Gu, Lianhong; Xia, Youlong; Fernando, Nelun

    2015-11-01

    This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. In contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.

  20. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.; Lee, Jung-Eun; Rossini, Micol; Joiner, Joanna; Munger, J. William; Kornfeld, Ari; Richardson, Andrew D.

    2015-04-01

    Previous studies have suggested that solar-induced chlorophyll fluorescence (SIF) is correlated with Gross Primary Production (GPP). However, it remains unclear to what extent this relationship is due to absorbed photosynthetically active radiation (APAR) and/or light use efficiency (LUE). Here we present the first time series of near-surface measurement of canopy-scale SIF at 760 nm in temperate deciduous forests. SIF correlated with GPP estimated with eddy covariance at diurnal and seasonal scales (r2 = 0.82 and 0.73, respectively), as well as with APAR diurnally and seasonally (r2 = 0.90 and 0.80, respectively). SIF/APAR is significantly positively correlated with LUE and is higher during cloudy days than sunny days. Weekly tower-based SIF agreed with SIF from the Global Ozone Monitoring Experiment-2 (r2 = 0.82). Our results provide ground-based evidence that SIF is directly related to both APAR and LUE and thus GPP, and confirm that satellite SIF can be used as a proxy for GPP.

  1. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Guanter, L.; Joiner, J.

    2015-06-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last few years by means of a number of space-borne atmospheric spectrometers. Here, we present a new retrieval method for medium spectral resolution instruments such as the Global Ozone Monitoring Experiment-2 (GOME-2) and the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY). Building upon the previous work by Guanter et al. (2013) and Joiner et al. (2013), our approach provides a solution for the selection of the number of free parameters. In particular, a backward elimination algorithm is applied to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF at 740 nm from real spectra from GOME-2 and for the first time, from SCIAMACHY. We find a good correspondence of the absolute SIF values and the spatial patterns from the two sensors, which suggests the robustness of the proposed retrieval method. In addition, we compare our results to existing SIF data sets, examine uncertainties and use our GOME-2 retrievals to show empirically the relatively low sensitivity of the SIF retrieval to cloud contamination.

  2. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Guanter, L.; Joiner, J.

    2014-12-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last years by means of a number of space-borne atmospheric spectrometers. Here, we present a new retrieval method for medium spectral resolution instruments such as the Global Ozone Monitoring Experiment (GOME-2) and the SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY). Building upon the previous work by Joiner et al. (2013), our approach solves existing issues in the retrieval such as the non-linearity of the forward model and the arbitrary selection of the number of free parameters. In particular, we use a backward elimination algorithm to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF from real spectra from GOME-2 and for the first time, from SCIAMACHY. We find a good correspondence of the absolute SIF values and the spatial patterns from the two sensors, which suggests the robustness of the proposed retrieval method. In addition, we examine uncertainties and use our GOME-2 retrievals to show empirically the low sensitivity of the SIF retrieval to cloud contamination.

  3. Herbicidal effects of harmaline from Peganum harmala on photosynthesis of Chlorella pyrenoidosa: probed by chlorophyll fluorescence and thermoluminescence.

    PubMed

    Deng, Chunnuan; Shao, Hua; Pan, Xiangliang; Wang, Shuzhi; Zhang, Daoyong

    2014-10-01

    The herbicidal effects of harmaline extracted from Peganum harmala seed on cell growth and photosynthesis of green algae Chlorella pyrenoidosa were investigated using chlorophyll a fluorescence and thermoluminescence techniques. Exposure to harmaline inhibited cell growth, pigments contents and oxygen evolution of C. pyrenoidosa. Oxygen evolution was more sensitive to harmaline toxicity than cell growth or the whole photosystem II (PSII) activity, maybe it was the first target site of harmaline. The JIP-test parameters showed that harmaline inhibited the donor side of PSII. Harmaline decreased photochemical efficiency and electron transport flow of PSII but increased the energy dissipation. The charge recombination was also affected by harmaline. Amplitude of the fast phase decreased and the slow phase increased at the highest level of harmaline. Electron transfer from QA(-) to QB was inhibited and backward electron transport flow from QA(-) to oxygen evolution complex was enhanced at 10 μg mL(-1) harmaline. Exposure to 10 μg mL(-1) harmaline caused appearance of C band in thermoluminescence. Exposure to 5 μg mL(-1) harmaline inhibited the formation of proton gradient. The highest concentration of harmaline treatment inhibited S3QB(-) charge recombination but promoted formation of QA(-)YD(+) charge pairs. P. harmala harmaline may be a promising herbicide because of its inhibition of cell growth, pigments synthesis, oxygen evolution and PSII activities. PMID:25307462

  4. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Aben, I.; Tol, P.; Krijger, J. M.; Hollstein, A.; Köhler, P.; Damm, A.; Joiner, J.; Frankenberg, C.; Landgraf, J.

    2015-03-01

    Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675-775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning.

  5. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting

    PubMed Central

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock. PMID:27242805

  6. Taxonomic and ecological relevance of the chlorophyll a fluorescence signature of tree species in mixed European forests.

    PubMed

    Pollastrini, Martina; Holland, Vera; Brüggemann, Wolfgang; Bruelheide, Helge; Dănilă, Iulian; Jaroszewicz, Bogdan; Valladares, Fernando; Bussotti, Filippo

    2016-10-01

    The variability of chlorophyll a fluorescence (ChlF) parameters of forest tree species was investigated in 209 stands belonging to six European forests, from Mediterranean to boreal regions. The modifying role of environmental factors, forest structure and tree diversity (species richness and composition) on ChlF signature was analysed. At the European level, conifers showed higher potential performance than broadleaf species. Forests in central Europe performed better than those in Mediterranean and boreal regions. At the site level, homogeneous clusters of tree species were identified by means of a principal component analysis (PCA) of ChlF parameters. The discrimination of the clusters of species was influenced by their taxonomic position and ecological characteristics. The species richness influenced the tree ChlF properties in different ways depending on tree species and site. Tree species and site also affected the relationships between ChlF parameters and other plant functional traits (specific leaf area, leaf nitrogen content, light-saturated photosynthesis, wood density, leaf carbon isotope composition). The assessment of the photosynthetic properties of tree species, by means of ChlF parameters, in relation to their functional traits, is a relevant issue for studies in forest ecology. The connections of data from field surveys with remotely assessed parameters must be carefully explored. PMID:27265248

  7. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting.

    PubMed

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock. PMID:27242805

  8. Observation of silicon-mediated alleviation of cadmium stress in maize (Zea mays L.) seedlings via LED-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2013-02-01

    LED-induced chlorophyll fluorescence analysis is exploited to observe, and monitor the time evolution of silicon-induced alleviation of toxicity in maize (Zea mays L.) seedlings in cadmium contaminated soil. Red, and far-red emissions were examined as a function of cadmium-silicon concentrations, during the 20 days period of the seedlings growing process under stress. The chlorophyll fluorescence spectral analysis provided detection, and evaluation of the damage imposed by the metal stress in the early stages of the plant growing process. The technique also provided the time evolution evaluation of the silicon-induced tolerance enhancement of maize plants to cadmium, which is not viable using conventional in vitro spectral analysis techniques

  9. Cold-induced sudden reversible lowering of in vivo chlorophyll fluorescence after saturating light pulses : a sensitive marker for chilling susceptibility.

    PubMed

    Larcher, W; Neuner, G

    1989-03-01

    In chilling-sensitive plants (Glycine max, Saintpaulia ionantha, Saccharum officinarum) a sudden reversible drop in chlorophyll fluorescence occurs during photosynthetic induction immediately following saturating light pulses at low temperatures in the range 4 to 8 degrees C. A comparison of two soybean cultivars of different chilling sensitivities revealed that this phenomenon, termed lowwave, indicates specific thresholds of low temperature stress. Its occurrence under controlled chilling can be regarded as a quantitative marker for screening chilling susceptibility in angiosperms. PMID:16666615

  10. Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts

    PubMed Central

    Roelofs, Theo A.; Lee, Choon-Hwan; Holzwarth, Alfred R.

    1992-01-01

    In this study, we have used the method of target analysis to analyze the ps fluorescence kinetics of pea chloroplasts with open (F0) and closed (Fmax) photosystem II (PS II) centers. Extending the exciton/radical pair equilibrium model (Schatz, G. H., H. Brock, and A. R. Holzwarth. 1988. Biophys. J. 54:397-405) to allow for PS II heterogeneity, we show that two types of PS II (labeled α and β) must be accounted for, each pool being characterized by its own set of molecular rate constants within the model. Simultaneous global target analysis of the data at F0 and Fmax results in a detailed description of the molecular kinetics and energetics of the primary processes in both types of PS II units. This characterization revealed that the PS IIα pool accounts for twice as many Chl molecules as PS IIβ, which suggests a PSIIα/PSIIβ reaction center stoichiometry of close to unity. By extrapolation it is shown that the primary charge separation in hypothetical “isolated” β reaction centers is slower than in isolated α reaction centers: in open centers by a factor of 4 (1/k1int = 11 vs 2.9 ps), in closed centers by a factor of 2 (1/k1int = 34 vs 19 ps). Despite this slower charge separation process in PS IIβ, the quantum efficiency of the charge separation process is hardly affected: a charge stabilization yield at F0, (i.e., P+IQA-) of 86% (as compared to 90% in PS IIα). Reduction of QA (closing PS II) has distinctly different effects on the primary kinetics of PS IIβ, as compared to PS IIα. In PS IIα the charge separation rate drops by a factor of 6, whereas the charge recombination process is hardly affected. In PS IIβ the charge separation is slowed down by a factor of 3, whereas the charge recombination rate increases by a factor of 5. In terms of changes in standard free energy, the reduction to QA- lifts the free energy of the radical pair P+I-, relative to the excited state (Chln/P)*, by 47 meV in PS IIα and by 67 meV in PS IIβ. The concomitant

  11. Fluorescence LiDAR UFL-9 investigations of chlorophyll a, CDOM and TSM spatial distribution on the Lake Issyk-Kul

    NASA Astrophysics Data System (ADS)

    Pelevin, Vadim; Zavialov, Peter; Kremenetskiy, Vyacheslav; Osokina, Varya

    2016-04-01

    Results of two field surveys on the Lake Issyk-Kul made by Shirshov scientific group in 2014, 2015 are presented, obtained with the help of fluorescence LiDAR UFL-9. High resolution maps of spatial distribution of chlorophyll a, colored dissolved organic material (CDOM) and total suspended matter (TSM) concentrations in the upper water layer are shown and discussed. Issyk-Kul Lake is the ultra oligotrophic water body in which the concentrations of the conctituents mentioned above are fairly low, but well distinguishable by fluorescence lidar. Explorations were conducted onbord the moving medium-size research vessels in various weather and daytime conditions in continuous mode.

  12. Spatial variability in near-surface chlorophyll a fluorescence measured by the Airborne Oceanographic Lidar (AOL)

    NASA Astrophysics Data System (ADS)

    Yoder, James A.; Aiken, James; Swift, Robert N.; Hoge, Frank E.; Stegmann, Petra M.

    The primary purpose of the aircraft remote sensing component of the North Atlantic Bloom Experiment (NABE) was to: (1) quantify spatial patterns of surface Chl a variability and co-variability with temperature ( T) within the NABE study regions along the 20°W meridian near 48 and 60°N; and (2) determine if the major NABE ship and mooring locations were representative of surrounding ocean waters with respect to large-scale distributions of surface Chl a and T. The sampling platform was a NASA P-3 aircraft equipped with the Airborne Oceanographic Lidar (AOL) system, which measures laser-induced Chl a fluorescence (LICF), upwelling spectral radiance and surface temperature ( T). Results collected during nine AOL missions conducted between 26 April and 3 June show considerable mesoscale variability in LICF and T. Spatial statistics (structure functions) showed that the dominant scales of LICF and T were significantly correlated in the range 10-290 km. Spectral analysis of the results of long flight lines showed spectral slopes averaging -2 for both LICF and T for spatial scales in the range 1.2-50 km. As for previous investigations of this type, we interpret the correlation between LICF and T as evidence that physical processes such as upwelling and mixing are dominant processes affecting spatial variations in Chl a distributions in the North Atlantic during the period of our sampling. The minimum dominant T and LICF spatial scales (ca 10 km) we determined from structure functions are similar to minimum scales predicted from models ( WOODS, 1988, In: Toward a theory on biological-physical interactions in the world ocean, Kluwer Academic, Boston, pp. 7-30) of upwelling induced by vortex contraction on the anticyclonic side of mesoscale jets. The NABE experiment was planned with the explicit assumption that major biological and chemical gradients are in the north-south direction in the northeast Atlantic. Our results support this assumption, and we observed no large

  13. The development of attenuation compensation models of fluorescence spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Dremin, Victor V.; Zherebtsov, Evgeny A.; Rafailov, Ilya E.; Vinokurov, Andrey Y.; Novikova, Irina N.; Zherebtsova, Angelina I.; Litvinova, Karina S.; Dunaev, Andrey V.

    2016-04-01

    This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.

  14. FluorMODgui V3.0: A graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Zarco-Tejada, P. J.; Miller, J. R.; Pedrós, R.; Verhoef, W.; Berger, M.

    2006-06-01

    The FluorMODgui Graphic User Interface (GUI) software package developed within the frame of the FluorMOD project Development of a Vegetation Fluorescence Canopy Model is presented in this manuscript. The FluorMOD project was launched in 2002 by the European Space Agency (ESA) to advance the science of vegetation fluorescence simulation through the development and integration of leaf and canopy fluorescence models based on physical methods. The design of airborne or space missions dedicated to the measurement of solar-induced chlorophyll fluorescence using remote-sensing instruments require physical methods for quantitative feasibility analysis and sensor specification studies. The FluorMODgui model developed as part of this project is designed to simulate the effects of chlorophyll fluorescence at leaf and canopy levels using atmospheric inputs, running the leaf model, FluorMODleaf, and the canopy model, FluorSAIL, independently, through a coupling scheme, and by a multiple iteration protocol to simulate changes in the viewing geometry and atmospheric characteristics. Inputs for the FluorMODleaf model are the number of leaf layers, chlorophyll a+ b content, water equivalent thickness, dry matter content, fluorescence quantum efficiency, temperature, species type, and stoichiometry. Inputs for the FluorSAIL canopy model are a MODTRAN-4 6-parameter spectra or measured direct horizontal irradiance and diffuse irradiance spectra, a soil reflectance spectrum, leaf reflectance & transmittance spectra and a excitation-fluorescence response matrix in upward and downward directions (all from FluorMODleaf), 2 PAR-dependent coefficients for the fluorescence response to light level, relative azimuth angle and viewing zenith angle, canopy leaf area index, leaf inclination distribution function, and a hot spot parameter. Outputs available in the 400-1000 nm spectral range from the graphical user interface, FluorMODgui, are the leaf spectral reflectance and transmittance, and the

  15. Chlorophyll fluorescence induction kinetics and yield responses in rainfed crops with variable potassium nutrition in K deficient semi-arid alfisols.

    PubMed

    Srinivasarao, Ch; Shanker, Arun K; Kundu, Sumanta; Reddy, Sharanbhoopal

    2016-07-01

    Optimum potassium (K) nutrition in semi-arid regions may help crop plants to overcome constraints in their growth and development such as moisture stress, leading to higher productivity of rainfed crops, thus judicious K management is essential. A study was conducted to evaluate the importance of K nutrition on physiological processes like photosynthesis through chlorophyll a fluorescence and chlorophyll fluorescence induction kinetics (OJIP) of rainfed crops viz., maize (Zea mays L.), pearl millet (Pennisetum glaucum), groundnut (Arachis hypogaea), sunflower (Helianthus annuus), castor (Ricinus communis L.) and cotton (Gossypium hirsutum) under water stress conditions by studying their growth attributes, water relations, yield, K uptake and use efficiency under varied K levels. Highest chlorophyll content was observed under K60 in maize and pearl millet. Narrow and wide Chl a:b ratio was observed in castor and groundnut respectively. The fluorescence yield decreased in the crops as K dosage increased, evidenced by increasing of all points (O, J, I and P) of the OJIP curves. The fluorescence transient curve for K60 was lower than K0 and K40 for all the crops. Potassium levels altered the fluorescence induction and impaired photosynthetic systems in all the crops studied. There was no distinct trend observed in leaf water potential of crops under study. Uptake of K was high in sunflower with increased rate of K application. Quantitatively, K uptake by castor crop was lesser compared to all other crops. Our results indicate that the yield reduction under low K was due to the low capacity of the crops to translocate K from non-photosynthetic organs such as stems and petioles to upper leaves and harvested organs and this in turn influenced the capacity of the crops to produce a high economic yield per unit of K taken up thus reducing utilization efficiency of K. PMID:27101276

  16. Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice

    PubMed Central

    Moradi, Foad; Ismail, Abdelbagi M.

    2007-01-01

    Background and Aims Salinity is a widespread soil problem limiting productivity of cereal crops worldwide. Rice is particularly sensitive to salt stress during the seedling stage, with consequent poor crop establishment, as well as during reproduction where salinity can severely disrupt grain formation and yield. Tolerance at the seedling stage is weakly associated with tolerance during reproduction. Physiological responses to salinity were evaluated for contrasting genotypes, during the seedling and reproductive stages. Methods Three rice genotypes differing in their tolerance of salinity were evaluated in a set of greenhouse experiments under salt stress during both seedling stage and reproduction. Key Results Photosynthetic CO2 fixation, stomatal conductance (gs) and transpiration decreased substantially because of salt stress, but with greater reduction in the sensitive cultivar IR29. The tolerant lines IR651 and IR632 had more responsive stomata that tended to close faster during the first few hours of stress, followed by partial recovery after a brief period of acclimation. However, in the sensitive line, gs continued to decrease for longer duration and with no recovery afterward. Chlorophyll fluorescence measurements revealed that non-photochemical quenching increased, whereas the electron transport rate decreased under salt stress. Salt-tolerant cultivars exhibited much lower lipid peroxidation, maintained elevated levels of reduced ascorbic acid and showed increased activities of the enzymes involved in the reactive oxygen scavenging system during both developmental stages. Conclusions Upregulation of the anti-oxidant system appears to play a role in salt tolerance of rice, with tolerant genotypes also maintaining relatively higher photosynthetic function; during both the vegetative and reproductive stages. PMID:17428832

  17. Kinetic Studies on the Xanthophyll Cycle in Barley Leaves (Influence of Antenna Size and Relations to Nonphotochemical Chlorophyll Fluorescence Quenching).

    PubMed Central

    Hartel, H.; Lokstein, H.; Grimm, B.; Rank, B.

    1996-01-01

    Xanthophyll-cycle kinetics as well as the relationship between the xanthophyll de-epoxidation state and Stern-Volmer type nonphotochemical chlorophyll (Chl) fluorescence quenching (qN) were investigated in barley (Hordeum vulgare L.) leaves comprising a stepwise reduced antenna system. For this purpose plants of the wild type (WT) and the Chl b-less mutant chlorina 3613 were cultivated under either continuous (CL) or intermittent light (IML). Violaxanthin (V) availability varied from about 70% in the WT up to 97 to 98% in the mutant and IML-grown plants. In CL-grown mutant leaves, de-epoxidation rates were strongly accelerated compared to the WT. This is ascribed to a different accessibility of V to the de-epoxidase due to the existence of two V pools: one bound to light-harvesting Chl a/b-binding complexes (LHC) and the other one not bound. Epoxidation rates (k) were decreased with reduction in LHC protein contents: kWT > kmutant >> kIML plants. This supports the idea that the epoxidase activity resides on certain LHC proteins. Irrespective of huge zeaxanthin and antheraxanthin accumulation, the capacity to develop qN was reduced stepwise with antenna size. The qN level obtained in dithiothreitol-treated CL- and IML-grown plants was almost identical with that in untreated IML-grown plants. The findings provide evidence that structural changes within the LHC proteins, mediated by xanthophyll-cycle operation, render the basis for the development of a major proportion of qN. PMID:12226199

  18. Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay.

    PubMed

    Muller, Renee; Schreiber, Ulrich; Escher, Beate I; Quayle, Pamela; Bengtson Nash, Susan M; Mueller, Jochen F

    2008-08-15

    Recently a new Maxi-Imaging-PAM (Max-I-PAM) instrument for phytotoxicity assessment via chlorophyll fluorescence imaging was introduced. This new instrument allows rapid detection of the effects of PS II inhibiting herbicides which are high use agricultural chemicals frequently detected in surface waters in Australia and elsewhere. Several studies have applied the new instrument for detection of phytotoxicants in water using microalgae suspensions; however, these use preliminary protocols and to date no validated method is available for high throughput testing of environmental samples in 96-well plates. Here we developed and applied a new protocol allowing dose-response assessment of four samples within 2 h (8 dilutions in duplicate). The technique was found to be sensitive, with a detection limit of 2.3 ng l(-1) for the herbicide diuron when testing solid phase extracts (SPE) of 1000 ml water samples, and reproducible both between experiments (coefficient of variation (CV)=0.30) and within the 96-well plate (CV=0.06). Relative potencies were determined for four reference PS II impacting herbicides (diuron>hexazinone>atrazine>simazine). Extracts from 1000 ml environmental samples and diuron spiked ultrapure water as well as passive sampler extracts were evaluated and good agreement was found between diuron equivalent concentrations calculated from bioassay results (DEQ(IPAM)) and DEQ(CHEM) values calculated from LCMS chemical analysis of the four reference compounds in the same samples. Overall, the technique provides a valuable bioanalytical tool for rapid and inexpensive effects-based assessment of PS II impacting herbicides in environmental mixtures. PMID:18501956

  19. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings.

    PubMed

    Lindfors, Lauri; Hölttä, Teemu; Lintunen, Anna; Porcar-Castell, Albert; Nikinmaa, Eero; Juurola, Eija

    2015-12-01

    Boreal trees experience repeated freeze-thaw cycles annually. While freezing has been extensively studied in trees, the dynamic responses occurring during the freezing and thawing remain poorly understood. At freezing and thawing, rapid changes take place in the water relations of living cells in needles and in stem. While freezing is mostly limited to extracellular spaces, living cells dehydrate, shrink and their osmotic concentration increases. We studied how the freezing-thawing dynamics reflected on leaf gas exchange, chlorophyll fluorescence and xylem and living bark diameter changes of Scots pine (Pinus sylvestris L.) saplings in controlled experiments. Photosynthetic rate quickly declined following ice nucleation and extracellular freezing in xylem and needles, almost parallel to a rapid shrinking of xylem diameter, while that of living bark followed with a slightly longer delay. While xylem and living bark diameters responded well to decreasing temperature and water potential of ice, the relationship was less consistent in the case of increasing temperature. Xylem showed strong temporal swelling at thawing suggesting water movement from bark. After thawing xylem diameter recovered to a pre-freezing level but living bark remained shrunk. We found that freezing affected photosynthesis at multiple levels. The distinct dynamics of photosynthetic rate and stomatal conductance reveals that the decreased photosynthetic rate reflects impaired dark reactions rather than stomatal closure. Freezing also inhibited the capacity of the light reactions to dissipate excess energy as heat, via non-photochemical quenching, whereas photochemical quenching of excitation energy decreased gradually with temperature in agreement with the gas exchange data. PMID:26423334

  20. Chlorophyll fluorescence and the polarized underwater light field: comparison of vector radiative transfer simulations and multi-angular hyperspectral polarization field measurements

    NASA Astrophysics Data System (ADS)

    El-habashi, Ahmed; Ahmed, Samir

    2016-05-01

    Previous partial simulations and field measurements by us, had demonstrated the impact of the un-polarized nature of algal chlorophyll fluorescence to reduce the observed degree of polarization of the underwater light field in the spectral vicinity of fluorescence. (Polarization otherwise existing as a result of non-algal particulate (NAP) and molecular elastic scattering). The magnitude of this fluorescence driven dip in the observed degree of polarization was also seen to be theoretically related to the fluorescence magnitude. The recent availability to us of the RayXP vector radiative transfer code (VRTE) for the coupled atmosphere ocean system now permits us to make complete simulations of the underwater polarized light field, using measured inherent optical properties (IOPs) as inputs. Based on these simulations, a much more comprehensive analysis of the fluorescence impact is now possible. Combining the results of these new simulations with underwater field measurements in eutrophic waters using our hyperspectral multi angle polarimeter, we verified the theoretical relationship. In addition, comparisons of VRTE simulations and hyperspectral polarized field measurements for various coastal water conditions permit retrieval of fluorescence magnitudes. Comparisons of these polarization based fluorescence retrievals with retrievals obtained using fluorescence height over baseline or Hydrolight scalar simulations, together with total unpolarized radiance measurements, show good agreement.

  1. Pigment-pigment interactions in thylakoids and LHCII of chlorophyll a/ c containing alga Pleurochloris meiringensis: analysis of fluorescence-excitation and triplet-minus-singlet spectra

    NASA Astrophysics Data System (ADS)

    Büchel, C.; Razi Naqvi, K.; Melø, T. B.

    1998-05-01

    Time-resolved triplet-minus-singlet (TmS) difference spectra, Δ A( λ; t), fluorescence excitation spectra, X( λ), and absorption spectra, A( λ), are used for probing pigment-pigment interactions in the thylakoids (Chl a/ c-Thyl) and isolated light-harvesting complexes associated with photosystem II (Chl a/ c-LHCII) of the alga Pleurochloris meiringensis, whose chromophores comprise chlorophyll a (Chl a), chlorophyll c (Chl c), and several carotenoids. The data provide information about interactions between Car*-and-Chl a0, Chl a†-and-Car 0, Car †-and-Chl a0 (where the abbreviation Car stands for carotenoid, an asterisk and a dagger denote singlet and triplet excitation, respectively, and the superscript 0 denotes a molecule in the ground state). In Chl a/c-Thyl, the efficiency of Car*→Chl a* transfer ( φLH), determined by comparing A( λ) and X( λ), is slightly less than unity (ca. 0.85), whereas the efficiency of Chl a†→Car † transfer of triplet energy ( φTT) must be much closer to unity, since no long-lived Chl a† could be detected; an interaction between Car † and Chl a0, already familiar from investigations concerning the TmS spectra of the trimers and aggregates of Chl a/ b-LHCII (the light-harvesting complex associated with the photosystem II of higher plants), which manifests itself through a depletion signal (in the Qy region of Chl a) decaying at the same rate as the Car TmS signal, is observed, and explained likewise. In Chl a/ c-LHCII, both efficiencies are found to be much lower; the drastic reduction in the two yields is attributed to the perturbation of the native molecular architecture of the complex by the detergent used in the isolation procedure. The overall TmS signal from Chl a/ c-LHCII can be decomposed into two contributions, Δ A( λ; t)=Δ 1A( λ; t)+Δ 2A( λ; t), where Δ 1A( λ; t) with a lifetime of about 8 μs; Δ 2A( λ; t), which persists for several hundred microseconds, is contributed by those Chl a

  2. Sun-induced chlorophyll fluorescence reveals strong representation of photosynthesis at ecosystem level in rice paddy field in Japan

    NASA Astrophysics Data System (ADS)

    Kato, T.; Tsujimoto, K.; Nasahara, K. N.; Akitsu, T.; Ono, K.; Miyata, A.

