Science.gov

Sample records for cholesterol trafficking parallels

  1. Analysis of cholesterol trafficking with fluorescent probes

    PubMed Central

    Maxfield, Frederick R.; Wüstner, Daniel

    2013-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport processes are not well understood. Fluorescence microscopy is a valuable tool for studying intracellular transport processes, but this method can be challenging for lipid molecules because addition of a fluorophore may alter the properties of the molecule greatly. We discuss the use of fluorescent molecules that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly. PMID:22325611

  2. Caveolin is present in intestinal cells: role in cholesterol trafficking?

    PubMed

    Field, F J; Born, E; Murthy, S; Mathur, S N

    1998-10-01

    It was postulated that specialized microdomains of the plasma membrane, consistent with caveolae, might play a role in cholesterol trafficking in intestinal cells. The existence, therefore, of caveolin and the role of detergent-resistant microdomains of the plasma membrane in cholesterol trafficking were investigated in human small intestine and CaCo-2 cells. Caveolin mRNA was detected by RT-PCR in small intestinal brushings and biopsies and in CaCo-2 cells. Northern hybridization of caveolin mRNA detected 3 kb and 0.8 kb transcripts in CaCo-2 cells. From brushings of distal duodenum and in CaCo-2 cells, Western analysis for detection of caveolin protein demonstrated a 21 kDa-sized protein and a 600 kDa homooligomer. In CaCo-2 cells, caveolin was demonstrated by immunofluorescence in apical membranes as well as within cells. Using sucrose-density gradients, caveolin was localized to detergent-resistant microdomains of the plasma membrane. As determined by cholesterol oxidase-accessible cholesterol, 3-5% of plasma membrane cholesterol in CaCo-2 cells was estimated to be in these detergent-resistant microdomains. After the absorption of cholesterol from bile-salt micelles, more plasma membrane cholesterol moved to these specialized microdomains within the plasma membrane and was esterified. In CaCo-2 cells, filipin, N-ethyl maleimide, and cholesterol depletion, treatments that disrupt caveolar function, interfered with the transport of plasma membrane cholesterol to the endoplasmic reticulum, whereas okadaic acid, sphingomyelinase, and cholesterol oxidase did not. Changes in cholesterol flux at the apical membrane of the cell did not alter mRNA levels or mass of caveolin. The results suggest that caveolin is present in intestinal and CaCo-2 cells and is associated with detergent-resistant microdomains of cellular membranes. With the influx of micellar cholesterol from the lumen, plasma membrane cholesterol moves or "clusters" to these microdomains and is transported

  3. Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer's disease.

    PubMed

    Marzolo, Maria-Paz; Bu, Guojun

    2009-04-01

    Amyloid-beta (Abeta) peptide accumulation in the brain is central to the pathogenesis of Alzheimer's disease (AD). Abeta is produced through proteolytic processing of a transmembrane protein, beta-amyloid precursor protein (APP), by beta- and gamma-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Abeta. Members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apoER2, interact with APP and regulate its endocytic trafficking. Additionally, APP trafficking and processing are greatly affected by cellular cholesterol content. In this review, we summarize the current understanding of the roles of lipoprotein receptors and cholesterol in APP trafficking and processing and their implication for AD pathogenesis and therapy. PMID:19041409

  4. First missense mutation outside of SERAC1 lipase domain affecting intracellular cholesterol trafficking.

    PubMed

    Rodríguez-García, María Elena; Martín-Hernández, Elena; de Aragón, Ana Martínez; García-Silva, María Teresa; Quijada-Fraile, Pilar; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2016-01-01

    We report the clinical and genetic findings in a Spanish boy who presented MEGDEL syndrome, a very rare inborn error of metabolism. Whole-exome sequencing uncovered a new homozygous mutation in the serine active site containing 1 (SERAC1) gene, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Functional studies in patient fibroblasts showed that p.D224G mutation affects the intracellular cholesterol trafficking. Only three missense mutations in this gene have been described before, being p.D224G the first missense mutation outside of the SERAC1 serine-lipase domain. Therefore, we conclude that the defect in cholesterol trafficking is not limited to alterations in this specific part of the protein. PMID:26445863

  5. The AAA ATPase VPS4/SKD1 regulates endosomal cholesterol trafficking independently of ESCRT-III.

    PubMed

    Du, Ximing; Kazim, Abdulla S; Dawes, Ian W; Brown, Andrew J; Yang, Hongyuan

    2013-01-01

    The exit of low-density lipoprotein derived cholesterol (LDL-C) from late endosomes (LE)/lysosomes (Ly) is mediated by Niemann-Pick C1 (NPC1), a multipass integral membrane protein on the limiting membranes of LE/Ly, and by NPC2, a cholesterol-binding protein in the lumen of LE/Ly. NPC2 delivers cholesterol to the N-terminal domain of NPC1, which is believed to insert cholesterol into the limiting membrane for subsequent transport to other subcellular organelles. Few cytoplasmic factors have been identified to govern cholesterol efflux from LE/Ly, and much less is known about the underlying molecular mechanisms. Here we establish VPS4, an AAA ATPase that has a well-established role in disassembling the ESCRT (endosomal sorting complex required for transport)-III polymer, as an important regulator of endosomal cholesterol transport. Knocking down VPS4 in HeLa cells resulted in prominent accumulation of LDL-C in LE/Ly, and disrupted cholesterol homeostatic responses at the endoplasmic reticulum. The level and localization of NPC1 and NPC2 appeared to be normal in VPS4 knockdown cells. Importantly, depleting any of the ESCRT-III components did not exert a significant effect on endosomal cholesterol transport. Our results thus identify an important cytoplasmic regulator of endosomal cholesterol trafficking and represent the first functional separation of VPS4 from ESCRT-III. PMID:23009658

  6. The steroidal analog GW707 activates the SREBP pathway through disruption of intracellular cholesterol trafficking.

    PubMed

    Zhang, Jessie; Dudley-Rucker, Nicole; Crowley, Jan R; Lopez-Perez, Elvira; Issandou, Marc; Schaffer, Jean E; Ory, Daniel S

    2004-02-01

    Recently, a new class of lipid-lowering agents has been described that upregulate LDL receptor (LDLr) activity. These agents are proposed to activate sterol-regulated gene expression through binding to the sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP). Here, we show that the steroidal LDLr upregulator, GW707, induces accumulation of lysosomal free cholesterol and inhibits LDL-stimulated cholesterol esterification, similar to that observed in U18666A-treated cells and in Niemann-Pick type C1 (NPC1) mutants. Moreover, we demonstrate that induction of the NPC-like phenotype by GW707 is independent of SCAP function. We find that treatment with GW707 does not increase SREBP-dependent gene expression above that observed in lipoprotein-starved cells. Rather, we show that the apparent increase in SREBP-dependent activity in GW707-treated cells is attributable to a failure to appropriately suppress sterol-regulated gene expression, as has been shown previously for U18666A-treated cells and NPC mutant fibroblasts. We further demonstrate that cells treated with either GW707 or U18666A fail to appropriately generate 27-hydroxycholesterol in response to LDL cholesterol. Taken together, these findings support a mechanism in which GW707 exerts its hypolipidemic effects through disruption of late endosomal/lysosomal sterol trafficking and subsequent stimulation of LDLr activity. PMID:14617742

  7. Altered Cholesterol Intracellular Trafficking and the Development of Pathological Hallmarks of Sporadic AD

    PubMed Central

    Chen, Xuesong; Hui, Liang; Soliman, Mahmoud L; Geiger, Jonathan D.

    2014-01-01

    Compared to the rare familial early onset Alzheimer’s disease (AD) that results from gene mutations in AbPP and presenilin-1, the pathogenesis of sporadic AD is much more complex and is believed to result from complex interactions between nutritional, environmental, epigenetic and genetic factors. Among those factors, the presence APOE4 is still the single strongest genetic risk factor for sporadic AD. However, the exact underlying mechanism whereby apoE4 contributes to the pathogenesis of sporadic AD remains unclear. Here, we discuss how altered cholesterol intracellular trafficking as a result of apoE4 might contribute to the development of pathological hallmarks of AD including brain deposition of amyloid beta (Ab), neurofibrillary tangles, and synaptic dysfunction. PMID:25621310

  8. Synthesis and validation of novel cholesterol-based fluorescent lipids designed to observe the cellular trafficking of cationic liposomes.

    PubMed

    Kim, Bieong-Kil; Seu, Young-Bae; Choi, Jong-Soo; Park, Jong-Won; Doh, Kyung-Oh

    2015-09-15

    Cholesterol-based fluorescent lipids with ether linker were synthesized using NBD (Chol-E-NBD) or Rhodamine B (Chol-E-Rh), and the usefulnesses as fluorescent probes for tracing cholesterol-based liposomes were validated. The fluorescent intensities of liposomes containing these modified lipids were measured and observed under a microscope. Neither compound interfered with the expression of GFP plasmid, and live cell images were obtained without interferences. Changes in the fluorescent intensity of liposomes containing Chol-E-NBD were followed by flow cytometry for up to 24h. These fluorescent lipids could be useful probes for trafficking of cationic liposome-mediated gene delivery. PMID:26243368

  9. Sterol Carrier Protein-2, a Nonspecific Lipid-Transfer Protein, in Intracellular Cholesterol Trafficking in Testicular Leydig Cells

    PubMed Central

    Li, Nancy C.; Fan, Jinjiang; Papadopoulos, Vassilios

    2016-01-01

    Sterol carrier protein-2 (SCP2), also called nonspecific lipid-transfer protein, is thought to play a major role in intracellular lipid transport and metabolism, and it has been associated with diseases involving abnormalities in lipid trafficking, such as Zellweger syndrome. The Scp2 gene encodes the 58 kDa sterol carrier protein-x (SCPX) and 15 kDa pro-SCP2 proteins, both of which contain a 13 kDa SCP2 domain in their C-termini. We found that 22-NBD-cholesterol, a fluorescent analog of cholesterol and a preferred SCP2 ligands, was not localized in the peroxisomes. This raises questions about previous reports on the localization of the SCPX and SCP2 proteins and their relationship to peroxisomes and mitochondria in intracellular cholesterol transport. Immunofluorescent staining of cryosections of mouse testis and of MA-10 mouse tumor Leydig cells showed that SCPX and SCP2 are present in both mouse testicular interstitial tissue and in MA-10 cells. Fluorescent fusion proteins of SCPX and SCP2, as well as confocal live-cell imaging, were used to investigate the subcellular targeting of these proteins and the function of the putative mitochondrial targeting sequence. The results showed that SCPX and SCP2 are targeted to the peroxisomes by the C-terminal PTS1 domain, but the putative N-terminal mitochondrial targeting sequence alone is not potent enough to localize SCPX and SCP2 to the mitochondria. Homology modeling and molecular docking studies indicated that the SCP2 domain binds cholesterol, but lacks specificity of the binding and/or transport. These findings further our understanding of the role of SCPX and SCP2 in intracellular cholesterol transport, and present a new point of view on the role of these proteins in cholesterol trafficking. PMID:26901662

  10. Sterol Carrier Protein-2, a Nonspecific Lipid-Transfer Protein, in Intracellular Cholesterol Trafficking in Testicular Leydig Cells.

    PubMed

    Li, Nancy C; Fan, Jinjiang; Papadopoulos, Vassilios

    2016-01-01

    Sterol carrier protein-2 (SCP2), also called nonspecific lipid-transfer protein, is thought to play a major role in intracellular lipid transport and metabolism, and it has been associated with diseases involving abnormalities in lipid trafficking, such as Zellweger syndrome. The Scp2 gene encodes the 58 kDa sterol carrier protein-x (SCPX) and 15 kDa pro-SCP2 proteins, both of which contain a 13 kDa SCP2 domain in their C-termini. We found that 22-NBD-cholesterol, a fluorescent analog of cholesterol and a preferred SCP2 ligands, was not localized in the peroxisomes. This raises questions about previous reports on the localization of the SCPX and SCP2 proteins and their relationship to peroxisomes and mitochondria in intracellular cholesterol transport. Immunofluorescent staining of cryosections of mouse testis and of MA-10 mouse tumor Leydig cells showed that SCPX and SCP2 are present in both mouse testicular interstitial tissue and in MA-10 cells. Fluorescent fusion proteins of SCPX and SCP2, as well as confocal live-cell imaging, were used to investigate the subcellular targeting of these proteins and the function of the putative mitochondrial targeting sequence. The results showed that SCPX and SCP2 are targeted to the peroxisomes by the C-terminal PTS1 domain, but the putative N-terminal mitochondrial targeting sequence alone is not potent enough to localize SCPX and SCP2 to the mitochondria. Homology modeling and molecular docking studies indicated that the SCP2 domain binds cholesterol, but lacks specificity of the binding and/or transport. These findings further our understanding of the role of SCPX and SCP2 in intracellular cholesterol transport, and present a new point of view on the role of these proteins in cholesterol trafficking. PMID:26901662

  11. Cholesterol dependence of collagen and echovirus 1 trafficking along the novel α2β1 integrin internalization pathway.

    PubMed

    Siljamäki, Elina; Rintanen, Nina; Kirsi, Maija; Upla, Paula; Wang, Wei; Karjalainen, Mikko; Ikonen, Elina; Marjomäki, Varpu

    2013-01-01

    We have previously shown that soluble collagen and a human pathogen, echovirus 1 (EV1) cluster α2β1 integrin on the plasma membrane and cause their internalization into cytoplasmic endosomes. Here we show that cholesterol plays a major role not only in the uptake of α2β1 integrin and its ligands but also in the formation of α2 integrin-specific multivesicular bodies (α2-MVBs) and virus infection. EV1 infection and α2β1 integrin internalization were totally halted by low amounts of the cholesterol-aggregating drugs filipin or nystatin. Inhibition of cholesterol synthesis and accumulation of lanosterol after ketoconazole treatment inhibited uptake of collagen, virus and clustered integrin, and prevented formation of multivesicular bodies and virus infection. Loading of lipid starved cells with cholesterol increased infection to some extent but could not completely restore EV1 infection to control levels. Cold Triton X-100 treatment did not solubilize the α2-MVBs suggesting, together with cholesterol labeling, that the cytoplasmic endosomes were enriched in detergent-resistant lipids in contrast to αV integrin labeled control endosomes in the clathrin pathway. Cholesterol aggregation leading to increased ion permeability caused a significant reduction in EV1 uncoating in endosomes as judged by sucrose gradient centrifugation and by neutral red-based uncoating assay. In contrast, the replication step was not dependent on cholesterol in contrast to the reports on several other viruses. In conclusion, our results showed that the integrin internalization pathway is dependent on cholesterol for uptake of collagen, EV1 and integrin, for maturation of endosomal structures and for promoting EV1 uncoating. The results thus provide novel information for developing anti-viral strategies and more insight into collagen and integrin trafficking. PMID:23393580

  12. Cholesterol regulates Syntaxin 6 trafficking at trans-Golgi network endosomal boundaries.

    PubMed

    Reverter, Meritxell; Rentero, Carles; Garcia-Melero, Ana; Hoque, Monira; Vilà de Muga, Sandra; Alvarez-Guaita, Anna; Conway, James R W; Wood, Peta; Cairns, Rose; Lykopoulou, Lilia; Grinberg, Daniel; Vilageliu, Lluïsa; Bosch, Marta; Heeren, Joerg; Blasi, Juan; Timpson, Paul; Pol, Albert; Tebar, Francesc; Murray, Rachael Z; Grewal, Thomas; Enrich, Carlos

    2014-05-01

    Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion. PMID:24746815

  13. Cholesterol oxidase and the hydroxymethylglutaryl coenzyme A reductase inhibitor mevinolin perturb endocytic trafficking in cultured vascular smooth muscle cells.

    PubMed

    Thyberg, J

    2003-10-01

    Cholesterol is a component of cellular membranes and especially abundant in caveolae (50-80 nm flask-shaped invaginations of the plasma membrane). Caveolae are highly numerous in vascular endothelial and smooth muscle cells and have been implicated in a variety of functions, including signal transduction, lipid transport and uptake of macromolecules. Here, the effects of cholesterol oxidase (an enzyme that oxidizes cholesterol in caveolae of living cells) and mevinolin (an inhibitor of cholesterol synthesis) on fine structure and internalization of exogenous markers were studied in rat aortic smooth muscle cells grown on a substrate of fibronectin in serum-free primary cultures. Cholesterol oxidase caused a growth in size of the endocytic compartment with accumulation of enlarged endosomes and lysosomes containing tracer molecules. In parallel, the number of caveolae was reduced by about one fifth. Moreover, the morphology of the Golgi complex was altered with swollen cisternae surrounded by empty-looking vacuoles. Mevinolin suppressed transition of the cells from a differentiated or contractile to a dedifferentiated or synthetic phenotype. In addition, contractile cells were found to ingest horseradish peroxidase (HRP) not only into endosomes and lysosomes but also into Golgi cisternae, especially on the convex/cis side of the stacks, and the endoplasmic reticulum. A similar pathway was noted in contractile cells exposed to cholera toxin B subunit (CTB)-HRP conjugates, a ligand that binds to ganglioside GM1 and at least in part is ingested via caveolae. Mevinolin did not prevent the transport of CTB-HRP to the Golgi complex, but the conjugates were in this case concentrated to the concave/trans side of the cisternal stacks. However, no clear effect on the number of caveolae was noted. The observations indicate an important role of cholesterol and caveolae in the control of endocytic traffic in smooth muscle cells. This function appears most significant when the

  14. Desipramine induces disorder in cholesterol-rich membranes: implications for viral trafficking

    NASA Astrophysics Data System (ADS)

    Pakkanen, Kirsi; Salonen, Emppu; Mäkelä, Anna R.; Oker-Blom, Christian; Vattulainen, Ilpo; Vuento, Matti

    2009-12-01

    In this study, the effect of desipramine (DMI) on phospholipid bilayers and parvoviral entry was elucidated. In atomistic molecular dynamics simulations, DMI was found to introduce disorder in cholesterol-rich phospholipid bilayers. This was manifested by a decrease in the deuterium order parameter SCD as well as an increase in the membrane area. Disordering of the membrane suggested DMI to destabilize cholesterol-rich membrane domains (rafts) in cellular conditions. To relate the raft disrupting ability of DMI with novel biological relevance, we studied the intracellular effect of DMI using canine parvovirus (CPV), a virus known to interact with endosomal membranes and sphingomyelin, as an intracellular probe. DMI was found to cause retention of the virus in intracellular vesicular structures leading to the inhibition of viral proliferation. This implies that DMI has a deleterious effect on the viral traffic. As recycling endosomes and the internal vesicles of multivesicular bodies are known to contain raft components, the effect of desipramine beyond the plasma membrane step could be caused by raft disruption leading to impaired endosomal function and possibly have direct influence on the penetration of the virus through an endosomal membrane.

  15. Human Trafficking

    MedlinePlus

    ... TRAFFICKING (English) Listen < Back to Search FACT SHEET: HUMAN TRAFFICKING (English) Published: August 2, 2012 Topics: Public Awareness , ... organizations that protect and serve trafficking victims. National Human Trafficking Resource Center at 1.888.373.7888 Last ...

  16. Concurrent increase of cholesterol, sphingomyelin and glucosylceramide in the spleen from non-neurologic Niemann-Pick type C patients but also patients possibly affected with other lipid trafficking disorders.

    PubMed

    Harzer, Klaus; Massenkeil, Gero; Fröhlich, Eckhart

    2003-02-27

    Niemann-Pick type C disease (NPC) is a neurovisceral (or, extremely rarely, only visceral) lipidosis caused by mutations in the NPC1 gene or, in a few patients, the HE1 gene, which encode sterol regulating proteins. NPC is characterised by a complex lipid anomaly including a disturbed cellular trafficking of cholesterol but also multi-lipid storage in visceral organs and brain. Lipids were studied using conventional methods in enlarged spleens that had been removed from five patients for different therapeutic and diagnostic reasons and found to have microscopic signs of lysosomal storage disease not suspected clinically. The spleen lipid findings with a concurrent accumulation of cholesterol, sphingomyelin and glucosylceramide (Acc-CSG) allowed us to suggest NPC diagnoses for these patients, who were free of neurologic symptoms. From two patients no material for confirmatory studies was available, but in two other patients NPC diagnoses could be confirmed with the filipin cytochemical cholesterol assay and NPC1 gene analysis, respectively. However, these tests and also HE1 gene analysis were negative in a third patient. Since the Acc-CSG lipid pattern seems to indicate a multi-lipid trafficking defect rather than being highly specific for NPC, this patient, if not affected with very atypical NPC, may be a candidate for a different lipid trafficking disorder. The Acc-CSG pattern was considered to be similar to the lipid pattern known for the lipid rafts, these functional cell structures being probably disorganised and accumulated in late endosomes and lysosomes of NPC cells. PMID:12606053

  17. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    PubMed Central

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  18. Human Trafficking

    ERIC Educational Resources Information Center

    Wilson, David McKay

    2011-01-01

    The shadowy, criminal nature of human trafficking makes evaluating its nature and scope difficult. The U.S. State Department and anti-trafficking groups estimate that worldwide some 27 million people are caught in a form of forced servitude today. Public awareness of modern-day slavery is gaining momentum thanks to new abolitionist efforts. Among…

  19. What's Cholesterol?

    MedlinePlus

    ... Most cholesterol is LDL (low-density lipoprotein) cholesterol. LDL cholesterol is more likely to clog blood vessels because ... Here's a way to remember the difference: the LDL cholesterol is the bad kind, so call it "lousy" ...

