Science.gov

Sample records for cholinergic enhancement reduces

  1. Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances Plasticity of Cortical-Amygdala Circuits.

    PubMed

    Jiang, Li; Kundu, Srikanya; Lederman, James D; López-Hernández, Gretchen Y; Ballinger, Elizabeth C; Wang, Shaohua; Talmage, David A; Role, Lorna W

    2016-06-01

    We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photostimulation of endogenous cholinergic input (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs), (2) enhances glutamatergic synaptic transmission in the BLA, and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories. PMID:27161525

  2. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  3. Genetically Induced Cholinergic Hyper-Innervation Enhances Taste Learning

    PubMed Central

    Neseliler, Selin; Narayanan, Darshana; Fortis-Santiago, Yaihara; Katz, Donald B.; Birren, Susan J.

    2011-01-01

    Acute inhibition of acetylcholine (ACh) has been shown to impair many forms of simple learning, and notably conditioned taste aversion (CTA). The most adhered-to theory that has emerged as a result of this work – that ACh increases a taste’s perceived novelty, and thereby its associability – would be further strengthened by evidence showing that enhanced cholinergic function improves learning above normal levels. Experimental testing of this corollary hypothesis has been limited, however, by side-effects of pharmacological ACh agonism and by the absence of a model that achieves long-term increases in cholinergic signaling. Here, we present this further test of the ACh hypothesis, making use of mice lacking the p75 pan-neurotrophin receptor gene, which show a resultant over-abundance of cholinergic neurons in sub-regions of the basal forebrain (BF). We first demonstrate that the p75−/− abnormality directly affects portions of the CTA circuit, locating mouse gustatory cortex (GC) using a functional assay and then using immunohistochemisty to demonstrate cholinergic hyper-innervation of GC in the mutant mice – hyper-innervation that is unaccompanied by changes in cell numbers or compensatory changes in muscarinic receptor densities. We then demonstrate that both p75−/− and wild-type (WT) mice learn robust CTAs, which extinguish more slowly in the mutants. Further testing to distinguish effects on learning from alterations in memory retention demonstrate that p75−/− mice do in fact learn stronger CTAs than WT mice. These data provide novel evidence for the hypothesis linking ACh and taste learning. PMID:22144949

  4. Cholinergic enhancement of functional networks in older adults with MCI

    PubMed Central

    Pa, Judy; Berry, Anne S.; Compagnone, Mariana; Boccanfuso, Jacqueline; Greenhouse, Ian; Rubens, Michael T.; Johnson, Julene K.; Gazzaley, Adam

    2013-01-01

    Objective The importance of the cholinergic system for cognitive function has been well-documented in animal and human studies. The objective of this study was to elucidate the cognitive and functional connectivity changes associated with enhanced acetylcholine (ACh) levels. We hypothesized older adults with mild memory deficits would show behavioral and functional network enhancements with an acetylcholinesterase inhibitor treatment (donepezil) when compared to a placebo control group. Methods We conducted a 3-month, double-blind, placebo-controlled study on the effects of donepezil in twenty-seven older adults with mild memory deficits. Participants completed a delayed recognition memory task. FMRI scans were collected at baseline prior to treatment and at 3-month follow-up while on a 10 mg daily dose of donepezil or placebo. Results Donepezil treatment significantly enhanced the response time for face and scene memory probes when compared to the placebo group. A group-by-visit interaction was identified for the functional network connectivity of the left fusiform face area (FFA) with the hippocampus and inferior frontal junction, such that the treatment group showed increased connectivity over time when compared to the placebo group. Additionally, the enhanced functional network connectivity of the FFA and hippocampus significantly predicted memory response time at 3-month follow-up in the treatment group. Interpretation These findings suggest that increased cholinergic transmission improves goal-directed neural processing and cognitive ability and may serve to facilitate communication across functionally-connected attention and memory networks. Longitudinal fMRI is a useful method for elucidating the neural changes associated with pharmacological modulation and is a potential tool for monitoring intervention efficacy in clinical trials. PMID:23447373

  5. Dysautonomia Due to Reduced Cholinergic Neurotransmission Causes Cardiac Remodeling and Heart Failure ▿ ‡

    PubMed Central

    Lara, Aline; Damasceno, Denis D.; Pires, Rita; Gros, Robert; Gomes, Enéas R.; Gavioli, Mariana; Lima, Ricardo F.; Guimarães, Diogo; Lima, Patricia; Bueno, Carlos Roberto; Vasconcelos, Anilton; Roman-Campos, Danilo; Menezes, Cristiane A. S.; Sirvente, Raquel A.; Salemi, Vera M.; Mady, Charles; Caron, Marc G.; Ferreira, Anderson J.; Brum, Patricia C.; Resende, Rodrigo R.; Cruz, Jader S.; Gomez, Marcus Vinicius; Prado, Vania F.; de Almeida, Alvair P.; Prado, Marco A. M.; Guatimosim, Silvia

    2010-01-01

    Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction. PMID:20123977

  6. History of falls in Parkinson disease is associated with reduced cholinergic activity

    PubMed Central

    Bohnen, N I.; Müller, M L.T.M.; Koeppe, R A.; Studenski, S A.; Kilbourn, M A.; Frey, K A.; Albin, R L.

    2009-01-01

    Objective: To investigate the relationships between history of falls and cholinergic vs dopaminergic denervation in patients with Parkinson disease (PD). Background: There is a need to explore nondopaminergic mechanisms of gait control as the majority of motor impairments associated with falls in PD are resistant to dopaminergic treatment. Alterations in cholinergic neurotransmission in PD may be implicated because of evidence that gait control depends on cholinergic system–mediated higher-level cortical and subcortical processing, including pedunculopontine nucleus (PPN) function. Methods: In this cross-sectional study, 44 patients with PD (Hoehn & Yahr stages I–III) without dementia and 15 control subjects underwent a clinical assessment and [11C]methyl-4-piperidinyl propionate (PMP) acetylcholinesterase (AChE) and [11C]dihydrotetrabenazine (DTBZ) vesicular monoamine transporter type 2 (VMAT2) brain PET imaging. Results: Seventeen patients (38.6%) reported a history of falls and 27 patients had no falls. Analysis of covariance of the cortical AChE hydrolysis rates demonstrated reduced cortical AChE in the PD fallers group (−12.3%) followed by the PD nonfallers (−6.6%) compared to control subjects (F = 7.22, p = 0.0004). Thalamic AChE activity was lower only in the PD fallers group (−11.8%; F = 4.36, p = 0.008). There was no significant difference in nigrostriatal dopaminergic activity between PD fallers and nonfallers. Conclusions: Unlike nigrostriatal dopaminergic denervation, cholinergic hypofunction is associated with fall status in Parkinson disease (PD). Thalamic AChE activity in part represents cholinergic output of the pedunculopontine nucleus (PPN), a key node for gait control. Our results are consistent with other data indicating that PPN degeneration is a major factor leading to impaired postural control and gait dysfunction in PD. GLOSSARY AChE = acetylcholinesterase; ANCOVA = analysis of covariance; MMSE = Mini-Mental State Examination; PD

  7. Muscarinic cholinergic enhancement of inositide turnover in cerebral nerve endings is not mediated by calcium uptake.

    PubMed

    Van Rooijen, L A; Traber, J

    1986-08-15

    Muscarinic cholinergic stimulation of rat cerebral nerve endings incubated with 32Pi causes an enhancement of the labeling of phosphatidic acid (PA) and phosphatidylinositol (PI). The involvement of Ca2+ in the stimulation of PA and PI labeling by carbamylcholine (CCh) was investigated. Enhancement of Ca2+-influx with veratridine and the Ca2+-ionophore A23187 caused a vast decrease of the labeling of the polyphosphoinositides, which was not accompanied by an enhancement of the labeling of PA and PI. The dihydropyridine Ca2+-agonist BAY K8644 did not affect phospholipid labeling. A23187, veratridine and BAY K 8644 did not enhance stimulation of the labeling of PA and PI by CCh. When Ca2+ was omitted from the incubation, A23187 caused an enhancement of basal and CCh-stimulated labeling of PA and PI, possibly indicating a particular feature of A23187 unrelated to its iontophoretic properties. The Ca2+-channel antagonists nimodipine, verapamil and flunarizine were virtually without effect on basal and CCh-stimulated labeling of PI and PA. These data support the notion that the muscarinic cholinergic inositide response is not mediated or controlled by Ca2+-flux. PMID:2427087

  8. A parallel cholinergic brainstem pathway for enhancing locomotor drive

    PubMed Central

    Smetana, Roy; Juvin, Laurent; Dubuc, Réjean; Alford, Simon

    2010-01-01

    The brainstem locomotor system is believed to be organized serially from the mesencephalic locomotor region (MLR) to reticulospinal neurons, which in turn, project to locomotor neurons in the spinal cord. In contrast, we now identify in lampreys, brainstem muscarinoceptive neurons receiving parallel inputs from the MLR and projecting back to reticulospinal cells to amplify and extend durations of locomotor output. These cells respond to muscarine with extended periods of excitation, receive direct muscarinic excitation from the MLR, and project glutamatergic excitation to reticulospinal neurons. Targeted block of muscarine receptors over these neurons profoundly reduces MLR-induced excitation of reticulospinal neurons and markedly slows MLR-evoked locomotion. Their presence forces us to rethink the organization of supraspinal locomotor control, to include a sustained feedforward loop that boosts locomotor output. PMID:20473293

  9. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

    PubMed Central

    Stouffer, Melissa A.; Woods, Catherine A.; Patel, Jyoti C.; Lee, Christian R.; Witkovsky, Paul; Bao, Li; Machold, Robert P.; Jones, Kymry T.; de Vaca, Soledad Cabeza; Reith, Maarten E. A.; Carr, Kenneth D.; Rice, Margaret E.

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  10. Targeting the Cholinergic System for Neuroprotection and/or Enhancement of Functional Recovery Following Neurotrauma.

    PubMed

    Huber, Kathleen B G; Uteshev, Victor V; Pauly, James R

    2016-01-01

    Development of novel pharmacotherapies for the treatment of traumatic injury to the nervous system has been ongoing for over 40 years. Despite many promising compounds discovered using animal models, no treatments have successfully translated into the clinic. The central dogma in this field is that brain trauma initiates a complex chain of biochemical events leading to secondary brain damage and sustained neurological deficits. The delayed secondary brain injury is likely to result from multiple insults including oxidative stress, mitochondrial dysfunction, breakdown of the blood brain barrier, dysregulated release of glutamate, pro-inflammatory cytokines, and other mediators. However, therapies targeting these systems have generally met with failure in clinical trials. The purpose of this review is to summarize the models used for preclinical neurotrauma research, provide a brief overview of previous failed clinical trials in head and spinal cord injury, and finally, to review involvement of the cholinergic system and discuss implications for future research. Possibilities and pitfalls of targeting the cholinergic system for neuroprotection and/or enhancement of functional recovery are also discussed. PMID:26818862

  11. Cholinergic activation enhances retinoic acid-induced differentiation in the human NB-4 acute promyelocytic leukemia cell line.

    PubMed

    Chotirat, Sadudee; Suriyo, Tawit; Hokland, Marianne; Hokland, Peter; Satayavivad, Jutamaad; Auewarakul, Chirayu U

    2016-07-01

    The non-neuronal cholinergic system (NNCS) has been shown to play a role in regulating hematopoietic differentiation. We determined the expression of cholinergic components in leukemic cell lines by Western blotting and in normal leukocyte subsets by flow cytometry and found a heterogeneous expression of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), choline transporter (CHT), M3 muscarinic acetylcholine receptor (M3-mAChR) and α7 nicotinic acetylcholine receptor (α7-nAChR). We then evaluated NNCS role in differentiation of human NB-4 acute promyelocytic leukemia cell line and discovered a dramatic induction of M3-mAChR after all-trans retinoic acid (ATRA) treatment (p<0.0001). Adding carbachol which is a cholinergic agonist to the ATRA treatment resulted in an increase of a granulocytic differentiation marker (CD11b) as compared with ATRA treatment alone (p<0.05), indicating that cholinergic activation enhanced ATRA in inducing NB-4 maturation. The combination of carbachol and ATRA treatment for 72h also resulted in decreased viability and increased cleaved caspase-3 expression when compared with ATRA treatment alone (p<0.05). However, this combination did not cause poly (ADP-ribose) polymerase (PARP) cleavage. Overall, we have shown that NB-4 cells expressed M3-mAChR in a differentiation-dependent manner and cholinergic stimulation induced maturation and death of ATRA-induced differentiated NB-4 cells. PMID:27282572

  12. Pairing Cholinergic Enhancement with Perceptual Training Promotes Recovery of Age-Related Changes in Rat Primary Auditory Cortex

    PubMed Central

    Voss, Patrice; Thomas, Maryse; Chou, You Chien; Cisneros-Franco, José Miguel; Ouellet, Lydia; de Villers-Sidani, Etienne

    2016-01-01

    We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible. PMID:27057359

  13. Pairing Cholinergic Enhancement with Perceptual Training Promotes Recovery of Age-Related Changes in Rat Primary Auditory Cortex.

    PubMed

    Voss, Patrice; Thomas, Maryse; Chou, You Chien; Cisneros-Franco, José Miguel; Ouellet, Lydia; de Villers-Sidani, Etienne

    2016-01-01

    We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible. PMID:27057359

  14. Pharmacological Mechanisms of Cortical Enhancement Induced by the Repetitive Pairing of Visual/Cholinergic Stimulation

    PubMed Central

    Kang, Jun-Il; Huppé-Gourgues, Frédéric; Vaucher, Elvire

    2015-01-01

    Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1) induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR), M1 and M2 muscarinic (mAChR) or GABAergic A (GABAAR) receptors was performed during the training session and visual evoked potentials (VEPs) were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD), suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by nAChRs, M2 m

  15. Enhanced histamine H2 excitation of striatal cholinergic interneurons in L-DOPA-induced dyskinesia.

    PubMed

    Lim, Sean Austin O; Xia, Rong; Ding, Yunmin; Won, Lisa; Ray, William J; Hitchcock, Stephen A; McGehee, Daniel S; Kang, Un Jung

    2015-04-01

    Levodopa is the most effective therapy for the motor deficits of Parkinson's disease (PD), but long term treatment leads to the development of L-DOPA-induced dyskinesia (LID). Our previous studies indicate enhanced excitability of striatal cholinergic interneurons (ChIs) in mice expressing LID and reduction of LID when ChIs are selectively ablated. Recent gene expression analysis indicates that stimulatory H2 histamine receptors are preferentially expressed on ChIs at high levels in the striatum, and we tested whether a change in H2 receptor function might contribute to the elevated excitability in LID. Using two different mouse models of PD (6-hydroxydopamine lesion and Pitx3(ak/ak) mutation), we chronically treated the animals with either vehicle or l-DOPA to induce dyskinesia. Electrophysiological recordings indicate that histamine H2 receptor-mediated excitation of striatal ChIs is enhanced in mice expressing LID. Additionally, H2 receptor blockade by systemic administration of famotidine decreases behavioral LID expression in dyskinetic animals. These findings suggest that ChIs undergo a pathological change in LID with respect to histaminergic neurotransmission. The hypercholinergic striatum associated with LID may be dampened by inhibition of H2 histaminergic neurotransmission. This study also provides a proof of principle of utilizing selective gene expression data for cell-type-specific modulation of neuronal activity. PMID:25661301

  16. Cholinergic Stimulation Enhances Bayesian Belief Updating in the Deployment of Spatial Attention

    PubMed Central

    Bauer, Markus; Mathys, Christoph; Adams, Rick A.; Dolan, Raymond J.; Stephan, Klaas E.; Friston, Karl J.

    2014-01-01

    The exact mechanisms whereby the cholinergic neurotransmitter system contributes to attentional processing remain poorly understood. Here, we applied computational modeling to psychophysical data (obtained from a spatial attention task) under a psychopharmacological challenge with the cholinesterase inhibitor galantamine (Reminyl). This allowed us to characterize the cholinergic modulation of selective attention formally, in terms of hierarchical Bayesian inference. In a placebo-controlled, within-subject, crossover design, 16 healthy human subjects performed a modified version of Posner's location-cueing task in which the proportion of validly and invalidly cued targets (percentage of cue validity, % CV) changed over time. Saccadic response speeds were used to estimate the parameters of a hierarchical Bayesian model to test whether cholinergic stimulation affected the trial-wise updating of probabilistic beliefs that underlie the allocation of attention or whether galantamine changed the mapping from those beliefs to subsequent eye movements. Behaviorally, galantamine led to a greater influence of probabilistic context (% CV) on response speed than placebo. Crucially, computational modeling suggested this effect was due to an increase in the rate of belief updating about cue validity (as opposed to the increased sensitivity of behavioral responses to those beliefs). We discuss these findings with respect to cholinergic effects on hierarchical cortical processing and in relation to the encoding of expected uncertainty or precision. PMID:25411501

  17. The effect of enhancing cholinergic neurotransmission by nicotine on EEG indices of inhibition in the human brain.

    PubMed

    Logemann, H N A; Böcker, K B E; Deschamps, P K H; Kemner, C; Kenemans, J L

    2014-07-01

    The role of the cholinergic system in inhibition remains to be elucidated. Nicotine is a potent tool to augment this system, but most studies investigated its effects solely on behavior. Reference to brain activity is important to specifically identify inhibition-related mechanisms. In the current study the objective was to elucidate the role of the cholinergic system in inhibition. 16 healthy non-smokers performed in a stop task while EEG was recorded. A pre- versus post-treatment, within subjects, placebo controlled, single-blind design was used. It was hypothesized that nicotine would decrease stop-signal reaction time (SSRT) and increase the amplitude of inhibition-related event related potentials, the stop N2 and stop P3. Behavioral measures show nicotine shortened SSRT, but only when pretreatment values were not taken into account. On EEG measures, an enhanced stop P3 under nicotine was found, but only in a subsample sensitive to nicotine based on diastolic blood pressure. The results are indicative of enhanced inhibitory activity possibly reflecting enhanced activation in the superior frontal gyrus. PMID:24690513

  18. Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites?

    PubMed Central

    Giuliano, Chiara; Parikh, Vinay; Ward, Josh.R.; Chiamulera, Christian; Sarter, Martin

    2008-01-01

    Previous experiments demonstrated that second-based transient increases in choline concentrations measured by electrodes coated with choline oxidase (ChOx) and the amperometric detection of hydrogen peroxide validly indicate the depolarization-dependent release of acetylcholine (ACh) and its hydrolysis by endogenous acetylcholinesterase (AChE). Therefore, choline-sensitive microelectrodes have become valuable tools in neuropharmacological and behavioral research. The present experiments were designed to test the possibility that co-immobilization of ChOx plus AChE on recording sites increases the level of detection for evoked ACh release in the brain. If newly released ACh is not completely hydrolyzed by endogenous AChE and capable of reaching the extracellular space, currents recorded via sites equipped with both enzymes should be greater when compared with sites coated with ChOx only. Pairs of Platinum-recordings sites were coated either with AChE plus ChOx or ChOx alone. Potassium or nicotine-evoked currents were recorded throughout the entire dorsal-ventral extent of the medial prefrontal cortex (mPFC). The amplitudes of evoked cholinergic signals did not differ significantly between AChE+ChOx and ChOx-only coated recording sites. Additional experiments controlling for several potential confounds suggested that, in vivo, ACh levels ≥150 fmol were detected by recordings sites featuring dual enzyme coating. Collectively, these results indicate that co-coating of microelectrodes with AChE does not enhance the detection of cholinergic activity in the cortex compared with measurements via recording sites coated only with ChOx. PMID:18346819

  19. Reduced density of neuropeptide Y neurons in the somatosensory cortex of old male and female rats: relation to cholinergic depletion and recovery after nerve growth factor treatment.

    PubMed

    Cardoso, A; Paula-Barbosa, M M; Lukoyanov, N V

    2006-02-01

    Synthesis of neuropeptide Y in the neocortex and activity of the basalocortical cholinergic system are both reduced in the aging brain. We hypothesized that, by stimulating the activity of the basal forebrain cholinergic neurons, nerve growth factor might also be capable of restoring the synthesis of neuropeptide Y in cortical neurons. Old male and female rats were intraventricularly infused with nerve growth factor for 14 days and their brains were analyzed in order to quantify the densities of neuropeptide Y-immunoreactive neurons and of fiber varicosities stained for vesicular acetylcholine transporter protein in layers II/III, V and VI of the primary somatosensory barrel-field cortex. The areal densities of neuropeptide Y neurons and of vesicular acetylcholine transporter protein varicosities in all cortical laminae were found to be dramatically decreased in old rats when compared with young rats. However, infusions of nerve growth factor, known to exert a powerful trophic effect upon cortically projecting cholinergic neurons, have led to considerable recovery of vesicular acetylcholine transporter protein-positive terminal fields, which was paralleled by complete restoration of function in neuropeptide Y-producing neurons. With respect to the gender differences, although the density of cortical neuropeptide Y neurons was found to be significantly higher in young females than in young males and the opposite was true for vesicular acetylcholine transporter protein-positive varicosities, the general pattern of age- and treatment-related changes in these neurochemical markers was similar in both sexes. Overall, the age- and treatment-related variations in the density of cortical neuropeptide Y cells were found to correlate with those observed in the density of vesicular acetylcholine transporter protein varicosities. These results lend support to the idea that there is a causal relationship between age-related changes in cortical cholinergic and neuropeptide Y

  20. Cholinergic Enhancement of Cell Proliferation in the Postnatal Neurogenic Niche of the Mammalian Spinal Cord

    PubMed Central

    Corns, Laura F.; Atkinson, Lucy; Daniel, Jill; Edwards, Ian J.; New, Lauryn

    2015-01-01

    Abstract The region surrounding the central canal (CC) of the spinal cord is a highly plastic area, defined as a postnatal neurogenic niche. Within this region are ependymal cells that can proliferate and differentiate to form new astrocytes and oligodendrocytes following injury and cerebrospinal fluid contacting cells (CSFcCs). The specific environmental conditions, including the modulation by neurotransmitters that influence these cells and their ability to proliferate, are unknown. Here, we show that acetylcholine promotes the proliferation of ependymal cells in mice under both in vitro and in vivo conditions. Using whole cell patch clamp in acute spinal cord slices, acetylcholine directly depolarized ependymal cells and CSFcCs. Antagonism by specific nicotinic acetylcholine receptor (nAChR) antagonists or potentiation by the α7 containing nAChR (α7*nAChR) modulator PNU 120596 revealed that both α7*nAChRs and non‐α7*nAChRs mediated the cholinergic responses. Using the nucleoside analogue EdU (5‐ethynyl‐2'‐deoxyuridine) as a marker of cell proliferation, application of α7*nAChR modulators in spinal cord cultures or in vivo induced proliferation in the CC region, producing Sox‐2 expressing ependymal cells. Proliferation also increased in the white and grey matter. PNU 120596 administration also increased the proportion of cells coexpressing oligodendrocyte markers. Thus, variation in the availability of acetylcholine can modulate the rate of proliferation of cells in the ependymal cell layer and white and grey matter through α7*nAChRs. This study highlights the need for further investigation into how neurotransmitters regulate the response of the spinal cord to injury or during aging. Stem Cells 2015;33:2864–2876 PMID:26038197

  1. Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood–Brain Barrier Permeability following Experimental Traumatic Brain Injury

    PubMed Central

    Zhao, Jing; Kobori, Nobuhide; Redell, John B.; Hylin, Michael J.; Hood, Kimberly N.; Moore, Anthony N.

    2016-01-01

    Traumatic brain injury (TBI) is a major human health concern that has the greatest impact on young men and women. The breakdown of the blood–brain barrier (BBB) is an important pathological consequence of TBI that initiates secondary processes, including infiltration of inflammatory cells, which can exacerbate brain inflammation and contribute to poor outcome. While the role of inflammation within the injured brain has been examined in some detail, the contribution of peripheral/systemic inflammation to TBI pathophysiology is largely unknown. Recent studies have implicated vagus nerve regulation of splenic cholinergic nicotinic acetylcholine receptor α7 (nAChRa7) signaling in the regulation of systemic inflammation. However, it is not known whether this mechanism plays a role in TBI-triggered inflammation and BBB breakdown. Following TBI, we observed that plasma TNF-α and IL-1β levels, as well as BBB permeability, were significantly increased in nAChRa7 null mice (Chrna7−/−) relative to wild-type mice. The administration of exogenous IL-1β and TNF-α to brain-injured animals worsened Evans Blue dye extravasation, suggesting that systemic inflammation contributes to TBI-triggered BBB permeability. Systemic administration of the nAChRa7 agonist PNU-282987 or the positive allosteric modulator PNU-120596 significantly attenuated TBI-triggered BBB compromise. Supporting a role for splenic nAChRa7 receptors, we demonstrate that splenic injection of the nicotinic receptor blocker α-bungarotoxin increased BBB permeability in brain-injured rats, while PNU-282987 injection decreased such permeability. These effects were not seen when α-bungarotoxin or PNU-282987 were administered to splenectomized, brain-injured rats. Together, these findings support the short-term use of nAChRa7-activating agents as a strategy to reduce TBI-triggered BBB permeability. SIGNIFICANCE STATEMENT Breakdown of the blood–brain barrier (BBB) in response to traumatic brain injury (TBI

  2. Electroacupuncture-induced cholinergic nerve activation enhances the hypoglycemic effect of exogenous insulin in a rat model of streptozotocin-induced diabetes.

    PubMed

    Lee, Yu-Chen; Li, Te-Mao; Tzeng, Chung-Yuh; Cheng, Yu-Wen; Chen, Ying-I; Ho, Wai-Jane; Lin, Jaung Geng; Chang, Shih-Liang

    2011-01-01

    The aim of this study is to explore the mechanisms by which electroacupuncture (EA) enhances the hypoglycemic effect of exogenous insulin in a streptozotocin- (STZ-) diabetic rats. Animals in the EA group were anesthetized and subjected to the insulin challenge test (ICT) and EA for 60 minutes. In the control group, rats were subjected to the same treatment with the exception of EA stimulation. Blood samples were drawn to measure changes in plasma glucose, free fatty acids (FFA), and insulin levels. Western blot was used to assay proteins involved in insulin signaling. Furthermore, atropine, hemicholinium-3 (HC-3), and Eserine were used to explore the relationship between EA and cholinergic nerve activation during ICT. EA augmented the blood glucose-lowering effects of EA by activating the cholinergic nerves in STZ rats that had been exposed to exogenous insulin. This phenomenon may be related to enhancement of insulin signaling rather than to changes in FFA concentration. PMID:21754922

  3. Donepezil Treatment Restores the Ability of Estradiol to Enhance Cognitive Performance in Aged Rats: Evidence for the Cholinergic Basis of the Critical Period Hypothesis

    PubMed Central

    Gibbs, R.B.; Mauk, R.; Nelson, D.; Johnson, D.A.

    2009-01-01

    Recent studies suggest that the ability of estradiol to enhance cognitive performance diminishes with age and/or time following loss of ovarian function. We hypothesize that this is due, in part, to a decrease in basal forebrain cholinergic function. This study tested whether donepezil, a cholinesterase inhibitor, could restore estradiol effects on cognitive performance in aged rats that had been ovariectomized as young adults. Rats were ovariectomized at 3 months of age, and then trained on a delayed matching to position (DMP) T-maze task, followed by a configural association (CA) operant condition task, beginning at 12–17 or 22–27 months of age. Three weeks prior to testing, rats started to receive either donepezil or vehicle. After one week, half of each group also began receiving estradiol. Acclimation and testing began seven days later and treatment continued throughout testing. Estradiol alone significantly enhanced DMP acquisition in middle-aged rats, but not in aged rats. Donepezil alone had no effect on DMP acquisition in either age group; however, donepezil treatment restored the ability of estradiol to enhance DMP acquisition in aged rats. This effect was due largely to a reduction in the predisposition to adopt a persistent turn strategy during acquisition. These same treatments did not affect acquisition of the CA task in middle-aged rats, but did have small but significant effects on response time in aged rats. The data are consistent with the idea that estrogen effects on cognitive performance are task specific, and that deficits in basal forebrain cholinergic function are responsible for the loss of estradiol effect on DMP acquisition in aged ovariectomized rats. In addition, the data suggest that enhancing cholinergic function pharmacologically can restore the ability of estradiol to enhance acquisition of the DMP task in very old rats following long periods of hormone deprivation. Whether donepezil has similar restorative effects on other

  4. Enhancement of Frequency Domain Indices of Heart Rate Variability by Cholinergic Stimulation with Pyridostigmine Bromide

    PubMed Central

    Zarei, Ali Asghar; Foroutan, Seyyed Abbas; Foroutan, Seyyed Mohsen; Erfanian Omidvar, Abbas

    2011-01-01

    Pyridostigmine bromide (PB) is a reversible cholinesterase inhibitor. The aim of this study was to determine the effect of orally administration of single dose sustained-released tablet of pyridostigmine bromide (PBSR) on the frequency domain indices of heart rate variability (HRV). Thirty-two healthy young men were participated in this study. They were divided into 2 groups; the pyridostigmine group (n = 22) and the placebo group (n = 10). Electrocardiogram (ECG) was recorded at 10, 30, 60, 90, 120, 150, 180, 210, 240, 300 and 420 min after PBSR administration. At each time, simultaneously, a blood sample was prepared and PB plasma concentration was measured by high-performance liquid chromatography (HPLC) method. Statistical analysis showed that in different indices of HRV, there is a significant increase in low frequency (LF) band at 300 min, but no difference in high frequency band (HF). It also showed significant decreases in normalized high frequency band (Hfnu), normalized low frequency band (Lfnu) and LF/HF ratio at 120, 240 and 300 min after PBSR administration. Maximum plasma concentration of PB was 150 min after the administration. In conclusion, administration of a single dose PBSR can enhance the frequency domains indices of HRV and improvesympathovagal balance. PMID:24250427

  5. Enhancement of frequency domain indices of heart rate variability by cholinergic stimulation with pyridostigmine bromide.

    PubMed

    Zarei, Ali Asghar; Foroutan, Seyyed Abbas; Foroutan, Seyyed Mohsen; Erfanian Omidvar, Abbas

    2011-01-01

    Pyridostigmine bromide (PB) is a reversible cholinesterase inhibitor. The aim of this study was to determine the effect of orally administration of single dose sustained-released tablet of pyridostigmine bromide (PBSR) on the frequency domain indices of heart rate variability (HRV). Thirty-two healthy young men were participated in this study. They were divided into 2 groups; the pyridostigmine group (n = 22) and the placebo group (n = 10). Electrocardiogram (ECG) was recorded at 10, 30, 60, 90, 120, 150, 180, 210, 240, 300 and 420 min after PBSR administration. At each time, simultaneously, a blood sample was prepared and PB plasma concentration was measured by high-performance liquid chromatography (HPLC) method. Statistical analysis showed that in different indices of HRV, there is a significant increase in low frequency (LF) band at 300 min, but no difference in high frequency band (HF). It also showed significant decreases in normalized high frequency band (Hfnu), normalized low frequency band (Lfnu) and LF/HF ratio at 120, 240 and 300 min after PBSR administration. Maximum plasma concentration of PB was 150 min after the administration. In conclusion, administration of a single dose PBSR can enhance the frequency domains indices of HRV and improvesympathovagal balance. PMID:24250427

  6. Cholinergic modulation of food and drug satiety and withdrawal.

    PubMed

    Avena, Nicole M; Rada, Pedro V

    2012-06-01

    Although they comprise only a small portion of the neurons in the region, cholinergic interneurons in the dorsal striatum appear to play an important role in the regulation of various appetitive behaviors, in part, through their interactions with mesolimbic dopamine (DA) systems. In this review, we describe studies that suggest that the activity of cholinergic interneurons in the nucleus accumbens (NAc) and cholinergic projections to the ventral tegmental area (VTA) affect feeding behavior. In vivo microdialysis studies in rats have revealed that the cessation of a meal is associated with a rise in acetylcholine (ACh) levels in the NAc. ACh activation will suppress feeding, and this is also associated with an increase in synaptic accumulation of ACh. Further, we discuss how, in addition to their role in the ending of a meal, cholinergic interneurons in the NAc play an integral role in the cessation of drug use. Another cholinergic system involved in different aspects of appetitive behavior is the projection from the pedunculpontine nuclei directly to the VTA. Activation of this system enhances behaviors through activation of the mesolimbic DA system, and antagonism of ACh receptors in the VTA can reduce drug self-administration. Finally, we discuss the role of accumbens ACh in both drug and palatable food withdrawal. Studies reveal that accumbens ACh is increased during withdrawal from several different drugs of abuse (including cocaine, nicotine and morphine). This rise in extracellular levels of ACh, coupled with a decrease in extracellular levels of DA, is believed to contribute to an aversive state, which can manifest as behaviors associated with drug withdrawal. This theory has also been applied to studies of overeating and/or "food addiction," and the findings suggest a similar imbalance in DA/ACh levels, which is associated with behavioral indications of drug-like withdrawal. In summary, cholinergic neurons play an important role in the modulation of both

  7. D1-like dopamine receptors selectively block P/Q-type calcium channels to reduce glutamate release onto cholinergic basal forebrain neurones of immature rats

    PubMed Central

    Momiyama, Toshihiko; Fukazawa, Yugo

    2007-01-01

    Whole-cell patch-clamp recordings of non-NMDA glutamatergic EPSCs were made from identified cholinergic neurones in slices of basal forebrain (BF) of young rats (P13–P18), to investigate the subtypes of calcium channels involved in dopamine D1-like receptor-mediated presynaptic inhibition of the EPSCs. The BF cholinergic neurones were pre-labelled by intracerebroventricular injection of a fluorescent marker, Cy3-192IgG. A D1-like receptor agonist, SKF 81297 (30 μm) suppressed the EPSCs reversibly by about 30%, and this inhibition was reproducible. Calcium channel subtypes involved in the glutamatergic transmission were elucidated using selective Ca2+ channel blockers. The N-type Ca2+ channel blocker ω-conotoxin (ω-CgTX, 3 μm) suppressed the EPSCs by 57.5%, whereas the P/Q-type channel selective blocker ω-agatoxin-TK (ω-Aga-TK, 200 nm) suppressed the EPSCs by 68.9%. Simultaneous application of both blockers suppressed the EPSCs by 96.1%. The R-type Ca2+ channel blocker SNX-482 (300 nm) suppressed the EPSCs by 18.4%, whereas nifedipine, the L-type Ca2+ channel blocker (10 μm), had little effect. In the presence of ω-Aga-TK, SKF 81297, a dopamine D1-like receptor agonist, had no effect on the EPSCs. On the other hand, SKF 81297 could still inhibit the EPSCs in the presence of either ω-CgTX, SNX-482 or nifedipine. SKF 81297 had no further effect on the EPSCs when external Ca2+ concentration was raised to 7.2 mm in the presence of ω-Aga-TK, but could still inhibit the EPSCs in high Ca2+ solution after ω-CgTX application. Forskolin (FK, 10 μm), an activator of adenylyl cyclase pathway, suppressed the EPSCs, and the FK-induced effect was mostly blocked in the presence of ω-Aga-TK but not that of ω-CgTX. These results suggest that D1-like receptor activation selectively blocks P/Q-type calcium channels to reduce glutamate release onto BF cholinergic neurones. PMID:17234695

  8. Dopamine D2-like receptors selectively block N-type Ca2+ channels to reduce GABA release onto rat striatal cholinergic interneurones

    PubMed Central

    Momiyama, Toshihiko; Koga, Eiko

    2001-01-01

    The modulatory roles of dopamine (DA) in inhibitory transmission onto striatal large cholinergic interneurones were investigated in rat brain slices using patch-clamp recording. Pharmacologically isolated GABAA receptor-mediated IPSCs were recorded by focal stimulation within the striatum. Bath application of DA reversibly suppressed the amplitude of evoked IPSCs in a concentration-dependent manner (IC50, 10.0 μm). A D2-like receptor agonist, quinpirole (3–30 μm), also suppressed the IPSCs, whereas a D1-like receptor agonist, SKF 81297, did not affect IPSCs. Sulpiride, a D2-like receptor antagonist, blocked the DA-induced suppression of IPSCs (apparent dissociation constant (KB), 0.36 μm), while a D1-like receptor antagonist, SCH 23390 (10 μm), had no effect. DA (30 μm) reduced the frequency of spontaneous miniature IPSCs (mIPSCs) without changing their amplitude distribution, suggesting that GABA release was inhibited, whereas the sensitivity of postsynaptic GABAA receptors was not affected. The effect of DA on the frequency of mIPSCs was diminished when extracellular Ca2+ was replaced by Mg2+ (5 mm), indicating that DA affected the Ca2+ entry into the presynaptic terminal. An N-type Ca2+ channel selective blocker, ω-conotoxin GVIA (ω-CgTX, 3 μm), suppressed IPSCs by 65.4%, whereas a P/Q-type Ca2+ channel selective blocker, ω-agatoxin IVA (ω-Aga-IVA, 200 nm), suppressed IPSCs by 78.4%. Simultaneous application of both blockers suppressed IPSCs by 95.9%. Assuming a 3rd power relationship between Ca2+ concentration and transmitter release, the contribution of N-, P/Q- and other types of Ca2+ channels to presynaptic Ca2+ entry is estimated to be, respectively, 29.8, 40.0 and 34.5% at this synapse. After the application of ω-CgTX, DA (30 μm) no longer affected IPSCs. In contrast, ω-Aga-IVA did not alter the level of suppression by DA, suggesting that the action of DA was selective for N-type Ca2+ channels. A G protein alkylating agent, N

  9. Dynamics of cholinergic function

    SciTech Connect

    Hanin, I.

    1986-01-01

    This book presents information on the following topics; cholinergic pathways - anatomy of the central nervous system; aging, DSAT and other clinical conditions; cholinergic pre- and post-synaptic receptors; acetylcholine release; cholinesterases, anticholinesterases and reactivators; acetylcholine synthesis, metabolism and precursors; second messenger messenger mechanisms; interaction of acetylcholine with other neurotransmitter systems; cholinergic mechanisms in physiological function, including cardiovascular events; and neurotoxic agents and false transmitters.

  10. Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

    PubMed Central

    Nguyen, Thuy-Vi V.; Shen, Lin; Griend, Lilith Vander; Quach, Lisa N.; Belichenko, Nadia P.; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds. PMID:24898660

  11. The cholinergic hypothesis of geriatric memory dysfunction.

    PubMed

    Bartus, R T; Dean, R L; Beer, B; Lippa, A S

    1982-07-30

    Biochemical, electrophysiological, and pharmacological evidence supporting a role for cholinergic dysfunction in age-related memory disturbances is critically reviewed. An attempt has been made to identify pseudoissues, resolve certain controversies, and clarify misconceptions that have occurred in the literature. Significant cholinergic dysfunctions occur in the aged and demented central nervous system, relationships between these changes and loss of memory exist, similar memory deficits can be artificially induced by blocking cholinergic mechanisms in young subjects, and under certain tightly controlled conditions reliable memory improvements in aged subjects can be achieved after cholinergic stimulation. Conventional attempts to reduce memory impairments in clinical trials hav not been therapeutically successful, however. Possible explanations for these disappointments are given and directions for future laboratory and clinical studies are suggested. PMID:7046051

  12. Striatal cholinergic neurotransmission requires VGLUT3.

    PubMed

    Nelson, Alexandra B; Bussert, Timothy G; Kreitzer, Anatol C; Seal, Rebecca P

    2014-06-25

    It is now clear that many neuronal populations release more than one classical neurotransmitter, yet in most cases the functional role of corelease is unknown. Striatal cholinergic interneurons release both glutamate and acetylcholine, and vesicular loading of glutamate has been shown to enhance acetylcholine content. Using a combination of optogenetics and whole-cell recordings in mice, we now provide physiological evidence that optogenetic stimulation of cholinergic interneurons triggers monosynaptic glutamate- and acetylcholine-mediated currents in striatal fast-spiking interneurons (FSIs), both of which depend on the expression of the vesicular glutamate transporter 3 (VGLUT3). In contrast to corticostriatal glutamatergic inputs onto FSIs, which are mediated primarily by AMPA-type glutamate receptors, glutamate release by cholinergic interneurons activates both AMPA- and NMDA-type glutamate receptors, suggesting a unique role for these inputs in the modulation of FSI activity. Importantly, we find that the loss of VGLUT3 not only markedly attenuates glutamatergic and cholinergic inputs on FSIs, but also significantly decreases disynaptic GABAergic input onto medium spiny neurons (MSNs), the major output neurons of the striatum. Our data demonstrate that VGLUT3 is required for normal cholinergic signaling onto FSIs, as well as for acetylcholine-dependent disynaptic inhibition of MSNs. Thus, by supporting fast glutamatergic transmission as well as by modulating the strength of cholinergic signaling, VGLUT3 has the capacity to exert widespread influence on the striatal network. PMID:24966377

  13. Striatal Cholinergic Neurotransmission Requires VGLUT3

    PubMed Central

    Nelson, Alexandra B.; Bussert, Timothy G.

    2014-01-01

    It is now clear that many neuronal populations release more than one classical neurotransmitter, yet in most cases the functional role of corelease is unknown. Striatal cholinergic interneurons release both glutamate and acetylcholine, and vesicular loading of glutamate has been shown to enhance acetylcholine content. Using a combination of optogenetics and whole-cell recordings in mice, we now provide physiological evidence that optogenetic stimulation of cholinergic interneurons triggers monosynaptic glutamate- and acetylcholine-mediated currents in striatal fast-spiking interneurons (FSIs), both of which depend on the expression of the vesicular glutamate transporter 3 (VGLUT3). In contrast to corticostriatal glutamatergic inputs onto FSIs, which are mediated primarily by AMPA-type glutamate receptors, glutamate release by cholinergic interneurons activates both AMPA- and NMDA-type glutamate receptors, suggesting a unique role for these inputs in the modulation of FSI activity. Importantly, we find that the loss of VGLUT3 not only markedly attenuates glutamatergic and cholinergic inputs on FSIs, but also significantly decreases disynaptic GABAergic input onto medium spiny neurons (MSNs), the major output neurons of the striatum. Our data demonstrate that VGLUT3 is required for normal cholinergic signaling onto FSIs, as well as for acetylcholine-dependent disynaptic inhibition of MSNs. Thus, by supporting fast glutamatergic transmission as well as by modulating the strength of cholinergic signaling, VGLUT3 has the capacity to exert widespread influence on the striatal network. PMID:24966377

  14. Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder.