    2015-12-01

    Chlorophyll fluorescence emission from ecosystem induced by sunlight (Sun-Induced Fluorescence: SIF) is now a key factor to accurately estimate the ecosystem-level photosynthesis activity as suggested by satellite studies, and has been recently detected by satellites [Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2013] and measured at field stations [Daumard et al., 2010; Porcar-Castell, 2011]. However, the few example of field-based assessment on the representation ability reduces its value for the availability to better understand the dynamics in CO2uptake by land ecosystem. To elucidate the potential of SIF to estimate ecosystem GPP in typical Asian crop type, the canopy-top SIF was calculated from the spectrum data in Japanese rice paddy field in Mase in central Japan (36°03'N, 140°01'E, 11 m a.s.l.), and compared with eddy-tower measured GPP on half-hourly and daily bases during seven years from 2006 to 2012. The rice (Oriza sativa L.; cultivar Koshihikari) was transplanted in May and harvested in September normally. The SIF was estimated from the spectrums of downward Sun irradiance and upward canopy-reflected radiance measured at the height of 3m above ground by HemiSpherical Spectro-Radiometer (HSSR), consisting of the spectroradiometer (MS-700, Eko inc., Tokyo, Japan) with the full-width at half maximum (FWHM) of 10 nm and wavelength interval of 3.3 nm. The SIF around 760nm (O2-A band: Fs760) was calculated according to the Fraunhofer Line Depth principle [Maier et al., 2003] with several additional arrangements. The GPP increased almost linearly as both Fs760 and APAR (Absorbed Photosyntethically Active Radiation) increased based on monthly-averaged diurnal courses during the growing season in 2006. The slopes of their regression lines differed much among the months in APAR, but in Fs760. These nearly constant relationships among the months between GPP and Fs760 were kept for all the observation years. Daily averaged GPP and Fs760

  3. Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii: CHLI2 cannot substitute for CHLI1.

    PubMed

    Brzezowski, Pawel; Sharifi, Marina N; Dent, Rachel M; Morhard, Marius K; Niyogi, Krishna K; Grimm, Bernhard

    2016-06-01

    The oligomeric Mg chelatase (MgCh), consisting of the subunits CHLH, CHLI, and CHLD, is located at the central site of chlorophyll synthesis, but is also thought to have an additional function in regulatory feedback control of the tetrapyrrole biosynthesis pathway and in chloroplast retrograde signaling. In Arabidopsis thaliana and Chlamydomonas reinhardtii, two genes have been proposed to encode the CHLI subunit of MgCh. While the role of CHLI1 in A. thaliana MgCh has been substantially elucidated, different reports provide inconsistent results with regard to the function of CHLI2 in Mg chelation and retrograde signaling. In the present report, the possible functions of both isoforms were analyzed in C. reinhardtii Knockout of the CHLI1 gene resulted in complete loss of MgCh activity, absence of chlorophyll, acute light sensitivity, and, as a consequence, down-regulation of tetrapyrrole biosynthesis and photosynthesis-associated nuclear genes. These observations indicate a phenotypical resemblance of chli1 to the chlh and chld C. reinhardtii mutants previously reported. The key role of CHLI1 for MgCh reaction in comparison with the second isoform was confirmed by the rescue of chli1 with genomic CHLI1 Because CHLI2 in C. reinhardtii shows lower expression than CHLI1, strains overexpressing CHLI2 were produced in the chli1 background. However, no complementation of the chli1 phenotype was observed. Silencing of CHLI2 in the wild-type background did not result in any changes in the accumulation of tetrapyrrole intermediates or of chlorophyll. The results suggest that, unlike in A. thaliana, changes in CHLI2 content observed in the present studies do not affect formation and activity of MgCh in C. reinhardtii. PMID:26809558

  4. Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii: CHLI2 cannot substitute for CHLI1

    PubMed Central

    Brzezowski, Pawel; Sharifi, Marina N.; Dent, Rachel M.; Morhard, Marius K.; Niyogi, Krishna K.; Grimm, Bernhard

    2016-01-01

    The oligomeric Mg chelatase (MgCh), consisting of the subunits CHLH, CHLI, and CHLD, is located at the central site of chlorophyll synthesis, but is also thought to have an additional function in regulatory feedback control of the tetrapyrrole biosynthesis pathway and in chloroplast retrograde signaling. In Arabidopsis thaliana and Chlamydomonas reinhardtii, two genes have been proposed to encode the CHLI subunit of MgCh. While the role of CHLI1 in A. thaliana MgCh has been substantially elucidated, different reports provide inconsistent results with regard to the function of CHLI2 in Mg chelation and retrograde signaling. In the present report, the possible functions of both isoforms were analyzed in C. reinhardtii. Knockout of the CHLI1 gene resulted in complete loss of MgCh activity, absence of chlorophyll, acute light sensitivity, and, as a consequence, down-regulation of tetrapyrrole biosynthesis and photosynthesis-associated nuclear genes. These observations indicate a phenotypical resemblance of chli1 to the chlh and chld C. reinhardtii mutants previously reported. The key role of CHLI1 for MgCh reaction in comparison with the second isoform was confirmed by the rescue of chli1 with genomic CHLI1. Because CHLI2 in C. reinhardtii shows lower expression than CHLI1, strains overexpressing CHLI2 were produced in the chli1 background. However, no complementation of the chli1 phenotype was observed. Silencing of CHLI2 in the wild-type background did not result in any changes in the accumulation of tetrapyrrole intermediates or of chlorophyll. The results suggest that, unlike in A. thaliana, changes in CHLI2 content observed in the present studies do not affect formation and activity of MgCh in C. reinhardtii. PMID:26809558

  5. A tryptophan responsive fluorescent and wettable dual-signal switch.

    PubMed

    Zhang, Xiaoyan; Li, Jing; Feng, Ningmei; Luo, Li; Dai, Zhen; Yang, Li; Tian, Demei; Li, Haibing

    2014-09-21

    A new fluorescent dianthracene calix[4]arene (C4DA) was designed and synthesized via coupling the fluorescent anthracene units and calix[4]arene units. Then it was used to form self-assembled monolayers (C4DA-SAMs) by the simple click reaction to give the first fluorescent and wettable dual-signal switch for tryptophan (Trp) on a micro- and nano-structured silicon surface. The switch for Trp on the C4DA functional surface was confirmed by contact angle (CA) measurements and fluorescent spectroscopy (FL). Furthermore, the wettability-responsive C4DA functional interface can be re-used for six cycles. The responsive switch can potentially be applied in many fields including nanodevices and intelligent microfluidic switching. PMID:24992098

  6. The fluorescence of chlorophyll and yellow substances in natural waters: A note on the problems of measurement and the importance of their remote sensing

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.

    1975-01-01

    There are two chromophylls which, if sensed remotely from high altitude, would revolutionize the ability to survey large areas of the world's oceans. The chromophylls of importance are: the photosynthetic pigments of plankton algae and a group of organic materials frequently termed dissolved yellow substances. These are derived from plants and carried into the ocean by fresh water inflow. The attenuation of light by phytoplankton is characterized by two distinctive bands (450, 675 nm) which represent absorption by chloroplastic pigments. Yellow substances are characterized by a strong ultraviolet absorption which tails over into the visible region. It is emphasized that chlorophyll determination could be a unique technique for estimating the extent of eutrophication in coastal waters, and that a high altitude observer equipped with temperature, chlorophyll and yellow substance sensors has the possibility of detecting the magnitude of eutrophication and its sources by using laser induced fluorescent devices.

  7. [The effect of phenols on the parameters of chlorophyll fluorescence and reaction of P700 in the green algae Scenedesmus quadricauda].

    PubMed

    Matorin, D N; Plekhanov, S E; Bratkovskaia, L B; Iakovleva, O V; Alekseev, A A

    2014-01-01

    The effect of phenols, present in drains of the tsellyulozo-paper industry, on photosynthesis of the microalgae Scenedesmus quadricauda has been studied. The analysis of induction curves of the slowed-down fluorescence and light curves of non-photochemical quenching of chlorophyll fluorescence of microalgae Scenedesmus quadricauda is carried out. It was observed that energization of photosynthetic membranes was inhibited at low concentration of phenol and pyrocatechin (0.1 mM). At higher concentrations phenol and pyrocatechin inhibited electron transport in FSII and increased a share of QB not restoring centers. As a result of it the rate of P700 pigment regeneration slowed down. The results obtained indicate that parameters of induction curves of the fast and slowed-down fluorescence can be used for detecting phenol and pyrocatechin in the environment at early stages of toxic effects. PMID:25715586

  8. Red fluorescence in reef fish: A novel signalling mechanism?

    PubMed Central

    Michiels, Nico K; Anthes, Nils; Hart, Nathan S; Herler, Jürgen; Meixner, Alfred J; Schleifenbaum, Frank; Schulte, Gregor; Siebeck, Ulrike E; Sprenger, Dennis; Wucherer, Matthias F

    2008-01-01

    Background At depths below 10 m, reefs are dominated by blue-green light because seawater selectively absorbs the longer, 'red' wavelengths beyond 600 nm from the downwelling sunlight. Consequently, the visual pigments of many reef fish are matched to shorter wavelengths, which are transmitted better by water. Combining the typically poor long-wavelength sensitivity of fish eyes with the presumed lack of ambient red light, red light is currently considered irrelevant for reef fish. However, previous studies ignore the fact that several marine organisms, including deep sea fish, produce their own red luminescence and are capable of seeing it. Results We here report that at least 32 reef fishes from 16 genera and 5 families show pronounced red fluorescence under natural, daytime conditions at depths where downwelling red light is virtually absent. Fluorescence was confirmed by extensive spectrometry in the laboratory. In most cases peak emission was around 600 nm and fluorescence was associated with guanine crystals, which thus far were known for their light reflecting properties only. Our data indicate that red fluorescence may function in a context of intraspecific communication. Fluorescence patterns were typically associated with the eyes or the head, varying substantially even between species of the same genus. Moreover red fluorescence was particularly strong in fins that are involved in intraspecific signalling. Finally, microspectrometry in one fluorescent goby, Eviota pellucida, showed a long-wave sensitivity that overlapped with its own red fluorescence, indicating that this species is capable of seeing its own fluorescence. Conclusion We show that red fluorescence is widespread among marine fishes. Many features indicate that it is used as a private communication mechanism in small, benthic, pair- or group-living fishes. Many of these species show quite cryptic colouration in other parts of the visible spectrum. High inter-specific variation in red

  9. Study of the fluorescence signal for gastrointestinal dysplasia detection

    NASA Astrophysics Data System (ADS)

    Pimenta, S.; Castanheira, E. M. S.; Minas, G.

    2014-08-01

    The detection of cancer at the dysplasia stage is one of the most important goals in biomedical research. Optical techniques, specifically diffuse reflectance and intrinsic fluorescence, may improve the ability to detect gastrointestinal (GI) cancers, since they have exquisite sensitivity to some intrinsic biomarkers present on the tissues. This work follows the research that has been done towards the implementation of a spectroscopy microsystem for the early detection of GI cancers. For that purpose, the behavior of the fluorescence signal, at different temperatures and considering the most important biomarkers in GI malignancy detection, was studied and presented.

  10. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize.

    PubMed

    Wagle, Pradeep; Zhang, Yongguang; Jin, Cui; Xiao, Xiangming

    2016-06-01

    Accurately quantifying cropland gross primary production (GPP) is of great importance to monitor cropland status and carbon budgets. Satellite-based light-use efficiency (LUE) models and process-based terrestrial biosphere models (TBMs) have been widely used to quantify cropland GPP at different scales in past decades. However, model estimates of GPP are still subject to large uncertainties, especially for croplands. More recently, space-borne solar-induced chlorophyll fluorescence (SIF) has shown the ability to monitor photosynthesis from space, providing new insights into actual photosynthesis monitoring. In this study, we examined the potential of SIF data to describe maize phenology and evaluated three GPP modeling approaches (space-borne SIF retrievals, a LUE-based vegetation photosynthesis model [VPM], and a process-based soil canopy observation of photochemistry and energy flux [SCOPE] model constrained by SIF) at a maize (Zea mays L.) site in Mead, Nebraska, USA. The result shows that SIF captured the seasonal variations (particularly during the early and late growing season) of tower-derived GPP (GPP_EC) much better than did satellite-based vegetation indices (enhanced vegetation index [EVI] and land surface water index [LSWI]). Consequently, SIF was strongly correlated with GPP_EC than were EVI and LSWI. Evaluation of GPP estimates against GPP_EC during the growing season demonstrated that all three modeling approaches provided reasonable estimates of maize GPP, with Pearson's correlation coefficients (r) of 0.97, 0.94, and 0.93 for the SCOPE, VPM, and SIF models, respectively. The SCOPE model provided the best simulation of maize GPP when SIF observations were incorporated through optimizing the key parameter of maximum carboxylation capacity (Vcmax). Our results illustrate the potential of SIF data to offer an additional way to investigate the seasonality of photosynthetic activity, to constrain process-based models for improving GPP estimates, and to

  11. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models.

    PubMed

    Zhang, Yongguang; Guanter, Luis; Berry, Joseph A; Joiner, Joanna; van der Tol, Christiaan; Huete, Alfredo; Gitelson, Anatoly; Voigt, Maximilian; Köhler, Philipp

    2014-12-01

    Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar's model, in which the maximum rate of carboxylation (Vcmax ) is a key control parameter of photosynthetic capacity. Even though Vcmax is known to vary substantially in space and time in response to environmental controls, it is typically parameterized in models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially continuous and temporally resolved view on photosynthetic efficiency, but traditional vegetation observations based on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space-borne measurements of sun-induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simulations. Here, we show that top-of-canopy SIF measurements from space are sensitive to Vcmax at the ecosystem level, and present an approach to invert Vcmax from SIF data. We use the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model to derive empirical relationships between seasonal Vcmax and SIF which are used to solve the inverse problem. We evaluate our Vcmax estimation method at six agricultural flux tower sites in the midwestern US using spaced-based SIF retrievals. Our Vcmax estimates agree well with literature values for corn and soybean plants (average values of 37 and 101 μmol m(-2)  s(-1) , respectively) and show plausible seasonal patterns. The effect of the updated seasonally varying Vcmax parameterization on simulated gross primary productivity (GPP) is tested by comparing to simulations with fixed Vcmax values. Validation against flux tower observations demonstrate that simulations of GPP and light use efficiency improve significantly when our time-resolved Vcmax estimates from SIF are used, with R(2) for GPP comparisons increasing from 0.85 to 0.93, and for light use efficiency from 0.44 to 0.83. Our results support the use of

  12. Toxic Effects of Ethyl Cinnamate on the Photosynthesis and Physiological Characteristics of Chlorella vulgaris Based on Chlorophyll Fluorescence and Flow Cytometry Analysis

    PubMed Central

    Jiao, Yang; Ouyang, Hui-Ling; Jiang, Yu-Jiao; Kong, Xiang-Zhen; He, Wei; Liu, Wen-Xiu; Yang, Bin; Xu, Fu-Liu

    2015-01-01

    The toxic effects of ethyl cinnamate on the photosynthetic and physiological characteristics of Chlorella vulgaris were studied based on chlorophyll fluorescence and flow cytometry analysis. Parameters, including biomass, Fv/Fm (maximal photochemical efficiency of PSII), ФPSII (actual photochemical efficiency of PSII in the light), FDA, and PI staining fluorescence, were measured. The results showed the following: (1) The inhibition on biomass increased as the exposure concentration increased. 1 mg/L ethyl cinnamate was sufficient to reduce the total biomass of C. vulgaris. The 48-h and 72-h EC50 values were 2.07 mg/L (1.94–2.20) and 1.89 mg/L (1.82–1.97). (2) After 24 h of exposure to 2–4 mg/L ethyl cinnamate, the photosynthesis of C. vulgaris almost ceased, manifesting in ФPSII being close to zero. After 72 h of exposure to 4 mg/L ethyl cinnamate, the Fv/Fm of C. vulgaris dropped to zero. (3) Ethyl cinnamate also affected the cellular physiology of C. vulgaris, but these effects resulted in the inhibition of cell yield rather than cell death. Exposure to ethyl cinnamate resulted in decreased esterase activities in C. vulgaris, increased average cell size, and altered intensities of chlorophyll a fluorescence. Overall, esterase activity was the most sensitive variable. PMID:26101784

  13. Effects of sodium and magnesium cations on the "dark-" and light-induced chlorophyll a fluorescence yields in sucrose-washed spinach chloroplasts.

    PubMed

    Wydrzynski, T; Gross, E L; Govindjee

    1975-01-31

    The effects of Na plus and Mg-2 plus on the "dark" level (O level) and light-induced (P level) fluorescence in sucrose-washed spinach clhoroplasts were studied. Low concentrations of NaCl (2-10 mM) cause a significant decrease in both the O and P levels in the chlorophyll fluorescence transient. The effect on the O level may reflect changes in the bulk chlorophyll a. At 77 degrees K NaCl increases the F735/F685 emission peak ratio in dark-adapted and preilluminated chloroplasts, but has no significant effect on this ratio in sucrose-washed Photosystem II particles. This evidence is consistent with a sodium-induced excitation-energy distribution in favor of Photosystem I. In the presence of MgCl2, with or without NaCl, there is a slight decrease in the O and P level fluorescence as compared with the salt-free control, but an increase as compared with the NaCl-treated sample. Magnesium appears to override the sodium-induced changes. At low temperatures in chloroplasts and Photosystem II particles, MgCl2 has different effects on the F735/F685 ratio apparently depending on the state of the membrane. Magnesium, however, always induces an increase in the F695/F685 ratio. These results suggest that magnesium may influence Photosystem II reaction centers as well as energy distribution between the two photosystems. PMID:1125217

  14. [Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage].

    PubMed

    Lin, Lu; Tang, Yun; Zhang, Ji-tao; Yan, Wan-li; Xiao, Jian-hong; Ding, Chao; Dong, Chuan; Ji, Zeng-shun

    2015-07-01

    Impacts of different substrate water potentials (SWP) on leaf gas exchange and chlorophyll fluorescence parameters of greenhouse cucumber during its post-flowering growth stage were analyzed in this study. The results demonstrated that -10 and -30 kPa were the critical values for initiating stomatal and non-stomatal limitation of drought stress, respectively. During the stage of no drought stress (-10 kPa < SWP ≤ 0 kPa), gas exchange parameters and chlorophyll fluorescence parameters were not different significantly among treatments. During the stage of stomatal limitation of drought stress (-30 kPachlorophyll fluorescence parameters and differed significantly among treatments. During the stage of non-stomatal limitation of drought stress (-45 kPa≤SWP ≤ -30 kPa), with the decrease of SWP, light saturation point (LSP), Rd, CE, Vcmax, VTPU, LS, WUEi, ΦpPSII, Fv/Fm and qp decreased, while CCP, Ci and qN increased. In this stage, chlorophyll fluorescence parameters changed faster than gas exchange parameters and differed significantly among treatments. In production of greenhouse cucumber, -10 and -5 kPa should be the lower and upper limit value of irrigation, respectively. The stomatal

  15. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  16. Biochip Image Grid Normalization Absolute Signal Fluorescence Measurement Using

    Energy Science and Technology Software Center (ESTSC)

    2001-04-17

    This software was developed to measure absolute fluorescent intensities of gel pads on a microchip in units defined by a standard fluorescent slide. It can accomodate varying measurement conditions (e.g. exposure time, sensitivity of detector, resolution of detector, etc.) as well as fluorescent microscopes with non-uniform sensitivity across their field of view allowing the user to compare measurements done on different detectors with varying exposure times, sensitivities, and resolutions. The software is designed both tomore » operate Roper Scientific, Inc. cameras and to use image files produced by the program supplied with that equipment for its calculations. the intensity of the gel pad signal is computed so as to reduce background influence.« less

  17. Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: Does activity of photosystem I play any role in OJIP rise?

    PubMed

    Zivcak, Marek; Brestic, Marian; Kunderlikova, Kristyna; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2015-11-01

    Interpretation of the fast chlorophyll a fluorescence induction is still a subject of continuing discussion. One of the contentious issues is the influence of photosystem I (PSI) activity on the kinetics of the thermal JIP-phase of OJIP rise. To demonstrate this influence, we realized a series of measurements in wheat leaves subjected to PSI photoinactivation by the sequence of red saturation pulses (15,000 μmol photons m(-2) s(-1) for 0.3 s, every 10 s) applied in darkness. Such a treatment led to a moderate decrease of maximum quantum efficiency of PSII (by ~8%), but a strong decrease of the number of oxidizable PSI (by ~55%), which considerably limited linear electron transport and CO2 assimilation. Surprisingly, the PSI photoinactivation had low effects on OJIP kinetics of variable fluorescence. In particular, the amplitude of variable fluorescence of IP-step (ΔVIP), which has been considered to be a measure of PSI content, was not decreased, despite the low content of photooxidizable PSI. On the other hand, the slower relaxation of chlorophyll fluorescence after saturation pulse as well as the results of the double-hit method suggest that PSI inactivation treatment led to an increase of the fraction of QB-nonreducing PSII reaction centers. Our results somewhat challenge the mainstream interpretations of JIP-thermal phase, and at least suggest that the IP amplitude cannot serve to estimate reliably the PSI content or the PSI to PSII ratio. Moreover, these results recommend the use of the novel method of PSI inactivation, which might help clarify some important issues needed for the correct understanding of the OJIP fluorescence rise. PMID:26388470

  18. Chlorophyll a Fluorescence as a Tool in Evaluating the Effects of ABA Content and Ethylene Inhibitors on Quality of Flowering Potted Bougainvillea

    PubMed Central

    Ferrante, Antonio; Trivellini, Alice; Borghesi, Eva; Vernieri, Paolo

    2012-01-01

    Flowering potted plants during the postproduction stage are usually stored in inadequate environmental conditions. We evaluated the effect of the most common storage conditions and treatments on two Bougainvillea cultivars after harvest and during recovery. Flowering potted Bougainvillea plants were treated with 100 mL 2 mM amino-oxyacetic acid (AOA) or 500 ppb 1-methylcyclopropene (1-MCP) prior storage in dark at 14°C for simulating transport or storage conditions and, subsequently, transferred to growth chambers at 20°C in the light for one week for evaluating the recovery ability. The plant stress during the experiments was assessed by ethylene, ABA, and chlorophyll a fluorescence measurements. Ethylene production was affected by temperature rather than treatments. ABA concentration declined in leaves and flowers during storage and was not affected by treatments. Fluorescence parameters appear to be very useful for screening Bougainvillea cultivars resistant to prolonged storage periods. PMID:22272178

  19. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments.

    PubMed

    Hoge, F E; Swift, R N

    1981-09-15

    The airborne laser-induced spectral emission bands obtained simultaneously from water Raman backscatter and the fluorescence of chlorophyll and other naturally occurring waterborne pigments are reported here for the first time. The importance of this type data lies not only in its single-shot multispectral character but also in the application of the Raman line for correction or calibration of the spatial variation of the laser penetration depth without the need for in situ water attenuation measurements. The entire laser-induced fluorescence and Raman scatter emissions resulting from each separate 532-nm 10-nsec laser pulse are collected and spectrally dispersed in a diffraction grating spectrometer having forty photomultiplier tube detectors. Results from field experiments conducted in the North Sea and the Chesapeake Bay/Potomac River are presented. Difficulties involving the multispectral resolution of the induced emissions are addressed, and feasible solutions are suggested together with new instrument configurations and future research directions. PMID:20333121

  20. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments

    SciTech Connect

    Hoge, F.E.; Swift, R.N.

    1981-09-15

    The airborne laser-induced spectral emission bands obtained simultaneously from water Raman backscatter and the fluorescence of chlorophyll and other naturally occuring waterborne pigments are reported here for the first time. The importance of this type data lies not only in its single-shot multispectral character but also in the application of the Raman line for correction or calibration of the spatial variation of the laser penetration depth without the need for in situ water attenuation measurements. The entire laser-induced fluorescence and Raman scatter emissions resulting from each separate 532-nm 10-nsec laser pulse are collected and spectrally dispersed in a diffraction grating spectrometer having forty photomultiplier tube detectors. Results from field experiments conducted in the North Sea and the Chesapeake Bay/Potomac River are presented. Difficulties involving the multispectral resolution of the induced emissions are addressed, and feasible solutions are suggested together with new instrument configurations and future research directions.

  1. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The airborne laser-induced spectral emission bands obtained simultaneously from water Raman backscatter and the fluorescence of chlorophyll and other naturally occurring waterborne pigments are reported here for the first time. The importance of this type data lies not only in its single-shot multispectral character but also in the application of the Raman line for correction or calibration of the spatial variation of the laser penetration depth without the need for in situ water attenuation measurements. The entire laser-induced fluorescence and Raman scatter emissions resulting from each separate 532-nm 10-nsec laser pulse are collected and spectrally dispersed in a diffraction grating spectrometer having forty photomultiplier tube detectors. Results from field experiments conducted in the North Sea and the Chesapeake Bay/Potomac River are presented. Difficulties involving the multispectral resolution of the induced emissions are addressed, and feasible solutions are suggested together with new instrument configurations and future research directions.

  2. A Single Fluorescent Probe to Visualize Hydrogen Sulfide and Hydrogen Polysulfides with Different Fluorescence Signals.

    PubMed

    Chen, Wei; Pacheco, Armando; Takano, Yoko; Day, Jacob J; Hanaoka, Kenjiro; Xian, Ming

    2016-08-16

    Hydrogen sulfide (H2 S) and hydrogen polysulfides (H2 Sn , n>1) are endogenous regulators of many physiological processes. In order to better understand the symbiotic relationship and cellular cross-talk between H2 S and H2 Sn , it is highly desirable to develop single fluorescent probes which enable dual-channel discrimination between H2 S and H2 Sn . Herein, we report the rational design, synthesis, and evaluation of the first dual-detection fluorescent probe DDP-1 that can visualize H2 S and H2 Sn with different fluorescence signals. The probe showed high selectivity and sensitivity to H2 S and H2 Sn in aqueous media and in cells. PMID:27410794

  3. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo: chilling, freezing, ice cover, heat, and high light.

    PubMed

    Smillie, R M; Hetherington, S E

    1983-08-01

    The proposition is examined that measurements of chlorophyll fluorescence in vivo can be used to monitor cellular injury caused by environmental stresses rapidly and nondestructively and to determine the relative stress tolerances of different species. Stress responses of leaf tissue were measured by F(R), the maximal rate of the induced rise in chlorophyll fluorescence. The time taken for F(R) to decrease by 50% in leaves at 0 degrees C was used as a measure of chilling tolerance. This value was 4.3 hours for chilling-sensitive cucumber. In contrast, F(R) decreased very slowly in cucumber leaves at 10 degrees C or in chilling-tolerant cabbage leaves at 0 degrees C. Long-term changes in F(R) of barley, wheat, and rye leaves kept at 0 degrees C were different in frost-hardened and unhardened material and in the latter appeared to be correlated to plant frost tolerance. To simulate damage caused by a thick ice cover, wheat leaves were placed at 0 degrees C under N(2). Kharkov wheat, a variety tolerant of ice encapsulation, showed a slower decrease in F(R) than Gatcher, a spring wheat. Relative heat tolerance was also indicated by the decrease in F(R) in heated leaves while changes in vivo resulting from photoinhibition, ultraviolet radiation, and photobleaching can also be measured. PMID:16663118

  4. Small-scale variability of chlorophyll, CDOM, and suspended matter in the Lake Balaton as obtained by shipborne UV fluorescent lidar

    NASA Astrophysics Data System (ADS)

    Pelevin, Vadim; Palmer, Stephanie; Khymchenko, Lisa

    2015-04-01

    Despite a long history in oceanography, few attempts have been made to use fluorescent lidars to evaluate water quality in lakes. We report lidar measurements taken on the Lake Balaton over the period of five days in August, 2012. Lake Balaton, the largest lake in Central Europe in area (597 km2), is very shallow (average depth of 3.5m). The lake is mesotrophic exhibiting a strong trophic gradient from SW to NE. The UV fluorescent lidar UFL-9 used in this study was developed at the Shirshov Institute of Oceanology. It can be used for CDOM, organic pollutants, chlorophyll, and suspended matter concentrations measurements at very high spatial resolution (up to ~1 m). The data were collected continuously during daytime while the boat was travelling. The entire area of the lake was covered by the measurement. The lidar data were calibrated against those obtained in situ through water sampling and then converted from the optical units into the mass concentrations of the above mentioned constituents. Based on this data set, we mapped and investigated in detail the small-scale spatial variability of CDOM, chlorophyll-a, and suspended matter concentrations. In particular, the characteristics of patchiness for the selected parameters were quantified and inter-compared, and their relations with the background forcing conditions were analyzed. We also discuss the applicability of lidar techniques for assessing the hydrological and ecological conditions in shallow inland water bodies. The study was partly supported by the Russian Science Foundation, Grant 14-50-00095.