  20. Human Trafficking

    MedlinePlus

    ... to debt bondage or peonage in which traffickers demand labor as a means repayment for a real ... human smuggling are two separate crimes under federal law. There are several important differences between them. Human ...

  1. About Cholesterol

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More About Cholesterol Updated:Aug 10,2016 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  2. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  3. Cholesterol (image)

    MedlinePlus

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  4. Cellular Localization and Trafficking of the Human ABCG1 Transporter

    PubMed Central

    Neufeld, Edward B.; O’Brien, Katherine; Walts, Avram D.; Stonik, John A.; Demosky, Steven J.; Malide, Daniela; Combs, Christian A.; Remaley, Alan T.

    2014-01-01

    We have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux. ABCG1 LEs frequently contacted the PM, providing a collisional mechanism for transfer of ABCG1-mobilized cholesterol, similar to ABCG1-mediated PM cholesterol efflux to lipoproteins. ABCG1-mobilized LE cholesterol also trafficked to the PM by a non-vesicular pathway. Transfer of ABCG1-mobilized cholesterol from the cytoplasmic face of LEs to the PM and concomitant removal of cholesterol from the outer leaflet of the PM bilayer by extracellular acceptors suggests that ABCG1 mobilizes cholesterol on both sides of the lipid bilayer for removal by acceptors. ABCG1 increased uptake of HDL into LEs, consistent with a potential ABCG1-mediated cholesterol efflux pathway involving HDL resecretion. Thus, ABCG1 at the PM mobilizes PM cholesterol and ABCG1 in LE/LYS generates mobile pools of cholesterol that can traffic by both vesicular and non-vesicular pathways to the PM where it can also be transferred to extracellular acceptors with a lipid surface. PMID:25405320

  5. Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diets with low omega (u)-6 polyunsaturated fatty acids (PUFA) to eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) ratios have been shown to decrease aortic cholesterol accumulation and have been suggested to promote weight loss. The involvement of the liver and gonadal adipose tissue (GAT...

  6. The Structural Basis of Cholesterol Activity in Membranes

    SciTech Connect

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  7. 25-Hydroxycholesterol Increases the Availability of Cholesterol in Phospholipid Membranes

    SciTech Connect

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2011-02-01

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.

  8. Cholesterol: a novel regulatory role in myelin formation.

    PubMed

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin

    2011-02-01

    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease. PMID:21343408

  9. Structure of Cholesterol in Lipid Rafts

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  10. Aspirin Prevention of Cholesterol Gallstone Formation in Prairie Dogs

    NASA Astrophysics Data System (ADS)

    Lee, Sum P.; Carey, Martin C.; Lamont, J. Thomas

    1981-03-01

    When prairie dogs (Cynomys ludovicianus) are fed a diet containing cholesterol, a marked increase in gallbladder mucin secretion parallels the evolution of cholesterol supersaturated bile. Gelation of mucin precedes the precipitation of cholesterol liquid and solid crystals and the development of gallstones. Aspirin given to prairie dogs inhibited mucin hypersecretion and gel accumulation and prevented gallstone formation without influencing the cholesterol content of supersaturated bile. This suggests that gallbladder mucin is a nucleation matrix for cholesterol gallstones.

  11. Cholesterol stabilizes fluid phosphoinositide domains

    PubMed Central

    Jiang, Zhiping; Redfern, Roberta E.; Isler, Yasmin; Ross, Alonzo H.

    2014-01-01

    Local accumulation of phosphoinositides (PIPs) is an important factor for a broad range of cellular events including membrane trafficking and cell signaling. The negatively charged phosphoinositide headgroups can interact with cations or cationic proteins and this electrostatic interaction has been identified as the main phosphoinositide clustering mechanism. However, an increasing number of reports show that phosphoinositide-mediated signaling events are at least in some cases cholesterol dependent, suggesting other possible contributors to the segregation of phosphoinositides. Using fluorescence microscopy on giant unilamellar vesicles and monolayers at the air/water interface, we present data showing that cholesterol stabilizes fluid phosphoinositide-enriched phases. The interaction with cholesterol is observed for all investigated phosphoinositides (PI(4)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2 and PI(3,4,5)P3) as well as phosphatidylinositol. We find that cholesterol is present in the phosphoinositide-enriched phase and that the resulting phase is fluid. Cholesterol derivatives modified at the hydroxyl group (cholestenone, cholesteryl ethyl ether) do not promote formation of phosphoinositide domains, suggesting an instrumental role of the cholesterol hydroxyl group in the observed cholesterol/phosphoinositide interaction. This leads to the hypothesis that cholesterol participates in an intermolecular hydrogen bond network formed among the phosphoinositide lipids. We had previously reported that the intra- and intermolecular hydrogen bond network between the phosphoinositide lipids leads to a reduction of the charge density at the phosphoinositide phosphomonoester groups (Kooijman et al. Biochemistry 48, (2009) 9360). We believe that cholesterol acts as a spacer between the phosphoinositide lipids, thereby reducing the electrostatic repulsion, while participating in the hydrogen bond network, leading to its further stabilization. To illustrate the effect of

  12. Women and Cholesterol

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... Glossary Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  13. Cholesterol IQ Quiz

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  14. Deregulation and Station Trafficking.

    ERIC Educational Resources Information Center

    Bates, Benjamin J.

    To test whether the revocation of the Federal Communications Commission's "Anti-Trafficking" rule (requiring television station owners to keep a station for three years before transferring its license to another party) impacted station owner behavior, a study compared the behavior of television station "traffickers" (owners seeking quick turnovers…

  15. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  16. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism

    PubMed Central

    Korolnek, Tamara; Hamza, Iqbal

    2014-01-01

    Heme is an iron-containing porphyrin ring that serves as a prosthetic group in proteins that function in diverse metabolic pathways. Heme is also a major source of bioavailable iron in the human diet. While the synthesis of heme has been well-characterized, the pathways for heme trafficking remain poorly understood. It is likely that heme transport across membranes is highly regulated, as free heme is toxic to cells. This review outlines the requirement for heme delivery to various subcellular compartments as well as possible mechanisms for the mobilization of heme to these compartments. We also discuss how these trafficking pathways might function during physiological events involving inter- and intra-cellular mobilization of heme, including erythropoiesis, erythrophagocytosis, heme absorption in the gut, as well as heme transport pathways supporting embryonic development. Lastly, we aim to question the current dogma that heme, in toto, is not mobilized from one cell or tissue to another, outlining the evidence for these pathways and drawing parallels to other well-accepted paradigms for copper, iron, and cholesterol homeostasis. PMID:24926267

  17. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    PubMed

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux. PMID:24267242

  18. Isoform dependent regulation of human HCN channels by cholesterol

    PubMed Central

    Fürst, Oliver; D’Avanzo, Nazzareno

    2015-01-01

    Cholesterol has been shown to regulate numerous ion channels. HCN channels represent the molecular correlate of If or Ih in sinoatrial node (SAN) and neuronal cells. Previous studies have implicated a role for cholesterol in the regulation of rabbit HCN4 channels with effects on pacing in the rabbit SAN. Using electrophysiological and biochemical approaches, we examined the effect of cholesterol modulation on human HCN1, HCN2 and HCN4 isoforms. Patch-clamp experiments uncovered isoform specific differences in the effect of cholesterol on gating kinetics upon depletion by MβCD or mevastatin or enrichment using MβCD/cholesterol. Most dramatically cholesterol had isoform specific effects on mode-shifting, which has been suggested to play a key role in stabilizing firing rate and preventing arrhythmic firing in SAN cells and neurons. Mode-shifting in HCN1 channels was insensitive to cholesterol manipulation, while HCN2 and HCN4 were strongly affected. Trafficking of each isoform to the plasma membrane was also affected by cholesterol modulation differentially between isoforms, however, each isoform remained localized in lipid raft domains after cholesterol depletion. These effects may contribute to the side effects of cholesterol reducing therapies including disrupted heart rhythm and neuropathic pain, as well as the susceptibility of sinus dysfunction in patients with elevated cholesterol. PMID:26404789

  19. Cholesterol testing and results

    MedlinePlus

    ... lipoprotein (LDL cholesterol) High density lipoprotein (HDL cholesterol) Triglycerides (another type of fat in your blood) Very ... made of fat and protein. They carry cholesterol, triglycerides, and other fats, called lipids, in the blood ...

  20. All about Cholesterol

    MedlinePlus

    ... are several kinds of fats in your blood. • LDL cholesterol is sometimes called “bad” cholesterol. It can narrow ... medicine to manage blood fats. They help lower LDL cholesterol. They also help lower your risk for a ...

  1. High blood cholesterol levels

    MedlinePlus

    ... gov/ency/article/000403.htm High blood cholesterol levels To use the sharing features on this page, ... called "bad" cholesterol For many people, abnormal cholesterol levels are partly due to an unhealthy lifestyle. This ...

  2. Cholesterol dynamics in membranes.

    PubMed Central

    Yeagle, P L; Albert, A D; Boesze-Battaglia, K; Young, J; Frye, J

    1990-01-01

    Time-resolved fluorescence anisotropy of the sterol analogue, cholestatrienol, and 13C nuclear magnetic resonance (NMR) spin lattice relaxation time (T1c) measurements of [13C4] labeled cholesterol were exploited to determine the correlation times characterizing the major modes of motion of cholesterol in unsonicated phospholipid multilamellar liposomes. Two modes of motion were found to be important: (a) rotational diffusion and (b) time dependence of the orientation of the director for axial diffusion, or "wobble." From the time-resolved fluorescence anisotropy decays of cholestatrienol in egg phosphatidylcholine (PC) bilayers, a value for tau perpendicular, the correlation time for wobble, of 0.9 x 10(-9) s and a value for S perpendicular, the order parameter characterizing the same motion, of 0.45 s were calculated. Both tau perpendicular and S perpendicular were relatively insensitive to temperature and cholesterol content of the membranes. The T1c measurements of [13C4] labeled cholesterol did not provide a quantitative determination of tau parallel, the correlation time for axial diffusion. T1c from the lipid hydrocarbon chains suggested a value for tau perpendicular similar to that for cholesterol. Steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in a variety of pure and mixed lipid multilamellar liposomes. Both the lipid headgroups and the lipid hydrocarbons chains contributed to the determination of the sterol environment in the membrane, as revealed by these fluorescence measurements. In particular, effects of the phosphatidylethanolamine (PE) headgroup and of multiple unsaturation in the lipid hydrocarbon chains were observed. However, while the steady-state anisotropy was sensitive to these factors, the time-resolved fluorescence analysis indicated that tau perpendicular was not strongly affected by the lipid composition of the membrane. S perpendicular may be increased

  3. Novel mechanisms of intracellular cholesterol transport: oxysterol-binding proteins and membrane contact sites.

    PubMed

    Du, Ximing; Brown, Andrew J; Yang, Hongyuan

    2015-08-01

    Cholesterol is an essential membrane constituent, and also plays a key role in cell signalling. Within a cell, how cholesterol is transported and how its heterogeneous distribution is maintained are poorly understood. Recent advances have identified novel pathways and regulators of cholesterol trafficking. Sterol transfer by lipid-binding proteins, such as OSBP (oxysterol-binding protein), coupled with phosphatidylinositol 4-phosphate exchange at membrane contact sites (MCSs) has emerged as a new theme of cholesterol transport between organellar membranes. Moreover, a previously unappreciated role of peroxisomes in cholesterol trafficking has been revealed recently. These discoveries highlight the crucial role of MCSs, or junctions, in facilitating lipid movement, and provide mechanistic insights into how cholesterol is sorted in cells. PMID:25932595

  4. Activation of Membrane Cholesterol by 63 Amphipaths†

    PubMed Central

    Lange, Yvonne; Ye, Jin; Duban, Mark-Eugene; Steck, Theodore L.

    2009-01-01

    A few membrane-intercalating amphipaths have been observed to stimulate the interaction of cholesterol with cholesterol oxidase, saponin and cyclodextrin, presumably by displacing cholesterol laterally from its phospholipid complexes. We now report that this effect, referred to as cholesterol activation, occurs with dozens of other amphipaths, including alkanols, saturated and cis- and trans-unsaturated fatty acids, fatty acid methyl esters, sphingosine derivatives, terpenes, alkyl ethers, ketones, aromatics and cyclic alkyl derivatives. The apparent potency of the agents tested ranged from 3 μM to 7 mM and generally paralleled their octanol/water partition coefficients, except that relative potency declined for compounds with> 10 carbons. Some small amphipaths activated cholesterol at a membrane concentration of ~3 moles per 100 moles bilayer lipids, about equimolar with the cholesterol they displaced. Lysophosphatidylserine countered the effects of all these agents, consistent with its ability to reduce the pool of active membrane cholesterol. Various amphipaths stabilized red cells against the hemolysis elicited by cholesterol depletion, presumably by substituting for the extracted sterol. The number and location of cis and trans fatty acid unsaturations and the absolute stereochemistry of enantiomer pairs had only small effects on amphipath potency. Nevertheless, potency varied ~7-fold within a group of diverse agents with similar partition coefficients. We infer that a wide variety of amphipaths can displace membrane cholesterol by competing stoichiometrically but with only limited specificity for its weak association with phospholipids. Any number of other drugs and experimental agents might do the same. PMID:19655814

  5. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    PubMed

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology. PMID:25425472

  6. Ciliopathies: The Trafficking Connection

    PubMed Central

    Madhivanan, Kayalvizhi; Aguilar, R. Claudio

    2014-01-01

    The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multi-organ diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies seems to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e., affecting cilia assembly) will lead to more severe symptoms, while those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology. PMID:25040720

  7. Environment and drug trafficking.

    PubMed

    Bryson, L O

    1992-01-01

    Illicit drug trafficking is a very complex matter, not only because it causes serious and pernicious problems in the socio-economic sphere, but because drug-taking can lead to personal degradation. To this situation, lamentable enough in itself, must be added the immense ecological and environmental damage, which presents grave and serious dangers for the planet. PMID:1302599

  8. Interactions between ether phospholipids and cholesterol as determined by scattering and molecular dynamics simulations.

    PubMed

    Pan, Jianjun; Cheng, Xiaolin; Heberle, Frederick A; Mostofian, Barmak; Kučerka, Norbert; Drazba, Paul; Katsaras, John

    2012-12-27

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol's molecular interactions with ether lipids as determined using a combination of small-angle neutron and X-ray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup's phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules. PMID:23199292

  9. Interactions between Ether Phospholipids and Cholesterol as Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Heberle, Frederick A; Mostofian, Barmak; Kucerka, Norbert; Drazba, Paul; Katsaras, John

    2012-01-01

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol s molecular interactions with ether lipids as determined using a combination of small-angle neutron and Xray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup s phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

  10. EHD1 regulates cholesterol homeostasis and lipid droplet storage

    PubMed Central

    Naslavsky, Naava; Rahajeng, Juliati; Rapaport, Debora; Horowitz, Mia; Caplan, Steve

    2007-01-01

    Endocytic transport is critical for the subcellular distribution of free cholesterol and the endocytic recycling compartment (ERC) is an important organelle that stores cholesterol and regulates its trafficking. The C-terminal EHD protein, EHD1, controls receptor recycling through the ERC and affects free cholesterol distribution in the cell. We utilized embryonic fibroblasts from EHD1 knockout mice (Ehd1-/-MEF) and SiRNA in normal MEF cells to assess the role of EHD1 in intracellular transport of cholesterol. Surprisingly, Ehd1-/-MEFs displayed reduced levels of esterified and free cholesterol, which returned to normal level upon re-introduction of wild-type, but not dysfunctional EHD1. Moreover, triglyceride and cholesterol storage organelles known as ‘lipid droplets’ were smaller in size in cells lacking EHD1, indicating that less esterified cholesterol and triglycerides were being stored. Decreased cellular cholesterol and reduced lipid droplet size in Ehd1-/-MEFs correlated with ineffectual cholesterol uptake via LDL receptor, suggesting involvement of EHD1 in LDL receptor internalization. PMID:17451652

  11. Cholesterol efflux and reverse cholesterol transport.

    PubMed

    Favari, Elda; Chroni, Angelika; Tietge, Uwe J F; Zanotti, Ilaria; Escolà-Gil, Joan Carles; Bernini, Franco

    2015-01-01

    Both alterations of lipid/lipoprotein metabolism and inflammatory events contribute to the formation of the atherosclerotic plaque, characterized by the accumulation of abnormal amounts of cholesterol and macrophages in the artery wall. Reverse cholesterol transport (RCT) may counteract the pathogenic events leading to the formation and development of atheroma, by promoting the high-density lipoprotein (HDL)-mediated removal of cholesterol from the artery wall. Recent in vivo studies established the inverse relationship between RCT efficiency and atherosclerotic cardiovascular diseases (CVD), thus suggesting that the promotion of this process may represent a novel strategy to reduce atherosclerotic plaque burden and subsequent cardiovascular events. HDL plays a primary role in all stages of RCT: (1) cholesterol efflux, where these lipoproteins remove excess cholesterol from cells; (2) lipoprotein remodeling, where HDL undergo structural modifications with possible impact on their function; and (3) hepatic lipid uptake, where HDL releases cholesterol to the liver, for the final excretion into bile and feces. Although the inverse association between HDL plasma levels and CVD risk has been postulated for years, recently this concept has been challenged by studies reporting that HDL antiatherogenic functions may be independent of their plasma levels. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux may offer a better prediction of CVD than HDL levels alone. Consistent with this idea, it has been recently demonstrated that the evaluation of serum cholesterol efflux capacity (CEC) is a predictor of atherosclerosis extent in humans. PMID:25522988

  12. Mobilization of late-endosomal cholesterol is inhibited by Rab guanine nucleotide dissociation inhibitor.

    PubMed

    Hölttä-Vuori, M; Määttä, J; Ullrich, O; Kuismanen, E; Ikonen, E

    2000-01-27

    Cholesterol entering cells in low-density lipoproteins (LDL) via receptor-mediated endocytosis is transported to organelles of the late endocytic pathway for degradation of the lipoprotein particles. The fate of the free cholesterol released remains poorly understood, however. Recent observations suggest that late-endosomal cholesterol sequestration is regulated by the dynamics of lysobisphosphatidic acid (LBPA)-rich membranes [1]. Genetic studies have pinpointed a protein, Niemann-Pick C-1 (NPC-1), that is required for the mobilization of late-endosomal/lysosomal cholesterol by an unknown mechanism [2]. Here, we report the removal of accumulated cholesterol by overexpression of the NPC-1 protein in NPC-1-deficient fibroblasts from patients with Niemann-Pick disease, and in normal fibroblasts upon release of a progesterone-induced block of cholesterol transport. We show that late-endosomal/lysosomal cholesterol mobilization is specifically inhibited by microinjection of Rab GDP-dissociation inhibitor (Rab-GDI). Moreover, clearance of the cholesterol deposits by NPC-1 in patients' fibroblasts is accompanied by the redistribution of LBPA and of a lysosomal hydrolase that utilizes the mannose-6-phosphate receptor. Our results reveal, for the first time, the involvement of a specific molecular component of the membrane-trafficking machinery in cholesterol transport and the coupling of late-endosomal cholesterol egress to the trafficking of other lipid and protein cargo. PMID:10662671

  13. Lysosomal Trafficking Regulator (LYST).

    PubMed

    Ji, Xiaojie; Chang, Bo; Naggert, Jürgen K; Nishina, Patsy M

    2016-01-01

    Regulation of vesicle trafficking to lysosomes and lysosome-related organelles (LROs) as well as regulation of the size of these organelles are critical to maintain their functions. Disruption of the lysosomal trafficking regulator (LYST) results in Chediak-Higashi syndrome (CHS), a rare autosomal recessive disorder characterized by oculocutaneous albinism, prolonged bleeding, severe immunodeficiency, recurrent bacterial infection, neurologic dysfunction and hemophagocytic lympohistiocytosis (HLH). The classic diagnostic feature of the syndrome is enlarged LROs in all cell types, including lysosomes, melanosomes, cytolytic granules and platelet dense bodies. The most striking CHS ocular pathology observed is an enlargement of melanosomes in the retinal pigment epithelium (RPE), which leads to aberrant distribution of eye pigmentation, and results in photophobia and decreased visual acuity. Understanding the molecular function of LYST and identification of its interacting partners may provide therapeutic targets for CHS and other diseases associated with the regulation of LRO size and/or vesicle trafficking, such as asthma, urticaria and Leishmania amazonensis infections. PMID:26427484

  14. Get Your Cholesterol Checked

    MedlinePlus

    ... You also get cholesterol by eating foods like egg yolks, fatty meats, and regular cheese. If you have too much cholesterol in your body, it can build up inside your blood vessels and make it hard for blood to ...