    PubMed

    Cannon, D M; Klaver, J K; Gandhi, S K; Solorio, G; Peck, S A; Erickson, K; Akula, N; Savitz, J; Eckelman, W C; Furey, M L; Sahakian, B J; McMahon, F J; Drevets, W C

    2011-04-01

    Genetic variation in the cholinergic muscarinic-2 (M(2)) receptor gene (CHRM2) has been associated with the risk for developing depression. We previously reported that M(2)-receptor distribution volume (V(T)) was reduced in depressed subjects with bipolar disorder (BD) relative to depressed subjects with major depressive disorder (MDD) and healthy controls (HCs). In this study, we investigated the effects of six single-nucleotide polymorphisms (SNPs) for CHRM2 on M(2)-receptor binding to test the hypotheses that genetic variation in CHRM2 influences M(2)-receptor binding and that a CHRM2 polymorphism underlies the deficits in M(2)-receptor V(T) observed in BD. The M(2)-receptor V(T) was measured using positron emission tomography and [(18)F]FP-TZTP in unmedicated, depressed subjects with BD (n=16) or MDD (n=24) and HCs (n=25), and the effect of genotype on V(T) was assessed. In the controls, one SNP (with identifier rs324650, in which the ancestral allele adenine (A) is replaced with one or two copies of thymine (T), showed a significant allelic effect on V(T) in the pregenual and subgenual anterior cingulate cortices in the direction AAreduced M(2)-receptor V(T) in BD is associated with genetic variation within CHRM2. The differential impact of the M(2)-receptor polymorphism at rs324650 in the BD and HC samples suggests interactive effects with an unidentified vulnerability factor for BD. PMID:20351719

  15. Cholinergic modulation of food and drug satiety and withdrawal

    PubMed Central

    Avena, Nicole M.; Rada, Pedro V.

    2015-01-01

    Although they comprise only a small portion of the neurons in the region, cholinergic interneurons in the dorsal striatum appear to play an important role in the regulation of various appetitive behaviors, in part, through their interactions with mesolimbic dopamine (DA) systems. In this review, we describe studies that suggest that the activity of cholinergic interneurons in the nucleus accumbens (NAc) and cholinergic projections to the ventral tegmental area (VTA) affect feeding behavior. In vivo microdialysis studies in rats have revealed that the cessation of a meal is associated with a rise in acetylcholine (ACh) levels in the NAc. ACh activation will suppress feeding, and this is also associated with an increase in synaptic accumulation of ACh. Further, we discuss how, in addition to their role in the ending of a meal, cholinergic interneurons in the NAc play an integral role in the cessation of drug use. Another cholinergic system involved in different aspects of appetitive behavior is the projection from the pedunculpontine nuclei directly to the VTA. Activation of this system enhances behaviors through activation of the mesolimbic DA system, and antagonism of ACh receptors in the VTA can reduce drug self-administration. Finally, we discuss the role of accumbens ACh in both drug and palatable food withdrawal. Studies reveal that accumbens ACh is increased during withdrawal from several different drugs of abuse (including cocaine, nicotine and morphine). This rise in extracellular levels of ACh, coupled with a decrease in extracellular levels of DA, is believed to contribute to an aversive state, which can manifest as behaviors associated with drug withdrawal. This theory has also been applied to studies of overeating and/or “food addiction,” and the findings suggest a similar imbalance in DA/ACh levels, which is associated with behavioral indications of drug-like withdrawal. In summary, cholinergic neurons play an important role in the modulation of

  16. Reduced TIMP-2 in hypoxia enhances angiogenesis.

    PubMed

    Lahat, Nitza; Bitterman, Haim; Engelmayer-Goren, Miri; Rosenzweig, Doron; Weiss-Cerem, Lea; Rahat, Michal A

    2011-03-01

    Hypoxia, which characterizes ischemia, trauma, inflammation, and solid tumors, recruits monocytes, immobilizes them, and alters their function, leading to an anti-inflammatory and proangiogenic phenotype. Monocyte extravasation from the circulation and their migration in tissues are partially mediated by the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). The mechanisms evoked by hypoxia that regulate monocyte migration and activation are not entirely clear. Specifically, the effect of hypoxia on TIMPs in these cells has hardly been investigated. We show that hypoxia reduces TIMP-2 secretion from human primary monocytes and from the monocyte-like cell lines U937 and THP-1 by three- to fourfold (P < 0.01), by inhibiting TIMP-2 transcription through mechanisms that involve the transcription factor SP-1. Hypoxia also lowers TIMP-2 protein secretion from human endothelial cells (by 2-fold, P < 0.05). TIMP-2 levels do not influence the reduced migration of THP-1 cells in hypoxia; however, low TIMP-2 levels enhance endothelial cell migration/proliferation, their ability to form tubelike structures in vitro, and the appearance of mature blood vessels in a Matrigel plug assay in vivo. Thus we conclude that reduced TIMP-2 levels secreted from both hypoxic monocytes and endothelial cells are proangiogenic. PMID:21148412

  17. Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons

    PubMed Central

    Estandian, Daniel; Xu, Min; Kwan, Alex C.; Lee, Seung-Hee; Harrison, Thomas C.; Feng, Guoping; Dan, Yang

    2014-01-01

    The basal forebrain provides the primary source of cholinergic input to the cortex, and it plays a crucial role in promoting wakefulness and arousal. However, whether rapid changes in basal forebrain neuron spiking in awake animals can dynamically influence sensory perception is unclear. Here we show that basal forebrain cholinergic neurons rapidly regulate cortical activity and visual perception in awake, behaving mice. Optogenetic activation of the cholinergic neurons or their V1 axon terminals improved performance of a visual discrimination task on a trial-by-trial basis. In V1, basal forebrain activation enhanced visual responses and desynchronized neuronal spiking, which could partly account for the behavioral improvement. Conversely, optogenetic basal forebrain inactivation decreased behavioral performance, synchronized cortical activity and impaired visual responses, indicating the importance of cholinergic activity in normal visual processing. These results underscore the causal role of basal forebrain cholinergic neurons in fast, bidirectional modulation of cortical processing and sensory perception. PMID:24162654

  18. Cholinergic Activity as a New Target in Diseases of the Heart

    PubMed Central

    Roy, Ashbeel; Guatimosim, Silvia; Prado, Vania F; Gros, Robert; Prado, Marco A M

    2014-01-01

    The autonomic nervous system is an important modulator of cardiac signaling in both health and disease. In fact, the significance of altered parasympathetic tone in cardiac disease has recently come to the forefront. Both neuronal and nonneuronal cholinergic signaling likely play a physiological role, since modulating acetylcholine (ACh) signaling from neurons or cardiomyocytes appears to have significant consequences in both health and disease. Notably, many of these effects are solely due to changes in cholinergic signaling, without altered sympathetic drive, which is known to have significant adverse effects in disease states. As such, it is likely that enhanced ACh-mediated signaling not only has direct positive effects on cardiomyocytes, but it also offsets the negative effects of hyperadrenergic tone. In this review, we discuss recent studies that implicate ACh as a major regulator of cardiac remodeling and provide support for the notion that enhancing cholinergic signaling in human patients with cardiac disease can reduce morbidity and mortality. These recent results support the idea of developing large clinical trials of strategies to increase cholinergic tone, either by stimulating the vagus or by increased availability of Ach, in heart failure. PMID:25222914

  19. Enhanced GABAergic Inputs Contribute to Functional Alterations of Cholinergic Interneurons in the R6/2 Mouse Model of Huntington’s Disease1,2,3

    PubMed Central

    Holley, Sandra M.; Joshi, Prasad R.; Parievsky, Anna; Galvan, Laurie; Chen, Jane Y.; Fisher, Yvette E.; Huynh, My N.; Cepeda, Carlos

    2015-01-01

    Abstract In Huntington’s disease (HD), a hereditary neurodegenerative disorder, striatal medium-sized spiny neurons undergo degenerative changes. In contrast, large cholinergic interneurons (LCIs) are relatively spared. However, their ability to release acetylcholine (ACh) is impaired. The present experiments examined morphological and electrophysiological properties of LCIs in the R6/2 mouse model of HD. R6/2 mice show a severe, rapidly progressing phenotype. Immunocytochemical analysis of choline acetyltransferase-positive striatal neurons showed that, although the total number of cells was not changed, somatic areas were significantly smaller in symptomatic R6/2 mice compared to wild-type (WT) littermates, For electrophysiology, brain slices were obtained from presymptomatic (3-4 weeks) and symptomatic (>8 weeks) R6/2 mice and their WT littermates. Striatal LCIs were identified by somatic size and spontaneous action potential firing in the cell-attached mode. Passive and active membrane properties of LCIs were similar in presymptomatic R6/2 and WT mice. In contrast, LCIs from symptomatic R6/2 animals displayed smaller membrane capacitance and higher input resistance, consistent with reduced somatic size. In addition, more LCIs from symptomatic mice displayed irregular firing patterns and bursts of action potentials. They also displayed a higher frequency of spontaneous GABAergic IPSCs and larger amplitude of electrically evoked IPSCs. Selective optogenetic stimulation of somatostatin- but not parvalbumin-containing interneurons also evoked larger amplitude IPSCs in LCIs from R6/2 mice. In contrast, glutamatergic spontaneous or evoked postsynaptic currents were not affected. Morphological and electrophysiological alterations, in conjunction with the presence of mutant huntingtin in LCIs, could explain impaired ACh release in HD mouse models. PMID:26203463

  20. Potential animal model of multiple chemical sensitivity with cholinergic supersensitivity.

    PubMed

    Overstreet, D H; Miller, C S; Janowsky, D S; Russell, R W

    1996-07-17

    Multiple Chemical Sensitivity (MCS) is a clinical phenomenon in which individuals, after acute or intermittent exposure to one or more chemicals, commonly organophosphate pesticides (OPs), become overly sensitive to a wide variety of chemically-unrelated compounds, which can include ethanol, caffeine and other psychotropic drugs. The Flinders Sensitive Line (FSL) rats were selectively bred to be more sensitive to the OP diisopropylfluorophosphate (DFP) compared to their control counterparts, the Flinders Resistant Line (FRL) rats. The present paper will summarize evidence which indicates that the FSL rats exhibit certain similarities to individuals with MCS. In addition to their greater sensitivity to DFP, the FSL rats are more sensitive to nicotine and the muscarinic agonists arecoline and oxotremorine, suggesting that the number of cholinergic receptors may be increased, a conclusion now supported by biochemical evidence. The FSL rats have also been found to exhibit enhanced responses to a variety of other drugs, including the serotonin agonists m-chlorophenylpiperazine and 8-OH-DPAT, the dopamine antagonist raclopride, the benzodiazepine diazepam, and ethanol. MCS patients report enhanced responses to many of these drugs, indicating some parallels between FSL rats and MCS patients. The FSL rats also exhibit reduced activity and appetite and increased REM sleep relative to their FRL controls. Because these behavioral features and the enhanced cholinergic responses are also observed in human depressives, the FSL rats have been proposed as a genetic animal model of depression. It has also been reported that MCS patients have a greater incidence of depression, both before and after onset of their chemical sensitivities, so cholinergic supersensitivity may be a state predisposing individuals to depressive disorders and/or MCS. Further exploration of the commonalities and differences between MCS patients, human depressives, and FSL rats will help to elucidate the

  1. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C

    PubMed Central

    Al-Qudah, M.; Anderson, C. D.; Mahavadi, S.; Bradley, Z. L.; Akbarali, H. I.; Murthy, K. S.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation. PMID:24356881

  2. Cholinergic dysfunction in Parkinson's disease.

    PubMed

    Müller, Martijn L T M; Bohnen, Nicolaas I

    2013-09-01

    There is increasing interest in the clinical effects of cholinergic basal forebrain and tegmental pedunculopontine complex (PPN) projection degeneration in Parkinson's disease (PD). Recent evidence supports an expanded role beyond cognitive impairment, including effects on olfaction, mood, REM sleep behavior disorder, and motor functions. Cholinergic denervation is variable in PD without dementia and may contribute to clinical symptom heterogeneity. Early in vivo imaging evidence that impaired cholinergic integrity of the PPN associates with frequent falling in PD is now confirmed by human post-mortem evidence. Brainstem cholinergic lesioning studies in primates confirm the role of the PPN in mobility impairment. Degeneration of basal forebrain cholinergic projections correlates with decreased walking speed. Cumulatively, these findings provide evidence for a new paradigm to explain dopamine-resistant features of mobility impairments in PD. Recognition of the increased clinical role of cholinergic system degeneration may motivate new research to expand indications for cholinergic therapy in PD. PMID:23943367

  3. Nematode cholinergic pharmacology

    SciTech Connect

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  4. Cholinergic imaging in dementia spectrum disorders.

    PubMed

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios

    2016-07-01

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [(11)C]MP4A and [(11)C]PMP PET for acetylcholinesterase (AChE), [(123)I]5IA SPECT for the α4β2 nicotinic acetylcholine receptor and [(123)I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. PMID:26984612

  5. Decreased subcortical cholinergic arousal in focal seizures

    PubMed Central

    Motelow, Joshua E.; Li, Wei; Zhan, Qiong; Mishra, Asht M.; Sachdev, Robert N. S.; Liu, Geoffrey; Gummadavelli, Abhijeet; Zayyad, Zaina; Lee, Hyun Seung; Chu, Victoria; Andrews, John P.; Englot, Dario J.; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Blumenfeld, Hal

    2015-01-01

    SUMMARY Impaired consciousness in temporal lobe seizures has a major negative impact on quality of life. The prevailing view holds that this disorder impairs consciousness by seizure spread to the bilateral temporal lobes. We propose instead that seizures invade subcortical regions and depress arousal, causing impairment through decreases rather than through increases in activity. Using functional magnetic resonance imaging in a rodent model, we found increased activity in regions known to depress cortical function including lateral septum and anterior hypothalamus. Importantly, we found suppression of intralaminar thalamic and brainstem arousal systems and suppression of the cortex. At a cellular level, we found reduced firing of identified cholinergic neurons in the brainstem pedunculopontine tegmental nucleus and basal forebrain. Finally, we used enzyme-based amperometry to demonstrate reduced cholinergic neurotransmission in both cortex and thalamus. Decreased subcortical arousal is a novel mechanism for loss of consciousness in focal temporal lobe seizures. PMID:25654258

  6. Striatal cholinergic interneurons drive GABA release from dopamine terminals

    PubMed Central

    Nelson, Alexandra B.; Hammack, Nora; Yang, Cindy F.; Shah, Nirao M.; Seal, Rebecca P.; Kreitzer, Anatol C.

    2014-01-01

    Summary Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically-driven IPSCs were not affected by ablation of striatal fast-spiking interneurons, but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. PMID:24613418

  7. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.

    PubMed

    Jordan, Larry M; McVagh, J R; Noga, B R; Cabaj, A M; Majczyński, H; Sławińska, Urszula; Provencher, J; Leblond, H; Rossignol, Serge

    2014-01-01

    Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a "hyper-cholinergic" state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments

  8. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits.

    PubMed

    Paolone, Giovanna; Mallory, Caitlin S; Koshy Cherian, Ajeesh; Miller, Thomas R; Blakely, Randy D; Sarter, Martin

    2013-12-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/- mice. Additionally, CHT+/- mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/- mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/- cholinergic terminals. Further analyses of molecular and functional compensations in the CHT+/- model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders. PMID:23958450

  9. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits

    PubMed Central

    Cherian, Ajeesh Koshy; Miller, Thomas R.; Blakely, Randy D.; Sarter, Martin

    2013-01-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/− mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/− mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/− mice. Additionally, CHT+/− mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/− mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/− cholinergic terminals. Further analyses of molecular and functional compensations in the CHT +/− model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders. PMID:23958450

  10. Methods Reduce Cost, Enhance Quality of Nanotubes

    NASA Technical Reports Server (NTRS)

    2009-01-01

    For all the challenges posed by the microgravity conditions of space, weight is actually one of the more significant problems NASA faces in the development of the next generation of U.S. space vehicles. For the Agency s Constellation Program, engineers at NASA centers are designing and testing new vessels as safe, practical, and cost-effective means of space travel following the eventual retirement of the space shuttle. Program components like the Orion Crew Exploration Vehicle, intended to carry astronauts to the International Space Station and the Moon, must be designed to specific weight requirements to manage fuel consumption and match launch rocket capabilities; Orion s gross liftoff weight target is about 63,789 pounds. Future space vehicles will require even greater attention to lightweight construction to help conserve fuel for long-range missions to Mars and beyond. In order to reduce spacecraft weight without sacrificing structural integrity, NASA is pursuing the development of materials that promise to revolutionize not only spacecraft construction, but also a host of potential applications on Earth. Single-walled carbon nanotubes are one material of particular interest. These tubular, single-layer carbon molecules - 100,000 of them braided together would be no thicker than a human hair - display a range of remarkable characteristics. Possessing greater tensile strength than steel at a fraction of the weight, the nanotubes are efficient heat conductors with metallic or semiconductor electrical properties depending on their diameter and chirality (the pattern of each nanotube s hexagonal lattice structure). All of these properties make the nanotubes an appealing material for spacecraft construction, with the potential for nanotube composites to reduce spacecraft weight by 50 percent or more. The nanotubes may also feature in a number of other space exploration applications, including life support, energy storage, and sensor technologies. NASA s various

  11. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception

    PubMed Central

    Kang, Jun Il; Huppé-Gourgues, Frédéric; Vaucher, Elvire

    2014-01-01

    The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical plasticity, attention and learning. In this review, we propose that the cellular effects of acetylcholine (ACh) in the primary visual cortex during the processing of visual inputs might induce perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of cholinergic activation with visual stimulation increases the signal-to-noise ratio, cue detection ability and long-term facilitation in the primary visual cortex. This cholinergic enhancement would increase the strength of thalamocortical afferents to facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling to reduce recurrent or top-down modulation. This balance would be mediated by different cholinergic receptor subtypes that are located on both glutamatergic and GABAergic neurons of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation (LTP) and modulation of the excitatory/inhibitory balance. Recently, it was found that boosting the cholinergic system during visual training robustly enhances sensory perception in a long-term manner. Our hypothesis is that repetitive pairing of cholinergic and sensory stimulation over a long period of time induces long-term changes in the processing of trained stimuli that might improve perceptual ability. Various non-invasive approaches to the activation of the cholinergic neurons have strong potential to improve visual perception. PMID:25278848

  12. Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias.

    PubMed

    Bordia, Tanuja; Perez, Xiomara A; Heiss, Jaime E; Zhang, Danhui; Quik, Maryka

    2016-07-01

    L-dopa-induced dyskinesias (LIDs) are a serious complication of L-dopa therapy for Parkinson's disease. Emerging evidence indicates that the nicotinic cholinergic system plays a role in LIDs, although the pathways and mechanisms are poorly understood. Here we used optogenetics to investigate the role of striatal cholinergic interneurons in LIDs. Mice expressing cre-recombinase under the control of the choline acetyltransferase promoter (ChAT-Cre) were lesioned by unilateral injection of 6-hydroxydopamine. AAV5-ChR2-eYFP or AAV5-control-eYFP was injected into the dorsolateral striatum, and optical fibers implanted. After stable virus expression, mice were treated with L-dopa. They were then subjected to various stimulation protocols for 2h and LIDs rated. Continuous stimulation with a short duration optical pulse (1-5ms) enhanced LIDs. This effect was blocked by the general muscarinic acetylcholine receptor (mAChR) antagonist atropine indicating it was mAChR-mediated. By contrast, continuous stimulation with a longer duration optical pulse (20ms to 1s) reduced LIDs to a similar extent as nicotine treatment (~50%). The general nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine blocked the decline in LIDs with longer optical pulses showing it was nAChR-mediated. None of the stimulation regimens altered LIDs in control-eYFP mice. Lesion-induced motor impairment was not affected by optical stimulation indicating that cholinergic transmission selectively regulates LIDs. Longer pulse stimulation increased the number of c-Fos expressing ChAT neurons, suggesting that changes in this immediate early gene may be involved. These results demonstrate that striatal cholinergic interneurons play a critical role in LIDs and support the idea that nicotine treatment reduces LIDs via nAChR desensitization. PMID:26921469

  13. Pain sensitivity following loss of cholinergic basal forebrain (CBF) neurons in the rat.

    PubMed

    Vierck, C J; Yezierski, R P; Wiley, R G

    2016-04-01

    Flexion/withdrawal reflexes are attenuated by spinal, intracerebroventricular (ICV) and systemic delivery of cholinergic agonists. In contrast, some affective reactions to pain are suppressed by systemic cholinergic antagonism. Attention to aversive stimulation can be impaired, as is classical conditioning of fear and anxiety to aversive stimuli and psychological activation of stress reactions that exacerbate pain. Thus, in contrast to the suppressive effects of cholinergic agonism on reflexes, pain sensitivity and affective reactions to pain could be attenuated by reduced cerebral cholinergic activation. This possibility was evaluated in the present study, using an operant test of escape from nociceptive thermal stimulation (10 °C and 44.5 °C) before and after destruction of basal forebrain cholinergic neurons. ICV injection of 192 IgG-saporin produced widespread loss of basal forebrain cholinergic innervation of the cerebral cortex and hippocampus. Post-injection, escape from thermal stimulation was decreased with no indication of recovery for upto 19 weeks. Also, the normal hyperalgesic effect of sound stress was absent after ICV 192-sap. Effects of cerebral cholinergic denervation or stress on nociceptive licking and guarding reflexes were not consistent with the effects on operant escape, highlighting the importance of evaluating pain sensitivity of laboratory animals with an operant behavioral test. These results reveal that basal forebrain cholinergic transmission participates in the cerebral processing of pain, which may be relevant to the pain sensitivity of patients with Alzheimer's disease who have prominent degeneration of basal forebrain cholinergic neurons. PMID:26812034

  14. Megakaryocytopoiesis in culture: modulation by cholinergic mechanisms.

    PubMed

    Burstein, S A; Adamson, J W; Harker, L A

    1980-05-01

    Treatment of murine bone marrow cultures with the cholinergic agonist carbamylcholine enhanced megakaryocytic colony growth by as much as 65%. In contrast, adrenergic agonists had no such effect. Addition to cultures of dibutyryl cyclic GMP (db-cGMP) also enhanced megakaryocytic colonies up to 50%, whereas dibutyryl cyclic AMP (db-cAMP) had no effect. Sodium nitroprusside and sodium nitrite, putative guanyl cyclase activators, also enhanced colony numbers, as did imidazole, a postulated cGMP phosphodiesterase inhibitor. Preincubation of marrow for two hours with carbamylcholine resulted both an increase in colony numbers (58%) and percent of progenitors in DNA synthesis (48%, compared to 14% for controls) as determined by tritiated thymidine suicide studies. Treatment of mice with the acetylcholinesterase inhibitor neostigmine resulted in an increase in CFU-M/humerus (62%) and percent in DNA synthesis (45%). These data indicate that 1) cholinergic, but not adrenergic, agonists modulate megakaryocytopoiesis in culture; 2) this effect may be mediated by cyclic GMP; and 3) only a brief period of exposure of marrow cells to agonist results in enhancement of megakaryocytic colonies. PMID:6108328

  15. Gut feeling: MicroRNA discriminators of the intestinal TLR9-cholinergic links.

    PubMed

    Nadorp, Bettina; Soreq, Hermona

    2015-11-01

    The intestinal tissue notably responds to stressful, cholinergic and innate immune signals by microRNA (miRNA) changes, but whether and how those miRNA regulators modify the intestinal cholinergic and innate immune pathways remained unexplored. Here, we report changes in several miRNA regulators of cholinesterases (ChEs) and correspondingly modified ChE activities in intestine, splenocytes and the circulation of mice exposed to both stress and canonical or alternative Toll-Like Receptor 9 (TLR9) oligonucleotide (ODN) aptamer activators or blockers. Stressful intraperitoneal injection of saline, the anti-inflammatory TLR9 agonist mEN101 aptamer or the inflammation-activating TLR9 aptamer ODN 1826 all increased the expression of the acetylcholinesterase (AChE)-targeting miR-132. In comparison, mEN101 but neither ODN 1826 nor saline injections elevated intestinal miR-129-5p, miR-186 and miR-200c, all predicted to target both AChE and the homologous enzyme butyrylcholinesterase (BChE). In cultured immune cells, BL-7040, the human counterpart of mEN101, reduced AChE activity reflecting inflammatory reactions in a manner preventable by the TLR9 blocking ODN 2088. Furthermore, the anti-inflammatory BL-7040 TLR9 aptamer caused reduction in nitric oxide and AChE activity in both murine splenocytes and human mononuclear cells at molar concentrations four orders of magnitude lower than ODN 1826. Our findings demonstrate differential reaction of cholinesterase-targeting miRNAs to distinct TLR9 challenges, indicating upstream miRNA co-regulation of the intestinal alternative NFκB pathway and cholinergic signaling. TLR9 aptamers may hence potentiate miRNA regulation that enhances cholinergic signaling and the resolution of inflammation, which opens new venues for manipulating bowel diseases. PMID:26003847

  16. Endothelin-1 increases cholinergic nerve-mediated contraction of human bronchi via tachykinin synthesis induction

    PubMed Central

    D'Agostino, Bruno; Advenier, Charles; Falciani, Maddalena; Gallelli, Luca; Marrocco, Giuseppina; Piegari, Elena; Filippelli, Amelia; Rossi, Francesco

    2001-01-01

    In some asthmatics, muscarinic receptor antagonists are effective in limiting bronchoconstrictor response, suggesting an abnormal cholinergic drive in these subjects. There is a growing body of evidences indicating that cholinergic neurotransmission is also enhanced by endothelin-1 (ET-1) in rabbit bronchi, mouse trachea and in human isolated airway preparations.We investigated the role of secondary mediators in ET-1 induced potentiation of cholinergic nerve-mediated contraction in human bronchi, in particular the possible role of neuropeptides in this phenomenon.Bronchial tissues after endothelin treatment were exposed to a standard electrical field stimulation (EFS) (30% of EFS 30Hz)-induced contraction. In addition, in some experiments, preparations were treated with a tachykinin NK2 receptor antagonist and subsequently exposed to the same protocol. HPLC and RIA were performed on organ bath fluid samples. Moreover, the human bronchi were used for the β-PPT (preprotachykinin) mRNA extraction and semiquantitative reverse transcription polymerase chain reaction (RT – PCR), prior to and 30 – 40 min following ET-1 challenge.The selective tachykinin NK2 receptor antagonist, SR48968, was effective to reduce ET-1 potentiation of EFS mediated contraction. HPLC or RIA showed significant increased quantities of NKA in organ bath effluents after EFS stimulation in bronchi pretreated with ET-1. Finally, β-PPT mRNA level after stimulation of bronchi with ET-1 was increased about 2 fold respect to control untreated bronchi.In conclusion, this study demonstrated that, at least in part, the ET-1 potentiation of cholinergic nerve-mediated contraction is mediated by tachykinin release, suggesting that in addition to nerves, several type of cells, such as airway smooth muscle cell, may participate to neuropeptide production. PMID:11724750

  17. Gut feeling: MicroRNA discriminators of the intestinal TLR9–cholinergic links

    PubMed Central

    Nadorp, Bettina; Soreq, Hermona

    2015-01-01

    The intestinal tissue notably responds to stressful, cholinergic and innate immune signals by microRNA (miRNA) changes, but whether and how those miRNA regulators modify the intestinal cholinergic and innate immune pathways remained unexplored. Here, we report changes in several miRNA regulators of cholinesterases (ChEs) and correspondingly modified ChE activities in intestine, splenocytes and the circulation of mice exposed to both stress and canonical or alternative Toll-Like Receptor 9 (TLR9) oligonucleotide (ODN) aptamer activators or blockers. Stressful intraperitoneal injection of saline, the anti-inflammatory TLR9 agonist mEN101 aptamer or the inflammation-activating TLR9 aptamer ODN 1826 all increased the expression of the acetylcholinesterase (AChE)-targeting miR-132. In comparison, mEN101 but neither ODN 1826 nor saline injections elevated intestinal miR-129-5p, miR-186 and miR-200c, all predicted to target both AChE and the homologous enzyme butyrylcholinesterase (BChE). In cultured immune cells, BL-7040, the human counterpart of mEN101, reduced AChE activity reflecting inflammatory reactions in a manner preventable by the TLR9 blocking ODN 2088. Furthermore, the anti-inflammatory BL-7040 TLR9 aptamer caused reduction in nitric oxide and AChE activity in both murine splenocytes and human mononuclear cells at molar concentrations four orders of magnitude lower than ODN 1826. Our findings demonstrate differential reaction of cholinesterase-targeting miRNAs to distinct TLR9 challenges, indicating upstream miRNA co-regulation of the intestinal alternative NFκB pathway and cholinergic signaling. TLR9 aptamers may hence potentiate miRNA regulation that enhances cholinergic signaling and the resolution of inflammation, which opens new venues for manipulating bowel diseases. PMID:26003847

  18. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees

    PubMed Central

    Palmer, Mary J.; Moffat, Christopher; Saranzewa, Nastja; Harvey, Jenni; Wright, Geraldine A.; Connolly, Christopher N.

    2013-01-01

    Pesticides that target cholinergic neurotransmission are highly effective, but their use has been implicated in insect pollinator population decline. Honeybees are exposed to two widely used classes of cholinergic pesticide: neonicotinoids (nicotinic receptor agonists) and organophosphate miticides (acetylcholinesterase inhibitors). Although sublethal levels of neonicotinoids are known to disrupt honeybee learning and behaviour, the neurophysiological basis of these effects has not been shown. Here, using recordings from mushroom body Kenyon cells in acutely isolated honeybee brain, we show that the neonicotinoids imidacloprid and clothianidin, and the organophosphate miticide coumaphos oxon, cause a depolarization-block of neuronal firing and inhibit nicotinic responses. These effects are observed at concentrations that are encountered by foraging honeybees and within the hive, and are additive with combined application. Our findings demonstrate a neuronal mechanism that may account for the cognitive impairments caused by neonicotinoids, and predict that exposure to multiple pesticides that target cholinergic signalling will cause enhanced toxicity to pollinators. PMID:23535655

  19. Non-cholinergic component of rat splanchnic nerves predominates at low neuronal activity and is eliminated by naloxone.

    PubMed

    Malhotra, R K; Wakade, A R

    1987-02-01

    1. Effects of nicotinic (mecamylamine) and muscarinic (atropine) receptor antagonists were investigated on the secretion of catecholamines evoked by stimulation of splanchnic nerve terminals and acetylcholine in the isolated perfused adrenal gland of the rat to determine whether non-cholinergic substances released from nerve terminals participate in the secretion of catecholamines. 2. Increasing the frequency of stimulation from 0.5 to 10 Hz (300 pulses) caused enhanced secretion of catecholamines (26-110 ng/collection period). After blockade of nicotinic and muscarinic receptors with mecamylamine and atropine, the secretion was reduced by 40, 65 and 80% at 0.5, 1 and 10 Hz, respectively. Acetylcholine-evoked secretion of catecholamines, which was roughly equivalent to that produced by stimulation at 10 Hz, was blocked by over 90% by the cholinergic antagonists. 3. Naloxone (3-300 microM) caused a concentration-dependent inhibition of catecholamine secretion evoked by stimulation of splanchnic nerves (1 Hz); acetylcholine-evoked secretion was much less affected by naloxone. 4. The secretion of catecholamines that remained after blockade of cholinergic receptors at different frequencies of stimulation (see 2 above) was almost completely inhibited by inclusion of 30 microM-naloxone in the medium. The inhibitory effect of naloxone was concentration dependent (3-30 microM) and reversible. 5. Splanchnic nerve-evoked secretion of catecholamines was facilitated by 400% in the presence of tetraethylammonium or tetraethylammonium plus mecamylamine and atropine. The facilitatory effect of tetraethylammonium was inversely related to the frequency of stimulation. 6. The residual secretion of catecholamines obtained after blockade of cholinergic receptors was facilitated by increasing concentrations of tetraethylammonium (1-5 mM). 30 microM-naloxone antagonized the facilitatory effects of tetraethylammonium at 1 and 3 mM by 60% and 25%, respectively, but failed at 5 m

  20. Cholinergic Blockade Reduces Theta-Gamma Phase Amplitude Coupling and Speed Modulation of Theta Frequency Consistent with Behavioral Effects on Encoding

    PubMed Central

    Gillet, Shea N.; Climer, Jason R.; Hasselmo, Michael E.

    2013-01-01

    Large-scale neural activation dynamics in the hippocampal-entorhinal circuit local field potential, observable as theta and gamma rhythms and coupling between these rhythms, is predictive of encoding success. Behavioral studies show that systemic administration of muscarinic acetylcholine receptor antagonists selectively impairs encoding, suggesting that they may also disrupt the coupling between the theta and gamma bands. Here, we tested the hypothesis that muscarinic antagonists selectively disrupt coupling between theta and gamma. Specifically, we characterized the effects of systemically administered scopolamine on movement-induced theta and gamma rhythms recorded in the superficial layers of the medial entorhinal cortex (MEC) of freely moving rats. We report the novel result that gamma power at the peak of theta was most reduced following muscarinic blockade, significantly shifting the phase of maximal gamma power to occur at later phases of theta. We also characterize the existence of multiple distinct gamma bands in the superficial layers of the MEC. Further, we observed that theta frequency was significantly less modulated by movement speed following muscarinic blockade. Finally, the slope relating speed to theta frequency, a correlate of familiarity with a testing enclosure, increased significantly less between the preinjection and recovery trials when scopolamine was administered during the intervening injection session than when saline was administered, suggesting that scopolamine reduced encoding of the testing enclosure. These data are consistent with computational models suggesting that encoding and retrieval occur during the peak and trough of theta, respectively, and support the theory that acetylcholine regulates the balance between encoding versus retrieval. PMID:24336727

  1. Physical urticarias and cholinergic urticaria.

    PubMed

    Abajian, Marina; Schoepke, Nicole; Altrichter, Sabine; Zuberbier, Torsten; Zuberbier, H C Torsten; Maurer, Marcus

    2014-02-01

    Physical urticarias are a unique subgroup of chronic urticaria in which urticarial responses can be reproducibly induced by different specific physical stimuli acting on the skin. These conditions include urticaria factitia/symptomatic dermographism, delayed pressure urticaria, cold contact urticaria, heat contact urticaria, solar urticaria, and vibratory urticaria/angioedema. Physical urticarias and cholinergic urticarias are diagnosed based on the patients' history and provocation tests including trigger threshold testing where possible. Treatment is mainly symptomatic. Many patients benefit from avoiding eliciting triggers, and desensitization to these triggers can be helpful in some physical urticarias and in cholinergic urticaria. PMID:24262690

  2. Characterization of a novel mechanism accounting for the adverse cholinergic effects of the anticancer drug irinotecan

    PubMed Central

    Blandizzi, Corrado; De Paolis, Barbara; Colucci, Rocchina; Lazzeri, Gloria; Baschiera, Fabio; Del Tacca, Mario

    2001-01-01

    This study investigates the mechanisms accounting for the adverse cholinergic effects of the antitumour drug irinotecan. The activity of irinotecan and its active metabolite, 7-ethyl-10-hydroxy-camptothecin (SN-38), was assayed in models suitable for pharmacological studies on cholinergic system. Irinotecan moderately inhibited human or electric eel acetylcholinesterase activity, SN-38 had no effect, whereas physostigmine blocked both the enzymes with high potency and efficacy. Irinotecan and SN-38 did not affect spontaneous or electrically-induced contractile activity of human colonic muscle. Acetylcholine and dimethylphenylpiperazinium (DMPP) caused phasic contractions or relaxations, respectively. Physostigmine enhanced the motor responses elicited by electrical stimulation. Although irinotecan and SN-38 did not modify the basal contractile activity of guinea-pig ileum longitudinal muscle strips, irinotecan 100 μM moderately enhanced cholinergic twitch contractions. Acetylcholine or DMPP caused phasic contractions, whereas physostigmine enhanced the twitch responses. Electrically-induced [3H]-acetylcholine release was reduced by irinotecan (100 μM) or physostigmine (0.1 μM). Intravenous irinotecan stimulated gastric acid secretion in rats, but no effects were obtained with SN-38, physostigmine or i.c.v. irinotecan. Hypersecretion induced by irinotecan was partly prevented by ondansetron, and unaffected by capsazepine. In the presence of atropine, vagotomy and systemic or vagal ablation of capsaicin-sensitive afferent fibres, irinotecan did not stimulate gastric secretion. The present results indicate that irinotecan and SN-38 do not act as specific acetylcholinesterase blockers or acetylcholine receptor agonists. It is rather suggested that irinotecan promotes a parasympathetic discharge to peripheral organs, mediated by capsaicin-sensitive vagal afferent fibres, and that serotonin 5-HT3 receptors are implicated in the genesis of vago-vagal reflex

  3. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids.

    PubMed

    Fernández-Fernández, Laura; Esteban, Gerard; Giralt, Mercedes; Valente, Tony; Bolea, Irene; Solé, Montse; Sun, Ping; Benítez, Susana; Morelló, José Ramón; Reguant, Jordi; Ramírez, Bartolomé; Hidalgo, Juan; Unzeta, Mercedes

    2015-04-01

    The possible modulatory effect of the functional LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids, on the catecholaminergic and cholinergic neurotransmission, affecting cognition decline during aging has been studied. 129S1/SvlmJ mice were fed for 10, 20, 30 and 40 days with either LMN or control diets. The enzymes involved in catecholaminergic and cholinergic metabolism were determined by both immunohistological and western blot analyses. Noradrenalin, dopamine and other metabolites were quantified by HPLC analysis. Theobromine, present in cocoa, the main LMN diet component, was analysed in parallel using SH-SY5Y and PC12 cell lines. An enhanced modulatory effect on both cholinergic and catecholaminergic transmissions was observed on 20 day fed mice. Similar effect was observed with theobromine, besides its antioxidant capacity inducing SOD-1 and GPx expression. The enhancing effect of the LMN diet and theobromine on the levels of acetylcholine-related enzymes, dopamine and specially noradrenalin confirms the beneficial role of this diet on the "cognitive reserve" and hence a possible reducing effect on cognitive decline underlying aging and Alzheimer's disease. PMID:25756794

  4. Mitochondrial Transplantation Attenuates Airway Hyperresponsiveness by Inhibition of Cholinergic Hyperactivity

    PubMed Central

    Su, Yuan; Zhu, Liping; Yu, Xiangyuan; Cai, Lei; Lu, Yankai; Zhang, Jiwei; Li, Tongfei; Li, Jiansha; Xia, Jingyan; Xu, Feng; Hu, Qinghua

    2016-01-01

    Increased cholinergic activity has been highlighted in the pathogenesis of airway hyperresponsiveness, and alternations of mitochondrial structure and function appear to be involved in many lung diseases including airway hyperresponsiveness. It is crucial to clarify the cause-effect association between mitochondrial dysfunction and cholinergic hyperactivity in the pathogenesis of airway hyperresponsiveness. Male SD rats and cultured airway epithelial cells were exposed to cigarette smoke plus lipopolysaccharide administration; mitochondria isolated from airway epithelium were delivered into epithelial cells in vitro and in vivo. Both the cigarette smoke plus lipopolysaccharide-induced cholinergic hyperactivity in vitro and the airway hyperresponsiveness to acetylcholine in vivo were reversed by the transplantation of exogenous mitochondria. The rescue effects of exogenous mitochondria were imitated by the elimination of excessive reactive oxygen species or blockage of muscarinic M3 receptor, but inhibited by M receptor enhancer. Mitochondrial transplantation effectively attenuates cigarette smoke plus lipopolysaccharide-stimulated airway hyperresponsiveness through the inhibition of ROS-enhanced epithelial cholinergic hyperactivity. PMID:27279915

  5. Cholinergic modulation of event-related oscillations (ERO).

    PubMed

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N; Havstad, James; Ehlers, Cindy L

    2014-04-22

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  6. Cholinergic modulation of event-related oscillations (ERO)

    PubMed Central

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N.; Havstad, James; Ehlers, Cindy L.

    2014-01-01

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time–frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx–Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC–Amyg and Fctx–DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  7. Cholinergic influences on feature binding.

    PubMed

    Botly, Leigh C P; De Rosa, Eve

    2007-04-01

    The binding problem refers to the fundamental challenge of the central nervous system to integrate sensory information registered by multiple brain regions to form a unified neural representation of a stimulus. Human behavioral, neuropsychological, and functional neuroimaging evidence suggests a fundamental role for attention in feature binding; however, its neurochemical basis is currently unknown. This study examined whether acetylcholine (ACh), a neuromodulator that has been implicated in attentional processes, plays a critical role in feature binding. Using a within-subjects pharmacological design and the cholinergic muscarinic antagonist scopolamine, the present experiments demonstrate, in a rat model, a critical role for the cortical muscarinic cholinergic system in feature binding. Specifically, ACh and the attentional resources that it supports are essential for the initial feature binding process but are not required to maintain neural representations of bound stimuli. PMID:17469916

  8. Cholinergic modulation of hippocampal network function

    PubMed Central

    Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.