  5. Signal enhanced holographic fluorescence microscopy with guide-star reconstruction

    PubMed Central

    Jang, Changwon; Clark, David C.; Kim, Jonghyun; Lee, Byoungho; Kim, Myung K.

    2016-01-01

    We propose a signal enhanced guide-star reconstruction method for holographic fluorescence microscopy. In the late 00’s, incoherent digital holography started to be vigorously studied by several groups to overcome the limitations of conventional digital holography. The basic concept of incoherent digital holography is to acquire the complex hologram from incoherent light by utilizing temporal coherency of a spatially incoherent light source. The advent of incoherent digital holography opened new possibility of holographic fluorescence microscopy (HFM), which was difficult to achieve with conventional digital holography. However there has been an important issue of low and noisy signal in HFM which slows down the system speed and degrades the imaging quality. When guide-star reconstruction is adopted, the image reconstruction gives an improved result compared to the conventional propagation reconstruction method. The guide-star reconstruction method gives higher imaging signal-to-noise ratio since the acquired complex point spread function provides optimal system-adaptive information and can restore the signal buried in the noise more efficiently. We present theoretical explanation and simulation as well as experimental results. PMID:27446653

  6. Signal enhanced holographic fluorescence microscopy with guide-star reconstruction.

    PubMed

    Jang, Changwon; Clark, David C; Kim, Jonghyun; Lee, Byoungho; Kim, Myung K

    2016-04-01

    We propose a signal enhanced guide-star reconstruction method for holographic fluorescence microscopy. In the late 00's, incoherent digital holography started to be vigorously studied by several groups to overcome the limitations of conventional digital holography. The basic concept of incoherent digital holography is to acquire the complex hologram from incoherent light by utilizing temporal coherency of a spatially incoherent light source. The advent of incoherent digital holography opened new possibility of holographic fluorescence microscopy (HFM), which was difficult to achieve with conventional digital holography. However there has been an important issue of low and noisy signal in HFM which slows down the system speed and degrades the imaging quality. When guide-star reconstruction is adopted, the image reconstruction gives an improved result compared to the conventional propagation reconstruction method. The guide-star reconstruction method gives higher imaging signal-to-noise ratio since the acquired complex point spread function provides optimal system-adaptive information and can restore the signal buried in the noise more efficiently. We present theoretical explanation and simulation as well as experimental results. PMID:27446653

  7. Spatial and temporal patterns of solar-induced chlorophyll fluorescence from a Finnish boreal landscape: Comparisons from the ground up to space

    NASA Astrophysics Data System (ADS)

    Drolet, G.; Nichol, C. J.; Wade, T. J.; Porcar-Castell, A.; Nikinmaa, E.; Middleton, E.; Ong, L.; Vesala, T.; Levula, J.; Moncrieff, J. B.

    2010-12-01

    Remote sensing of the solar-induced chlorophyll fluorescence (F) by vegetation has the potential to provide important information about carbon uptake dynamics in terrestrial ecosystems. Because of the strong physiological link between F and the photosynthetic status, accurate and timely estimates of F over large areas could significantly improve the understanding and predictions of how terrestrial ecosystems respond to climate change. In the past few decades, a number of different techniques and models aimed at retrieving F from remotely sensed measurements of vegetation reflectance were developed and in this study, we took advantage of these new developments to look at the spatial and temporal patterns of F in boreal coniferous forests. The results we present here are part of a larger research project aimed at improving reflectance-based estimates of photosynthesis efficiency and carbon uptake using space-based observations of boreal vegetation. During the summer of 2010, we continuously measured Scots pine (Pinus sylvestris) canopy reflectance using a tower-based spectrometer system (USB-2000+, Ocean Optics, USA) and leaf-level fluorescence using an automated multi channel chlorophyll fluorescence system (MONI-PAM, Heinz Walz GmbH, Germany). These measurements allowed studying the temporal dynamics of canopy-level F and testing methods for extracting F from canopy reflectance. During an intensive airborne campaign in July 2010, we used the University of Edinburgh’s research aircraft equipped with a dual field-of-view spectrometer system (FieldSpec Pro, Analytical Spectral Devices, USA) to repeatedly measure vegetation hyperspectral reflectance over a large area of boreal forest which encompassed the forest canopy sampled by the tower-based system. Airborne- and tower-based estimates of F where correlated to enable studying the spatial and temporal patterns of chlorophyll fluorescence and photosynthetic status over a larger extent of this boreal landscape in

  8. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae.

    PubMed

    Perron, Marie-Claude; Qiu, Baosheng; Boucher, Nathalie; Bellemare, François; Juneau, Philippe

    2012-04-01

    The phenomenon of cyanobacteria bloom occurs widely in lakes, reservoirs, ponds and slow flowing rivers. Those blooms can have important repercussions, at once on recreational and commercial activities but also on the health of animals and human beings. Indeed, many species are known to produce toxins which are released in water mainly at cellular death. The cyanotoxin most frequently encountered is the microcystin (MC), a hepatotoxin which counts more than 70 variants. The use of fast tests for the detection of this toxin is thus a necessity for the protection of the ecosystems and the human health. A promising method for their detection is a bioassay based on the chlorophyll a fluorescence of algae. Many studies have shown that algae are sensible to diverse pollutants, but were almost never used for cyanotoxins. Therefore, our goals were to evaluate the effect of microcystin on the fluorescence of different species of algae and how it can affect the flow of energy through photosystem II. To reach these objectives, we exposed four green algae (Scenedesmus obliquus CPCC5, Chlamydomonas reinhardtii CC125, Pseudokirchneriella subcapitata CPCC37 and Chlorella vulgaris CPCC111) to microcystin standards (variants MC-LF, LR, RR, YR) and to microcystin extracted from Microcystis aeruginosa (CPCC299), which is known to produce mainly MC-LR. Chlorophyll a fluorescence was measured by PEA (Plant Efficiency Analyzer) and LuminoTox. The results of our experiment showed that microcystins affect the photosynthetic efficiency and the flow of energy through photosystem II from 0.01 μg/mL, within only 15 min. From exposure to standard of microcystin, we showed that MC-LF was the most potent variant, followed by MC-YR, LR and RR. Moreover, green algae used in this study demonstrated different sensitivity to MCs, S. obliquus being the more sensitive. We finally demonstrated that LuminoTox was more sensitive to MCs than parameters measured with PEA, although the latter brings

  9. Comparison of Measurements and FluorMOD Simulations for Solar Induced Chlorophyll Fluorescence and Reflectance of a Corn Crop under Nitrogen Treatments [SIF and Reflectance for Corn

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Campbell, Petya K. E.

    2007-01-01

    The FLuorescence Explorer (FLEX) satellite concept is one of six semifinalist mission proposals selected in 2006 for pre-Phase studies by the European Space Agency (ESA). The FLEX concept proposes to measure passive solar induced chlorophyll fluorescence (SIF) of terrestrial ecosystems. A new spectral vegetation Fluorescence Model (FluorMOD) was developed to include the effects of steady state SIF on canopy reflectance. We used our laboratory and field measurements previously acquired from foliage and canopies of corn (Zea mays L.) under controlled nitrogen (N) fertilization to parameterize and evaluate FluorMOD. Our data included biophysical properties, fluorescence (F) and reflectance spectra for leaves; reflectance spectra of canopies and soil; solar irradiance; plot-level leaf area index; and canopy SIF emissions determined using the Fraunhofer Line Depth principal for the atmospheric telluric oxygen absorption features at 688 nm (O2-beta) and 760 nm (O2-alpha). FluorMOD simulations implemented in the default "look-up-table" mode did not reproduce the observed magnitudes of leaf F, canopy SIF, or canopy reflectance. However, simulations for all of these parameters agreed with observations when the default FluorMOD information was replaced with measurements, although N treatment responses were underestimated. Recommendations were provided to enhance FluorMOD's potential utility in support of SIF field experiments and studies of agriculture and ecosystems.

  10. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment. PMID:27556995

  11. Optofluidic chlorophyll lasers.

    PubMed

    Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong

    2016-06-21

    Chlorophylls are essential for photosynthesis and also one of the most abundant pigments on earth. Using an optofluidic ring resonator of extremely high Q-factors (>10(7)), we investigated the unique characteristics and underlying mechanism of chlorophyll lasers. Chlorophyll lasers with dual lasing bands at 680 nm and 730 nm were observed for the first time in isolated chlorophyll a (Chla). Particularly, a laser at the 730 nm band was realized in 0.1 mM Chla with a lasing threshold of only 8 μJ mm(-2). Additionally, we observed lasing competition between the two lasing bands. The presence of laser emission at the 680 nm band can lead to quenching or significant reduction of laser emission at the 730 nm band, effectively increasing the lasing threshold for the 730 nm band. Further concentration-dependent studies, along with theoretical analysis, elucidated the mechanism that determines when and why the laser emission band appears at one of the two bands, or concomitantly at both bands. Finally, Chla was exploited as the donor in fluorescence resonance energy transfer to extend the laser emission to the near infrared regime with an unprecedented wavelength shift as large as 380 nm. Our work will open a door to the development of novel biocompatible and biodegradable chlorophyll-based lasers for various applications such as miniaturized tunable coherent light sources and in vitro/in vivo biosensing. It will also provide important insight into the chlorophyll fluorescence and photosynthesis processes inside plants. PMID:27220992

  12. Monitoring Wnt Signaling in Zebrafish Using Fluorescent Biosensors.

    PubMed

    Facchinello, Nicola; Schiavone, Marco; Vettori, Andrea; Argenton, Francesco; Tiso, Natascia

    2016-01-01

    In this chapter, we are presenting methods to monitor and quantify in vivo canonical Wnt signaling activities at single-cell resolution in zebrafish. Our technology is based on artificial enhancers, obtained by polymerization of TCF binding elements, cloned upstream to ubiquitous or tissue-specific promoters. The different promoter/enhancer combinations are used to drive fluorescent protein reporter constructs integrated in the zebrafish germline by microinjection of fertilized zebrafish eggs. Fish with a single integration site are selected by Mendelian analysis of fluorescent carriers, and heterozygous offspring are used to monitor and quantify canonical Wnt activities. Open source public domain software such as ImageJ/Fiji is used to calculate the integrated densities in the region of interest and compare the effect of experimental conditions on control and treated animals. PMID:27590154

  13. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    PubMed

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize. PMID:24830246

  14. Effects of di-n-butyl phthalate and di (2-ethylhexyl) phthalate on the growth, photosynthesis, and chlorophyll fluorescence of wheat seedlings.

    PubMed

    Gao, Minling; Qi, Yun; Song, Wenhua; Xu, Haoran

    2016-05-01

    Phthalates are commonly used man-made chemicals that can be released into soil, water, and the atmosphere. The potential toxicity of phthalates on wheat seedlings has not been well studied. To better understand the deleterious effects of di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) on wheat seedlings, their influences on the following were investigated: plant growth, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), chlorophyll content, initial fluorescence (F0), maximal photochemical efficiency (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (qN), effective quantum yield of photosystem II (ΦPSII), and photosynthetic electron transport rate (ETR). Compared with the control, the growth indices (plant height, fresh and dry weights of shoots, fresh and dry weights of roots), Pn, Gs, Tr, Ci, chlorophyll content, Fv/Fm, qP, ΦPSII, and ETR decreased in the 5 μg mL(-1) and 10 μg mL(-1) DBP and DEHP treatments, whereas F0 and qN increased. When wheat seedlings were treated with 20 μg mL(-1) of DBP and DEHP, the growth indices, Pn, Gs, Tr, chlorophyll content, Fv/Fm, qP, qN, ΦPSII, and ETR decreased significantly, whereas Ci and F0 increased. A decrease in the Pn of wheat seedlings was mainly caused by stomatal limitation in the 5 μg mL(-1) and 10 μg mL(-1) DBP and DEHP treatments. However, stomatal and non-stomatal limitations may have caused the reduction in Pn in the 20 μg mL(-1) DBP and DEHP treatments. Notably, the noxious effect of DBP on the wheat seedlings was significantly greater than that of DEHP. PMID:26928333

  15. The chlorophyll a fluorescence induction curve in the green microalga Haematococcus pluvialis: further insight into the nature of the P-S-M fluctuation and its relationship with the "low-wave" phenomenon at steady-state.

    PubMed

    Fratamico, Anthony; Tocquin, Pierre; Franck, Fabrice

    2016-06-01

    Chlorophyll fluorescence is an information-rich signal which provides an access to the management of light absorbed by PSII. A good example of this is the succession of fast fluorescence fluctuations during light-induced photosynthetic induction after dark-adaptation. During this period, the fluorescence trace exhibits several inflexion points: O-J-I-P-S-M-T. Whereas the OJIP part of this kinetics has been the subject of many studies, the processes that underly the PSMT transient are less understood. Here, we report an analysis of the PSMT phase in the green microalga Haematococcus pluvialis in terms of electron acceptors and light use by photochemistry, fluorescence and non-photochemical quenching (NPQ). We identify additional sub-phases between P and S delimited by an inflexion point, that we name Q, found in the second time scale. The P-Q phase expresses a transient photochemical quenching specifically due to alternative electron transport to oxygen. During the transition from Q to S, the NPQ increases and then relaxes during the S-M phase in about 1 min. It is suggested that this transient NPQ observed during induction is a high energy state quenching (qE) dependent on the alternative electron transport to molecular oxygen. We further show that this NPQ is of the same nature than the NPQ, known as the low-wave phenomenon, which is transiently observed after a saturating light pulse given at steady-state. In both cases, the NPQ is oxygen-dependent. This NPQ is observed at external pH 6.0, but not at pH 7.5, which seems correlated with faster saturation of the PQ pool at pH 6.0. PMID:26980274

  16. Fluorescent protein-based biosensors: resolving spatiotemporal dynamics of signaling

    PubMed Central

    DiPilato, Lisa M.; Zhang, Jin

    2009-01-01

    Summary Cellular processes are orchestrated by the precise coordination and regulation of molecular events in the cell. Fluorescent protein-based biosensors coupled with live-cell imaging have enabled the visualization of these events in real time and helped shape some of the current concepts of signal transduction, such as spatial compartmentation. The quantitative information produced by these tools has been incorporated into mathematical models that are capable of predicting highly complex and dynamic behaviors of cellular signaling networks, thus providing a systems level understanding of how pathways interact to produce a functional response. Finally, with technological advances in high throughput and in vivo imaging, these molecular tools promise to continually engender significant contributions to our understanding of cellular processes under normal and diseased conditions. PMID:19910237

  17. The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii.

    PubMed

    Kodru, Sireesha; Malavath, Tirupathi; Devadasu, Elsinraju; Nellaepalli, Sreedhar; Stirbet, Alexandrina; Subramanyam, Rajagopal; Govindjee

    2015-08-01

    The green alga Chlamydomonas (C.) reinhardtii is a model organism for photosynthesis research. State transitions regulate redistribution of excitation energy between photosystem I (PS I) and photosystem II (PS II) to provide balanced photosynthesis. Chlorophyll (Chl) a fluorescence induction (the so-called OJIPSMT transient) is a signature of several photosynthetic reactions. Here, we show that the slow (seconds to minutes) S to M fluorescence rise is reduced or absent in the stt7 mutant (which is locked in state 1) in C. reinhardtii. This suggests that the SM rise in wild type C. reinhardtii may be due to state 2 (low fluorescence state; larger antenna in PS I) to state 1 (high fluorescence state; larger antenna in PS II) transition, and thus, it can be used as an efficient and quick method to monitor state transitions in algae, as has already been shown in cyanobacteria (Papageorgiou et al. 1999, 2007; Kaňa et al. 2012). We also discuss our results on the effects of (1) 3-(3,4-dichlorophenyl)-1,4-dimethyl urea, an inhibitor of electron transport; (2) n-propyl gallate, an inhibitor of alternative oxidase (AOX) in mitochondria and of plastid terminal oxidase in chloroplasts; (3) salicylhydroxamic acid, an inhibitor of AOX in mitochondria; and (4) carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an uncoupler of phosphorylation, which dissipates proton gradient across membranes. Based on the data presented in this paper, we conclude that the slow PSMT fluorescence transient in C. reinhardtii is due to the superimposition of, at least, two phenomena: qE dependent non-photochemical quenching of the excited state of Chl, and state transitions. PMID:25663564

  18. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    PubMed Central

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-01-01

    Abstract. Two-photon (2P) excitation of the second singlet (S2) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the “tissue optical window” (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S2 state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue. PMID:24967915

  19. Spatial distribution and seasonal variability of chlorophyll-a concentration in the Azov Sea turbid waters by means of remote sensing and continuous fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Saprygin, V. V.

    2011-12-01

    The goal of this study was to apply continuous fluorometric and remote estimation of chlorophyll-a concentration (Cchl) techniques to complex turbid waters of Azov Sea and explore Cchl temporal variation and spatial pattern. Azov Sea is the shallowest sea in the world with maximum depth below 15 m. Its maximum salinity is about 14%; total suspended solids and chlorophyll-a concentrations reach 120 [tex]g m^{-3}[/tex] and 100 [tex]mg m^{-3}[/tex] respectively in Taganrog Bay, daily production varies up to 3.5 [tex]gC_{org} m^{-3}[/tex]. Chlorophyll-a concentrations were measured in 2008-2010 year-round spectrophotometrically, 446 water samples were taken to calibrate fluorometerical and remote sensing data. The highest recorded concentration was 149.3, the lowest - 0.3 [tex]mg m^{-3}[/tex]. Continuous-flow fluorometer was applied in the course of 3 expeditions to Taganrog Bay to measure chlorophyll-a fluorescence (Fchl) each 30 meters along the ship path. Two-cuvette fluorometer was used to discount the influence of dissolved organic matter. Fchl measurements were calibrated and Cchl profiles derieved to estimate Cchl spatial heterogeneity in close scale. Fchl measurements were also made during moorings each 6 seconds to estimate temporal Cchl variability. Recently published algorithm based on reflectance in the red and the near-infrared (NIR) spectral regions was applied to MERIS data for the remote estimation of Cchl. Taking in account fluorometric Cchl spatial heterogeneity estimation, the algorithm for culling the outliers in Cchl fields derived from satellite data was developed. 74 images were processed to Cchl maps and then averaged monthly. Consequently, Cchl spatial distribution and seasonal variability were studied. Spectrophotometric, flourumetric measurements and values obtained by NIR-red algorithm showed strong correlation in turbid Case II waters of Azov Sea. Fluorometric and remote measurements showed high Cchl variations in short and long terms

  20. On the calibration of large-scale fluorometric chlorophyll measurements from towed undulating vehicles

    NASA Astrophysics Data System (ADS)

    Strass, Volker

    1990-03-01

    Calibrating in situ fluorescence profiles to give the concentration of chlorophyll a at high resolution on the oceanic gyre scale must take into account large variations of fluorescence yield R (the ratio of the fluorescence signal and the chlorophyll concentration within the fluorometer detection volume). The calibration method suggested in this paper has been developed to handle fluorescence measurements made from a towed undulating vehicle along a section about 2000 km long between the Azores and Greenland repeated during the years 1984-1986. The calibration is based on equally spaced samples with photometrically determined near-surface chlorophyll concentrations and incorporates profiles of solar irradiance as auxillary variable. Judging from the auto-correlation function of R, the large variations of fluorescence yield are well resolved by the time interval of 4 h (corresponding to a horizontal distance of about 65 km) between adjacent chlorophyll samples. Using a filter based on the auto-correlation function the variability of yield is smoothed; the smoothed yield function is employed to calibrate the fluoresence signal continuously, in which yield between supporting points is interpreted linearly. Significant correlations of R with solar irradiance appear to be negative; this ambient-light-dependent fluorescence quenching is eliminated during calibration. The relative error in the chlorophyll concentration derived in this way is estimated to be 4% near the surface and 15% deeper down. The suggested calibration method is as accurate as more expensive procedures involving bottle cast series.

  1. Chlorophyll a fluorescence and photosynthetic and growth responses of Pinus radiata to phosphorus deficiency, drought stress, and high CO/sub 2/

    SciTech Connect

    Conroy, J.P.; Smillie, R.M.; Kueppers, M.; Bevege, D.I.; Barlow, E.W.

    1986-06-01

    Needles from phosphorus deficient seedlings of Pinus radiata D. Don grown for 8 weeks at either 330 or 660 microliters CO/sub 2/ per liter displayed chlorophyll a fluorescence induction kinetics characteristic of structural changes within the thylakoid chloroplast membrane, i.e. constant yield fluorescence (F/sub O/) was increased and induced fluorescence ((F/sub P/-F/sub I/)/F /sub O/) was reduced. The effect was greatest in the undroughted plants grown at 660 ..mu..l CO/sub 2/ L/sup -1/. By week 22 at 330 ..mu..lCO/sub 2/L/sup -1/ acclimation to P deficiency had occurred as shown by the similarity in the fluorescence characteristics and maximum rates of photosynthesis of the needles from the two P treatments. However, acclimation did not occur in the plants grown at 660 ..mu..l CO/sub 2/ L/sup -1/. The light saturated rate of photosynthesis of needles with adequate P was higher at 660 ..mu..l CO/sub 2/ L/sup -1/ than at 330 ..mu..l CO/sub 2/ L/sup -1/, whereas photosynthesis of P deficient plants showed no increase when grown at the higher CO/sub 2/ concentration. The average growth increase due to CO/sub 2/ enrichment was 14% in P deficient plants and 32% when P was adequate. In drought stressed plants grown at 330 ..mu..l CO/sub 2/ L/sup -1/, there was a reduction in the maximal rate of quenching of fluorescence (R/sub Q/) after the major peak. Constant yield fluorescence was unaffected but induced fluorescence was lower. These results indicate that electron flow subsequent to photosystem II was affected by drought stress. At 660 ..mu..l CO/sub 2/L/sup -1/ this response was eliminated showing that CO/sub 2/ enrichment improved the ability of the seedlings to acclimate to drought stress. The average growth increase with CO/sub 2/ enrichment was 37% in drought stressed plants and 19% in unstressed plants.

  2. Quantitative Analysis of Caspase-1 Activity in Living Cells Through Dynamic Equilibrium of Chlorophyll-Based Nano-assembly Modulated Photoacoustic Signals.

    PubMed

    Li, Li-Li; Zeng, Qian; Liu, Wei-Jiao; Hu, Xue-Feng; Li, Yongsheng; Pan, Jie; Wan, Dong; Wang, Hao

    2016-07-20

    In situ construction of self-assemblies with unique property in living systems is a promising direction in the biomedical field. The noninvasive methods for significant enzyme activity in living cells or living subjects are imperative and meantime challenge tasks. The dynamic process of self-assembly of chlorophyll-based molecules in complex biological systems can be monitored by photoacoustic signals, which supports a noninvasive way to understand and quantitatively measure the activity of caspase-1. Furthermore, the activity of caspase-1 enables reflection of the bacterial infection in the early stage. Here, we present a biocompatible self-assembly from chlorophyll-peptide derivatives and first correlate the dynamic equilibrium with ratiometric photoacoustic signals. The intracellular equilibrium was managed by a bacterial infection precaution protein, i.e., caspase-1. This system offers a trial of noninvasive method to quantitative detection and real-time monitoring of bacterial infection in the early stage. PMID:27341352

  3. The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen production in planktonic algae.

    PubMed

    Blache, Ulrich; Jakob, Torsten; Su, Wanwen; Wilhelm, Christian

    2011-08-01

    Photosynthesis-irradiance (P-E)-curves describe the photosynthetic performance of autotrophic organisms. From these P-E-curves the photosynthetic parameters α-slope, P(max), and E(k) can be deduced which are often used to characterize and to compare different organisms or organisms in acclimation to different environmental conditions. Particularly, for in situ-measurements of P-E curves of phytoplankton the analysis of variable chlorophyll fluorescence proved its potential as a sensitive and rapid method. By using Chlorella vulgaris (Trebouxiophyceae), Nannochloropsis salina (Eustigmatophyceae), Skeletonema costatum and Cyclotella meneghiniana (Bacillariophyceae), the present study investigated the influence of cellular bio-optical properties on the correlation of the photosynthetic parameters derived from fluorescence-based P-E-curves with photosynthetic parameters obtained from the measurement of oxygen evolution. It is demonstrated that small planktonic algae show a wide range of cellular absorptivity which was subject to species-specifity, growth stage and environmental conditions, e.g. nutrient limitation. This variability in bio-optical properties resulted in a great deviation of relative electron transport rates (rETRs) from oxygen-based photosynthesis rates. Thus, the photosynthetic parameters α-slope and P(max) derived from rETRs strongly depend on the specific cellular absorptivity and cannot be used to compare the photosynthetic performance of cells with different optical properties. However, it was shown that E(k) is independent of cellular absorptivity and could be used to compare samples with unknown optical properties. PMID:21571541

  4. Sunlight induced 685 nm fluorescence imagery

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.; Van Der Piepen, Heinz

    1986-01-01

    The capability of a new fluorescence method is evaluated using data from an aircraft fluorescence experiment conducted on the Elbe River on August 10-14, 1981. The technique measures chlorophyll concentrations by monitoring sunlight-induced fluorescence at 685 nm. Upwelling radiance spectra and vertical profiles of upwelling radiances are presented and analyzed. The image-processing algorithm used to retrieve fluorescence signals from raw data is described.

  5. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.

    PubMed

    Singh, Shardendu K; Reddy, Vangimalla R

    2015-10-01

    To evaluate the response of CO2 assimilation rate (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition, soybean plants were grown in controlled environment with sufficient (0.50mM) and deficient (0.10 and 0.01 mM) phosphate (P) supply under ambient and elevated CO2 (aCO2, 400 and eCO2, 800 μmol mol(-1), respectively). Measurements were made at ambient (21%) and low (2%) O2 concentrations. Results showed strong correlation of leaf P concentration with PN and CF parameters. The P deficiency showed parallel decreases in PN, and CF parameters including quantum efficiency (Fv'/Fm'), quantum yield of photosystem II (ΦPSII), electron transport rate (JF), and photochemical quenching (qP). The Fv'/Fm' decreased as a result of greater decline in maximal (Fm') than minimal (Fo') fluorescence. The eCO2 stimulated PN especially under higher leaf P concentrations. Low O2 also stimulated PN but only at aCO2. The photosynthetic carbon reduction (PCR, signified by PN) and photorespiratory carbon oxidation cycles (PCO, signified photorespiration as indicated by ratio of JF to gross PN and % increase in PN at 2% O2) was the major electron sinks. However, the presence of alternative electron sink was also evident as determined by the difference between the electron transport calculated from chlorophyll fluorescence and gas exchange measurements. Alternative electron sink declined at lower leaf P concentration suggesting its minor role in photochemical energy consumption, thus dissipation of the excess excitation pressure of PSII reaction center under P deficiency. The JF/PG and % increase in PN at 2 versus 21% O2 remained consistent across leaf P concentration suggesting PCO cycle as an important mechanism to dissipate excess excitation energy in P deficient leaves. The severe decline of Fv'/Fm', ΦPSII, JF and qP under P deficiency also suggested the occurrences of excess radiant energy dissipation by non-photochemical quenching mechanisms. Critical

  6. Diurnal and seasonal dynamics of canopy-level solar-induced chlorophyll fluorescence and spectral reflectance indices in a cornfield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A collaborative field campaign was undertaken to examine the temporal dynamics of canopy-level solar-induced fluorescence (SIF) and the Photochemical Reflectance Index (PRI) in conjunction with photosynthetic light use efficiency (LUE) obtained from fluxes measured at an instrumented tower. We condu...