  15. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  16. Health implications of human trafficking.

    PubMed

    Richards, Tiffany A

    2014-01-01

    Freedom is arguably the most cherished right in the United States. But each year, approximately 14,500 to 17,500 women, men and children are trafficked into the United States for the purposes of forced labor or sexual exploitation. Human trafficking has significant effects on both physical and mental health. This article describes the features of human trafficking, its physical and mental health effects and the vital role nurses can play in providing care to this vulnerable population. PMID:24750655

  17. Mitochondria, cholesterol and cancer cell metabolism.

    PubMed

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  18. Potent and selective mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  19. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells.

    PubMed

    Ma, Guangzhong; Zhou, Junyu; Tian, Chunxiu; Jiang, Dechen; Fang, Danjun; Chen, Hongyuan

    2013-04-16

    A luminol electrochemiluminescence assay was reported to analyze active cholesterol at the plasma membrane in single mammalian cells. The cellular membrane cholesterol was activated by the exposure of the cells to low ionic strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT). The active membrane cholesterol was reacted with cholesterol oxidase in the solution to generate a peak concentration of hydrogen peroxide on the electrode surface, which induced a measurable luminol electrochemiluminescence. Further treatment of the active cells with mevastatin decreased the active membrane cholesterol resulting in a drop in luminance. No change in the intracellular calcium was observed in the presence of luminol and voltage, which indicated that our analysis process might not interrupt the intracellular cholesterol trafficking. Single cell analysis was performed by placing a pinhole below the electrode so that only one cell was exposed to the photomultiplier tube (PMT). Twelve single cells were analyzed individually, and a large deviation on luminance ratio observed exhibited the cell heterogeneity on the active membrane cholesterol. The smaller deviation on ACAT/HMGCoA inhibited cells than ACAT inhibited cells suggested different inhibition efficiency for sandoz 58035 and mevastatin. The new information obtained from single cell analysis might provide a new insight on the study of intracellular cholesterol trafficking. PMID:23527944

  20. Rapid mineralocorticoid receptor trafficking.

    PubMed

    Gekle, M; Bretschneider, M; Meinel, S; Ruhs, S; Grossmann, C

    2014-03-01

    The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor that physiologically regulates water-electrolyte homeostasis and controls blood pressure. The MR can also elicit inflammatory and remodeling processes in the cardiovascular system and the kidneys, which require the presence of additional pathological factors like for example nitrosative stress. However, the underlying molecular mechanism(s) for pathophysiological MR effects remain(s) elusive. The inactive MR is located in the cytosol associated with chaperone molecules including HSP90. After ligand binding, the MR monomer rapidly translocates into the nucleus while still being associated to HSP90 and after dissociation from HSP90 binds to hormone-response-elements called glucocorticoid response elements (GREs) as a dimer. There are indications that rapid MR trafficking is modulated in the presence of high salt, oxidative or nitrosative stress, hypothetically by induction or posttranslational modifications. Additionally, glucocorticoids and the enzyme 11beta hydroxysteroid dehydrogenase may also influence MR activation. Because MR trafficking and its modulation by micro-milieu factors influence MR cellular localization, it is not only relevant for genomic but also for nongenomic MR effects. PMID:24252381

  1. Enteroviruses harness the cellular endocytic machinery to remodel the host cell cholesterol landscape for effective viral replication

    PubMed Central

    Ilnytska, Olha; Santiana, Marianita; Hsu, Nai-Yun; Du, Wen-Li; Chen, Ying-Han; Viktorova, Ekaterina G.; Belov, Georgy; Brinker, Anita; Storch, Judith; Moore, Christopher; Dixon, Joseph L.; Altan-Bonnet, Nihal

    2013-01-01

    Cholesterol is a critical component of cellular membranes, regulating assembly and function of membrane-based protein/lipid complexes. Many RNA viruses, including enteroviruses, remodel host membranes to generate organelles with unique lipid blueprints on which they assemble replication complexes and synthesize viral RNA. Here we find that clathrin-mediated endocytosis (CME) is harnessed by enteroviruses to traffic cholesterol from the plasma membrane (PM) and extracellular medium to replication organelles where cholesterol then regulates viral polyprotein processing and facilitates genome synthesis. When CME is disrupted, cellular cholesterol pools are instead stored in lipid droplets; cholesterol cannot be trafficked to replication organelles; and replication is inhibited. In contrast, replication is stimulated in cholesterol-elevated cells like those lacking caveolins or those from Niemann-Pick disease patients. Our findings indicate cholesterol as a critical determinant for enteroviral replication and outline roles for the endocytic machinery in both the enteroviral lifecycle and host cell cholesterol homeostasis. PMID:24034614

  2. Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol

    PubMed Central

    Lee, Hyeon Jeong; Zhang, Wandi; Zhang, Delong; Yang, Yang; Liu, Bin; Barker, Eric L.; Buhman, Kimberly K.; Slipchenko, Lyudmila V.; Dai, Mingji; Cheng, Ji-Xin

    2015-01-01

    We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms. PMID:25608867

  3. Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol

    NASA Astrophysics Data System (ADS)

    Lee, Hyeon Jeong; Zhang, Wandi; Zhang, Delong; Yang, Yang; Liu, Bin; Barker, Eric L.; Buhman, Kimberly K.; Slipchenko, Lyudmila V.; Dai, Mingji; Cheng, Ji-Xin

    2015-01-01

    We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms.

  4. Home-Use Tests - Cholesterol

    MedlinePlus

    ... this test does: This is a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) in your blood. High-density lipoprotein (HDL) ("good" cholesterol) helps protect your heart, but low-density lipoprotein (LDL) ("bad" cholesterol) can clog the arteries of your ...

  5. Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers

    PubMed Central

    2015-01-01

    Cholesterol trafficking, which is an essential function in mammalian cells, is intimately connected to molecular-scale interactions through cholesterol modulation of membrane structure and dynamics and interaction with membrane receptors. Since these effects of cholesterol occur on micro- to millisecond time scales, it is essential to develop accurate coarse-grained simulation models that can reach these time scales. Cholesterol has been shown experimentally to thicken the membrane and increase phospholipid tail order between 0 and 40% cholesterol, above which these effects plateau or slightly decrease. Here, we showed that the published MARTINI coarse-grained force-field for phospholipid (POPC) and cholesterol fails to capture these effects. Using reference atomistic simulations, we systematically modified POPC and cholesterol bonded parameters in MARTINI to improve its performance. We showed that the corrections to pseudobond angles between glycerol and the lipid tails and around the oleoyl double bond particle (the “angle-corrected model”) slightly improves the agreement of MARTINI with experimentally measured thermal, elastic, and dynamic properties of POPC membranes. The angle-corrected model improves prediction of the thickening and ordering effects up to 40% cholesterol but overestimates these effects at higher cholesterol concentration. In accordance with prior work that showed the cholesterol rough face methyl groups are important for limiting cholesterol self-association, we revised the coarse-grained representation of these methyl groups to better match cholesterol-cholesterol radial distribution functions from atomistic simulations. In addition, by using a finer-grained representation of the branched cholesterol tail than MARTINI, we improved predictions of lipid tail order and bilayer thickness across a wide range of concentrations. Finally, transferability testing shows that a model incorporating our revised parameters into DOPC outperforms other

  6. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  7. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  8. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Narcotics trafficking. 536.311... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any...

  9. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  10. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  11. Women trafficking: causes, concerns, care!

    PubMed

    Khowaja, Shaneela Sadaruddin; Tharani, Ambreen Jawed; Agha, Ajmal; Karamaliani, Rozina Sherali

    2012-08-01

    Pakistan is both a country of origin and destination as far as women trafficking is concerned. Poverty, gender discrimination, lack of education, and ignorance about legal rights are some of the underlying causes. Available data suggest several areas of concern, like, for instance: direct health effects, maladaptive coping leading to the use of illicit drugs, and inaccessibility to healthcare facilities. Therefore, numerous interventions would be required at three levels: the prevention of trafficking, the protection of victims and the prosecution of the traffickers. PMID:23862261

  12. Subversion of NPC1 pathway of cholesterol transport by Anaplasma phagocytophilum

    PubMed Central

    Xiong, Qingming; Rikihisa, Yasuko

    2013-01-01

    Summary Intracellular cholesterol amounts, distribution, and traffic are tightly regulated to maintain the healthy eukaryotic cell function. However, how intracellular pathogens that require cholesterol, interact with the host cholesterol homeostasis and traffic is not well understood. Anaplasma phagocytophilum is an obligatory intracellular and cholesterol-robbing bacterium, which causes human granulocytic anaplasmosis. Here we found that a subset of cholesterol-binding membrane protein, Niemann–Pick type C1 (NPC1)-bearing vesicles devoid of lysosomal markers were upregulated in HL-60 cells infected with A. phagocytophilum, and trafficked to live bacterial inclusions. The NPC1 localization to A. phagocytophilum inclusions was abolished by low-density lipoprotein (LDL)-derived cholesterol traffic inhibitor U18666A. Studies using NPC1 siRNA and the cell line with cholesterol traffic defect demonstrated that the NPC1 function is required for bacterial cholesterol acquisition and infection. Furthermore, trans-Golgi network-specific soluble N-ethylmaleimide-sensitive factor attachment protein receptors, vesicle-associated membrane protein (VAMP4) and syntaxin 16, which are associated with NPC1 and LDL-derived cholesterol vesicular transport were recruited to A. phagocytophilum inclusions, and VAMP4 was required for bacteria infection. Taken together, A. phagocytophilum is the first example of a pathogen that subverts the NPC1 pathway of intracellular cholesterol transport and homeostasis for bacterial inclusion membrane biogenesis and cholesterol capture. PMID:22212234

  13. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles. PMID:25663704

  14. Cholesterol and Your Child

    MedlinePlus

    ... traveling together are called lipoproteins . Two kinds — low-density lipoprotein (LDL) and high-density lipoprotein (HDL) — are the ones that most of us have heard about. Low-density lipoproteins , or "bad cholesterol," are the primary cholesterol ...

  15. Children and Cholesterol

    MedlinePlus

    ... a coronary artery procedure; or who suffered a heart attack or sudden cardiac death before age 55. Those with a parent who has a history of high total cholesterol levels (240 mg/dL or higher). Talk to your child’s pediatrician ... Risk Calculator Printable Cholesterol Information Sheets Heart360 Health ...

  16. Kids and Cholesterol.

    ERIC Educational Resources Information Center

    Ficklen, Ellen

    1992-01-01

    According to a 1991 National Cholesterol Education Program report, the best way to avoid heart trouble is to take early preventive measures. This means that children over age two should follow the same low-fat, low-cholesterol guidelines already recommended for adults. Sidebars contain a fat glossary and tips for cutting fat in school lunches.…

  17. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  18. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  19. What Your Cholesterol Levels Mean

    MedlinePlus

    ... Pressure Tools & Resources Stroke More What Your Cholesterol Levels Mean Updated:Aug 17,2016 How’s your cholesterol? Time to get it checked! Keeping your cholesterol levels healthy is a great way to keep your ...

  20. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  1. Illicit Trafficking of Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  2. Plant sterol consumption frequency affects plasma lipid levels and cholesterol kinetics in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Objectives: To compare the efficacy of single versus multiple doses of plant sterols on circulating lipid level and cholesterol trafficking. Subjects/Methods: A randomized, placebo-controlled, three-phase (6 days/phase) crossover, supervised feeding trial was conducted in 19 subjects. Sub...

  3. Sex trafficking in South Asia.

    PubMed

    Huda, S

    2006-09-01

    Economic and social inequalities and political conflicts have led to the movement of persons within each country and across the borders in South Asia. Globalization has encouraged free mobility of capital, technology, experts and sex tourism. Illiteracy, dependency, violence, social stigma, cultural stereotypes, gender disparity and endemic poverty, among other factors, place women and children in powerless, non-negotiable situations that have contributed to the emergence and breeding of the cavernous problem of sex trafficking in the entire region. This alarming spread of sex trafficking has fuelled the spread of HIV infection in South Asia, posing a unique and serious threat to community health, poverty alleviation and other crucial aspects of human development. Although the SAARC (South Asian Association for Regional Cooperation) Convention on Trafficking in Women and Children has been an important breakthrough, most of the countries in the region do not have anti-trafficking legislation or means to protect the victims. Countries of the region should make a concerted effort to treat trafficking victims as "victims" of human rights violations in all anti-trafficking strategies and actions. PMID:16846602

  4. To discuss illicit nuclear trafficking

    SciTech Connect

    Balatsky, Galya I; Severe, William R; Wallace, Richard K

    2010-01-01

    The Illicit nuclear trafficking panel was conducted at the 4th Annual INMM workshop on Reducing the Risk from Radioactive and Nuclear Materials on February 2-3, 2010 in Washington DC. While the workshop occurred prior to the Nuclear Security Summit, April 12-13 2010 in Washington DC, some of the summit issues were raised during the workshop. The Communique of the Washington Nuclear Security Summit stated that 'Nuclear terrorism is one of the most challenging threats to international security, and strong nuclear security measures are the most effective means to prevent terrorists, criminals, or other unauthorized actors from acquiring nuclear materials.' The Illicit Trafficking panel is one means to strengthen nuclear security and cooperation at bilateral, regional and multilateral levels. Such a panel promotes nuclear security culture through technology development, human resources development, education and training. It is a tool which stresses the importance of international cooperation and coordination of assistance to improve efforts to prevent and respond to incidents of illicit nuclear trafficking. Illicit trafficking panel included representatives from US government, an international organization (IAEA), private industry and a non-governmental organization to discuss illicit nuclear trafficking issues. The focus of discussions was on best practices and challenges for addressing illicit nuclear trafficking. Terrorism connection. Workshop discussions pointed out the identification of terrorist connections with several trafficking incidents. Several trafficking cases involved real buyers (as opposed to undercover law enforcement agents) and there have been reports identifying individuals associated with terrorist organizations as prospective plutonium buyers. Some specific groups have been identified that consistently search for materials to buy on the black market, but no criminal groups were identified that specialize in nuclear materials or isotope smuggling

  5. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport

    PubMed Central

    Fernández-Suárez, María E.; Escolà-Gil, Joan C.; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A.; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313

  6. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport.

    PubMed

    Fernández-Suárez, María E; Escolà-Gil, Joan C; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [(3)H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [(3)H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313

  7. High Blood Cholesterol

    MedlinePlus

    ... of cholesterol is called plaque. Plaque Buildup Can Lead to… Click for more information Artherosclerosis. Over time, ... disease (CHD). Angina. The buildup of plaque can lead to chest pain called angina. Angina is a ...

  8. Common Misconceptions about Cholesterol

    MedlinePlus

    ... most (and preferably all) days; and stressing the importance of avoiding tobacco products. Learn more about cholesterol ... Privacy Policy Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Low Blood Pressure ...

  9. Cholesterol and Statins

    MedlinePlus

    ... the liver makes ldl & hdl In the liver, triglycerides, cholesterol, and proteins form together to make LDL ... This is especially important for individuals with high triglyceride and/or low HDL levels who are overweight ...

  10. Dietary Fat and Cholesterol

    MedlinePlus

    ... Gynecology Medical Conditions Nutrition & Fitness Emotional Health Dietary Fat and Cholesterol Posted under Health Guides . Updated 23 ... warm What are the different types of dietary fat? The four main types of fat found in ...

  11. Get Your Cholesterol Checked

    MedlinePlus

    ... is checked with a blood test called a lipid profile. During the test, a nurse will take ... blood tests that can check cholesterol, but a lipid profile gives the most information. Find out more ...

  12. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  13. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism.

    PubMed

    Fessler, Michael B

    2015-08-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  14. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  15. Cholesterol in unusual places

    NASA Astrophysics Data System (ADS)

    Kučerka, N.; Nieh, M. P.; Marquardt, D.; Harroun, T. A.; Wassail, S. R.; Katsaras, J.

    2010-11-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted "upright" position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  16. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis. PMID:26806306

  17. Trafficking in persons: a health concern?

    PubMed

    Zimmerman, Cathy; Kiss, Ligia; Houssain, Mazeda; Watts, Charlotte

    2009-01-01

    Human trafficking is a phenomenon that has now been documented in most regions in the world. Although trafficking of women and girls for sexual exploitation is the most commonly recognised form of trafficking, it is widely acknowledged that human trafficking also involves men, women and children who are trafficked for various forms of labour exploitation and into other abusive circumstances. Despite the violence and harm inherent in most trafficking situations, there remains extremely little evidence on the individual and public health implications of any form of human trafficking. The Brazilian government has recently launched a national plan to combat human trafficking. However, because the health risks associated with human trafficking have not been well-recognised or documented, there is extremely limited reliable data on the health needs of trafficked persons to inform policy and practices.. Brazilian policy-makers and service providers should be encouraged to learn about the likely range of health impacts of trafficking, and incorporate this into anti-trafficking protection and response strategies. As well as prevention activities, the government, international and local organisations should work together with the public health research community to study the health needs of trafficked persons and explore opportunities to provide safe and appropriate services to victims in need of care. PMID:19721944

  18. Understanding human trafficking in the United States.

    PubMed

    Logan, T K; Walker, Robert; Hunt, Gretchen

    2009-01-01

    The topic of modern-day slavery or human trafficking has received increased media and national attention. However, to date there has been limited research on the nature and scope of human trafficking in the United States. This article describes and synthesizes nine reports that assess the U.S. service organizations' legal representative knowledge of, and experience with, human trafficking cases, as well as information from actual cases and media reports. This article has five main goals: (a) to define what human trafficking is, and is not; (b) to describe factors identified as contributing to vulnerability to being trafficked and keeping a person entrapped in the situation; (c) to examine how the crime of human trafficking differs from other kinds of crimes in the United States; (d) to explore how human trafficking victims are identified; and, (e) to provide recommendations to better address human trafficking in the United States. PMID:19056686

  19. Sex trafficking and the exploitation of adolescents.

    PubMed

    McClain, Natalie M; Garrity, Stacy E

    2011-01-01

    Human trafficking affects a surprisingly large number of adolescents around the globe. Women and girls make up the majority of sex trafficking victims. Nurses must be aware of sex trafficking as a form of sexual violence in the adolescent population. Nurses can play a role in identifying, intervening, and advocating for victims of human trafficking as they currently do for patients that are the victims of other types of violent crimes. PMID:21284727

  20. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  1. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  2. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  3. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Narcotics trafficking. 598.310... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any...

  4. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  5. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  6. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  7. Metabolism, Energetics, and Lipid Biology in the Podocyte – Cellular Cholesterol-Mediated Glomerular Injury

    PubMed Central

    Merscher, Sandra; Pedigo, Christopher E.; Mendez, Armando J.

    2014-01-01

    Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases. PMID:25352833

  8. Design and Synthesis of a Crosslinker for Studying Intracellular Steroid Trafficking Pathways

    PubMed Central

    Byrd, Katherine M.; Arieno, Marcus D.; Kennelly, Megan E.; Estiu, Guillermina; Wiest, Olaf; Helquist, Paul

    2015-01-01

    A crosslinker was designed and synthesized as a molecular tool for potential use in probing the intracellular trafficking pathways of steroids. The design was guided by computational modeling based upon a model for the transfer of cholesterol between two proteins, NPC1 and NPC2. These proteins play critical roles in the transport of low-density lipoprotein-derived cholesterol from the lumen of lysosomes to other subcellular compartments. Two modified cholesterol residues were covalently joined by a tether based on molecular modeling of the transient interaction of NPC1 and NPC2 during the transfer of cholesterol from the binding site of one of these proteins to the other. With two cholesterol molecules appropriately connected, we hypothesize that the cholesterol binding sites of both proteins will be simultaneously occupied in a manner that will stabilize the protein-protein interaction to permit detailed structural analysis of the resulting complex. A photoaffinity label has also been introduced into one of the cholesterol cores to permit covalent attachment of one of the units into its respective protein-binding pocket. The basic design of these crosslinkers should render them useful for examining interactions of the NPC1/NPC2 pair as well as other sterol transport proteins. PMID:25890696

  9. Diacylglycerol kinases in membrane trafficking

    PubMed Central

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    Diacylglycerol kinases (DGKs) belong to a family of cytosolic kinases that regulate the phosphorylation of diacylglycerol (DAG), converting it into phosphatidic acid (PA). There are 10 known mammalian DGK isoforms, each with a different tissue distribution and substrate specificity. These differences allow regulation of cellular responses by fine-tuning the delicate balance of cellular DAG and PA. DGK isoforms are best characterized as mediators of signal transduction and immune function. However, since recent studies reveal that DAG and PA are also involved in the regulation of endocytic trafficking, it is therefore anticipated that DGKs also plays an important role in membrane trafficking. In this review, we summarize the literature discussing the role of DGK isoforms at different stages of endocytic trafficking, including endocytosis, exocytosis, endocytic recycling, and transport from/to the Golgi apparatus. Overall, these studies contribute to our understanding of the involvement of PA and DAG in endocytic trafficking, an area of research that is drawing increasing attention in recent years. PMID:27057419

  10. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes

    PubMed Central

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D.