    2013-01-01

    Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628

  9. New Etiology of Cholinergic Urticaria.

    PubMed

    Tokura, Yoshiki

    2016-01-01

    Cholinergic urticaria (CholU) is characterized by pinpoint-sized, highly pruritic wheals occurring upon sweating. Both direct and indirect theories in the interaction of acetylcholine (ACh) with mast cells have been put forward in the sweating-associated histamine release from mast cells. In the mechanism of indirect involvement of ACh, patients are hypersensitive to sweat antigen(s) and develop wheals in response to sweat substances leaking from the syringeal ducts to the dermis, possibly by obstruction of the ducts. Some patients with CholU exhibit a positive reaction to intradermal injection of their own diluted sweat, representing 'sweat allergy (hypersensitivity)'. Regarding the direct interaction theory between ACh and mast cells, we found that CholU with anhidrosis and hypohidrosis lacks cholinergic receptor M3 (CHRM3) expression in eccrine sweat gland epithelial cells. The expression of CHRM3 is completely absent in the anhidrotic areas and lowly expressed in the hypohidrotic areas. In the hypohidrotic area, where CholU occurs, it is hypothesized that ACh released from nerves cannot be completely trapped by cholinergic receptors of eccrine glands and overflows to the adjacent mast cells, leading to wheals. PMID:27584968

  10. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic

    PubMed Central

    Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B.; Perrat, Paola N.; Waddell, Scott

    2016-01-01

    Summary Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. PMID:26948892

  11. Presynaptic Excitation via GABAB Receptors in Habenula Cholinergic Neurons Regulates Fear Memory Expression.

    PubMed

    Zhang, Juen; Tan, Lubin; Ren, Yuqi; Liang, Jingwen; Lin, Rui; Feng, Qiru; Zhou, Jingfeng; Hu, Fei; Ren, Jing; Wei, Chao; Yu, Tao; Zhuang, Yinghua; Bettler, Bernhard; Wang, Fengchao; Luo, Minmin

    2016-07-28

    Fear behaviors are regulated by adaptive mechanisms that dampen their expression in the absence of danger. By studying circuits and the molecular mechanisms underlying this adaptive response, we show that cholinergic neurons of the medial habenula reduce fear memory expression through GABAB presynaptic excitation. Ablating these neurons or inactivating their GABAB receptors impairs fear extinction in mice, whereas activating the neurons or their axonal GABAB receptors reduces conditioned fear. Although considered exclusively inhibitory, here, GABAB mediates excitation by amplifying presynaptic Ca(2+) entry through Cav2.3 channels and potentiating co-release of glutamate, acetylcholine, and neurokinin B to excite interpeduncular neurons. Activating the receptors for these neurotransmitters or enhancing neurotransmission with a phosphodiesterase inhibitor reduces fear responses of both wild-type and GABAB mutant mice. We identify the role of an extra-amygdalar circuit and presynaptic GABAB receptors in fear control, suggesting that boosting neurotransmission in this pathway might ameliorate some fear disorders. PMID:27426949

  12. Riboflavin enhanced fluorescence of highly reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Iliut, Maria; Gabudean, Ana-Maria; Leordean, Cosmin; Simon, Timea; Teodorescu, Cristian-Mihail; Astilean, Simion

    2013-10-01

    The improvement of graphene derivates' fluorescence properties is a challenging topic and very few ways were reported up to now. In this Letter we propose an easy method to enhance the fluorescence of highly reduced graphene oxide (rGO) through non-covalent binding to a molecular fluorophore, namely the riboflavin (Rb). While the fluorescence of Rb is quenched, the Rb - decorated rGO exhibits strong blue fluorescence and significantly increased fluorescence lifetime, as compared to its pristine form. The data reported here represent a promising start towards tailoring the optical properties of rGOs, having utmost importance in optical applications.

  13. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites

    PubMed Central

    Lee, Jong Ho; Shin, Yong Cheol; Lee, Sang-Min; Jin, Oh Seong; Kang, Seok Hee; Hong, Suck Won; Jeong, Chang-Mo; Huh, Jung Bo; Han, Dong-Wook

    2015-01-01

    Recently, graphene-based nanomaterials, in the form of two dimensional substrates or three dimensional foams, have attracted considerable attention as bioactive scaffolds to promote the differentiation of various stem cells towards specific lineages. On the other hand, the potential advantages of using graphene-based hybrid composites directly as factors inducing cellular differentiation as well as tissue regeneration are unclear. This study examined whether nanocomposites of reduced graphene oxide (rGO) and hydroxyapatite (HAp) (rGO/HAp NCs) could enhance the osteogenesis of MC3T3-E1 preosteoblasts and promote new bone formation. When combined with HAp, rGO synergistically promoted the spontaneous osteodifferentiation of MC3T3-E1 cells without hindering their proliferation. This enhanced osteogenesis was corroborated from determination of alkaline phosphatase activity as early stage markers of osteodifferentiation and mineralization of calcium and phosphate as late stage markers. Immunoblot analysis showed that rGO/HAp NCs increase the expression levels of osteopontin and osteocalcin significantly. Furthermore, rGO/HAp grafts were found to significantly enhance new bone formation in full-thickness calvarial defects without inflammatory responses. These results suggest that rGO/HAp NCs can be exploited to craft a range of strategies for the development of novel dental and orthopedic bone grafts to accelerate bone regeneration because these graphene-based composite materials have potentials to stimulate osteogenesis. PMID:26685901

  14. Cholinergic neurotransmission seems not to be involved in depression but possibly in personality.

    PubMed Central

    Fritze, J; Lanczik, M; Sofic, E; Struck, M; Riederer, P

    1995-01-01

    Concordant with the adrenergic-cholinergic imbalance hypothesis of affective psychosis, there is a cholinergic supersensitivity in depression. Thus, the anticholinergic properties of some antidepressants might contribute to their efficacy. However, in the present double-blind studies (n = 20) with mianserin and viloxazine, respectively, which lack anticholinergic properties, adjunctive treatment with the anticholinergic biperiden versus placebo did not enhance the antidepressive efficacy. Therefore, we hypothesized that cholinergic supersensitivity might be linked to some possibly predisposing dimension of personality. Indeed, in healthy male volunteers (n = 11) the behavioral and cardiovascular sensitivity to physostigmine correlated significantly with "irritability" and "emotional lability" as well as with habitually passive strategies in stress coping. The rise in plasma cortisol and norepinephrine correlated with "retardation"; that of epinephrine with active coping. Thus, the cholinergic supersensitivity in affective psychoses might be linked to a personality dimension like stress sensitivity rather than to the diagnostic category itself. Images Fig. 2 PMID:7865500

  15. Cholinergic inhibition of adrenergic neurosecretion in the rabbit iris-ciliary body

    SciTech Connect

    Jumblatt, J.E.; North, G.T.

    1988-04-01

    The prejunctional effects of cholinergic agents on release of norepinephrine from sympathetic nerve endings were investigated in the isolated, superfused rabbit iris-ciliary body. Stimulation-evoked release of /sup 3/H-norepinephrine was inhibited by the cholinergic agonists methacholine, oxotremorine, muscarine, carbamylcholine and acetylcholine (plus eserine), but was unmodified by pilocarpine or nicotine. Agonist-induced inhibition was antagonized selectively by atropine, indicating a muscarinic response. Atropine alone markedly enhanced norepinephrine release, revealing considerable tonic activation of prejunctional cholinergic receptors in this system. Prejunctional inhibition by carbamylcholine was found to completely override the facilitative action of forskolin or 8-bromo-cyclic AMP on neurotransmitter release. Cholinergic and alpha 2-adrenergic effects on neurosecretion were non-additive, suggesting that the underlying receptors coexist at neurotransmitter release sites.

  16. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    PubMed

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists. PMID:25183542

  17. Cellular and molecular basis of cholinergic function

    SciTech Connect

    Dowdall, M.J.; Hawthorne, J.N.

    1987-01-01

    This book contains 105 selections. Some of the titles are: Functional correlates of brain nicotine receptors; Muscarinic receptor subclasses; Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system; Developmentally regulated neurontrophic activities of Torpedo electric organ tissue; and Association of a regulatory peptide with cholinergic neurons.

  18. Porous reduced graphene oxide membrane with enhanced gauge factor

    NASA Astrophysics Data System (ADS)

    Li, Jen-Chieh; Weng, Cheng-Hsi; Tsai, Fu-Cheng; Shih, Wen-Pin; Chang, Pei-Zen

    2016-01-01

    This paper shows that a porous structure for a reduced graphene oxide (rGO) membrane effectively enhances its gauge factor. A porous graphene-based membrane was synthesized in a liquid phase by combining a GO sheet with copper hydroxide nanostrands (CHNs). A chemical reduction treatment using L-ascorbic acid was utilized to simultaneously improve the conductivity of GO and remove the CHNs from each GO sheet. The intrinsic gauge factors of the porous rGO membrane with varying applied tensile strains were obtained and found to increase monotonically with the increased porosity of the rGO membrane. For a membrane porosity of 15.78%, the maximum gauge factor is 46.1 under an applied strain of less than 1%. The main mechanism behind the enhanced gauge factor is attributed to the structure of the porous rGO membrane. The relationships between the initial electrical resistance, tunneling distance, and gauge factor of the rGO membrane were found by adjusting the membrane porosity and the results completely confirmed the physical phenomena.

  19. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition

    PubMed Central

    Aoki, Chiye; Hawken, Michael J.

    2012-01-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABAA receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701–713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width. PMID:22786955

  20. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition.

    PubMed

    Disney, Anita A; Aoki, Chiye; Hawken, Michael J

    2012-10-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABA(A) receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701-713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width. PMID:22786955

  1. Cholinergic system during the progression of Alzheimer's disease: therapeutic implications

    PubMed Central

    Mufson, Elliott J; Counts, Scott E; Perez, Sylvia E; Ginsberg, Stephen D

    2009-01-01

    Alzheimer's disease (AD) is characterized by a progressive phenotypic downregulation of markers within cholinergic basal forebrain (CBF) neurons, frank CBF cell loss and reduced cortical choline acetyltransferase activity associated with cognitive decline. Delaying CBF neurodegeneration or minimizing its consequences is the mechanism of action for most currently available drug treatments for cognitive dysfunction in AD. Growing evidence suggests that imbalances in the expression of NGF, its precursor proNGF and the high (TrkA) and low (p75NTR) affinity NGF receptors are crucial factors underlying CBF dysfunction in AD. Drugs that maintain a homeostatic balance between TrkA and p75NTR may slow the onset of AD. A NGF gene therapy trial reduced cognitive decline and stimulated cholinergic fiber growth in humans with mild AD. Drugs treating the multiple pathologies and clinical symptoms in AD (e.g., M1 cholinoceptor and/or galaninergic drugs) should be considered for a more comprehensive treatment approach for cholinergic dysfunction. PMID:18986241

  2. Enhanced field emission from reduced graphene oxide polymer composites.

    PubMed

    Viskadouros, Georgios M; Stylianakis, Minas M; Kymakis, Emmanuel; Stratakis, Emmanuel

    2014-01-01

    Results on electron field emission (FE) from reduced graphene oxide (rGO):poly(3-hexylthiophene) (P3HT) composite layers are presented. Three different FE cathodes were tested and compared: rGO layers on (a) n(+)-Si, (b) composite films with different rGO:P3HT ratios, (c) rGO layers on composite films with different rGO:P3HT ratios. Experiments show that there is a critical rGO:P3HT ratio in which the field-emission performance is remarkably improved. Notably, such performance is always superior to that of the optimum rGO/n(+)-Si cathode. On the contrary, it is inferior to that attained upon deposition of a second rGO layer on top of the rGO:P3HT composite showed the best FE performance that showed turn-on field of as low as ~0.9 V/μm and field enhancement factor of ~1900. The contributions of the composite film morphology as well as the role of rGO sheet-substrate interaction on the emission performance are evaluated and discussed. PMID:24320752

  3. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: a cholinesterase dependent mechanism.

    PubMed

    Del Pino, Javier; Zeballos, Garbriela; Anadon, María José; Capo, Miguel Andrés; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2014-11-01

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases. PMID:25201352

  4. The Cholinergic Signaling Responsible for the Expression of a Memory-Related Protein in Primary Rat Cortical Neurons.

    PubMed

    Chen, Tsan-Ju; Chen, Shun-Sheng; Wang, Dean-Chuan; Hung, Hui-Shan

    2016-11-01

    Cholinergic dysfunction in the brain is closely related to cognitive impairment including memory loss. In addition to the degeneration of basal forebrain cholinergic neurons, deficits in the cholinergic receptor signaling may also play an important role. In the present study, to examine the cholinergic signaling pathways responsible for the induction of a memory-related postsynaptic protein, a cholinergic agonist carbachol was used to induce the expression of activity-regulated cytoskeleton associated protein (Arc) in primary rat cortical neurons. After pretreating neurons with various antagonists or inhibitors, the levels of carbachol-induced Arc protein expression were detected by Western blot analysis. The results show that carbachol induces Arc protein expression mainly through activating M1 acetylcholine receptors and the downstream phospholipase C pathway, which may lead to the activation of the MAPK/ERK signaling pathway. Importantly, carbachol-mediated M2 receptor activation exerts negative effects on Arc protein expression and thus counteracts the enhanced effects of M1 activation. Furthermore, it is suggested for the first time that M1-mediated enhancement of N-methyl-D-aspartate receptor (NMDAR) responses, leading to Ca(2+) entry through NMDARs, contributes to carbachol-induced Arc protein expression. These findings reveal a more complete cholinergic signaling that is responsible for carbachol-induced Arc protein expression, and thus provide more information for developing treatments that can modulate cholinergic signaling and consequently alleviate cognitive impairment. J. Cell. Physiol. 231: 2428-2438, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895748

  5. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    PubMed Central

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  6. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits.

    PubMed

    Ramanathan, Dhakshin S; Conner, James M; Anilkumar, Arjun A; Tuszynski, Mark H

    2015-03-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  7. Sex differences in brain cholinergic activity in MSG-obese rats submitted to exercise.

    PubMed

    Sagae, Sara Cristina; Grassiolli, Sabrina; Raineki, Charlis; Balbo, Sandra Lucinei; Marques da Silva, Ana Carla

    2011-11-01

    Obesity is an epidemic disease most commonly caused by a combination of increased energy intake and lack of physical activity. The cholinergic system has been shown to be involved in the regulation of food intake and energy expenditure. Moreover, physical exercise promotes a reduction of fat pads and body mass by increasing energy expenditure, but also influences the cholinergic system. The aim of this study is to evaluate the interaction between physical exercise (swimming) and central cholinergic activity in rats treated with monosodium glutamate (MSG, a model for obesity) during infancy. Our results show that MSG treatment is able to induce obesity in male and female rats. Specifically, MSG-treated rats presented a reduced body mass and nasoanal length, and increased perigonadal and retroperitoneal fat pads in relation to the body mass. Physical exercise was able to reduce body mass in both male and female rats, but did not change the fat pads in MSG-treated rats. Increased food intake was only seen in MSG-treated females submitted to exercise. Cholinergic activity was increased in the cortex of MSG-treated females and physical exercise was able to reduce this activity. Thalamic cholinergic activity was higher in sedentary MSG-treated females and exercised MSG-treated males. Hypothalamic cholinergic activity was higher in male and female MSG-treated rats, and was not reduced by exercise in the 2 sexes. Taken together, these results show that MSG treatment and physical exercise have different effects in the cholinergic activity of males and females. PMID:22039988

  8. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  9. Dysfunctional penile cholinergic nerves in diabetic impotent men

    SciTech Connect

    Blanco, R.; Saenz de Tejada, I.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1990-08-01

    Impotence in the diabetic man may be secondary to a neuropathic condition of the autonomic penile nerves. The relationship between autonomic neuropathy and impotence in diabetes was studied in human corporeal tissue obtained during implantation of a penile prosthesis in 19 impotent diabetic and 15 nondiabetic patients. The functional status of penile cholinergic nerves was assessed by determining their ability to accumulate tritiated choline (34), and synthesize (34) and release (19) tritiated-acetylcholine after incubation of corporeal tissue with tritiated-choline (34). Tritiated-choline accumulation, and tritiated-acetylcholine synthesis and release were significantly reduced in the corporeal tissue from diabetic patients compared to that from nondiabetic patients (p less than 0.05). The impairment in acetylcholine synthesis worsened with the duration of diabetes (p less than 0.025). No differences in the parameters measured were found between insulin-dependent (11) and noninsulin-dependent (8) diabetic patients. The ability of the cholinergic nerves to synthesize acetylcholine could not be predicted clinically with sensory vibration perception threshold testing. It is concluded that there is a functional penile neuropathic condition of the cholinergic nerves in the corpus cavernosum of diabetic impotent patients that may be responsible for the erectile dysfunction.

  10. Inhibition of airway surface fluid absorption by cholinergic stimulation.

    PubMed

    Joo, Nam Soo; Krouse, Mauri E; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20-70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  11. A cholinergic hypothesis of the unconscious in affective disorders

    PubMed Central

    Vakalopoulos, Costa

    2013-01-01

    The interactions between distinct pharmacological systems are proposed as a key dynamic in the formation of unconscious memories underlying rumination and mood disorder, but also reflect the plastic capacity of neural networks that can aid recovery. An inverse and reciprocal relationship is postulated between cholinergic and monoaminergic receptor subtypes. M1-type muscarinic receptor transduction facilitates encoding of unconscious, prepotent behavioral repertoires at the core of affective disorders and ADHD. Behavioral adaptation to new contingencies is mediated by the classic prototype receptor: 5-HT1A (Gi/o) and its modulation of M1-plasticity. Reversal of learning is dependent on increased phasic activation of midbrain monoaminergic nuclei and is a function of hippocampal theta. Acquired hippocampal dysfunction due to abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis predicts deficits in hippocampal-dependent memory and executive function and further impairments to cognitive inhibition. Encoding of explicit memories is mediated by Gq/11 and Gs signaling of monoamines only. A role is proposed for the phasic activation of the basal forebrain cholinergic nucleus by cortical projections from the complex consisting of the insula and claustrum. Although controversial, recent studies suggest a common ontogenetic origin of the two structures and a functional coupling. Lesions of the region result in loss of motivational behavior and familiarity based judgements. A major hypothesis of the paper is that these lost faculties result indirectly, from reduced cholinergic tone. PMID:24319409

  12. Striatal cholinergic interneurons: birthdates predict compartmental localization.

    PubMed

    van Vulpen, E H; van der Kooy, D

    1998-07-01

    The striatal patch and matrix compartment neurons are born at different times during rat development. The majority of the early born neurons preferentially end up in the patch compartment, while the majority of the later born neurons end up in the matrix compartment. Although the cholinergic interneurons are all born early in neurogenesis (between embryonic day E12 and E17), and we would therefore expect them to be located mainly in the patches, they are relatively homogeneously distributed in the adult, with a preference for the matrix area just outside the patches (the intermediate zone). To ask if birthdate can predict the compartmental localization of cholinergic neurons in the striatum, we marked new postmitotic neurons in the embryo with a maternal injection of bromodeoxyuridine (BrdU) on E13, E15 or E17 and labeled the patch compartment with an injection of the retrograde tracer True Blue into the substantia nigra on postnatal day (P) 1. The pups were sacrificed at P40 and the tissue was processed for BrdU, choline acetyltransferase, and True Blue triple labeling. Cholinergic neurons that became postmitotic at E13, had a higher chance of ending up in the patch compartment compared to either the intermediate zone or the rest of the matrix compartment. On the other hand cholinergic neurons that became postmitotic at E17 had a higher chance of ending up in the matrix compartment (including the intermediate zone). We conclude that birthdate can predict compartmental localization, with the cholinergic neurons in the intermediate zone following the same pattern as the cholinergic neurons in the rest of the matrix compartment. Cholinergic neurons show the same relative birthdate/compartment relationship as do other striatal neurons, although the absolute birthdates of cholinergic neurons are shifted earlier in neurogenesis. PMID:9706390

  13. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  14. Using Bibliotherapy to Enhance Probation and Reduce Recidivism

    ERIC Educational Resources Information Center

    Schutt, Russell K.; Deng, Xiaogang; Stoehr, Taylor

    2013-01-01

    Prior research indicates that probation programs that include efforts to change cognitive orientations and social patterns can enhance their effectiveness. This article reports an evaluation of an enhanced probation program, Changing Lives Through Literature, which uses a form of bibliotherapy to increase its rehabilitative effect. Controlling for…

  15. Cholinergic connectivity: it's implications for psychiatric disorders

    PubMed Central

    Scarr, Elizabeth; Gibbons, Andrew S.; Neo, Jaclyn; Udawela, Madhara; Dean, Brian

    2013-01-01

    Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system. PMID:23653591

  16. Clinical Characteristics of Cholinergic Urticaria in Korea

    PubMed Central

    Kim, Jung Eun; Eun, Young Sun; Park, Young Min; Park, Hyun Jeong; Yu, Dong Su; Kang, Hoon; Cho, Sang Hyun; Park, Chul Jong; Kim, Si Yong

    2014-01-01

    Background Cholinergic urticaria is a type of physical urticaria characterized by heat-associated wheals. Several reports are available about cholinergic urticaria; however, the clinical manifestations and pathogenesis are incompletely understood. Objective The purpose of this study was to investigate the clinical characteristics of cholinergic urticaria in Korea. Methods We performed a retrospective study of 92 patients with cholinergic urticaria who were contacted by phone and whose diagnoses were confirmed by the exercise provocation test among those who had visited The Catholic University of Korea, Catholic Medical Center from January 2001 to November 2010. Results All 92 patients were male, and their average age was 27.8 years (range, 17~51 years). Most of the patients had onset of the disease in their 20s and 30s. Non-follicular wheals were located on the trunk and upper extremities of many patients, and the symptoms were aggravated by exercise. Eight patients showed general urticaria symptoms and 15 had accompanying atopic disease. Forty-three patients complained of seasonal aggravation. Most patients were treated with first and second-generation antihistamines. Conclusion Dermatologists should consider these characteristics in patients with cholinergic urticaria. Further investigation and follow-up studies are necessary to better understand the epidemiological and clinical findings of cholinergic urticaria. PMID:24882973

  17. Central cholinergic neurons are rapidly recruited by reinforcement feedback

    PubMed Central

    Hangya, Balázs; Ranade, Sachin P.; Lorenc, Maja; Kepecs, Adam

    2015-01-01

    Summary Basal forebrain cholinergic neurons constitute a major neuromodulatory system implicated in normal cognition and neurodegenerative dementias. Cholinergic projections densely innervate neocortex, releasing acetylcholine to regulate arousal, attention and learning. However, their precise behavioral function is poorly understood because identified cholinergic neurons have never been recorded during behavior. To determine which aspects of cognition their activity might support we recorded cholinergic neurons using optogenetic identification in mice performing an auditory detection task requiring sustained attention. We found that a non-cholinergic basal forebrain population — but not cholinergic neurons — were correlated with trial-to-trial measures of attention. Surprisingly, cholinergic neurons responded to reward and punishment with unusual speed and precision (18±3ms). Cholinergic responses were scaled by the unexpectedness of reinforcement and were highly similar across neurons and two nuclei innervating distinct cortical areas. These results reveal that the cholinergic system broadcasts a rapid and precisely timed reinforcement signal supporting fast cortical activation and plasticity. PMID:26317475

  18. Platelet-derived nerve growth factor supports the survival of cholinergic neurons in organotypic rat brain slices.

    PubMed

    Kniewallner, Kathrin M; Grimm, Natalia; Humpel, Christian

    2014-06-27

    Platelets play a role in repair of vessels and contain different growth factors, including nerve growth factor (NGF). Since NGF is the most potent growth factor to support survival of cholinergic neurons, we aimed to study the effects of platelet-derived NGF on cholinergic neurons in organotypic brain slices. Brain slices of the nucleus basalis of Meynert (nBM) were cultured with or without NGF (10ng/ml) or platelet extracts (100μg/ml) or fresh platelets (10(8) platelets/ml). In order to enhance NGF in platelets recombinant NGF (100ng) was loaded into platelets using ultrasound (3h). Our data show that recombinant NGF markedly supports survival of cholinergic neurons. The addition of fresh platelets showed a tendency for enhancing cholinergic neuron numbers, while platelet extracts had no effects. Ultrasound was highly effective to load recombinant NGF into platelets. The addition of NGF-loaded platelets markedly enhanced cholinergic neuron numbers. In conclusion, our data provide evidence that NGF-derived platelets may counteract cell death of cholinergic neurons. PMID:24861506

  19. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    PubMed Central

    Jeong, Jae Hoon; Lee, Dong Kun; Blouet, Clemence; Ruiz, Henry H.; Buettner, Christoph; Chua, Streamson; Schwartz, Gary J.; Jo, Young-Hwan

    2015-01-01

    Objective Brown adipose tissue (BAT) thermogenesis is critical in maintaining body temperature. The dorsomedial hypothalamus (DMH) integrates cutaneous thermosensory signals and regulates adaptive thermogenesis. Here, we study the function and synaptic connectivity of input from DMH cholinergic neurons to sympathetic premotor neurons in the raphe pallidus (Rpa). Methods In order to selectively manipulate DMH cholinergic neuron activity, we generated transgenic mice expressing channelrhodopsin fused to yellow fluorescent protein (YFP) in cholinergic neurons (choline acetyltransferase (ChAT)-Cre::ChR2-YFP) with the Cre-LoxP technique. In addition, we used an adeno-associated virus carrying the Cre recombinase gene to delete the floxed Chat gene in the DMH. Physiological studies in response to optogenetic stimulation of DMH cholinergic neurons were combined with gene expression and immunocytochemical analyses. Results A subset of DMH neurons are ChAT-immunopositive neurons. The activity of these neurons is elevated by warm ambient temperature. A phenotype-specific neuronal tracing shows that DMH cholinergic neurons directly project to serotonergic neurons in the Rpa. Optical stimulation of DMH cholinergic neurons decreases BAT activity, which is associated with reduced body core temperature. Furthermore, elevated DMH cholinergic neuron activity decreases the expression of BAT uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated receptor γ coactivator 1 α (Pgc1α) mRNAs, markers of BAT activity. Injection of M2-selective muscarinic receptor antagonists into the 4th ventricle abolishes the effect of optical stimulation. Single cell qRT-PCR analysis of retrogradely identified BAT-projecting neurons in the Rpa shows that all M2 receptor-expressing neurons contain tryptophan hydroxylase 2. In animals lacking the Chat gene in the DMH, exposure to warm temperature reduces neither BAT Ucp1 nor Pgc1α mRNA expression. Conclusion DMH cholinergic neurons directly

  20. Aldrin-induced locomotor activity: possible involvement of the central GABAergic-cholinergic-dopaminergic interaction.

    PubMed

    Jamaluddin, S; Poddar, M K

    2001-01-01

    Aldrin (5 mg/kg/day, p.o.) under nontolerant condition, administered either for a single day or for 12 consecutive days, enhanced locomotor activity (LA) of rats. The increase in LA was greater in rats treated with aldrin for 12 consecutive days than that observed with a single dose. The aim of the present study is to evaluate the involvement of possible interactions of central GABAergic, cholinergic and dopaminergic systems using their agonist(s) and antagonist(s) in the regulation of LA in aldrin nontolerant rats. Administration of either L-DOPA along with carbidopa or bicuculline potentiated aldrin-induced increase in LA under nontolerant condition as well as LA of the control rats. Treatment with muscimol, haloperidol, atropine or physostigmine all decreased the LA of both aldrin nontolerant and control rats. Further, the application of (a) haloperidol along with bicuculline, atropine or physostigmine and (b) physostigmine along with bicuculline or L-DOPA + carbidopa significantly reduced LA but L-DOPA + carbidopa along with atropine or bicuculline increased LA of the control rats. These agonist(s)/antagonist(s)-induced decrease or increase in LA of the control rats were attenuated or potentiated, respectively, when those agonist(s)/antagonist(s) under abovementioned condition were administered to aldrin nontolerant rats. The attenuating or potentiating effects of aldrin on agonist(s)/antagonist(s) (either individually or in different combinations)-induced change in LA were greater in rats treated with aldrin for 12 consecutive days than that observed with a single-dose aldrin treatment. These results suggest that aldrin, under nontolerant condition, reduces central GABAergic activity and increases LA by activating dopaminergic system via inhibition of cholinergic activity. The treatment with aldrin for 12 consecutive days produces greater effect than that caused by a single-day treatment. PMID:11785907

  1. The role of cholinergic anti-inflammatory pathway in acetic acid-induced colonic inflammation in the rat.

    PubMed

    Kolgazi, Meltem; Uslu, Unal; Yuksel, Meral; Velioglu-Ogunc, Ayliz; Ercan, Feriha; Alican, Inci

    2013-09-01

    The "cholinergic anti-inflammatory pathway" provides neurological modulation of cytokine synthesis to limit the magnitude of the immune response. This study aimed to evaluate the impact of the cholinergic anti-inflammatory pathway on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of acetic acid-induced colitis. Colitis was induced by intrarectal administration of 5% acetic acid (1ml) to Sprague-Dawley rats (200-250g; n=7-8 per group). Control group received an equal volume of saline intrarectally. The rats were treated with either nicotine (1mg/kg/day) or huperzine A (0.1mg/kg/day) intraperitoneally for 3 days. After decapitation, the distal colon was scored macroscopically and microscopically. Tissue samples were used for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Formation of reactive oxygen species was monitored by using chemiluminescence (CL). Nuclear factor (NF)-κB expression was evaluated in colonic samples via immunohistochemical analysis. Trunk blood was collected for the assessment of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-10, resistin and visfatin levels. Both nicotine and huperzine A reduced the extent of colonic lesions, increased colonic MDA level, high MPO activity and NF-κB expression in the colitis group. Elevation of serum IL-1β level due to colitis was also attenuated by both treatments. Additionally, huperzine A was effective to reverse colitis-induced high lucigenin-enhanced CL values and serum TNF-α levels. Colitis group revealed decreased serum visfatin levels compared to control group which was completely reversed by nicotine. In conclusion, modulation of the cholinergic system either by nicotine or ACh esterase inhibition improved acetic acid-induced colonic inflammation as confirmed by macroscopic and microscopic examination and biochemical assays. PMID:23810507

  2. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    PubMed

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity. PMID:25339734

  3. Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology

    PubMed Central

    Unal, Cagri T.; Golowasch, Jorge P.; Zaborszky, Laszlo

    2012-01-01

    We performed whole-cell recordings from basal forebrain (BF) cholinergic neurons in transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the choline acetyltransferase promoter. BF cholinergic neurons can be differentiated into two electrophysiologically identifiable subtypes: early and late firing neurons. Early firing neurons (∼70%) are more excitable, show prominent spike frequency adaptation and are more susceptible to depolarization blockade, a phenomenon characterized by complete silencing of the neuron following initial action potentials. Late firing neurons (∼30%), albeit being less excitable, could maintain a tonic discharge at low frequencies. In voltage clamp analysis, we have shown that early firing neurons have a higher density of low voltage activated (LVA) calcium currents. These two cholinergic cell populations might be involved in distinct functions: the early firing group being more suitable for phasic changes in cortical acetylcholine release associated with attention while the late firing neurons could support general arousal by maintaining tonic acetylcholine levels. PMID:22586380

  4. Features of cholinergic cardia regulation under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Markova, Y. A.; Bondarenko, Y. I.; Bolyarskaya, V. A.; Fayfura, V. V.; Rosolovskiy, A. P.; Babinskaya, L. N.

    1980-01-01

    The features of cholinergic processes in the heart on the 4th, 8th, 16th and 30th days of hypokinesia were studied in experiments on 382 albino rats. It was shown that hypokinesia is attended by increased acetylcholine content in the atria, reduced choline acetyltransferase activity in the atria and ventricles and by increased activity of acetylcholinesterase in the ventricles and of pseudocholinesterase in both parts of the heart. The sensitivity of the heart to exogenic acetylcholine and to stimulation of the vagus nerve increases.

  5. GABAergic Terminals Are a Source of Galanin to Modulate Cholinergic Neuron Development in the Neonatal Forebrain

    PubMed Central

    Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B.; Schnell, Robert; Mulder, Jan; Luiten, Paul G. M.; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor

    2014-01-01

    The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain. PMID:23897649

  6. Cholinergic regulation of the vasopressin neuroendocrine system

    SciTech Connect

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The median eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.

  7. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation

    PubMed Central

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  8. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation.

    PubMed

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  9. Reduced Expression of MYC Increases Longevity and Enhances Healthspan

    PubMed Central

    Hofmann, Jeffrey W.; Zhao, Xiaoai; De Cecco, Marco; Peterson, Abigail L.; Pagliaroli, Luca; Manivannan, Jayameenakshi; Hubbard, Gene B.; Ikeno, Yuji; Zhang, Yongqing; Feng, Bin; Li, Xiaxi; Serre, Thomas; Qi, Wenbo; Van Remmen, Holly; Miller, Richard A.; Bath, Kevin G.; de Cabo, Rafael; Xu, Haiyan; Neretti, Nicola; Sedivy, John M.

    2015-01-01

    SUMMARY MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc+/−) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR and S6K activities. In contrast to observations in other longevity models, Myc+/− mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan. PMID:25619689

  10. Enhancing imagined contact to reduce prejudice against people with schizophrenia

    PubMed Central

    West, Keon; Holmes, Emily; Hewstone, Miles

    2015-01-01

    Four studies investigated the effect of imagining intergroup contact on prejudice against people with schizophrenia. Experiments 1 and 2 demonstrated that a neutral imagined contact task can have negative effects, compared to a control condition, even when paired with incidental positive information (Experiment 2). Experiments 3 and 4 demonstrated, however, that an integrated positive imagined contact scenario does result in less intergroup anxiety and more positive attitudes, even toward this challenging group. Analyses of participants’ descriptions of the imagined interactions in and across the first three studies confirm that positive and high quality imagined contact is important for reducing prejudice, but failing to ensure that imagined contact is positive may have deleterious consequences. We emphasize the importance of investigating the quality of the imagined contact experience, and discuss the implications for using imagined contact as a prejudice-reducing intervention. PMID:26435686

  11. Reduced expression of MYC increases longevity and enhances healthspan.

    PubMed

    Hofmann, Jeffrey W; Zhao, Xiaoai; De Cecco, Marco; Peterson, Abigail L; Pagliaroli, Luca; Manivannan, Jayameenakshi; Hubbard, Gene B; Ikeno, Yuji; Zhang, Yongqing; Feng, Bin; Li, Xiaxi; Serre, Thomas; Qi, Wenbo; Van Remmen, Holly; Miller, Richard A; Bath, Kevin G; de Cabo, Rafael; Xu, Haiyan; Neretti, Nicola; Sedivy, John M

    2015-01-29

    MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan. PMID:25619689

  12. Dopaminergic and Cholinergic Modulation of Striatal Tyrosine Hydroxylase Interneurons

    PubMed Central

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S.; Tepper, James M.; Koós, Tibor

    2015-01-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2013). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia. PMID:25908399

  13. Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons.

    PubMed

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S; Tepper, James M; Koós, Tibor

    2015-08-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2015). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia. PMID:25908399

  14. Functional mu opioid receptors are expressed in cholinergic interneurons of the rat dorsal striatum: territorial specificity and diurnal variation.

    PubMed

    Jabourian, Maritza; Venance, Laurent; Bourgoin, Sylvie; Ozon, Sylvie; Pérez, Sylvie; Godeheu, Gérard; Glowinski, Jacques; Kemel, Marie-Louise

    2005-06-01

    Striatal cholinergic interneurons play a crucial role in the control of movement as well as in motivational and learning aspects of behaviour. Neuropeptides regulate striatal cholinergic transmission and particularly activation of mu opioid receptor (MOR) inhibits acetylcholine (ACh) release in the dorsal striatum. In the present study we investigated whether this cholinergic transmission could be modulated by an enkephalin/MOR direct process. We show that mRNA and protein of MORs are expressed by cholinergic interneurons in the limbic/prefrontal territory but not by those in the sensorimotor territory of the dorsal striatum. These MORs are functional because potassium-evoked release of ACh from striatal synaptosomes was dose-dependently reduced by a selective MOR agonist, this effect being suppressed by a MOR antagonist. The MOR regulation of cholinergic interneurons presented a diurnal variation. (i) The percentage of cholinergic interneurons containing MORs that was 32% at the beginning of the light period (morning) increased to 80% in the afternoon. (ii) The MOR-mediated inhibition of synaptosomal ACh release was higher in the afternoon than in the morning. (iii) While preproenkephalin mRNA levels remained stable, enkephalin tissue content was the lowest (-32%) in the afternoon when the spontaneous (+35%) and the N-methyl-d-aspartate-evoked (+140%) releases of enkephalin (from microsuperfused slices) were the highest. Therefore, by acting on MORs present on cholinergic interneurons, endogenously released enkephalin reduces ACh release. This direct enkephalin/MOR regulation of cholinergic transmission that operates only in the limbic/prefrontal territory of the dorsal striatum might contribute to information processing in fronto-cortico-basal ganglia circuits. PMID:16026468

  15. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function.

    PubMed

    Fragkouli, A; Stamatakis, A; Zographos, E; Pachnis, V; Stylianopoulou, F

    2006-01-01

    It has been reported recently that mice lacking both alleles of the LIM-homeobox gene Lhx7, display dramatically reduced number of forebrain cholinergic neurons. In the present study, we investigated whether the Lhx7 mutation affects male and female mice differently, given the fact that gender differences are consistently observed in forebrain cholinergic function. Our results show that in adult male as well as female Lhx7 homozygous mutants there is a dramatic loss of choline acetyltransferase immunoreactive forebrain neurons, both projection and interneurons. The reduction of forebrain choline acetyltransferase immunoreactive neurons in Lhx7 homozygous mutants is accompanied by a decrease of acetylcholinesterase histochemical staining in all forebrain cholinergic neuron target areas of both male and female homozygous mutants. Furthermore, there was an increase of M1-, but not M2-, muscarinic acetylcholine receptor binding site density in the somatosensory cortex and basal ganglia of only the female homozygous mutant mice. Such an increase can be regarded as a mechanism acting to compensate for the dramatically reduced cholinergic input, raising the possibility that the forebrain cholinergic system in female mice may be more plastic and responsive to situations of limited neurotransmitter availability. Finally, our study provides additional data for the sexual dimorphism of the forebrain cholinergic system, as female mice appear to have a lower density of M1-muscarinic acetylcholine receptors in the striatal areas of the basal ganglia and a higher density of M2-muscarinic acetylcholine receptors, in a number of cortical areas, as well as the striatal areas of the basal ganglia. PMID:16338089

  16. Enhanced and Reduced Atom Number Fluctuations in a BEC Splitter

    SciTech Connect

    Maussang, Kenneth; Marti, G. Edward; Schneider, Tobias; Sinatra, Alice; Long, Romain; Esteve, Jerome; Reichel, Jakob; Treutlein, Philipp; Li Yun

    2010-08-20

    We measure atom number statistics after splitting a gas of ultracold {sup 87}Rb atoms in a purely magnetic double-well potential created on an atom chip. Well below the critical temperature for Bose-Einstein condensation T{sub c}, we observe reduced fluctuations down to -4.9 dB below the atom shot noise level. Fluctuations rise to more than +3.8 dB close to T{sub c}, before reaching the shot noise level for higher temperatures. We use two-mode and classical field simulations to model these results. This allows us to confirm that the supershot noise fluctuations directly originate from quantum statistics.

  17. Stress-induced altered cholinergic-glutamatergic interactions in the mouse hippocampus.

    PubMed

    Pavlovsky, Lev; Bitan, Yifat; Shalev, Hadar; Serlin, Yonatan; Friedman, Alon

    2012-09-01

    Psychological stress may lead to long-lasting brain dysfunction, specifically altered emotional and cognitive capabilities. Previous studies have demonstrated persistent changes in the expression of key cholinergic genes in the neocortex and hippocampus following stress with muscarinic receptor-mediated enhanced excitability. In the present study we examined cholinergic-mediated glutamatergic transmission in the hippocampus of mice after exposure to stress and its potential role in synaptic plasticity and altered behavior. Adult male mice were tested one month after repeated forced swimming test. Non-treated age-matched animals served as controls. Electrophysiological recordings were performed in the acute in-vitro slice preparation. CA1 pyramidal neurons were recorded using whole cell patch configuration. Extracellular recordings were done in response to Shaffer collaterals (SC) or stratum orien (SO) stimulation. Animal behavior in response to inhibition of acetylcholinesterase (AChE) was tested in open field paradigms. In whole cell patch recordings the frequency of excitatory post-synaptic currents (EPSCs) was significantly increased in response to muscarinic activation in stress-exposed animals. This enhanced cholinergic-modulated excitatory transmission is associated with facilitation of long-term potentiation (LTP) in response to tetanic stimulation at the SO but not at the SC. Stress-related behavioral modulation via central cholinergic pathways was enhanced by the central AChE inhibitor, physostigmine, thus further supporting the notion that stress is associated with long lasting hypersensitivity to acetylcholine. Our results revealed a pathway-specific enhancement of cholinergic-dependent glutamatergic transmission in the hippocampus after stress. These changes may underlie specific hippocampal malfunction, including cognitive and emotional disturbances, as observed in patients with post-traumatic stress disorder (PTSD). PMID:22796599

  18. Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei.

    PubMed

    Gould, E; Woolf, N J; Butcher, L L

    1989-01-01

    The cholinergic innervation of the compact and reticular parts of the substantia nigra in the rat was investigated by use of highly sensitive retrograde and anterograde tract-tracing methods in combination with choline acetyltransferase immunohistochemistry. The fluorescent tracers True Blue, propidium iodide, or fluorogold were infused preferentially into either nigral subnucleus. Cells positive for choline acetyltransferase and retrograde tracer were found in both the pedunculopontine and laterodorsal tegmental nuclei, although considerably more double-labeled somata were observed in the former than in the latter component of the pontomesencephalotegmental cholinergic complex. Approximately 2-3 times more cholinergic cells were labeled in the peduculopontine and laterodorsal tegmental nuclei when tracer injections were centered in the compact nigral subdivision than when infusions of about the same size were confined totally to the reticular part. Infusions of the anterogradely transported tracer Phaseolus vulgaris leucoagglutinin into the pontomesencephalotegmental cholinergic complex resulted in uptake and transport of that label to both nigral subnuclei, and some of the Phaseolus vulgaris leucoagglutinin-accumulating somata and proximal processes also demonstrated choline acetyltransferase-like immunoreactivity. The Phaseolus vulgaris agglutinin-labeled entities in the substantia nigra exhibited terminal-like profiles that were reminiscent of the pattern of nigral choline acetyltransferase-positive puncta demonstrated immunohistochemically by use of nickel ammonium sulfate enhancement of the final reaction product in the avidin-biotin procedure. These observations strongly support the contention that the pontomesencephalotegmental cholinergic complex is the major source of cholinergic projections to both the compact and reticular portions of the rat substantia nigra. PMID:2710334

  19. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test

    PubMed Central

    Addy, N.A.; Nunes, E.J.; Wickham, R.J.

    2015-01-01

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125 mg/kg, intra-cranial; 1 or 2 μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24 μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30 μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST. PMID:25865152

  20. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    PubMed

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST. PMID:25865152

  1. GPR30 is Positioned to Mediate Estrogen Effects on Basal Forebrain Cholinergic Neurons and Cognitive Performance

    PubMed Central

    Hammond, R.; Gibbs, R.B.