  7. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees.

    PubMed

    Lichtenthaler, Hartmut K; Babani, Fatbardha; Navrátil, Martin; Buschmann, Claus

    2013-11-01

    The chlorophyll (Chl) fluorescence induction kinetics, net photosynthetic CO2 fixation rates P N, and composition of photosynthetic pigments of differently light exposed leaves of several trees were comparatively measured to determine the differences in photosynthetic activity and pigment adaptation of leaves. The functional measurements were carried out with sun, half-shade and shade leaves of seven different trees species. These were: Acer platanoides L., Ginkgo biloba L., Fagus sylvatica L., Platanus x acerifolia Willd., Populus nigra L., Quercus robur L., Tilia cordata Mill. In three cases (beech, ginkgo, and oak), we compared the Chl fluorescence kinetics and photosynthetic rates of blue-shade leaves of the north tree crown receiving only blue sky light but no direct sunlight with that of sun leaves. In these cases, we also determined in detail the pigment composition of all four leaf types. In addition, we determined the quantum irradiance and spectral irradiance of direct sunlight, blue skylight as well as the irradiance in half shade and full shade. The results indicate that sun leaves possess significantly higher mean values for the net CO2 fixation rates P N (7.8-10.7 μmol CO2 m(-2) s(-1) leaf area) and the Chl fluorescence ratio R Fd (3.85-4.46) as compared to shade leaves (mean P N of 2.6-3.8 μmol CO2 m(-2) s(-1) leaf area.; mean R Fd of 1.94-2.56). Sun leaves also exhibit higher mean values for the pigment ratio Chl a/b (3.14-3.31) and considerably lower values for the weight ratio total chlorophylls to total carotenoids, (a + b)/(x + c), (4.07-4.25) as compared to shade leaves (Chl a/b 2.62-2.72) and (a + b)/(x + c) of 5.18-5.54. Blue-shade and half-shade leaves have an intermediate position between sun and shade leaves in all investigated parameters including the ratio F v/F o (maximum quantum yield of PS2 photochemistry) and are significantly different from sun and shade leaves but could not be differentiated from each other. The

  8. Remote monitoring of chlorophyll fluorescence in two reef corals during the 2005 bleaching event at Lee Stocking Island, Bahamas

    NASA Astrophysics Data System (ADS)

    Manzello, D.; Warner, M.; Stabenau, E.; Hendee, J.; Lesser, M.; Jankulak, M.

    2009-03-01

    Zooxanthellae fluorescence was measured in situ, remotely, and in near real-time with a pulse amplitude modulated (PAM) fluorometer for a colony of Siderastrea siderea and Agaricia tenuifolia at Lee Stocking Island, Bahamas during the Caribbean-wide 2005 bleaching event. These colonies displayed evidence of photosystem II (PS II) inactivation coincident with thermal stress and seasonally high doses of solar radiation. Hurricane-associated declines in temperature and light appear to have facilitated the recovery of maximum quantum yield of PS II within these two colonies, although both corals responded differently to individual storms. PAM fluorometry, coupled with long-term measurement of in situ light and temperature, provides much more detail of coral photobiology on a seasonal time scale and during possible bleaching conditions than sporadic, subjective, and qualitative observations. S. siderea displayed evidence of PS II inactivation over a month prior to the issuing of a satellite-based, sea surface temperature (SST) bleaching alert by the National Oceanic and Atmospheric Administration (NOAA). In fact, recovery had already begun in S. siderea when the bleaching alert was issued. Fluorescence data for A. tenuifolia were difficult to interpret because the shaded parts of a colony were monitored and thus did not perfectly coincide with thermal stress and seasonally high doses of solar radiation as in S. siderea. These results further emphasize the limitations of solely monitoring SST (satellite or in situ) as a bleaching indicator without considering the physiological status of coral-zooxanthellae symbioses.

  9. Fluorescence Fluctuation Approaches to the Study of Adhesion and Signaling

    PubMed Central

    Bachir, Alexia I.; Kubow, Kristopher E.; Horwitz, Alan R.

    2013-01-01

    Cell–matrix adhesions are large, multimolecular complexes through which cells sense and respond to their environment. They also mediate migration by serving as traction points and signaling centers and allow the cell to modify the surroucnding tissue. Due to their fundamental role in cell behavior, adhesions are germane to nearly all major human health pathologies. However, adhesions are extremely complex and dynamic structures that include over 100 known interacting proteins and operate over multiple space (nm–µm) and time (ms–min) regimes. Fluorescence fluctuation techniques are well suited for studying adhesions. These methods are sensitive over a large spatiotemporal range and provide a wealth of information including molecular transport dynamics, interactions, and stoichiometry from a single time series. Earlier chapters in this volume have provided the theoretical background, instrumentation, and analysis algorithms for these techniques. In this chapter, we discuss their implementation in living cells to study adhesions in migrating cells. Although each technique and application has its own unique instrumentation and analysis requirements, we provide general guidelines for sample preparation, selection of imaging instrumentation, and optimization of data acquisition and analysis parameters. Finally, we review several recent studies that implement these techniques in the study of adhesions. PMID:23280111

  10. Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana

    PubMed Central

    Goss, Reimund; Wilhelm, Christian; Leegood, Richard; Horton, Peter; Jakob, Torsten

    2011-01-01

    In diatoms, metabolic activity during long dark periods leads to a chlororespiratory electron flow, which is accompanied by the build-up of a proton gradient strong enough to activate the diadinoxanthin (Ddx) de-epoxidation reaction of the Ddx cycle. In the present study, the impact of chlororespiration on non-photochemical quenching (NPQ) of chlorophyll fluorescence and the regulation of the Ddx cycle in the diatom Thalassiosira pseudonana was investigated by manipulation of the redox state of the photosynthetic electron transport chain during darkness. The response of a transfer of T. pseudonana cells from growth light conditions to 60 min darkness was found to depend on oxygen: in its presence there was no significant reduction of the PQ pool and no de-epoxidation of Ddx to diatoxanthin (Dtx). Under anaerobic conditions a high reduction state of the electron transport chain and a slow but steady de-epoxidation of Ddx was observed, which resulted in a significant accumulation of Dtx after 60 min of anaerobiosis. Unexpectedly, this high concentration of Dtx did not induce a correspondingly high NPQ as it would have been observed with Dtx formed under high light conditions. However, the sensitivity of NPQ to Dtx in cells kept under dark anaerobic conditions increased during reoxygenation and far-red (FR) light illumination. The results are discussed with respect to the activation of the de-epoxidation reaction and the formation of NPQ and their dependence on the extent of the proton gradient across the thylakoid membrane. PMID:20876335

  11. HIGH CHLOROPHYLL FLUORESCENCE145 Binds to and Stabilizes the psaA 5' UTR via a Newly Defined Repeat Motif in Embryophyta.

    PubMed

    Manavski, Nikolay; Torabi, Salar; Lezhneva, Lina; Arif, Muhammad Asif; Frank, Wolfgang; Meurer, Jörg

    2015-09-01

    The seedling-lethal Arabidopsis thaliana high chlorophyll fluorescence145 (hcf145) mutation leads to reduced stability of the plastid tricistronic psaA-psaB-rps14 mRNA and photosystem I (PSI) deficiency. Here, we genetically mapped the HCF145 gene, which encodes a plant-specific, chloroplast-localized, modular protein containing two homologous domains related to the polyketide cyclase family comprising 37 annotated Arabidopsis proteins of unknown function. Two further highly conserved and previously uncharacterized tandem repeat motifs at the C terminus, herein designated the transcript binding motif repeat (TMR) domains, confer sequence-specific RNA binding capability to HCF145. Homologous TMR motifs are often found as multiple repeats in quite diverse proteins of green and red algae and in the cyanobacterium Microcoleus sp PCC 7113 with unknown function. HCF145 represents the only TMR protein found in vascular plants. Detailed analysis of hcf145 mutants in Arabidopsis and Physcomitrella patens as well as in vivo and in vitro RNA binding assays indicate that HCF145 has been recruited in embryophyta for the stabilization of the psaA-psaB-rps14 mRNA via specific binding to its 5' untranslated region. The polyketide cyclase-related motifs support association of the TMRs to the psaA RNA, presumably pointing to a regulatory role in adjusting PSI levels according to the requirements of the plant cell. PMID:26307378

  12. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies.

    PubMed

    Pinto, Francisco; Damm, Alexander; Schickling, Anke; Panigada, Cinzia; Cogliati, Sergio; Müller-Linow, Mark; Balvora, Agim; Rascher, Uwe

    2016-07-01

    Passive detection of sun-induced chlorophyll fluorescence (SIF) using spectroscopy has been proposed as a proxy to quantify changes in photochemical efficiency at canopy level under natural light conditions. In this study, we explored the use of imaging spectroscopy to quantify spatio-temporal dynamics of SIF within crop canopies and its sensitivity to track patterns of photosynthetic activity originating from the interaction between vegetation structure and incoming radiation as well as variations in plant function. SIF was retrieved using the Fraunhofer Line Depth (FLD) principle from imaging spectroscopy data acquired at different time scales a few metres above several crop canopies growing under natural illumination. We report the first maps of canopy SIF in high spatial resolution. Changes of SIF were monitored at different time scales ranging from quick variations under induced stress conditions to seasonal dynamics. Natural changes were primarily determined by varying levels and distribution of photosynthetic active radiation (PAR). However, this relationship changed throughout the day demonstrating an additional physiological component modulating spatio-temporal patterns of SIF emission. We successfully used detailed SIF maps to track changes in the canopy's photochemical activity under field conditions, providing a new tool to evaluate complex patterns of photosynthesis within the canopy. PMID:26763162

  13. Photochemical properties in flag leaves of a super-high-yielding hybrid rice and a traditional hybrid rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient.

    PubMed

    Zhang, Meiping; Shan, YongJie; Kochian, Leon; Strasser, Reto J; Chen, GuoXiang

    2015-12-01

    Chlorophyll a fluorescence of flag leaves in a super-high-yielding hybrid rice (Oryza sativa L.) LYPJ, and a traditional hybrid rice SY63 cultivar with lower grain yield, which were grown in the field, were investigated from emergence through senescence of flag leaves. As the flag leaf matured, there was an increasing trend in photosynthetic parameters such as quantum efficiency of primary photochemistry ([Formula: see text] Po) and efficiency of electron transport from PS II to PS I (Ψ Eo). The overall photosynthetic performance index (PIABS) was significantly higher in the high-yielding LYPJ compared to SY63 during the entire reproductive stage of the plant, the same to MDA content. However, [Formula: see text] Po(=F V/F M), an indicator of the primary photochemistry of the flag leaf, did not display significant changes with leaf age and was not significantly different between the two cultivars, suggesting that PIABS is a more sensitive parameter than [Formula: see text] Po (=F V/F M) during leaf age for distinguishing between cultivars differing in yield. PMID:25972274

  14. Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon Flux Measurements of Montanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

    PubMed Central

    Ač, Alexander; Malenovský, Zbyněk; Urban, Otmar; Hanuš, Jan; Zitová, Martina; Navrátil, Martin; Vráblová, Martina; Olejníčková, Julie; Špunda, Vladimír; Marek, Michal

    2012-01-01

    We explored ability of reflectance vegetation indexes (VIs) related to chlorophyll fluorescence emission (R686/R630, R740/R800) and de-epoxidation state of xanthophyll cycle pigments (PRI, calculated as (R531 − R570)/(R531 − R570)) to track changes in the CO2 assimilation rate and Light Use Efficiency (LUE) in montane grassland and Norway spruce forest ecosystems, both at leaf and also canopy level. VIs were measured at two research plots using a ground-based high spatial/spectral resolution imaging spectroscopy technique. No significant relationship between VIs and leaf light-saturated CO2 assimilation (AMAX) was detected in instantaneous measurements of grassland under steady-state irradiance conditions. Once the temporal dimension and daily irradiance variation were included into the experimental setup, statistically significant changes in VIs related to tested physiological parameters were revealed. ΔPRI and Δ(R686/R630) of grassland plant leaves under dark-to-full sunlight transition in the scale of minutes were significantly related to AMAX (R2 = 0.51). In the daily course, the variation of VIs measured in one-hour intervals correlated well with the variation of Gross Primary Production (GPP), Net Ecosystem Exchange (NEE), and LUE estimated via the eddy-covariance flux tower. Statistical results were weaker in the case of the grassland ecosystem, with the strongest statistical relation of the index R686/R630 with NEE and GPP. PMID:22701368

  15. Mapping intercellular CO2 mole fraction (Ci) in rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance Of ci estimated from leaf gas exchange

    PubMed

    Meyer; Genty

    1998-03-01

    Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 mol mol-1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low. PMID:9501127

  16. Cytometric sorting based on the fluorescence lifetime of spectrally overlapping signals

    PubMed Central

    Cao, Ruofan; Pankayatselvan, Varayini; Houston, Jessica P.

    2013-01-01

    Flow cytometry is a well-established and powerful high-throughput fluorescence measurement tool that also allows for the sorting and enrichment of subpopulations of cells expressing unique fluorescence signatures. Owing to the reliance on intensity-only signals, flow cytometry sorters cannot easily discriminate between fluorophores that spectrally overlap. In this paper we demonstrate a new method of cell sorting using a fluorescence lifetime-dependent methodology. This approach, referred to herein as phase-filtered cell sorting (PFCS), permits sorting based on the average fluorescence lifetime of a fluorophore by separating fluorescence signals from species that emit differing average fluorescence lifetimes. Using lifetime-dependent hardware, cells and microspheres labeled with fluorophores were sorted with purities up to 90%. PFCS is a practical approach for separating populations of cells that are stained with spectrally overlapping fluorophores or that have interfering autofluorescence signals. PMID:23787669

  17. SEEP II, Shelf Edge Exchange Processes-II: Chlorophyll a fluorescence, temperature, and beam attenuation measurements from moored fluorometers

    SciTech Connect

    Medeiros, W.H.; Wirick, C.D.

    1992-02-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. The first SEEP experiment (SEEP I) was across the outer continental shelf of New England during 1983--1984 and consisted of a series of nine cruises and a mooring array. The second experiment (SEEP II) focused specifically of the shelf/slope frontal region of the mid-Atlantic Bight off the Delmarva peninsula. This report presents data collected during SEEP II. The SEEP II experiment consisted of a series of ten cruises and mooring arrays as well as over-flights by NASA aircraft. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Hydrographic data were collected on all cruises except SEEP2-04 and SEEP2-07 during which benthic processes were investigated. Mooring arrays were deployed during three cruises in the Spring, Summer and Winter of 1988. Brookhaven National Laboratory deployed sixteen fluorometer instrument packages on their moorings with sensors to measure: the in vivo fluorescence of phytoplankton, temperature, subsurface light, dissolved oxygen, and water transparency. Data from the fluorometer, temperature, and transmissometer sensors are reported herein.

  18. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    PubMed

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models. PMID:25923517

  19. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    PubMed

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd. PMID:26286697

  20. Sun-induced Chlorophyll fluorescence and PRI improve remote sensing GPP estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-07-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different Nitrogen (N) and Phosphorous (P) availability. Sun-induced chlorophyll Fluorescence yield computed at 760 nm (Fy760), scaled-photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and Normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy-chambers on the same locations sampled by the spectrometers. We hypothesized that light-use efficiency (LUE) models driven by remote sensing quantities (RSM) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as proxy for LUE and NDVI or MTCI as fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed significantly higher GPP in the N fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was tightly related to plant N content (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments but it is affected by N availability. Results from a cross validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv = 140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses

  1. Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-11-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv =140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However

  2. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.

    PubMed

    Mielke, Marcelo S; Schaffer, Bruce

    2010-01-01

    The interactive effects of changing light intensity and soil flooding on the photosynthetic performance of Eugenia uniflora L. (Myrtaceae) seedlings in containers were examined. Two hypotheses were tested: (i) the photosynthetic apparatus of shade-adapted leaves can be rapidly acclimated to high light after transfer from shade to full sun, and (ii) photosynthetic acclimation to changing light intensity may be influenced by soil flooding. Seedlings cultivated in a shade house (40% of full sun, approximately 12 mol m(-)(2) day(-)(1)) for 6 months were transferred to full sun (20-40 mol m(-2) day(-1)) or shade (30% of full sun, approximately 8 mol m(-2) day(-1)) and subjected to soil flooding for 23 days or not flooded. Chlorophyll content index (CCI), chlorophyll fluorescence, leaf weight per area (LWA), photosynthetic light-response curves and leaf reflectance indexes were measured during soil flooding and after plants were unflooded. The CCI values increased throughout the experiment in leaves of shaded plants and decreased in leaves of plants transferred to full sun. There were no significant interactions between light intensity and flooding treatments for most of the variables analyzed, with the exception of Fv/Fm 22 days after plants were flooded and 5 days after flooded plants were unflooded. The light environment significantly affected LWA, and light environment and soil flooding significantly affected the light-saturated gross CO(2) assimilation rate expressed on area and dry weight bases (A(max-area) and A(max-wt), respectively), stomatal conductance of water vapor (g(ssat)) and intrinsic water use efficiency (A/g(s)). Five days after flooded plants were unflooded, the normalized difference vegetation index (NDVI) and the scaled photochemical reflectance index (sPRI) were significantly higher in shade than in sun leaves. Thirty days after transferring plants from the shade house to the light treatment, LWA was 30% higher in sun than in shade leaves, and A

  3. Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags

    NASA Astrophysics Data System (ADS)

    Guinet, C.; Xing, X.; Walker, E.; Monestiez, P.; Marchand, S.; Picard, B.; Jaud, T.; Authier, M.; Cotté, C.; Dragon, A. C.; Diamond, E.; Antoine, D.; Lovell, P.; Blain, S.; D'Ortenzio, F.; Claustre, H.

    2013-02-01

    , we are able to assess the 3-dimension distribution of phytoplankton concentration by foraging southern elephant seals. This approach reveals that for the Indian sector of the SO, the surface chlorophyll a (chl a) concentrations provided by MODIS were underestimated by a factor 2 compared to chl a concentrations estimated from HPLC corrected in situ fluorescence measurements. The scientific outcomes of this programme include an improved understanding of both the present state and variability in ocean biology, and the accompanying biogeochemistry, as well as the delivery of real-time and open-access data to scientists (doi:10.7491/MEMO.1).

  4. A framework to quantify the determinants of canopy photosynthesis and carbon uptake using time series of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Kellner, J. R.; Cushman, K. C.; Kendrick, J. A.; Silva, C. E.; Wiseman, S. M.; Yang, X.

    2015-12-01

    Uncertainty over the sign and magnitude of environmental forcing agents on fluxes of tropical forest carbon could be reduced with measurements of canopy photosynthesis. But no existing method can quantify photosynthesis within individual plants at scales larger than a few cm. Portable leaf chambers can determine leaf-level gas exchange, and eddy-covariance instruments infer the net ecosystem-atmosphere carbon flux. These endpoints represent an axis of granularity and extent. Single leaf measurements are finely grained, but necessarily limited in extent, and gas exchange for whole landscapes cannot resolve the performance or contributions of individual plants. This limits the ability of scientists to test mechanistic demographic and physiological hypotheses about the drivers of photosynthesis in ecosystems, and therefore to understand the determinants of carbon fluxes between tropical ecosystems and the atmosphere. Here I describe a framework to overcome these challenges using a program of drone-enabled remote sensing measurements of solar-induced fluorescence (SIF) coupled with ground-based physiological studies to understand the determinants of photosynthesis within leaves, individual organisms and large landscapes. The Brown Platform for Autonomous Remote Sensing (BPAR) is a suite of sensors carried by a gas-powered helicopter drone. By conducting frequent, low-altitude flights BPAR can produce VNIR imaging spectroscopy time series with measurements separated by minutes to hours at ground sample distances of 1 cm. The talk will focus on how measurements of SIF at these spatial and temporal scales can be coupled with models to infer the rate of electron transport and carbon assimilation.

  5. Direct observation of energy transfer in a photosynthetic membrane: Chlorophyll b to chlorophyll a transfer in LHC

    SciTech Connect

    Eads, D.D.; Castner, E.W. Jr.; Alberte, R.S.; Mets, L.; Fleming, G.R. )

    1989-12-28

    Subpicosecond fluorescence upconversion has been used to measure the rate of chlorophyll b to chlorophyll a electronic energy transfer in situ within the LHC pigment proteins of Chlamydomonas reinhardtii mutant C2. The time scale of energy transfer is 0.5 {plus minus} 0.2 ps as determined from the rise time of chlorophyll a fluorescence following chlorophyll b excitation. Estimates of the energy-transfer rate based on Foerster weak coupling theory are discussed.

  6. Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Claustre, H.; Jamet, C.; Uitz, J.; Ras, J.; Mignot, A.; D'Ortenzio, F.

    2015-01-01

    neural network-based method is developed to assess the vertical distribution of (1) chlorophyll a concentration ([Chl]) and (2) phytoplankton community size indices (i.e., microphytoplankton, nanophytoplankton, and picophytoplankton) from in situ vertical profiles of chlorophyll fluorescence. This method (FLAVOR for Fluorescence to Algal communities Vertical distribution in the Oceanic Realm) uses as input only the shape of the fluorescence profile associated with its acquisition date and geo-location. The neural network is trained and validated using a large database including 896 concomitant in situ vertical profiles of High-Performance Liquid Chromatography (HPLC) pigments and fluorescence. These profiles were collected during 22 oceanographic cruises representative of the global ocean in terms of trophic and oceanographic conditions, making our method applicable to most oceanic waters. FLAVOR is validated with respect to the retrieval of both [Chl] and phytoplankton size indices using an independent in situ data set and appears to be relatively robust spatially and temporally. To illustrate the potential of the method, we applied it to in situ measurements of the BATS (Bermuda Atlantic Time Series Study) site and produce monthly climatologies of [Chl] and associated phytoplankton size indices. The resulting climatologies appear very promising compared to climatologies based on available in situ HPLC data. With the increasing availability of spatially and temporally well-resolved data sets of chlorophyll fluorescence, one possible global-scale application of FLAVOR could be to develop 3-D and even 4-D climatologies of [Chl] and associated composition of phytoplankton communities. The Matlab and R codes of the proposed algorithm are provided as supporting information.

  7. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light

    PubMed Central

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m−2⋅s−1 irradiance for a 16 h⋅d−1 photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (Amax) and photosynthetic rate (Pn) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. Pn and Amax under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation. PMID:27014285

  8. Lutein from Deepoxidation of Lutein Epoxide Replaces Zeaxanthin to Sustain an Enhanced Capacity for Nonphotochemical Chlorophyll Fluorescence Quenching in Avocado Shade Leaves in the Dark1

    PubMed Central

    Förster, Britta; Pogson, Barry James; Osmond, Charles Barry

    2011-01-01

    Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m−2 s−1, increasing the total L pool by 5% to 10% (ΔL). Deepoxidation of Lx to L was near stoichiometric and similar in kinetics to deepoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). Although the V pool was restored by epoxidation of A and Z overnight, the Lx pool was not. Depending on leaf age and pretreatment, the pool of ΔL persisted for up to 72 h in the dark. Metabolism of ΔL did not involve epoxidation to Lx. These contrasting kinetics enabled us to differentiate three states of the capacity for nonphotochemical chlorophyll fluorescence quenching (NPQ) in attached and detached leaves: ΔpH dependent (NPQΔpH) before deepoxidation; after deepoxidation in the presence of ΔL, A, and Z (NPQΔLAZ); and after epoxidation of A+Z but with residual ΔL (NPQΔL). The capacity of both NPQΔLAZ and NPQΔL was similar and 45% larger than NPQΔpH, but dark relaxation of NPQΔLAZ was slower. The enhanced capacity for NPQ was lost after metabolism of ΔL. The near equivalence of NPQΔLAZ and NPQΔL provides compelling evidence that the small dynamic pool ΔL replaces A+Z in avocado to “lock in” enhanced NPQ. The results are discussed in relation to data obtained with other Lx-rich species and in mutants of Arabidopsis (Arabidopsis thaliana) with increased L pools. PMID:21427278

  9. Photosynthetic acclimation to photon irradiance and its relation to chlorophyll fluorescence and carbon assimilation in the halotolerant green alga Dunaliella viridis.

    PubMed

    Gordillo, F J; Jiménez, C; Chavarría, J; Xavier Niell, F

    2001-01-01

    This work describes the long-term acclimation of the halotolerant microalga Dunaliella viridis to different photon irradiance, ranging from darkness to 1500 mumol m(-2) s(-1). In order to assess the effects of long-term photoinhibition, changes in oxygen production rate, pigment composition, xanthophyll cycle and in vivo chlorophyll fluorescence using the saturating pulse method were measured. Growth rate was maximal at intermediate irradiance (250 and 700 mumol m(-2) s(-1)). The increase in growth irradiance from 700 to 1500 mumol m(-2) s(-1) did not lead to further significant changes in pigment composition or EPS, indicating saturation in the pigment response to high light. Changes in Photosystem II optimum quantum yield (F(v)/F(m)) evidenced photoinhibition at 700 and especially at 1500 mumol m(-2) s(-1). The relation between photosynthetic electron flow rate and photosyntetic O(2) evolution was linear for cultures in darkness shifting to curvilinear as growth irradiance increased, suggesting the interference of the energy dissipation processes in oxygen evolution. Carbon assimilation efficiencies were studied in relation to changes in growth rate, internal carbon and nitrogen composition, and organic carbon released to the external medium. All illuminated cultures showed a high capability to maintain a C:N ratio between 6 and 7. The percentage of organic carbon released to the external medium increased to its maximum under high irradiance (1500 mumol m(-2) s(-1)). These results suggest that the release of organic carbon could act as a secondary dissipation process when the xanthophyll cycle is saturated. PMID:16228345

  10. Does free-air carbon dioxide enrichment affect photochemical energy use by evergreen trees in different seasons? A chlorophyll fluorescence study of mature loblolly pine

    SciTech Connect

    Hymus, G.J.; Ellsworth, D.S.; Baker, N.R.; Long, S.P.

    1999-08-01

    Previous studies of the effects of growth at elevated CO{sup 2} on energy partitioning in the photosynthetic apparatus have produced conflicting results. The hypothesis was developed and tested that elevated CO{sub 2} increases photochemical energy use when there is a high demand for assimilates and decreases usage when demand is low. Modulated chlorophyll a fluorescence and leaf gas exchange were measured on needles at the tope of a mature, 12-m loblolly pine (Pinus taeda L.l) forest. Trees were exposed to ambient CO{sub 2} or ambient plus 20 Pa CO{sub 2} using free-air CO{sub 2} enrichment. During April and August, periods of shoot growth, light-saturated photo-synthesis and linear electron transport were increased by elevated CO{sub 2}. In November, when growth had ceased but temperatures were still moderate, CO{sub 2} treatment had no significant effect on linear electron transport. In February, when low temperatures were likely to inhibit translocation, CO{sub 2} treatment caused a significant decrease in linear electron transport. This coincided with a slower recovery of the maximum photosystem II efficiency on transfer of needles to the shade, indicating that growth in elevated CO{sub 2} induced a more persistent photoinhibition. Both the summer increase and the winter decrease in linear electron transport in elevated CO{sub 2} resulted from a change in photochemical quenching, not in the efficiency of energy transfer within the photosystem II antenna. There was no evidence of any effect of CO{sub 2} on photochemical energy sinks other than carbon metabolism. Their results suggest that elevated CO{sub 2} may increase the effects of winter stress on evergreen foliage.