    2016-01-01

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors. PMID:27005662

  11. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.

    PubMed

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D

    2016-01-01

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors. PMID:27005662

  12. Human trafficking and the healthcare professional.

    PubMed

    Barrows, Jeffrey; Finger, Reginald

    2008-05-01

    Despite the legislation passed in the 19th century outlawing human slavery, it is more widespread today than at the conclusion of the civil war. Modern human slavery, termed human trafficking, comes in several forms. The most common type of human trafficking is sex trafficking, the sale of women and children into prostitution. Labor trafficking is the sale of men, women, and children into hard labor for which they receive little or no compensation. Other forms of trafficking include child soldiering, war brides, and organ removal. Healthcare professionals play a critical role in both finding victims of human trafficking while they are still in captivity, as well as caring for their mental and physical needs upon release. Those working in the healthcare profession need to be educated regarding how a trafficking victim may present, as well as their unique healthcare needs. PMID:18414161

  13. High blood cholesterol levels

    MedlinePlus

    Steps you can take to improve their cholesterol levels, and help prevent heart disease and a heart attack include: Quit smoking. This is the single biggest change you can make to reduce your risk of heart attack and stroke. Eat foods ...

  14. Niacin for cholesterol

    MedlinePlus

    ... this page, please enable JavaScript. Niacin is a B-vitamin. When taken as a prescription in larger doses, ... A.M. Editorial team. Related MedlinePlus Health Topics B Vitamins Cholesterol Browse the Encyclopedia A.D.A.M., ...

  15. Cholesterol, inflammasomes, and atherogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasma cholesterol levels have been strongly associated with atherogenesis, underscoring the role of lipid metabolism in defining cardiovascular disease risk. However, atherosclerotic plaque is highly dynamic and contains elements of both the innate and adaptive immune system that respond to the abe...

  16. What's so special about cholesterol?

    PubMed

    Mouritsen, Ole G; Zuckermann, Martin J

    2004-11-01

    Cholesterol (or other higher sterols such as ergosterol and phytosterols) is universally present in large amounts (20-40 mol%) in eukaryotic plasma membranes, whereas it is universally absent in the membranes of prokaryotes. Cholesterol has a unique ability to increase lipid order in fluid membranes while maintaining fluidity and diffusion rates. Cholesterol imparts low permeability barriers to lipid membranes and provides for large mechanical coherence. A short topical review is given of these special properties of cholesterol in relation to the structure of membranes, with results drawn from a variety of theoretical and experimental studies. Particular focus is put on cholesterol's ability to promote a special membrane phase, the liquid-ordered phase, which is unique for cholesterol (and other higher sterols like ergosterol) and absent in membranes containing the cholesterol precursor lanosterol. Cholesterol's role in the formation of special membrane domains and so-called rafts is discussed. PMID:15726825

  17. Bile acid sequestrants for cholesterol

    MedlinePlus

    Bile acid sequestrants are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can ... block them. These medicines work by blocking bile acid in your stomach from being absorbed in your ...

  18. Facts about Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet offers information on blood cholesterol and its implications for a healthy heart. An explanation is given of the known facts about cholesterol and how it affects the body. A chart is provided that lists various foods and their fat and cholesterol contents. (JD)

  19. Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes.

    PubMed

    Ballerini, Patrizia; Ciccarelli, Renata; Di Iorio, Patrizia; Buccella, Silvana; D'Alimonte, Iolanda; Giuliani, Patricia; Masciulli, Arianna; Nargi, Eleonora; Beraudi, Alina; Rathbone, Michel P; Caciagli, Francesco

    2006-11-01

    The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain. PMID:18404467

  20. Overview of Cholesterol and Lipid Disorders

    MedlinePlus

    ... Cholesterol and Lipid Disorders Dyslipidemia Hypolipidemia Cholesterol and triglycerides are important fats (lipids) in the blood. Cholesterol ... needs, but it also obtains cholesterol from food. Triglycerides, which are contained in fat cells, can be ...

  1. Understand Your Risk for High Cholesterol

    MedlinePlus

    ... or trans fats also increases the amount of LDL cholesterol in your blood. If high blood cholesterol runs ... may not be enough to help lower your LDL blood cholesterol. View an animation of cholesterol . More information: Women ...

  2. Trafficking of the Follitropin Receptor

    PubMed Central

    Ulloa-Aguirre, Alfredo; Dias, James A.; Bousfield, George; Huhtaniemi, Ilpo; Reiter, Eric

    2015-01-01

    The follitropin or follicle-stimulating hormone receptor (FSHR) belongs to a highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily and is mainly expressed in specific cells in the gonads. As any other GPCR, the newly synthesized FSHR has to be correctly folded and processed in order to traffic to the cell surface plasma membrane and interact with its cognate ligand. In this chapter, we describe in detail the conditions and procedures used to study outward trafficking of the FSHR from the endoplasmic reticulum to the plasma membrane. We also describe some methods to analyze phosphorylation, β-arrestin recruitment, internalization, and recycling of this particular receptor, which have proved useful in our hands for dissecting its downward trafficking and fate following agonist stimulation. PMID:23351732

  3. Biopolitical management, economic calculation and "trafficked women".

    PubMed

    Berman, Jacqueline

    2010-01-01

    Narratives surrounding human trafficking, especially trafficking in women for sex work, employ gendered and racialized tropes that have among their effects, a shrouding of women's economic decision-making and state collusion in benefiting from their labour. This paper explores the operation of these narratives in order to understand the ways in which they mask the economics of trafficking by sensationalizing the sexual and criminal aspects of it, which in turn allows the state to pursue political projects under the guise of a benevolent concern for trafficked women and/or protection of its own citizens. This paper will explore one national example: Article 18 of Italian Law 40 (1998). I argue that its passage has led to an increase in cooperation with criminal prosecution of traffickers largely because it approaches trafficked women as capable of making decisions about how and what they themselves want to do. This paper will also consider a more global approach to trafficking embedded in the concept of "migration management", an International Organization for Migration (IOM) framework that is now shaping EU, US and other national immigration laws and policies that impact trafficking. It will also examine the inherent limitations of both the national and global approach as an occasion to unpack how Article 18 and Migration Management function as forms of biopolitical management that participate in the production of "trafficking victims" into a massified population to be managed, rather than engender a more engaged discussion of what constitutes trafficking and how to redress it. PMID:20645471

  4. Adenosine receptor desensitization and trafficking.

    PubMed

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. PMID:20550943

  5. Protein trafficking in kinetoplastid protozoa.

    PubMed Central

    Clayton, C; Häusler, T; Blattner, J

    1995-01-01

    The kinetoplastid protozoa infect hosts ranging from invertebrates to plants and mammals, causing diseases of medical and economic importance. They are the earliest-branching organisms in eucaryotic evolution to have either mitochondria or peroxisome-like microbodies. Investigation of their protein trafficking enables us to identify characteristics that have been conserved throughout eucaryotic evolution and also reveals how far variations, or alternative mechanisms, are possible. Protein trafficking in kinetoplastids is in many respects similar to that in higher eucaryotes, including mammals and yeasts. Differences in signal sequence specificities exist, however, for all subcellular locations so far examined in detail--microbodies, mitochondria, and endoplasmic reticulum--with signals being more degenerate, or shorter, than those of their higher eucaryotic counterparts. Some components of the normal array of trafficking mechanisms may be missing in most (if not all) kinetoplastids: examples are clathrin-coated vesicles, recycling receptors, and mannose 6-phosphate-mediated lysosomal targeting. Other aspects and structures are unique to the kinetoplastids or are as yet unexplained. Some of these peculiarities may eventually prove to be weak points that can be used as targets for chemotherapy; others may turn out to be much more widespread than currently suspected. PMID:7565409

  6. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs. PMID:19275609

  7. Viral Subversion of Nucleocytoplasmic Trafficking

    PubMed Central

    Yarbrough, Melanie L.; Mata, Miguel A.; Sakthivel, Ramanavelan; Fontoura, Beatriz M. A.

    2014-01-01

    Trafficking of proteins and RNA into and out of the nucleus occurs through the nuclear pore complex (NPC). Due to its critical function in many cellular processes, the NPC and transport factors are common targets of several viruses that disrupt key constituents of the machinery to facilitate viral replication. Many viruses such as poliovirus and severe acute respiratory syndrome (SARS) virus inhibit protein import into the nucleus, while viruses such as influenza A virus target and disrupt host mRNA nuclear export. Current evidence indicates that these viruses may employ such strategies to avert the host immune response. Conversely, many viruses co-opt nucleocytoplasmic trafficking to facilitate transport of viral RNAs. Since viral proteins interact with key regulators of the host nuclear transport machinery, viruses have served as invaluable tools of discovery that led to the identification of novel constituents of nuclear transport pathways. In addition, this review explores the importance of nucleocytoplasmic trafficking to viral pathogenesis as these studies revealed new antiviral therapeutic strategies and exposed previously unknown cellular mechanisms. Further understanding of nuclear transport pathways will determine whether such therapeutics will be useful treatments for important human pathogens. PMID:24289861

  8. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis.

    PubMed

    Mercer, Jacob L; Argus, Joseph P; Crabtree, Donna M; Keenan, Melissa M; Wilks, Moses Q; Chi, Jen-Tsan Ashley; Bensinger, Steven J; Lavau, Catherine P; Wechsler, Daniel S

    2015-01-01

    PICALM (Phosphatidyl Inositol Clathrin Assembly Lymphoid Myeloid protein) is a ubiquitously expressed protein that plays a role in clathrin-mediated endocytosis. PICALM also affects the internalization and trafficking of SNAREs and modulates macroautophagy. Chromosomal translocations that result in the fusion of PICALM to heterologous proteins cause leukemias, and genome-wide association studies have linked PICALM Single Nucleotide Polymorphisms (SNPs) to Alzheimer's disease. To obtain insight into the biological role of PICALM, we performed gene expression studies of PICALM-deficient and PICALM-expressing cells. Pathway analysis demonstrated that PICALM expression influences the expression of genes that encode proteins involved in cholesterol biosynthesis and lipoprotein uptake. Gas Chromatography-Mass Spectrometry (GC-MS) studies indicated that loss of PICALM increases cellular cholesterol pool size. Isotopic labeling studies revealed that loss of PICALM alters increased net scavenging of cholesterol. Flow cytometry analyses confirmed that internalization of the LDL receptor is enhanced in PICALM-deficient cells as a result of higher levels of LDLR expression. These findings suggest that PICALM is required for cellular cholesterol homeostasis and point to a novel mechanism by which PICALM alterations may contribute to disease. PMID:26075887

  9. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  10. The effect of cholesterol domains on PEGylated liposomal gene delivery in vitro

    PubMed Central

    Xu, Long; Wempe, Michael F; Anchordoquy, Thomas J

    2011-01-01

    Aim PEGylated components have been widely used to reduce particle aggregation in serum and extend circulation lifetime for lipid- and polymer-based gene-delivery systems. However, PEGylation is known to interfere with cell interaction and intracellular trafficking, resulting in decreased biological activity. In the present study, the effect of cholesterol domains on PEGylated liposome-mediated gene delivery was evaluated by PEGylating formulations with and without a cholesterol domain, and also by altering the location of PEG on the particle surface (i.e., within or excluded from the domain). Materials and methods Lipoplexes formulated with PEG–cholesterol or PEG–diacyl lipid were used to transfect various cell lines, including human and mouse cancer cells. Cellular uptake of lipoplexes was also quantified and compared with the transfection results. Results Our findings are consistent with previous work demonstrating that PEGylation reduces transfection rates; however, formulations in which PEG was incorporated into the cholesterol domain did not exhibit this detrimental effect. In some cell lines, the incorporation of PEG into the domain actually increased transfection rates, despite no enhancement of cellular uptake. Discussion These results suggest that the adverse alterations in intracellular trafficking that are a consequence of PEGylation may be avoided by utilizing delivery vehicles that allow PEG to partition into a cholesterol domain. PMID:22428082

  11. Characterization of Trans-Neuronal Trafficking of Cbln1

    PubMed Central

    Wei, Peng; Rong, Yongqi; Li, Leyi; Bao, Dashi; Morgan, James I

    2009-01-01

    Cbln1, a glycoprotein secreted from granule cells and GluRδ2 in the postsynaptic densities of Purkinje cells are components of an incompletely understood pathway essential for integrity and plasticity of parallel fiber-Purkinje cell synapses. We show that Cbln1 undergoes anterograde transport from granule cells to Purkinje cells and Bergmann glia, and enters the endolysosomal trafficking system, raising the possibility that Cbln1 exerts its activity on or within Purkinje cells and Bergmann glia. Cbln1 is absent in Purkinje cells and Bergmann glia of GluRδ2-null mice, suggesting a mechanistic convergence on Cbln1 trafficking. Ectopic expression of Cbln1 in Purkinje cells of L7-cbln1 transgenic mice reveals Cbln1 undergoes anterograde and retrograde transneuronal trafficking even across synapses that lack GluRδ2, indicating it is not universally essential for Cbln1 transport. The L7-cbln1 transgene also ameliorates the locomotor deficits of cbln1-null mice, indicating the presence and/or release of Cbln1 from the postsynaptic neuron has functional consequences. PMID:19344768

  12. Analysis of GPCR Localization and Trafficking

    PubMed Central

    Hislop, James N.; von Zastrow, Mark

    2016-01-01

    Localization and trafficking of G protein-coupled receptors (GPCRs) is increasingly recognized to play a fundamental role in receptor-mediated signaling and its regulation. Individual receptors, including closely homologous subtypes with otherwise similar functional properties, can differ considerably in their membrane trafficking properties. In this chapter, we describe several approaches for experimentally assessing the subcellular localization and trafficking of selected GPCRs. Firstly, we describe a flexible method for receptor localization using fluorescence microscopy. We then describe two complementary approaches, using fluorescence flow cytometry and surface biotinylation, for examining receptor internalization and trafficking in the endocytic pathway. PMID:21607873

  13. Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers

    SciTech Connect

    Daily, Michael D.; Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2014-03-24

    In mammalian cells cholesterol is essential for membrane function, but in excess can be cytototoxic. The cellular response to acute cholesterol loading involves biophysical-based mechanisms that regulate cholesterol levels, through modulation of the “activity” or accessibility of cholesterol to extra-membrane acceptors. Experiments and united atom (UA) simulations show that at high concentrations of cholesterol, lipid bilayers thin significantly and cholesterol availability to external acceptors increases substantially. Such cholesterol activation is critical to its trafficking within cells. Here we aim to reduce the computational cost to enable simulation of large and complex systems involved in cholesterol regulation, such as those including oxysterols and cholesterol-sensing proteins. To accomplish this, we have modified the published MARTINI coarse-grained force field to improve its predictions of cholesterol-induced changes in both macroscopic and microscopic properties of membranes. Most notably, MARTINI fails to capture both the (macroscopic) area condensation and membrane thickening seen at less than 30% cholesterol and the thinning seen above 40% cholesterol. The thinning at high concentration is critical to cholesterol activation. Microscopic properties of interest include cholesterol-cholesterol radial distribution functions (RDFs), tilt angle, and accessible surface area. First, we develop an “angle-corrected” model wherein we modify the coarse-grained bond angle potentials based on atomistic simulations. This modification significantly improves prediction of macroscopic properties, most notably the thickening/thinning behavior, and also slightly improves microscopic property prediction relative to MARTINI. Second, we add to the angle correction a “volume correction” by also adjusting phospholipid bond lengths to achieve a more accurate volume per molecule. The angle + volume correction substantially further improves the quantitative

  14. Dietary agents that target gastrointestinal and hepatic handling of bile acids and cholesterol.

    PubMed

    Jones, Peter J H

    2008-04-01

    Several food components have been demonstrated to exhibit cholesterol-lowering properties by interfering with cholesterol absorption and bile-acid trafficking. Such components include stearic acid, plant sterols, soluble fiber, and soy protein. Among saturated fatty acids, stearic acid is unique in its ability to reduce circulatory low-density lipoprotein cholesterol levels. This action is accompanied by an observed suppression in cholesterol absorption, an effect seen repeatedly in animal and human studies. Proposed mechanisms include micellar exclusion of cholesterol by this high melting point fatty acid, as well as the ability of stearate to alter the biliary ratios of primary to secondary bile acids, leading to a reduction in hydrophobicity index and lower overall solubility of sterols in micelles. Another dietary ingredient that interferes with absorption of sterols is soy protein, in which studies in animals and humans have identified that compared to casein, consumption of soy protein reduces intestinal absorption of cholesterol while enhancing fecal cholesterol excretion. Considerable investigation using free amino acid mixtures mirroring the composition of soy versus animal proteins has determined that co-existing agents other than soy's amino acid pattern are likely responsible for the inhibitory action of soy protein on sterol uptake. Recently, it has been shown that hydrolysates of soy protein appear to be effective in reducing sterol absorption; these are now being targeted as the possible factor responsible for the overall effect of this dietary ingredient. Plant sterols appear to impact absorption of sterols through several mechanisms, including competition with cholesterol for incorporation into micelles, co-crystallization with cholesterol to form insoluble crystals, interaction with digestive enzymes, and inhibition of cholesterol transporter proteins. Clinical trials attest to plant sterols lowering cholesterol absorption by 20% to 40%, an extent

  15. Optical Control of Peroxisomal Trafficking.

    PubMed

    Spiltoir, Jessica I; Strickland, Devin; Glotzer, Michael; Tucker, Chandra L

    2016-07-15

    The blue-light-responsive LOV2 domain of Avena sativa phototropin1 (AsLOV2) has been used to regulate activity and binding of diverse protein targets with light. Here, we used AsLOV2 to photocage a peroxisomal targeting sequence, allowing light regulation of peroxisomal protein import. We generated a protein tag, LOV-PTS1, that can be appended to proteins of interest to direct their import to the peroxisome with light. This method provides a means to inducibly trigger peroxisomal protein trafficking in specific cells at user-defined times. PMID:26513473

  16. Following intracellular cholesterol transport by linear and non-linear optical microscopy of intrinsically fluorescent sterols.

    PubMed

    Wüstner, Daniel

    2012-02-01

    Elucidation of intracellular cholesterol transport is important for understanding the molecular basis of several metabolic and neuronal diseases, like atheroclerosis or lysosomal storage disorders. Progress in this field depends crucially on the development of new technical approaches to follow the cellular movement of this essential lipid molecule. In this article, a survey of the various methods being used for analysis of sterol trafficking is given. Various classical biochemical methods are presented and their suitability for analysis of sterol trafficking is assessed. Special emphasis is on recent developments in imaging technology to follow the intracellular fate of intrinsically fluorescent sterols as faithful cholesterol markers. In particular, UV-sensitive wide field and multiphoton microscopy of the sterol dehydroergosterol, DHE, is explained and new methods of quantitative image analysis like pixel-wise bleach rate fitting and multiphoton image correlation spectroscopy are introduced. Several applications of the new technology including observation of vectorial sterol trafficking in polarized human hepatoma cells for investigation of reverse cholesterol transport are presented. PMID:21470123

  17. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport

    PubMed Central

    Solanko, Katarzyna A.; Modzel, Maciej; Solanko, Lukasz M.; Wüstner, Daniel

    2015-01-01

    Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann–Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications. PMID:27330304

  18. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport.