    2011-01-01

    Beneficial effects of estrogen therapy on cognitive performance diminish with age and time following the loss of ovarian function. This has led to the ‘Window of Opportunity’ hypothesis, which states that estrogen therapy must be administered within a limited period of time following menopause in order to be effective. Effects of estrogen therapy on cognitive performance are due, at least in part, to effects on cholinergic afferents innervating the hippocampus and cortex, and it has been suggested that the loss of estrogen effect with age and time following menopause is due to a substantial reduction in the function of these projections. The mechanisms that underlie the effects are not clear. GPR30 is a novel G-protein coupled estrogen receptor that is expressed in brain and other tissues. Our recent studies show that GPR30 is expressed in areas of the brain important for spatial learning, memory, and attention. In addition, GPR30 in expressed by the vast majority of cholinergic neurons in the basal forebrain, and appears to be an important regulator of basal forebrain cholinergic function. We hypothesize that GPR30 plays an important role in mediating direct effects of estradiol on basal forebrain cholinergic neurons, with corresponding effects on cognitive performance. Hence, GPR30 may be an important target for developing new therapies that can enhance or restore estrogen effects on cognitive performance in older women. Here we briefly review the cholinergic hypothesis and summarize our findings to date showing effects of a GPR30 agonist and antagonist on basal forebrain cholinergic function and cognitive performance. PMID:21138734

  2. Mutual Control of Cholinergic and Low-Threshold Spike Interneurons in the Striatum

    PubMed Central

    Elghaba, Rasha; Vautrelle, Nicolas; Bracci, Enrico

    2016-01-01

    The striatum is the largest nucleus of the basal ganglia and is crucially involved in action selection and reward processing. Cortical and thalamic inputs to the striatum are processed by local networks in which several classes of interneurons play an important, but still poorly understood role. Here we investigated the interactions between cholinergic and low-threshold spike (LTS) interneurons. LTS interneurons were hyperpolarized by co-application of muscarinic and nicotinic receptor antagonists (atropine and mecamylamine, respectively). Mecamylamine alone also caused hyperpolarizations, while atropine alone caused depolarizations and increased firing. LTS interneurons were also under control of tonic GABA, as application of the GABAA receptor antagonist picrotoxin caused depolarizations and increased firing. Frequency of spontaneous GABAergic events in LTS interneurons was increased by co-application of atropine and mecamylamine or by atropine alone, but reduced by mecamylamine alone. In the presence of picrotoxin and tetrodotoxin (TTX), atropine and mecamylamine depolarized the LTS interneurons. We concluded that part of the excitatory effects of tonic acetylcholine (ACh) on LTS interneurons were due to cholinergic modulation of tonic GABA. We then studied the influence of LTS interneurons on cholinergic interneurons. Application of antagonists of somatostatin or neuropeptide Y (NPY) receptors or of an inhibitor of nitric oxide synthase (L-NAME) did not cause detectable effects in cholinergic interneurons. However, prolonged synchronized depolarizations of LTS interneurons (elicited with optogenetics tools) caused slow-onset depolarizations in cholinergic interneurons, which were often accompanied by strong action potential firing and were fully abolished by L-NAME. Thus, a mutual excitatory influence exists between LTS and cholinergic interneurons in the striatum, providing an opportunity for sustained activation of the two cell types. This activation may

  3. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    PubMed

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS. PMID:19960210

  4. Cholinergic transmission underlies modulation of frustration by open field exposure.

    PubMed

    Psyrdellis, Mariana; Pautassi, Ricardo Marcos; Mustaca, Alba; Justel, Nadia

    2016-01-01

    Frustration can be defined as an emotional state generated by the omission or devaluation in the quantity or quality of an expected appetitive reward. Thus, reactivity to a reward is affected by prior experience with the different reinforcer values of that reward. This phenomenon is known as incentive relativity, and can be studied by different paradigms. Although methodologically simple, the exploration of a novel open field (OF) is a complex situation that involves several behavioral processes, including stress induction and novelty detection. OF exposure can enhance or block the acquisition of associative and non-associative memories. These experiments evaluated the effect of OF exploration on frustration and the role played by the cholinergic system in this phenomenon. OF exploration before first or second trial of incentive downshift modulated the expression of frustration. This effect of OF was blocked by the administration of scopolamine either before or after OF exploration. These results indicate that the cholinergic system is involved in the acquisition and consolidation of OF information. PMID:26546747

  5. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus

    PubMed Central

    Teipel, Stefan J.; Flatz, Wilhelm; Ackl, Nibal; Grothe, Michel; Kilimann, Ingo; Bokde, Arun L.W.; Grinberg, Lea; Amaro, Edson; Kljajevic, Vanja; Alho, Eduardo; Knels, Christina; Ebert, Anne; Heinsen, Helmut; Danek, Adrian

    2014-01-01

    Primary progressive aphasia (PPA) is characterized by left hemispheric frontotemporal cortical atrophy. Evidence from anatomical studies suggests that the nucleus subputaminalis (NSP), a subnucleus of the cholinergic basal forebrain, may be involved in the pathological process of PPA. Therefore, we studied the pattern of cortical and basal forebrain atrophy in 10 patients with a clinical diagnosis of PPA and 18 healthy age-matched controls using high-resolution magnetic resonance imaging (MRI). We determined the cholinergic basal forebrain nuclei according to Mesulam’s nomenclature and the NSP in MRI reference space based on histological sections and the MRI scan of a post-mortem brain in cranio. Using voxel-based analysis, we found left hemispheric cortical atrophy in PPA patients compared with controls, including prefrontal, lateral temporal and medial temporal lobe areas. We detected cholinergic basal forebrain atrophy in left predominant localizations of Ch4p, Ch4am, Ch4al, Ch3 and NSP. For the first time, we have described the pattern of basal forebrain atrophy in PPA and confirmed the involvement of NSP that had been predicted based on theoretical considerations. Our findings may enhance understanding of the role of cholinergic degeneration for the regional specificity of the cortical destruction leading to the syndrome of PPA. PMID:24434193

  6. Cholinergic Circuit Control of Postnatal Neurogenesis

    PubMed Central

    Asrican, Brent; Paez-Gonzalez, Patricia; Erb, Joshua; Kuo, Chay T.

    2016-01-01

    New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents a distinct form of nervous system plasticity. During embryonic development, precise temporal and spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell (NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following developmental assembly, it remains relatively unclear what may be the key driving forces that sustain continued production of neurons in the postnatal/adult brain. Recent experimental evidence suggests that patterned activity from specific neural circuits can also directly govern postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic modulation, and how patterns of neuronal activity and acetylcholine release may differentially or synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs regulating cholinergic neuron firing, and their implications in neurogenesis control are also considered. PMID:27468423

  7. Cholinergic innervation and receptors in the cerebellum.

    PubMed

    Jaarsma, D; Ruigrok, T J; Caffé, R; Cozzari, C; Levey, A I; Mugnaini, E; Voogd, J

    1997-01-01

    We have studied the source and ultrastructural characteristics of ChAT-immunoreactive fibers in the cerebellum of the rat, and the distribution of muscarinic and nicotinic receptors in the cerebellum of the rat, rabbit, cat and monkey, in order to define which of the cerebellar afferents may use ACh as a neurotransmitter, what target structures are they, and which cholinergic receptor mediate the actions of these pathways. Our data confirm and extend previous observations that cholinergic markers occur at relatively low density in the cerebellum and show not only interspecies variability, but also heterogeneity between cerebellar lobules in the same species. As previously demonstrated by Barmack et al. (1992a,b), the predominant fiber system in the cerebellum that might use ACh as a transmitter or a co-transmitter is formed by mossy fibers originating in the vestibular nuclei and innervating the nodulus and ventral uvula. Our results show that these fibers innervate both granule cells and unipolar brush cells, and that the presumed cholinergic action of these fibers most likely is mediated by nicotinic receptors. In addition to cholinergic mossy fibers, the rat cerebellum is innervated by beaded ChAT-immunoreactive fibers. We have demonstrated that these fibers originate in the pedunculopontine tegmental nucleus (PPTg), the lateral paragigantocellular nucleus (LPGi), and to a lesser extent in various raphe nuclei. In both the cerebellar cortex and the cerebellar nuclei these fibers make asymmetric synaptic junctions with small and medium-sized dendritic profiles. Both muscarinic and nicotinic receptor could mediate the action of these diffuse beaded fibers. In the cerebellar nuclei the beaded cholinergic fibers form a moderately dense network, and could in principle have a significant effect on neuronal activity. For instance, the cholinergic fibers arising in the PPTg may modulate the excitability of the cerebellonuclear neurons in relation to sleep and arousal (e

  8. Nicotinic acetylcholine receptor-mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum.

    PubMed

    Inoue, Ritsuko; Suzuki, Takeo; Nishimura, Kinya; Miura, Masami

    2016-06-01

    The striatum consists of two neurochemically distinct compartments: the striosomes (or patches) and the extrastriosomal matrix. Although striatal neurons are strongly innervated by intrinsic cholinergic interneurons, acetylcholinesterase is expressed more abundantly in the matrix than in the striosomes. At present, little is known about the different cholinergic functions of the striatal compartments. In this study, we examined gamma-aminobutyric acidergic (GABAergic) inputs to cholinergic interneurons in both compartments. We found that nicotinic receptor-mediated GABAergic responses were evoked more frequently in the matrix than in the striosomes. Furthermore, a single action potential of cholinergic neurons induced nicotinic receptor-mediated GABAergic inputs to the cholinergic neurons themselves, suggesting mutual connections that shape the temporal firing pattern of cholinergic neurons. The nicotinic receptor-mediated GABAergic responses were attenuated by continuous application of acetylcholine or the acetylcholinesterase inhibitor eserine and were enhanced by desformylflustrabromine, a positive allosteric modulator of the α4β2 subunit containing a nicotinic receptor. These results suggest that the nicotinic impact on the GABAergic responses are not uniform despite the massive and continuous cholinergic innervation. It has been reported that differential activation of neurons in the striosomes and the matrix produce a repetitive behavior called stereotypy. Drugs acting on α4β2 nicotinic receptors might provide potential tools for moderating the imbalanced activities between the compartments. PMID:26808315

  9. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence.

    PubMed

    Hshieh, Tammy T; Fong, Tamara G; Marcantonio, Edward R; Inouye, Sharon K

    2008-07-01

    Deficits in cholinergic function have been postulated to cause delirium and cognitive decline. This review examines current understanding of the cholinergic deficiency hypothesis in delirium by synthesizing evidence on potential pathophysiological pathways. Acetylcholine synthesis involves various precursors, enzymes, and receptors, and dysfunction in these components can lead to delirium. Insults to the brain, like ischemia and immunological stressors, can precipitously alter acetylcholine levels. Imbalances between cholinergic and other neurotransmitter pathways may result in delirium. Furthermore, genetic, enzymatic, and immunological overlaps exist between delirium and dementia related to the cholinergic pathway. Important areas for future research include identifying biomarkers, determining genetic contributions, and evaluating response to cholinergic drugs in delirium. Understanding how the cholinergic pathway relates to delirium may yield innovative approaches in the diagnosis, prevention, and treatment of this common, costly, and morbid condition. PMID:18693233

  10. CHOLINERGIC CIRCUITS AND SIGNALING IN THE PATHOPHYSIOLOGY OF SCHIZOPHRENIA

    PubMed Central

    Berman, Joshua A.; Talmage, David A.; Role, Lorna W.

    2008-01-01

    Central cholinergic signaling has long been associated with aspects of memory, motivation, and mood, each affected functions in neuropsychiatric disorders such as schizophrenia. In this chapter, we review evidence related to the core hypothesis that dysregulation of central cholinergic signaling contributes to the pathophysiology of schizophrenia. Although central cholinergic circuits are resistant to simplification—particularly when one tries to parse the contributions of various classes of cholinergic receptors to disease related phenomena—the potential role of ACh signaling in Schizophrenia pathophysiology deserves careful consideration for prospective therapeutics. The established role of cholinergic circuits in attentional tuning is considered along with recent work on how the patterning of cholinergic activity may modulate corticostriatal circuits affected in schizophrenia. PMID:17349862

  11. Alzheimer's Disease: Targeting the Cholinergic System

    PubMed Central

    Ferreira-Vieira, Talita H.; Guimaraes, Isabella M.; Silva, Flavia R.; Ribeiro, Fabiola M.

    2016-01-01

    Acetylcholine (ACh) has a crucial role in the peripheral and central nervous systems. The enzyme choline acetyltransferase (ChAT) is responsible for synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic vesicles. Following depolarization, ACh undergoes exocytosis reaching the synaptic cleft, where it can bind its receptors, including muscarinic and nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is recycled into the presynaptic nerve terminal by the high-affinity choline transporter (CHT1). Cholinergic neurons located in the basal forebrain, including the neurons that form the nucleus basalis of Meynert, are severely lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia affecting 25 million people worldwide. The hallmarks of the disease are the accumulation of neurofibrillary tangles and amyloid plaques. However, there is no real correlation between levels of cortical plaques and AD-related cognitive impairment. Nevertheless, synaptic loss is the principal correlate of disease progression and loss of cholinergic neurons contributes to memory and attention deficits. Thus, drugs that act on the cholinergic system represent a promising option to treat AD patients. PMID:26813123

  12. Alcoholism and depressive disorders: is cholinergic sensitivity a biological marker?

    PubMed

    Overstreet, D H; Janowsky, D S; Rezvani, A H

    1989-01-01

    There is an overlap between alcoholism and depressive disorders. However, alcoholics tend to be resistant to the effect of cholinergic agonists, whereas depressives tend to be more sensitive. A recently developed animal model of depression which is more sensitive to cholinergic agonists is also more sensitive to the acute effects of ethanol. These consistent human and animal studies suggest that cholinergic challenges may be helpful in separating alcoholics from depressives. PMID:2757700

  13. Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in Parkinsonian mice.

    PubMed

    Won, Lisa; Ding, Yunmin; Singh, Pardeep; Kang, Un Jung

    2014-02-19

    3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia (LID) is a debilitating side effect of long-term dopamine replacement therapy in Parkinson's Disease. At present, there are few therapeutic options for treatment of LID and mechanisms contributing to the development and maintenance of these drug-induced motor complications are not well understood. We have previously shown that pharmacological reduction of cholinergic tone attenuates the expression of LID in parkinsonian mice with established dyskinesia after chronic L-DOPA treatment. The present study was undertaken to provide anatomically specific evidence for the role of striatal cholinergic interneurons by ablating them before initiation of L-DOPA treatment and determining whether it decreases LID. We used a novel approach to ablate striatal cholinergic interneurons (ChIs) via Cre-dependent viral expression of the diphtheria toxin A subunit (DT-A) in hemiparkinsonian transgenic mice expressing Cre recombinase under control of the choline acetyltransferase promoter. We show that Cre recombinase-mediated DT-A ablation selectively eliminated ChIs when injected into striatum. The depletion of ChIs markedly attenuated LID without compromising the therapeutic efficacy of L-DOPA. These results provide evidence that ChIs play a key and selective role in LID and that strategies to reduce striatal cholinergic tone may represent a promising approach to decreasing L-DOPA-induced motor complications in Parkinson's disease. PMID:24553948

  14. Brain cholinergic impairment in liver failure.

    PubMed

    García-Ayllón, María-Salud; Cauli, Omar; Silveyra, María-Ximena; Rodrigo, Regina; Candela, Asunción; Compañ, Antonio; Jover, Rodrigo; Pérez-Mateo, Miguel; Martínez, Salvador; Felipo, Vicente; Sáez-Valero, Javier

    2008-11-01

    The cholinergic system is involved in specific behavioural responses and cognitive processes. Here, we examined potential alterations in the brain levels of key cholinergic enzymes in cirrhotic patients and animal models with liver failure. An increase (~30%) in the activity of the acetylcholine-hydrolyzing enzyme, acetylcholinesterase (AChE) is observed in the brain cortex from patients deceased from hepatic coma, while the activity of the acetylcholine-synthesizing enzyme, choline acetyltransferase, remains unaffected. In agreement with the human data, AChE activity in brain cortical extracts of bile duct ligated (BDL) rats was increased (~20%) compared to controls. A hyperammonemic diet did not result in any further increase of AChE levels in the BDL model, and no change was observed in hyperammonemic diet rats without liver disease. Portacaval shunted rats which display increased levels of cerebral ammonia did not show any brain cholinergic abnormalities, confirming that high ammonia levels do not play a role in brain AChE changes. A selective increase of tetrameric AChE, the major AChE species involved in hydrolysis of acetylcholine in the brain, was detected in both cirrhotic humans and BDL rats. Histological examination of BDL and non-ligated rat brains shows that the subcellular localization of both AChE and choline acetyltransferase, and thus the accessibility to their substrates, appears unaltered by the pathological condition. The BDL-induced increase in AChE activity was not parallelled by an increase in mRNA levels. Increased AChE in BDL cirrhotic rats leads to a pronounced decrease (~50-60%) in the levels of acetylcholine. Finally, we demonstrate that the AChE inhibitor rivastigmine is able to improve memory deficits in BDL rats. One week treatment with rivastigmine (0.6 mg/kg; once a day, orally, for a week) resulted in a 25% of inhibition in the enzymatic activity of AChE with no change in protein composition, as assessed by sucrose density gradient

  15. Brain cholinergic impairment in liver failure

    PubMed Central

    García-Ayllón, María-Salud; Cauli, Omar; Silveyra, María-Ximena; Rodrigo, Regina; Candela, Asunción; Compañ, Antonio; Jover, Rodrigo; Pérez-Mateo, Miguel; Martínez, Salvador; Felipo, Vicente

    2008-01-01

    The cholinergic system is involved in specific behavioural responses and cognitive processes. Here, we examined potential alterations in the brain levels of key cholinergic enzymes in cirrhotic patients and animal models with liver failure. An increase (∼30%) in the activity of the acetylcholine-hydrolyzing enzyme, acetylcholinesterase (AChE) is observed in the brain cortex from patients deceased from hepatic coma, while the activity of the acetylcholine-synthesizing enzyme, choline acetyltransferase, remains unaffected. In agreement with the human data, AChE activity in brain cortical extracts of bile duct ligated (BDL) rats was increased (∼20%) compared to controls. A hyperammonemic diet did not result in any further increase of AChE levels in the BDL model, and no change was observed in hyperammonemic diet rats without liver disease. Portacaval shunted rats which display increased levels of cerebral ammonia did not show any brain cholinergic abnormalities, confirming that high ammonia levels do not play a role in brain AChE changes. A selective increase of tetrameric AChE, the major AChE species involved in hydrolysis of acetylcholine in the brain, was detected in both cirrhotic humans and BDL rats. Histological examination of BDL and non-ligated rat brains shows that the subcellular localization of both AChE and choline acetyltransferase, and thus the accessibility to their substrates, appears unaltered by the pathological condition. The BDL-induced increase in AChE activity was not parallelled by an increase in mRNA levels. Increased AChE in BDL cirrhotic rats leads to a pronounced decrease (∼50–60%) in the levels of acetylcholine. Finally, we demonstrate that the AChE inhibitor rivastigmine is able to improve memory deficits in BDL rats. One week treatment with rivastigmine (0.6 mg/kg; once a day, orally, for a week) resulted in a 25% of inhibition in the enzymatic activity of AChE with no change in protein composition, as assessed by sucrose density

  16. Attentional Control of Gait and Falls: Is Cholinergic Dysfunction a Common Substrate in the Elderly and Parkinson’s Disease?

    PubMed Central

    Pelosin, Elisa; Ogliastro, Carla; Lagravinese, Giovanna; Bonassi, Gaia; Mirelman, Anat; Hausdorff, Jeffrey M.; Abbruzzese, Giovanni; Avanzino, Laura

    2016-01-01

    The aim of this study was to address whether deficits in the central cholinergic activity may contribute to the increased difficulty to allocate attention during gait in the elderly with heightened risk of falls. We recruited 50 participants with a history of two or more falls (33 patients with Parkinson’s Disease and 17 older adults) and 14 non-fallers age-matched adults. Cholinergic activity was estimated by means of short latency afferent inhibition (SAI), a transcranial magnetic stimulation (TMS) technique that assesses an inhibitory circuit in the sensorimotor cortex and is regarded as a global marker of cholinergic function in the brain. Increased difficulty to allocate attention during gait was evaluated by measuring gait performance under single and dual-task conditions. Global cognition was also assessed. Results showed that SAI was reduced in patients with PD than in the older adults (fallers and non-fallers) and in older adults fallers with respect to non-fallers. Reduction in SAI indicates less inhibition i.e., less cholinergic activity. Gait speed was reduced in the dual task gait compared to normal gait only in our faller population and changes in gait speed under dual task significantly correlated with the mean value of SAI. This association remained significant after adjusting for cognitive status. These findings suggest that central cholinergic activity may be a predictor of change in gait characteristics under dual tasking in older adults and PD fallers independently of cognitive status. PMID:27242515

  17. Attentional Control of Gait and Falls: Is Cholinergic Dysfunction a Common Substrate in the Elderly and Parkinson's Disease?

    PubMed

    Pelosin, Elisa; Ogliastro, Carla; Lagravinese, Giovanna; Bonassi, Gaia; Mirelman, Anat; Hausdorff, Jeffrey M; Abbruzzese, Giovanni; Avanzino, Laura

    2016-01-01

    The aim of this study was to address whether deficits in the central cholinergic activity may contribute to the increased difficulty to allocate attention during gait in the elderly with heightened risk of falls. We recruited 50 participants with a history of two or more falls (33 patients with Parkinson's Disease and 17 older adults) and 14 non-fallers age-matched adults. Cholinergic activity was estimated by means of short latency afferent inhibition (SAI), a transcranial magnetic stimulation (TMS) technique that assesses an inhibitory circuit in the sensorimotor cortex and is regarded as a global marker of cholinergic function in the brain. Increased difficulty to allocate attention during gait was evaluated by measuring gait performance under single and dual-task conditions. Global cognition was also assessed. Results showed that SAI was reduced in patients with PD than in the older adults (fallers and non-fallers) and in older adults fallers with respect to non-fallers. Reduction in SAI indicates less inhibition i.e., less cholinergic activity. Gait speed was reduced in the dual task gait compared to normal gait only in our faller population and changes in gait speed under dual task significantly correlated with the mean value of SAI. This association remained significant after adjusting for cognitive status. These findings suggest that central cholinergic activity may be a predictor of change in gait characteristics under dual tasking in older adults and PD fallers independently of cognitive status. PMID:27242515

  18. Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit's retinal directional selectivity?

    PubMed

    Grzywacz, N M; Tootle, J S; Amthor, F R

    1997-01-01

    We examined contrast, direction of motion, and concentration dependencies of the effects of GABAergic and cholinergic antagonists, and anticholinesterases on responses to movement of On-Off directionally selective (DS) ganglion cells of the rabbit's retina. The drugs tested were curare and hexamethonium bromide (cholinergic antagonists), physostigmine (anticholinesterase), and picrotoxin (GABAergic antagonist). They all reduced the cells' directional selectivity, while maintaining their preferred-null axis. However, cholinergic antagonists did not block directional selectivity completely even at saturating concentrations. The failure to eliminate directional selectivity was probably not due to an incomplete blockade of cholinergic receptors. In a extension of a Masland and Ames (1976) experiment, saturating concentrations of antagonists blocked the effects of exogenous acetylcholine or nicotine applied during synaptic blockade. Consequently, a noncholinergic pathway may be sufficient to account for at least some directional selectivity. This putative pathway interacts with the cholinergic pathway before spike generation, since physostigmine eliminated directional selectivity at contrasts lower than those saturating responses. This elimination apparently resulted from cholinergic-induced saturation, since reduction of contrast restored directional selectivity. Under picrotoxin, directional selectivity was lost in 33% of the cells regardless of contrast. However, 47% maintained their preferred direction despite saturating concentrations of picrotoxin, and 20% reversed the preferred and null directions. Therefore, models based solely on a GABAergic implementation of Barlow and Levick's asymmetric-inhibition model or solely on a cholinergic implementation of asymmetric-excitation models are not complete models of directional selectivity in the rabbit. We propose an alternate model for this retinal property. PMID:9057267

  19. Pharmacological modulation of Alzheimer's beta-amyloid precursor protein levels in the CSF of rats with forebrain cholinergic system lesions.

    PubMed

    Haroutunian, V; Greig, N; Pei, X F; Utsuki, T; Gluck, R; Acevedo, L D; Davis, K L; Wallace, W C

    1997-06-01

    Abnormal deposition and accumulation of Alzheimer's amyloid beta-protein (A beta) and degeneration of forebrain cholinergic neurons are among the principal features of Alzheimer's disease. Studies in rat model systems have shown that forebrain cholinergic deficits are accompanied by induction of cortical beta-amyloid precursor protein (beta-APP) mRNAs and increased levels of secreted beta-APP in the CSF. The studies reported here determined whether the CSF levels of secreted beta-APP could be altered pharmacologically. In different experiments, rats with lesions of the forebrain cholinergic system received injections of vehicle, a muscarinic receptor antagonist scopolamine, or one of two cholinesterase inhibitors - diisopropyl phosphorofluoridate (DFP) or phenserine. Scopolamine was administered to determine whether the levels of beta-APP in the CSF could be increased by anticholinergic agents. The cholinesterase inhibitors were administered to determine whether the forebrain cholinergic system lesion-induced increases in CSF beta-APP could be reduced by cholinergic augmentation. Scopolamine administration led to a significant increase in the CSF levels of secreted beta-APP in sham-lesioned rats. Phenserine, a novel, reversible acetyl-selective cholinesterase inhibitor, significantly decreased the levels of secreted beta-APP in the CSF of forebrain cholinergic system-lesioned rats whereas DFP, a relatively non-specific cholinesterase inhibitor, failed to affect CSF levels of secreted beta-APP. These results suggest that the levels of secreted beta-APP in the CSF can be pharmacologically modulated but that this modulation is dependent upon the status of the forebrain cholinergic system and the pharmacological properties of the drugs used to influence it. PMID:9191090

  20. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    PubMed

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  1. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    PubMed

    Guzman, Monica S; De Jaeger, Xavier; Raulic, Sanda; Souza, Ivana A; Li, Alex X; Schmid, Susanne; Menon, Ravi S; Gainetdinov, Raul R; Caron, Marc G; Bartha, Robert; Prado, Vania F; Prado, Marco A M

    2011-11-01

    Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease. PMID:22087075

  2. EFFECTS OF SUSTAINED PRONGF BLOCKADE ON ATTENTIONAL CAPACITIES IN AGED RATS WITH COMPROMISED CHOLINERGIC SYSTEM

    PubMed Central

    YEGLA, BRITTNEY; PARIKH, VINAY

    2014-01-01

    Disruption in nerve growth factor (NGF) signaling via trkA receptors compromises the integrity of the basal forebrain (BF) cholinergic system, yielding cognitive, specifically attentional, impairments in Alzheimer’s disease (AD). Although normal aging is considered a risk factor for AD, the mechanisms underlying the selective vulnerability of the aging cholinergic system to trkA disruption is not clear. The levels of proNGF, a proneurotrophin that possesses higher affinity for p75 receptors, increase in aging. The present study was designed to test the hypothesis that cholinergic and attentional dysfunction in aged rats with reduced BF trkA receptors occurs due to the overactivation of endogenous proNGF signaling. We employed a viral vector that produced trkA shRNA to suppress trkA receptors in the corticopetal cholinergic neurons of aged rats. BF trkA suppression impaired animals’ performance on signal trials in both the sustained attention task (SAT) and the cognitively-taxing distractor version of SAT (dSAT) and these deficits were normalized by chronic intracerebroventricular administration of proNGF antibody. Moreover, depolarization-evoked ACh release and the density of cortical cholinergic fibers were partially restored in these animals. However, SAT/dSAT scores reflecting overall performance did not improve following proNGF blockade in trkA knockdown rats due to impaired performance in non-signal trials. Sustained proNGF blockade alone did not alter baseline attentional performance but produced moderate impairments during challenging conditions. Collectively, our findings indicate that barring proNGF-p75 signaling may exert some beneficial effects on attentional capacities specifically when BF trkA signaling is abrogated. However, endogenous proNGF may also possess neurotrophic effects and blockade of this proneurotrophin may not completely ameliorate attentional impairments in AD and potentially hinder performance during periods of high cognitive load

  3. Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Lytvyn, O. S.; Karachevtsev, V. A.

    2014-06-01

    The influence of biopolymer wrapped around nanotube on the enhancement of the semiconducting single-walled carbon nanotube (SWNT) photoluminescence (PL) in aqueous suspension which increases due to the reducing agent dithiothreitol (DTT) doping effect was revealed. The greatest enhancement of PL was observed for SWNTs covered with double- or single stranded DNA (above 170%) and DTT weak influence was revealed for SWNTs:polyC suspension (∼45%). The magnitude of the PL enhancement depends also on nanotube chirality and sample aging. The behavior of PL from SWNTs covered with various polymers is explained by the different biopolymers ordering on the nanotube surface. The ordered polymer conformation on the nanotube weakens the reducing agent doping effect. The method of reducing agent doping of nanotube:biopolymer aqueous suspension can serve as a sensitive luminescent probe of the biopolymer ordering on the carbon nanotube and can be used to increase the sensitivity of luminescent biosensors.

  4. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology

    PubMed Central

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S.; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  5. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology.

    PubMed

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  6. Spectroscopic study of surface enhanced Raman scattering of caffeine on borohydride-reduced silver colloids

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin; Gu, Huaimin; Shen, Gaoshan; Dong, Xiao; Kang, Jian

    2010-06-01

    The surface enhanced Raman scattering (SERS) of caffeine on borohydride-reduced silver colloids system under different aqueous solution environment has been studied in this paper. The relative intensity of SERS of caffeine significantly varies with different concentrations of sodium chloride and silver particles. However, at too high or too low concentration of sodium chloride and silver particle, the enhancement of SERS spectra is not evident. The SERS spectra of caffeine suggest that the contribution of the charge transfer mechanism to SERS may be dominant. The chloride ions can significantly enhance the efficiency of SERS, while the enhancement is selective, as the efficiency in charge transfer enhancement is higher than in electromagnetic enhancement. Therefore, it can be concluded that the active site of chloride ion locates on the bond between the caffeine and the silver surface. In addition, the SERS spectra of caffeine on borohydride-reduced and citrate-reduced silver colloids are different, which may be due to different states caffeine adsorbed on silver surface under different silver colloids.

  7. Cholinergic Coercion of Synaptic States for Motivational Memories.

    PubMed

    Rossi, Mark A; Stuber, Garret D

    2016-06-01

    Acetylcholine is critical for learning, yet the relationship between cholinergic signaling, plasticity, and behavior remains elusive. In this issue of Neuron, Lee et al. (2016) and Jiang et al. (2016) investigate how cholinergic signaling in the amygdala and nucleus accumbens influences synaptic plasticity and learning. PMID:27253445

  8. Optogenetic cholinergic modulation of the mouse superior colliculus in vivo

    PubMed Central

    Thompson, John A.; Felsen, Gidon

    2015-01-01

    The superior colliculus (SC) plays a critical role in orienting movements, in part by integrating modulatory influences on the sensorimotor transformations it performs. Many species exhibit a robust brain stem cholinergic projection to the intermediate and deep layers of the SC arising mainly from the pedunculopontine tegmental nucleus (PPTg), which may serve to modulate SC function. However, the physiological effects of this input have not been examined in vivo, preventing an understanding of its functional role. Given the data from slice experiments, cholinergic input may have a net excitatory effect on the SC. Alternatively, the input could have mixed effects, via activation of inhibitory neurons within or upstream of the SC. Distinguishing between these possibilities requires in vivo experiments in which endogenous cholinergic input is directly manipulated. Here we used anatomical and optogenetic techniques to identify and selectively activate brain stem cholinergic terminals entering the intermediate and deep layers of the awake mouse SC and recorded SC neuronal responses. We first quantified the pattern of the cholinergic input to the mouse SC, finding that it was predominantly localized to the intermediate and deep layers. We then found that optogenetic stimulation of cholinergic terminals in the SC significantly increased the activity of a subpopulation of SC neurons. Interestingly, cholinergic input had a broad range of effects on the magnitude and timing of SC responses, perhaps reflecting both monosynaptic and polysynaptic innervation. These findings begin to elucidate the functional role of this cholinergic projection in modulating the processing underlying sensorimotor transformations in the SC. PMID:26019317

  9. Defect-induced enhanced photocatalytic activities of reduced α-Fe2O3 nanoblades.

    PubMed

    Feng, Honglei; Wang, Yiqian; Wang, Chao; Diao, Feiyu; Zhu, Wenhui; Mu, Peng; Yuan, Lu; Zhou, Guangwen; Rosei, Federico

    2016-07-22

    Bicrystalline α-Fe2O3 nanoblades (NBs) synthesized by thermal oxidation of iron foils were reduced in vacuum, to study the effect of reduction treatment on microstructural changes and photocatalytic properties. After the vacuum reduction, most bicrystalline α-Fe2O3 NBs transform into single-layered NBs, which contain more defects such as oxygen vacancies, perfect dislocations and dense pores. By comparing the photodegradation capability of non-reduced and reduced α-Fe2O3 NBs over model dye rhodamine B (RhB) in the presence of hydrogen peroxide, we find that vacuum-reduction induced microstructural defects can significantly enhance the photocatalytic efficiency. Even after 10 cycles, the reduced α-Fe2O3 NBs still show a very high photocatalytic activity. Our results demonstrate that defect engineering is a powerful tool to enhance the photocatalytic performance of nanomaterials. PMID:27285480

  10. Defect-induced enhanced photocatalytic activities of reduced α-Fe2O3 nanoblades

    NASA Astrophysics Data System (ADS)

    Feng, Honglei; Wang, Yiqian; Wang, Chao; Diao, Feiyu; Zhu, Wenhui; Mu, Peng; Yuan, Lu; Zhou, Guangwen; Rosei, Federico

    2016-07-01

    Bicrystalline α-Fe2O3 nanoblades (NBs) synthesized by thermal oxidation of iron foils were reduced in vacuum, to study the effect of reduction treatment on microstructural changes and photocatalytic properties. After the vacuum reduction, most bicrystalline α-Fe2O3 NBs transform into single-layered NBs, which contain more defects such as oxygen vacancies, perfect dislocations and dense pores. By comparing the photodegradation capability of non-reduced and reduced α-Fe2O3 NBs over model dye rhodamine B (RhB) in the presence of hydrogen peroxide, we find that vacuum-reduction induced microstructural defects can significantly enhance the photocatalytic efficiency. Even after 10 cycles, the reduced α-Fe2O3 NBs still show a very high photocatalytic activity. Our results demonstrate that defect engineering is a powerful tool to enhance the photocatalytic performance of nanomaterials.

  11. Probing peripheral and central cholinergic system responses.

    PubMed Central

    Naranjo, C A; Fourie, J; Herrmann, N; Lanctôt, K L; Birt, C; Yau, K K

    2000-01-01

    OBJECTIVE: The pharmacological response to drugs that act on the cholinergic system of the iris has been used to predict deficits in central cholinergic functioning due to diseases such as Alzheimer's disease, yet correlations between central and peripheral responses have not been properly studied. This study assessed the effect of normal aging on (1) the tropicamide-induced increase in pupil diameter, and (2) the reversal of this effect with pilocarpine. Scopolamine was used as a positive control to detect age-dependent changes in central cholinergic functioning in the elderly. DESIGN: Randomized double-blind controlled trial. PARTICIPANTS: Ten healthy elderly (mean age 70) and 9 young (mean age 33) volunteers. INTERVENTIONS: Pupil diameter was monitored using a computerized infrared pupillometer over 4 hours. The study involved 4 sessions. In 1 session, tropicamide (20 microL, 0.01%) was administered to one eye and placebo to the other. In another session, tropicamide (20 microL, 0.01%) was administered to both eyes, followed 23 minutes later by the application of pilocarpine (20 microL, 0.1%) to one eye and placebo to the other. All eye drops were given in a randomized order. In 2 separate sessions, a single dose of scopolamine (0.5 mg, intravenously) or placebo was administered, and the effects on word recall were measured using the Buschke Selective Reminding Test over 2 hours. OUTCOME MEASURES: Pupil size at time points after administration of tropicamide and pilocarpine; scopolamine-induced impairment in word recall. RESULTS: There was no significant difference between elderly and young volunteers in pupillary response to tropicamide at any time point (p > 0.05). The elderly group had a significantly greater pilocarpine-induced net decrease in pupil size 85, 125, 165 and 215 minutes after administration, compared with the young group (p < 0.05). Compared with the young group, the elderly group had greater scopolamine-induced impairment in word recall 60, 90

  12. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission.

    PubMed

    Ovsepian, Saak V; O'Leary, Valerie B; Zaborszky, Laszlo

    2016-06-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  13. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission

    PubMed Central

    Ovsepian, Saak V.; O'Leary, Valerie B.; Zaborszky, Laszlo

    2015-01-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  14. Estrogen-Cholinergic Interactions: Implications for Cognitive Aging

    PubMed Central

    Newhouse, Paul; Dumas, Julie

    2015-01-01

    While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  15. Estrogen-cholinergic interactions: Implications for cognitive aging.

    PubMed

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  16. Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice.

    PubMed

    Magdalon, Juliana; Chimin, Patricia; Belchior, Thiago; Neves, Rodrigo X; Vieira-Lara, Marcel A; Andrade, Maynara L; Farias, Talita S; Bolsoni-Lopes, Andressa; Paschoal, Vivian A; Yamashita, Alex S; Kowaltowski, Alicia J; Festuccia, William T

    2016-05-01

    Mechanistic target of rapamycin complex 1 (mTORC1) loss of function reduces adiposity whereas partial mTORC1 inhibition enhances fat deposition. Herein we evaluated how constitutive mTORC1 activation in adipocytes modulates adiposity in vivo. Mice with constitutive mTORC1 activation in adipocytes induced by tuberous sclerosis complex (Tsc)1 deletion and littermate controls were evaluated for body mass, energy expenditure, glucose and fatty acid metabolism, mitochondrial function, mRNA and protein contents. Adipocyte-specific Tsc1 deletion reduced visceral, but not subcutaneous, fat mass, as well as adipocyte number and diameter, phenotypes that were associated with increased lipolysis, UCP-1 content (browning) and mRNA levels of pro-browning transcriptional factors C/EBPβ and ERRα. Adipocyte Tsc1 deletion enhanced mitochondrial oxidative activity, fatty acid oxidation and the expression of PGC-1α and PPARα in both visceral and subcutaneous fat. In brown adipocytes, however, Tsc1 deletion did not affect UCP-1 content and basal respiration. Adipocyte Tsc1 deletion also reduced visceral adiposity and enhanced glucose tolerance, liver and muscle insulin signaling and adiponectin secretion in mice fed with purified low- or high-fat diet. In conclusion, adipocyte-specific Tsc1 deletion enhances mitochondrial activity, induces browning and reduces visceral adiposity in mice. PMID:26923434

  17. Neuropharmacology of memory consolidation and reconsolidation: Insights on central cholinergic mechanisms.

    PubMed

    Blake, M G; Krawczyk, M C; Baratti, C M; Boccia, M M

    2014-01-01

    Central cholinergic system is critically involved in all known memory processes. Endogenous acetylcholine release by cholinergic neurons is necessary for modulation of acquisition, encoding, consolidation, reconsolidation, extinction, retrieval and expression. Experiments from our laboratory are mainly focused on elucidating the mechanisms by which acetylcholine modulates memory processes. Blockade of hippocampal alpha-7-nicotinic receptors (α7-nAChRs) with the antagonist methyllycaconitine impairs memory reconsolidation. However, the administration of a α7-nAChR agonist (choline) produce a paradoxical modulation, causing memory enhancement in mice trained with a weak footshock, but memory impairment in animals trained with a strong footshock. All these effects are long-lasting, and depend on the age of the memory trace. This review summarizes and discusses some of our recent findings, particularly regarding the involvement of α7-nAChRs on memory reconsolidation. PMID:24819880

  18. Maitake beta-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice.

    PubMed

    Masuda, Yuki; Inoue, Munechika; Miyata, Ayu; Mizuno, Shigeto; Nanba, Hiroaki

    2009-05-01

    Cisplatin is broadly used clinically as an anticancer drug. Despite its significant anticancer activity, cisplatin-induced nephrotoxicity and myelosuppression limit its use. MD-Fraction is glucan purified from maitake (Grifola frondosa), which has beta-1, 6-main chain with beta-1, 3-branches, has been reported to exhibit antitumor and antimetastatic activities by enhancing the immune system. In this study, we demonstrate that MD-Fraction in combination with cisplatin significantly enhanced antitumor and antimetastatic activity compared to cisplatin alone. MD-Fraction reduced decreases in body weight, spleen weight and the number of immunocompetent cells such as macrophages, DCs and NK cells in cisplatin-treated mice. MD-Fraction also induced IL-12p70 production by splenocytes, resulting in increased NK cell activity in cisplatin-treated mice. MD-Fraction significantly increased the mRNA expression of GM-CSF, G-CSF, M-CSF, IFN-gamma, IL-12 p40 in splenocytes and reduced the decrease in the number of CFU-GM colonies in cisplatin-treated bone marrow. These facts suggest that MD-Fraction can reduce cisplatin-induced myelosuppression. Moreover, treatment with MD-Fraction significantly reduced cisplatin-induced nephrotoxicity accompanied by increases in serum creatinine level, necrosis and apoptosis of renal tubular cells. These results suggest that MD-Fraction in combination with cisplatin cannot only enhance antitumor and antimentastatic acitivity, but also reduce cisplatin-induced myelotoxicity and nephrotoxicity. PMID:19249389

  19. Reduced platelet-mediated and enhanced leukocyte-mediated fibrinolysis in experimentally induced diabetes in rats

    SciTech Connect

    Winocour, P.D.; Colwell, J.A.

    1985-05-01

    Studies of fibrinolytic activity in diabetes mellitus have produced conflicting results. This may be a result of methodologic insensitivity or of variable contributions of the different blood components to whole blood fibrinolysis. To explore these two possibilities, the authors used a sensitive solid-phase radiometric assay to examine the fibrinolytic activity of whole blood, platelet-rich plasma, leukocytes, and platelet- and leukocyte-poor plasma prepared from control rats and rats with streptozocin-induced diabetes at various times after induction of diabetes. Fibrinolytic activity of whole blood from diabetic rats after 7 days was significantly reduced, and remained reduced after longer durations of diabetes up to 28 days. Platelet-rich plasma from diabetic rats had decreased fibrinolytic activity, which followed the same time course of changes as in whole blood. The platelet contribution to whole blood fibrinolysis was further reduced in vivo after 14 days of diabetes by a reduced whole blood platelet count. In contrast, fibrinolytic activity of leukocytes from diabetic rats became enhanced after 7 days of diabetes. After 49 days of diabetes, the whole blood leukocyte count was reduced, and in vivo would offset the enhanced activity. Plasma fibrinolytic activity was small compared with that of whole blood and was unaltered in diabetic rats. The authors conclude that altered platelet function contributes to decreased fibrinolytic activity of whole blood in diabetic rats, and that this may be partially offset by enhanced leukocyte-mediated fibrinolysis.

  20. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    SciTech Connect

    Srivastava, Pranay; Yadav, Rajesh S.; Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S.; Dwivedi, Hari N.; Pant, Aditiya B.; Khanna, Vinay K.