  11. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    PubMed

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation. PMID:27014285

  12. [Effects of soil progressive drought during the flowering and boll-forming stage on gas exchange parameters and chlorophyll fluorescence characteristics of the subtending leaf to cotton boll].

    PubMed

    Liu, Zhao-wei; Zhang, Pan; Wang, Rui; Kuai, Jie; Li, Lei; Wang, You-hua; Zhou, Zhi-guo

    2014-12-01

    To investigate the dynamic changes and response mechanisms of gas exchange parameters and fluorescence indices of the subtending leaf to cotton boll under soil progressive drought stress, pot experiments of the hybrid cotton No. 3 were conducted with soil relative water content (SRWC) (75 +/- 5)% as control group, SRWC (60 +/- 5)% and SRWC (45 +/- 5)% as experimental groups dealt with progressive drought for 50 days. Results showed that, the net photosynthetic rate (Pn), stomatal conductance (g(s)) and leaf intercellular CO2 concentration (Ci) decreased while Ls increased under SRWC (60 +/- 5)% for 0-21 days. Furthermore, there was no significant change in chlorophyll fluorescence indices. This indicated that stomatal limitation was the main reason for the reduction of photosynthesis of cotton. In addition, when drought for 21-49 days under SRWC (60 +/- 5)%, Pn kept decreasing, while Ci began to increase and Ls began to decrease. Potential photochemical efficiency (Fv/Fm), quantum yield of photo system II (phi(PSI)) and photochemical quenching coefficient (q(P)) reduced significantly, but non-photochemical quenching coefficient (NPQ) first rose then decreased. Thus, nonstomatal limitation was the main reason why the photosynthesis of cotton reduced. Photosynthetic organization and photosynthetic enzyme system were destroyed, boll setting intensity reduced and the number of boll and yield reduced significantly. Drought for 0-14 days under SRWC (45 +/- 5)% treatment led to sharp decrease in Pn, g(s) and Ci, whereas Ls obviously increased. There was no significant change in Fv/Fm, phi(PSII), q(P), indicating stomatal limitation was the main reason why the photosynthesis of cotton reduced. Pn decreased slowly, while Ci began to rise and Ls began to decline under SRWC (45 +/- 5)% treatment for 14-49 days. Fv/Fm, phi(PSII), q(P) decreased while NPQ rose first then declined, which indicated that nonstomatal limitation worked to reduce the cotton photosynthetic performance

  13. Calibration procedures and first data set of Southern Ocean chlorophyll a profiles collected by elephant seal equipped with a newly developed CTD-fluorescence tags

    NASA Astrophysics Data System (ADS)

    Guinet, C.; Xing, X.; Walker, E.; Monestiez, P.; Marchand, S.; Picard, B.; Jaud, T.; Authier, M.; `Cotté, C.; Dragon, A. C.; Diamond, E.; Antoine, D.; Lovell, P.; Blain, S.; D'Ortenzio, F.; Claustre, H.

    2012-08-01

    In-situ observation of the marine environment has traditionally relied on ship-based platforms. The obvious consequence is that physical and biogeochemical properties have been dramatically undersampled, especially in the remote Southern Ocean (SO). The difficulty in obtaining in situ data represents the major limitations to our understanding, and interpretation of the coupling between physical forcing and the biogeochemical response. Southern elephant seals (Mirounga leonina) equipped with a new generation of oceanographic sensors can measure ocean structure in regions and seasons rarely observed with traditional oceanographic platforms. Over the last few years, seals have allowed for a considerable increase in temperature and salinity profiles from the SO. However we were still lacking information on the spatio-temporal variation of phytoplankton concentration. This information is critical to assess how the biological productivity of the SO, with direct consequences on the amount of CO2 "fixed" by the biological pump, will respond to global warming. In this research program, we use an innovative sampling fluorescence approach to quantify phytoplankton concentration at sea. For the first time, a low energy consumption fluorometer was added to Argos CTD-SRDL tags, and these novel instruments were deployed on 27 southern elephant seals between 25 December 2007 and the 4 February 2011. As many as 3388 fluorescence profiles associated with temperature and salinity measurements were thereby collected from a vast sector of the Southern Indian Ocean. This paper address the calibration issue of the fluorometer before being deployed on elephant seals and present the first results obtained for the Indian Sector of the Southern Ocean. This in situ system is implemented in synergy with satellite ocean colour radiometry. Satellite-derived data is limited to the surface layer and is restricted over the SO by extensive cloud cover. However, with the addition of these new tags

  14. Development of a near-infrared fluorescence ELISA method using tyramide signal amplification.

    PubMed

    Gong, Haibiao; Cradduck, Mark; Cheung, Lael; Olive, D Michael

    2012-07-01

    In this study, we applied tyramide signal amplification (TSA) to fluorescence enzyme-linked immunosorbent assay (ELISA) employing horseradish peroxidase (HRP) as the detection enzyme. When used with a human epidermal growth factor ELISA kit, the TSA method led to a >100-fold increase in fluorescence signal intensity in comparison to an unamplified method. It also showed wider dynamic range and better sensitivity compared to a conventional method using tetramethylbenzidine as the HRP substrate. PMID:22490466

  15. Technical feasibility evaluation of fluorescence signal detection by compact photonic explorer for better health

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Wang, LeMing; Wang, Q. Z.; Luo, J.-C.; Zeng, Fanan; Zevallos, Manuel; Budansky, Yury; Alfano, Scott; Katz, Alvin; Alfano, R. R.

    2004-10-01

    The lowest detectable fluorescence signal level from biomedical specimens have been determined using a spectrometer, cooled CCD detector, and PIN photodiode with 365 nm UV LED light excitation. The data indicates the PIN photodiodes have adequate sensitivity for detection of tissue fluorescence with a sufficient signal-to-noise ratio. This data is being used to design a "pill-sized" Compact Photonics Explorer (CPE) for in vivo cancer optical diagnostics.

  16. Spatiotemporal Intracellular Nitric Oxide Signaling Captured Using Internalized, Near-Infrared Fluorescent Carbon Nanotube Nanosensors

    PubMed Central

    2015-01-01

    Fluorescent nanosensor probes have suffered from limited molecular recognition and a dearth of strategies for spatial-temporal operation in cell culture. In this work, we spatially imaged the dynamics of nitric oxide (NO) signaling, important in numerous pathologies and physiological functions, using intracellular near-infrared fluorescent single-walled carbon nanotubes. The observed spatial-temporal NO signaling gradients clarify and refine the existing paradigm of NO signaling based on averaged local concentrations. This work enables the study of transient intracellular phenomena associated with signaling and therapeutics. PMID:25029087

  17. Enhancement of Single Molecule Fluorescence Signals by Colloidal Silver Nanoparticles in Studies of Protein Translation

    PubMed Central

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S.; Goldman, Yale E.

    2011-01-01

    Metal enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold respectively. Fluorescence intensity fluctuations above shot noise, at 0.1 – 5 Hz, were greater on silver particles. Overall signal to noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G. PMID:21158483

  18. Efficient signal processing for time-resolved fluorescence detection of nitrogen-vacancy spins in diamond

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Hacquebard, L.; Childress, L.

    2016-03-01

    Room-temperature fluorescence detection of the nitrogen-vacancy center electronic spin typically has low signal to noise, requiring long experiments to reveal an averaged signal. Here, we present a simple approach to analysis of time-resolved fluorescence data that permits an improvement in measurement precision through signal processing alone. Applying our technique to experimental data reveals an improvement in signal to noise equivalent to a 14% increase in photon collection efficiency. We further explore the dependence of the signal to noise ratio on excitation power, and analyze our results using a rate equation model. Our results provide a rubric for optimizing fluorescence spin detection, which has direct implications for improving precision of nitrogen-vacancy-based sensors.

  19. A capillary-based probe for in situ detection of enhanced fluorescence signals

    NASA Astrophysics Data System (ADS)

    Long, F.; Xiao, R.; Zhu, A. N.; Shi, H. C.; Wang, S. Q.

    2013-07-01

    A simple, compact, and high sensitivity capillary-based probe for the in situ detection of fluorescence signals with high sensitivity is demonstrated. A home-made single-multi-mode fiber coupler that is coaxially aligned with the capillary-based probe provides for the transmission of excitation light and the collection and transmission of fluorescence. We propose a conceptually straightforward theoretical model to optimize the factors affecting the fluorescence-capture capability of the capillary-based probe. The fluorescence signal detected by fiber-optic spectroscopy non-linearly increases with the length of the capillary-based probe. In addition, the thicker the capillary tube wall is, the less the fluorescence signals determined are. The performance of the proposed probe is evaluated experimentally by measuring the fluorescence spectra of Cy5.5 dye and blue-green algae. The experimental results show that the proposed probe provides more than a ten-fold increase in fluorescence signal compared with direct measurements by a flat-tipped multi-mode fiber probe. The advantages of the capillary-based probe, which include its simple and compact structure, excellent light collection efficiency, requirement of small sample volume, and recoverability of samples, allow its wide application to in situ detection in the medical, forensic, biological, geological, and environmental fields with high sensitivity.

  20. Micro-scale fluorescence signals: a transition from continuous to discrete scale

    NASA Astrophysics Data System (ADS)

    Yamazaki, H.; Doubell, M. J.; Prairie, J.; Sagara, Y.; Locke, C.; Nimmo-Smith, A.

    2012-12-01

    Micro-scale aquatic ecosystems are the engine for earth's biogeochemical cycles. Phytoplankton fix inorganic carbon to organic carbon through the photosynthetic process. Although phytoplankton are single-cell organisms, they often appear in an aggregated form that elevates local fluorescence signal intensity. How intermittent are these features? We have developed a new free-fall microstructure profiler (TurboMAP-L). Fluorescence profiles measured by TurboMAP-L and a conventional fluorescence probe are in good agreement at one-meter scale average. However, the fluorescence signals revealed by the LED fluorescence probe are intermittent at cm scale. Millimeter scale fluorescence signals obtained from the laser probe are even more intermittent than the cm scale LED signals. The source of the millimeter-scale strong signals identified from the DSL images are coagulated discrete material ranging between a few 100 μm and a few millimeters scale. Unfortunately, the DSL images are not well focused, so the details of the coagulated matter are not clear. Therefore, a recently developed holographic imaging system was combined with the TurboMAP-L operation in order to identify the detail of the millimeter scale coagulated material. We show that fluorescence signals at millimeter scale exhibit high values of coefficient of variation and the signals are no longer a Gaussian process. We found a transition scale that separates a continuous Gaussian process to a discrete event series. We are also developing a new NPZ ecosystem model based on our finding. We will present the consequence of our new model that may alter the way in which the global biogeochemical cycle should be treated.

  1. The role of passive ocean spectral fluorescence measurements in satellite determinations of marine primary production

    NASA Astrophysics Data System (ADS)

    Topliss, B. J.; Platt, Trevor C.

    The detection of spectral fluorescence is a rapidly-growing tool for marine biologists interested in both phytoplankton biomass and species composition. The presence of solar stimulated fluorescence at 685 nm (associated with chlorophyll a) has been detected in data sets collected from areas as diverse as the high Arctic and the Caribbean Sea. Interpretation and modelling of passive fluorescence signals in terms of optical efficiencies is dependent on accurate estimates of specific absorption coefficients. This in turn requires an optical modelling of the associated water mass in a similar manner to that used in interpretation of remote sensing signals (such as from the CZCS - Coastal Zone Colour Scanner, or the planned OCI - Ocean Colour Imager). A potential relationship between passive chlorophyll fluorescence efficiency and photosynthetic efficiency of chlorophyll a is outlined for the field data and the relevance of such a relationship to future remote sensing signals such as from the FLI (Fluorescence Line Imager) is discussed.

  2. Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction.

    PubMed

    Badugu, Ramachandram; Lakowicz, Joseph R; Geddes, Chris D

    2005-03-16

    Three water-soluble fluorescent probes have been specifically designed to determine free cyanide concentrations up to physiologically lethal levels, >20 microM. The probes have been designed in such a way as to afford many notable sensing features, which render them unique with regard to signal transduction, photophysical characteristics, and their application to physiological cyanide determination and safeguard. The probes are readily able to reversibly bind free aqueous cyanide with dissociation constants around 4 microM3. Subsequent cyanide binding modulates the intramolecular charge transfer within the probes, a change in the electronic properties within the probes, resulting in enhanced fluorescence optical signals as a function of increased solution cyanide concentration. The ground-state chelation with cyanide produces wavelength shifts, which also enable the probes to sense cyanide in both an excitation and emission ratiometric manner, in addition to enhanced fluorescence signaling. This has enabled a generic cyanide sensing platform to be realized that is not dependent on fluorescent probe concentration, probe photodegradation, or fluctuations in the intensity of any employed excitation sources, ideal for remote cyanide sensing applications. Further, the >600 nm fluorescence emission of the probes potentially allows for enhanced fluorescence ratiometric cyanide sensing in the optical window of tissues and blood, facilitating their use for the transdermal monitoring of cyanide for mammalian safeguard or postmortem in fire victims, both areas of active research. PMID:15755185

  3. Theoretical analysis of fluorescence signals in filamentation of femtosecond laser pulses in nitrogen molecular gas

    SciTech Connect

    Arevalo, E.; Becker, A.

    2005-10-15

    We study numerically and analytically the role of the combined effect of self-focusing, geometrical focusing, and the plasma defocusing in the formation of the fluorescence signal during the filamentation of a Ti:sapphire laser pulse in nitrogen molecular gas. Results of numerical simulations are used to estimate the number of excited ions in the focal volume, which is proportional to the fluorescence signal. We find good agreement between the theoretical results and the experimental data, showing that such data can be used to get further insight into the effective focal volume during filamentation of femtosecond laser pulses in transparent media.

  4. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    Unlike the snowmelt-dominated hydroclimate of more northern mountainous regions, the hydroclimate of the Madrean sky islands is characterized by snowmelt and convective storms associated with the North American Monsoon. These mid-summer storms trigger biological activity and are important drivers of primary productivity. For example, at the highest elevations where mixed conifer forests occur, ecosystem carbon balance is influenced by monsoon rains. Whereas these storms' significance is increasingly recognized at the ecosystem scale, species-specific physiological responses to the monsoon are poorly known. Prior to and following monsoon onset, we measured pre-dawn and light-adapted chlorophyll fluorescence as well as photosynthetic light response in southwestern white pine (Pinus strobiformis), ponderosa pine (Pinus ponderosa), and Douglas fir (Pseudotsuga menziesii) in a Madrean sky island mixed conifer forest near Tucson, Arizona. Photochemical quenching (qp), an indicator of the proportion of open PSII reaction centers, was greatest in P. strobiformis and least in P. menziesii and increased in response to monsoon rains (repeated-measures ANOVA; species, F2,14 = 6.17, P = 0.012; time, F2,14= 8.17, P = 0.013). In contrast, non-photochemical quenching (qN), an indicator of heat dissipation ability, was greatest in P. ponderosa and least in P. menziesii, but was not influenced by monsoon onset (repeated-measures ANOVA; species, F2,12 = 4.18, P = 0.042). Estimated from leaf area-adjusted photosynthetic light response curves, maximum photosynthetic rate (Amax) was greatest in P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8= 40.8, P = 0.001). Surprisingly, while the monsoon positively influenced Amax among P. ponderosa and P. strobiformis, Amax of P. menziesii declined with monsoon onset (repeated-measures ANOVA; species x time, F2,8 = 13.8, P = 0.002). Calculated as the initial slope of the photosynthetic light response curve, light

  5. Signal Decomposition of Transmembrane Voltage-Sensitive Dye Fluorescence Using a Multiresolution Wavelet Analysis

    PubMed Central

    Asfour, Huda; Swift, Luther M.; Sarvazyan, Narine; Doroslovački, Miloš; Kay, Matthew W.

    2013-01-01

    Fluorescence imaging of transmembrane voltage-sensitive dyes is used to study electrical activation in cardiac tissue. However, the fluorescence signals, typically, have low SNRs and may be contaminated with motion artifact. In this report, we introduce a new processing approach for fluoresced transmembrane potentials (fTmps) that is based upon a discrete wavelet transform. We show how fTmp signals can be decomposed and reconstructed to form three subsignals that contain signal noise (noise signal), the early depolarization phase of the action potential (rTmp signal), and motion artifact (rMA signal). A coiflet4 wavelet is used for fTmp decomposition and reconstruction of these subsignals. Results using fTmp signals that are contaminated with motion artifact indicate that the approach is a useful processing step to remove baseline drift, reduce noise, and reveal wavefronts. It streamlines the preprocessing of fTmps for the subsequent measurement of activation times and conduction velocities. It is a promising approach for studying wavefronts without aggressive mechanical tissue constraint or electromechanical uncoupling agents and is, useful for single-camera systems that do not provide for ratiometric imaging. PMID:21511560

  6. Development of output signal-to-noise ratio tester for microchannel plate and fluorescent screen component

    NASA Astrophysics Data System (ADS)

    Wu, Xinglin; Qiu, Yafeng; Zhou, Jin; Qian, Yunsheng

    The core components of Image intensifier is microchannel plate (MCP) and fluorescent screen component. The present paper deeply studies output signal-to-noise ratio (SNR) characteristics of MCP and fluorescent screen component. A tester system using to the evaluation of characteristics of the output SNR of MCP and fluorescent screen component, consists of a vacuum system, a surface electron source, mechanical mechanism components ,a high-voltage power supply system, a signal processing system, communication interfaces, a data acquisition and control system, computer system, and testing software. a hot cathode used as an electron source, generates a surface electron flow to provide the input signal. A photomultiplier tube is used to detection faceplate output brightness of the light spot. Then, the output SNR of MCP and fluorescent screen component is processed with a combination of methods of the hardware filter and digital filtering software. The output SNR of MCP and fluorescent screen component is measured under different conditions, and the results are analyzed. This test system Provide a technical to promote the image intensifier research, and experience to testing other parameters or in other areas of research.

  7. Fluorescence signaling of Zr4+ by hydrogen peroxide assisted selective desulfurization of thioamide.

    PubMed

    Hwang, Jiyoung; Choi, Myung Gil; Eor, Suyoung; Chang, Suk-Kyu

    2012-02-01

    Thioamide derivative with a pyrene fluorophore was smoothly transformed to its corresponding amide by Zr(4+) ions in the presence of hydrogen peroxide. The transformation was evidenced by (1)H NMR spectroscopy and the signaling was completed within 10 min after sample preparation. Interference from Ag(+) and Hg(2+) ions in Zr(4+)-selective fluorescence signaling was readily suppressed with the use of Sn(2+) as a reducing additive. Discrimination of Zr(4+) from closely related hafnium, which is a frequent contaminant in commercial zirconium, was not possible. Prominent Zr(4+)-selective turn-on type fluorescence signaling was possible with a detection limit of 4.6 × 10(-6) M in an aqueous 99% ethanol solution. PMID:22260347

  8. [Rapid and high throughput measurement of lipase thermo-stability through ANS fluorescence signal assay].

    PubMed

    Feng, Weizong; Lin, Junhan; Cai, Shaoli; Zou, Youtu; Chen, Guoren; Huang, Ping; Lin, Yajing; Wang, Bingbing; Lin, Lin

    2011-04-01

    We have developed a rapid and high throughput lipase-ANS (8-Anilino-l-naphthalenesulfonic acid) assay to evaluate the thermo-stability of lipases based on the ANS fluorescence signal's increasing and shifting when this small fluorescence probes binds to lipase. The testing lipase samples were incubated at a temperature range of 25 degrees C to 65 degrees C for 30 min before mixed with ANS solution (0.20 mg/mL lipase and 0.05 mmol/L ANS in the buffer of 20 mmol/L Tris-HCl, 100 mmol/L NaCl, pH 7.2) in a cuvette or microplate. Fluorescence signals of the samples were measured at EX 378 nm, EM 465 nm with a fluorescence photometer or a plate reader, and Tm was calculated with the software of GraphPad Prism5.0. The Tm values of several mutants of Penicillium expansum lipase (PEL) were measured with this ANS assay and conventional method simultaneously and the results show that Tm values are comparative and consistent between these methods, suggesting that the lipase-ANS assay is a reliable, rapid and high throughput method for lipase thermo-stability measurement. PMID:21847993

  9. Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana.

    PubMed

    Giovagnetti, Vasco; Ware, Maxwell A; Ruban, Alexander V

    2015-08-01

    In their natural environment, plants are exposed to varying light conditions, which can lead to a build-up of excitation energy in photosystem (PS) II. Non-photochemical quenching (NPQ) is the primary defence mechanism employed to dissipate this excess energy. Recently, we developed a fluorescence-quenching analysis procedure that enables the protective effectiveness of NPQ in intact Arabidopsis leaves to be determined. However, pulse-amplitude modulation measurements do not currently allow distinguishing between PSII and PSI fluorescence levels. Failure to account for PSI contribution is suggested to lead to inaccurate measurements of NPQ and, particularly, maximum PSII yield (F v/F m). Recently, Pfündel et al. (Photosynth Res 114:189-206, 2013) proposed a method that takes into account PSI contribution in the measurements of F o fluorescence level. However, when PSI contribution was assumed to be constant throughout the induction of NPQ, we observed lower values of the measured minimum fluorescence level ([Formula: see text]) than those calculated according to the formula of Oxborough and Baker (Photosynth Res 54:135-142 1997) ([Formula: see text]), regardless of the light intensity. Therefore, in this work, we propose a refined model to correct for the presence of PSI fluorescence, which takes into account the previously observed NPQ in PSI. This method efficiently resolves the discrepancies between measured and calculated F o' produced by assuming a constant PSI fluorescence contribution, whilst allowing for the correction of the maximum PSII yield. PMID:25613087

  10. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  11. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  12. Tyramide Signal Amplification: Fluorescence In Situ Hybridization for Identifying Homoeologous Chromosomes.

    PubMed

    Fominaya, Araceli; Loarce, Yolanda; González, Juan M; Ferrer, Esther

    2016-01-01

    Tyramide signal amplification (TSA) fluorescence in situ hybridization (FISH) has been shown as a valuable molecular tool for visualizing specific amplified DNA sequences in chromosome preparations. This chapter describes how to perform TSA-FISH, paying special interest to its two critical steps: probe generation and metaphase plate generation. The potential of physically mapping 12S-globulin sequences by TSA-FISH as a means of identifying homeology among chromosome regions of Avena species was tested and is discussed. PMID:27511165

  13. Bright Fluorescence Monitoring System Utilizing Zoanthus sp. Green Fluorescent Protein (ZsGreen) for Human G-Protein-Coupled Receptor Signaling in Microbial Yeast Cells

    PubMed Central

    Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2013-01-01

    G-protein-coupled receptors (GPCRs) are currently the most important pharmaceutical targets for drug discovery because they regulate a wide variety of physiological processes. Consequently, simple and convenient detection systems for ligands that regulate the function of GPCR have attracted attention as powerful tools for new drug development. We previously developed a yeast-based fluorescence reporter ligand detection system using flow cytometry. However, using this conventional detection system, fluorescence from a cell expressing GFP and responding to a ligand is weak, making detection of these cells by fluorescence microscopy difficult. We here report improvements to the conventional yeast fluorescence reporter assay system resulting in the development of a new highly-sensitive fluorescence reporter assay system with extremely bright fluorescence and high signal-to-noise (S/N) ratio. This new system allowed the easy detection of GPCR signaling in yeast using fluorescence microscopy. Somatostatin receptor and neurotensin receptor (implicated in Alzheimer’s disease and Parkinson’s disease, respectively) were chosen as human GPCR(s). The facile detection of binding to these receptors by cognate peptide ligands was demonstrated. In addition, we established a highly sensitive ligand detection system using yeast cell surface display technology that is applicable to peptide screening, and demonstrate that the display of various peptide analogs of neurotensin can activate signaling through the neurotensin receptor in yeast cells. Our system could be useful for identifying lead peptides with agonistic activity towards targeted human GPCR(s). PMID:24340008

  14. Fluorescent vesicles for signal amplification in reverse phase protein microarray assays.

    PubMed

    Bally, Marta; Syed, Shahida; Binkert, Andreas; Kauffmann, Ekkehard; Ehrat, Markus; Vörös, Janos

    2011-09-15

    Developments in microarray technology promise to lead to great advancements in the biomedical and biological field. However, implementation of these analytical tools often relies on signal amplification strategies that are essential to reach the sensitivity levels required for a variety of biological applications. This is true especially for reverse phase arrays where a complex biological sample is directly immobilized on the chip. We present a simple and generic method for signal amplification based on the use of antibody-tagged fluorescent vesicles as labels for signal generation. To assess the gain in assay sensitivity, we performed a model assay for the detection of rabbit immunoglobulin G (IgG) and compared the limit of detection (LOD) of the vesicle assay with the LOD of a conventional assay performed with fluorescent reporter molecules. We evaluated the improvements for two fluorescence-based transduction setups: a high-sensitivity microarray reader (ZeptoREADER) and a conventional confocal scanner. In all cases, our strategy led to an increase in sensitivity. However, gain in sensitivity widely depended on the type of illumination; whereas an approximately 2-fold increase in sensitivity was observed for readout based on evanescent field illumination, the contribution was as high as more than 200-fold for confocal scanning. PMID:21669176

  15. Detection of ocean chlorophyll from earth orbit

    NASA Technical Reports Server (NTRS)

    Duntley, S. Q.

    1972-01-01

    Calculations were made of the magnitude of the optical signature of ocean chlorophyll available to any remote sensor in earth orbit. It was desired to ascertain whether commercially significant concentrations of chlorophyll-A pigments in the ocean would produce a sufficient optical signal at orbital altitudes to operate optical remote sensors, such as those planned for the earth observatory satellite, on clear and hazy days. It was also desired to explore the effect of solar altitude on these optical signals. The best orientation was desired for the field of view for a remote sensor in orbit in order to optimize its ability to detect ocean chlorophyll.