    PubMed

    Solanko, Katarzyna A; Modzel, Maciej; Solanko, Lukasz M; Wüstner, Daniel

    2015-01-01

    Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann-Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications. PMID:27330304

  19. Preliminary Validation of the Sex Trafficking Attitudes Scale.

    PubMed

    Houston-Kolnik, Jaclyn D; Todd, Nathan R; Wilson, Midge

    2016-09-01

    This study presents the Sex Trafficking Attitudes Scale (STAS), assessing cognitive, behavioral, and affective attitudes toward the sex trafficking of women and girls. Across two studies, exploratory and confirmatory factor analyses revealed and confirmed six subscales: (a) Knowledge About Sex Trafficking, (b) Awareness of Sex Trafficking, (c) Attitudes Toward Ability to Leave Sex Trafficking, (d) Attitudes Toward Helping Survivors, (e) Empathic Reactions Toward Sex Trafficking, and (f) Efficacy to Reduce Sex Trafficking. Results showed support for convergent validity as the subscales were associated with related measures. The STAS holds promise to expand research and inform efforts to support trafficking survivors. PMID:26834147

  20. Regulatory role of β-arrestin-2 in cholesterol processing in cystic fibrosis epithelial cells.

    PubMed

    Manson, Mary E; Corey, Deborah A; Bederman, Ilya; Burgess, James D; Kelley, Thomas J

    2012-07-01

    Cystic fibrosis (CF) cells exhibit an increase in the protein expression of β-arrestin-2 (βarr2) coincident with perinuclear accumulation of free cholesterol. Arrestins are proteins that both serve as broad signaling regulators and contribute to G-protein coupled receptor internalization after agonist stimulation. The hypothesis of this study is that βarr2 is an important component in the mechanisms leading to cholesterol accumulation characteristic of CF cells. To test this hypothesis, epithelial cells stably expressing GFP-tagged βarr2 (βarr2-GFP) and respective GFP-expressing control cells (cont-GFP) were analyzed by filipin staining. The βarr2-GFP cells show a late endosomal/lysosomal cholesterol accumulation that is identical to that seen in CF cells. This βarr2-mediated accumulation is sensitive to Rp-cAMPS treatment, and depleting βarr2 expression in CF-model cells by shRNA alleviates cholesterol accumulation compared with controls. Cftr/βarr2 double knockout mice also exhibit wild-type (WT) levels of cholesterol synthesis, and WT profiles of signaling protein expression have previously been shown to be altered in CF due to cholesterol-related pathways. These data indicate a significant regulatory role for βarr2 in the development of CF-like cholesterol accumulation and give further insight into cholesterol processing mechanisms. An impact of βarr2 expression on Niemann-Pick type C-1 (NPC1)-containing organelle movement is proposed as the mechanism of βarr2-mediated alterations on cholesterol processing. It is concluded that βarr2 expression contributes to altered cholesterol trafficking observed in CF cells. PMID:22523395

  1. How cholesterol interacts with proteins and lipids during its intracellular transport.

    PubMed

    Wüstner, Daniel; Solanko, Katarzyna

    2015-09-01

    Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions. Similarly, membrane lipids and their physico-chemical properties directly affect cholesterol partitioning and thereby contribute to the highly heterogeneous intracellular cholesterol distribution. Movement of cholesterol in cells is mediated by vesicle trafficking along the endocytic and secretory pathways as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics in membranes and explain how such models are related to sterol flux between organelles. An overview of various sterol-transfer proteins is given, and the physico-chemical principles of their function in non-vesicular sterol transport are explained. We also discuss selected experimental approaches for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how specific protein-lipid and protein-protein interactions help overcoming the extremely low water solubility of cholesterol, thereby controlling intracellular cholesterol movement. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:26004840

  2. Endocytic Trafficking of Membrane-Bound Cargo: A Flotillin Point of View

    PubMed Central

    Meister, Melanie; Tikkanen, Ritva

    2014-01-01

    The ubiquitous and highly conserved flotillin proteins, flotillin-1 and flotillin-2, have been shown to be involved in various cellular processes such as cell adhesion, signal transduction through receptor tyrosine kinases as well as in cellular trafficking pathways. Due to the fact that flotillins are acylated and form hetero-oligomers, they constitutively associate with cholesterol-enriched lipid microdomains. In recent years, such microdomains have been appreciated as platforms that participate in endocytosis and other cellular trafficking steps. This review summarizes the current findings on the role of flotillins in membrane-bound cargo endocytosis and endosomal trafficking events. We will discuss the proposed function of flotillins in endocytosis in the light of recent findings that point towards a role for flotillins in a step that precedes the actual endocytic uptake of cargo molecules. Recent findings have also revealed that flotillins may be important for endosomal sorting and recycling of specific cargo molecules. In addition to these aspects, the cellular trafficking pathway of flotillins themselves as potential cargo in the context of growth factor signaling will be discussed. PMID:25019426

  3. Structural characterization of human cholesterol 7α-hydroxylase

    PubMed Central

    Tempel, Wolfram; Grabovec, Irina; MacKenzie, Farrell; Dichenko, Yaroslav V.; Usanov, Sergey A.; Gilep, Andrei A.; Park, Hee-Won; Strushkevich, Natallia

    2014-01-01

    Hepatic conversion to bile acids is a major elimination route for cholesterol in mammals. CYP7A1 catalyzes the first and rate-limiting step in classic bile acid biosynthesis, converting cholesterol to 7α-hydroxycholesterol. To identify the structural determinants that govern the stereospecific hydroxylation of cholesterol, we solved the crystal structure of CYP7A1 in the ligand-free state. The structure-based mutation T104L in the B′ helix, corresponding to the nonpolar residue of CYP7B1, was used to obtain crystals of complexes with cholest-4-en-3-one and with cholesterol oxidation product 7-ketocholesterol (7KCh). The structures reveal a motif of residues that promote cholest-4-en-3-one binding parallel to the heme, thus positioning the C7 atom for hydroxylation. Additional regions of the binding cavity (most distant from the access channel) are involved to accommodate the elongated conformation of the aliphatic side chain. Structural complex with 7KCh shows an active site rigidity and provides an explanation for its inhibitory effect. Based on our previously published data, we proposed a model of cholesterol abstraction from the membrane by CYP7A1 for metabolism. CYP7A1 structural data provide a molecular basis for understanding of the diversity of 7α-hydroxylases, on the one hand, and cholesterol-metabolizing enzymes adapted for their specific activity, on the other hand. PMID:24927729

  4. Structural characterization of human cholesterol 7α-hydroxylase.

    PubMed

    Tempel, Wolfram; Grabovec, Irina; MacKenzie, Farrell; Dichenko, Yaroslav V; Usanov, Sergey A; Gilep, Andrei A; Park, Hee-Won; Strushkevich, Natallia

    2014-09-01

    Hepatic conversion to bile acids is a major elimination route for cholesterol in mammals. CYP7A1 catalyzes the first and rate-limiting step in classic bile acid biosynthesis, converting cholesterol to 7α-hydroxycholesterol. To identify the structural determinants that govern the stereospecific hydroxylation of cholesterol, we solved the crystal structure of CYP7A1 in the ligand-free state. The structure-based mutation T104L in the B' helix, corresponding to the nonpolar residue of CYP7B1, was used to obtain crystals of complexes with cholest-4-en-3-one and with cholesterol oxidation product 7-ketocholesterol (7KCh). The structures reveal a motif of residues that promote cholest-4-en-3-one binding parallel to the heme, thus positioning the C7 atom for hydroxylation. Additional regions of the binding cavity (most distant from the access channel) are involved to accommodate the elongated conformation of the aliphatic side chain. Structural complex with 7KCh shows an active site rigidity and provides an explanation for its inhibitory effect. Based on our previously published data, we proposed a model of cholesterol abstraction from the membrane by CYP7A1 for metabolism. CYP7A1 structural data provide a molecular basis for understanding of the diversity of 7α-hydroxylases, on the one hand, and cholesterol-metabolizing enzymes adapted for their specific activity, on the other hand. PMID:24927729

  5. Examining the Risk of Nuclear Trafficking

    SciTech Connect

    Balatsky, Galya; Severe, William R; Schoeneck, Jeffery

    2009-01-01

    The need to stop illicit trafficking of nuclear and radioactive materials around the world is undeniable and urgent. This issue is particularly evident due to the highly dangerous consequences of the risks involved, the known interest of terrorist groups in acquiring such materials and the vulnerability of theft and diversion of such materials. Yet the phenomenon of nuclear trafficking remains a subject where the unknown dominates what is known on the subject. The trafficking panel at the Institute for Nuclear Materials Management (INMM) Workshop on Reducing the Risk of Radioactive and Nuclear Materials that took place in Albuquerque, New Mexico, March 10-11, 2009, dealt with some of the issues associated with nuclear trafficking. Different points of view on how to better address trafficking and thwart perpetrator efforts were discussed. This paper presents some of these views and addresses practical measures that should be considered to improve the situation.

  6. Specific Cellular Incorporation of a Pyrene-Labelled Cholesterol: Lipoprotein-Mediated Delivery toward Ordered Intracellular Membranes

    PubMed Central

    Gaibelet, Gérald; Azalbert, Vincent; Bertrand-Michel, Justine; Hamdi, Safouane; Collet, Xavier; Orlowski, Stéphane

    2015-01-01

    In the aim of testing tools for tracing cell trafficking of exogenous cholesterol, two fluorescent derivatives of cholesterol, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), with distinctive chemico-physical characteristics, have been compared for their cell incorporation properties, using two cell models differently handling cholesterol, with two incorporation routes. In the Caco-2 cell model, the cholesterol probes were delivered in bile salt micelles, as a model of intestinal absorption. The two probes displayed contrasting behaviors for cell uptake characteristics, cell staining, and efflux kinetics. In particular, Pyr-met-Chol cell incorporation involved SR-BI, while that of NBD-Chol appeared purely passive. In the PC-3 cell model, which overexpresses lipoprotein receptors, the cholesterol probes were delivered via the serum components, as a model of systemic delivery. We showed that Pyr-met-Chol-labelled purified LDL or HDL were able to specifically deliver Pyr-met-Chol to the PC-3 cells, while NBD-Chol incorporation was independent of lipoproteins. Observations by fluorescence microscopy evidenced that, while NBD-Chol readily stained the cytosolic lipid droplets, Pyr-met-Chol labelling led to the intense staining of intracellular structures of membranous nature, in agreement with the absence of detectable esterification of Pyr-met-Chol. A 48 h incubation of PC-3 cells with either Pyr-met-Chol-labelled LDL or HDL gave same staining patterns, mainly colocalizing with Lamp1, caveolin-1 and CD63. These data indicated convergent trafficking downwards their respective receptors, LDL-R and SR-BI, toward the cholesterol-rich internal membrane compartments, late endosomes and multivesicular bodies. Interestingly, Pyr-met-Chol staining of these structures exhibited a high excimer fluorescence emission, revealing their ordered membrane environment, and indicating that Pyr-met-Chol behaves as a fair cholesterol tracer

  7. Specific cellular incorporation of a pyrene-labelled cholesterol: lipoprotein-mediated delivery toward ordered intracellular membranes.

    PubMed

    Gaibelet, Gérald; Allart, Sophie; Tercé, François; Azalbert, Vincent; Bertrand-Michel, Justine; Hamdi, Safouane; Collet, Xavier; Orlowski, Stéphane

    2015-01-01

    In the aim of testing tools for tracing cell trafficking of exogenous cholesterol, two fluorescent derivatives of cholesterol, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), with distinctive chemico-physical characteristics, have been compared for their cell incorporation properties, using two cell models differently handling cholesterol, with two incorporation routes. In the Caco-2 cell model, the cholesterol probes were delivered in bile salt micelles, as a model of intestinal absorption. The two probes displayed contrasting behaviors for cell uptake characteristics, cell staining, and efflux kinetics. In particular, Pyr-met-Chol cell incorporation involved SR-BI, while that of NBD-Chol appeared purely passive. In the PC-3 cell model, which overexpresses lipoprotein receptors, the cholesterol probes were delivered via the serum components, as a model of systemic delivery. We showed that Pyr-met-Chol-labelled purified LDL or HDL were able to specifically deliver Pyr-met-Chol to the PC-3 cells, while NBD-Chol incorporation was independent of lipoproteins. Observations by fluorescence microscopy evidenced that, while NBD-Chol readily stained the cytosolic lipid droplets, Pyr-met-Chol labelling led to the intense staining of intracellular structures of membranous nature, in agreement with the absence of detectable esterification of Pyr-met-Chol. A 48 h incubation of PC-3 cells with either Pyr-met-Chol-labelled LDL or HDL gave same staining patterns, mainly colocalizing with Lamp1, caveolin-1 and CD63. These data indicated convergent trafficking downwards their respective receptors, LDL-R and SR-BI, toward the cholesterol-rich internal membrane compartments, late endosomes and multivesicular bodies. Interestingly, Pyr-met-Chol staining of these structures exhibited a high excimer fluorescence emission, revealing their ordered membrane environment, and indicating that Pyr-met-Chol behaves as a fair cholesterol tracer

  8. How cholesterol regulates endothelial biomechanics

    PubMed Central

    Hong, Zhongkui; Staiculescu, Marius C.; Hampel, Paul; Levitan, Irena; Forgacs, Gabor

    2012-01-01

    As endothelial cells form the barrier between blood flow and surrounding tissue, many of their functions depend on mechanical integrity, in particular those of the plasma membrane. As component and organizer of the plasma membrane, cholesterol is a regulator of cellular mechanical properties. Disruption of cholesterol balance leads to impairment of endothelial functions and eventually to disease. The mechanical properties of the membrane are strongly affected by the cytoskeleton. As Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key mediator between the membrane and cytoskeleton, it also affects cellular biomechanical properties. Typically, PIP2 is concentrated in cholesterol-rich microdomains, such as caveolae and lipid rafts, which are particularly abundant in the endothelial plasma membrane. We investigated the connection between cholesterol and PIP2 by extracting membrane tethers from bovine aortic endothelial cells (BAEC) at different cholesterol levels and PIP2 conditions. Our results suggest that in BAEC the role of PIP2, as a mediator of membrane-cytoskeleton adhesion, is regulated by cholesterol. Our findings confirm the specific role of cholesterol in endothelial cells and may have implications for cholesterol-dependent vascular pathologies. PMID:23162471

  9. Cholesterol induces proliferation of chicken primordial germ cells.

    PubMed

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing

    2016-08-01

    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells. PMID:27269880

  10. Epigenetic regulation of cholesterol homeostasis

    PubMed Central

    Meaney, Steve

    2014-01-01

    Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review. PMID:25309573

  11. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  12. Cholesterol - what to ask your doctor

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000211.htm Cholesterol - what to ask your doctor To use the ... this page, please enable JavaScript. Your body needs cholesterol to work properly. When you have extra cholesterol ...

  13. How to Get Your Cholesterol Tested

    MedlinePlus

    ... HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides. A small sample of blood will be drawn ... the amount of LDL (bad) cholesterol level and triglycerides can be affected by what you've recently ...

  14. What Do My Cholesterol Levels Mean?

    MedlinePlus

    ... Tools & Resources Stroke More What Do My Cholesterol Levels Mean? Updated:Mar 22,2016 High cholesterol can ... a fasting “lipoprotein profile” to measure your cholesterol levels. It assesses several types of fat in the ...

  15. Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype.

    PubMed

    Taylor, Janice M W; Allen, Anne-Marie; Graham, Annette

    2014-11-01

    The aim of the present study was to establish mitochondrial cholesterol trafficking 18 kDa translocator protein (TSPO) as a potential therapeutic target, capable of increasing macrophage cholesterol efflux to (apo)lipoprotein acceptors. Expression and activity of TSPO in human (THP-1) macrophages were manipulated genetically and by the use of selective TSPO ligands. Cellular responses were analysed by quantitative PCR (Q-PCR), immunoblotting and radiolabelling, including [3H]cholesterol efflux to (apo)lipoprotein A-I (apoA-I), high-density lipoprotein (HDL) and human serum. Induction of macrophage cholesterol deposition by acetylated low-density lipoprotein (AcLDL) increased expression of TSPO mRNA and protein, reflecting findings in human carotid atherosclerosis. Transient overexpression of TSPO enhanced efflux (E%) of [3H]cholesterol to apoA-I, HDL and human serum compared with empty vector (EV) controls, whereas gene knockdown of TSPO achieved the converse. Ligation of TSPO (using PK11195, FGIN-1-27 and flunitrazepam) triggered increases in [3H]cholesterol efflux, an effect that was amplified in TSPO-overexpressing macrophages. Overexpression of TSPO induced the expression of genes [PPARA (peroxisome-proliferator-activated receptor α), NR1H3 (nuclear receptor 1H3/liver X receptor α), ABCA1 (ATP-binding cassette A1), ABCG4 (ATP-binding cassette G4) and APOE (apolipoprotein E)] and proteins (ABCA1 and PPARα) involved in cholesterol efflux, reduced macrophage neutral lipid mass and lipogenesis and limited cholesterol esterification following exposure to AcLDL. Thus, targeting TSPO reduces macrophage lipid content and prevents macrophage foam cell formation, via enhanced cholesterol efflux to (apo)lipoprotein acceptors. PMID:24814875

  16. Chemokine receptor internalization and intracellular trafficking.

    PubMed

    Neel, Nicole F; Schutyser, Evemie; Sai, Jiqing; Fan, Guo-Huang; Richmond, Ann

    2005-12-01

    The internalization and intracellular trafficking of chemokine receptors have important implications for the cellular responses elicited by chemokine receptors. The major pathway by which chemokine receptors internalize is the clathrin-mediated pathway, but some receptors may utilize lipid rafts/caveolae-dependent internalization routes. This review discusses the current knowledge and controversies regarding these two different routes of endocytosis. The functional consequences of internalization and the regulation of chemokine receptor recycling will also be addressed. Modifications of chemokine receptors, such as palmitoylation, ubiquitination, glycosylation, and sulfation, may also impact trafficking, chemotaxis and signaling. Finally, this review will cover the internalization and trafficking of viral and decoy chemokine receptors. PMID:15998596

  17. Lateral organization of cholesterol molecules in lipid-cholesterol assemblies.

    SciTech Connect

    Singh, Rajiv R. P.; Slepoy, Alexander; Sengupta, Pinaki; Cox, Daniel L.

    2005-05-01

    We present results of an off-lattice simulation of a two-component planar system, as a model for lateral organization of cholesterol molecules in lipid-cholesterol assemblies. We explore the existence of 'superlattice' structures even in fluid systems, in the absence of an underlying translational long-range order, and study their coupling to hexatic or bond-orientational order. We discuss our results in context of geometric superlattice theories and 'condensation complexes' in understanding a variety of experiments in artificial lipid-cholesterol assemblies.

  18. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport.

    PubMed

    Kuzu, Omer F; Gowda, Raghavendra; Sharma, Arati; Robertson, Gavin P

    2014-07-01

    Leelamine is a promising compound for the treatment of cancer; however, the molecular mechanisms leading to leelamine-mediated cell death have not been identified. This report shows that leelamine is a weakly basic amine with lysosomotropic properties, leading to its accumulation inside acidic organelles such as lysosomes. This accumulation leads to homeostatic imbalance in the lysosomal endosomal cell compartments that disrupts autophagic flux and intracellular cholesterol trafficking as well as receptor-mediated endocytosis. Electron micrographs of leelamine-treated cancer cells displayed accumulation of autophagosomes, membrane whorls, and lipofuscin-like structures, indicating disruption of lysosomal cell compartments. Early in the process, leelamine-mediated killing was a caspase-independent event triggered by cholesterol accumulation, as depletion of cholesterol using β-cyclodextrin treatment attenuated the cell death and restored the subcellular structures identified by electron microscopy. Protein microarray-based analyses of the intracellular signaling cascades showed alterations in RTK-AKT/STAT/MAPK signaling cascades, which was subsequently confirmed by Western blotting. Inhibition of Akt, Erk, and Stat signaling, together with abnormal deregulation of receptor tyrosine kinases, was caused by the inhibition of receptor-mediated endocytosis. This study is the first report demonstrating that leelamine is a lysosomotropic, intracellular cholesterol transport inhibitor with potential chemotherapeutic properties leading to inhibition of autophagic flux and induction of cholesterol accumulation in lysosomal/endosomal cell compartments. Importantly, the findings of this study show the potential of leelamine to disrupt cholesterol homeostasis for treatment of advanced-stage cancers. PMID:24688051

  19. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport

    PubMed Central

    Kuzu, Omer F.; Gowda, Raghavendra; Sharma, Arati; Robertson, Gavin P.

    2015-01-01

    Leelamine is a promising compound for the treatment of cancer; however, the molecular mechanisms leading to leelamine-mediated cell death have not been identified. This report shows that leelamine is a weakly basic amine with lysosomotropic properties, leading to its accumulation inside acidic organelles such as lysosomes. This accumulation leads to homeostatic imbalance in the lysosomal endosomal cell compartments that disrupts autophagic flux and intracellular cholesterol trafficking as well as receptor-mediated endocytosis. Electron micrographs of leelamine-treated cancer cells displayed accumulation of autophagosomes, membrane whorls, and lipofuscin-like structures, indicating disruption of lysosomal cell compartments. Early in the process, leelamine-mediated killing was a caspase-independent event triggered by cholesterol accumulation, as depletion of cholesterol using β-cyclodextrin treatment attenuated the cell death and restored the subcellular structures identified by electron microscopy. Protein microarray–based analyses of the intracellular signaling cascades showed alterations in RTK–AKT/STAT/MAPK signaling cascades, which was subsequently confirmed by Western blotting. Inhibition of Akt, Erk, and Stat signaling, together with abnormal deregulation of receptor tyrosine kinases, was caused by the inhibition of receptor-mediated endocytosis. This study is the first report demonstrating that leelamine is a lysosomotropic, intracellular cholesterol transport inhibitor with potential chemotherapeutic properties leading to inhibition of autophagic flux and induction of cholesterol accumulation in lysosomal/endosomal cell compartments. Importantly, the findings of this study show the potential of leelamine to disrupt cholesterol homeostasis for treatment of advanced-stage cancers. PMID:24688051

  20. ABCC6- a new player in cellular cholesterol and lipoprotein metabolism?

    PubMed Central

    2014-01-01

    Background Dysregulations in cholesterol and lipid metabolism have been linked to human diseases like hypercholesterolemia, atherosclerosis or the metabolic syndrome. Many ABC transporters are involved in trafficking of metabolites derived from these pathways. Pseudoxanthoma elasticum (PXE), an autosomal-recessive disease caused by ABCC6 mutations, is characterized by atherogenesis and soft tissue calcification. Methods In this study we investigated the regulation of cholesterol biosynthesis in human dermal fibroblasts from PXE patients and healthy controls. Results Gene expression analysis of 84 targets indicated dysregulations in cholesterol metabolism in PXE fibroblasts. Transcript levels of ABCC6 were strongly increased in lipoprotein-deficient serum (LPDS) and under serum starvation in healthy controls. For the first time, increased HMG CoA reductase activities were found in PXE fibroblasts. We further observed strongly elevated transcript and protein levels for the proprotein convertase subtilisin/kexin type 9 (PCSK9), as well as a significant reduction in APOE mRNA expression in PXE. Conclusion Increased cholesterol biosynthesis, elevated PCSK9 levels and reduced APOE mRNA expression newly found in PXE fibroblasts could enforce atherogenesis and cardiovascular risk in PXE patients. Moreover, the increase in ABCC6 expression accompanied by the induction of cholesterol biosynthesis supposes a functional role for ABCC6 in human lipoprotein and cholesterol homeostasis. PMID:25064003

  1. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis

    PubMed Central

    Johnson, Tory A.; Pfeffer, Suzanne R.