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  1. Chagas’ disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells

    PubMed Central

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V.; PereiraPerrin, Mercio

    2008-01-01

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas’ disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas’ disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas’ disease patients. PMID:18502403

  2. Chagas' disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells.

    PubMed

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V; PereiraPerrin, Mercio

    2008-06-27

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas' disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, and activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas' disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas' disease patients. PMID:18502403

  3. Enhanced Hot-Carrier Luminescence in Multilayer Reduced Graphene Oxide Nanospheres

    PubMed Central

    Chen, Qi; Zhang, Chunfeng; Xue, Fei; Zhou, Yong; Li, Wei; Wang, Ye; Tu, Wenguang; Zou, Zhigang; Wang, Xiaoyong; Xiao, Min

    2013-01-01

    We report a method to promote photoluminescence emission in graphene materials by enhancing carrier scattering instead of directly modifying band structure in multilayer reduced graphene oxide (rGO) nanospheres. We intentionally curl graphene layers to form nanospheres by reducing graphene oxide with spherical polymer templates to manipulate the carrier scattering. These nanospheres produce hot-carrier luminescence with more than ten-fold improvement of emission efficiency as compared to planar nanosheets. With increasing excitation power, hot-carrier luminescence from nanospheres exhibits abnormal spectral redshift with dynamic feature associated to the strengthened electron-phonon coupling. These experimental results can be well understood by considering the screened Coulomb interactions. With increasing carrier density, the reduced screening effect promotes carrier scattering which enhances hot-carrier emission from such multilayer rGO nanospheres. This carrier-scattering scenario is further confirmed by pump-probe measurements. PMID:23897010

  4. Loss of neurons in the rat basal forebrain cholinergic projection system after prolonged intake of ethanol.

    PubMed

    Arendt, T; Henning, D; Gray, J A; Marchbanks, R

    1988-10-01

    A reduction in the number of acetylcholinesterase (AChE)-positive neurons in the basal nucleus of Meynert complex (NbM, Ch 1 to Ch4) to 83% of control values was observed in rat after ethanol intake (20% v/v) for 12 weeks. Activity of choline acetyltransferase (ChAT) and AChE in the basal forebrain was simultaneously reduced to 74% and 81% and content of acetylcholine (ACh) to 56% of control values respectively. Neuronal loss showed a gradient over the rostro-caudal extension of the cholinergic projection system being most pronounced in the septal-diagonal band area and reaching 27% in the medial septum (Ch1). Number of AChE-positive neurons was insignificantly reduced in the pedunculopontine nucleus (Ch5) and unchanged in the laterodorsal tegmental gray of the periventricular area (Ch6). ACh content and activity of AChE was significantly reduced in target areas of the NbM such as cortex, hippocampus and amygdala, but changes were less pronounced than in the basal nucleus. The results indicate a neurotoxic effect of prolonged intake of ethanol on cholinergic neurons in the NbM leading to a partial cholinergic denervation of cortex, hippocampus and amygdala. Chronic intake of ethanol in rat is suggested to represent an animal model suitable to test the cholinergic hypothesis of geriatric memory dysfunction and to develop strategies for an amelioration of the impairment in memory and cognitive function in dementing disorders associated with a degeneration in the NbM such as postalcoholic dementia and Alzheimer's disease. PMID:2850095

  5. Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms

    PubMed Central

    Bartolini, Alessandro; Cesare Mannelli, Lorenzo Di; Ghelardini, Carla

    2011-01-01

    The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed. PMID:21585331

  6. A new reduced-reference metric for measuring spatial resolution enhanced images

    NASA Astrophysics Data System (ADS)

    Qian, Shen-En; Chen, Guangyi

    2012-10-01

    Assessment of image quality is critical for many image processing algorithms, such as image acquisition, compression, restoration, enhancement, and reproduction. In general, image quality assessment algorithms are classified into three categories: full-reference (FR), reduced-reference (RR), and no-reference (NR) algorithms. The design of NR metrics is extremely difficult and little progress has been made. FR metrics are easier to design and the majority of image quality assessment algorithms are of this type. A FR metric requires the reference image and the test image to have the same size. This may not the case in real life of image processing. In spatial resolution enhancement of hyperspectral images, such as pan-sharpening, the size of the enhanced images is larger than that of the original image. Thus, the FR metric cannot be used. A common approach in practice is to first down-sample an original image to a low resolution image, then to spatially enhance the down-sampled low resolution image using a subject enhancement technique. In this way, the original image and the enhanced image have the same size and the FR metric can be applied to them. However, this common approach can never directly assess the image quality of the spatially enhanced image that is produced directly from the original image. In this paper, a new RR metric was proposed for measuring the visual fidelity of an image with higher spatial resolution. It does not require the sizes of the reference image and the test image to be the same. The iterative back projection (IBP) technique was chosen to enhance the spatial resolution of an image. Experimental results showed that the proposed RR metrics work well for measuring the visual quality of spatial resolution enhanced hyperspectral images. They are consistent with the corresponding FR metrics.

  7. The effects of baclofen and cholinergic drugs on upbeat and downbeat nystagmus.

    PubMed Central

    Dieterich, M; Straube, A; Brandt, T; Paulus, W; Büttner, U

    1991-01-01

    The GABAergic drug baclofen and the cholinergic drug physostigmine were administered to patients with upbeat and downbeat nystagmus. Baclofen (orally, 5 mg three times daily) reduced nystagmus slow phase velocity and distressing oscillopsia by 25-75% in four out of five patients (two upbeat nystagmus; two downbeat nystagmus). Physostigmine (1 mg single intravenous injection) increased nystagmus in five additional patients with downbeat (1) or positional downbeat nystagmus (4) for a duration of 15-20 minutes. The different interactions of baclofen and physostigmine on neurotransmission subserving vertical vestibulo-ocular reflex could account for these effects. The response to baclofen appears to be a GABA-B-ergic effect with augmentation of the physiological inhibitory influence of the vestibulo-cerebellum on the vestibular nuclei. Similarly baclofen has an inhibitory effect on the velocity storage mechanism. Cholinergic action may cause the increment of nystagmus by physostigmine. PMID:1654396

  8. Local cholinergic and non-cholinergic neural pathways to the rat supraoptic nucleus

    SciTech Connect

    Meeker, M.L.

    1986-01-01

    An estimated two thirds of the input to the supraoptic nucleus of the rat hypothalamus (SON) including a functionally significant cholinergic innervation, arise from local sources of unknown origin. The sources of these inputs were identified utilizing Golgi-Cox, retrograde tracing, choline acetyltransferase immunocytochemistry and anterograde tracing methodologies. Multipolar Golgi impregnated neurons located dorsal and lateral to the SON extend spiney processes into the nucleus. Injections of the retrograde tracers, wheat germ agglutinin or wheat germ agglutinin-horseradish peroxidase, into the SON labeled cells bilaterally in the arcuate nucleus, and ipsilaterally in the lateral hypothalamus, anterior hypothalamus, nucleus of the diagonal band, subfornical organ, medial preoptic area, lateral preoptic area and in the region dorsolateral to the nucleus. Immunocytochemistry for choline acetyltransferase revealed cells within the ventro-caudal portion of cholinergic cell group, Ch4, which cluster dorsolateral to the SON, and extend axon- and dendrite-like processes into the SON. Cells double-labeled by choline acetyltransferase immunocytochemistry and retrograde tracer injections into the SON are localized within the same cholinergic cell group dorsolateral to the SON. Injections of the anterograde tracer, Phaseolus vulgaris-leucoagglutinin, deposited dorsolateral to the SON results in labeled pre-and post-synaptic processes within the SON. The identification and characterization of endogenous immunoglobulin within the SON and other neurons innervating areas lacking a blood-brain barrier established a novel and potentially important system for direct communication of the supraoptic cells with blood-borne constitutents.

  9. Heavy Metal Pollution Enhances Soil Respiration and Reduces Carbon Storage in a Chinese Paddy Soil

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Li, Zhipeng; Liu, Yongzhuo; Smith, Pete; Crowley, David; Zheng, Jufeng

    2010-05-01

    China's paddy soils are crucial both for food security through high cereal productivity, and for climate mitigation through high soil carbon storage. These functions are increasingly threatened by widespread heavy metal pollution, resulting from rapid industrial development. Heavy metal-polluted soils generally have a reduced microbial biomass and reduced soil respiration, as well as reduced functional diversity through changes in microbial community structure. Here we show that heavy metal pollution enhances soil respiration and CO2 efflux from a Chinese rice paddy soil, and leads to a soil organic carbon (SOC) loss, which is correlated with a decline in the fungal-to-bacterial ratio of the reduced soil microbial community. The pollution-induced SOC loss could offset 70% of the yearly SOC increase from China's paddy soils. Thus, heavy metal pollution impacts long term productivity and the potential for C sequestration in China's paddy soils.

  10. Reducing statistics anxiety and enhancing statistics learning achievement: effectiveness of a one-minute strategy.

    PubMed

    Chiou, Chei-Chang; Wang, Yu-Min; Lee, Li-Tze

    2014-08-01

    Statistical knowledge is widely used in academia; however, statistics teachers struggle with the issue of how to reduce students' statistics anxiety and enhance students' statistics learning. This study assesses the effectiveness of a "one-minute paper strategy" in reducing students' statistics-related anxiety and in improving students' statistics-related achievement. Participants were 77 undergraduates from two classes enrolled in applied statistics courses. An experiment was implemented according to a pretest/posttest comparison group design. The quasi-experimental design showed that the one-minute paper strategy significantly reduced students' statistics anxiety and improved students' statistics learning achievement. The strategy was a better instructional tool than the textbook exercise for reducing students' statistics anxiety and improving students' statistics achievement. PMID:25153964

  11. A ten fold reduction of nicotine yield in tobacco smoke does not spare the central cholinergic system in adolescent mice.

    PubMed

    Abreu-Villaça, Yael; Correa-Santos, Monique; Dutra-Tavares, Ana C; Paes-Branco, Danielle; Nunes-Freitas, Andre; Manhães, Alex C; Filgueiras, Cláudio C; Ribeiro-Carvalho, Anderson

    2016-08-01

    The tobacco industry has gradually decreased nicotine content in cigarette smoke but the impact of this reduction on health is still controversial. Since the central cholinergic system is the primary site of action of nicotine, here, we investigated the effects of exposure of adolescent mice to tobacco smoke containing either high or low levels of nicotine on the central cholinergic system and the effects associated with cessation of exposure. From postnatal day (PN) 30 to 45, male and female Swiss mice were exposed to tobacco smoke (whole body exposure, 8h/day, 7 days/week) generated from 2R1F (HighNic group: 1.74mg nicotine/cigarette) or 4A1 (LowNic group: 0.14mg nicotine/cigarette) research cigarettes, whereas control mice were exposed to ambient air. Cholinergic biomarkers were assessed in the cerebral cortex and midbrain by the end of exposure (PN45), at short- (PN50) and long-term (PN75) deprivation. In the cortex, nicotinic cholinergic receptor upregulation was observed with either type of cigarette. In the midbrain, upregulation was detected only in HighNic mice and remained significant in females at short-term deprivation. The high-affinity choline transporter was reduced in the cortex: of HighNic mice by the end of exposure; of both HighNic and LowNic females at short-term deprivation; of LowNic mice at long-term deprivation. These decrements were separable from effects on choline acetyltransferase and acetylcholinesterase activities, suggesting cholinergic synaptic impairment. Here, we demonstrated central cholinergic alterations in an animal model of tobacco smoke exposure during adolescence. This system was sensitive even to tobacco smoke with very low nicotine content. PMID:27287270

  12. Basic and modern concepts on cholinergic receptor: A review

    PubMed Central

    Tiwari, Prashant; Dwivedi, Shubhangi; Singh, Mukesh Pratap; Mishra, Rahul; Chandy, Anish

    2013-01-01

    Cholinergic system is an important system and a branch of the autonomic nervous system which plays an important role in memory, digestion, control of heart beat, blood pressure, movement and many other functions. This article serves as both structural and functional sources of information regarding cholinergic receptors and provides a detailed understanding of the determinants governing specificity of muscarinic and nicotinic receptor to researchers. The study helps to give overall information about the fundamentals of the cholinergic system, its receptors and ongoing research in this field.

  13. Somatostatin inhibits cANP-mediated cholinergic transmission in the myenteric plexus

    SciTech Connect

    Wiley, J.; Owyang, C. )

    1987-11-01

    The mechanism by which somatostatin acts to modulate cholinergic transmission is not clear. In this study the authors investigated the role of the adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) system in mediating cholinergic transmission in the guinea pig myenteric plexus and examined the ability of somatostatin to alter acetylcholine (ACh) release stimulated by various cAMP agonists. Forskolin, 8-bromo-cAMP, vasoactive intestinal peptide (VIP), and cholera toxin each stimulated the release of ({sup 3}H)ACh in a dose-related manner. Addition of theophylline enhanced the release of ({sup 3}H)ACh stimulated by these cAMP agonists. The observations suggest that cAMP may serve as a physiological mediator for ACh release from myenteric neurons. Somatostatin inhibited release of ({sup 3}H)ACh evoked by various cAMP agonists in a dose-related manner. Pretreatment with pertussis toxin antagonized the inhibitory effect of somatostatin on the release of ({sup 3}H)ACh evoked by forskolin, VIP, or cholera toxin but had no effect on the inhibitory action of somatostatin on the release of ({sup 3}H)ACh evoked by 8-bromo-cAMP. This suggests that the principal mechanism by which somatostatin inhibits cAMP-mediated cholinergic transmission is via activation of the inhibitory regulatory protein (N{sub i} subunit) of adenyalte cyclase.

  14. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: a review

    PubMed Central

    Colucci, Luisa; Bosco, Massimiliano; Rosario Ziello, Antonio; Rea, Raffaele; Amenta, Francesco; Fasanaro, Angiola Maria

    2012-01-01

    Nootropics represent probably the first “smart drugs” used for the treatment of cognitive deficits. The aim of this paper is to verify, by a systematic analysis of the literature, the effectiveness of nootropics in this indication. The analysis was limited to nootropics with cholinergic activity, in view of the role played by acetylcholine in learning and memory. Acetylcholine was the first neurotransmitter identified in the history of neuroscience and is the main neurotransmitter of the peripheral, autonomic, and enteric nervous systems. We conducted a systematic review of the literature for the 5-year period 2006–2011. From the data reported in the literature, it emerges that nootropics may be an effective alternative for strengthening and enhancing cognitive performance in patients with a range of pathologies. Although nootropics, and specifically the cholinergic precursors, already have a long history behind them, according to recent renewal of interest, they still seem to have a significant therapeutic role. Drugs with regulatory indications for symptomatic treatment of Alzheimer’s disease, such as cholinesterase inhibitors and memantine, often have transient effects in dementia disorders. Nootropics with a cholinergic profile and documented clinical effectiveness in combination with cognate drugs such as cholinesterase inhibitors or alone in patients who are not suitable for these inhibitors should be taken into account and evaluated further.

  15. Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution.

    PubMed

    Meng, Huan; Fan, Ke; Low, Jingxiang; Yu, Jiaguo

    2016-09-21

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen by sunlight is a promising approach to solve energy and environmental problems. In this work, silicon nanowire arrays (SiNWs) photocathodes decorated with reduced graphene oxide (rGO) for PEC water splitting were successfully prepared by a flexible and scalable electrochemical reduction method. The SiNWs photocathode with the optimized rGO decoration (SiNWs/rGO20) shows an enhanced activity with a much higher photocurrent density and significantly positive shift of onset potential compared to the bare SiNWs arrays for the hydrogen evolution reaction (HER). The enhanced PEC activity is ascribed to the high electrical conductivity of rGO and improved separation of the photogenerated charge carriers. This work not only demonstrates a facile, rapid and tunable electrochemical reduction method to produce rGO, but also exhibits an efficient protocol to enhance the PEC water splitting of silicon-based materials. PMID:27461187

  16. Enhancing Slow Wave Sleep with Sodium Oxybate Reduces the Behavioral and Physiological Impact of Sleep Loss

    PubMed Central

    Walsh, James K.; Hall-Porter, Janine M.; Griffin, Kara S.; Dodson, Ehren R.; Forst, Elizabeth H.; Curry, Denise T.; Eisenstein, Rhody D.; Schweitzer, Paula K.

    2010-01-01

    Study Objectives: To investigate whether enhancement of slow wave sleep (SWS) with sodium oxybate reduces the impact of sleep deprivation. Design: Double-blind, parallel group, placebo-controlled design Setting: Sleep research laboratory Participants: Fifty-eight healthy adults (28 placebo, 30 sodium oxybate), ages 18-50 years. Interventions: A 5-day protocol included 2 screening/baseline nights and days, 2 sleep deprivation nights, each followed by a 3-h daytime (08:00-11:00) sleep opportunity and a recovery night. Sodium oxybate or placebo was administered prior to each daytime sleep period. Multiple sleep latency test (MSLT), psychomotor vigilance test (PVT), Karolinska Sleepiness Scale (KSS), and Profile of Mood States were administered during waking hours. Measurements and Results: During daytime sleep, the sodium oxybate group had more SWS, more EEG spectral power in the 1-9 Hz range, and less REM. Mean MSLT latency was longer for the sodium oxybate group on the night following the first daytime sleep period and on the day following the second day sleep period. Median PVT reaction time was faster in the sodium oxybate group following the second day sleep period. The change from baseline in SWS was positively correlated with the change in MSLT and KSS. During recovery sleep the sodium oxybate group had less TST, SWS, REM, and slow wave activity (SWA) than the placebo group. Conclusions: Pharmacological enhancement of SWS with sodium oxybate resulted in a reduced response to sleep loss on measures of alertness and attention. In addition, SWS enhancement during sleep restriction appears to result in a reduced homeostatic response to sleep loss. Citation: Walsh JK; Hall-Porter JM; Griffin KS; Dodson ER; Forst EH; Curry DT; Eisenstein RD; Schweitzer PK. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. SLEEP 2010;33(9):1217-1225. PMID:20857869

  17. Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Li, Xiaocheng; Tay, Beng Kang; Li, Junshuai; Tan, Dunlin; Tan, Chong Wei; Liang, Kun

    2012-04-01

    Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection.

  18. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition

    PubMed Central

    Nelson, A.J.D.; Thur, K.E.; Horsley, R.R.; Spicer, C.; Marsden, C.A.; Cassaday, H.J.

    2011-01-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI. PMID:21146557

  19. Enhanced Atrazine Degradation: Evidence for Reduced Residual Weed Control and A Method for Identifying Adapted Soils and Predicting Herbicide Persistence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilborn bacteria with novel metabolic abilities have been linked with enhanced atrazine degradation and complaints of reduced residual weed control in soils with an s-triazine use history. However, no field study has verified that enhanced degradation reduces atrazine’s residual weed control. The...

  20. Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhang, Peipei; Zheng, Cheng; Wu, Xu; Mao, Taoyan; Zhu, Mingning; Wang, Huaquan; Feng, Danyan; Qian, Shuxuan; Cai, Xianfang

    2014-10-01

    This paper describes the synthesis of reduced silanized graphene oxide/epoxy-polyurethane (EPUAs/R-Si-GEO) composites with enhanced thermal and mechanical properties. Graphene oxide (GEO), prepared from natural graphite flakes, was modified with methacryloxypropyltrimethoxysilane to prepare silanized GEO (Si-GEO), and was then reduced by NaHSO3 to prepare R-Si-GEO (partially reduced Si-GEO). EPAc/R-Si-GEO (R-Si-GEO/epoxy acrylate copolymers) was synthesized via an in situ polymerization of R-Si-GEO and epoxy acrylic monomers. EPUAs/R-Si-GEO was obtained by curing reaction between EPAc/R-Si-GEO and an isocyanate curing agent. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used to characterize the surface and crystal structure of the modified graphene and EPUAs/R-Si-GEO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize their morphology. Thermal gravimetric analysis (TGA), tensile strength, elongation at break, and cross-linking density measurements showed that the thermal stability and mechanical properties of EPUAs/R-Si-GEO were greatly enhanced by the addition of R-Si-GEO.

  1. Early deprivation reduced anxiety and enhanced memory in adult male rats.

    PubMed

    Zhang, Xuliang; Wang, Bo; Jin, Jing; An, Shuming; Zeng, Qingwen; Duan, Yanhong; Yang, Liguo; Ma, Jing; Cao, Xiaohua

    2014-09-01

    The effects of early deprivation (ED, which involves both dam and littermate deprivation) on anxiety and memory are less investigated in comparison with maternal separation (MS), and it is not yet clear how ED affects long-term potentiation (LTP) in the hippocampal Schaffer collateral pathway. By using a series of behavioral tests, enzyme-linked immunosorbent assay and field potential recording, we explored the effect of pre-weaning daily 3-h ED on anxiety, memory and potential mechanisms in adult male rats. Compared with control, ED rats spent longer time in open arms of elevated plus maze and in light compartment of light-dark transition box. Consistently, stress-induced blood plasma corticosterone level was also lower in ED rats. Moreover, ED rats showed better performance in social recognition and Morris water maze test. In accordance with results in memory tests, the threshold of LTP induction in hippocampal CA3-CA1 pathway of ED rats was also reduced. Our results indicate ED reduced anxiety, but enhanced social recognition and spatial reference memory. We suggest the diminished hypothalamic-pituitary-adrenal axis response and facilitated hippocampal LTP may contribute to the anxiety-reducing and memory-enhancing effects of ED, respectively. PMID:25157962

  2. Enhanced strain and temperature sensing by reduced graphene oxide coated etched fiber Bragg gratings.

    PubMed

    S, Sridevi; Vasu, K S; Asokan, S; Sood, A K

    2016-06-01

    This Letter reports on an etched fiber Bragg grating (eFBG) sensor coated with reduced graphene oxide (RGO) having enhanced sensitivity for physical parameters such as strain and temperature. The synergetic effect of the changes in grating pitch and refractive index of RGO with change in temperature or strain enhances the shift in Bragg wavelength (λB). The RGO-coated eFBG sensors exhibit a strain sensitivity of 5.5 pm/μϵ (∼5 times that of bare fiber Bragg gratings) and temperature sensitivity of 33 pm/°C (∼3 times that of bare fiber Bragg gratings). The resolutions of ∼1  μϵ and ∼0.3°C have been obtained for strain and temperature respectively, using RGO-coated eFBG sensors. PMID:27244425

  3. Reduced graphene oxide/CeO2 nanocomposite with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Anand, Kanika; Anand, Kanica; Singh, Gurpreet; Hastir, Anita; Virpal, Singh, Ravi Chand

    2015-05-01

    In this work, reduced graphene oxide /cerium oxide (RGO/CeO2) nanocomposite was synthesized by in situ reduction of cerium nitrate Ce(NO3)3.6H2O in the presence of graphene oxide by hydrazine hydrate (N2H4.H2O). The intrinsic characteristics of as-prepared nanocomposite were studied using powder x-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy (FESEM). The photocatalytic degradation of methylene blue (MB) was employed as a model reaction to evaluate the photocatalytic activity of the RGO/CeO2 nanocomposite. The as-obtained RGO/CeO2 nanocomposite displays a significantly enhanced photocatalytic degradation of MB dye in comparison with bare CeO2 nanoparticles under sunlight irradiation, which can be attributed to the improved separation of electron-hole pairs and enhanced adsorption performance due to presence of RGO.

  4. Enhanced Somatosensory Feedback Reduces Prefrontal Cortical Activity During Walking in Older Adults

    PubMed Central

    Christou, Evangelos A.; Ring, Sarah A.; Williamson, John B.; Doty, Leilani

    2014-01-01

    Background. The coordination of steady state walking is relatively automatic in healthy humans, such that active attention to the details of task execution and performance (controlled processing) is low. Somatosensation is a crucial input to the spinal and brainstem circuits that facilitate this automaticity. Impaired somatosensation in older adults may reduce automaticity and increase controlled processing, thereby contributing to deficits in walking function. The primary objective of this study was to determine if enhancing somatosensory feedback can reduce controlled processing during walking, as assessed by prefrontal cortical activation. Methods. Fourteen older adults (age 77.1±5.56 years) with mild mobility deficits and mild somatosensory deficits participated in this study. Functional near-infrared spectroscopy was used to quantify metabolic activity (tissue oxygenation index, TOI) in the prefrontal cortex. Prefrontal activity and gait spatiotemporal data were measured during treadmill walking and overground walking while participants wore normal shoes and under two conditions of enhanced somatosensation: wearing textured insoles and no shoes. Results. Relative to walking with normal shoes, textured insoles yielded a bilateral reduction of prefrontal cortical activity for treadmill walking (ΔTOI = −0.85 and −1.19 for left and right hemispheres, respectively) and for overground walking (ΔTOI = −0.51 and −0.66 for left and right hemispheres, respectively). Relative to walking with normal shoes, no shoes yielded lower prefrontal cortical activity for treadmill walking (ΔTOI = −0.69 and −1.13 for left and right hemispheres, respectively), but not overground walking. Conclusions. Enhanced somatosensation reduces prefrontal activity during walking in older adults. This suggests a less intensive utilization of controlled processing during walking. PMID:25112494

  5. Subtle learning and memory impairment in an idiopathic rat model of Alzheimer's disease utilizing cholinergic depletions and β-amyloid.

    PubMed

    Deibel, S H; Weishaupt, N; Regis, A M; Hong, N S; Keeley, R J; Balog, R J; Bye, C M; Himmler, S M; Whitehead, S N; McDonald, R J

    2016-09-01

    Alzheimer's disease (AD) is a disease of complex etiology, involving multiple risk factors. When these risk factors are presented concomitantly, cognition and brain pathology are more severely compromised than if those risk factors were presented in isolation. Reduced cholinergic tone and elevated amyloid-beta (Aβ) load are pathological hallmarks of AD. The present study sought to investigate brain pathology and alterations in learning and memory when these two factors were presented together in rats. Rats received either sham surgeries, cholinergic depletions of the medial septum, intracerebroventricular Aβ25-35 injections, or both cholinergic depletion and Aβ25-35 injections (Aβ+ACh group). The Aβ+ACh rats were unimpaired in a striatal dependent visual discrimination task, but had impaired acquisition in the standard version of the Morris water task. However, these rats displayed normal Morris water task retention and no impairment in acquisition of a novel platform location during a single massed training session. Aβ+ACh rats did not have exacerbated brain pathology as indicated by activated astroglia, activated microglia, or accumulation of Aβ. These data suggest that cholinergic depletions and Aβ injections elicit subtle cognitive deficits when behavioural testing is conducted shortly after the presentation of these factors. These factors might have altered hippocampal synaptic plasticity and thus resemble early AD pathology. PMID:27208489

  6. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: Relationship with spatial impairment

    PubMed Central

    Bañuelos, C.; LaSarge, C. L.; McQuail, J. A.; Hartman, J. J.; Gilbert, R. J.; Ormerod, B. K.; Bizon, J. L.

    2013-01-01

    Both cholinergic and GABAergic projections from the rostral basal forebrain have been implicated in hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in co-distributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase (ChAT) immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 (GAD67) immunopositive) neurons, and total (NeuN immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline. PMID:22817834

  7. Features and feedback: enhancing metamnemonic knowledge at retrieval reduces source-monitoring errors.

    PubMed

    Lane, Sean M; Roussel, Cristine C; Villa, Diane; Morita, Shelby K

    2007-11-01

    Three experiments explored the issue of whether enhanced metamnemonic knowledge at retrieval can improve participants' ability to make difficult source discriminations in the context of the eyewitness suggestibility paradigm. The 1st experiment documented differences in phenomenal experience between veridical and false memories. Experiment 2 revealed that drawing participants' attention to these differences by pairing the ratings of the features with instructions about their utility was successful in reducing source misattributions of suggested items to the event. The results of Experiment 3 showed that participants can make online adjustments in the types of evidence used to make source judgments, as participants who received correct feedback during the training portion of the test reduced misattribution errors on the remainder of the test where feedback was not provided. Altogether, these studies suggest that people can discover and benefit from updated knowledge of the types of memorial evidence that discriminate between sources of information in memory. PMID:17983318

  8. Finding the elusive balance between reducing fatigue and enhancing education: perspectives from American residents

    PubMed Central

    2014-01-01

    Duty hour restrictions for residency training were implemented in the United States to improve residents’ educational experience and quality of life, as well as to improve patient care and safety; however, these restrictions are by no means problem-free. In this paper, we discuss the positive and negative aspects of duty hour restrictions, briefly highlighting research on the impact of reduced duty hours and the experiences of American residents. We also consider whether certain specialties (e.g., Emergency Medicine, Radiology) may be more amenable than others (e.g., Surgery) to duty hour restrictions. We conclude that feedback from residents is a crucial element that must be considered in any future attempts to strike a balance between reducing fatigue and enhancing education. PMID:25560226

  9. Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies.

    PubMed

    Takahashi, Yuma; Kagawa, Kotaro; Svensson, Erik I; Kawata, Masakado

    2014-01-01

    The effect of evolutionary changes in traits and phenotypic/genetic diversity on ecological dynamics has received much theoretical attention; however, the mechanisms and ecological consequences are usually unknown. Female-limited colour polymorphism in damselflies is a counter-adaptation to male mating harassment, and thus, is expected to alter population dynamics through relaxing sexual conflict. Here we show the side effect of the evolution of female morph diversity on population performance (for example, population productivity and sustainability) in damselflies. Our theoretical model incorporating key features of the sexual interaction predicts that the evolution of increased phenotypic diversity will reduce overall fitness costs to females from sexual conflict, which in turn will increase productivity, density and stability of a population. Field data and mesocosm experiments support these model predictions. Our study suggests that increased phenotypic diversity can enhance population performance that can potentially reduce extinction rates and thereby influence macroevolutionary processes. PMID:25034518

  10. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan

    2016-01-01

    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  11. Striatal cholinergic interneuron regulation and circuit effects

    PubMed Central

    Lim, Sean Austin O.; Kang, Un Jung; McGehee, Daniel S.

    2014-01-01

    The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1–2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction. PMID:25374536

  12. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.

    PubMed

    Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng

    2015-02-25

    The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties. PMID:25644454

  13. Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO2 nanotube arrays.

    PubMed

    Zhang, Qian; Wang, Ling; Feng, Jiangtao; Xu, Hao; Yan, Wei

    2014-11-14

    The efficient utilization of solar spectrum and photo-induced charge transport are critical aspects in improving the light conversion efficiency of solar cells and hydrogen generation. In this work, reduced TiO2 nanotube arrays with CdS decoration were fabricated through the simple cathodic polarization of annealed TiO2 nanotube arrays followed by the chemical deposition of CdS nanoparticles. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy confirmed the successful fabrication of the target material. UV-visible diffuse reflectance spectra showed a Burstein-Moss shift for reduced TiO2 NTs and a red shift of the absorption edge towards ca. 563 nm for CdS-decorated R-TiO2 NTs. Cyclic voltammetry and impedance spectra together demonstrate the decreased charge transport resistance for reduced TiO2 NTs. Under the excitation of monochromatic light at 420 nm, the proposed CdS-decorated reduced TiO2 NTs exhibit the maximum IPCE value of 30.12% in 1 M Na2SO3 electrolyte, which is almost twice higher than that achieved on CdS-decorated pristine TiO2 NTs. Therefore, the results here highlight the significance of charge transport in the light conversion process. The enhanced charge transport properties are ascribed to the increased number of electrons, which is brought about by the lattice oxygen vacancies (Ti(3+)) during the cathodic polarization. PMID:25265452

  14. Controllable synthesis of palladium nanocubes/reduced graphene oxide composites and their enhanced electrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yuting; Huang, Qiwei; Chang, Gang; Zhang, Zaoli; Xia, Tiantian; Shu, Honghui; He, Yunbin

    2015-04-01

    Homogeneous distribution of cube-shaped Pd nanocrystals on the surface of reduced graphene oxide is obtained via a facile one-step method by employing AA and KBr as the reductant and capping agent, respectively. The experimental factors affecting the morphology and structure of Pd nanoparticles have been systematically investigated to explore the formation mechanism of Pd nanocubes (PdNCs). It is revealed that PdNCs enclosed by active {100} facets with an average side length of 15 nm were successfully synthesized on the surface of reduced graphene oxide. KBr plays the role for facet selection by surface passivation and AA controls the reduction speed of Pd precursors, both of which govern the morphology changes of palladium nanoparticles. In the further electrochemical evaluations, the Pd nanocubes/reduced graphene oxide composites show better electrocatalytic activity and stability towards the electro-oxidation of ethanol than both reduced graphene oxide supported Pd nanoparticles and free-standing PdNCs. It could be attributed to the high electrocatalytic activity of the dominated active {100} crystal facets of Pd nanocubes and the enhanced electron transfer of graphene. The developed approach provide a versatile way for shape-controlled preparation of noble metal nanoparticles, which can work as novel electrocatalysts in the application of direct alcohols fuel cells.

  15. Reducing variety enhances effectiveness of family-based treatment for pediatric obesity

    PubMed Central

    Epstein, Leonard H.; Kilanowski, Colleen; Paluch, Rocco A.; Raynor, Hollie; Daniel, Tinuke Oluyomi

    2015-01-01

    Basic research has shown that increasing variety increases energy intake, and repeated consumption of the same food increases habituation to those foods and reduces consumption. Twenty-four familes with overweight/obese 8–12 year-old children and overweight/obese parents were randomly assigned to 6 months of usual family based treatment (FBT) or FBT plus reduced variety of high energy-dense foods (FBT+Variety). Intention to treat mixed model ANOVA showed between group differences in child percent overweight (FBT + Variety −15.4% vs. FBT −8.9%, p = 0.017) and parent BMI (FBT + Variety −3.7 kg/m2 vs. FBT −2.3 kg/m2; p = 0.017). Positive relationships were observed between child zBMI and parent BMI changes (r = 0.51, p = 0.018), and between reductions in food variety of high energy-dense foods and reductions in child zBMI (r = 0.54, p = 0.02) and parent BMI (r = 0.45, p = 0.08). These pilot data suggest that reducing the variety of high energy dense foods and repeating meals within the context of FBT resulted in improved child and parent weight changes at six months. This represents easy to implement changes that reduce choice and may reduce response burden on families. Reducing variety may be a complement to standard FBT that enhances weight loss. Long term studies are needed to assess maintenance of these changes. PMID:25706950

  16. Intrinsic Cholinergic Neurons in the Hippocampus: Fact or Artifact?

    PubMed Central

    Blusztajn, Jan Krzysztof; Rinnofner, Jasmine

    2016-01-01

    It is generally agreed that hippocampal acetylcholine (ACh) is synthesized and released exclusively from the terminals of the long-axon afferents whose cell bodies reside in the medial septum and diagonal band. The search for intrinsic cholinergic neurons in the hippocampus has a long history; however evidence for the existence of these neurons has been inconsistent, with most investigators failing to detect them using in situ hybridization or immunohistochemical staining of the cholinergic markers, choline acetyltransferase (ChAT) or vesicular acetylcholine transporter (VAChT). Advances in the use of bacterial artificial chromosome (BAC) transgenic mice expressing a reporter protein under the control of the genomic elements of the Chat gene (Chat-BAC mice) have facilitated studies of cholinergic neurons. Such mice show robust and faithful expression of the reporter proteins in all known cholinergic cell populations. The availability of the Chat-BAC mice re-ignited interest in hippocampal cholinergic interneurons, because a small number of such reporter-expressing cells is frequently observed in the hippocampus of these mice. However, to date, attempts to confirm that these neurons co-express the endogenous cholinergic marker ChAT, or release ACh, have been unsuccessful. Without such confirmatory evidence it is best to conclude that there are no cholinergic neurons in the hippocampus. Similar considerations apply to other BAC transgenic lines, whose utility as a discovery tool for cell populations heretofore not known to express the genes of interest encoded by the BACs, must be validated by methods that detect expression of the endogenous genes. PMID:27014052

  17. Muscarinic and nicotinic cholinergic receptor antagonists differentially mediate acquisition of fructose-conditioned flavor preference and quinine-conditioned flavor avoidance in rats.

    PubMed

    Rotella, Francis M; Olsson, Kerstin; Vig, Vishal; Yenko, Ira; Pagirsky, Jeremy; Kohen, Ilanna; Aminov, Alon; Dindyal, Trisha; Bodnar, Richard J

    2015-09-01

    Rats display both conditioned flavor preference (CFP) for fructose, and conditioned flavor avoidance (CFA) following sweet adulteration with quinine. Previous pharmacological analyses revealed that fructose-CFP expression was significantly reduced by dopamine (DA) D1 or D2 antagonists, but not NMDA or opioid antagonists. Fructose-CFP acquisition was significantly reduced by DA D1, DA D2 or NMDA antagonists, but not opioid antagonists. Quinine-CFA acquisition was significantly enhanced and prolonged by DA D1, NMDA or opioid, but not DA D2 antagonists. Cholinergic interneurons and projections interact with DA systems in the nucleus accumbens and ventral tegmental area. Further, both muscarinic and nicotinic cholinergic receptor signaling have been implicated in sweet intake and development of food-related preferences. Therefore, the present study examined whether systemic administration of muscarinic (scopolamine: SCOP) or nicotinic (mecamylamine: MEC) cholinergic receptor antagonists mediated fructose-CFP expression, fructose-CFP acquisition and quinine-CFA acquisition. For fructose-CFP expression, rats were trained over 10 sessions with a CS+ flavor in 8% fructose and 0.2% saccharin and a CS- flavor in 0.2% saccharin. Two-bottle choice tests with CS+ and CS- flavors mixed in 0.2% saccharin occurred following vehicle, SCOP (0.1-10mg/kg) and MEC (1-8mg/kg). For fructose-CFP acquisition, six groups of rats received vehicle, SCOP (1 or 2.5mg/kg), MEC (4 or 6mg/kg) or a limited intake vehicle control 0.5h prior to 10 CS+ and CS- training sessions followed by six 2-bottle CS+ and CS- choice tests in 0.2% saccharin. For quinine-CFA acquisition, five groups of rats received vehicle, SCOP (1 or 2.5mg/kg) or MEC (4 or 6mg/kg) 0.5h prior to 8 one-bottle CS- (8% fructose+0.2% saccharin: FS) and CS+ (fructose+saccharin+quinine (0.030%: FSQ) training sessions followed by six 2-bottle CS- and CS+ choice tests in fructose-saccharin solutions. Fructose-CFP expression was

  18. Serotonin 5-HT1B receptor-mediated calcium influx-independent presynaptic inhibition of GABA release onto rat basal forebrain cholinergic neurons.

    PubMed

    Nishijo, Takuma; Momiyama, Toshihiko

    2016-07-01

    Modulatory roles of serotonin (5-HT) in GABAergic transmission onto basal forebrain cholinergic neurons were investigated, using whole-cell patch-clamp technique in the rat brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal stimulation. Bath application of 5-HT (0.1-300 μm) reversibly suppressed the amplitude of evoked IPSCs in a concentration-dependent manner. Application of a 5-HT1B receptor agonist, CP93129, also suppressed the evoked IPSCs, whereas a 5-HT1A receptor agonist, 8-OH-DPAT had little effect on the evoked IPSCs amplitude. In the presence of NAS-181, a 5-HT1B receptor antagonist, 5-HT-induced suppression of evoked IPSCs was antagonised, whereas NAN-190, a 5-HT1A receptor antagonist did not antagonise the 5-HT-induced suppression of evoked IPSCs. Bath application of 5-HT reduced the frequency of spontaneous miniature IPSCs without changing their amplitude distribution. The effect of 5-HT on miniature IPSCs remained unchanged when extracellular Ca(2+) was replaced by Mg(2+) . The paired-pulse ratio was increased by CP93129. In the presence of ω-CgTX, the N-type Ca(2+) channel blocker, ω-Aga-TK, the P/Q-type Ca(2+) channel blocker, or SNX-482, the R-type Ca(2+) channel blocker, 5-HT could still inhibit the evoked IPSCs. 4-AP, a K(+) channel blocker, enhanced the evoked IPSCs, and CP93129 had no longer inhibitory effect in the presence of 4-AP. CP93129 increased the number of action potentials elicited by depolarising current pulses. These results suggest that activation of presynaptic 5-HT1B receptors on the terminals of GABAergic afferents to basal forebrain cholinergic neurons inhibits GABA release in Ca(2+) influx-independent manner by modulation of K(+) channels, leading to enhancement of neuronal activities. PMID:27177433

  19. Brief, pre-learning stress reduces false memory production and enhances true memory selectively in females.

    PubMed

    Zoladz, Phillip R; Peters, David M; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Woelke, Sarah A; Wolters, Nicholas E; Talbot, Jeffery N

    2014-04-10

    Some of the previous research on stress-memory interactions has suggested that stress increases the production of false memories. However, as accumulating work has shown that the effects of stress on learning and memory depend critically on the timing of the stressor, we hypothesized that brief stress administered immediately before learning would reduce, rather than increase, false memory production. In the present study, participants submerged their dominant hand in a bath of ice cold water (stress) or sat quietly (no stress) for 3 min. Then, participants completed a short-term memory task, the Deese-Roediger-McDermott paradigm, in which they were presented with 10 different lists of semantically related words (e.g., candy, sour, sugar) and, after each list, were tested for their memory of presented words (e.g., candy), non-presented unrelated "distractor" words (e.g., hat), and non-presented semantically related "critical lure" words (e.g., sweet). Stress, overall, significantly reduced the number of critical lures recalled (i.e., false memory) by participants. In addition, stress enhanced memory for the presented words (i.e., true memory) in female, but not male, participants. These findings reveal that stress does not unequivocally enhance false memory production and that the timing of the stressor is an important variable that could mediate such effects. Such results could have important implications for understanding the dependability of eyewitness accounts of events that are observed following stress. PMID:24560841

  20. Self-assembly of mildly reduced graphene oxide monolayer for enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Yin, Fenping; Wu, Shang; Wang, Yanbin; Wu, Lan; Yuan, Peilin; Wang, Xia

    2016-05-01

    Graphene-enhanced Raman scattering (GERS) has attracted much attention recently. In present study, monolayer of chemically reduced graphene oxide (RGO) nanosheets was chemically bonded on Si substrates and their possible applications in Raman scattering were investigated. In comparison with the mechanically exfoliated graphene, mildly reduced graphene oxide (MR-GO) monolayer is a better substrate to quench the fluorescence (FL) signals and simultaneously enhance the Raman signals of adsorbed Rhodamin 6G (R6G) molecules. Raman and X-ray photoelectron spectra indicate that π-π stacking and the residual polarized oxygen groups on MRGO surface, which can produce a strong local electric field under laser excitation, are mainly responsible for the excellent GERS effect of MR-GO substrate, while the charge transfer between R6G and MR-GO has a relatively low contribution for GERS effect. Our results not only provide a new approach to realize sensitive GERS substrate, but also are helpful for improving the fundamental understanding of GERS effect on RGO substrate.