  16. Fluorescence-based gene reporter plasmid to track canonical Wnt signaling in ENS inflammation.

    PubMed

    Di Liddo, Rosa; Bertalot, Thomas; Schuster, Anne; Schrenk, Sandra; Müller, Oliver; Apfel, Johanna; Reischmann, Patricia; Rajendran, Senthilkumar; Sfriso, Riccardo; Gasparella, Marco; Parnigotto, Pier Paolo; Conconi, Maria Teresa; Schäfer, Karl Herbert

    2016-03-15

    In several gut inflammatory or cancer diseases, cell-cell interactions are compromised, and an increased cytoplasmic expression of β-catenin is observed. Over the last decade, numerous studies provided compelling experimental evidence that the loss of cadherin-mediated cell adhesion can promote β-catenin release and signaling without any specific activation of the canonical Wnt pathway. In the present work, we took advantage of the ability of lipofectamine-like reagent to cause a synchronous dissociation of adherent junctions in cells isolated from the rat enteric nervous system (ENS) for obtaining an in vitro model of deregulated β-catenin signaling. Under these experimental conditions, a green fluorescent protein Wnt reporter plasmid called ΔTop_EGFP3a was successfully tested to screen β-catenin stabilization at resting and primed conditions with exogenous Wnt3a or lipopolysaccharide (LPS). ΔTop_EGFP3a provided a reliable and strong fluorescent signal that was easily measurable and at the same time highly sensitive to modulations of Wnt signaling following Wnt3a and LPS stimulation. The reporter gene was useful to demonstrate that Wnt3a exerts a protective activity in the ENS from overstimulated Wnt signaling by promoting a downregulation of the total β-catenin level. Based on this evidence, the use of ΔTop_EGFP3a reporter plasmid could represent a more reliable tool for the investigation of Wnt and cross-talking pathways in ENS inflammation. PMID:26767983

  17. Evidence for a structural role for chlorophyll in chlorophyll-protein complexes.

    PubMed

    Jennings, R C; Garlaschi, F M; Forti, G; Gerola, P D

    1979-11-23

    1. Chymotrypsin treatment of spinach chloroplast membranes does not change the electrophoretic mobility of either chlorophyll-protein complex 1 or 2. 2. The extraction of lipids with 80% acetone after treatment of the membranes with chymotrypsin reveals that the polypeptide components of both chlorophyll-protein complexes had been extensively digested. The extraction of carotenes with petroleum ether under the same conditions does not change the electrophoretic mobility of the chlorophyll-protein complexes. 3. Fluorescence polarisation studies of chlorophyll-protein complex 2 reveal that the chymotrypsin digestion of this complex does not result in changes of mutual orientation or distance apart of chlorophyll a, chlorophyll b or carotenoid. 4. Two polypeptide components have been detected after lipid extraction of electrophoretically purified chlorophyll-protein complexes 1 and 2. The SDS molecular weights are 24 000 and 27 000 for complex 2, and 68 000 and 64 000 for complex 1. 5. We conclude that chlorophyll performs an important structural function in both chlorophyll-protein complexes. PMID:508798

  18. Propagation of photoinduced signals with the cytoplasmic flow along Characean internodes: evidence from changes in chloroplast fluorescence and surface pH.

    PubMed

    Bulychev, Alexander A; Alova, Anna V; Rubin, Andrey B

    2013-06-01

    Emerging evidence suggests that cytoplasmic streaming can regulate the plasma-membrane H(+) transport and photosynthetic electron flow. Microfluorometric and surface pH measurements on Chara corallina internodes revealed the transmission of photoinduced signals by the cytoplasmic flow for a distance of few millimeters from the site of stimulus application. When a 30-s pulse of bright light was locally applied, the downstream cell regions responded with either release or enhancement of non-photochemical quenching of chlorophyll fluorescence, depending on the background irradiance of the analyzed cell area. Under dim background irradiance (<20 μmol m(-2) s(-1)), the arrival of the distant signal from the brightly illuminated 400-μm-wide zone elevated the maximal fluorescence F m (') in the analyzed downstream area, whereas at higher background irradiances it induced strong quenching of F m (') . At intermediate irradiances the increase and decrease in F m (') appeared as two successive waves. The transition between the F m (') responses of opposite polarities occurred at a narrow threshold range of irradiances. This indicates that inevitable slight variations in irradiance at the bottom chloroplast layer combined with the cyclosis-transmitted signals may contribute to the formation of a photosynthetic activity pattern. The rapid cyclosis-mediated release of non-photochemical quenching, unlike the delayed response of opposite polarity, was associated with opening of H(+) (OH(-))-conducting plasma membrane channels, as evidenced by the concurrent alkaline pH shift on the cell surface. It is proposed that the initial increase in F m (') after application of a distant photostimulus is determined, among other factors, by the wave of alkaline cytoplasmic pH. PMID:23467782

  19. Beyond "turn-on" readout: from zero background to signal amplification by combination of magnetic separation and plasmon enhanced fluorescence.

    PubMed

    Gong, Suqin; Xia, Yunsheng

    2016-08-11

    By magnetic separation and subsequent plasmon enhanced fluorescence, an assay platform with a signal output from completely "zero" background to fluorescence amplification is achieved, using quantum dots as reporters. So, it well breaks through the conventional "turn-on" strategy in both lower and upper limits. The sensitivity for hyaluronidase sensing is enhanced 10(4)-10(6) times as compared with previous fluorescence methods. PMID:27398675

  20. Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity.

    PubMed

    Wang, Jie; Lv, Yanlin; Wan, Wei; Wang, Xuefei; Li, Alexander D Q; Tian, Zhiyuan

    2016-02-01

    As a very sensitive technique, photoswitchable fluorescence not only gains ultrasensitivity but also imparts many novel and unexpected applications. Applications of near-infrared (NIR) fluorescence have demonstrated low background noises, high tissue-penetrating ability, and an ability to reduce photodamage to live cells. Because of these desired features, NIR-fluorescent dyes have been the premium among fluorescent dyes, and probes with photoswitchable NIR fluorescence are even more desirable for enhanced signal quality in the emerging optical imaging modalities but rarely used because they are extremely challenging to design and construct. Using a spiropyran derivative functioning as both a photoswitch and a fluorophore to launch its periodically modulated red fluorescence excitation energy into a NIR acceptor, we fabricated core-shell polymer nanoparticles exhibiting a photoswitchable fluorescence signal within the biological window (∼700-1000 nm) with a peak maximum of 776 nm. Live cells constantly synthesize new molecules, including fluorescent molecules, and also endocytose exogenous particles, including fluorescent particles. Upon excitation at different wavelengths, these fluorescent species bring about background noises and interferences covering nearly the whole visible region and therefore render many intracellular targets unaddressable. The oscillating NIR fluorescence signal with an on/off ratio of up to 67 that the polymer nanoparticles display is beyond the typical background noises and interferences, thus producing superior sharpness, reliability, and signal-to-noise ratios in cellular imaging. Taking these salient features, we anticipate that these types of nanoparticles will be useful for in vivo imaging of biological tissue and other complex specimens, where two-photon activation and excitation are used in combination with NIR-fluorescence photoswitching. PMID:26859429

  1. Determining Photosynthetic Parameters from Leaf CO2 Exchange and Chlorophyll Fluorescence (Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Specificity Factor, Dark Respiration in the Light, Excitation Distribution between Photosystems, Alternative Electron Transport Rate, and Mesophyll Diffusion Resistance.

    PubMed

    Laisk, A.; Loreto, F.

    1996-03-01

    Using simultaneous measurements of leaf gas exchange and chlorophyll fluorescence, we determined the excitation partitioning to photosystem II (PSII), the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase, the dark respiration in the light, and the alternative electron transport rate to acceptors other than bisphosphoglycerate, and the transport resistance for CO2 in the mesophyll cells for individual leaves of herbaceous and tree species. The specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase for CO2 was determined from the slope of the O2 dependence of the CO2 compensation point between 1.5 and 21% O2. Its value, on the basis of dissolved CO2 and O2 concentrations at 25.5[deg]C, varied between 86 and 89. Dark respiration in the light, estimated from the difference between the CO2 compensation point and the CO2 photocompensation point, was about 20 to 50% of the respiration rate in the dark. The excitation distribution to PSII was estimated from the extrapolation of the dependence of the PSII quantum yield on F/Fm to F = 0, where F is steady-state and Fm is pulse-satuarated fluorescence, and varied between 0.45 and 0.6. The alternative electron transport rate was found as the difference between the electron transport rates calculated from fluorescence and from gas exchange, and at low CO2 concentrations and 10 to 21% O2, it was 25 to 30% of the maximum electron transport. The calculated mesophyll diffusion resistance accounted for about 20 to 30% of the total mesophyll resistance, which also includes carboxylation resistance. Whole-leaf photosynthesis is limited by gas phase, mesophyll diffusion, and carboxylation resistances in nearly the same proportion in both herbaceous species and trees. PMID:12226229

  2. Multiplexed visualization of dynamic signaling networks using genetically encoded fluorescent protein-based biosensors

    PubMed Central

    Depry, Charlene; Mehta, Sohum; Zhang, Jin

    2012-01-01

    Cells rely on a complex, interconnected network of signaling pathways to sense and interpret changes in their extracellular environment. The development of genetically encoded fluorescent protein (FP)-based biosensors has made it possible for researchers to directly observe and characterize the spatiotemporal dynamics of these intracellular signaling pathways in living cells. However, detailed information regarding the precise temporal and spatial relationships between intersecting pathways is often lost when individual signaling events are monitored in isolation. As the development of biosensor technology continues to advance, it is becoming increasingly feasible to image multiple FP-based biosensors concurrently, permitting greater insights into the intricate coordination of intracellular signaling networks by enabling parallel monitoring of distinct signaling events within the same cell. In this review, we discuss several strategies for multiplexed imaging of FP-based biosensors, while also underscoring some of the challenges associated with these techniques and highlighting additional avenues that could lead to further improvements in parallel monitoring of intracellular signaling events. PMID:23138230

  3. Role of Pheophorbide a Oxygenase in Chlorophyll Degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degradation of chlorophyll (Chl) is a developmentally regulated cellular process usually related with leaf senescence and fruit ripening. In the plastid of senescing leaves, photoactive Chl is catabolized in a stepwise manor to yield fluorescent chlorophyll catabolites (FCCs). FCCs are then exported...

  4. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give

  5. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  6. Spermine detection via metal-mediated ethynylarene ‘turn-on’ fluorescence signaling

    PubMed Central

    Fletcher, James T.; Bruck, Brent S.

    2014-01-01

    A dicarboxylated ethynylarene was shown to behave as a fluorescent chemosensor for millimolar concentrations of polyamines when mixed with Cd(II), Pb(II) or Zn(II) ions at micromolar concentrations. A bathochromic shift and intensification of fluorescence emission was observed with increasing amounts of metal ion in the presence of aqueous polyamines buffered at pH = 7.6. Such perturbations manifested as ‘turn-on’ signals from a ratiometric comparison of emission intensities at 390 nm versus 340 nm. Using Pb(II) as the metal mediator, spermine was selectively detected as a 40-fold signal enhancement relative to spermidine, putrescine, cadaverine and several other non-biogenic diamines. Evaluation of additional triamine and tetraamine analytes showed the influence that amine group quantity and spacing had on signal generation. By increasing the ratio of Pb(II) relative to ethynylarene, the detection limit for spermine was successfully lowered to a 25 micromolar level. Noncovalent association between ethynylarene, metal ion and polyamine are believed to promote the observed spectroscopic changes. This study exploits the subtle impact that polyamine structural identity has on transition metal chelation to define a new approach towards polyamine chemosensor development. PMID:25530671

  7. Differential response of radish plants to supplemental ultraviolet-B radiation under varying NPK levels: chlorophyll fluorescence, gas exchange and antioxidants.

    PubMed

    Singh, Suruchi; Kumari, Rima; Agrawal, Madhoolika; Agrawal, Shashi Bhushan

    2012-07-01

    Current and projected increases in ultraviolet-B (UV-B; 280-315 nm) radiation may alter crop growth and yield by modifying the physiological and biochemical functions. This study was conducted to assess the possibility of alleviating the negative effects of supplemental UV-B (sUV-B; 7.2 kJ m⁻² day⁻¹; 280-315 nm) on radish (Raphanus sativus var Pusa Himani) by modifying soil nitrogen (N), phosphorus (P) and potassium (K) levels. The N, P and K treatments were recommended dose of N, P and K, 1.5 times recommended dose of N, P and K, 1.5 times recommended dose of N and 1.5 times recommended dose of K. Plants showed variations in their response to UV-B radiation under varying soil NPK levels. The minimum damaging effects of sUV-B on photosynthesis rate and stomatal conductance coupled with minimum reduction in chlorophyll content were recorded for plants grown at recommended dose of NPK. Flavonoids increased under sUV-B except in plants grown at 1.5 times recommended dose of N. Lipid peroxidation (LPO) also increased in response to sUV-B at all NPK levels with maximum at 1.5 times recommended dose of K and minimum at recommended dose of NPK. This study revealed that sUV-B radiation negatively affected the radish plants by reducing the photosynthetic efficiency and increasing LPO. The plants grown at 1.5 times recommended dose of NPK/N/K could not enhance antioxidative potential to the extent as recorded at recommended dose of NPK and hence showed more sensitivity to sUV-B. PMID:22304244

  8. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy

    PubMed Central

    Rahmeh, Rita; Damian, Marjorie; Cottet, Martin; Orcel, Hélène; Mendre, Christiane; Durroux, Thierry; Sharma, K. Shivaji; Durand, Grégory; Pucci, Bernard; Trinquet, Eric; Zwier, Jurriaan M.; Deupi, Xavier; Bron, Patrick; Banères, Jean-Louis; Mouillac, Bernard; Granier, Sébastien

    2012-01-01

    G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs. PMID:22493271

  9. Complete suppression of the fluorophore fluorescence by combined effect of multiple fluorescence quenching groups: A fluorescent sensor for Cu²⁺ with zero background signals.

    PubMed

    Long, Lingliang; Wu, Yanjun; Wang, Lin; Gong, Aihua; Hu, Rongfeng; Zhang, Chi

    2016-02-18

    The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu(2+) was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu(2+), sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu(2+) concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu(2+) in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu(2+) in living cells. PMID:26826684

  10. A fast responsive two-photon fluorescent probe for imaging H₂O₂ in lysosomes with a large turn-on fluorescence signal.

    PubMed

    Ren, Mingguang; Deng, Beibei; Wang, Jian-Yong; Kong, Xiuqi; Liu, Zhan-Rong; Zhou, Kai; He, Longwei; Lin, Weiying

    2016-05-15

    Hydrogen peroxide (H2O2) plays a crucial role in many biological processes in the human body. As our understanding of the complexity of physiological H2O2 in lysosome, investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed a new example of a fast responsive and lysosome-targeted two-photon H2O2 fluorescent probe (Lyso-HP) with a large turn-on fluorescence signal (80-fold fluorescence enhancement). The addition of H2O2 to Lyso-HP results a dramatic fluorescence enhancement around 550 nm. The probe could image exogenous and endogenous H2O2 in living cells and the probe was located in lysosomes with high colocalization coefficient (0.96) compared with LysoTracker. The large fluorescence enhancement of the two-photon probe Lyso-HP renders it attractive for imaging H2O2 in living tissues with deep tissue penetration. Significantly, the probe is feasible for fluorescently monitoring H2O2 level changes in lysosomes and suitable for fluorescence imaging of H2O2 in living tissues with deep penetration by using two-photon microscopy. PMID:26710341

  11. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling.

    PubMed Central

    Chiesa, A; Rapizzi, E; Tosello, V; Pinton, P; de Virgilio, M; Fogarty, K E; Rizzuto, R

    2001-01-01

    Luminous proteins include primary light producers, such as aequorin, and secondary photoproteins that in some organisms red-shift light emission for better penetration in space. When expressed in heterologous systems, both types of proteins may act as versatile reporters capable of monitoring phenomena as diverse as calcium homoeostasis, protein sorting, gene expression, and so on. The Ca(2+)-sensitive photoprotein aequorin was targeted to defined intracellular locations (organelles, such as mitochondria, endoplasmic reticulum, sarcoplasmic reticulum, Golgi apparatus and nucleus, and cytoplasmic regions, such as the bulk cytosol and the subplasmalemmal rim), and was used to analyse Ca(2+) homoeostasis at the subcellular level. We will discuss this application, reviewing its advantages and disadvantages and the experimental procedure. The applications of green fluorescent protein (GFP) are even broader. Indeed, the ability to molecularly engineer and recombinantly express a strongly fluorescent probe has provided a powerful tool for investigating a wide variety of biological events in live cells (e.g. tracking of endogenous proteins, labelling of intracellular structures, analysing promoter activity etc.). More recently, the demonstration that, using appropriate mutants and/or fusion proteins, GFP fluorescence can become sensitive to physiological parameters or activities (ion concentration, protease activity, etc.) has further expanded its applications and made GFP the favourite probe of cell biologists. We will here present two applications in the field of cell signalling, i.e. the use of GFP chimaeras for studying the recruitment of protein kinase C isoforms and the activity of intracellular proteases. PMID:11256942

  12. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling.

    PubMed

    Chiesa, A; Rapizzi, E; Tosello, V; Pinton, P; de Virgilio, M; Fogarty, K E; Rizzuto, R

    2001-04-01

    Luminous proteins include primary light producers, such as aequorin, and secondary photoproteins that in some organisms red-shift light emission for better penetration in space. When expressed in heterologous systems, both types of proteins may act as versatile reporters capable of monitoring phenomena as diverse as calcium homoeostasis, protein sorting, gene expression, and so on. The Ca(2+)-sensitive photoprotein aequorin was targeted to defined intracellular locations (organelles, such as mitochondria, endoplasmic reticulum, sarcoplasmic reticulum, Golgi apparatus and nucleus, and cytoplasmic regions, such as the bulk cytosol and the subplasmalemmal rim), and was used to analyse Ca(2+) homoeostasis at the subcellular level. We will discuss this application, reviewing its advantages and disadvantages and the experimental procedure. The applications of green fluorescent protein (GFP) are even broader. Indeed, the ability to molecularly engineer and recombinantly express a strongly fluorescent probe has provided a powerful tool for investigating a wide variety of biological events in live cells (e.g. tracking of endogenous proteins, labelling of intracellular structures, analysing promoter activity etc.). More recently, the demonstration that, using appropriate mutants and/or fusion proteins, GFP fluorescence can become sensitive to physiological parameters or activities (ion concentration, protease activity, etc.) has further expanded its applications and made GFP the favourite probe of cell biologists. We will here present two applications in the field of cell signalling, i.e. the use of GFP chimaeras for studying the recruitment of protein kinase C isoforms and the activity of intracellular proteases. PMID:11256942

  13. Systems approach to excitation-energy and electron transfer reaction networks in photosystem II complex: model studies for chlorophyll a fluorescence induction kinetics.

    PubMed

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi

    2015-09-01

    Photosystem II (PS II) is a protein complex which evolves oxygen and drives charge separation for photosynthesis employing electron and excitation-energy transfer processes over a wide timescale range from picoseconds to milliseconds. While the fluorescence emitted by the antenna pigments of this complex is known as an important indicator of the activity of photosynthesis, its interpretation was difficult because of the complexity of PS II. In this study, an extensive kinetic model which describes the complex and multi-timescale characteristics of PS II is analyzed through the use of the hierarchical coarse-graining method proposed in the authors׳ earlier work. In this coarse-grained analysis, the reaction center (RC) is described by two states, open and closed RCs, both of which consist of oxidized and neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at millisecond scale with three-state RC, which was studied previously, could be derived by suitably adjusting the kinetic parameters of electron transfer between tyrosine and RC. Our novel coarse-grained model of PS II can appropriately explain the light-intensity dependent change of the characteristic patterns of fluorescence induction kinetics from O-J-I-P, which shows two inflection points, J and I, between initial point O and peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points. PMID:26025316

  14. Reporting from the Field: Genetically Encoded Fluorescent Reporters Uncover Signaling Dynamics in Living Biological Systems

    PubMed Central

    Mehta, Sohum; Zhang, Jin

    2015-01-01

    Real-time visualization of a wide range of biochemical processes in living systems is being made possible through the development and application of genetically encoded fluorescent reporters. These versatile biosensors have proven themselves tailor-made to the study of signal transduction, and in this review, we discuss some of the unique insights that they continue to provide regarding the spatial organization and dynamic regulation of intracellular signaling networks. In addition, we explore the more recent push to expand the scope of biological phenomena that can be monitored using these reporters, while also considering the potential to integrate this highly adaptable technology with a number of emerging techniques that may significantly broaden our view of how networks of biochemical processes shape larger biological phenomena. PMID:21495849

  15. Novel chlorophyll solar cell

    SciTech Connect

    Ludlow, J.C.

    1981-01-01

    A novel solar battery is being developed which uses chlorophyll a for the generation of a voltage. The battery consists of platinum foil electrode, onto which a mixture of chlorophyll a and lipoic acid is deposited, and a platinum current collector. With such a device, voltages greater than 0.35 volts can reproducibly generated. The dependence of the output of the cell as a function of chlorophyll levels and light intensity has been determined. 9 refs.

  16. Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A. )

    1993-01-01

    A flow cytometric method has been developed that uses phase-sensitive detection to separate signals from simultaneous fluorescence emissions in cells labeled with fluorochromes having different fluorescence decay lifetimes. CHO cells were stained with propidium iodide (PI) and fluorescein isothiocyanate (FITC). These dyes bind to DNA and protein and the fluorescence lifetimes of the bound dyes are 15.0 and 3.6 ns, respectively. Cells were analyzed as they passed through a modulated (sinusoidal) laser excitation beam. Fluorescence was measured using only a long-pass filter to block scattered laser excitation light and a single photomultiplier tube detector. The fluorescence detector output signals were processed by dual-channel phase-sensitive detection electronics and the phase-resolved PI and FITC signals were displayed as frequency distribution histograms and bivariate plots. By shifting the phase of one detector channel reference signal by [pi]/2 + [phi][sub 1] degrees and the phase of the other detector channel reference signal by -[pi]/2 + [phi][sub 2] degrees, where [phi][sub 1] and [phi][sub 2] are the phase shifts associated with the PI and FITC lifetimes, the PI and FITC signals were separately resolved at their respective phase-sensitive detector outputs. This technology is also applicable to suppressing by cellular autofluorescence, unbound/free dye, nonspecific dye binding, and Raman and Rayleigh scattering. 21 refs., 2 figs.

  17. Chlorophyll alpha fluorescence analysis along a vertical gradient of the crown in a poplar (Oxford clone) subjected to ozone and water stress.

    PubMed

    Desotgiu, Rosanna; Pollastrini, Martina; Cascio, Chiara; Gerosa, Giacomo; Marzuoli, Riccardo; Bussotti, Filippo

    2012-08-01

    An experiment in open-top chambers was carried out in summer 2008 at Curno (Northern Italy) in order to study the effects of ozone and mild water stress on poplar cuttings (Oxford clone). In this experiment direct fluorescence parameters (JIP-test) were measured in leaves from different sections of the crown (L: lower; M: medium; U: upper parts of the crown). The parameters considered were calculated at the different steps of the fluorescence transient, and include maximum quantum yield efficiency in the dark-adapted state (F(v)/F(M)); the L-band, at 100 ∝ s, that expresses the stability of the tripartite system reaction centre-harvesting light complex-core antenna; the K-band, at 300 ∝ s, that expresses the efficiency of the oxygen-evolving complex; the J-phase, at 2 ms, that expresses the efficiency with which a trapped exciton can move an electron into the electron transport chain from Q(A)(-) to the intersystem electron acceptors; the IP-phase, which expresses the efficiency of electron transport around the photosystem 1 (PSI) to reduce the final acceptors of the electron transport chain, i.e., ferredoxin and NADP; and finally the performance index total (PItot) for energy conservation from photons absorbed by PSII to the reduction flux of PSI end acceptors. The main results are: (i) different dynamics were observed between leaves in the lower section, whose PItot decreased over time, and those in the upper sections in which it increased, with a dynamic connected to the leaf age; (ii) ozone depressed all the considered fluorescence parameters in basal leaves of well-watered plants, while it had little or no damaging effect on medium-level or upper-section leaves; (iii) PItot and IP-phase increased in upper leaves of plants subjected to ozone stress, as well as the net photosynthesis; (iv) water stress increased PItot of leaves in all levels of the crown. The results suggest that ozone-damaged poplar plants compensate, at least partially, for the

  18. Fluorescence signals of core-shell quantum dots enhanced by single crystalline gold caps on silicon nanowires

    NASA Astrophysics Data System (ADS)

    Christiansen, S. H.; Chou, J. W.; Becker, M.; Sivakov, V.; Ehrhold, K.; Berger, A.; Chou, W. C.; Chuu, D. S.; Gösele, U.

    2009-04-01

    We use nanoscale (20-300 nm in diameter) single crystalline gold (Au)-caps on silicon nanowires (NWs) grown by the vapor-liquid-solid (VLS) growth mechanism to enhance the fluorescence photoluminescence (PL) signals of highly dilute core/shell CdSeTe/ZnS quantum dots (QDs) in aqueous solution (10-5 M). For NWs without Au-caps, as they appear, for example, after Au etching in aqua regia or buffered KI/I2-solution, essentially no fluorescence signal of the same diluted QDs could be observed. Fluorescence PL signals were measured using excitation with a laser wavelength of 633 nm. The signal enhancement by single crystalline, nanoscale Au-caps is discussed and interpreted based on finite element modeling (FEM).

  19. Acquisition and reconstruction of Raman and fluorescence signals for rat leg imaging

    NASA Astrophysics Data System (ADS)

    Demers, Jennifer-Lynn; Pogue, Brian; Leblond, Frederic; Esmonde-White, Francis; Okagbare, Paul; Morris, Michael

    2011-03-01

    Recovery of Raman or Fluorescence signatures from within thin tissues benefits from model-based estimation of where the signal came from, especially if the signal passes through layers in which the absorption or scattering signatures distort the signal. Estimation of the signal strength requires appropriate normalization or model-based recovery, but the key to achieving good results is a good model of light transport. While diffusion models are routinely used for optical tomography of tissue, there's some thought that more precise radiation transport modeling is required for accurate estimation. However, diffusion is often used for small animal imaging, because it's a practical approach, which doesn't require knowledge of the scatter phase function at each point in the tissue. The question asked in this study is, whether experimentally acquired data in small volumes such as a rodent leg can be accurately modeled and reconstructed using diffusion theory. This study uses leg geometries extracted from animal CT scans and liquid phantoms to study the diffusion approximations. The preliminary results show that under certain conditions the collected data follows the expected trend.

  20. Radiance-ratio algorithm wavelengths for remote oceanic chlorophyll determination

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.

    1987-01-01

    Two-band radiance-ratio in-water algorithms in the visible spectrum have been evaluated for remote oceanic chlorophyll determination. Airborne active-passive (laser-solar) data from coastal, shelf-slope, and blue-water regions were used to generate two-dimensional chlorophyll-fluorescence and radiance-ratio statistical correlation matrices containing all possible two-band ratio combinations from the thirty-two available contiguous 11.25-nm passive bands. The principal finding was that closely spaced radiance-ratio bands yield chlorophyll estimates which are highly correlated with laser-induced chlorophyll fluorescence within several distinct regions of the ocean color spectrum. Band combinations in the yellow, orange-red, spectral regions showed considerable promise for satisfactory chlorophyll pigment estimation in near-coastal Case II waters. Pigment recovery in Case I waters was best accomplished using blue-green radiance ratios in the 490/500-nm region.

  1. Thousand-fold fluorescent signal amplification for mHealth diagnostics.

    PubMed

    Balsam, Joshua; Rasooly, Reuven; Bruck, Hugh Alan; Rasooly, Avraham

    2014-01-15

    The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an image stacking algorithm to decrease the image noise and enhance weak signals, and (2) an optical signal amplifier utilizing a capillary tube array. These approaches were used in a detection system which includes multi-wavelength LEDs capable of exciting many fluorophores in multiple wavelengths, a mobile phone or a webcam as a detector, and capillary tube array configured with 36 capillary tubes for signal enhancement. The capillary array enables a ~100× increase in signal sensitivity for fluorescein, reducing the limit of detection (LOD) for mobile phones and webcams from 1000 nM to 10nM. Computational image stacking enables another ~10× increase in signal sensitivity, further reducing the LOD for webcam from 10nM to 1 nM. To demonstrate the feasibility of the device for the detection of disease-related biomarkers, adenovirus DNA labeled with SYBR green or fluorescein was analyzed by both our capillary array and a commercial plate reader. The LOD for the capillary array was 5 ug/mL, and that of the plate reader was 1 ug/mL. Similar results were obtained using DNA stained with fluorescein. The combination of the two signal amplification approaches enables a ~1000× increase in LOD for the webcam platform. This brings it into the range of a conventional plate reader while using a smaller sample volume (10 ul) than the plate reader requires (100 ul). This suggests that such a device could be suitable for biosensing applications where up to 10 fold smaller sample sizes are needed. The simple optical configuration for mHealth described in this paper employing the combined capillary and image processing signal amplification is capable of measuring weak fluorescent signals

  2. Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl.