    2016-01-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1’s N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [3H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1’s cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173

  2. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis.

    PubMed

    Johnson, Tory A; Pfeffer, Suzanne R

    2016-06-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1's N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [(3)H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1's cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173

  3. Female sex trafficking: conceptual issues, current debates, and future directions.

    PubMed

    Meshkovska, Biljana; Siegel, Melissa; Stutterheim, Sarah E; Bos, Arjan E R

    2015-01-01

    Female sex trafficking is a pressing concern. In this article, we provide a comprehensive overview of relevant issues regarding the concept of female sex trafficking and research in the field of human trafficking, drawing on a variety of disciplines, including economics, gender and sexuality studies, psychology, sociology, law, and social work. We discuss the debates surrounding the definition of human trafficking, compare and contrast it with human smuggling, and outline connections between female sex trafficking and the issue of sex work and prostitution. We further discuss the history and current estimations of female sex trafficking. We then outline the main actors in female sex trafficking, including trafficked persons, traffickers, clients, and service providers, and we overview the trafficking process from recruitment to identification, recovery, and (re)integration. Finally, we conclude with recommendations for future research that tie together the concepts of vulnerability, exploitation, and long-term recovery and (re)integration. PMID:25897567

  4. Serum cholesterol concentrations in parasuicide.

    PubMed Central

    Gallerani, M.; Manfredini, R.; Caracciolo, S.; Scapoli, C.; Molinari, S.; Fersini, C.

    1995-01-01

    OBJECTIVE--To evaluate whether people who have committed parasuicide have low serum cholesterol concentrations. DESIGN--Results of blood tests in subjects admitted to hospital for parasuicide compared with those of a control group of non-suicidal subjects; comparison in subgroup of parasuicide subjects of two sets of blood test results (one set from admission for parasuicide and the other from admission for some other illness). SETTING--General hospital, Ferrara, Italy. SUBJECTS--331 parasuicide subjects aged 44 (SD 21) years (109 with two sets of blood test results) and 331 controls. MAIN OUTCOME MEASURES--Serum cholesterol concentrations and possible association with parasuicide, considering sex, violence of method of parasuicide, and underlying psychiatric disorder. RESULTS--Lower serum cholesterol concentrations (4.96 (SD 1.16) mmol/l) were found in the parasuicide subjects than in the controls (5.43 (1.30); P < 0.001), regardless of sex and degree of violence of parasuicide method. Both men and women with two sets of blood test results had lower cholesterol concentrations after parasuicide. Linear regression analysis showed that the difference in cholesterol concentrations was significantly related to the length of time between the taking of the two sets of blood samples. CONCLUSION--The study showed low cholesterol concentrations after parasuicide. This finding agrees with previous studies, which suggest an association between low cholesterol concentration and suicide. PMID:7795448

  5. Cholesterol-metabolizing cytochromes P450: implications for cholesterol lowering

    PubMed Central

    Pikuleva, Irina A.

    2010-01-01

    Cardiovascular disease (CVD) continues to be a leading cause of death worldwide. Elevated serum cholesterol is one of the classical risk factors for CVD which also include age, hypertension, smoking, diabetes mellitus, obesity and family history. A number of therapeutic drug classes have been developed to treat hypercholesterolemia, yet, an important percentage of patients do not reach their treatment goals. Therefore, new cholesterol-lowering medications, having a site of action different from that of currently available drugs need to be developed. This review summarizes new information about cytochrome P450 enzymes 7A1, 27A1, and 46A1, that play key roles in cholesterol elimination and that have potential to serve as targets for cholesterol-lowering. PMID:18950282

  6. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    SciTech Connect

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K{sub C}, the thickness D{sub HH}, and the orientational order parameter S{sub xray} of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K{sub C} when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  7. Targeting cancer using cholesterol conjugates

    PubMed Central

    Radwan, Awwad A.; Alanazi, Fares K.

    2013-01-01

    Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol–anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo. PMID:24493968

  8. Ovarian Cystadenoma in a Trafficked Patient.

    PubMed

    Titchen, Kanani E; Katz, Douglas; Martinez, Kidian; White, Krishna

    2016-05-01

    The topic of child sex trafficking is receiving increased attention both in the lay press and in research articles. Recently, a number of physician organizations have issued policy statements calling for the education and involvement of physicians in combating this form of "modern-day slavery." Primary care and emergency medicine physicians have led these efforts, but a number of these victims may present to surgeons. Surgeons are in a unique position to identify trafficked patients; during the process of undraping, intubation, and surgical preparation, signs of trafficking such as tattoos, scars, dental injuries, and bruising may be evident. In addition, these patients may have specific needs in terms of anesthesia and postoperative care due to substance abuse. Here, we report the case of an 18-year-old girl with a history of sexual exploitation who presents for cystadenoma excision. To our knowledge, this is the first report of a sex-trafficked pediatric patient presenting for surgery. PMID:27244785

  9. Human trafficking law and social structures.

    PubMed

    Wooditch, Alese

    2012-08-01

    Human trafficking has only recently emerged at the forefront of policy reform, even in developed nations. Yet, heightened awareness of the issue has not translated into effective policy as the majority of nations have ineffective antitrafficking practices; many countries have failed to criminalize human trafficking, whereas others do not actively enforce statutes in place. By applying Black's theory of law, this study offers a preliminary understanding into the variation of global prosecutorial efforts in human trafficking and adequacy of antitrafficking law. To isolate this relationship, the effects of trafficking markets are controlled. As with prior research, the study finds limited support for the theory. The article concludes with a discussion on the implications of the quantity of antitrafficking law and morphology association for policy development. PMID:21948250

  10. Sex trafficking of women and girls.

    PubMed

    Deshpande, Neha A; Nour, Nawal M

    2013-01-01

    Sex trafficking involves some form of forced or coerced sexual exploitation that is not limited to prostitution, and has become a significant and growing problem in both the United States and the larger global community. The costs to society include the degradation of human and women's rights, poor public health, disrupted communities, and diminished social development. Victims of sex trafficking acquire adverse physical and psychological health conditions and social disadvantages. Thus, sex trafficking is a critical health issue with broader social implications that requires both medical and legal attention. Healthcare professionals can work to improve the screening, identification, and assistance of victims of sex trafficking in a clinical setting and help these women and girls access legal and social services. PMID:23687554

  11. Sex Trafficking of Women and Girls

    PubMed Central

    Deshpande, Neha A; Nour, Nawal M

    2013-01-01

    Sex trafficking involves some form of forced or coerced sexual exploitation that is not limited to prostitution, and has become a significant and growing problem in both the United States and the larger global community. The costs to society include the degradation of human and women’s rights, poor public health, disrupted communities, and diminished social development. Victims of sex trafficking acquire adverse physical and psychological health conditions and social disadvantages. Thus, sex trafficking is a critical health issue with broader social implications that requires both medical and legal attention. Healthcare professionals can work to improve the screening, identification, and assistance of victims of sex trafficking in a clinical setting and help these women and girls access legal and social services. PMID:23687554

  12. Committee opinion no. 507: human trafficking.

    PubMed

    2011-09-01

    Human trafficking is a widespread problem with estimates ranging from 14,000 to 50,000 individuals trafficked into the United States annually. This hidden population involves the commercial sex industry, agriculture, factories, hotel and restaurant businesses, domestic workers, marriage brokers, and some adoption firms. Because 80% of trafficked individuals are women and girls, women’s health care providers may better serve their diverse patient population by increasing their awareness of this problem. The exploitation of people of any race, gender, sexual orientation, or ethnicity is unacceptable at any time, in any place. The members of the American College of Obstetricians and Gynecologists should be aware of this problem and strive to recognize and assist their patients who are victims or who have been victims of human trafficking. PMID:21860320

  13. LDL–cholesterol transport to the endoplasmic reticulum: current concepts

    PubMed Central

    Pfisterer, Simon G.; Peränen, Johan; Ikonen, Elina

    2016-01-01

    Purpose of review In this article, we summarize the present information related to the export of LDL-derived cholesterol from late endosomes, with a focus on Nieman-Pick disease, type C1 (NPC1) cholesterol delivery toward the endoplasmic reticulum (ER). We review data suggesting that several pathways may operate in parallel, including membrane transport routes and membrane contact sites (MCSs). Recent findings There is increasing appreciation that MCSs provide an important mechanism for intermembrane lipid transfer. In late endosome–ER contacts, three protein bridges involving oxysterol binding protein related protein (ORP)1L-vesicle associated membrane protein-associated protein (VAP), steroidogenic acute regulatory protein (StAR)D3-VAP and ORP5-NPC1 proteins have been reported. How much they contribute to the flux of LDL–cholesterol to the ER is currently open. Studies for lipid transfer via MCSs have been most advanced in Saccharomyces cerevisiae. Recently, a new sterol-binding protein family conserved between yeast and man was identified. Its members localize at MCSs and were named lipid transfer protein anchored at membrane contact sites (Lam) proteins. In yeast, sterol transfer between the ER and the yeast lysosome may be facilitated by a Lam protein. Summary Increasing insights into the role of MCSs in directional sterol delivery between membranes propose that they might provide routes for LDL–cholesterol transfer to the ER. Future work should reveal which specific contacts may operate for this, and how they are controlled by cholesterol homeostatic machineries. PMID:27054443

  14. RNA trafficking in parasitic plant systems.

    PubMed

    Leblanc, Megan; Kim, Gunjune; Westwood, James H

    2012-01-01

    RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host-parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942

  15. The Intracellular Trafficking Pathway of Transferrin

    PubMed Central

    Mayle, Kristine M.; Le, Alexander M.; Kamei, Daniel T.

    2011-01-01

    Background Transferrin (Tf) is an iron-binding protein that facilitates iron-uptake in cells. Iron-loaded Tf first binds to the Tf receptor (TfR) and enters the cell through clathrin-mediated endocytosis. Inside the cell, Tf is trafficked to early endosomes, delivers iron, and then is subsequently directed to recycling endosomes to be taken back to the cell surface. Scope of Review We aim to review the various methods and techniques that researchers have employed for elucidating the Tf trafficking pathway and the cell-machinery components involved. These experimental methods can be categorized as microscopy, radioactivity, and surface plasmon resonance (SPR). Major Conclusions Qualitative experiments, such as total internal reflectance fluorescence (TIRF), electron, laser-scanning confocal, and spinning-disk confocal microscopy, have been utilized to determine the roles of key components in the Tf trafficking pathway. These techniques allow temporal resolution and are useful for imaging Tf endocytosis and recycling, which occur on the order of seconds to minutes. Additionally, radiolabeling and SPR methods, when combined with mathematical modeling, have enabled researchers to estimate quantitative kinetic parameters and equilibrium constants associated with Tf binding and trafficking. General Significance Both qualitative and quantitative data can be used to analyze the Tf trafficking pathway. The valuable information that is obtained about the Tf trafficking pathway can then be combined with mathematical models to identify design criteria to improve the ability of Tf to deliver anticancer drugs. PMID:21968002

  16. Massively parallel visualization: Parallel rendering

    SciTech Connect

    Hansen, C.D.; Krogh, M.; White, W.

    1995-12-01

    This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume renderer use a MIMD approach. Implementations for these algorithms are presented for the Thinking Machines Corporation CM-5 MPP.

  17. Cholesterol and synaptic vesicle exocytosis

    PubMed Central

    Fratangeli, Alessandra

    2010-01-01

    Lipids may affect synaptic function in at least two ways: by acting as ligands for effector proteins [e.g., phosphatidylinositol (4,5) bisphosphate, diacylglycerol-mediated signaling] or by modifying the physicochemical properties and molecular organization of synaptic membranes. One that acts in the latter manner is cholesterol, an essential structural component of plasma membranes that is largely enriched in the membranes of synapses and synaptic vesicles, in which it may be involved in lipid-lipid and protein-lipid interactions. Cholesterol is an important constituent of the “membrane rafts” that may play a role in recruiting and organizing the specific proteins of the exocytic pathways. Furthermore, many synaptic proteins bind directly to cholesterol. The regulation of cholesterol and lipid levels may therefore influence the specific interactions and activity of synaptic proteins, and have a strong impact on synaptic functions. PMID:20798824

  18. Cholesterol and Breast Cancer Pathophysiology

    PubMed Central

    Nelson, Erik R.; Chang, Ching-yi; McDonnell, Donald P.

    2014-01-01

    Cholesterol is a risk factor for breast cancer although the mechanisms by which this occurs are not well understood. One hypothesis is that dyslipidemia results in increased cholesterol content in cell membranes thus impacting membrane fluidity and subsequent signaling. Additionally, studies demonstrate that the metabolite, 27-hydroxycholesterol (27HC), can function as an estrogen, increasing the proliferation of estrogen receptor positive breast cancer cells. This was unexpected as 27HC and other oxysterols activate the liver X receptors resulting in the reduction of intracellular cholesterol. Resolution of this paradox will require a dissection of the molecular mechanisms by which ER and LXR converge in breast cancer cells. Regardless, the observation that 27HC influences breast cancer provides rationale for strategies that target cholesterol metabolism. PMID:25458418

  19. Cholesterol confusion and statin controversy.

    PubMed

    DuBroff, Robert; de Lorgeril, Michel

    2015-07-26

    The role of blood cholesterol levels in coronary heart disease (CHD) and the true effect of cholesterol-lowering statin drugs are debatable. In particular, whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently, the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes, cancer, and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary, we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD. PMID:26225201

  20. Cholesterol's location in lipid bilayers

    DOE PAGESBeta

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; Harroun, Thad A.; Katsaras, John

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in themore » vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  1. Cholesterol confusion and statin controversy

    PubMed Central

    DuBroff, Robert; de Lorgeril, Michel

    2015-01-01

    The role of blood cholesterol levels in coronary heart disease (CHD) and the true effect of cholesterol-lowering statin drugs are debatable. In particular, whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently, the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes, cancer, and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary, we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD. PMID:26225201

  2. Cholesterol's location in lipid bilayers.

    PubMed

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R; Harroun, Thad A; Katsaras, John

    2016-09-01

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown - at least in some bilayers - to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid-water interface. In this article we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies. PMID:27056099

  3. Dysregulation of testicular cholesterol metabolism following spontaneous mutation of the niemann-pick c1 gene in mice.

    PubMed

    Akpovi, Casimir D; Murphy, Bruce D; Erickson, Robert P; Pelletier, R-Marc

    2014-08-01

    The Niemann-Pick-type C1 (Npc1) protein mobilizes LDL-derived cholesterol from lysosomes. Npc1 deficiency disease is a panethnic autosomal recessive disorder of intracellular cholesterol trafficking, leading to accumulation of cholesterol in endosomes/lysosomes. This report assesses the effects of a spontaneous inactivating mutation of the Npc1 gene on spermatogenesis and cholesterol homeostasis in mice. We quantified 1) free and esterified cholesterol levels by enzymatic analysis, 2) cholesterol enzymes and transporter protein expression by Western blotting, and 3) the number of Apostain-labeled apoptotic germ cells and apoptosis levels by ELISA in seminiferous tubule-enriched fractions. In wild-type (WT) mice, esterified cholesterol was elevated when Npc1 expression was low during puberty, while in adulthood, the levels were low (P < 0.05) when Npc1 expression was high (P < 0.01). In Npc1-/- mice, free and esterified cholesterol were significantly elevated. The abundance of cholesterol regulatory proteins, HMGR ACAT1, ACAT2, SR-BI, and ABCA1 was significantly higher in Npc1-/- than in WT mice. The level of apoptosis determined by ELISA and the number of Apostain-labeled cells/tubule were higher in Npc1-/- than in WT mice. Circulating testosterone levels in the Npc1-/- males were threefold lower than those observed in the WT. Deleting the Npc1 gene is accompanied by an increase in germ cell apoptosis and compensatory imbalances in the expression of cholesterol enzymatic and transporter factors and is associated with esterified cholesterol accumulation in seminiferous tubules. PMID:25009206

  4. Sex work and sex trafficking.

    PubMed

    Ditmore, M; Saunders, P

    1998-01-01

    Preventing HIV infection and other sexually transmitted diseases (STDs), as well as sexual and physical violence, are major occupational health and safety concerns for prostitutes. Considerable evidence shows that anti-prostitution laws facilitate violence and abuse against prostitutes and may increase their risk of contracting HIV/STDs. For example, police often take advantage of existing laws against prostitution to demand money or sex. In general, the strict enforcement of anti-prostitution laws marginalizes prostitutes from services which could help them avoid abuse and promotes an environment in which prostitutes must take risks to avoid detection and arrest. One strategy to improve prostitutes' lives would therefore be to remove laws which prevent them from working safely and from travelling abroad to work legally. Projects in which prostitutes are actively involved have helped break down stereotypes against prostitutes, while police-sex worker liaison projects in Scotland and Australia have led to higher levels of reporting of crimes against prostitutes. The Network of Sex Work Projects (NSWP), an organization which links sex worker health programs around the world, has found that the incidence of HIV/STDs among prostitutes is lowest when they have control over their work conditions; access to condoms, lubricants, and other safe sex materials; and respect of their basic human and legal rights. People need to understand that consensual involvement in sex work is different from forced sex trafficking. PMID:12348692

  5. The hidden crime: human trafficking.

    PubMed

    Clause, Kristen J; Lawler, Kate Byrnes

    2013-01-01

    As the primary contact in the health care system, nurses can play a role in combating this crime and assisting the victims. Assessment for abuse, neglect, trauma, recurrent sexually transmitted infections (STIs) and fear of a controlling partner is critical. Following up on "red flags" and understanding methods of safe questioning can make the difference between slavery and recovery for victims. Nurses must also know the professional referrals in their areas once a potential victim has been identified. This may be a very dangerous undertaking and must be handled by experienced personnel. Referrals to forensic nurses or physicians, domestic violence professionals or law enforcement may be indicated. Initially, a nurse may want to consult with the agency social worker for guidance. Human trafficking is a human rights crime. Unfortunately, it is more prevalent in all types of communities than most people suspect. Nurses can be heroes to the victims through understanding of this crime and vigilance in the assessment and care of all people they encounter in their practices. PMID:24218718

  6. The hidden crime: human trafficking.

    PubMed

    Clause, Kristen J; Lawler, Kate Byrnes

    2013-01-01

    As the primary contact in the health care system, nurses can play a role in combating this crime and assisting the victims. Assessment for abuse, neglect, trauma, recurrent sexually transmitted infections (STIs) and fear of a controlling partner is critical. Following up on "red flags" and understanding methods of safe questioning can make the difference between slavery and recovery for victims. Nurses must also know the professional referrals in their areas once a potential victim has been identified. This may be a very dangerous undertaking and must be handled by experienced personnel. Referrals to forensic nurses or physicians, domestic violence professionals or law enforcement may be indicated. Initially, a nurse may want to consult with the agency social worker for guidance. Human trafficking is a human rights crime. Unfortunately, it is more prevalent in all types of communities than most people suspect. Nurses can be heroes to the victims through understanding of this crime and vigilance in the assessment and care of all people they encounter in their practices. To learn more or to help with this cause, visit the Somaly Mam Foundation at www.somaly.org or the U.S. Department of State at www. state.gov. PMID:23977773

  7. Cholesterol and benign prostate disease.

    PubMed

    Freeman, Michael R; Solomon, Keith R

    2011-01-01

    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association between BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemia, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept. PMID:21862201

  8. Role of endolysosomes and cholesterol in the pathogenesis of Alzheimer’s disease: Insights into why statins might not provide clinical benefit

    PubMed Central

    Chen, Xuesong; Hui, Liang; Geiger, Jonathan D.