  1. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.

    PubMed

    Kim, T; Dykstra, J E; Porada, S; van der Wal, A; Yoon, J; Biesheuvel, P M

    2015-05-15

    Capacitive deionization (CDI) is an electrochemical method for water desalination using porous carbon electrodes. A key parameter in CDI is the charge efficiency, Λ, which is the ratio of salt adsorption over charge in a CDI-cycle. Values for Λ in CDI are typically around 0.5-0.8, significantly less than the theoretical maximum of unity, due to the fact that not only counterions are adsorbed into the pores of the carbon electrodes, but at the same time coions are released. To enhance Λ, ion-exchange membranes (IEMs) can be implemented. With membranes, Λ can be close to unity because the membranes only allow passage for the counterions. Enhancing the value of Λ is advantageous as this implies a lower electrical current and (at a fixed charging voltage) a reduced energy use. We demonstrate how, without the need to include IEMs, the charge efficiency can be increased to values close to the theoretical maximum of unity, by increasing the cell voltage during discharge, with only a small loss of salt adsorption capacity per cycle. In separate constant-current CDI experiments, where after some time the effluent salt concentration reaches a stable value, this value is reached earlier with increased discharge voltage. We compare the experimental results with predictions of porous electrode theory which includes an equilibrium Donnan electrical double layer model for salt adsorption in carbon micropores. Our results highlight the potential of modified operational schemes in CDI to increase charge efficiency and reduce energy use of water desalination. PMID:25278271

  2. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation

    PubMed Central

    Wang, Zhuyuan; Hong, Xuehua; Zong, Shenfei; Tang, Changquan; Cui, Yiping; Zheng, Qingdong

    2015-01-01

    Photodynamic therapy (PDT) is a promising modality for cancer treatment. The essential element in PDT is the photosensitizer, which can be excited by light of a specific wavelength to generate cytotoxic oxygen species (ROS) capable of killing tumor cells. The effectiveness of PDT is limited in part by the low yield of ROS from existing photosensitizers and the unwanted side effects induced by the photosensitizers toward normal cells. Thus the design of nanoplatforms with enhanced PDT is highly desirable but remains challenging. Here, we developed a heavy atom (I) containing dipyrromethene boron difluoride (BODIPY) dye with a silylated functional group, which can be covalently incorporated into a silica matrix to form dye-doped nanoparticles. The incorporated heavy atoms can enhance the generation efficiency of ROS. Meanwhile, the covalently dye-encapsulated nanoparticles can significantly reduce dye leakage and subsequently reduce unwanted side effects. The nanoparticles were successfully taken up by various tumor cells and showed salient phototoxicity against these cells upon light irradiation, demonstrating promising applications in PDT. Moreover, the incorporated iodine atom can be replaced by a radiolabeled iodine atom (e.g., I-124, I-125). The resulting nanoparticles will be good contrast agents for positron emission tomography (PET) imaging with their PDT functionality retained. PMID:26211417

  3. Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent

    NASA Astrophysics Data System (ADS)

    Cai, Peng; Feng, Xiyun; Fei, Jinbo; Li, Guangle; Li, Jiao; Huang, Jianguo; Li, Junbai

    2015-06-01

    A new type of biohybrid photo-electrochemical cell was fabricated by layer-by-layer assembly of photosystem II and reduced graphene oxide. We demonstrate that the photocurrent in the direct electron transfer is enhanced about two fold with improved stability. The assembly strategy without any cross-linker or additional electron mediators makes the cell fabrication and operation much simpler as compared to previous approaches. This work may open new routes for the construction of solar energy conversion systems based on photoactive proteins and graphene materials.A new type of biohybrid photo-electrochemical cell was fabricated by layer-by-layer assembly of photosystem II and reduced graphene oxide. We demonstrate that the photocurrent in the direct electron transfer is enhanced about two fold with improved stability. The assembly strategy without any cross-linker or additional electron mediators makes the cell fabrication and operation much simpler as compared to previous approaches. This work may open new routes for the construction of solar energy conversion systems based on photoactive proteins and graphene materials. Electronic supplementary information (ESI) available: Detailed experimental procedures, XRD patterns, UV-vis spectra, XPS spectra, SDS-PAGE patterns, AFM images and SEM images. See DOI: 10.1039/c5nr02322j

  4. Silicon nanowires/reduced graphene oxide composites for enhanced photoelectrochemical properties.

    PubMed

    Huang, Zhipeng; Zhong, Peng; Wang, Chifang; Zhang, Xuanxiong; Zhang, Chi

    2013-03-01

    The top of silicon nanowires (SiNWs) arrays was coated with reduced graphene oxide (rGO) by the facile spin-coating method. The resulting SiNWs/rGO composite exhibits enhanced photoelectrochemical properties, with short-circuit photocurrent density more than 4 times higher than that of the pristine SiNWs and more than 600 times higher than that of planar Si/rGO composite. The trapping and recombination of photogenerated carriers at the surface state of SiNWs were reduced after the application of rGO. The results of electrochemical impedance spectroscopy measurements suggest that the reduction of trapping and recombination of photogenerated carriers as well as remarkably enhancement of photoelectrochemical properties can be attributed to the low charge transfer resistance at the SiNWs-rGO interface and rGO-electrolyte interface. The method and results shown here indicate a convenient and applicable approach to further exploitation of high activity materials for photoelectrochemical applications. PMID:23432521

  5. Declining streamflows reveal nonstationary orographic precipitation enhancement driven by reduced westerly flows

    NASA Astrophysics Data System (ADS)

    Luce, Charles; Abatzoglou, John; Holden, Zachary

    2016-04-01

    Although orographic enhancement of precipitation lends mountains an important role in water resources, they are dramatically undersampled by long-term precipitation gages. This has led to the widespread practice of extrapolating trends in low-elevation precipitation gage networks to high elevations via simple climatological precipitation ratios developed from isohyetal maps. An implicit assumption in such a process is non-stationarity in orographic precipitation enhancement, an assumption that can lead to large errors in trend detection and attribution of climate change effects. We show an example from the Northwestern United States where streamflows from mountain watersheds show substantial declines over the last 60 years, even while long-term precipitation gage networks in the region show no trend. We demonstrate that these observed streamflow declines are driven by previously unexplored differential trends in precipitation. November to March westerly winds are strongly correlated with high-elevation precipitation but weakly correlated with low-elevation precipitation. Decreases in winter westerlies across the region from 1950 to 2012 are hypothesized to have reduced orographic precipitation enhancement, yielding differential trends in precipitation across elevations leading to the apparent paradox. Climate projections show continued weakening meridional pressure gradients and westerly flow across the region under greenhouse forcing, highlighting an additional stressor that is relevant for climate change impacts on water resources. This study also reveals the potential of wind speed data from circulation reanalysis products to better inform historical precipitation reconstructions.

  6. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    SciTech Connect

    Nelson, W.R.

    1999-01-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation of the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy{close_quote}s Idaho National Engineering and Environmental Laboratory (INEEL) is developing a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper will describe previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS. {copyright} {ital 1999 American Institute of Physics.}

  7. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    SciTech Connect

    Nelson, W.R.

    1998-09-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation of the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.

  8. Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    2007-01-01

    Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the unsteady aerodynamic state-space matrices with a single CFD execution, independent of the number of structural modes. The responses obtained from a simultaneous excitation of the CFD-based unsteady aerodynamic system are processed using system identification techniques in order to generate an unsteady aerodynamic state-space ROM. Once the unsteady aerodynamic state-space ROM is generated, a method for computing the static aeroelastic response using this unsteady aerodynamic ROM and a state-space model of the structure, is presented. Finally, a method is presented that enables the computation of matchedpoint solutions using a single ROM that is applicable over a range of dynamic pressures and velocities for a given Mach number. These enhancements represent a significant advancement of unsteady aerodynamic and aeroelastic ROM technology.

  9. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.

    PubMed

    van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G

    2014-06-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information. PMID:24820263

  10. Stimulation of 5-HT1B receptors enhances cocaine reinforcement yet reduces cocaine-seeking behavior

    PubMed Central

    Pentkowski, Nathan S.; Acosta, Jazmin I.; Browning, Jenny R.; Hamilton, Elizabeth C.; Neisewander, Janet L.

    2010-01-01

    Paradoxically, stimulation of 5-HT1B receptors (5-HT1BRs) enhances sensitivity to the reinforcing effects of cocaine but attenuates incentive motivation for cocaine as measured using the extinction/reinstatement model. We revisited this issue by examining the effects of a 5-HT1BR agonist, CP94253, on cocaine reinforcement and cocaine-primed reinstatement, predicting that CP94253would enhance cocaine-seeking behavior reinstated by a low priming dose, similar to its effect on cocaine reinforcement. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. For reinstatement experiments, they then underwent daily extinction training to reduce cocaine-seeking behavior (operant responses without cocaine reinforcement). Next, they were pre-treated with CP94253 (3–10 mg/kg, s.c.) and either tested for cocaine-primed (10 or 2.5 mg/kg, i.p.) or cue-elicited reinstatement of extinguished cocaine-seeking behavior. For reinforcement, effects of CP94253 (5.6 mg/kg) across a range of self-administered cocaine doses (0–1.5 mg/kg, i.v.) were examined. Cocaine dose-dependently reinstated cocaine-seeking behavior, but contrary to our prediction, CP94253 reduced reinstatement with both priming doses. Similarly, CP94253 reduced cue-elicited reinstatement. In contrast, CP94253 shifted the self-administration dose-effect curve leftward, consistent with enhanced cocaine reinforcement. When saline was substituted for cocaine, CP94253 reduced response rates (i.e. cocaine-seeking behavior). In subsequent control experiments, CP94253 decreased open-arm exploration in an elevated plus-maze suggesting an anxiogenic effect, but had no effect on locomotion or sucrose reinforcement. These results provide strong evidence that stimulation of 5-HT1BRs produces opposite effects on cocaine reinforcement and cocaine-seeking behavior, and further suggest that 5-HT1BRs may be a novel target for developing medications for cocaine dependence. PMID:19650818

  11. Stimulation of 5-HT(1B) receptors enhances cocaine reinforcement yet reduces cocaine-seeking behavior.

    PubMed

    Pentkowski, Nathan S; Acosta, Jazmin I; Browning, Jenny R; Hamilton, Elizabeth C; Neisewander, Janet L

    2009-09-01

    Paradoxically, stimulation of 5-HT(1B) receptors (5-HT(1B)Rs) enhances sensitivity to the reinforcing effects of cocaine but attenuates incentive motivation for cocaine as measured using the extinction/reinstatement model. We revisited this issue by examining the effects of a 5-HT(1B)R agonist, CP94253, on cocaine reinforcement and cocaine-primed reinstatement, predicting that CP94253 would enhance cocaine-seeking behavior reinstated by a low priming dose, similar to its effect on cocaine reinforcement. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. For reinstatement experiments, they then underwent daily extinction training to reduce cocaine-seeking behavior (operant responses without cocaine reinforcement). Next, they were pre-treated with CP94253 (3-10 mg/kg, s.c.) and either tested for cocaine-primed (10 or 2.5 mg/kg, i.p.) or cue-elicited reinstatement of extinguished cocaine-seeking behavior. For reinforcement, effects of CP94253 (5.6 mg/kg) across a range of self-administered cocaine doses (0-1.5 mg/kg, i.v.) were examined. Cocaine dose-dependently reinstated cocaine-seeking behavior, but contrary to our prediction, CP94253 reduced reinstatement with both priming doses. Similarly, CP94253 reduced cue-elicited reinstatement. In contrast, CP94253 shifted the self-administration dose-effect curve leftward, consistent with enhanced cocaine reinforcement. When saline was substituted for cocaine, CP94253 reduced response rates (i.e. cocaine-seeking behavior). In subsequent control experiments, CP94253 decreased open-arm exploration in an elevated plus-maze suggesting an anxiogenic effect, but had no effect on locomotion or sucrose reinforcement. These results provide strong evidence that stimulation of 5-HT(1B)Rs produces opposite effects on cocaine reinforcement and cocaine-seeking behavior, and further suggest that 5-HT(1B)Rs may be a novel target for developing medications for cocaine dependence. PMID:19650818

  12. Tetrachloroethene degradation by reducing-agent enhanced Fe(II)/Fe(III) catalyzed percarbonate

    NASA Astrophysics Data System (ADS)

    Miao, Z.; Brusseau, M. L.; Lu, S.; Gu, X.; Yan, N.; Qiu, Z.; Sui, Q.

    2015-12-01

    This project investigated the effect of reducing agents on the degradation of tetrachloroethene(PCE) by Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC). SPC possesses similar function as liquid H2O2, such that free H2O2 is released into solution when percarbonate is mixed with water. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redoxcycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations.The results of chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO● was the predominant radical in the system and that O2●-played a minor role. This was further confirmed by the results of electron paramagnetic resonance measurements and salicylic acid hydroxylationanalysis by high performance liquid chromatography(HPLC). PCE degradation decreased significantly with the addition of isopropanol, a strong HO● scavenger, supporting the hypothesis that HO● was primarily responsible for PCE degradation. It should be noted that the release of Cl- was slightly delayed in the first 20 mins, indicating that intermediate products were produced. However, gas chromatography mass spectrometry (GC/MS) analysis did not detect any chlorinated organic compound except PCE, indicating these intermediates were quickly degraded, which resulted in the complete conversion of PCE to CO2. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.

  13. Green synthesis of biphasic TiO₂-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity.

    PubMed

    Sher Shah, Md Selim Arif; Park, A Reum; Zhang, Kan; Park, Jong Hyeok; Yoo, Pil J

    2012-08-01

    A series of TiO(2)-reduced graphene oxide (RGO) nanocomposites were prepared by simple one-step hydrothermal reactions using the titania precursor, TiCl(4) and graphene oxide (GO) without reducing agents. Hydrolysis of TiCl(4) and mild reduction of GO were simultaneously carried out under hydrothermal conditions. While conventional approaches mostly utilize multistep chemical methods wherein strong reducing agents, such as hydrazine, hydroquinone, and sodium borohydride are employed, our method provides the notable advantages of a single step reaction without employing toxic solvents or reducing agents, thereby providing a novel green synthetic route to produce the nanocomposites of RGO and TiO(2). The as-synthesized nanocomposites were characterized by several crystallographic, microscopic, and spectroscopic characterization methods, which enabled confrimation of the robustness of the suggested reaction scheme. Notably, X-ray diffraction and transmission electron micrograph proved that TiO(2) contained both anatase and rutile phases. In addition, the photocatalytic activities of the synthesized composites were measured for the degradation of rhodamine B dye. The catalyst also can degrade a colorless dye such as benzoic acid under visible light. The synthesized nanocomposites of biphasic TiO(2) with RGO showed enhanced catalytic activity compared to conventional TiO(2) photocatalyst, P25. The photocatalytic activity is strongly affected by the concentration of RGO in the nanocomposites, with the best photocatalytic activity observed for the composite of 2.0 wt % RGO. Since the synthesized biphasic TiO(2)-RGO nanocomposites have been shown to effectively reduce the electron-hole recombination rate, it is anticipated that they will be utilized as anode materials in lithium ion batteries. PMID:22788800

  14. Cholinergic afferent stimulation induces axonal function plasticity in adult hippocampal granule cells.

    PubMed

    Martinello, Katiuscia; Huang, Zhuo; Lujan, Rafael; Tran, Baouyen; Watanabe, Masahiko; Cooper, Edward C; Brown, David A; Shah, Mala M

    2015-01-21

    Acetylcholine critically influences hippocampal-dependent learning. Cholinergic fibers innervate hippocampal neuron axons, dendrites, and somata. The effects of acetylcholine on axonal information processing, though, remain unknown. By stimulating cholinergic fibers and making electrophysiological recordings from hippocampal dentate gyrus granule cells, we show that synaptically released acetylcholine preferentially lowered the action potential threshold, enhancing intrinsic excitability and synaptic potential-spike coupling. These effects persisted for at least 30 min after the stimulation paradigm and were due to muscarinic receptor activation. This caused sustained elevation of axonal intracellular Ca(2+) via T-type Ca(2+) channels, as indicated by two-photon imaging. The enhanced Ca(2+) levels inhibited an axonal KV7/M current, decreasing the spike threshold. In support, immunohistochemistry revealed muscarinic M1 receptor, CaV3.2, and KV7.2/7.3 subunit localization in granule cell axons. Since alterations in axonal signaling affect neuronal firing patterns and neurotransmitter release, this is an unreported cellular mechanism by which acetylcholine might, at least partly, enhance cognitive processing. PMID:25578363

  15. Cholinergic Functioning in Stimulant Addiction: Implications for Medications Development

    PubMed Central

    Sofuoglu, Mehmet; Mooney, Marc

    2009-01-01

    Acetylcholine (ACh), the first neurotransmitter discovered, participates in many CNS functions including sensory and motor processing, sleep, nociception, mood, stress response, attention, arousal, memory, motivation and reward. These diverse cholinergic effects are mediated by nicotinic (nAChR) and muscarinic (mAChR) type cholinergic receptors. The goal of this review is to synthesize a growing literature that supports the potential role of ACh as a treatment target for stimulant addiction. ACh interacts with the dopaminergic reward system in the ventral tegmental area (VTA), nucleus accumbens (NAc) and prefrontal cortex (PFC). In the VTA, both nAChR and mAChR stimulate the dopaminergic system. In the NAc, cholinergic interneurons integrate cortical and subcortical information related to reward. In the PFC, the cholinergic system contributes to the cognitive aspects of addiction. Preclinical studies support a facilitative role of nicotinic agonists in the development of stimulant addiction. Muscarinic agonists seem to have an inhibitory role depending on the subtype of mAChR. In human studies acetylcholine esterase (AChE) inhibitors, which increase synaptic ACh levels, have shown promise for the treatment of stimulant addiction. Further studies testing the efficacy of cholinergic medications for stimulant addiction are warranted. PMID:19845415

  16. Endogenous Cholinergic Neurotransmission Contributes to Behavioral Sensitization to Morphine

    PubMed Central

    Bajic, Dusica; Soiza-Reilly, Mariano; Spalding, Allegra L.; Berde, Charles B.; Commons, Kathryn G.

    2015-01-01

    Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg. PMID:25647082

  17. Dual effects of β-cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibition and reduced cytotoxicity.

    PubMed

    Jaiswal, Swarna; Bhattacharya, Kunal; McHale, Patrick; Duffy, Brendan

    2015-01-01

    The composition and mode of synthesis of nanoparticles (NPs) can affect interaction with bacterial and human cells differently. The present work describes the ability of β-cyclodextrin (β-CD) capped silver nanoparticles (AgNPs) to inhibit biofilm growth and reduce cytotoxicity. Biofilm formation of Staphylococcus epidermidis CSF 41498 was quantified by a crystal violet assay in the presence of native and capped AgNPs (Ag-10CD and Ag-20CD), and the morphology of the biofilm was observed by scanning electron microscope. The cytotoxicity of the AgNPs against HaCat cells was determined by measuring the increase in intracellular reactive oxygen species and change in mitochondrial membrane potential (ΔΨm). Results indicated that capping AgNPs with β-CD improved their efficacy against S. epidermidis CSF 41498, reduced biofilm formation and their cytotoxicity. The study concluded that β-CD is an effective capping and stabilising agent that reduces toxicity of AgNPs against the mammalian cell while enhancing their antibiofilm activity. PMID:25596861

  18. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    PubMed

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD. PMID:26638718

  19. Rest Intervals Reduce the Number of Loading Bouts Required to Enhance Bone Formation

    PubMed Central

    Srinivasan, Sundar; Ausk, Brandon J.; Bain, Steven D.; Gardiner, Edith M.; Kwon, Ronald Y.; Gross, Ted S.

    2015-01-01

    Purpose As our society becomes increasingly sedentary, compliance with exercise regimens that require numerous high-energy activities each week become less likely. Alternatively, given an osteogenic exercise intervention that required minimal effort, it is reasonable to presume that participation would be enhanced. Insertion of brief rest-intervals between each cycle of mechanical loading holds potential to achieve this result as substantial osteoblast function is activated by many fewer loading repetitions within each loading bout. Here, we examined the complementary hypothesis that the number of bouts/wk of rest-inserted loading could be reduced from 3/wk without loss of osteogenic efficacy. Methods We conducted a series of 3 wk in vivo experiments that non-invasively exposed the right tibiae of mice to either cyclic (1 Hz) or rest-inserted loading interventions and quantified osteoblast function via dynamic histomorphometry. Results While reducing loading bouts from 3/wk (i.e., 9 total bouts) to 1/wk (3 total bouts) effectively mitigated the osteogenic benefit of cyclic loading, the same reduction did not significantly reduce periosteal bone formation parameters induced by rest-inserted loading. The osteogenic response was robust to the timing of the rest-inserted loading bouts (3 bouts in the first week vs 1 bout/wk for three weeks). However, elimination of any single bout of the three 1/wk bouts mitigated the osteogenic response to rest-inserted loading. Finally, periosteal osteoblast function assessed after the 3 wk intervention was not sensitive to the timing or number of rest-inserted loading bouts. Conclusions We conclude that rest-inserted loading holds potential to retain the osteogenic benefits of mechanical loading with significantly reduced frequency of bouts of activity while also enabling greater flexibility in the timing of the activity. PMID:25207932

  20. Surface modifications of photoanodes in dye sensitized solar cells: enhanced light harvesting and reduced recombination

    NASA Astrophysics Data System (ADS)

    Saxena, Vibha; Aswal, D. K.

    2015-06-01

    In a quest to harvest solar power, dye-sensitized solar cells (DSSCs) have potential for low-cost eco-friendly photovoltaic devices. The major processes which govern the efficiency of a DSSC are photoelectron generation, injection of photo-generated electrons to the conduction band (CB) of the mesoporous nanocrystalline semiconductor (nc-SC); transport of CB electrons through nc-SC and subsequent collection of CB electrons at the counter electrode (CE) through the external circuit; and dye regeneration by redox couple or hole transport layer (HTL). Most of these processes occur at various interfaces of the photoanode. In addition, recombination losses of photo-generated electrons with either dye or redox molecules take place at the interfaces. Therefore, one of the key requirements for high efficiency is to improve light harvesting of the photoanode and to reduce the recombination losses at various interfaces. In this direction, surface modification of the photoanode is the simplest method among the various other approaches available in the literature. In this review, we present a comprehensive discussion on surface modification of the photoanode, which has been adopted in the literature for not only enhancing light harvesting but also reducing recombination. Various approaches towards surface modification of the photoanode discussed are (i) fluorine-doped tin oxide (FTO)/nc-SC interface modified via a compact layer of semiconductor material which blocks exposed sites of FTO to electrolyte (or HTL), (ii) nc-SC/dye interface modification either through acid treatment resulting in enhanced dye loading due to a positively charged surface or by depositing insulating/semiconducting blocking layer on the nc-SC surface, which acts as a tunneling barrier for recombination, (iii) nc-SC/dye interface modified by employing co-adsorbents which helps in reducing the dye aggregation and thereby recombination, and (iv) dye/electrolyte (or dye/HTL) interface modification using

  1. Cholinergic Enhancement of Frontal Lobe Activity in Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Saykin, Andrew J.; Wishart, Heather A.; Rabin, Laura A.; Flashman, Laura A.; McHugh, Tara L.; Mamourian, Alexander C.; Santulli, Robert B.

    2004-01-01

    Cholinesterase inhibitors positively affect cognition in Alzheimer's disease (AD) and other conditions, but no controlled functional MRI studies have examined where their effects occur in the brain. We examined the effects of donepezil hydrochloride (Aricept[Registered sign]) on cognition and brain activity in patients with amnestic mild cognitive…

  2. Different additives to enhance the gelation of surimi gel with reduced sodium content.

    PubMed

    Cando, Deysi; Herranz, Beatriz; Borderías, A Javier; Moreno, Helena M

    2016-04-01

    This study tested the effect of adding tetra-sodium pyrophosphate, cystine and lysine as surimi gelation enhancers (Alaska Pollock) in order to reduce the sodium content of gels up to 0.3%. These gels were compared with others that contained 3% NaCl content (the amount typically used for surimi processing). To induce protein gelation, gels were first heated and then set at 5 °C/24 h. Once the physicochemical and rheological properties of the gels were determined, cystine and lysine were found to be the most effective additives improving the characteristics of low NaCl surimi gels. The action of these additives is mainly based on the induction of myofibrillar protein unfolding thus facilitating the formation of the types of bonds needed to establish an appropriate network. It was found that a setting period was needed for gel processing to maximize the effect of the additives. PMID:26593556

  3. Climate change reduces warming potential of nitrous oxide by an enhanced Brewer-Dobson circulation

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela; Reick, Christian H.; Manzini, Elisa; Schultz, Martin G.; Stein, Olaf

    2016-06-01

    The Brewer-Dobson circulation (BDC), which is an important driver of the stratosphere-troposphere exchange, is expected to accelerate with climate change. One particular consequence of this acceleration is the enhanced transport of nitrous oxide (N2O) from its sources at the Earth's surface toward its main sink region in the stratosphere, thus inducing a reduction in its lifetime. N2O is a potent greenhouse gas and the most relevant currently emitted ozone-depleting substance. Here we examine the implications of a reduced N2O lifetime in the context of climate change. We find a decrease in its global warming potential (GWP) and, due to a decline in the atmospheric N2O burden, also a reduction in its total radiative forcing. From the idealized transient global warming simulation we can identify linear regressions for N2O sink, lifetime, and GWP with temperature rise. Our findings are thus not restricted to a particular scenario.

  4. Dimethyl Sulfoxide Enhances Effectiveness of Skin Antiseptics and Reduces Contamination Rates of Blood Cultures

    PubMed Central

    LaSala, Paul R.; Han, Xiang-Yang; Rolston, Kenneth V.; Kontoyiannis, Dimitrios P.

    2012-01-01

    Effective skin antisepsis is of central importance in the prevention of wound infections, colonization of medical devices, and nosocomial transmission of microorganisms. Current antiseptics have a suboptimal efficacy resulting in substantial infectious morbidity, mortality, and increased health care costs. Here, we introduce an in vitro method for antiseptic testing and a novel alcohol-based antiseptic containing 4 to 5% of the polar aprotic solvent dimethyl sulfoxide (DMSO). The DMSO-containing antiseptic resulted in a 1- to 2-log enhanced killing of Staphylococcus epidermidis and other microbes in vitro compared to the same antiseptic without DMSO. In a prospective clinical validation, blood culture contamination rates were reduced from 3.04% for 70% isopropanol–1% iodine (control antiseptic) to 1.04% for 70% isopropanol–1% iodine–5% DMSO (P < 0.01). Our results predict that improved skin antisepsis is possible using new formulations of antiseptics containing strongly polarized but nonionizing (polar aprotic) solvents. PMID:22378911

  5. A hypothetical profile of ordinary steam turbines with reduced cost and enhanced reliability for contemporary conditions

    SciTech Connect

    Leyzerovich, A.S.

    1998-12-31

    Power steam turbines should be characterized with the reduced cost and enhanced reliability and designed on the basis of experience in steam turbine design and operation accumulated in the world`s practice for the latest years. Currently, such turbines have to be particularly matched with requirements of operation for deregulated power systems; so they should be capable of operating in both base-load and cycling modes. It seems reasonable to have such turbines with the single capacity about 250--400 MW, supercritical main steam pressure, and single steam reheat. This makes it possible to design such turbines with the minimum specific metal amount and length, with the integrated HP-IP and one two-flow LP cylinders. With existing ferritic and martensitic-class steels, the main and reheat steam temperatures can be chosen at the level of 565--580 C (1050--1075 F) without remarkable supplemental expenditures and a sacrifice of reliability. To reduce the capital cost and simplify operation and maintenance, the turbine`s regenerative system can be designed deaeratorless with motor-driven boiler-feed pumps. Such turbines could be used to replace existing old turbines with minimum expenditures. They can also be combined with large high-temperature gas-turbine sets to shape highly efficient combined-cycle units. There exist various design and technological decisions to enhance the turbine reliability and efficiency; they are well worked up and verified in long-term operation practice of different countries. For reliable and efficient operation, the turbine should be furnished with advanced automatic and automated control, diagnostic monitoring, and informative support for the operational personnel.

  6. Astrocyte Intermediaries of Septal Cholinergic Modulation in the Hippocampus.

    PubMed

    Pabst, Milan; Braganza, Oliver; Dannenberg, Holger; Hu, Wen; Pothmann, Leonie; Rosen, Jurij; Mody, Istvan; van Loo, Karen; Deisseroth, Karl; Becker, Albert J; Schoch, Susanne; Beck, Heinz

    2016-05-18

    The neurotransmitter acetylcholine, derived from the medial septum/diagonal band of Broca complex, has been accorded an important role in hippocampal learning and memory processes. However, the precise mechanisms whereby acetylcholine released from septohippocampal cholinergic neurons acts to modulate hippocampal microcircuits remain unknown. Here, we show that acetylcholine release from cholinergic septohippocampal projections causes a long-lasting GABAergic inhibition of hippocampal dentate granule cells in vivo and in vitro. This inhibition is caused by cholinergic activation of hilar astrocytes, which provide glutamatergic excitation of hilar inhibitory interneurons. These results demonstrate that acetylcholine release can cause slow inhibition of principal neuronal activity via astrocyte intermediaries. PMID:27161528

  7. Cholinergic neurotransmission in human corpus cavernosum. II. Acetylcholine synthesis

    SciTech Connect

    Blanco, R.; De Tejada, S.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1988-03-01

    Physiological and histochemical evidence indicates that cholinergic nerves may participate in mediating penile erection. Acetylcholine synthesis and release was studied in isolated human corporal tissue. Human corpus cavernosum incubated with ({sup 3}H)choline accumulated ({sup 3}H)choline and synthesized ({sup 3}H)acethylcholine in an concentration-dependent manner. ({sup 3}H)Acetylcholine accumulation by the tissue was inhibited by hemicholinium-3, a specific antagonist of the high-affinity choline transport in cholinergic nerves. Transmural electrical field stimulation caused release of ({sup 3}H)acetylcholine which was significantly diminished by inhibiting neurotransmission with calcium-free physiological salt solution or tetrodotoxin. These observations provide biochemical and physiological evidence for the existence of cholinergic innervation in human corpus cavernosum.

  8. Hemicholinium mustard derivatives: preliminary assessment of cholinergic neurotoxicity.

    PubMed

    Tagari, P C; Maysinger, D; Cuello, A C

    1986-07-01

    We have attempted to design novel neurotoxins based on the use of hemicholinium derivatives. Three compounds were tested for their neurochemical effects on cholinergic, gabaergic and catecholaminergic markers in the hippocampus, striatum and cortex following intracerebroventricular administration. The effects were compared with those of the non-specific alkylating agent (nitrogen mustard) and the previously reported ethylcholine mustard aziridinium ion (AF 64A). The results indicate that only one of these derivatives (HcM-9) exhibits comparable neurotoxic effects on cholinergic markers with a similar pattern of specificity to that of AF 64A. In addition, HcM-9 showed less overall toxicity, this being reflected in a higher survival rate. The present results indicate that hemicholinium derivatives could be good substrates for further molecular modifications, thus a step towards the design of a more specific cholinergic neurotoxin. PMID:3748277

  9. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density.

    PubMed

    Xie, Can; Zhang, Rongxue; Qu, Yueting; Miao, Zhenyan; Zhang, Yunqin; Shen, Xiaoye; Wang, Tao; Dong, Jiangli

    2012-07-01

    • Dehydrins are a type of late embryogenesis abundant protein. Some dehydrins are involved in the response to various abiotic stresses. Accumulation of dehydrins enhances the drought, cold and salt tolerances of transgenic plants, although the underlying mechanism is unclear. MtCAS31 (Medicago Truncatula cold-acclimation specific protein 31) is a Y(2)K(4)-type dehydrin that was isolated from Medicago truncatula. • We analyzed the subcellular and histochemical localization of MtCAS31, and the expression patterns of MtCAS31 under different stresses. Transgenic Arabidopsis that overexpressed MtCAS31 was used to determine the function of MtCAS31. A yeast two-hybrid assay was used to screen potential proteins that could interact with MtCAS31. The interaction was confirmed by bimolecular fluorescence complementation (BiFC) assay. • After a 3-h drought treatment, the expression of MtCAS31 significantly increased 600-fold. MtCAS31 overexpression dramatically reduced stomatal density and markedly enhanced the drought tolerance of transgenic Arabidopsis. MtCAS31 could interact with AtICE1 (inducer of CBF expression 1) and the AtICE1 homologous protein Mt7g083900.1, which was identified from Medicago truncatula both in vitro and in vivo. • Our findings demonstrate that a dehydrin induces decreased stomatal density. Most importantly, the interaction of MtCAS31 with AtICE1 plays a role in stomatal development. We hypothesize that the interaction of MtCAS31 and AtICE1 caused the decrease in stomatal density to enhance the drought resistance of transgenic Arabidopsis. PMID:22510066

  10. Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance.

    PubMed

    Wang, Ning; Duchamp, Martial; Dunin-Borkowski, Rafal E; Liu, Shiyu; Zeng, XianTing; Cao, Xun; Long, Yi

    2016-01-26

    Vanadium dioxide (VO2) is a well-known thermochromic material with large IR modulating ability, promising for energy-saving smart windows. The main drawbacks of VO2 are its high phase transition temperature (τ(c) = 68°C), low luminous transmission (T(lum)), and weak solar modulating ability (ΔT(sol)). In this paper, the terbium cation (Tb(3+)) doping was first reported to reduce τ(c) and increase T(lum) of VO2 thin films. Compared with pristine VO2, 2 at. % doping level gives both enhanced T(lum) and ΔT(sol) from 45.8% to 54.0% and 7.7% to 8.3%, respectively. The T(lum) increases with continuous Tb(3+) doping and reaches 79.4% at 6 at. % doping level, representing ∼73.4% relative increment compared with pure VO2. This has surpassed the best reported doped VO2 thin films. The enhanced thermochromic properties is meaningful for smart window applications of VO2 materials. PMID:26729057

  11. Reduced graphene oxide/CeO{sub 2} nanocomposite with enhanced photocatalytic performance

    SciTech Connect

    Kaur, Jasmeet Anand, Kanika; Singh, Gurpreet; Hastir, Anita; Virpal,; Singh, Ravi Chand; Anand, Kanica

    2015-05-15

    In this work, reduced graphene oxide /cerium oxide (RGO/CeO{sub 2}) nanocomposite was synthesized by in situ reduction of cerium nitrate Ce(NO{sub 3}){sub 3}·6H{sub 2}O in the presence of graphene oxide by hydrazine hydrate (N{sub 2}H{sub 4}.H{sub 2}O). The intrinsic characteristics of as-prepared nanocomposite were studied using powder x-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy (FESEM). The photocatalytic degradation of methylene blue (MB) was employed as a model reaction to evaluate the photocatalytic activity of the RGO/CeO{sub 2} nanocomposite. The as-obtained RGO/CeO{sub 2} nanocomposite displays a significantly enhanced photocatalytic degradation of MB dye in comparison with bare CeO{sub 2} nanoparticles under sunlight irradiation, which can be attributed to the improved separation of electron-hole pairs and enhanced adsorption performance due to presence of RGO.

  12. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    PubMed

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity. PMID:25801088

  13. Enhancement of the nonamyloidogenic pathway by exogenous NGF in an Alzheimer transgenic mouse model.

    PubMed

    Yang, Chang; Liu, Yuli; Ni, Xiuqin; Li, Ning; Zhang, Baohui; Fang, Xiubin

    2014-08-01

    Nerve growth factor (NGF) is an important nerve cell growth regulatory factor and has an indispensable role in the development, survival and regeneration of the cholinergic basal forebrain (CBF) neurons, and it has multiple targets when used for Alzheimer's Disease (AD) therapy. In this study, we observed whether NGF can affect cholinergic neurons to change amyloid-β precursor protein (APP) metabolism process and reduce amyloidosis in AD brains. NGF was administered intranasally to APP/PS1 double-transgenic mice for 14weeks. We observed an increase in APP695 and ADAM10 and a decrease in BACE1 and PS1 protein levels and, subsequently, a reduction in Aβ1-40 and Aβ1-42 levels and Aβ burden were present in NGF-treated mice brains, suggesting that NGF enhanced the APP nonamyloidogenic cleavage pathway and reduced the Aβ generation in the APP/PS1 transgenic mice brains. PMID:24813062

  14. Biochemical pathology and treatment strategies in Alzheimer's disease: emphasis on the cholinergic system.

    PubMed

    Winblad, B; Messamore, E; O'Neill, C; Cowburn, R

    1993-01-01

    The neurochemical pathology of Alzheimer's disease (AD) has been consistently shown to involve cholinergic degeneration in the cerebral cortex. This together with evidence from experimental animal studies showing that cholinergic neurones play a role in learning and memory processes has formed the basis of the cholinergic hypothesis of Alzheimer's dementia and the major rationale for neurotransmitter replacement therapy of the disorder. PMID:8128837

  15. Nutrient-Enhanced Diet Reduces Noise-Induced Damage to the Inner Ear and Hearing Loss

    PubMed Central

    Le Prell, C. G.; Gagnon, P. M; Bennett, D. C.; Ohlemiller, K. K.

    2011-01-01

    Oxidative stress has been broadly implicated as a cause of cell death and neural degeneration in multiple disease conditions; however, the evidence for successful intervention with dietary antioxidant manipulations has been mixed. In this study, we investigated the potential for protection of cells in the inner ear using a dietary supplement with multiple antioxidant components, selected for their potential interactive effectiveness. Protection against permanent threshold shift (PTS) was observed in CBA/J mice maintained on a diet supplemented with a combination of β-carotene, vitamins C and E, and magnesium when compared to PTS in control mice maintained on a nutritionally complete control diet. Although hair cell survival was not enhanced, noise-induced loss of Type II fibrocytes in the lateral wall was significantly reduced (p<0.05), and there was a trend towards less noise-induced loss in strial cell density in animals maintained on the supplemented diet. Taken together, our data suggest that pre-noise oral treatment with the high-nutrient diet can protect cells in the inner ear and reduce PTS in mice. Demonstration of functional and morphological preservation of cells in the inner ear with oral administration of this antioxidant supplemented diet supports the possibility of translation to human patients, and suggests an opportunity to evaluate antioxidant protection in mouse models of oxidative stress-related disease and pathology. PMID:21708355

  16. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Xia, Minggang; Cheng, Zhaofang; Han, Jinyun; Zheng, Minrui; Sow, Chorng-Haur; Thong, John T. L.; Zhang, Shengli; Li, Baowen

    2014-05-01

    The electrical and thermal conductivities are measured for individual zinc oxide (ZnO) nanowires with and without gallium ion (Ga+) implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω-1m-1 to 1.46 × 104 Ω-1m-1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm-1K-1 to 1.22 Wm-1K-1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  17. Nutrient-enhanced diet reduces noise-induced damage to the inner ear and hearing loss.

    PubMed

    Le Prell, Colleen G; Gagnon, Patricia M; Bennett, David C; Ohlemiller, Kevin K

    2011-07-01

    Oxidative stress has been implicated broadly as a cause of cell death and neural degeneration in multiple disease conditions; however, the evidence for successful intervention with dietary antioxidant manipulations has been mixed. In this study, we investigated the potential for protection of cells in the inner ear using a dietary supplement with multiple antioxidant components, which were selected for their potential interactive effectiveness. Protection against permanent threshold shift (PTS) was observed in CBA/J mice maintained on a diet supplemented with a combination of β-carotene, vitamins C and E, and magnesium when compared with PTS in control mice maintained on a nutritionally complete control diet. Although hair cell survival was not enhanced, noise-induced loss of type II fibrocytes in the lateral wall was significantly reduced (P < 0.05), and there was a trend toward less noise-induced loss in strial cell density in animals maintained on the supplemented diet. Taken together, our data suggest that prenoise oral treatment with the high-nutrient diet can protect cells in the inner ear and reduce PTS in mice. The demonstration of functional and morphologic preservation of cells in the inner ear with oral administration of this antioxidant supplemented diet supports the possibility of translation to human patients and suggests an opportunity to evaluate antioxidant protection in mouse models of oxidative stress-related disease and pathology. PMID:21708355

  18. Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2-x/BiOCl heterojunctions

    NASA Astrophysics Data System (ADS)

    Fu, Rongrong; Zeng, Xiaoqiao; Ma, Lu; Gao, Shanmin; Wang, Qingyao; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2016-04-01

    A key issue to design highly efficient photoelectrodes for hydrogen production is how to prohibit the rapid carrier recombination. In order to use the visible light and reduce the recombination of electrons and holes, reduced TiO2-x/BiOCl heterojunctions are successfully synthesized and the photoelectrodes are assembled in this work. The effects of various Bi/Ti molar ratios on the structural, morphological, optical, photoelectrochemical and photocatalytic activities of the resultant samples are investigated systematically. The TiO2-x nanoparticles contain Ti3+, Ti2+, and oxygen vacancies (Ov), while the BiOCl nanosheets exposed {001} facet. Ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) results indicate that the existence of Ti3+, Ti2+ and Ov expand the light-response range. Linear scan voltammetry and electrochemical impedance spectroscopy results indicate that more efficient electron transportation is presented in the heterojunctions with the appropriate Bi/Ti molar ratio. Consequently, the reduced TiO2-x/BiOCl heterojunction with the most appropriate Bi/Ti molar ratio exhibits a high photocurrent density of 0.755 mA cm-2 with photoconversion efficiency up to 0.634%, 10.5 and 22.6 times larger than that of pure TiO2 and BiOCl. Furthermore, this heterojunction exhibit 48.38 and 12.54 times enhancement for the visible-light decomposition of rhodamine B compared with pure TiO2 and BiOCl.

  19. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland.