    PubMed

    Sghaier, Dhouha Belhaj; Duarte, Bernardo; Bankaji, Insaf; Caçador, Isabel; Sleimi, Noomene

    2015-08-01

    Trace metal elements can cause various environmental and health issues due to their accumulation and integration in the food chain. In the present study, we determined the major toxic effects of arsenic on physiological behaviour of plants. For this propose, several combinations of high salinity and arsenic (As) concentrations were applied to the halophytic shrub, Tamarix gallica, by growing for three months with an irrigation solution supplemented with different concentrations of As (0, 200, 500 and 800M) with and without 200mM NaCl. The effect of the combined stress conditions on growth, physiological patterns and biochemical parameters were also assessed. The results demonstrated that T. gallica is a tolerant plant regarding arsenic. The photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by As nor by As combined with salt. Likewise, pigment and nutrient (K(+), Ca(2+) and Mg(2+)) contents were not affected either. However, the study results revealed that As adversely and significantly influenced the growth with increasing the concentration of As. Despite shoots growth reduction, the present research demonstrates that T. gallica is able to cope with high external concentrations of As (under 500μM) alone or in combination with NaCl. PMID:26093232

  3. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    PubMed Central

    Hsieh, Meng-Chang; Chiu, Yi-Hsin; Lin, Sheng-Fu; Chang, Jenq-Yang; Chang, Chia-Ou; Chiang, Huihua Kenny

    2015-01-01

    Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector. PMID:25690548

  4. Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina

    PubMed Central

    Hausselt, Susanne E.; Breuninger, Tobias; Castell, Xavier; Denk, Winfried; Margolis, David J.; Detwiler, Peter B.

    2009-01-01

    Dendritic signals play an essential role in processing visual information in the retina. To study them in neurites too small for electrical recording, we developed an instrument that combines a multi-photon (MP) microscope with a through-the-objective high-resolution visual stimulator. An upright microscope was designed that uses the objective lens for both MP imaging and delivery of visual stimuli to functionally intact retinal explants or eyecup preparations. The stimulator consists of a miniature liquid-crystal-on-silicon display coupled into the optical path of an infrared-excitation laser-scanning microscope. A pair of custom-made dichroic filters allows light from the excitation laser and three spectral bands (‘colors’) from the stimulator to reach the retina, leaving two intermediate bands for fluorescence imaging. Special optics allow displacement of the stimulator focus relative to the imaging focus. Spatially resolved changes in calcium-indicator fluorescence in response to visual stimuli were recorded in dendrites of different types of mammalian retinal neurons. PMID:19023590

  5. Investigation of signal-to-noise ratio in frequency-domain multiphoton fluorescence lifetime imaging microscopy.

    PubMed

    Zhang, Yide; Khan, Aamir A; Vigil, Genevieve D; Howard, Scott S

    2016-07-01

    Multiphoton microscopy (MPM) combined with fluorescence lifetime imaging microscopy (FLIM) has enabled three-dimensional quantitative molecular microscopy in vivo. The signal-to-noise ratio (SNR), and thus the imaging rate of MPM-FLIM, which is fundamentally limited by the shot noise and fluorescence saturation, has not been quantitatively studied yet. In this paper, we investigate the SNR performance of the frequency-domain (FD) MPM-FLIM with two figures of merit: the photon economy in the limit of shot noise, and the normalized SNR in the limit of saturation. The theoretical results and Monte Carlo simulations find that two-photon FD-FLIM requires 50% fewer photons to achieve the same SNR as conventional one-photon FLIM. We also analytically show that the MPM-FD-FLIM can exploit the DC and higher harmonic components generated by nonlinear optical mixing of the excitation light to improve SNR, reducing the required number of photons by an additional 50%. Finally, the effect of fluorophore saturation on the experimental SNR performance is discussed. PMID:27409702

  6. Increased signals from short-wavelength-excited fluorescent molecules using sub-Ti:Sapphire wavelengths

    PubMed Central

    NORRIS, G; AMOR, R; DEMPSTER, J; AMOS, W B; MCCONNELL, G

    2012-01-01

    We report the use of an all-solid-state ultrashort pulsed source specifically for two-photon microscopy at wavelengths shorter than those of the conventional Ti:Sapphire laser. Our approach involves sum–frequency mixing of the output from an optical parametric oscillator (λ= 1400–1640 nm) synchronously pumped by a Yb-doped fibre laser (λ= 1064 nm), with the residual pump radiation. This generated an fs-pulsed output tunable in the red spectral region (λ= 620–636 nm, ∼150 mW, 405 fs, 80 MHz, M2∼ 1.3). We demonstrate the performance of our ultrashort pulsed system using fluorescently labelled and autofluorescent tissue, and compare with conventional Ti:Sapphire excitation. We observe a more than 3-fold increase in fluorescence signal intensity using our visible laser source in comparison with the Ti:Sapphire laser for two-photon excitation at equal illumination peak powers of 1.16 kW or less. PMID:23078118

  7. Identification of a functional nuclear export signal in the green fluorescent protein asFP499

    SciTech Connect

    Mustafa, Huseyin . E-mail: huseyinm@hotmail.com; Strasser, Bernd; Rauth, Sabine; Irving, Robert A.; Wark, Kim L.

    2006-04-21

    The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified {sub 194}LRMEKLNI{sub 201} as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtype form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is First report of a GFP that contains a functional NES.

  8. Plastic fiber optics for micro-imaging of fluorescence signals in living cells

    NASA Astrophysics Data System (ADS)

    Sakurai, Takashi; Natsume, Mitsuo; Koida, Kowa

    2015-03-01

    The fiber-coupled microscope (FCM) enables in vivo imaging at deep sites in the tissues or organs that other optical techniques are unable to reach. To develop FCM-based intravital imaging, we employed a plastic optical fiber (POF) bundle that included more than 10,000-units of polystyrene core and polymethyl methacrylate cladding. Each POF had a diameter of less than 5 μm the tip of the bundle was less than 0.5 mm wide, and the flexible wire had a length of 1,000 mm. The optical performance of the plastic FCM was sufficient for detection of significant signal changes in an acinus of rat pancreas labeled with a calcium ion-sensitive fluorescent dye. In the future, the potential power of plastic FCM is expected to increase, enabling analysis of structure and organization of specific functions in live cells within vulnerable organs.

  9. Correlation of hemodynamic and fluorescence signals under resting state conditions in mice's barrel field cortex.

    PubMed

    Bélanger, Samuel; de Souza, Bruno Oliveira Ferreira; Casanova, Christian; Lesage, Frédéric

    2016-03-11

    Both neurons and astrocytes are known to affect local vascular response in the brain following neuronal activity. In order to differentiate the contributions of each cell type to the hemodynamic response during stimulation and resting state, intrinsic optical signal (IOI) was recorded synchronized with fluorescence imaging of calcium concentration sensitive dye Oregon Green BAPTA-1 AM. By changing the stimulation parameters (frequency and duration), it was possible to individually promote neuronal and glial responses and to compare them to levels of oxy (HbO), deoxy (HbR) and total (HbT) hemoglobin concentrations. Finally, resting state recordings were done to investigate the possible correlation between hemoglobin fluctuation and calcium transients, based on different frequency bands associated either with neuronal or glial activity. PMID:26850574

  10. A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules.

    PubMed

    El Meskini, R; Jin, L; Marx, R; Bruzzaniti, A; Lee, J; Emeson, R; Mains, R

    2001-02-01

    To investigate trafficking in neuroendocrine cells, green fluorescent protein (GFP) tags were fused to various portions of the preproneuropeptide Y (NPY) precursor. Two neuroendocrine cell lines, AtT-20 corticotrope tumor cells and PC-12 pheochromocytoma cells, along with primary anterior pituitary cells, were examined. Expression of chimeric constructs did not disrupt trafficking or regulated secretion of endogenous ACTH and prohormone convertase 1 in AtT-20 cells. Western blot and immunocytochemical analyses demonstrated that the chimeric constructs remained intact, as long as the Lys-Arg cleavage site within preproNPY was deleted. GFP was stored in, and released from, regulated granules in cells expressing half of the NPY precursor fused to GFP, and also in cells in which only the signal sequence of preproNPY was fused to GFP. Thus, in neuroendocrine cells, entering the lumen of the secretory pathway is sufficient to target GFP to regulated secretory granules. PMID:11159860

  11. A peptide probe for the detection of neurokinin-1 receptor by disaggregation enhanced fluorescence and magnetic resonance signals

    PubMed Central

    Wu, Jingxian; Zou, Rongfeng; Wang, Qi; Xue, Yajing; Wei, Ping; Yang, Shiping; Wu, Junchen; Tian, He

    2014-01-01

    We report a novel peptide probe for the detection of neurokinin-1 receptor using disaggregation-caused signal enhancement. The probe was obtained via the aggregation of a modified substance P in a terpyridine-Fe (II) complex with Gd (III)-DOTA into well-defined nanostructures, which effectively weaken ligand fluorescence and slow the exchange rate of inner-sphere water molecules. This probe disaggregates upon binding to the neurokinin-1 receptor and activates the contrast agents to generate a fluorescent signal that positively enhances magnetic resonance imaging contrast and allows for the detection of overexpressed receptors on tumor cells and the identification of lung cancer using serum samples. PMID:25270511

  12. Development of Fluorescent Polymerization-based Signal Amplification for Sensitive and Non-enzymatic Biodetection in Antibody Microarrays

    PubMed Central

    Avens, Heather J.; Bowman, Christopher N.

    2009-01-01

    Antibody microarrays are a critical tool for proteomics, requiring broad, highly sensitive detection of numerous low abundance biomarkers. Fluorescent polymerization-based amplification (FPBA) is presented as a novel, non-enzymatic signal amplification method that takes advantage of the chain-reaction nature of radical polymerization to achieve a highly amplified fluorescent response. A streptavidin-eosin conjugate localizes eosin photoinitiators for polymerization on the chip where biotinylated target protein is bound. The chip is contacted with acrylamide as a monomer, N-methyldiethanolamine as a coinitiator and yellow/green fluorescent nanoparticles (NPs) which, upon initiation, combine to form a macroscopically visible and highly fluorescent film. The rapid polymerization kinetics and the presence of cross-linker favor entrapment of the fluorescent NPs in the polymer, enabling highly sensitive fluorescent biodetection. This method is demonstrated as being appropriate for antibody microarrays and is compared to detection approaches which utilize streptavidin-FITC (SA-FITC) and streptavidin-labeled yellow/green NPs (SA-NPs). It is found that FPBA is able to detect 0.16 (+/− 0.01) biotin-antibody/µm2 (or 40 zeptomole surface-bound target molecules), while SA-FITC has a limit of detection of 31 (+/− 1) biotin-antibody/µm2 and SA-NPs fail to achieve any significant signal under the conditions evaluated here. Further, FPBA in conjunction with fluorescent stereomicroscopy yields equal or better sensitivity compared to fluorescent detection of SA-eosin using a much more costly microarray scanner. By facilitating highly sensitive detection, FPBA is expected to enable detection of low abundance antigens and also make possible a transition towards less expensive fluorescence detection instrumentation. PMID:19508906

  13. Development of fluorescent polymerization-based signal amplification for sensitive and non-enzymatic biodetection in antibody microarrays.

    PubMed

    Avens, Heather J; Bowman, Christopher N

    2010-01-01

    Antibody microarrays are a critical tool for proteomics, requiring broad, highly sensitive detection of numerous low abundance biomarkers. Fluorescent polymerization-based amplification (FPBA) is presented as a novel, non-enzymatic signal amplification method that takes advantage of the chain-reaction nature of radical polymerization to achieve a highly amplified fluorescent response. A streptavidin-eosin conjugate localizes eosin photoinitiators for polymerization on the chip where biotinylated target protein is bound. The chip is contacted with acrylamide as a monomer, N-methyldiethanolamine as a coinitiator and yellow/green fluorescent nanoparticles (NPs) which, upon initiation, combine to form a macroscopically visible and highly fluorescent film. The rapid polymerization kinetics and the presence of cross-linker favor entrapment of the fluorescent NPs in the polymer, enabling highly sensitive fluorescent biodetection. This method is demonstrated as being appropriate for antibody microarrays and is compared to detection approaches which utilize streptavidin-fluorescein isothiocyanate (SA-FITC) and streptavidin-labeled yellow/green NPs (SA-NPs). It is found that FPBA is able to detect 0.16 + or - 0.01 biotin-antibody microm(-2) (or 40 zmol surface-bound target molecules), while SA-FITC has a limit of detection of 31 + or - 1 biotin-antibody microm(-2) and SA-NPs fail to achieve any significant signal under the conditions evaluated here. Further, FPBA in conjunction with fluorescent stereomicroscopy yields equal or better sensitivity compared to fluorescent detection of SA-eosin using a much more costly microarray scanner. By facilitating highly sensitive detection, FPBA is expected to enable detection of low abundance antigens and also make possible a transition towards less expensive fluorescence detection instrumentation. PMID:19508906

  14. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    PubMed

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions. PMID:25896488

  15. Mechanism for laser-induced fluorescence signal generation in a nanoparticle-seeded flow for planar flame thermometry

    NASA Astrophysics Data System (ADS)

    Gu, D. H.; Sun, Z. W.; Medwell, P. R.; Alwahabi, Z. T.; Dally, B. B.; Nathan, G. J.

    2015-02-01

    The mechanism of atomic indium generation for laser-induced fluorescence (LIF) of indium from laser ablation seeding was investigated in a hydrogen/nitrogen non-premixed flame. The morphology and particle size distributions of the ablation products were examined with scanning electron microscopy and transmission electron microscopy. These investigations show that the ablation products comprise complex agglomerates of nano-sized primary particles of indium compounds and micron-sized spherical indium beads. Images of the atomic indium LIF, Mie scattering of ablation products and natural fluorescence emission of indium in the flame were recorded to investigate the mechanism of fluorescence signal generation. The relative contribution of natural fluorescence emission of indium towards the total indium fluorescence signal was assessed by comparing these images. These images also reveal the evolution of ablation products through the flame structure and the correlation between LIF signal and ablation products. It is found that the LIF signal generation is associated with the vapourisation of indium nanoparticles into the gas phase by thermal decomposition in the flame. A further mechanism for thermal decomposition of the nanoparticles was also identified, that of heating the ablation products by in situ laser ablation. This was assessed by means of a second laser, introduced prior to the excitation laser, to reveal that the LIF signal can be enhanced by in situ laser ablation, particularly in the upstream regions of the flame. These findings supersede the mechanism deduced previously by the authors that neutral atomic indium can survive a convection time of the order of tens of seconds and be directly seeded into reacting or non-reacting flows. The possible influences of laser ablation seeding on the nonlinear two-line atomic fluorescence thermometry technique were also assessed.

  16. Photochemical reactions of chlorophyll in dehydrated photosystem II: two chlorophyll forms (680 and 700 nm).

    PubMed

    Heber, Ulrich; Shuvalov, Vladimir A

    2005-06-01

    Lichens and phototolerant poikilohydric mosses differ from spinach leaves, fern fronds or photosensitive mosses in that they show strongly decreased Fo chlorophyll fluorescence after drying. This desiccation-induced fluorescence loss is rapidly reversible under rehydration. Fluorescence emission from Photosystem II at 685 nm was decreased more strongly by dehydration than 720 nm emission. Reaction centers of Photosystem II lose activity on dehydration and regain it on hydration. Heating of desiccated lichens increased Fo chlorophyll fluorescence. The activation energy for the reversible part of the temperature-dependent fluorescence increase was 0.045 eV, which corresponds to the energy difference between the 680 and 697 nm absorption bands. In desiccated chlorolichens such as Parmelia sulcata, heating induces the appearance of positive variable fluorescence related to the reversible reduction of QA due to overcoming the energy barrier. This is interpreted to provide information on the mechanism of photoprotection: energy is dissipated by changing Chl680 or P680 into a chlorophyll form, which absorbs at 700 nm and emits light at 720 nm (Chl-720 or P680(700)) with a low quantum yield. Dissipation of light energy in this trap is activated by desiccation. PMID:16049759

  17. Visualization of water usage and photosynthetic activity of street trees exposed to 2 ppm of SO 2—A combined evaluation by cold neutron and chlorophyll fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Kardjilov, N.; Hilger, A.; Manke, I.; Shono, H.; Herppich, W. B.

    2009-06-01

    Photosynthetic efficacy and auto-exhaust-fume resistance of street trees were evaluated by cold neutron radiography (CNR) with D 2O tracer and chlorophyll fluorescence (CF) imaging. With these techniques, information on the responses of water usage and photosynthetic activity of plants exposed to simulate toxic auto-exhaust fumes (2 ppm SO 2 in air) were obtained. Branches of hibiscus trees were detached, placed into a tub with aerated water and used for the experiments after rooting. A CF image was taken before SO 2 was applied for 1 h. During the experiment, CNR and CF imaging were conduced. H 2O and D 2O in the plant container were exchanged every 30 min to observe water uptake. D 2O tracer clearly showed water uptake into the hibiscus stem during each treatment. When the atmosphere was changed from simulated auto-exhaust fumes to normal air again, the amount of D 2O and, hence, water uptake increased. CF imaging was well suited to evaluate the effects of SO 2 as simulated toxic auto-exhaust fumes on plants. The maximum photochemical efficiency ( Fv/ Fm), a sensitive indicator of the efficacy and the integrity of plants' photosynthesis, immediately dropped by 30% after supplying the simulated auto-exhaust fumes. This indicates that toxic auto-exhaust fumes negatively affected the photosynthetic activity of hibiscus leaves. Simultaneous CNR and CF imaging successfully visualized variations of photosynthetic activity and water uptake in the sample. Thus, this combination method was effective to non-destructive analyze the physiological status of plants.

  18. Nanoembossed gold nanoshell with a fluorescence-like strong SERS signal.

    PubMed

    Kim, J H; Pompa, P P; Baek, H G; Chung, B H

    2016-04-29

    We present a nanoembossed nanoshell with a new internal location for the formation of strong electromagnetic fields. The internally nanoembossed gold nanoshell (AuNS) is fabricated by electrostatically assembling smaller silica nanoparticles (∼15.7 nm) around the silica core (∼123.6 nm) followed by growing gold nanoseeds on the core in a wet process. FDTD calculations reveal the creation of a strong electromagnetic field (|E/Ein|max = 55 at 633 nm) at sharp edges formed by the contact between the nanoembosses and the silica core. The field formation is supported by measuring the SERS signal of Ru(bpy) encapsulated in the nanoembossing silica nanoparticles. SERS signals as strong as the corresponding fluorescence are obtained. The Raman enhancement factor (EF) is estimated to be up to 10(10) at 633 nm excitation, in addition to a comparable EF at 785 nm laser excitation. The SERS intensity of the nanoembossed nanoshell layer is sufficiently high compared to the outer or the core of the nanoshell. Finally, we fabricate all-in-one nanoparticles with all the three places where the reporter dyes are loaded and acquire the highest SERS intensity to potentially enable bio-medical applications of the nanoembossed AuNS as a sensitive and reliable labeling particle. PMID:26984958

  19. Nanoembossed gold nanoshell with a fluorescence-like strong SERS signal

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Pompa, P. P.; Baek, H. G.; Chung, B. H.

    2016-04-01

    We present a nanoembossed nanoshell with a new internal location for the formation of strong electromagnetic fields. The internally nanoembossed gold nanoshell (AuNS) is fabricated by electrostatically assembling smaller silica nanoparticles (∼15.7 nm) around the silica core (∼123.6 nm) followed by growing gold nanoseeds on the core in a wet process. FDTD calculations reveal the creation of a strong electromagnetic field (|E/Ein|max = 55 at 633 nm) at sharp edges formed by the contact between the nanoembosses and the silica core. The field formation is supported by measuring the SERS signal of Ru(bpy) encapsulated in the nanoembossing silica nanoparticles. SERS signals as strong as the corresponding fluorescence are obtained. The Raman enhancement factor (EF) is estimated to be up to 1010 at 633 nm excitation, in addition to a comparable EF at 785 nm laser excitation. The SERS intensity of the nanoembossed nanoshell layer is sufficiently high compared to the outer or the core of the nanoshell. Finally, we fabricate all-in-one nanoparticles with all the three places where the reporter dyes are loaded and acquire the highest SERS intensity to potentially enable bio-medical applications of the nanoembossed AuNS as a sensitive and reliable labeling particle.

  20. Small molecule aptamer assays based on fluorescence anisotropy signal-enhancer oligonucleotides.

    PubMed

    Perrier, Sandrine; Bouilloud, Prisca; De Oliveira Coelho, Gisella; Henry, Mickael; Peyrin, Eric

    2016-08-15

    Herein, we design novel fluorescence anisotropy (FA) aptamer sensing platforms dedicated to small molecule detection. The assay strategy relied on enhanced fluctuations of segmental motion dynamics of the aptamer tracer mediated by an unlabelled, partially complementary oligonucleotide. The signal-enhancer oligonucleotide (SEO) essentially served as a free probe fraction revealer. By targeting specific regions of the signalling functional nucleic acid, the SEO binding to the unbound aptamer triggered perturbations of both the internal DNA flexibility and the localized dye environment upon the free probe to duplex structure transition. This potentiating effect determined increased FA variations between the duplex and target bound states of the aptameric probe. FA assay responses were obtained with both pre-structured (adenosine) and unstructured (tyrosinamide) aptamers and with dyes of different photochemical properties (fluorescein and texas red). The multiplexed analysis ability was further demonstrated through the simultaneous multicolour detection of the two small targets. The FA method appears to be especially simple, sensitive and widely applicable. PMID:27085946

  1. Marine chlorophyll a analysis

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1979-01-01

    Quantitative distribution maps of chlorophyll a and other important environmental parameters of coastal zones are prepared by regression analysis of sea-truth data and data collected by aircraft multispectral scanners.

  2. Use of a Novel Rover-mounted Fluorescence Imager and Fluorescent Probes to Detect Biological Material in the Atacama Desert in Daylight

    NASA Technical Reports Server (NTRS)

    Weinstein, S.; Pane, D.; Warren-Rhodes, K.; Cockell, C.; Ernst, L. A.; Minkley, E.; Fisher, G.; Emani, S.; Wettergreen, D. S.; Wagner, M.

    2005-01-01

    We have developed an imaging system, the Fluorescence Imager (FI), for detecting fluorescence signals from sparse microorganisms and biofilms during autonomous rover exploration. The fluorescence signals arise both from naturally occurring chromophores, such as chlorophyll of cyanobacteria and lichens, and from fluorescent probes applied to soil and rocks. Daylight imaging has been accomplished by a novel use of a high-powered flashlamp synchronized to a CCD camera. The fluorescent probes are cell permanent stains that have extremely low intrinsic fluorescence (quantum yields less than 0.01) and a large fluorescence enhancement (quantum yields greater than 0.4) when bound to the target. Each probe specifically targets either carbohydrates, proteins, nucleic acids or membrane lipids, the four classes of macromolecules found in terrestrial life. The intent of the probes is to interrogate the environment for surface and endolithic life forms.

  3. Theoretical treatment of fluorescence detection by a dual-fiber-optic sensor with consideration of sampling variability and package effects associated with particles

    SciTech Connect

    DSa, E.J.; Lohrenz, S.E.

    1999-04-01

    The characteristics of a dual-fiber-optic sensor for measurements of chlorophyll fluorescence in aquatic environments were evaluated with a theoretical model. Consideration was given to sampling variability and package effects associated with particles (e.g., phytoplankton cells). A numerical simulation was developed to approximate the optical geometry of the dual fiber-optic sensor that permitted a visual representation of the fluorescence distribution within the sensor sampling volume. A Monte Carlo simulation was used to evaluate sampling variability associated with the number and distribution of particles within the sampling volume. Relatively high coefficients of variation were associated with low particle concentrations, although with sufficient signal averaging the coefficient of variation was reduced to less than 20{percent}. The influence of package effects and intracellular absorption of fluorescence was evaluated with a simplified form of the model that treated fluorescence as a linear function of particle density and assumed uniform particle composition, constant fluorescence cross-sectional yield, and sufficient averaging of the fluorescence signal. The model predicted decreasing fluorescence per unit of chlorophyll with increasing values of the product of particle diameter and intraparticle chlorophyll concentration. Experimental trends in size dependence of chlorophyll{endash}fluorescence relationships were compared with predictions of the model. {copyright} 1999 Optical Society of America

  4. Dopamine Receptor Signaling in MIN6 β-Cells Revealed by Fluorescence Fluctuation Spectroscopy.

    PubMed

    Caldwell, Brittany; Ustione, Alessandro; Piston, David W

    2016-08-01

    Insulin secretion defects are central to the development of type II diabetes mellitus. Glucose stimulation of insulin secretion has been extensively studied, but its regulation by other stimuli such as incretins and neurotransmitters is not as well understood. We investigated the mechanisms underlying the inhibition of insulin secretion by dopamine, which is synthesized in pancreatic β-cells from circulating L-dopa. Previous research has shown that this inhibition is mediated primarily by activation of the dopamine receptor D3 subtype (DRD3), even though both DRD2 and DRD3 are expressed in β-cells. To understand this dichotomy, we investigated the dynamic interactions between the dopamine receptor subtypes and their G-proteins using two-color fluorescence fluctuation spectroscopy (FFS) of mouse MIN6 β-cells. We show that proper membrane localization of exogenous G-proteins depends on both the Gβ and Gγ subunits being overexpressed in the cell. Triple transfections of the dopamine receptor subtype and Gβ and Gγ subunits, each labeled with a different-colored fluorescent protein (FP), yielded plasma membrane expression of all three FPs and permitted an FFS evaluation of interactions between the dopamine receptors and the Gβγ complex. Upon dopamine stimulation, we measured a significant decrease in interactions between DRD3 and the Gβγ complex, which is consistent with receptor activation. In contrast, dopamine stimulation did not cause significant changes in the interactions between DRD2 and the Gβγ complex. These results demonstrate that two-color FFS is a powerful tool for measuring dynamic protein interactions in living cells, and show that preferential DRD3 signaling in β-cells occurs at the level of G-protein release. PMID:27508444

  5. Specific sorting of single bacterial cells with microfabricated fluorescence-activated cell sorting and tyramide signal amplification fluorescence in situ hybridization.

    PubMed

    Chen, Chun H; Cho, Sung H; Chiang, Hsin-I; Tsai, Frank; Zhang, Kun; Lo, Yu-Hwa

    2011-10-01

    When attempting to probe the genetic makeup of diverse bacterial communities that elude cell culturing, researchers face two primary challenges: isolation of rare bacteria from microbial samples and removal of contaminating cell-free DNA. We report a compact, low-cost, and high-performance microfabricated fluorescence-activated cell sorting (μFACS) technology in combination with a tyramide signal amplification fluorescence in situ hybridization (TSA-FISH) to address these two challenges. The TSA-FISH protocol that was adapted for flow cytometry yields a 10-30-fold enhancement in fluorescence intensity over standard FISH methods. The μFACS technology, capable of enhancing its sensitivity by ~18 dB through signal processing, was able to enrich TSA-FISH-labeled E. coli cells by 223-fold. The μFACS technology was also used to remove contaminating cell-free DNA. After two rounds of sorting on E. coli mixed with λ-phage DNA (10 ng/μL), we demonstrated over 100,000-fold reduction in λ-DNA concentration. The integrated μFACS and TSA-FISH technologies provide a highly effective and low-cost solution for research on the genomic complexity of bacteria as well as single-cell genomic analysis of other sample types. PMID:21809842

  6. Sensitivity of airborne fluorosensor measurements to linear vertical gradients in chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Punjabi, A. R.; Poole, L. R.