    2015-01-01

    Altered cholesterol homeostasis in general and increased levels of low-density lipoprotein (LDL) cholesterol specifically is a robust risk factor for the pathogenesis of sporadic Alzheimer’s disease (AD). Because of this, the family of drugs known as statins have been tried extensively to lower cholesterol levels in attempting to prevent and/or lessen the neuropathogenesis of AD. Unfortunately, evidence accumulated to date is insufficient to support the continued use of statins as a viable pharmacotherapeutic approach against AD. To understand these complex and inter-related issues it is important to review how altered cholesterol homeostasis contributes to AD pathogenesis and why statins have not provided clinical benefit against AD. Apolipoproteins with their different affinities for various lipids and the receptors that control cholesterol uptake can result in drastic differences in cholesterol trafficking into and its distribution within neurons. The presence of the apoE4 or elevated plasma levels of LDL cholesterol can lead to a set of conditions that resembles lysosomal lipid storage disorders observed in Niemann-Pick type C disease such as impaired recycling of cholesterol back to the endoplasmic reticulum (ER), Golgi and plasma membranes, cholesterol deficiencies in plasma membranes, and increased cholesterol accumulation in endolysosomes resulting in endolysosome dysfunction. Consequently, the use of statins to block cholesterol synthesis in ER might not only decrease further plasma membrane cholesterol levels thus disturbing synaptic integrity, but also could also increase cholesterol burden in endolysosomes thus worsening endolysosome dysfunction. Therefore, it is not surprising that the use of cholesterol-lowering strategies with statins has not resulted in clinical benefit for patients living with AD. PMID:25859562

  9. Facts about...Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet on blood cholesterol examines the connection between cholesterol and heart disease, lists risk factors for heart disease that can and cannot be controlled, points out who can benefit from lowering blood cholesterol, distinguishes between blood and dietary cholesterol, describes low density lipoprotein and high density lipoprotein…

  10. Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport.

    PubMed

    McCauliff, Leslie A; Xu, Zhi; Li, Ran; Kodukula, Sarala; Ko, Dennis C; Scott, Matthew P; Kahn, Peter C; Storch, Judith

    2015-11-01

    The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2(-/-) fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment. PMID:26296895

  11. β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis

    PubMed Central

    Ma, Weilie; Lin, Margarita; Ding, Hang; Lin, Guorong; Zhang, Zhizhen

    2016-01-01

    Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media. PMID:26986486

  12. Lysosomal cholesterol accumulation in macrophages leading to coronary atherosclerosis in CD38(-/-) mice.

    PubMed

    Xu, Xiaoyang; Yuan, Xinxu; Li, Ningjun; Dewey, William L; Li, Pin-Lan; Zhang, Fan

    2016-06-01

    The disruption in transportation of oxLDL-derived cholesterol and the subsequent lipid accumulation in macrophages are the hallmark events in atherogenesis. Our recent studies demonstrated that lysosomal Ca(2+) messenger of nicotinic acid adenine dinucleotide phosphate (NAADP), an enzymatic product of CD38 ADP-ribosylcyclase (CD38), promoted lipid endocytic trafficking in human fibroblast cells. The current studies are designed to examine the functional role of CD38/NAADP pathway in the regulation of lysosomal cholesterol efflux in atherosclerosis. Oil red O staining showed that oxLDL concentration-dependently increased lipid buildup in bone marrow-derived macrophages from both wild type and CD38(-/-) , but to a significant higher extent with CD38 gene deletion. Bodipy 493/503 fluorescence staining found that the deposited lipid in macrophages was mainly enclosed in lysosomal organelles and largely enhanced with the blockade of CD38/NAADP pathway. Filipin staining and direct measurement of lysosome fraction further revealed that the free cholesterol constituted a major portion of the total cholesterol segregated in lysosomes. Moreover, in situ assay disclosed that both lysosomal lumen acidity and the acid lipase activity were reduced upon cholesterol buildup in lysosomes. In CD38(-/-) mice, treatment with Western diet (12 weeks) produced atherosclerotic damage in coronary artery with striking lysosomal cholesterol sequestration in macrophages. These data provide the first experimental evidence that the proper function of CD38/NAADP pathway plays an essential role in promoting free cholesterol efflux from lysosomes and that a defection of this signalling leads to lysosomal cholesterol accumulation in macrophages and results in coronary atherosclerosis in CD38(-/-) mice. PMID:26818887

  13. Peptides having reduced toxicity that stimulate cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan; Danho, Waleed

    2016-08-16

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABCA1 that parallels that of full-length apolipoproteins. Further, the peptides of the invention have little or no toxicity when administered at therapeutic and higher doses. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  14. Intestinal nuclear receptors in HDL cholesterol metabolism

    PubMed Central

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  15. Intestinal nuclear receptors in HDL cholesterol metabolism.

    PubMed

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-07-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  16. Parallel machines: Parallel machine languages

    SciTech Connect

    Iannucci, R.A. )

    1990-01-01

    This book presents a framework for understanding the tradeoffs between the conventional view and the dataflow view with the objective of discovering the critical hardware structures which must be present in any scalable, general-purpose parallel computer to effectively tolerate latency and synchronization costs. The author presents an approach to scalable general purpose parallel computation. Linguistic Concerns, Compiling Issues, Intermediate Language Issues, and hardware/technological constraints are presented as a combined approach to architectural Develoement. This book presents the notion of a parallel machine language.

  17. Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase.

    PubMed

    Aggarwal, V; Malik, J; Prashant, A; Jaiwal, P K; Pundir, C S

    2016-05-01

    We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40 °C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10-700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4 °C. PMID:26853742

  18. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. PMID:27313057

  19. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis

    PubMed Central

    Wagschal, Alexandre; Najafi-Shoushtari, S Hani; Wang, Lifeng; Goedeke, Leigh; Sinha, Sumita; deLemos, Andrew S; Black, Josh C; Ramírez, Cristina M; Li, Yingxia; Tewhey, Ryan; Hatoum, Ida; Shah, Naisha; Lu, Yong; Kristo, Fjoralba; Psychogios, Nikolaos; Vrbanac, Vladimir; Lu, Yi-Chien; Hla, Timothy; de Cabo, Rafael; Tsang, John S; Schadt, Eric; Sabeti, Pardis C; Kathiresan, Sekar; Cohen, David E; Whetstine, Johnathan; Chung, Raymond T; Fernández-Hernando, Carlos; Kaplan, Lee M; Bernards, Andre; Gerszten, Robert E; Näär, Anders M

    2016-01-01

    Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet–fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders. PMID:26501192

  20. Sterol dynamics during endocytic trafficking in Arabidopsis.

    PubMed

    Stanislas, Thomas; Grebe, Markus; Boutté, Yohann

    2014-01-01

    Sterols are lipids found in membranes of eukaryotic cells. Functions of sterols have been demonstrated for various cellular processes including endocytic trafficking in animal, fungal, and plant cells. The ability to visualize sterols at the subcellular level is crucial to understand sterol distribution and function during endocytic trafficking. In plant cells, the polyene antibiotic filipin is the most extensively used tool for the specific detection of fluorescently labeled 3-β-hydroxysterols in situ. Filipin can to some extent be used to track sterol internalization in live cells, but this application is limited, due to the inhibitory effects filipin exerts on sterol-dependent endocytosis. Nevertheless, filipin-sterol labeling can be performed on aldehyde-fixed cells which allows for sterol detection in endocytic compartments. This approach can combine studies correlating sterol distribution with experimental manipulations of endocytic trafficking pathways. Here, we describe step-by-step protocols and troubleshooting for procedures on live and fixed cells to visualize sterols during endocytic trafficking. We also provide a detailed discussion of advantages and limitations of both methods. Moreover, we illustrate the use of the endocytic recycling inhibitor brefeldin A and a genetically modified version of one of its target molecules for studying endocytic sterol trafficking. PMID:25117272

  1. Parallel pipelining

    SciTech Connect

    Joseph, D.D.; Bai, R.; Liao, T.Y.; Huang, A.; Hu, H.H.

    1995-09-01

    In this paper the authors introduce the idea of parallel pipelining for water lubricated transportation of oil (or other viscous material). A parallel system can have major advantages over a single pipe with respect to the cost of maintenance and continuous operation of the system, to the pressure gradients required to restart a stopped system and to the reduction and even elimination of the fouling of pipe walls in continuous operation. The authors show that the action of capillarity in small pipes is more favorable for restart than in large pipes. In a parallel pipeline system, they estimate the number of small pipes needed to deliver the same oil flux as in one larger pipe as N = (R/r){sup {alpha}}, where r and R are the radii of the small and large pipes, respectively, and {alpha} = 4 or 19/7 when the lubricating water flow is laminar or turbulent.

  2. Data parallelism

    SciTech Connect

    Gorda, B.C.

    1992-09-01

    Data locality is fundamental to performance on distributed memory parallel architectures. Application programmers know this well and go to great pains to arrange data for optimal performance. Data Parallelism, a model from the Single Instruction Multiple Data (SIMD) architecture, is finding a new home on the Multiple Instruction Multiple Data (MIMD) architectures. This style of programming, distinguished by taking the computation to the data, is what programmers have been doing by hand for a long time. Recent work in this area holds the promise of making the programmer's task easier.

  3. Data parallelism

    SciTech Connect

    Gorda, B.C.

    1992-09-01

    Data locality is fundamental to performance on distributed memory parallel architectures. Application programmers know this well and go to great pains to arrange data for optimal performance. Data Parallelism, a model from the Single Instruction Multiple Data (SIMD) architecture, is finding a new home on the Multiple Instruction Multiple Data (MIMD) architectures. This style of programming, distinguished by taking the computation to the data, is what programmers have been doing by hand for a long time. Recent work in this area holds the promise of making the programmer`s task easier.

  4. Purinergic Signaling During Immune Cell Trafficking.

    PubMed

    Ferrari, Davide; McNamee, Eóin N; Idzko, Marco; Gambari, Roberto; Eltzschig, Holger K

    2016-06-01

    Migration and positioning of immune cells is fundamental for their differentiation and recruitment at sites of infection. Besides the fundamental role played by chemokines and their receptors, recent studies demonstrate that a complex network of purinergic signaling events plays a key role in these trafficking events. This process includes the release of nucleotides (such as ATP and ADP) and subsequent autocrine and paracrine signaling events through nucleotide receptors. At the same time, surface-expressed ectoapyrases and nucleotidases convert extracellular nucleotides to adenosine, and adenosine signaling events play additional functional roles in leucocyte trafficking. In this review we revisit classical paradigms of inflammatory cell trafficking in the context of recent studies implicating purinergic signaling events in this process. PMID:27142306

  5. Regulation of GPCR Trafficking by Ubiquitin

    PubMed Central

    Kennedy, Justine E.; Marchese, Adriano

    2015-01-01

    G protein-coupled receptor (GPCR)-promoted signaling mediates cellular responses to a variety of stimuli involved in diverse physiological processes. In addition, GPCRs are also the largest class of target for many drugs used to treat a variety of diseases. Despite the role of GPCR signaling in health and disease, the molecular mechanisms governing GPCR signaling remain poorly understanding. Classically, GPCR signaling is tightly regulated by GPCR kinases and β-arrestins, which act in a concerted fashion to govern GPCR desensitization and also GPCR trafficking. Ubiquitination has now emerged as an important posttranslational modification that has multiple roles, either directly or indirectly, in governing GPCR trafficking. Recent studies have revealed a mechanistic link between GPCR phosphorylation, β-arrestins, and ubiquitination. Here, we review recent developments in our understanding of how ubiquitin regulates GPCR trafficking within the endocytic pathway. PMID:26055053

  6. Chloride in vesicular trafficking and function.

    PubMed

    Stauber, Tobias; Jentsch, Thomas J

    2013-01-01

    Luminal acidification is of pivotal importance for the physiology of the secretory and endocytic pathways and its diverse trafficking events. Acidification by the proton-pumping V-ATPase requires charge compensation by counterion currents that are commonly attributed to chloride. The molecular identification of intracellular chloride transporters and the improvement of methodologies for measuring intraorganellar pH and chloride have facilitated the investigation of the physiology of vesicular chloride transport. New data question the requirement of chloride for pH regulation of various organelles and furthermore ascribe functions to chloride that are beyond merely electrically shunting the proton pump. This review surveys the currently established and proposed intracellular chloride transporters and gives an overview of membrane-trafficking steps that are affected by the perturbation of chloride transport. Finally, potential mechanisms of membrane-trafficking modulation by chloride are discussed and put into the context of organellar ion homeostasis in general. PMID:23092411

  7. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants. PMID:27128466

  8. Vesicle trafficking and cell surface membrane patchiness.

    PubMed

    Tang, Q; Edidin, M

    2001-07-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  9. Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    PubMed Central

    Surls, Jacqueline; Nazarov-Stoica, Cristina; Kehl, Margaret; Olsen, Cara; Casares, Sofia; Brumeanu, Teodor-D.

    2012-01-01

    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response. PMID:22723880

  10. Trafficking in persons and development: towards greater policy coherence.

    PubMed

    Danailova-Trainor, Gergana; Laczko, Frank

    2010-01-01

    Poverty is often regarded as the "root cause" of trafficking, but the linkages between poverty, a lack of development and trafficking are complex. For example, there is some evidence to suggest that victims of cross-border trafficking are more likely to originate from middle-income rather than lower-income countries. Trafficking and development have tended to be treated as very separate policy areas and the assessment of the development impact of counter-trafficking programmes is still at an early stage. This paper outlines a possible framework for a more evidence-based approach to understanding the linkages between trafficking, trafficking policy and human development. The paper argues that the human development gains from greater mobility could be significantly enhanced if there was greater coherence between policies to combat trafficking and policies to promote development. PMID:20645470

  11. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  12. Organ trading, tourism, and trafficking within Europe.

    PubMed

    Pattinson, Shaun D

    2008-03-01

    This article argues for a regulatory and institutional response towards organ trading, tourism and trafficking that differs from extant approaches. European countries have hitherto adopted blanket prohibitions on organ trading (i.e. the buying or selling of human organs). This article advances the view that policy makers have thereby overreacted to legitimate public health concerns and the evils of organ trafficking (i.e. organ trading and tourism involving coercion or deception). It argues for a trial of a very tightly regulated system of organ trading that could eventually lead to a limited system of organ tourism (i.e. organ trading involving more than one jurisdiction). PMID:18592891

  13. Endocytosis and trafficking of BMP receptors: Regulatory mechanisms for fine-tuning the signaling response in different cellular contexts.

    PubMed

    Ehrlich, Marcelo

    2016-02-01

    Signaling by bone morphogenetic protein (BMP) receptors is regulated at multiple levels in order to ensure proper interpretation of BMP stimuli in different cellular settings. As with other signaling receptors, regulation of the amount of exposed and signaling-competent BMP receptors at the plasma-membrane is predicted to be a key mechanism in governing their signaling output. Currently, the endocytosis of BMP receptors is thought to resemble that of the structurally related transforming growth factor-β (TGF-β) receptors, as BMP receptors are constitutively internalized (independently of ligand binding), with moderate kinetics, and mostly via clathrin-mediated endocytosis. Also similar to TGF-β receptors, BMP receptors are able to signal from the plasma membrane, while internalization to endosomes may have a signal modulating effect. When at the plasma membrane, BMP receptors localize to different membrane domains including cholesterol rich domains and caveolae, suggesting a complex interplay between membrane distribution and internalization. An additional layer of complexity stems from the putative regulatory influence on the signaling and trafficking of BMP receptors exerted by ligand traps and/or co-receptors. Furthermore, the trafficking and signaling of BMP receptors are subject to alterations in cellular context. For example, genetic diseases involving changes in the expression of auxiliary factors of endocytic pathways hamper retrograde BMP signals in neurons, and perturb the regulation of synapse formation. This review summarizes current understanding of the trafficking of BMP receptors and discusses the role of trafficking in regulation of BMP signals. PMID:26776724

  14. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells

    NASA Technical Reports Server (NTRS)

    Parat, Marie-Odile; Stachowicz, Rafal Z.; Fox, Paul L.

    2002-01-01

    During normal and pathological conditions, endothelial cells (ECs) are subjected to locally generated reactive oxygen species, produced by themselves or by other vessel wall cells. In excess these molecules cause oxidative injury to the cell but at moderate levels they might modulate intracellular signalling pathways. We have investigated the effect of oxidative stress on the palmitoylation and trafficking of caveolin-1 in bovine aortic ECs. Exogenous H2O2 did not alter the intracellular localization of caveolin-1 in ECs. However, metabolic labelling experiments showed that H2O2 inhibited the trafficking of newly synthesized caveolin-1 to membrane raft domains. Several mechanisms potentially responsible for this inhibition were examined. Impairment of caveolin-1 synthesis by H2O2 was not responsible for diminished trafficking. Similarly, the inhibition was independent of H2O2-induced caveolin-1 phosphorylation as shown by the markedly different concentration dependences. We tested the effect of H2O2 on palmitoylation of caveolin-1 by the incorporation of [3H]palmitic acid. Exposure of ECs to H2O2 markedly inhibited the palmitoylation of caveolin-1. Comparable inhibition was observed after treatment of cells with H2O2 delivered either as a bolus or by continuous delivery with glucose and glucose oxidase. Kinetic studies showed that H2O2 did not alter the rate of caveolin-1 depalmitoylation but instead decreased the 'on-rate' of palmitoylation. Together these results show for the first time the modulation of protein palmitoylation by oxidative stress, and suggest a cellular mechanism by which stress might influence caveolin-1-dependent cell activities such as the concentration of signalling proteins and cholesterol trafficking.

  15. Cholesterol Accumulation Sequesters Rab9 and Disrupts Late Endosome Function in NPC1-deficient Cells*

    PubMed Central

    Ganley, Ian G.; Pfeffer, Suzanne R.

    2013-01-01

    Niemann-Pick type C disease is an autosomal recessive disorder that leads to massive accumulation of cholesterol and glycosphingolipids in late endosomes and lysosomes. To understand how cholesterol accumulation influences late endosome function, we investigated the effect of elevated cholesterol on Rab9-dependent export of mannose 6-phosphate receptors from this compartment. Endogenous Rab9 levels were elevated 1.8-fold in Niemann-Pick type C cells relative to wild type cells, and its half-life increased 1.6-fold, suggesting that Rab9 accumulation is caused by impaired protein turnover. Reduced Rab9 degradation was accompaniedby stabilization on endosome membranes, as shown by a reduction in the capacity of Rab9 for guanine nucleotide dissociation inhibitor-mediated extraction from Niemann-Pick type C membranes. Cholesterol appeared to stabilize Rab9 directly, as liposomes loaded with prenylated Rab9 showed decreased extractability with increasing cholesterol content. Rab9 is likely sequestered in an inactive form on Niemann-Pick type C membranes, as cation-dependent man-nose 6-phosphate receptorswere missorted to the lysosome for degradation, a process that was reversed by overexpression of GFP-tagged Rab9. In addition to using primary fibroblasts isolated from Niemann-Pick type C patients, RNA interference was utilized to recapitulate the disease phenotype in cultured cells, greatly facilitating the analysis of cholesterol accumulation and late endosome function. We conclude that cholesterol contributes directly to the sequestration of Rab9 on Niemann-Pick type C cell membranes, which in turn, disrupts mannose 6-phosphate receptor trafficking. PMID:16644737

  16. Child organ trafficking: global reality and inadequate international response.

    PubMed

    Bagheri, Alireza

    2016-06-01

    In organ transplantation, the demand for human organs has grown far faster than the supply of organs. This has opened the door for illegal organ trade and trafficking including from children. Organized crime groups and individual organ brokers exploit the situation and, as a result, black markets are becoming more numerous and organized organ trafficking is expanding worldwide. While underprivileged and vulnerable men and women in developing countries are a major source of trafficked organs, and may themselves be trafficked for the purpose of illegal organ removal and trade, children are at especial risk of exploitation. With the confirmed cases of children being trafficked for their organs, child organ trafficking, which once called a "modern urban legend", is a sad reality in today's world. By presenting a global picture of child organ trafficking, this paper emphasizes that child organ trafficking is no longer a myth but a reality which has to be addressed. It argues that the international efforts against organ trafficking and trafficking in human beings for organ removal have failed to address child organ trafficking adequately. This chapter suggests that more orchestrated international collaboration as well as development of preventive measure and legally binding documents are needed to fight child organ trafficking and to support its victims. PMID:26612382

  17. 78 FR 70571 - Advisory Council on Wildlife Trafficking; Rescheduled Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Fish and Wildlife Service Advisory Council on Wildlife Trafficking; Rescheduled Meeting AGENCY: Fish... Service (Service), announce a public meeting of the Advisory Council on Wildlife Trafficking (Council... announce that the Advisory Council on Wildlife Trafficking (Council) will hold a meeting to...

  18. 78 FR 59950 - Advisory Council on Wildlife Trafficking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Fish and Wildlife Service Advisory Council on Wildlife Trafficking AGENCY: Fish and Wildlife Service... public meeting of the Advisory Council on Wildlife Trafficking (Council). DATES: The meeting will be held... announce that the Advisory Council on Wildlife Trafficking (Council) will hold a meeting to...