    PubMed

    Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B

    2016-02-01

    Winter climate change may result in reduced snow cover and could, consequently, alter the soil frost regime and biogeochemical processes underlying the exchange of methane (CH4 ) in boreal peatlands. In this study, we investigated the short-term (1-3 years) vs. long-term (11 years) effects of intensified winter soil frost (induced by experimental snow exclusion) on CH4 exchange during the following growing season in a boreal peatland. In the first 3 years (2004-2006), lower CH4 emissions in the treatment plots relative to the control coincided with delayed soil temperature increase in the treatment plots at the beginning of the growing season (May). After 11 treatment years (in 2014), CH4 emissions were lower in the treatment plots relative to the control over the entire growing season, resulting in a reduction in total growing season CH4 emission by 27%. From May to July 2014, reduced sedge leaf area coincided with lower CH4 emissions in the treatment plots compared to the control. From July to August, lower dissolved organic carbon concentrations in the pore water of the treatment plots explained 72% of the differences in CH4 emission between control and treatment. In addition, greater Sphagnum moss growth in the treatment plots resulted in a larger distance between the moss surface and the water table (i.e., increasing the oxic layer) which may have enhanced the CH4 oxidation potential in the treatment plots relative to the control in 2014. The differences in vegetation might also explain the lower temperature sensitivity of CH4 emission observed in the treatment plots relative to the control. Overall, this study suggests that greater soil frost, associated with future winter climate change, might substantially reduce the growing season CH4 emission in boreal peatlands through altering vegetation dynamics and subsequently causing vegetation-mediated effects on CH4 exchange. PMID:26452333

  20. Drosophila SLC22A Transporter Is a Memory Suppressor Gene that Influences Cholinergic Neurotransmission to the Mushroom Bodies.

    PubMed

    Gai, Yunchao; Liu, Ze; Cervantes-Sandoval, Isaac; Davis, Ronald L

    2016-05-01

    The mechanisms that constrain memory formation are of special interest because they provide insights into the brain's memory management systems and potential avenues for correcting cognitive disorders. RNAi knockdown in the Drosophila mushroom body neurons (MBn) of a newly discovered memory suppressor gene, Solute Carrier DmSLC22A, a member of the organic cation transporter family, enhances olfactory memory expression, while overexpression inhibits it. The protein localizes to the dendrites of the MBn, surrounding the presynaptic terminals of cholinergic afferent fibers from projection neurons (Pn). Cell-based expression assays show that this plasma membrane protein transports cholinergic compounds with the highest affinity among several in vitro substrates. Feeding flies choline or inhibiting acetylcholinesterase in Pn enhances memory, an effect blocked by overexpression of the transporter in the MBn. The data argue that DmSLC22A is a memory suppressor protein that limits memory formation by helping to terminate cholinergic neurotransmission at the Pn:MBn synapse. PMID:27146270

  1. Developmental alterations of the septohippocampal cholinergic projection in a lissencephalic mouse model.

    PubMed

    Garcia-Lopez, Raquel; Pombero, Ana; Dominguez, Eduardo; Geijo-Barrientos, Emilio; Martinez, Salvador

    2015-09-01

    LIS1 is one of principal genes related with Type I lissencephaly, a severe human brain malformation characterized by abnormal neuronal migration in the cortex. The LIS1 gene encodes a brain-specific 45kDa non-catalytic subunit of platelet-activating factor (PAF) acetylhydrolase-1b (PAFAH1b), an enzyme that inactivates the PAF. We have studied the role of Lis1 using a Lis1/sLis1 murine model, which has deleted the first coding exon from Lis1 gene. Homozygous mice are not viable but heterozygous have shown a delayed corticogenesis and neuronal dysplasia, with enhanced cortical excitability. Lis1/sLis1 embryos also exhibited a delay of cortical innervation by the thalamocortical fibers. We have explored in Lis1/sLis1 mice anomalies in forebrain cholinergic neuron development, which migrate from pallium to subpallium, and functionally represent the main cholinergic input to the cerebral cortex, modulating cortical activity and facilitating attention, learning, and memory. We hypothesized that primary migration anomalies and/or disorganized cortex could affect cholinergic projections from the basal forebrain and septum in Lis1/sLis1 mouse. To accomplish our objective we have first studied basal forebrain neurons in Lis1/sLis1 mice during development, and described structural and hodological differences between wild-type and Lis1/sLis1 embryos. In addition, septohippocampal projections showed altered development in mutant embryos. Basal forebrain abnormalities could contribute to hippocampal excitability anomalies secondary to Lis1 mutations and may explain the cognitive symptoms associated to cortical displasia-related mental diseases and epileptogenic syndromes. PMID:26079645

  2. Inhibition of cholinergic pathways in Drosophila melanogaster by α-conotoxins

    PubMed Central

    Heghinian, Mari D.; Mejia, Monica; Adams, David J.; Godenschwege, Tanja A.; Marí, Frank

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) play a pivotal role in synaptic transmission of neuronal signaling pathways and are fundamentally involved in neuronal disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In vertebrates, cholinergic pathways can be selectively inhibited by α-conotoxins; we show that in the model organism Drosophila, the cholinergic component of the giant fiber system is inhibited by α-conotoxins MII, AuIB, BuIA, EI, PeIA, and ImI. The injection of 45 pmol/fly of each toxin dramatically decreases the response of the giant fiber to dorsal longitudinal muscle (GF-DLM) connection to 20 ± 13.9% for MII; 26 ± 13.7% for AuIB, 12 ± 9.9% for BuIA, 30 ± 11.3% for EI, 1 ± 1% for PeIA, and 34 ± 15.4% for ImI. Through bioassay-guided fractionation of the venom of Conus brunneus, we found BruIB, an α-conotoxin that inhibits Drosophila nicotinic receptors but not its vertebrate counterparts. GF-DLM responses decreased to 43.7 ± 8.02% on injection of 45 pmol/fly of BruIB. We manipulated the Dα7 nAChR to mimic the selectivity of its vertebrate counterpart by placing structurally guided point mutations in the conotoxin-binding site. This manipulation rendered vertebrate-like behavior in the Drosophila system, enhancing the suitability of Drosophila as an in vivo tool to carry out studies related to human neuronal diseases.—Heghinian, M. D., Mejia, M., Adams, D. J., Godenschwege, T. A., Marí, F. Inhibition of cholinergic pathways in Drosophila melanogaster by α-conotoxins. PMID:25466886

  3. Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons.

    PubMed

    Ye, Meijun; Hayar, Abdallah; Strotman, Beau; Garcia-Rill, Edgar

    2010-05-01

    The pedunculopontine nucleus (PPN) is part of the cholinergic arm of the reticular activating system, which is mostly active during waking and rapid-eye movement sleep. The PPN projects to the thalamus and receives cholinergic inputs from the laterodorsal tegmental nucleus and contralateral PPN. We employed retrograde labeling and whole cell recordings to determine the modulation of GABAergic, glycinergic, and glutamatergic transmission to PPN thalamic projecting neurons, and their postsynaptic responses to the nonspecific cholinergic agonist carbachol. M2 and M4 muscarinic receptor-modulated inhibitory postsynaptic responses were observed in 73% of PPN output neurons; in 12.9%, M1 and nicotinic receptor-mediated excitation was detected; and muscarinic and nicotinic-modulated fast inhibitory followed by slow excitatory biphasic responses were evident in 6.7% of cells. A significant increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents during carbachol application was observed in 66.2% and 65.2% of efferent neurons, respectively. This effect was blocked by a M1 antagonist or nonselective muscarinic blocker, indicating that glutamatergic, GABAergic, and/or glycinergic neurons projecting to PPN output neurons are excited through muscarinic receptors. Decreases in the frequency of miniature EPSCs, and amplitude of electrical stimulation-evoked EPSCs, were blocked by a M2 antagonist, suggesting the presence of M2Rs at terminals of presynaptic glutamatergic neurons. Carbachol-induced multiple types of postsynaptic responses, enhancing both inhibitory and excitatory fast transmission to PPN thalamic projecting neurons through muscarinic receptors. These results provide possible implications for the generation of different frequency oscillations in PPN thalamic projecting neurons during distinct sleep-wake states. PMID:20181729

  4. Enhanced monolithic diffraction gratings with high efficiency and reduced polarization sensitivity for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Triebel, Peter; Diehl, Torsten; Moeller, Tobias; Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars H.; Burkhardt, Matthias; Kalies, Alexander

    2015-10-01

    Spectral imaging systems lead to enhanced sensing properties when the sensing system provides sufficient spectral resolution to identify materials from its spectral reflectance signature. The performance of diffraction gratings provides an initial way to improve instrumental resolution. Thus, subsequent manufacturing techniques of high quality gratings are essential to significantly improve the spectral performance. The ZEISS unique technology of manufacturing real-blazed profiles and as well as lamellar profiles comprising transparent substrates is well suited for the production of transmission gratings. In order to reduce high order aberrations, aspherical and free-form surfaces can be alternatively processed to allow more degrees of freedom in the optical design of spectroscopic instruments with less optical elements and therefore size and weight advantages. Prism substrates were used to manufacture monolithic GRISM elements for UV to IR spectral range. Many years of expertise in the research and development of optical coatings enable high transmission anti-reflection coatings from the DUV to the NIR. ZEISS has developed specially adapted coating processes (Ion beam sputtering, ion-assisted deposition and so on) for maintaining the micro-structure of blazed gratings in particular. Besides of transmission gratings, numerous spectrometer setups (e.g. Offner, Rowland circle, Czerny-Turner system layout) working on the optical design principles of reflection gratings. This technology steps can be applied to manufacture high quality reflection gratings from the EUV to the IR applications with an outstanding level of low stray light and ghost diffraction order by employing a combination of holography and reactive ion beam etching together with the in-house coating capabilities. We report on results of transmission gratings on plane and curved substrates and GRISM elements with enhanced efficiency of the grating itself combined with low scattered light in the angular

  5. Enhanced Neural Responses to Imagined Primary Rewards Predict Reduced Monetary Temporal Discounting.

    PubMed

    Hakimi, Shabnam; Hare, Todd A

    2015-09-23

    The pervasive tendency to discount the value of future rewards varies considerably across individuals and has important implications for health and well-being. Here, we used fMRI with human participants to examine whether an individual's neural representation of an imagined primary reward predicts the degree to which the value of delayed monetary payments is discounted. Because future rewards can never be experienced at the time of choice, imagining or simulating the benefits of a future reward may play a critical role in decisions between alternatives with either immediate or delayed benefits. We found that enhanced ventromedial prefrontal cortex response during imagined primary reward receipt was correlated with reduced discounting in a separate monetary intertemporal choice task. Furthermore, activity in enhanced ventromedial prefrontal cortex during reward imagination predicted temporal discounting behavior both between- and within-individual decision makers with 62% and 73% mean balanced accuracy, respectively. These results suggest that the quality of reward imagination may impact the degree to which future outcomes are discounted. Significance statement: We report a novel test of the hypothesis that an important factor influencing the discount rate for future rewards is the quality with which they are imagined or estimated in the present. Previous work has shown that temporal discounting is linked to individual characteristics ranging from general intelligence to the propensity for addiction. We demonstrate that individual differences in a neurobiological measure of primary reward imagination are significantly correlated with discounting rates for future monetary payments. Moreover, our neurobiological measure of imagination can be used to accurately predict choice behavior both between and within individuals. These results suggest that improving reward imagination may be a useful therapeutic target for individuals whose high discount rates promote

  6. The Eng1 β-Glucanase Enhances Histoplasma Virulence by Reducing β-Glucan Exposure

    PubMed Central

    Garfoot, Andrew L.; Shen, Qian; Wüthrich, Marcel; Klein, Bruce S.

    2016-01-01

    ABSTRACT The fungal pathogen Histoplasma capsulatum parasitizes host phagocytes. To avoid antimicrobial immune responses, Histoplasma yeasts must minimize their detection by host receptors while simultaneously interacting with the phagocyte. Pathogenic Histoplasma yeast cells, but not avirulent mycelial cells, secrete the Eng1 protein, which is a member of the glycosylhydrolase 81 (GH81) family. We show that Histoplasma Eng1 is a glucanase that hydrolyzes β-(1,3)-glycosyl linkages but is not required for Histoplasma growth in vitro or for cell separation. However, Histoplasma yeasts lacking Eng1 function have attenuated virulence in vivo, particularly during the cell-mediated immunity stage. Histoplasma yeasts deficient for Eng1 show increased exposure of cell wall β-glucans, which results in enhanced binding to the Dectin-1 β-glucan receptor. Consistent with this, Eng1-deficient yeasts trigger increased tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) cytokine production from macrophages and dendritic cells. While not responsible for large-scale cell wall structure and function, the secreted Eng1 reduces levels of exposed β-glucans at the yeast cell wall, thereby diminishing potential recognition by Dectin-1 and proinflammatory cytokine production by phagocytes. In α-glucan-producing Histoplasma strains, Eng1 acts in concert with α-glucan to minimize β-glucan exposure: α-glucan provides a masking function by covering the β-glucan-rich cell wall, while Eng1 removes any remaining exposed β-glucans. Thus, Histoplasma Eng1 has evolved a specialized pathogenesis function to remove exposed β-glucans, thereby enhancing the ability of yeasts to escape detection by host phagocytes. PMID:27094334

  7. Enhancement of topical delivery of drugs via direct penetration by reducing blood flow rate in skin.

    PubMed

    Higaki, K; Nakayama, K; Suyama, T; Amnuaikit, Chomchan; Ogawara, K; Kimura, T

    2005-01-20

    The purpose of this work was to investigate the effect of blood flow in the skin on the direct penetration of topically applied drugs into the muscular layer, and to show that the skin blood flow could also be one of the important factors determining the direct penetration of drugs to the muscular layer. In vivo percutaneous absorption study was performed for antipyrine, salicylic acid or diclofenac by using rats with tape-stripped skin. Phenylephrine, which is well known to reduce the local blood flow by vasoconstrictor action, was topically applied to decrease the local blood flow in the skin. The concentrations of drugs in viable skin and muscle, and the local blood flow in the skin under the applied and the contralateral sites were determined to evaluate the effect of the local blood flow on the delivery of topically applied drugs into the muscular layer. Dose dependency for the effect of phenylephrine was, first of all, investigated for antipyrine in the range from 0.4 to 10 micromol. The distribution of antipyrine into the viable skin and muscular layer 2 h after topical application significantly increased, but the effect of phenylephrine was saturated around 2 micromol and the dose-dependent profiles for both tissues were almost superimposed. On the other hand, the fraction dose absorbed, plasma concentration and concentrations in viable skin and muscular layer under the contralateral site showed the decreasing tendency and the saturation of the effect around 2 micromol. To confirm the effect of phenylephrine on the local blood flow in the skin, the skin blood flow was measured 2 h after topical application of 2 micromol phenylephrine, and the significant decrease in the blood flow was recognized. In vivo percutaneous absorption studies were performed for salicylic acid and diclofenac, too. Extensive enhancement of penetration into the viable skin and muscular layer was observed for both drugs, although total absorption from the donor cell showed the

  8. Disparate cholinergic currents in rat principal trigeminal sensory nucleus neurons mediated by M1 and M2 receptors: a possible mechanism for selective gating of afferent sensory neurotransmission.

    PubMed

    Kohlmeier, Kristi A; Soja, Peter J; Kristensen, Morten P

    2006-06-01

    Neurons situated in the principal sensory trigeminal nucleus (PSTN) convey orofacial sensory inputs to thalamic relay regions and higher brain centres, and the excitability of these ascending tract cells is modulated across sleep/wakefulness states and during pain conditions. Moreover, acetylcholine release changes profoundly across sleep/wakefulness states and ascending sensory neurotransmission is altered by cholinergic agonists. An intriguing possibility is, therefore, that cholinergic mechanisms mediate such state-dependent modulation of PSTN tract neurons. We tested the hypotheses that cholinergic agonists can modulate PSTN cell excitability and that such effects are mediated by muscarinic receptor subtypes, using patch-clamp methods in rat and mouse. In all examined cells, carbachol elicited an electrophysiological response that was independent of action potential generation as it persisted in the presence of tetrodotoxin. Responses were of three types: depolarization, hyperpolarization or a biphasic response consisting of hyperpolarization followed by depolarization. In voltage-clamp mode, carbachol evoked corresponding inward, outward or biphasic currents. Moreover, immunostaining for the vesicle-associated choline transporter showed cholinergic innervation of the PSTN. Using muscarinic receptor antagonists, we found that carbachol-elicited PSTN neuron hyperpolarization was mediated by M2 receptors and depolarization, in large part, by M1 receptors. These data suggest that acetylcholine acting on M1 and M2 receptors may contribute to selective excitability enhancement or depression in individual, rostrally projecting sensory neurons. Such selective gating effects via cholinergic input may play a functional role in modulation of ascending sensory transmission, including across behavioral states typified by distinct cholinergic tone, e.g. sleep/wakefulness arousal levels or neuropathic pain conditions. PMID:16820015

  9. Oxazolone-Induced Contact Hypersensitivity Reduces Lymphatic Drainage but Enhances the Induction of Adaptive Immunity

    PubMed Central

    Aebischer, David; Willrodt, Ann-Helen; Halin, Cornelia

    2014-01-01

    Contact hypersensitivity (CHS) induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC) migration to draining lymph nodes (dLNs). On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA) was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH) response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40) and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function. PMID:24911791

  10. Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice.

    PubMed

    McCroskery, Seumas; Thomas, Mark; Platt, Leanne; Hennebry, Alex; Nishimura, Takanori; McLeay, Lance; Sharma, Mridula; Kambadur, Ravi

    2005-08-01

    Numerous stimulatory growth factors that can influence muscle regeneration are known. Recently, it has been demonstrated that neutralization of muscle growth inhibitory factors, such as myostatin (Mstn; also known as growth differentiation factor 8, Gdf8), also leads to increased muscle regeneration in mdx mice that are known to have cycles of degeneration. However, the precise mechanism by which Mstn regulates muscle regeneration has not yet been fully determined. To investigate the role of Mstn in adult skeletal muscle regeneration, wild-type and myostatin-null (Mstn-/-) mice were injured with notexin. Forty-eight hours after injury, accelerated migration and enhanced accretion of myogenic cells (MyoD1+) and macrophages (Mac-1+) was observed at the site of regeneration in Mstn-/- muscle as compared with wild-type muscle. Inflammatory cell numbers decreased more rapidly in the Mstn-/- muscle, indicating that the whole process of inflammatory cell response is accelerated in Mstn-/- mice. Consistent with this result, the addition of recombinant Mstn reduced the activation of satellite cells (SCs) and chemotactic movements of both myoblasts and macrophages ex vivo. Examination of regenerated muscle (28 days after injury) also revealed that Mstn-/- mice showed increased expression of decorin mRNA, reduced fibrosis and improved healing as compared with wild-type mice. On the basis of these results, we propose that Mstn negatively regulates muscle regeneration not only by controlling SC activation but also by regulating the migration of myoblasts and macrophages to the site of injury. Thus, antagonists of Mstn could potentially be useful as pharmacological agents for the treatment of disorders of overt degeneration and regeneration. PMID:16079293

  11. Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum.

    PubMed

    Ponterio, G; Tassone, A; Sciamanna, G; Riahi, E; Vanni, V; Bonsi, P; Pisani, A

    2013-12-01

    Cholinergic interneurons (ChIs) of dorsal striatum play a key role in motor control and in behavioural learning. Neuropeptides regulate cholinergic transmission and mu opioid receptor (MOR) activation modulates striatal acetylcholine release. However, the mechanisms underlying this effect are yet uncharacterized. Here, we examined the electrophysiological responses of ChIs to the selective MOR agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol)5] enkephalin}. We observed a robust, dose-dependent inhibition of spontaneous firing activity (0.06-3 μM) which was reversible upon drug washout and blocked by the selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) (1 μM). Voltage-clamp analysis of the reversal potential of the DAMGO effect did not provide univocal results, indicating the involvement of multiple membrane conductances. The MOR-dependent effect persisted in the presence of GABAA and ionotropic glutamate receptor antagonists, ruling out an indirect effect. Additionally, it depended upon G-protein activation, as it was prevented by intrapipette GDP-β-S. Because D2 dopamine receptors (D2R) and MOR share a common post-receptor signalling pathway, occlusion experiments were performed with maximal doses of both D2R and MOR agonists. The D2R agonist quinpirole decreased spike discharge, which was further reduced by adding DAMGO. Then, D2R or MOR antagonists were used to challenge the response to the respective agonists, DAMGO or quinpirole. No cross-effect was observed, suggesting that the two receptors act independently. Our findings demonstrate a postsynaptic inhibitory modulation by MOR on ChIs excitability. Such opioidergic regulation of cholinergic transmission might contribute to shape information processing in basal ganglia circuits, and represent a potential target for pharmacological intervention. PMID:23891638

  12. Endogenous ghrelin attenuates pressure overload-induced cardiac hypertrophy via a cholinergic anti-inflammatory pathway.

    PubMed

    Mao, Yuanjie; Tokudome, Takeshi; Kishimoto, Ichiro; Otani, Kentaro; Nishimura, Hirohito; Yamaguchi, Osamu; Otsu, Kinya; Miyazato, Mikiya; Kangawa, Kenji

    2015-06-01

    Cardiac hypertrophy, which is commonly caused by hypertension, is a major risk factor for heart failure and sudden death. Endogenous ghrelin has been shown to exert a beneficial effect on cardiac dysfunction and postinfarction remodeling via modulation of the autonomic nervous system. However, ghrelin's ability to attenuate cardiac hypertrophy and its potential mechanism of action are unknown. In this study, cardiac hypertrophy was induced by transverse aortic constriction in ghrelin knockout mice and their wild-type littermates. After 12 weeks, the ghrelin knockout mice showed significantly increased cardiac hypertrophy compared with wild-type mice, as evidenced by their significantly greater heart weight/tibial length ratios (9.2±1.9 versus 7.9±0.8 mg/mm), left ventricular anterior wall thickness (1.3±0.2 versus 1.0±0.2 mm), and posterior wall thickness (1.1±0.3 versus 0.9±0.1 mm). Furthermore, compared with wild-type mice, ghrelin knockout mice showed suppression of the cholinergic anti-inflammatory pathway, as indicated by reduced parasympathetic nerve activity and higher plasma interleukin-1β and interleukin-6 levels. The administration of either nicotine or ghrelin activated the cholinergic anti-inflammatory pathway and attenuated cardiac hypertrophy in ghrelin knockout mice. In conclusion, our results show that endogenous ghrelin plays a crucial role in the progression of pressure overload-induced cardiac hypertrophy via a mechanism that involves the activation of the cholinergic anti-inflammatory pathway. PMID:25870195

  13. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    SciTech Connect

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. )

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  14. IL-4 Induces Cholinergic Differentiation of Retinal Cells In Vitro.

    PubMed

    Granja, Marcelo Gomes; Braga, Luis Eduardo Gomes; Carpi-Santos, Raul; de Araujo-Martins, Leandro; Nunes-Tavares, Nilson; Calaza, Karin C; Dos Santos, Aline Araujo; Giestal-de-Araujo, Elizabeth

    2015-07-01

    Interleukin-4 (IL-4) is a pleiotropic cytokine that regulates several phenomena, among them survival and differentiation of neuronal and glial cells. The aim of this work was to investigate the effect of IL-4 on the cholinergic differentiation of neonatal rat retinal cells in vitro, evaluating its effect on the levels of cholinergic markers (CHT1-high-affinity choline transporter; VAChT-vesicular acetylcholine transporter, ChAT-choline acetyltransferase, AChE-acetylcholinesterase), muscarinic receptors, and on the signaling pathways involved. Lister Hooded rat pups were used in postnatal days 0-2 (P0-P2). Our results show that IL-4 treatment (50 U/mL) for 48 h increases the levels of the cholinergic transporters VAChT and CHT1, the acetylcholinesterase activity, and the number of ChAT-positive cells. It also induces changes in muscarinic receptor levels, leading to a small decrease in M1 levels and a significant increase in M3 and M5 levels after 48 h of treatment. We also showed that IL-4 effect on M3 receptors is dependent on type I IL-4 receptor and on an increase in NFκB phosphorylation. These results indicate that IL-4 stimulates cholinergic differentiation of retinal cells. PMID:25682112

  15. Basal ganglia cholinergic and dopaminergic function in progressive supranuclear palsy.

    PubMed

    Warren, Naomi M; Piggott, Margaret A; Greally, Elizabeth; Lake, Michelle; Lees, Andrew J; Burn, David J

    2007-08-15

    Progressive Supranuclear Palsy (PSP) is a progressive neurodegenerative disorder. In contrast to Parkinson's disease (PD) and dementia with Lewy bodies (DLB), replacement therapy with dopaminergic and cholinergic agents in PSP has been disappointing. The neurochemical basis for this is unclear. Our objective was to measure dopaminergic and cholinergic receptors in the basal ganglia of PSP and control brains. We measured, autoradiographically, dopaminergic (dopamine transporter, 125I PE2I and dopamine D2 receptors, 125I epidepride) and cholinergic (nicotinic alpha4beta2 receptors, 125I 5IA85380 and muscarinic M1 receptors, 3H pirenzepine) parameters in the striatum and pallidum of pathologically confirmed PSP cases (n=15) and controls (n=32). In PSP, there was a marked loss of dopamine transporter and nicotinic alpha4beta2 binding in the striatum and pallidum, consistent with loss of nigrostriatal neurones. Striatal D2 receptors were increased in the caudate and muscarinic M1 receptors were unchanged compared with controls. These results do not account for the poor response to dopaminergic and cholinergic replacement therapies in PSP, and suggest relative preservation of postsynaptic striatal projection neurones bearing D2/M1 receptors. PMID:17534953

  16. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  17. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited

    PubMed Central

    van Enkhuizen, Jordy; Janowsky, David S; Olivier, Berend; Minassian, Arpi; Perry, William; Young, Jared W; Geyer, Mark A

    2014-01-01

    Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research. PMID:25107282

  18. Cholinergic inhibition of neocortical pyramidal neurons.

    PubMed

    Gulledge, Allan T; Stuart, Greg J

    2005-11-01

    Acetylcholine (ACh) is a central neurotransmitter critical for normal cognitive function. Here we show that transient muscarinic acetylcholine receptor activation directly inhibits neocortical layer 5 pyramidal neurons. Using whole-cell and cell-attached recordings from neurons in slices of rat somatosensory cortex, we demonstrate that transient activation of M1-type muscarinic receptors induces calcium release from IP3-sensitive intracellular calcium stores and subsequent activation of an apamin-sensitive, SK-type calcium-activated potassium conductance. ACh-induced hyperpolarizing responses were blocked by atropine and pirenzepine but not by methoctramine or GABA receptor antagonists (picrotoxin, SR 95531 [2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide], and CGP 55845 [(2S)-3-[[(15)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid]). Responses were associated with a 31 +/- 5% increase in membrane conductance, had a reversal potential of -93 +/- 1 mV, and were eliminated after internal calcium chelation with BAPTA, blockade of IP3 receptors, or extracellular application of cadmium but not by sodium channel blockade with tetrodotoxin. Calcium-imaging experiments demonstrated that ACh-induced hyperpolarizing, but not depolarizing, responses were correlated with large increases in intracellular calcium. Surprisingly, transient increases in muscarinic receptor activation were capable of generating hyperpolarizing responses even during periods of tonic muscarinic activation sufficient to depolarize neurons to action potential threshold. Furthermore, eserine, an acetylcholinesterase inhibitor similar to those used therapeutically in the treatment of Alzheimer's disease, disproportionately enhanced the excitatory actions of acetylcholine while reducing the ability of acetylcholine to generate inhibitory responses during repeated applications of ACh. These data demonstrate that acetylcholine can directly inhibit the

  19. Behavioral deficits and cholinergic pathway abnormalities in male Sanfilippo B mice.

    PubMed

    Kan, Shih-Hsin; Le, Steven Q; Bui, Quang D; Benedict, Braeden; Cushman, Jesse; Sands, Mark S; Dickson, Patricia I

    2016-10-01

    Sanfilippo B syndrome is a progressive neurological disorder caused by inability to catabolize heparan sulfate glycosaminoglycans. We studied neurobehavior in male Sanfilippo B mice and heterozygous littermate controls from 16 to 20 weeks of age. Affected mice showed reduced anxiety, with a decrease in the number of stretch-attend postures during the elevated plus maze (p=0.001) and an increased tendency to linger in the center of an open field (p=0.032). Water maze testing showed impaired spatial learning, with reduced preference for the target quadrant (p=0.01). In radial arm maze testing, affected mice failed to achieve above-chance performance in a win-shift working memory task (t-test relative to 50% chance: p=0.289), relative to controls (p=0.037). We found a 12.4% reduction in mean acetylcholinesterase activity (p<0.001) and no difference in choline acetyltransferase activity or acetylcholine in whole brain of affected male animals compared to controls. Cholinergic pathways are affected in adult-onset dementias, including Alzheimer disease. Our results suggest that male Sanfilippo B mice display neurobehavioral deficits at a relatively early age, and that as in adult dementias, they may display deficits in cholinergic pathways. PMID:27340089

  20. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain

    SciTech Connect

    Dewey, S.L.; Brodie, J.D.; Fowler, J.S.; MacGregor, R.R.; Schlyer, D.J.; King, P.T.; Alexoff, D.L.; Volkow, N.D.; Shiue, C.Y.; Wolf, A.P. )

    1990-01-01

    Interactions between the dopaminergic D2 receptor system and the muscarinic cholinergic system in the corpus striatum of adult female baboons (Papio anubis) were examined using positron emission tomography (PET) combined with (18F)N-methylspiroperidol (( 18F)NMSP) (to probe D2 receptor availability) and (N-11C-methyl)benztropine (to probe muscarinic cholinergic receptor availability). Pretreatment with benztropine, a long-lasting anticholinergic drug, bilaterally reduced the incorporation of radioactivity in the corpus striatum but did not alter that observed in the cerebellum or the rate of metabolism of (18F)NMSP in plasma. Pretreatment with unlabelled NMSP, a potent dopaminergic antagonist, reduced the incorporation of (N-11C-methyl)benztropine in all brain regions, with the greatest effect being in the corpus striatum greater than cortex greater than thalamus greater than cerebellum, but did not alter the rate of metabolism of the labelled benztropine in the plasma. These reductions in the incorporation of either (18F)NMSP or (N-11C-methyl)benztropine exceeded the normal variation in tracer incorporation in repeated studies in the same animal. This study demonstrates that PET can be used as a tool for investigating interactions between neurochemically different yet functionally linked neurotransmitters systems in vivo and provides insight into the consequences of multiple pharmacologic administration.

  1. The effect of the augmentation of cholinergic neurotransmission by nicotine on EEG indices of visuospatial attention.

    PubMed

    Logemann, H N A; Böcker, K B E; Deschamps, P K H; Kemner, C; Kenemans, J L

    2014-03-01

    The cholinergic system has been implicated in visuospatial attention but the exact role remains unclear. In visuospatial attention, bias refers to neuronal signals that modulate the sensitivity of sensory cortex, while disengagement refers to the decoupling of attention making reorienting possible. In the current study we investigated the effect of facilitating cholinergic neurotransmission by nicotine (Nicorette Freshmint 2mg, polacrilex chewing gum) on behavioral and electrophysiological indices of bias and disengagement. Sixteen non-smoking participants performed in a Visual Spatial Cueing (VSC) task while EEG was recorded. A randomized, single-blind, crossover design was implemented. Based on the scarce literature, it was expected that nicotine would specifically augment disengagement related processing, especially manifest as an increase of the modulation of the Late Positive Deflection (LPD) by validity of cueing. No effect was expected on bias related components (cue-locked: EDAN, LDAP; target-locked: P1 and N1 modulations). Results show weak indications for a reduction of the reaction time validity effect by nicotine, but only for half of the sample in which the validity effect on the pretest was largest. Nicotine reduced the result of bias as indexed by a reduced P1 modulation by validity, especially in subjects with strong peripheral responses to nicotine. Nicotine did not affect ERP manifestations of the directing of bias (EDAN, LDAP) or disengagement (LPD). PMID:24316088

  2. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption

    PubMed Central

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-01-01

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications. PMID:27587001

  3. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption.

    PubMed

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-01-01

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications. PMID:27587001

  4. Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments

    PubMed Central

    Guevorkian, Karine; Valles, James M.

    2006-01-01

    Earth's gravity exerts relatively weak forces in the range of 10–100 pN directly on cells in biological systems. Nevertheless, it biases the orientation of swimming unicellular organisms, alters bone cell differentiation, and modifies gene expression in renal cells. A number of methods of simulating different strength gravity environments, such as centrifugation, have been applied for researching the underlying mechanisms. Here, we demonstrate a magnetic force-based technique that is unique in its capability to enhance, reduce, and even invert the effective buoyancy of cells and thus simulate hypergravity, hypogravity, and inverted gravity environments. We apply it to Paramecium caudatum, a single-cell protozoan that varies its swimming propulsion depending on its orientation with respect to gravity, g. In these simulated gravities, denoted by fgm, Paramecium exhibits a linear response up to fgm = 5 g, modifying its swimming as it would in the hypergravity of a centrifuge. Moreover, experiments from fgm = 0 to −5 g show that the response is symmetric, implying that the regulation of the swimming speed is primarily related to the buoyancy of the cell. The response becomes nonlinear for fgm >5 g. At fgm = 10 g, many paramecia “stall” (i.e., swim in place against the force), exerting a maximum propulsion force estimated to be 0.7 nN. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms. PMID:16916937

  5. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  6. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy

    PubMed Central

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-01-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm−2 depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy. PMID:26424175

  7. Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives.

    PubMed

    Li, Xiaocheng; Wang, Bin; Wang, Xiaolin; Zhou, Xiaoqing; Chen, Zhimin; He, Chunying; Yu, Zheying; Wu, Yiqun

    2015-12-01

    Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field. PMID:26403926

  8. Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives

    NASA Astrophysics Data System (ADS)

    Li, Xiaocheng; Wang, Bin; Wang, Xiaolin; Zhou, Xiaoqing; Chen, Zhimin; He, Chunying; Yu, Zheying; Wu, Yiqun

    2015-09-01

    Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field.

  9. Cotinine enhances the extinction of contextual fear memory and reduces anxiety after fear conditioning.

    PubMed

    Zeitlin, Ross; Patel, Sagar; Solomon, Rosalynn; Tran, John; Weeber, Edwin J; Echeverria, Valentina

    2012-03-17

    Posttraumatic stress disorder (PTSD) is an anxiety disorder triggered by traumatic events. Symptoms include anxiety, depression and deficits in fear memory extinction (FE). PTSD patients show a higher prevalence of cigarette smoking than the general population. The present study investigated the effects of cotinine, a tobacco-derived compound, over anxiety and contextual fear memory after fear conditioning (FC) in mice, a model for inducing PTSD-like symptoms. Two-month-old C57BL/6J mice were separated into three experimental groups. These groups were used to investigate the effect of pretreatment with cotinine on contextual fear memory and posttreatment on extinction and stability or retrievability of the fear memory. Also, changes induced by cotinine on the expression of extracellular signal-regulated kinase (ERK)1/2 were assessed after extinction in the hippocampus. An increase in anxiety and corticosterone levels were found after fear conditioning. Cotinine did not affect corticosterone levels but enhanced the extinction of contextual fear, decreased anxiety and the stability and/or retrievability of contextual fear memory. Cotinine-treated mice showed higher levels of the active forms of ERK1/2 than vehicle-treated mice after FC. This evidence suggests that cotinine is a potential new pharmacological treatment to reduce symptoms in individuals with PTSD. PMID:22137886

  10. Reducing Food Loss and Waste to Enhance Food Security and Environmental Sustainability.

    PubMed

    Shafiee-Jood, Majid; Cai, Ximing

    2016-08-16

    While food shortage remains a big concern in many regions around the world, almost one-third of the total food production is discarded as food loss and waste (FLW). This is associated with about one-quarter of land, water, and fertilizer used for crop production, even though resources and environmental constraints are expected to limit food production around the world. FLW reduction represents a potential opportunity to enhance both food security and environmental sustainability and therefore has received considerable attention recently. By reviewing the recent progress and new developments in the literature, this paper highlights the importance of FLW prevention as a complementary solution to address the Grand Challenge of global food security and environmental sustainability. However, raising awareness only is not enough to realize the expected FLW reduction. We identify the knowledge gaps and opportunities for research by synthesizing the strategies of FLW reduction and the barriers, including (1) filling the data gaps, (2) quantifying the socioeconomic and environmental impacts of FLW reduction strategies, (3) understanding the scale effects, and (4) exploring the impacts of global transitions. It is urgent to take more aggressive yet scientifically based actions to reduce FLW, which require everyone's involvement along the food supply chain, including policy makers, food producers and suppliers, and food consumers. PMID:27428555

  11. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging

    SciTech Connect

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-14

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ∼243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ∼243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ∼243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H{sup +} images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

  12. Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.

    PubMed

    Ankarali, M Mert; Tutkun Sen, H; De, Avik; Okamura, Allison M; Cowan, Noah J

    2014-03-01

    Stability and performance during rhythmic motor behaviors such as locomotion are critical for survival across taxa: falling down would bode well for neither cheetah nor gazelle. Little is known about how haptic feedback, particularly during discrete events such as the heel-strike event during walking, enhances rhythmic behavior. To determine the effect of haptic cues on rhythmic motor performance, we investigated a virtual paddle juggling behavior, analogous to bouncing a table tennis ball on a paddle. Here, we show that a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state (e.g., via higher gain feedback or modifying the steady-state hand motion), but rather by reducing cycle-to-cycle variability. This suggests that the timing and state cues afforded by haptic feedback decrease the nervous system's uncertainty of the state of the ball to enable more accurate control but that the feedback gain itself is unaltered. This decrease in variability leads to a substantial increase in the mean first passage time, a measure of the long-term metastability of a stochastic dynamical system. Rhythmic tasks such as locomotion and juggling involve intermittent contact with the environment (i.e., hybrid transitions), and the timing of such transitions is generally easy to sense via haptic feedback. This timing information may improve metastability, equating to less frequent falls or other failures depending on the task. PMID:24371296

  13. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-10-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW•cm-2 depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.

  14. Cholinergic and perfusion brain networks in Parkinson disease dementia

    PubMed Central

    McKeith, Ian G.; Burn, David J.; Wyper, David J.; O'Brien, John T.; Taylor, John-Paul

    2016-01-01

    Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). Results: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor–naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition. PMID:27306636

  15. Functions of adrenergic and cholinergic nerves in canine effectors of seminal emission.

    PubMed

    Arver, S; Sjöstrand, N O

    1982-05-01

    Spontaneous activity responses to acetylcholine (ACh), adrenaline (A), noradrenaline (NA) and barium chloride as well as the effects of various autonomic drugs on effects of field stimulation of nerves and muscle cells of isolated pieces or strips of cauda epididymidis, vas deferens, ampulla ductus deferentis and prostate of dog were studied. The main results and conclusions are: the muscles show little spontaneous activity but rhythmicity can easily be produced by e.g. stimulating agonists. The muscles are contracted by alpha-adrenoceptor stimulants. ACh has usually no or a very weak contractile effect in high concentrations. Muscles of young dogs are more sensitive to ACh. The excitatory innervation of the muscles is adrenergic and completely blocked by adrenergic neuron blockers as well as alpha-adrenoceptor blocking drugs. Stimulation of adrenergic nerves leads to maximum response already at low frequencies (4-6 Hz). This response is very similar to that provoked by a supramaximal dose of NA. Scopolamine enhances neurogenic contractile effects while physostigmine suppresses them. Hence cholinergic nerves may act by muscarinic prejunctional inhibition of the excitatory adrenergic neurotransmission rather than act directly upon the smooth muscle cells. Since secretory cells receive cholinergic innervation prejunctional inhibition of the adrenergic myomotor nerves may be of functional significance in at least the long copulatory events of the dog. PMID:6127870

  16. An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease

    PubMed Central

    Wang, Liqun; Hagemann, Tracy L.; Messing, Albee

    2016-01-01

    The role that glia play in neurological disease is poorly understood but increasingly acknowledged to be critical in a diverse group of disorders. Here we use a simple genetic model of Alexander disease, a progressive and severe human degenerative nervous system disease caused by a primary astroglial abnormality, to perform an in vivo screen of 1987 compounds, including many FDA-approved drugs and natural products. We identify four compounds capable of dose-dependent inhibition of nervous system toxicity. Focusing on one of these hits, glycopyrrolate, we confirm the role for muscarinic cholinergic signaling in pathogenesis using additional pharmacologic reagents and genetic approaches. We further demonstrate that muscarinic cholinergic signaling works through downstream Gαq to control oxidative stress and death of neurons and glia. Importantly, we document increased muscarinic cholinergic receptor expression in Alexander disease model mice and in postmortem brain tissue from Alexander disease patients, and that blocking muscarinic receptors in Alexander disease model mice reduces oxidative stress, emphasizing the translational significance of our findings. We have therefore identified glial muscarinic signaling as a potential therapeutic target in Alexander disease, and possibly in other gliopathic disorders as well. SIGNIFICANCE STATEMENT Despite the urgent need for better treatments for neurological diseases, drug development for these devastating disorders has been challenging. The effectiveness of traditional large-scale in vitro screens may be limited by the lack of the appropriate molecular, cellular, and structural environment. Using a simple Drosophila model of Alexander disease, we performed a moderate throughput chemical screen of FDA-approved drugs and natural compounds, and found that reducing muscarinic cholinergic signaling ameliorated clinical symptoms and oxidative stress in Alexander disease model flies and mice. Our work demonstrates that small

  17. Hepcidin bound to α2-macroglobulin reduces ferroportin-1 expression and enhances its activity at reducing serum iron levels.