    1984-01-01

    A semianalytic Monte Carlo radiative transfer simulation model for airborne laser fluorosensors has been extended to investigate the effects of inhomogeneities in the vertical distribution of phytoplankton concentrations in clear seawater. Simulation results for linearly varying step concentrations of chlorophyll are presented. The results indicate that statistically significant differences can be seen under certain conditions in the water Raman-normalized fluorescence signals between nonhomogeneous and homogeneous cases. A statistical test has been used to establish ranges of surface concentrations and/or verticl gradients in which calibration by surface samples would by inappropriate, and the results are discussed.

  7. Marine fluorescence from high spectrally resolved satellite measurements

    NASA Astrophysics Data System (ADS)

    Wolanin, Aleksandra; Dinter, Tilman; Rozanov, Vladimir; Noël, Stefan; Vountas, Marco; Burrows, John P.; Bracher, Astrid

    2014-05-01

    ). Based on the simulated data, we also calculated corrections the influence of for water vapor, Raman scattering and solar zenith angle on the retrieved fluorescence emissions. Our fluorescence results from SCIAMACHY and GOME-2 show similar spatial patterns when compared to the MODIS FLH. The fluorescence is generally stronger in areas of high chlorophyll concentration. The observed differences between SCIAMACHY and GOME-2 DOAS FLH and MODIS FLH arise from differences among instruments, retrieval methods, spatial and temporal sampling and overpass time. Our hyperspectral retrieval shows noisier results than MODIS FLH, but is not susceptible to certain problems as the multispectral FLH, which arise from backscattered light by particulate matter or phycocyanin fluorescence (Abbott and Letelier, 1999). For our fluorescence retrieval, we acquired better quality for the SCIAMACHY data than for GOME-2, due to the higher spectral resolution and the smaller size of the footprint. Our results demonstrate that it is feasible to detect the weak fluorescence signal from the oceans within hyperspectral data from satellite measurements. The method presented is generic and can be applied to other instruments in the future.

  8. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo.

    PubMed

    Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori

    2015-06-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950

  9. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo

    PubMed Central

    Hirai, Yasuharu; Nishino, Eri

    2015-01-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950

  10. An optimised method for correcting quenched fluorescence yield

    NASA Astrophysics Data System (ADS)

    Biermann, L.; Guinet, C.; Bester, M.; Brierley, A.; Boehme, L.

    2014-05-01

    Under high light intensity, phytoplankton protect their photosystems from bleaching through non-photochemical quenching processes. The consequence of this is suppression of fluorescence emission, which must be corrected when measuring in situ yield with fluorometers. Previously, this has been done using the limit of the mixed layer, assuming that phytoplankton are uniformly mixed from the surface to this depth. However, the assumption of homogeneity is not robust in oceanic regimes that support deep chlorophyll maxima. To account for these features, we correct from the limit of the euphotic zone, defined as the depth at which light is at ~1% of the surface value. This method was applied to fluorescence data collected by eleven animal-borne fluorometers deployed in the Southern Ocean over four austral summers. Six tags returned data showing evidence of deep chlorophyll features. Using the depth of the euphotic layer, quenching was corrected without masking subsurface fluorescence signals.

  11. Interphase fluorescence in situ hybridization signal detection by computing intensity variance along the optical axis

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Zheng, Bin; Ren, Liqiang; Liu, Hong

    2014-02-01

    Fluorescence in situ Hybridization technology is a commonly used tool to detect chromosome aberrations, which are often pathologically significant. Since manual FISH analysis is a tedious and time-consuming procedure, reliable and robust automated image acquisition and analysis are in demand. Under high magnification objective lenses such as 60x and 100x, the depth of field will often be too small and the FISH probes may not always lie in the same focal plane. A statistical variance based automated FISH analysis method is developed in order to address this problem. On a stack of slices at consecutive image planes with a step size d, the statistical variance alone the z-axis is calculated to form a 2-D matrix. Since pixels shift dramatically to high intensity at FISH probe location, the probes will manifest high peak values in the matrix. A computer-aided detection scheme based on top-hat transform is applied to the matrix to detect FISH probe signals. This study demonstrates a simple and robust method for FISH probe detection as well as a way of 2- D representation of 3-D data.

  12. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy.

    PubMed

    Marchand, Jean-Rémy; Carotti, Andrea; Passeri, Daniela; Filipponi, Paolo; Liscio, Paride; Camaioni, Emidio; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2014-10-01

    The inhibition of the poly(ADP-ribose) polymerase (PARP) family members is a strategy pursued for the development of novel therapeutic agents in a range of diseases, including stroke, cardiac ischemia, cancer, inflammation and diabetes. Even though some PARP-1 inhibitors have advanced to clinical setting for cancer therapy, a great deal of attention is being devoted to understand the polypharmacology of current PARP inhibitors. Besides blocking the catalytic activity, recent works have shown that some PARP inhibitors exhibit a poisoning activity, by trapping the enzyme at damaged sites of DNA and forming cytotoxic complexes. In this study we have used microsecond molecular dynamics to study the allosteric reverse signalling that is at the basis of such an effect. We show that Olaparib, but not Veliparib and HYDAMTIQ, is able to induce a specific conformational drift of the WGR domain of PARP-1, which stabilizes PARP-1/DNA complex through the locking of several salt bridge interactions. Fluorescence anisotropy assays support such a mechanism, providing the first experimental evidence that HYDAMTIQ, a potent PARP inhibitor with neuroprotective properties, is less potent than Olaparib to trap PARP-1/DNA complex. PMID:25062913

  13. Lil3 Assembles with Proteins Regulating Chlorophyll Synthesis in Barley

    PubMed Central

    Gargano, Daniela; Furnes, Clemens; Reisinger, Veronika; Arnold, Janine; Kmiec, Karol; Eichacker, Lutz Andreas

    2015-01-01

    The light-harvesting-like (LIL) proteins are a family of membrane proteins that share a chlorophyll a/b-binding motif with the major light-harvesting antenna proteins of oxygenic photoautotrophs. LIL proteins have been associated with the regulation of tetrapyrrol biosynthesis, and plant responses to light-stress. Here, it was found in a native PAGE approach that chlorophyllide, and chlorophyllide plus geranylgeraniolpyrophosphate trigger assembly of Lil3 in three chlorine binding fluorescent protein bands, termed F1, F2, and F3. It is shown that light and chlorophyllide trigger accumulation of protochlorophyllide-oxidoreductase, and chlorophyll synthase in band F3. Chlorophyllide and chlorophyll esterified to geranylgeraniol were identified as basis of fluorescence recorded from band F3. A direct interaction between Lil3, CHS and POR was confirmed in a split ubiquitin assay. In the presence of light or chlorophyllide, geranylgeraniolpyrophosphate was shown to trigger a loss of the F3 band and accumulation of Lil3 and geranylgeranyl reductase in F1 and F2. No direct interaction between Lil3 and geranylgeraniolreductase was identified in a split ubiquitin assay; however, accumulation of chlorophyll esterified to phytol in F1 and F2 corroborated the enzymes assembly. Chlorophyll esterified to phytol and the reaction center protein psbD of photosystem II were identified to accumulate together with psb29, and APX in the fluorescent band F2. Data show that Lil3 assembles with proteins regulating chlorophyll synthesis in etioplasts from barley (Hordeum vulgare L.). PMID:26172838

  14. Daily Changes in CO2 and Water Vapor Exchange, Chlorophyll Fluorescence, and Leaf Water Relations in the Halophyte Mesembryanthemum crystallinum during the Induction of Crassulacean Acid Metabolism in Response to High NaCl Salinity 1

    PubMed Central

    Winter, Klaus; Gademann, Rolf

    1991-01-01

    Simultaneous measurements of net CO2 exchange, water vapor exchange, and leaf water relations were performed in Mesembryanthemum crystallinum during the development of crassulacean acid metabolism (CAM) in response to high NaCl salinity in the rooting medium. Determinations of chlorophyll a fluorescence were used to estimate relative changes in electron transport rate. Alterations in leaf mass per unit area, which—on a short-term basis—largely reflect changes in water content, were recorded continuously with a beta-gauge. Turgor pressure of mesophyll cells was determined with a pressure probe. As reported previously (K Winter, DJ von Willert [1972] Z Pflanzenphysiol 67: 166-170), recently expanded leaves of plants grown under nonsaline conditions showed gas-exchange characteristics of a C3 plant. Although these plants were not exposed to any particular stress treatment, water content and turgor pressure regularly decreased toward the end of the 12 hour light periods and recovered during the following 12 hours of darkness. When the NaCl concentration of the rooting medium was raised to 400 millimolar, in increments of 100 millimolar given at the onset of the photoperiods for 4 consecutive days, leaf water content and turgor pressure decreased by as much as 30 and 60%, respectively, during the course of the photoperiods. These transient decreases probably triggered the induction of the biochemical machinery which is required for CAM to operate. After several days at 400 millimolar NaCl, when leaves showed features typical of CAM, overall turgor pressure and leaf mass per unit area had increased above the levels before onset of the salt treatment, and diurnal alterations in leaf water content were reduced. Net carbon gain during photoperiods and average intercellular CO2 partial pressures at which net CO2 uptake occurred, progressively decreased upon salinization. Reversible diurnal depressions in leaf conductance and net CO2 uptake, with minima recorded in the

  15. Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design

    SciTech Connect

    Akerboom, Jasper; Velez Rivera, Jonathan D.; Rodriguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Hernandez, Hector H.; Tian, Lin; Hires, S. Andrew; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2009-03-16

    The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca{sup 2+}-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.

  16. The Statistical Value of Raw Fluorescence Signal in Luminex xMAP Based Multiplex Immunoassays

    PubMed Central

    Breen, Edmond J.; Tan, Woei; Khan, Alamgir

    2016-01-01

    Tissue samples (plasma, saliva, serum or urine) from 169 patients classified as either normal or having one of seven possible diseases are analysed across three 96-well plates for the presences of 37 analytes using cytokine inflammation multiplexed immunoassay panels. Censoring for concentration data caused problems for analysis of the low abundant analytes. Using fluorescence analysis over concentration based analysis allowed analysis of these low abundant analytes. Mixed-effects analysis on the resulting fluorescence and concentration responses reveals a combination of censoring and mapping the fluorescence responses to concentration values, through a 5PL curve, changed observed analyte concentrations. Simulation verifies this, by showing a dependence on the mean florescence response and its distribution on the observed analyte concentration levels. Differences from normality, in the fluorescence responses, can lead to differences in concentration estimates and unreliable probabilities for treatment effects. It is seen that when fluorescence responses are normally distributed, probabilities of treatment effects for fluorescence based t-tests has greater statistical power than the same probabilities from concentration based t-tests. We add evidence that the fluorescence response, unlike concentration values, doesn’t require censoring and we show with respect to differential analysis on the fluorescence responses that background correction is not required. PMID:27243383

  17. Zeaxanthin protects plant photosynthesis by modulating chlorophyll triplet yield in specific light-harvesting antenna subunits.

    PubMed

    Dall'Osto, Luca; Holt, Nancy E; Kaligotla, Shanti; Fuciman, Marcel; Cazzaniga, Stefano; Carbonera, Donatella; Frank, Harry A; Alric, Jean; Bassi, Roberto

    2012-12-01

    Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4-6 antenna components of Photosystem II and the Lhca1-4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen. PMID:23066020

  18. Zeaxanthin Protects Plant Photosynthesis by Modulating Chlorophyll Triplet Yield in Specific Light-harvesting Antenna Subunits*

    PubMed Central

    Dall'Osto, Luca; Holt, Nancy E.; Kaligotla, Shanti; Fuciman, Marcel; Cazzaniga, Stefano; Carbonera, Donatella; Frank, Harry A.; Alric, Jean; Bassi, Roberto

    2012-01-01

    Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4–6 antenna components of Photosystem II and the Lhca1–4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen. PMID:23066020

  19. Interaction of triplet sensitizers with chlorophyll: Formation of singlet chlorophyll

    SciTech Connect

    Bohne, C.; Scaiano, J.C. )

    1989-03-29

    The interaction of several triplet sensitizers with chlorophyll a (Chla) has been examined using laser techniques. For the carbonyl sensitizers (with triplet energies > 53 kcal/mol) it was possible to measure the quenching rate constants; these were systematically {>=} 10{sup 10} M{sup {minus}1} s{sup {minus}1}. In the cases of acetone, benzophenone, and p-methoxyacetophenone the quenching process leads to the formation of the fluorescent singlet state of Chla. For benzophenone (k{sub q} = 2.4 {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1}) approximately 3% of the quenching events lead to the formation of excited Chla. Several sensitizers (decafluorobenzophenone, benzil, and fluorenone) do not induce Chla fluorescence (or do it very inefficiently) in spite of having triplet energies above the S{sub 1} level of Chla. In light of their results the most probable mechanism involves energy transfer from the triplet sensitizer to an upper triple state of Chla ({sup 3}Chla**) which can undergo reverse intersystem crossing to the singlet manifold of Chla and thus induce fluorescence. The inefficient sensitizers are those where electron transfer between the excited singlet of Chla or {sup 3}Chla** and ground-state sensitizers is energetically favorable, leading to rapid in-cage quenching of the initially formed excited states of Chla. Formation of radical-ion pair between the triplet sensitizer and Chla followed by the generation of singlet Chla in the recombination of the radical ions could not be completely discarded.

  20. A dual-site two-photon fluorescent probe for visualizing lysosomes and tracking lysosomal hydrogen sulfide with two different sets of fluorescence signals in the living cells and mouse liver tissues.

    PubMed

    Liu, Yong; Meng, Fangfang; He, Longwei; Liu, Keyin; Lin, Weiying

    2016-05-19

    Herein, we have developed a novel dual-site two-photon fluorescent probe as the first paradigm of the probes, which can concurrently report lysosomes and lysosomal H2S with two different sets of fluorescence signals in the living cells and tissues. PMID:27159054

  1. Pulse amplitude modulated chlorophyll fluorometer

    SciTech Connect

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  2. Application of photoacoustic, photothermal and fluorescence spectroscopies in signal enhancement and the kinetics, chemistry and photophysics of several dyes

    SciTech Connect

    Isak, S.J.

    1992-06-01

    Modified photoacoustic and photothermal spectroscopies are applied in analytical studies of liquid and solid systems. Quenching of benzophenone by potassium iodide is used to demonstrate application of time resolved photothermal spectroscopies in study of fast (submicrosecond) deexcitation processes. Inherently weak X-ray photoacoustic signals at a synchrotron are enhanced by the introduction of a volatile liquid into a gas-microphone photoacoustic cell. Traditionally, photoacoustic signals have been detected either by gas coupling with a microphone or with a piezoelectric detector. However, optically detected photoacoustic signals have been used in the determination of physical properties of a liquid sample system and are successfully applied to the study of deexcitation processes of a number of dye molecules. Photothermal beam deflection photoacoustic (PBDPA), fluorescence and absorbance measurements are utilized to study the chemistry and photophysics of cresyl violet in aqueous, aqueous micellar and methanolic solutions. A concentration dependence of the fluorescence quantum yield of cresyl violet is investigated. Aspects of chemistry and photophysics relating to potential use of several diazo dyes as photothermal sensitizing dyes in photodynamic therapy are explored experimentally and discussed. Photothermal beam deflection, fluorescence and absorbance measurements are again utilized. The dyes are found to have a number of interesting chemical and photophysical properties. They are also determined to be ideal photothermal sensitizing dye candidates.

  3. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    PubMed

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays. PMID:26592607

  4. Chlorophyll Catabolites – Chemical and Structural Footprints of a Fascinating Biological Phenomenon

    PubMed Central

    Moser, Simone; Müller, Thomas; Oberhuber, Michael; Kräutler, Bernhard

    2009-01-01

    Twenty years ago, the molecular basis for the seasonal disappearance of chlorophyll was still enigmatic. In the meantime, our knowledge on chlorophyll breakdown has grown considerably. As outlined here, it has been possible to decipher the basic transformations involved in natural chlorophyll breakdown by identification of chlorophyll catabolites in higher plants, and with the help of the synthesis of (putative) catabolic intermediates. In vascular plants, chlorophyll breakdown typically converts the green plant pigments efficiently into colorless and non-fluorescent tetrapyrroles. It involves colored intermediates only fleetingly and in an (elusive) enzyme-bound form. The non-fluorescent chlorophyll catabolites accumulate in the vacuoles of degreened leaves and are considered the products, primarily, of a detoxification process. However, they are effective antioxidants, and may thus also have physiologically beneficial chemical properties.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) PMID:21037946

  5. High-resolution methods for fluorescence retrieval from space.

    PubMed

    Mazzoni, Marina; Falorni, Pierluigi; Verhoef, Wouter

    2010-07-19

    The retrieval from space of a very weak fluorescence signal was studied in the O(2)A and O(2)B oxygen atmospheric absorption bands. The accuracy of the method was tested for the retrieval of the chlorophyll fluorescence and reflectance terms contributing to the sensor signal. The radiance at the top of the atmosphere was simulated by means of a commercial radiative-transfer program at a high resolution (0.1 cm(-1)). A test data set was generated in order to simulate sun-induced chlorophyll fluorescence at the top of the canopy. Reflectance terms were spectrally modeled using cubic splines and fluorescence by means of the sum of two Voigt functions. Sensor radiance residual minimization was performed in the presence of a multiplicative noise, thus ensuring that the sensor simulations were realistic. The study, which focused on the possibility of retrieving fluorescence with an accuracy better than 10%, was performed for instrument resolutions ranging from about 0.4 cm(-1) to 2 cm(-1) in order to test the algorithm for the characteristics of existing and planned hyper-spectral sensors. The algorithm was also used to retrieve fluorescence in the single O(2)A band at the OCO and TANSO-FTS instrument spectral resolutions. PMID:20720947

  6. Chlorophyll-Protein Complexes of the Cyanophyte, Nostoc sp. 1

    PubMed Central

    Rusckowski, Mary; Zilinskas, Barbara A.

    1980-01-01

    Four chlorophyll-protein complexes have been resolved from the cyanophyte, Nostoc sp., by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis at 4 C. Complexes solubilized by SDS from Spinacia oleracea were run for comparison. As has been well documented, the P700-chlorophyll a-protein complex from the higher plant and blue-green algal samples are similar, and the light-harvesting pigment protein complex is present only in the former. Most noteworthy are two closely migrating chlorophyll proteins in Nostoc sp. which have approximately the same mobility as a single chlorophyll-protein band resolvable from spinach. The absorption maximum of the complex from spinach is at 667 nanometers, and those of the two complexes from Nostoc sp. are at 667 and 669 nanometers; the fluorescence emission maximum at −196 C is at 685 nanometers, and the 735 nanometer fluorescence peak, characteristic of the P700-chlorophyll a-protein complex, is absent. The apoproteins of these new complexes from Nostoc sp. and spinach are in the kilodalton range. It appears that at least one of these two chlorophyll-protein complexes from Nostoc sp. compares with those recently described by others from higher plants and green algae as likely photosystem II complexes, perhaps containing P680, although no photochemical data are yet available. Images PMID:16661198

  7. An algorithm for computing chlorophyll-a concentrations using a dual-frequency fluorosensor

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1981-01-01

    An algorithm to be used on data from a dual-frequency fluorosensor (i.e. one using two wavelengths for excitation of chlorophyll-a fluorescence) to compute total chlorophyll-a concentration and to partition that chlorophyll between two color groups present in a mixed phytoplankton population is described. The algorithm is based on laboratory and field-testing experience gained with the airborne lidar oceanographic probing experiment fluorosensor.

  8. The impact of algal fluorescence on the underwater polarized light field

    NASA Astrophysics Data System (ADS)

    Tonizzo, A.; Ibrahim, A.; Zhou, J.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S.

    2010-04-01

    Multiangular, hyperspectral measurements of the underwater polarization light field, as well as comprehensive measurements of IOPs were collected in several cruise campaigns in the Chesapeake/Virginia area and New York Harbor/Hudson River areas. The waters examined were mostly eutropic water with Chlorophyll a concentration up to approximately 57 μg/L. It is found that Chlorophyll a fluorescence markedly impacts (reduces) the underwater degree of polarization (DOP) in the 650 - 700 nm spectral region. By taking note of the unpolarized nature of algal fluorescence and the partially polarized properties of elastic scattering, particularly by non-algal particles, we were able to separate the Chlorophyll a fluorescence signal from the total radiance. The analysis is based on comparisons of the underwater multiangular, hyperspectral polarization measurements which include fluorescence, compared with adding - doubling polarized radiative transfer simulations of elastic scattering which use measured IOPs as input, and which do not include fluorescence. The difference between the two shows the impact of fluorescence. These relationships are examined in detail, and the efficacy of using DOP measurements for underwater fluorescence retrieval is evaluated for different scattering geometries and water conditions.

  9. A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide

    PubMed Central

    Qiu, Huazhang; Wu, Namei; Zheng, Yanjie; Chen, Min; Weng, Shaohuang; Chen, Yuanzhong; Lin, Xinhua

    2015-01-01

    A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1) gene and mercury ion (Hg2+) were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience. PMID:25565810

  10. Reverse Fluorescence Enhancement and Colorimetric Bimodal Signal Readout Immunochromatography Test Strip for Ultrasensitive Large-Scale Screening and Postoperative Monitoring.

    PubMed

    Yao, Yingyi; Guo, Weisheng; Zhang, Jian; Wu, Yudong; Fu, Weihua; Liu, Tingting; Wu, Xiaoli; Wang, Hanjie; Gong, Xiaoqun; Liang, Xing-Jie; Chang, Jin

    2016-09-01

    Ultrasensitive and quantitative fast screening of cancer biomarkers by immunochromatography test strip (ICTS) is still challenging in clinic. The gold nanoparticles (NPs) based ICTS with colorimetric readout enables a quick spectrum screening but suffers from nonquantitative performance; although ICTS with fluorescence readout (FICTS) allows quantitative detection, its sensitivity still deserves more efforts and attentions. In this work, by taking advantages of colorimetric ICTS and FICTS, we described a reverse fluorescence enhancement ICTS (rFICTS) with bimodal signal readout for ultrasensitive and quantitative fast screening of carcinoembryonic antigen (CEA). In the presence of target, gold NPs aggregation in T line induced colorimetric readout, allowing on-the-spot spectrum screening in 10 min by naked eye. Meanwhile, the reverse fluorescence enhancement signal enabled more accurately quantitative detection with better sensitivity (5.89 pg/mL for CEA), which is more than 2 orders of magnitude lower than that of the conventional FICTS. The accuracy and stability of the rFICTS were investigated with more than 100 clinical serum samples for large-scale screening. Furthermore, this rFICTS also realized postoperative monitoring by detecting CEA in a patient with colon cancer and comparing with CT imaging diagnosis. These results indicated this rFICTS is particularly suitable for point-of-care (POC) diagnostics in both resource-rich and resource-limited settings. PMID:27547984

  11. Cell abundance and fluorescence of picoplankton in relation to growth irradiance and nitrogen availability in the red sea

    NASA Astrophysics Data System (ADS)

    Veldhuis, Marcel J. W.; Kraay, Gijsbert W.

    The vertical distribution and cellular fluorescence characteristics (chlorophyll and phycoerythrin, PE) of picoplankton (cyanobacteria and prochlorophytes) in the southern Red Sea were investigated in relation to physico-chemical properties of the water column. At all stations two subpopulations of Synechococcus sp. (type A and B) co-occurred, with maximal numbers up to 75 000·cm -3. Type B, with dim fluorescence signals, dominated the surface waters whereas type A, with bright fluorescence signals, dominated at greater depth. The divinyl a and b containing Prochlorococcus sp. peaked below the cyanobacteria at the deep chlorophyll maximum (DCM) with maximal cell numbers of 276 000·cm -3. Due to thermal stratification the cellular fluorescence (chlorophyll and phycoerythrin) increased with decreasing growth (PAR) irradiance, in an S-shaped manner, but magnitude and slope for the three picoplankters differed. The Synechococcus sp. type B had only a moderate increase in chlorophyll and phycoerythrin fluorescence signals with depth (3.4 and 6.6 fold, respectively), with values saturating at 3% (L d) of the surface irradiance. The deeper-water type not only possessed much higher values for cellular fluorescence than the B type, but the increase with decreasing light level was also much higer (for chlorophyll by a factor of 11 and PE increased by a factor of 23). In addition, maximal values for these fluorescence signals occurred at an isolume of 1 to 0.5%. These differences in concentrations and responses of the pigment content to the prevailing light climate explain the variation in abundance of both types over the water column. Although the prochlorophytes dominated almost the entire euphotic zone, their adaptation to low light levels was even better than in the two types of cyanobacteria. With depth their increase in chlorophyll fluorescence was similar to that observed in the cyanobacteria (with an increase from surface to bottom of the euphotic zone by a factor

  12. Measuring chlorophyll a concentrations in the Sea of Japan using probe and flow fluorimeters

    NASA Astrophysics Data System (ADS)

    Zakharkov, S. P.; Shtraikhert, E. A.; Shambarova, Y. V.; Gordeichuk, T. N.; Shi, X.

    2016-05-01

    The spatial variability of chlorophyll a concentrations was studied from the data of two near-shore expeditions and the cruise of the R/V Akademik M.A. Lavrent'ev in October-November 2010 over the northwestern part of the Sea of Japan. The sections across eddies showed a maximum of chlorophyll a at a depth of 40 m. According to the data from the cruise, the chlorophyll a concentration was maximum in the north of the sea and decreased to the south. In parallel, the procedures for chlorophyll a determination were compared for spectrophotometry with a fluorescence probe and a fluorescence flow system. The probe data of chlorophyll a fluorescence showed a high correlation with the chlorophyll a concentrations by spectrophotometry. On the contrary, data on chlorophyll a concentrations from spectrophotometry did not agree with those from the flow system. It was shown that a fluorimeter in the flow system recorded dissolved organic matter along with the chlorophyll a fluorescence.

  13. Site-selective in situ growth of fluorescent polymer-antibody conjugates with enhanced antigen detection by signal amplification.

    PubMed

    Zhang, Libin; Zhao, Wenguo; Liu, Xinyu; Wang, Guilin; Wang, Yang; Li, Dong; Xie, Liangzhi; Gao, Yan; Deng, Haiteng; Gao, Weiping

    2015-09-01

    This paper reports a new and general in situ methodology to grow fluorescent polymer conjugates from the interchain disulfide bridging sites of a monoclonal antibody. Atom transfer radical polymerization (ATRP) initiators were attached to a monoclonal antibody at its interchain disulfide bridging sites by disulfide re-bridging to yield a macroinitiator. Subsequent in situ ATRP of PEG-like monomers with dye-functionalized monomers from the macroinitiator formed antibody-polymer-dye conjugates with site-selectivity and tunable dye-to-antibody ratios. Notably, these conjugates can amplify antigen detection signal by reducing label-density dependent fluorescence quenching and by increasing dye-to-antibody ratios. The method developed may be applicable to a variety of antibodies, dyes and drugs to create a number of antibody-polymer-dye/drug conjugates for advanced diagnosis and therapy of diseases. PMID:26102329