  19. Human Trafficking: A Review for Mental Health Professionals

    ERIC Educational Resources Information Center

    Yakushko, Oksana

    2009-01-01

    This article provides a review of current research on human trafficking for mental health practitioners and scholars. In addition to an overview of definitions, causes and processes of trafficking, the article highlights mental health consequences of trafficking along with suggestions for treatment of survivors. Directions for counseling services,…

  20. Trafficking of Children in Albania: Patterns of Recruitment and Reintegration

    ERIC Educational Resources Information Center

    Gjermeni, Eglantina; Van Hook, Mary P.; Gjipali, Saemira; Xhillari, Lindita; Lungu, Fatjon; Hazizi, Anila

    2008-01-01

    Problem: Many children in Albania and other countries of Eastern Europe are being trafficked as part of the global business of human trafficking. Objectives: The study sought to identify the patterns of child trafficking involving Albanian children, and especially children's views of the role of family issues and the nature of the trafficking…

  1. Membrane Cholesterol Modulates Superwarfarin Toxicity.

    PubMed

    Marangoni, M Natalia; Martynowycz, Michael W; Kuzmenko, Ivan; Braun, David; Polak, Paul E; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content. PMID:27119638

  2. Community Guide to Cholesterol Resources.

    ERIC Educational Resources Information Center

    National Heart and Lung Inst. (DHHS/NIH), Bethesda, MD.

    This guide is divided into two sections, one for physicians and the other for patients. The physician section lists different resources including continuing medical education opportunities on the medical and scientific aspects of cholesterol and heart disease and on the physician's role in diagnosis and patient management. Additional materials on…

  3. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily. PMID:26874289

  4. Inherited Cholesterol Disorder Significantly Boosts Heart Risks

    MedlinePlus

    ... genetic disorder that causes high levels of "bad" LDL cholesterol have an increased risk for heart disease and ... in previous studies. Compared to people with average LDL cholesterol levels (less than 130 mg/dL), those with ...

  5. High Cholesterol: Medicines to Help You

    MedlinePlus

    ... Consumer Information by Audience For Women High Cholesterol--Medicines To Help You Share Tweet Linkedin Pin it ... Test to check your cholesterol (LDL-C) Combination Medicines Brand Name Generic Name Advicor Niacin and Lovastatin ...

  6. Do You Know Your Cholesterol Levels?

    MedlinePlus

    ... Health Information Center Do You Know Your Cholesterol Levels? Print-friendly Version (PDF, 6.1 MB) Spanish ... Syndrome? My Family Plan To Lower Blood Cholesterol Levels My Heart Health Card Play It Smart, Take ...

  7. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  8. Domestic minor sex trafficking: what the PNP needs to know.

    PubMed

    Hornor, Gail

    2015-01-01

    Human trafficking is a major global public health problem and represents a substantial human rights violation. Human trafficking has been receiving attention in both the lay media and professional literature. Human trafficking can include commercial sex, forced labor, child soldiers, and stealing of human organs. One form of human trafficking represents a significant American pediatric health problem: domestic minor sex trafficking (DMST). DMST is the commercial sexual abuse of children by selling, buying, or trading their sexual service. This continuing education article will define DMST and discuss it in terms of prevalence, risk factors, and practice implications for the pediatric nurse practitioner. PMID:25497135

  9. Dysregulation of protein trafficking in neurodegeneration

    PubMed Central

    2014-01-01

    Intracellular protein trafficking plays an important role in neuronal function and survival. Protein misfolding is a common theme found in many neurodegenerative diseases, and intracellular trafficking machinery contributes to the pathological accumulation and clearance of misfolded proteins. Although neurodegenerative diseases exhibit distinct pathological features, abnormal endocytic trafficking is apparent in several neurodegenerative diseases, such as Alzheimer’s disease (AD), Down syndrome (DS) and Parkinson’s disease (PD). In this review, we will focus on protein sorting defects in three major neurodegenerative diseases, including AD, DS and PD. An important pathological feature of AD is the presence of extracellular senile plaques in the brain. Senile plaques are composed of β-amyloid (Aβ) peptide aggregates. Multiple lines of evidence demonstrate that over-production/aggregation of Aβ in the brain is a primary cause of AD and attenuation of Aβ generation has become a topic of extreme interest in AD research. Aβ is generated from β-amyloid precursor protein (APP) through sequential cleavage by β-secretase and the γ-secretase complex. Alternatively, APP can be cleaved by α-secretase within the Aβ domain to release soluble APPα which precludes Aβ generation. DS patients display a strikingly similar pathology to AD patients, including the generation of neuronal amyloid plaques. Moreover, all DS patients develop an AD-like neuropathology by their 40 s. Therefore, understanding the metabolism/processing of APP and how these underlying mechanisms may be pathologically compromised is crucial for future AD and DS therapeutic strategies. Evidence accumulated thus far reveals that synaptic vesicle regulation, endocytic trafficking, and lysosome-mediated autophagy are involved in increased susceptibility to PD. Here we review current knowledge of endosomal trafficking regulation in AD, DS and PD. PMID:25152012

  10. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  11. Percentage of Adults with High Cholesterol Whose LDL Cholesterol Levels Are Adequately Controlled

    MedlinePlus

    ... of Adults with High Cholesterol Whose LDL Cholesterol Levels are Adequately Controlled High cholesterol can double a ... with High Cholesterol that is Controlled by Education Level 8k4c-k22f Download these data » Click on legends ...

  12. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  13. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis.

    PubMed Central

    Hoeg, J M; Santamarina-Fojo, S; Bérard, A M; Cornhill, J F; Herderick, E E; Feldman, S H; Haudenschild, C C; Vaisman, B L; Hoyt, R F; Demosky, S J; Kauffman, R D; Hazel, C M; Marcovina, S M; Brewer, H B

    1996-01-01

    Lecithin:cholesterol acyltransferase (LCAT) is a key plasma enzyme in cholesterol and high density lipoprotein (HDL) metabolism. Transgenic rabbits overexpressing human LCAT had 15-fold greater plasma LCAT activity that nontransgenic control rabbits. This degree of overexpression was associated with a 6.7-fold increase in the plasma HDL cholesterol concentration in LCAT transgenic rabbits. On a 0.3% cholesterol diet, the HDL cholesterol concentrations increased from 24 +/- 1 to 39 +/- 3 mg/dl in nontransgenic control rabbits (n = 10; P < 0.05) and increased from 161 +/- 5 to 200 +/- 21 mg/dl (P < 0.001) in the LCAT transgenic rabbits (n = 9). Although the baseline non-HDL concentrations of control (4 +/- 3 mg/dl) and transgenic rabbits (18 +/- 4 mg/dl) were similar, the cholesterol-rich diet raised the non-HDL cholesterol concentrations, reflecting the atherogenic very low density, intermediate density, and low density lipoprotein particles observed by gel filtration chromatography. The non-HDL cholesterol rose to 509 +/- 57 mg/dl in controls compared with only 196 +/- 14 mg/dl in the LCAT transgenic rabbits (P < 0.005). The differences in the plasma lipoprotein response to a cholesterol-rich diet observed in the transgenic rabbits paralleled the susceptibility to developing aortic atherosclerosis. Compared with nontransgenic controls, LCAT transgenic rabbits were protected from diet-induced atherosclerosis with significant reductions determined by both quantitative planimetry (-86%; P < 0.003) and quantitative immunohistochemistry (-93%; P < 0.009). Our results establish the importance of LCAT in the metabolism of both HDL and apolipoprotein B-containing lipoprotein particles with cholesterol feeding and the response to diet-induced atherosclerosis. In addition, these findings identify LCAT as a new target for therapy to prevent atherosclerosis. Images Fig. 2 Fig. 3 Fig. 4 PMID:8876155

  14. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids

    PubMed Central

    Tokumasu, Fuyuki; Crivat, Georgeta; Ackerman, Hans; Hwang, Jeeseong; Wellems, Thomas E.

    2014-01-01

    ABSTRACT Plasmodium falciparum (Pf) infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM), a parasitophorous vacuole membrane (PVM), a tubulovesicular network (TVN), and Maurer's clefts (MC). Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA) and hemoglobin S-containing (HbAS, HbAS) erythrocytes. Results from fluorescence lifetime imaging microscopy (FLIM) experiments with a cholesterol-sensitive fluorophore show that membrane cholesterol levels in parasitized erythrocytes (pRBC) decrease inwardly from the EM, to the MC/TVN, to the PVM, and finally to the parasite membrane (PM). Cholesterol depletion of pRBC by methyl-β-cyclodextrin treatment caused a collapse of this gradient. Lipid and cholesterol exchange data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids produced by the parasite. FLIM signals from the PVM or PM showed little or no difference between parasitized HbAA vs HbS-containing erythrocytes that differed in lipid content, suggesting that malaria parasites may regulate the cholesterol contents of the PVM and PM independently of levels in the host cell membrane. Cholesterol levels may affect raft structures and the membrane trafficking and sorting functions that support Pf survival in HbAA, HbAS and HbSS erythrocytes. PMID:24876390

  15. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  16. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  17. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage.

    PubMed

    Alfonso-García, Alba; Pfisterer, Simon G; Riezman, Howard; Ikonen, Elina; Potma, Eric O

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell. PMID:26719944

  18. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  19. Host Cell P-glycoprotein Is Essential for Cholesterol Uptake and Replication of Toxoplasma gondii*

    PubMed Central

    Bottova, Iveta; Hehl, Adrian B.; Štefanić, Saša; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Pieters, Jean; Sonda, Sabrina

    2009-01-01

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells. PMID:19389707

  20. Host cell P-glycoprotein is essential for cholesterol uptake and replication of Toxoplasma gondii.

    PubMed

    Bottova, Iveta; Hehl, Adrian B; Stefanić, Sasa; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Pieters, Jean; Sonda, Sabrina

    2009-06-26

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells. PMID:19389707

  1. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts

    PubMed Central

    Xu, Congfeng; Zhang, Yanhui H.; Thangavel, Muthusamy; Richardson, Mekel M.; Liu, Li; Zhou, Bin; Zheng, Yi; Ostrom, Rennolds S.; Zhang, Xin A.

    2009-01-01

    Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.—Xu, C., Zhang, Y. H., Thangavel, M., Richardson, M. M., Liu, L., Zhou, B., Zheng, Y., Ostrom, R. S., Zhang, X. A. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. PMID:19497983

  2. Role of LDL cholesterol and endolysosomes in amyloidogenesis and Alzheimer's disease

    PubMed Central

    Chen, Xuesong; Hui, Liang; Geiger, Jonathan D.

    2015-01-01

    The pathogenesis of late-onset sporadic Alzheimer's disease (AD) is believed to result from complex interactions between nutritional, environmental, epigenetic and genetic factors. Among those factors, altered circulating cholesterol homeostasis, independent of the APOE genotype, continues to be implicated in brain deposition of amyloid beta protein (Aβ) and the pathogenesis of AD. It is believed that trafficking of amyloid beta precursor protein (AβPP) into endolysosomes appears to play a critical role in determining amyloidogenic processing of AβPP because this is precisely where two enzymes critically important in AβPP metabolism are located; beta amyloid converting enzyme (BACE-1) and gamma secretase enzyme. We have shown that elevated levels of LDL cholesterol promote AβPP internalization, disturb neuronal endolysosome structure and function, and increase Aβ accumulation in neuronal endolysosomes. Here, we will further discuss the linkage between elevated levels of LDL cholesterol and AD pathogenesis, and explore the underlying mechanisms whereby elevated levels of plasma LDL cholesterol promote amyloidogenesis. PMID:26413387

  3. Physical health symptoms reported by trafficked women receiving post-trafficking support in Moldova: prevalence, severity and associated factors

    PubMed Central

    2012-01-01

    Background Many trafficked people suffer high levels of physical, sexual and psychological abuse. Yet, there has been limited research on the physical health problems associated with human trafficking or how the health needs of women in post-trafficking support settings vary according to socio-demographic or trafficking characteristics. Methods We analysed the prevalence and severity of 15 health symptoms reported by 120 trafficked women who had returned to Moldova between December 2007 and December 2008 and were registered with the International Organisation for Migration Assistance and Protection Programme. Women had returned to Moldova an average of 5.9 months prior to interview (range 2-12 months). Results Headaches (61.7%), stomach pain (60.9%), memory problems (44.2%), back pain (42.5%), loss of appetite (35%), and tooth pain (35%) were amongst the most commonly reported symptoms amongst both women trafficked for sexual exploitation and women trafficked for labour exploitation. The prevalence of headache and memory problems was strongly associated with duration of exploitation. Conclusions Trafficked women who register for post-trafficking support services after returning to their country of origin are likely to have long-term physical and dental health needs and should be provided with access to comprehensive medical services. Health problems among women who register for post-trafficking support services after returning to their country of origin are not limited to women trafficked for sexual exploitation but are also experienced by victims of labour exploitation. PMID:22834807

  4. Neuronal Loss of Drosophila NPC1a Causes Cholesterol Aggregation and Age-Progressive Neurodegeneration

    PubMed Central

    Phillips, Scott E.; Woodruff, E. A.; Liang, Ping; Patten, Meaghan; Broadie, Kendal

    2009-01-01

    The mistrafficking and consequent cytoplasmic accumulation of cholesterol and sphingolipids is linked to multiple neurodegenerative diseases. One class of disease, the sphingolipid storage diseases, includes Niemann-Pick Disease Type C (NPC) caused predominantly (95%) by mutation of the NPC1 gene. A disease model has been established through mutation of Drosophila NPC1a (dnpc1a). Null mutants display early lethality due to loss of cholesterol-dependent ecdysone steroid hormone production. Null mutants rescued to adults by restoring ecdysone production mimic human NPC patients with progressive motor defects and reduced life spans. Analysis of dnpc1a null brains shows elevated overall cholesterol levels and progressive accumulation of filipin-positive cholesterol aggregates within brain and retina, as well as isolated cultured brain neurons. Ultrastructural imaging of dnpc1a mutant brains reveals age-progressive accumulation of striking multilamellar and multivesicular organelles, preceding the onset of neurodegeneration. Consistently, electroretinogram (ERG) recordings show age-progressive loss of phototransduction and photoreceptor synaptic transmission. Early lethality, movement impairments, neuronal cholesterol deposits, accumulation of multilamellar bodies and age-dependent neurodegeneration are all rescued by targeted neuronal expression of a wildtype dnpc1a transgene. Interestingly, targeted expression of dnpc1a in glia also provides limited rescue of adult lethality. Generation of dnpc1a null mutant neuron clones in the brain reveals cell autonomous requirements for dNPC1a in cholesterol and membrane trafficking. These data demonstrate a requirement for dNPC1a in the maintenance of neuronal function and viability, and show that loss of dNPC1a in neurons mimics the human neurodegenerative condition. PMID:18579730

  5. Neuronal loss of Drosophila NPC1a causes cholesterol aggregation and age-progressive neurodegeneration.

    PubMed

    Phillips, Scott E; Woodruff, E A; Liang, Ping; Patten, Meaghan; Broadie, Kendal

    2008-06-25

    The mistrafficking and consequent cytoplasmic accumulation of cholesterol and sphingolipids is linked to multiple neurodegenerative diseases. One class of disease, the sphingolipid storage diseases, includes Niemann-Pick disease type C (NPC), caused predominantly (95%) by mutation of the NPC1 gene. A disease model has been established through mutation of Drosophila NPC1a (dnpc1a). Null mutants display early lethality attributable to loss of cholesterol-dependent ecdysone steroid hormone production. Null mutants rescued to adults by restoring ecdysone production mimic human NPC patients with progressive motor defects and reduced life spans. Analysis of dnpc1a null brains shows elevated overall cholesterol levels and progressive accumulation of filipin-positive cholesterol aggregates within brain and retina, as well as isolated cultured brain neurons. Ultrastructural imaging of dnpc1a mutant brains reveals age-progressive accumulation of striking multilamellar and multivesicular organelles, preceding the onset of neurodegeneration. Consistently, electroretinogram recordings show age-progressive loss of phototransduction and photoreceptor synaptic transmission. Early lethality, movement impairments, neuronal cholesterol deposits, accumulation of multilamellar bodies, and age-dependent neurodegeneration are all rescued by targeted neuronal expression of a wild-type dnpc1a transgene. Interestingly, targeted expression of dnpc1a in glia also provides limited rescue of adult lethality. Generation of dnpc1a null mutant neuron clones in the brain reveals cell-autonomous requirements for dNPC1a in cholesterol and membrane trafficking. These data demonstrate a requirement for dNPC1a in the maintenance of neuronal function and viability and show that loss of dNPC1a in neurons mimics the human neurodegenerative condition. PMID:18579730

  6. Does cholesterol lowering prevent stroke?

    PubMed

    Henry, R Y; Kendall, M J

    1998-10-01

    The importance of lowering plasma cholesterol to reduce the incidence of coronary events is well established. However, in the prevention of stroke disease, control of hypertension has been the main aim of treatment and lipid lowering therapy has not hitherto been considered to be desirable or necessary. In this review, the evidence from large multicentre trials, imaging studies and meta-analyses is presented. It shows convincingly that HMG-CoA reductase inhibitors (Statins) reduce stroke risk. PMID:9875681

  7. Parallel Information Processing.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1992-01-01

    Examines parallel computer architecture and the use of parallel processors for text. Topics discussed include parallel algorithms; performance evaluation; parallel information processing; parallel access methods for text; parallel and distributed information retrieval systems; parallel hardware for text; and network models for information…

  8. Regulation of biliary cholesterol secretion in the rat. Role of hepatic cholesterol esterification.

    PubMed Central

    Nervi, F; Bronfman, M; Allalón, W; Depiereux, E; Del Pozo, R

    1984-01-01

    Although the significance of the enterohepatic circulation of bile salts in the solubilization and biliary excretion of cholesterol is well established, little is known about the intrahepatic determinants of biliary cholesterol output. Studies were undertaken to elucidate some of these determinants in the rat. Feeding 1% diosgenin for 1 wk increased biliary cholesterol output and saturation by 400%. Bile flow, biliary bile salt, phospholipid and protein outputs remained in the normal range. When ethynyl estradiol (EE) was injected into these animals, biliary cholesterol output decreased to almost normal levels under circumstances of minor changes in the rates of biliary bile salt and phospholipid outputs. Similarly, when chylomicron cholesterol was intravenously injected into diosgenin-fed animals, biliary cholesterol output significantly decreased as a function of the dose of chylomicron cholesterol administered. Relative rates of hepatic cholesterol synthesis and esterification were measured in isolated hepatocytes. Although hepatic cholesterogenesis increased 300% in diosgenin-fed animals, the contribution of newly synthesized cholesterol to total biliary cholesterol output was only 19 +/- 9%, compared with 12 +/- 6% in control and 15 +/- 5% in diosgenin-fed and EE-injected rats. The rate of oleate incorporation into hepatocytic cholesterol esters was 30% inhibited in diosgenin-fed rats. When EE was injected into these animals, the rate of cholesterol esterification increased to almost 300%. To investigate further the interrelationship between hepatic cholesterol esterification and biliary cholesterol output, we studied 21 diosgenin-fed rats. Six of them received in addition EE and 10 received chylomicron cholesterol. The relationships between biliary cholesterol output as a function of both microsomal acyl-CoA:cholesterol acyltransferase (ACAT) activity and hepatic cholesterol ester concentration were significantly correlated in a reciprocal manner. From these

  9. Small GTPase regulation of GPCR anterograde trafficking

    PubMed Central

    Wang, Guansong; Wu, Guangyu

    2011-01-01

    The physiological functions of heterotrimeric G protein-coupled receptors (GPCRs) are dictated by their intracellular trafficking and precise targeting to the functional destinations. Over the past decades, most studies on the trafficking of GPCRs have focused on the events involved in endocytosis and recycling. In contrast, the molecular mechanisms underlying anterograde transport of newly synthesized GPCRs from the endoplasmic reticulum (ER) to the cell surface have just begun to be revealed. In this review, we will discuss current advances in understanding the role of Ras-like GTPases, specifically the Rab and Sar1/ARF subfamilies, in regulating cell-surface transport of GPCRs en route from the ER and the Golgi. PMID:22015208

  10. Sex Trafficking: Policies, Programs, and Services.

    PubMed

    Orme, Julie; Ross-Sheriff, Fariyal

    2015-10-01

    Sex trafficking (ST), a contemporary form of female slavery, is a human rights issue of critical concern to social work. The global response to ST has been substantial, and 166 countries have adopted anti-ST legislation. Despite considerable efforts to combat ST, the magnitude is increasing. To date, the majority of anti-ST efforts have focused on criminalization policies that target traffickers or purchasers of sexual services, who are predominantly male; prevention programming and services for predominantly female victims have received less support. Therapeutic services to assist pornography addicts and purchasers of sexual services are also necessary. In this article, authors examine current anti-ST policies, programs, and services, both domestically and globally, and present an innovative paradigm that addresses social inequities and emphasizes prevention programming. They conclude with a discussion of the paradigm's implications for social work policies, practices, and services. PMID:26489349