    PubMed

    Huang, Michael Li-Hsuan; Austin, Christopher J D; Sari, Marie-Agnès; Rahmanto, Yohan Suryo; Ponka, Prem; Vyoral, Daniel; Richardson, Des R

    2013-08-30

    Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225-6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down

  18. Alcohol and Sleep Restriction Combined Reduces Vigilant Attention, Whereas Sleep Restriction Alone Enhances Distractibility

    PubMed Central

    Lee, James; Manousakis, Jessica; Fielding, Joanne; Anderson, Clare

    2015-01-01

    , Manousakis J, Fielding J, Anderson C. Alcohol and sleep restriction combined reduces vigilant attention, whereas sleep restriction alone enhances distractibility. SLEEP 2015;38(5):765–775. PMID:25515101

  19. Nitrogen Limitation is Reducing the Enhancement of NPP by Elevated CO2 in a Deciduous Forest

    SciTech Connect

    Norby, Richard J; Warren, Jeffrey; Iversen, Colleen M; Medlyn, Belinda; McMurtrie, Ross; Hoffman, Forrest M

    2008-01-01

    Accurate model representation of the long-term response of forested ecosystems to elevated atmospheric CO2 concentrations (eCO2) is important for predictions of future concentrations of CO2. For biogeochemical models that predict the response of net primary productivity (NPP) to eCO2, free-air CO2 enrichment (FACE) experiments provide the only source of data for comparison. A synthesis of forest FACE experiments reported a 23% increase in NPP in eCO2, and this result has been used as a model benchmark. Here, we provide new evidence from a FACE experiment in a deciduous forest in Tennessee that N limitation has significantly reduced the stimulation of NPP by eCO2, consistent with predictions from ecosystem and global models that incorporate N feedbacks. The Liquidambar styraciflua stand has been exposed to current ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998. Results from the first 6 years of the experiment indicated that NPP was significantly enhanced by eCO2 and that this was a consistent and sustained response. Now, with 10 years of data, our analysis must be revised. The response of NPP to eCO2 has declined from 24% in 2001-2003 to 9% in 2007. The diminishing response to eCO2 since 2004 coincides with declining NPP in ambient CO2 plots. Productivity of this forest stand is limited by N availability, and the steady decline in forest NPP is closely related to changes in the N economy, as evidenced by declining foliar N concentrations. There is a strong linear relationship between foliar [N] and NPP, and the steeper slope in eCO2 indicates that the NPP response to eCO2 should diminish as foliar N declines. Increased fine-root production and root proliferation deeper in the soil have sustained N uptake, but not to an extent sufficient to benefit aboveground production. The mechanistic basis of the N effect on NPP resides in the photosynthetic machinery. The linear relationships between Jmax and Vcmax with foliar [N] did not change from 1998

  20. Nitrogen Limitation is Reducing the Enhancement of NPP by Elevated CO2 in a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Norby, R. J.; Warren, J. M.; Iversen, C. M.; Medlyn, B. E.; McMurtrie, R. E.; Hoffman, F. M.

    2008-12-01

    Accurate model representation of the long-term response of forested ecosystems to elevated atmospheric CO2 concentrations (eCO2) is important for predictions of future concentrations of CO2. For biogeochemical models that predict the response of net primary productivity (NPP) to eCO2, free-air CO2 enrichment (FACE) experiments provide the only source of data for comparison. A synthesis of forest FACE experiments reported a 23% increase in NPP in eCO2, and this result has been used as a model benchmark. Here, we provide new evidence from a FACE experiment in a deciduous forest in Tennessee that N limitation has significantly reduced the stimulation of NPP by eCO2, consistent with predictions from ecosystem and global models that incorporate N feedbacks. The Liquidambar styraciflua stand has been exposed to current ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998. Results from the first 6 years of the experiment indicated that NPP was significantly enhanced by eCO2 and that this was a consistent and sustained response. Now, with 10 years of data, our analysis must be revised. The response of NPP to eCO2 has declined from 24% in 2001-2003 to 9% in 2007. The diminishing response to eCO2 since 2004 coincides with declining NPP in ambient CO2 plots. Productivity of this forest stand is limited by N availability, and the steady decline in forest NPP is closely related to changes in the N economy, as evidenced by declining foliar N concentrations. There is a strong linear relationship between foliar [N] and NPP, and the steeper slope in eCO2 indicates that the NPP response to eCO2 should diminish as foliar N declines. Increased fine-root production and root proliferation deeper in the soil have sustained N uptake, but not to an extent sufficient to benefit aboveground production. The mechanistic basis of the N effect on NPP resides in the photosynthetic machinery. The linear relationships between Jmax and Vcmax with foliar [N] did not change from 1998

  1. Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability

    PubMed Central

    Greenbury, Sam F.; Schaper, Steffen; Ahnert, Sebastian E.; Louis, Ard A.

    2016-01-01

    Mutational neighbourhoods in genotype-phenotype (GP) maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps—a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure—to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i) If a particular (non-neutral) phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii) If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii) If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i) and ii) reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii) may instead facilitate evolutionary exploration and so

  2. Local infusion of interleukin-6 attenuates the neurotoxic effects of NMDA on rat striatal cholinergic neurons.

    PubMed

    Toulmond, S; Vige, X; Fage, D; Benavides, J

    1992-09-14

    The potential neuroprotective effects of IL-6 against the excitotoxic neuronal loss induced by N-methyl-D-aspartate (NMDA) have been studied. Infusion into the rat striatum of excitotoxic amounts (250 nmol) of NMDA resulted in a 45% decrease in striatal choline acetyl transferase activity (ChAT; a marker of cholinergic neurons) and glutamate decarboxylase (GAD, a marker of GABAergic neurons) at 2 days post-injection. Co-infusion of 10 U of IL-6 reduced the loss of ChAT activity to 21% but failed to prevent the loss of GAD activity. IL-6 per se, up to the dose of 500 U, failed to affect ChAT or GAD activities. The in vivo effects of IL-6 are not mediated by a direct antagonism of NMDA toxicity, since IL-6 (up to a concentration of 500 and 5000 U/ml, respectively) did not antagonize either the increase in cyclic GMP levels resulting from NMDA receptor activation in cerebellar slices or the glutamate-induced release of lactate dehydrogenase, an index of neurotoxicity, by cultured cortical neurons. These results suggest that the increase in IL-6 levels observed in experimental brain lesions may play a role in the protection and regeneration of cholinergic neurons. PMID:1331914

  3. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses

    PubMed Central

    Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern. PMID:25520631

  4. Neuroprotective effects of sulforaphane on cholinergic neurons in mice with Alzheimer's disease-like lesions.

    PubMed

    Zhang, Rui; Zhang, Jingzhu; Fang, Lingduo; Li, Xi; Zhao, Yue; Shi, Wanying; An, Li

    2014-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disease in elderly individuals, and effective therapies are unavailable. This study was designed to investigate the neuroprotective effects of sulforaphane (an activator of NF-E2-related factor 2) on mice with AD-like lesions induced by combined administration of aluminum and D-galactose. Step-down-type passive avoidance tests showed sulforaphane ameliorated cognitive impairment in AD-like mice. Immunohistochemistry results indicated sulforaphane attenuated cholinergic neuron loss in the medial septal and hippocampal CA1 regions in AD-like mice. However, spectrophotometry revealed no significant difference in acetylcholine level or the activity of choline acetyltransferase or acetylcholinesterase in the cerebral cortex among groups of control and AD-like mice with and without sulforaphane treatment. Sulforaphane significantly increased the numbers of 5-bromo-2'-deoxyuridine-positive neurons in the subventricular and subgranular zones in AD-like mice which were significantly augmented compared with controls. Atomic absorption spectrometry revealed significantly lower aluminum levels in the brains of sulforaphane-treated AD-like mice than in those that did not receive sulforaphane treatment. In conclusion, sulforaphane ameliorates neurobehavioral deficits by reducing cholinergic neuron loss in the brains of AD-like mice, and the mechanism may be associated with neurogenesis and aluminum load reduction. These findings suggest that phytochemical sulforaphane has potential application in AD therapeutics. PMID:25196440

  5. Age-associated leukoaraiosis and cortical cholinergic deafferentation

    PubMed Central

    Bohnen, N I.; Müller, M L.T.M.; Kuwabara, H; Constantine, G M.; Studenski, S A.

    2009-01-01

    Objective: To investigate the relationship between age-associated MRI leukoaraiosis or white matter hyperintensities (WMH) and cortical acetylcholinesterase (AChE) activity. Background: One possible mechanism of cognitive decline in elderly individuals with leukoaraiosis is disruption of cholinergic fibers by strategically located white matter lesions. Periventricular lesions may have a higher chance of disrupting cholinergic projections compared with more superficial nonperiventricular white matter lesions because of anatomic proximity to the major cholinergic axonal projection bundles that originate from the basal forebrain. Methods: Community-dwelling, middle-aged and elderly subjects without dementia (mean age 71.0 ± 9.2 years; 55–84 years; n = 18) underwent brain MRI and AChE PET imaging. The severity of periventricular and nonperiventricular WMH on fluid-attenuated inversion recovery MRI images was scored using the semiquantitative rating scale of Scheltens et al. [11C]methyl-4-piperidinyl propionate AChE PET imaging was used to assess cortical AChE activity. Age-corrected Spearman partial rank correlation coefficients were calculated. Results: The severity of periventricular (R = −0.52, p = 0.04) but not nonperiventricular (R = −0.20, not significant) WMH was inversely related to global cortical AChE activity. Regional cortical cholinergic effects of periventricular WMH were most significant for the occipital lobe (R = −0.58, p = 0.02). Conclusions: The presence of periventricular but not nonperiventricular white matter hyperintensities (WMH) is significantly associated with lower cortical cholinergic activity. These findings support a regionally specific disruption of cholinergic projection fibers by WMH. GLOSSARY AChE = acetylcholinesterase; AD = Alzheimer disease; CADASIL = cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CPT-RT = Conners continuous performance test reaction time; CPT-SE = Conners

  6. A Cost Analysis of Web-Enhanced Training to Reduce Alcohol Sales to Intoxicated Bar Patrons

    ERIC Educational Resources Information Center

    Page, Timothy F.; Nederhoff, Dawn M.; Ecklund, Alexandra M.; Horvath, Keith J.; Nelson, Toben F.; Erickson, Darin J.; Toomey, Traci L.

    2015-01-01

    Objective: The purpose of this study was to document the development and testing costs of the Enhanced Alcohol Risk Management (eARM) intervention, a web enhanced training program to prevent alcohol sales to intoxicated bar patrons and to estimate its implementation costs in a "real world", non-research setting. Methods: Data for this…

  7. The role of cholinergic and GABAergic medial septal/diagonal band cell populations in the emergence of diencephalic amnesia.

    PubMed

    Roland, J J; Savage, L M

    2009-04-21

    The septohippocampal pathway, which is mostly composed of cholinergic and GABAergic projections between the medial septum/diagonal band (MS/DB) and the hippocampus, has an established role in learning, memory and disorders of cognition. In Wernicke-Korsakoff's syndrome (WKS) and the animal model of the disorder, pyrithiamine-induced thiamine deficiency (PTD), there is both diencephalic damage and basal forebrain cell loss that could contribute to the amnesic state. In the current experiment, we used the PTD animal model to access both cholinergic (choline acetyltransferase [ChAT] immunopositive) and GABAergic (parvalbumin [PV]; calbindin [CaBP]) neuronal loss in the MS/DB in relationship to midline-thalamic pathology. In addition, to gain an understanding about the role of such neuropathology in behavioral dysfunction, animals were tested on a non-rewarded spontaneous alternation task and behavioral performance was correlated to neuropathology. Unbiased stereological assessment of neuronal populations revealed that ChAT-positive neurons were significantly reduced in PTD rats, relative to control pair-fed rats, and thalamic mass and behavioral performance correlated with ChAT neuronal estimates. In contrast, both the PV- and CaBP-positive neurons in the MS/DB were not affected by PTD treatment. These results support an interactive role of both thalamic pathology and cholinergic cell loss in diencephalic amnesia. PMID:19264109

  8. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines

    PubMed Central

    Sun, Yang; Li, Qi; Gui, Huan; Xu, Dong-Ping; Yang, Yi-Li; Su, Ding-Feng; Liu, Xia

    2013-01-01

    The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link α7nAChR activation and pro-inflammatory cytokine production remain not well understood. In this study, we found that miR-124 is upregulated by cholinergic agonists in LPS-exposed cells and mice. Utilizing miR-124 mimic and siRNA knockdown, we demonstrated that miR-124 is a critical mediator for the cholinergic anti-inflammatory action. Furthermore, our data indicated that miR-124 modulates LPS-induced cytokine production by targeting signal transducer and activator of transcription 3 (STAT3) to decrease IL-6 production and TNF-α converting enzyme (TACE) to reduce TNF-α release. These results also indicate that miR-124 is a potential therapeutic target for the treatment of inflammatory diseases. PMID:23979021

  9. The Role of Cholinergic and GABAergic Medial Septal/Diagonal Band Cell Populations in the Emergence of Diencephalic amnesia

    PubMed Central

    Roland, Jessica J.; Savage, Lisa M.

    2010-01-01

    The septohippocampal pathway, which is mostly comprised of cholinergic and GABAergic projections between the medial septum/diagonal band (MS/DB) and the hippocampus, has an established role in learning, memory and disorders of cognition. In Wernicke-Korsakoff’s syndrome (WKS) and the animal model of the disorder, pyrithiamine-induced thiamine deficiency (PTD), there is both diencephalic damage and basal forebrain cell loss that could contribute to the amnesic state. In the current experiment, we used the PTD animal model to access both cholinergic (choline acetyltransferase [ChAT] immunopositive) and GABAergic (parvalbumin [PV]; calbindin [CaBP]) neuronal loss in the MS/DB in relationship to midline-thalamic pathology. In addition, to gain an understanding about the role of such neuropathology in behavioral dysfunction, animals were tested on a non-rewarded spontaneous alternation task and behavioral performance was correlated to neuropathology. Unbiased stereological assessment of neuronal populations revealed that ChAT-positive neurons were significantly reduced in PTD rats, relative to control pair-fed rats, and thalamic mass and behavioral performance correlated with ChAT neuronal estimates. In contrast, both the PV- and CaBP-positive neurons in the MS/DB were not affected by PTD treatment. These results support an interactive role of both thalamic pathology and cholinergic cell loss in diencephalic amnesia. PMID:19264109

  10. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons

    PubMed Central

    Pappas, Samuel S; Darr, Katherine; Holley, Sandra M; Cepeda, Carlos; Mabrouk, Omar S; Wong, Jenny-Marie T; LeWitt, Tessa M; Paudel, Reema; Houlden, Henry; Kennedy, Robert T; Levine, Michael S; Dauer, William T

    2015-01-01

    Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these movements coincides with selective degeneration of dorsal striatal large cholinergic interneurons (LCI), and surviving LCI exhibit morphological, electrophysiological, and connectivity abnormalities. Consistent with the importance of this LCI pathology, murine dystonic-like movements are reduced significantly with an antimuscarinic agent used clinically, and we identify cholinergic abnormalities in postmortem striatal tissue from DYT1 dystonia patients. These findings demonstrate that dorsal LCI have a unique requirement for torsinA function during striatal maturation, and link abnormalities of these cells to dystonic-like movements in an overtly symptomatic animal model. DOI: http://dx.doi.org/10.7554/eLife.08352.001 PMID:26052670

  11. Analysis of cholinergic markers, biogenic amines, and amino acids in the CNS of two APP overexpression mouse models.

    PubMed

    Van Dam, Debby; Marescau, Bart; Engelborghs, Sebastiaan; Cremers, Thomas; Mulder, Jan; Staufenbiel, Matthias; De Deyn, Peter Paul

    2005-04-01

    Two transgenic mouse models expressing mutated human amyloid precursor protein and previously found to display cognitive and behavioural alterations, reminiscent of Alzheimer patients' symptomatology, were scrutinised for putative brain region-specific changes in neurochemical parameters. Brains of NSE-hAPP751m-57, APP23 and wild-type mice were microdissected to perform brain region-specific neurochemical analyses. Impairment of cholinergic transmission, the prominent neurochemical deficit in Alzheimer brain, was examined; acetylcholinesterase and choline acetyltransferase activity levels were determined as markers of the cholinergic system. Since Alzheimer neurodegeneration is not restricted to the cholinergic system, brain levels of biogenic amines and metabolites, and amino acidergic neurotransmitters and systemic amino acids were analysed as well. Cholinergic dysfunction, reflected in reduced enzymatic activity in the basal forebrain nuclei, was restricted to the APP23 model, which also exhibited more outspoken and more widespread changes in other neurotransmitter systems. Significant changes in compounds of the noradrenergic and serotonergic system were observed, as well as alterations in levels of the inhibitory neurotransmitter glycine and systemic amino acids. These observations were clearly in occurrence with the more pronounced histopathological and behavioural phenotype of the APP23 model. As transgenic models often do not represent an end-stage of the disease, some discrepancies with results from post-mortem human Alzheimer brain analyses were apparent; in particular, no significant alterations in excitatory amino acid levels were detected. Our findings of brain region-specific alterations in compound levels indicate disturbed neurotransmission pathways, and greatly add to the validity of APP23 mice as a model for Alzheimer's disease. Transgenic mouse models may be employed as a tool to study early-stage neurochemical changes, which are often not

  12. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food?

    PubMed

    Schenck, F J; Lehotay, S J

    2000-01-28

    Sample extracts of apples, peas, green beans, oranges, raspberries, clementines, carrots, and wheat obtained using the Food and Drug Administration (acetone extraction) and Canadian Pest Management Regulatory Agency (acetonitrile extraction) multiresidue methods for pesticides were subjected to clean-up using different solid-phase extraction (SPE) cartridges in an attempt to reduce or eliminate the matrix enhancement effect. The matrix enhancement effect is related to the blocking of active sites on the injector liner by matrix components, thereby increasing signal in the presence of matrix versus standards in solvent in which the pesticides themselves interact with the active sites. Graphitized carbon black (GCB) was often used in combination with various anion-exchange SPE cartridges. The extracts were then spiked with organophosphorus insecticides. These process standards were then compared to standards in acetone of the same concentration using gas chromatography with flame photometric detection or ion trap mass spectrometric detection. Sample matrix enhancement varied from little to no effect for some pesticides (e.g. chlorpyrifos, malathion) to >200% in the case of certain susceptible pesticides. The GCB removed color components but showed little effect in reducing matrix enhancement by itself. The anion-exchange cartridges in combination with GCB or not, substantially reduced the matrix enhancement effect but did not eliminate it. PMID:10677079

  13. [Probable mechanism of recognition of cholinergic ligands by acetylcholine receptors].

    PubMed

    Demushkin, V P; Kotelevtsev, Iu V; Pliashkevich, Iu G; Khramtsov, N V

    1982-01-01

    Dryding's models were used for the conformational analysis of compounds affecting muscarin-specific acetylcholine receptor and nicotin-specific acetylcholine receptor. Ammonium group and ether oxygen (3.6 A apart from the ammonium group) specifically oriented to each other were shown to be necessary structural elements to reveal muscarin-type cholinergic activity. Ammonium group along with carbonyl oxygen or its substituent (5 A distance) are the necessary structural units providing nicotin-type cholinergic activity. The presence of two hydrophobic substituents (one in the ammonium area and the other neighbouring the second active grouping) is the additional factor. The developed principles were justified by the use of a series of synthetic samples. The compounds were obtained likely favouring affinitive modification of acetylcholine receptor (dissociation constants of acetylcholine receptor complexes equalling to 10(-4)--10(-7) M-1). PMID:7070378

  14. Possible influence of AMPD1 on cholinergic neurotransmission and sleep.

    PubMed

    Buyse, Bertien; Van Damme, Philip; Belge, Catharina; Testelmans, Dries

    2016-02-01

    It is known that adenosine excess due to monophosphate deaminase deficiency (AMPD1) can be linked to muscle problems. Recently, Perumal et al., 2014 reported a first case of possible impact of AMPD1 on sleep, REM sleep and cholinergic neurotransmission. We report a second patient with similar sleep complaints: long sleep duration with residual daytime sleepiness and a need to sleep after exercise. On polysomnography we observed a long sleep duration, with high sleep efficiency and a SOREMP; on MSLT a shortened sleep latency and 4 SOREMPS were observed. Frequency power spectral heart rate analysis during slow wave sleep, REM sleep and wakefulness revealed an increased parasympathetic tone. In conclusion, AMPD1 could have a profound influence on cholinergic neurotransmission and sleep; further studies are mandatory. PMID:26439223

  15. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    PubMed

    de Kloet, Sybren F; Mansvelder, Huibert D; De Vries, Taco J

    2015-10-15

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit. PMID:26208783

  16. Nicotine-Induced Modulation of the Cholinergic Twitch Response in the Ileum of Guinea Pig.

    PubMed

    Donnerer, Josef; Liebmann, Ingrid

    2015-01-01

    In the present study, the direct drug effects of nicotine and its effects on the cholinergic twitch responses of the electrically stimulated longitudinal muscle-myenteric plexus strip from the ileum of guinea pig were investigated. Nicotine dose-dependently (0.3-10 µmol/l) evoked the well-known contractile responses on its own. Whereas the interposed twitch responses remained present without a change in height at 1 µmol/l nicotine, a nicotine concentration of 3 µmol/l slightly and a concentration of 10 µmol/l markedly diminished the twitch during their presence. After the washout of 1-10 µmol/l nicotine, the height of the twitch response was also temporarily and significantly reduced by 30-77%. The P2X purinoceptor agonist αβ-methylene ATP (1-10 µmol/l) dose-dependently induced contractions on its own and reduced the twitch response during its presence in the organ bath; however, it did not diminish the twitch responses after washout of the drug as nicotine did. The P2X antagonist pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid, the NMDA channel blocker MK-801 and the inhibitor of small conductance Ca(2+)-activated K(+) (SK) channels apamin reduced the contractile effect of 1 µmol/l nicotine. Apamin also significantly prevented the 'post-nicotine inhibition of the twitch' following the washout of 1-3 µmol/l nicotine. As a conclusion, we provide evidence for a functional interaction between nicotinic receptors and the P2X receptors in the ileum of the guinea pig. The 'post-nicotine inhibition of the twitch' is not due to nicotinic acetylcholine receptor desensitization or transmitter depletion, but most probably the secondary effects of nicotine on SK channels determine the reduced cholinergic motor neuron excitability. PMID:26088942

  17. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling

    PubMed Central

    Chuhma, Nao; Mingote, Susana; Moore, Holly; Rayport, Stephen

    2014-01-01

    Summary Midbrain dopamine neurons fire in bursts conveying salient information. Bursts are associated with pauses in tonic firing of striatal cholinergic interneurons. While the reciprocal balance of dopamine and acetylcholine in the striatum is well known, how dopamine neurons control cholinergic neurons has not been elucidated. Here we show that dopamine neurons make direct fast dopaminergic and glutamatergic connections with cholinergic interneurons, with regional heterogeneity. Dopamine neurons drive a burst-pause firing sequence in cholinergic interneurons in the medial shell of the nucleus accumbens, mixed actions in the accumbens core, and a pause in the dorsal striatum. This heterogeneity is due mainly to regional variation in dopamine-neuron glutamate cotransmission. A single dose of amphetamine attenuates dopamine neuron connections to cholinergic interneurons with dose-dependent regional specificity. Overall, the present data indicate that dopamine neurons control striatal circuit function via discrete, plastic connections with cholinergic interneurons. PMID:24559678

  18. Distribution of cholinergic cells in guinea pig brainstem

    PubMed Central

    Motts, S.D.; Slusarczyk, A.S.; Sowick, C.S.; Schofield, B.R.

    2008-01-01

    We used an antibody to choline acetyltransferase (ChAT) to label cholinergic cells in guinea pig brainstem. ChAT-immunoreactive (ChAT-IR) cells comprise several prominent groups, including the pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, and parabigeminal nucleus, as well as the cranial nerve somatic motor and parasympathetic nuclei. Additional concentrations are present in the parabrachial nuclei and superior colliculus. Among auditory nuclei, the majority of ChAT-IR cells are in the superior olive, particularly in and around the lateral superior olive, the ventral nucleus of the trapezoid body and the superior paraolivary nucleus. A discrete group of ChAT-IR cells is located in the sagulum, and additional cells are scattered in the nucleus of the brachium of the inferior colliculus. A group of ChAT-IR cells lies dorsal to the dorsal nucleus of the lateral lemniscus. A few ChAT-IR cells are found in the cochlear nucleus and the ventral nucleus of the lateral lemniscus. The distribution of cholinergic cells in guinea pigs is largely similar to that of other species; differences occur mainly in cell groups that have few ChAT-IR cells. The results provide a basis for further studies to characterize the connections of these cholinergic groups. PMID:18222049

  19. Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators

    PubMed Central

    Whittington, Miles A.; Kopell, Nancy J.

    2015-01-01

    The dynamical behavior of the cortex is extremely complex, with different areas and even different layers of a cortical column displaying different temporal patterns. A major open question is how the signals from different layers and different brain regions are coordinated in a flexible manner to support function. Here, we considered interactions between primary auditory cortex and adjacent association cortex. Using a biophysically based model, we show how top-down signals in the beta and gamma regimes can interact with a bottom-up gamma rhythm to provide regulation of signals between the cortical areas and among layers. The flow of signals depends on cholinergic modulation: with only glutamatergic drive, we show that top-down gamma rhythms may block sensory signals. In the presence of cholinergic drive, top-down beta rhythms can lift this blockade and allow signals to flow reciprocally between primary sensory and parietal cortex. SIGNIFICANCE STATEMENT Flexible coordination of multiple cortical areas is critical for complex cognitive functions, but how this is accomplished is not understood. Using computational models, we studied the interactions between primary auditory cortex (A1) and association cortex (Par2). Our model is capable of replicating interaction patterns observed in vitro and the simulations predict that the coordination between top-down gamma and beta rhythms is central to the gating process regulating bottom-up sensory signaling projected from A1 to Par2 and that cholinergic modulation allows this coordination to occur. PMID:26558772

  20. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function.

    PubMed

    Sarter, Martin; Albin, Roger L; Kucinski, Aaron; Lustig, Cindy

    2014-07-01

    Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson's disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive-behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional-motor integration by striatal circuitry. PMID:24805070

  1. Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids

    PubMed Central

    Qui, Guang; Spangler, Edward; Wan, Ruiqian; Miller, Marshall; Mattson, Mark; So, Kwi-fok; de Cabo, Rafael; Zou, Sige; Ingram, Donald

    2012-01-01

    Glucocorticoids (GC)--corticosterone (CORT) in rodents and cortisol in primates--are stress-induced hormones secreted by adrenal glands that interact with the hypothalamic pituitary axis. High levels of cortisol in humans are observed in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), as well as in diabetes, post-traumatic stress syndrome, and major depression. Experimental models of diabetes in rats and mice have demonstrated that reduction of CORT reduces learning and memory deficits and attenuates loss of neuronal viability and plasticity. In contrast to the negative associations of elevated GC levels, CORT is moderately elevated in dietary restriction (DR) paradigms which are associated with many healthy anti-aging effects including neuroprotection. We demonstrate here in rats that ablating CORT by adrenalectomy (ADX) with replenishment to relatively low levels (30% below that of controls) prior to the onset of a DR regimen (ADX-DR) followed by central administration of the neurotoxin, kainic acid (KA), significantly attenuates learning deficits in a 14-unit T-maze task. The performance of the ADX-DR KA group did not differ from a control group (CON) that did not receive KA and was fed ad libitum (AL). By contrast, the sham-operated DR (SHAM-DR KA) group, SHAM-AL KA group, and ADX-AL KA group demonstrated poorer learning behavior in this task compared to the CON group. Stereological analysis revealed equivalent DR-induced neuroprotection in the SH-DR KA and ADX-DR KA groups, as measured by cell loss in the CA2/CA3 region of the hippocampus, while substantial cell loss was observed in SH-AL and ADX-AL rats. A separate set of experiments was conducted with similar dietary and surgical treatment conditions but without KA administration to examine markers of neurotrophic activity, brain-derived neurotrophic factor (BDNF), transcriptions factors (pCREB), and chaperone proteins (HSP-70). Under these conditions, we noted

  2. Modified expression of peripheral blood lymphocyte muscarinic cholinergic receptors in asthmatic children.

    PubMed

    Cherubini, Emanuela; Tabbì, Luca; Scozzi, Davide; Mariotta, Salvatore; Galli, Elena; Carello, Rossella; Avitabile, Simona; Tayebati, Seyed Koshrow; Amenta, Francesco; De Vitis, Claudia; Mancini, Rita; Ricci, Alberto

    2015-07-15

    Lymphocytes possess an independent cholinergic system. We assessed the expression of muscarinic cholinergic receptors in lymphocytes from 49 asthmatic children and 10 age matched controls using Western blot. We demonstrated that CD4+ and CD8+ T cells expressed M2 and M4 muscarinic receptors which density were significantly increased in asthmatic children in comparison with controls. M2 and M4 receptor increase was strictly related with IgE and fraction of exhaled nitric oxide (FeNO) measurements and with impairment in objective measurements of airway obstruction. Increased lymphocyte muscarinic cholinergic receptor expression may concur with lung cholinergic dysfunction and with inflammatory molecular framework in asthma. PMID:26025056

  3. Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis

    PubMed Central

    Dautan, Daniel; Hacioğlu Bay, Husniye; Bolam, J. Paul; Gerdjikov, Todor V.; Mena-Segovia, Juan

    2016-01-01

    Acetylcholine in the striatal complex plays an important role in normal behavior and is affected in a number of neurological disorders. Although early studies suggested that acetylcholine in the striatum (STR) is derived almost exclusively from cholinergic interneurons (CIN), recent axonal mapping studies using conditional anterograde tracing have revealed the existence of a prominent direct cholinergic pathway from the pedunculopontine and laterodorsal tegmental nuclei to the dorsal striatum and nucleus accumbens. The identification of the importance of this pathway is essential for creating a complete model of cholinergic modulation in the striatum, and it opens the question as to whether other populations of cholinergic neurons may also contribute to such modulation. Here, using novel viral tracing technologies based on phenotype-specific fluorescent reporter expression in combination with retrograde tracing, we aimed to define other sources of cholinergic innervation of the striatum. Systematic mapping of the projections of all cholinergic structures in the brain (Ch1 to Ch8) by means of conditional tracing of cholinergic axons, revealed that the only extrinsic source of cholinergic innervation arises in the brainstem pedunculopontine and laterodorsal tegmental nuclei. Our results thus place the pedunculopontine and laterodorsal nuclei in a key and exclusive position to provide extrinsic cholinergic modulation of the activity of the striatal systems. PMID:26834571

  4. Interaction of reduced nicotinamide adenine dinucleotide with an antifreeze protein from Dendroides canadensis: mechanistic implication of antifreeze activity enhancement

    PubMed Central

    Wen, Xin; Wang, Sen; Amornwittawat, Natapol; Houghton, Eric A.; Sacco, Michael A.

    2016-01-01

    Antifreeze proteins (AFPs) found in many organisms can noncolligatively lower the freezing point of water without altering the melting point. The difference between the depressed freezing point and the melting point, termed thermal hysteresis (TH), is usually a measure of the antifreeze activity of AFPs. Certain low molecular mass molecules and proteins can further enhance the antifreeze activity of AFPs. Interaction between an enhancer and arginine is known to play an important role in enhancing the antifreeze activity of an AFP from the beetle Dendroides canadensis (DAFP-1). Here, we examined the enhancement effects of several prevalent phosphate-containing coenzymes on the antifreeze activity of DAFP-1. β-Nicotinamide adenine dinucleotide (reduced) (NADH) is identified as the most efficient enhancer of DAFP-1, which increases the antifreeze activity of DAFP-1 by around 10 times. Examination of the enhancement abilities of a series of NADH analogs and various molecular fragments of NADH reveals that the modifications of nicotinamide generate a series of highly efficient enhancers, though none as effective as NADH itself, and the whole molecular structure of NADH is necessary for its highly efficient enhancement effect. We also demonstrated a 1:1 binding between DAFP-1 and NADH. The binding was characterized by high-performance liquid chromatography (HPLC) using the gel filtration method of Hummel and Dreyer. The data analysis suggests binding between DAFP-1 and NADH with a dissociation constant in the micromolar range. Interactions between DAFP-1 and NADH are discussed along with molecular mechanisms of enhancer action. PMID:22038809

  5. Insulin-like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans.

    PubMed Central

    Hussain, M A; Schmitz, O; Mengel, A; Keller, A; Christiansen, J S; Zapf, J; Froesch, E R

    1993-01-01

    To elucidate the effects of insulin-like growth factor I (IGF-I) on fuel oxidation and insulin sensitivity, eight healthy subjects were treated with saline and recombinant human (IGF-I (10 micrograms/kg.h) during 5 d in a crossover, randomized fashion, while receiving an isocaloric diet (30 kcal/kg.d) throughout the study period. On the third and fourth treatment days, respectively, an L-arginine stimulation test and an intravenous glucose tolerance test were performed. A euglycemic, hyperinsulinemic clamp combined with indirect calorimetry and a glucose tracer infusion were performed on the fifth treatment day. IGF-I treatment led to reduced fasting and stimulated (glucose and/or L-arginine) insulin and growth hormone secretion. Basal and stimulated glucagon secretion remained unchanged. Intravenous glucose tolerance was unaltered despite reduced insulin secretion. Resting energy expenditure and lipid oxidation were both elevated, while protein oxidation was reduced, and glucose turnover rates were unaltered on the fifth treatment day with IGF-I as compared to the control period. Enhanced lipolysis was reflected by elevated circulating free fatty acids. Moreover, insulin-stimulated oxidative and nonoxidative glucose disposal (i.e., insulin sensitivity) were enhanced during IGF-I treatment. Thus, IGF-I treatment leads to marked changes in lipid and protein oxidation, whereas, at the dose used, carbohydrate metabolism remains unaltered in the face of reduced insulin levels and enhanced insulin sensitivity. Images PMID:8227340

  6. Component systems enhancement: Reduced girth seam weldments for heavy walled vessels: Final report

    SciTech Connect

    Not Available

    1987-08-01

    Since many coal gasification processes require heavy-wall pressure vessels as an integral part of the process train, new concepts to reduce the cost and schedule for manufacturing and constructing heavy-wall pressure vessels will result in overall plant cost savings. The results of this research demonstrate that it is feasible to use a reduced girth seam weldment design equal to two-thirds of the nominal vessel wall thickness. This reduction in welding thickness greatly reduces the overall cost of heavy-wall vessels. This report summarizes results of nonlinear finite element analysis and scale model testing of various reduced girth seam details demonstrating that the local reduced thickness does not significantly reduce the ultimate pressure capacity of a heavy-wall vessel. The report also summarizes estimated cost and schedule savings for a typical coal gasification vessel that uses a reduced girth seam detail. In addition, estimated overall plant construction cost savings and overall plant operating and maintenance cost savings are presented. 11 refs., 1 fig., 6 tabs.

  7. Features and Feedback: Enhancing Metamnemonic Knowledge at Retrieval Reduces Source-Monitoring Errors

    ERIC Educational Resources Information Center

    Lane, Sean M.; Roussel, Cristine C.; Villa, Diane; Morita, Shelby K.

    2007-01-01

    Three experiments explored the issue of whether enhanced metamnemonic knowledge at retrieval can improve participants' ability to make difficult source discriminations in the context of the eyewitness suggestibility paradigm. The 1st experiment documented differences in phenomenal experience between veridical and false memories. Experiment 2…

  8. Reducing Alcohol Risk in Adjudicated Male College Students: Further Validation of a Group Motivational Enhancement Intervention

    ERIC Educational Resources Information Center

    LaBrie, Joseph W.; Cail, Jessica; Pedersen, Eric R.; Migliuri, Savannah

    2011-01-01

    This study examined the effectiveness of a single-session group motivational enhancement alcohol intervention on adjudicated male college students. Over two sequential academic years, 230 students sanctioned by the university for alcohol-related infractions attended a 60- to 75-minute group intervention. The intervention consisted of a timeline…

  9. Enhanced Brewer Dobson circulation reduces N2O warming potential under climate change

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela; Reick, Christian; Manzini, Elisa; Schultz, Martin; Stein, Olaf

    2016-04-01

    One implication of climate change is an enhancement of the Brewer Dobson circulation (BDC) triggering the exchange between troposphere and stratosphere. This change in atmospheric dynamics will have effects on atmospheric constituents, especially those with stratospheric sinks such as ozone depleting substances (ODS) including nitrous oxide (N2O). N2O is the most important currently emitted ODS, and the third most important anthropogenic greenhouse gas. Under enhanced BDC, more N2O is transported from the troposphere into the stratosphere, reaching higher altitudes, resulting in an increased N2O sink and a decrease in N2O lifetime. Some aspects of the effect of an enhanced BDC on lifetimes of ODS have already been examined with focus on its implications for ozone. In this study, we examine the effect of a decreasing N2O lifetime in light of climate change. To this end we conduct idealized transient global warming simulations with ECHAM, the atmosphere component of the MPI Earth System Model. As we prescribe surface flux boundary conditions for N2O, we are able to examine further implications of an enhanced N2O sink on atmospheric abundance, which is an important factor for e.g. generating concentration scenarios. Due the idealized simulation setup, we derive findings that are scenario-independent and can easily be extended to other global warming scenarios.

  10. Results of ENHANCED Implantable Cardioverter Defibrillator Programming to Reduce Therapies and Improve Quality of Life (from the ENHANCED-ICD Study).

    PubMed

    Mastenbroek, Mirjam H; Pedersen, Susanne S; van der Tweel, Ingeborg; Doevendans, Pieter A; Meine, Mathias

    2016-02-15

    Novel implantable cardioverter defibrillator (ICD) discrimination algorithms and programming strategies have significantly reduced the incidence of inappropriate shocks, but there are still gains to be made with respect to reducing appropriate but unnecessary antitachycardia pacing (ATP) and shocks. We examined whether programming a number of intervals to detect (NID) of 60/80 for ventricular tachyarrhythmia (VT)/ventricular fibrillation (VF) detection was safe and the impact of this strategy on (1) adverse events related to ICD shocks and syncopal events; (2) ATPs/shocks; and (3) patient-reported outcomes. The "ENHANCED Implantable Cardioverter Defibrillator programming to reduce therapies and improve quality of life" study (ENHANCED-ICD study) was a prospective, safety-monitoring study enrolling 60 primary and secondary prevention patients at the University Medical Center Utrecht. Patients implanted with any type of ICD with SmartShock technology and aged 18 to 80 years were eligible to participate. In all patients, a prolonged NID 60/80 was programmed. The cycle length for VT/fast VT/VF was 360/330/240 ms, respectively. Programming a NID 60/80 proved safe for ICD patients. Because of the new programming strategy, unnecessary ICD therapy was prevented in 10% of ENHANCED-ICD patients during a median follow-up period of 1.3 years. With respect to patient-reported outcomes, levels of distress were highest and perceived health status lowest at the time of implantation, which both gradually improved during follow-up. In conclusion, the ENHANCED-ICD study demonstrates that programming a NID 60/80 for VT/VF detection is safe for ICD patients and does not negatively impact their quality of life. PMID:26732419

  11. Advertising to the enemy: enhanced floral fragrance increases beetle attraction and reduces plant reproduction.

    PubMed

    Theis, Nina; Adler, Lynn S

    2012-02-01

    Many organisms face challenges in avoiding predation while searching for mates. For plants, emitting floral fragrances to advertise reproductive structures could increase the attraction of detrimental insects along with pollinators. Very few studies have experimentally evaluated the costs and benefits of fragrance emission with explicit consideration of how plant fitness is affected by both pollinators and florivores. To determine the reproductive consequences of increasing the apparency of reproductive parts, we manipulated fragrance, pollination, and florivores in the wild Texas gourd, Cucurbita pepo var. texana. With enhanced fragrance we found an increase in the attraction of florivores, rather than pollinators, and a decrease in seed production. This study is the first to demonstrate that enhanced floral fragrance can increase the attraction of detrimental florivores and decrease plant reproduction, suggesting that florivory as well as pollination has shaped the evolution of floral scent. PMID:22624324

  12. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    NASA Astrophysics Data System (ADS)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  13. Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction.

    PubMed

    Badugu, Ramachandram; Lakowicz, Joseph R; Geddes, Chris D

    2005-03-16

    Three water-soluble fluorescent probes have been specifically designed to determine free cyanide concentrations up to physiologically lethal levels, >20 microM. The probes have been designed in such a way as to afford many notable sensing features, which render them unique with regard to signal transduction, photophysical characteristics, and their application to physiological cyanide determination and safeguard. The probes are readily able to reversibly bind free aqueous cyanide with dissociation constants around 4 microM3. Subsequent cyanide binding modulates the intramolecular charge transfer within the probes, a change in the electronic properties within the probes, resulting in enhanced fluorescence optical signals as a function of increased solution cyanide concentration. The ground-state chelation with cyanide produces wavelength shifts, which also enable the probes to sense cyanide in both an excitation and emission ratiometric manner, in addition to enhanced fluorescence signaling. This has enabled a generic cyanide sensing platform to be realized that is not dependent on fluorescent probe concentration, probe photodegradation, or fluctuations in the intensity of any employed excitation sources, ideal for remote cyanide sensing applications. Further, the >600 nm fluorescence emission of the probes potentially allows for enhanced fluorescence ratiometric cyanide sensing in the optical window of tissues and blood, facilitating their use for the transdermal monitoring of cyanide for mammalian safeguard or postmortem in fire victims, both areas of active research. PMID:15755185

  14. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice

    PubMed Central

    Hedrick, Tristan; Danskin, Bethanny; Larsen, Rylan S.; Ollerenshaw, Doug; Groblewski, Peter; Valley, Matthew; Olsen, Shawn; Waters, Jack

    2016-01-01

    The study of cholinergic signaling in the mammalian CNS has been greatly facilitated by the advent of mouse lines that permit the expression of reporter proteins, such as opsins, in cholinergic neurons. However, the expression of opsins could potentially perturb the physiology of opsin-expressing cholinergic neurons or mouse behavior. Indeed, the published literature includes examples of cellular and behavioral perturbations in preparations designed to drive expression of opsins in cholinergic neurons. Here we investigate expression of opsins, cellular physiology of cholinergic neurons and behavior in two mouse lines, in which channelrhodopsin-2 (ChR2) and archaerhodopsin (Arch) are expressed in cholinergic neurons using the Cre-lox system. The two mouse lines were generated by crossing ChAT-Cre mice with Cre-dependent reporter lines Ai32(ChR2-YFP) and Ai35(Arch-GFP). In most mice from these crosses, we observed expression of ChR2 and Arch in only cholinergic neurons in the basal forebrain and in other putative cholinergic neurons in the forebrain. In small numbers of mice, off-target expression occurred, in which fluorescence did not appear limited to cholinergic neurons. Whole-cell recordings from fluorescently-labeled basal forebrain neurons revealed that both proteins were functional, driving depolarization (ChR2) or hyperpolarization (Arch) upon illumination, with little effect on passive membrane properties, spiking pattern or spike waveform. Finally, performance on a behavioral discrimination task was comparable to that of wild-type mice. Our results indicate that ChAT-Cre x reporter line crosses provide a simple, effective resource for driving indicator and opsin expression in cholinergic neurons with few adverse consequences and are therefore an valuable resource for studying the cholinergic system. PMID:27243816

  15. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Ramesh; Kaur, Amarjeet

    2016-05-01

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  16. Purinergic and Cholinergic Drugs Mediate Hyperventilation in Zebrafish: Evidence from a Novel Chemical Screen.

    PubMed

    Rahbar, Saman; Pan, Wen; Jonz, Michael G

    2016-01-01

    A rapid test to identify drugs that affect autonomic responses to hypoxia holds therapeutic and ecologic value. The zebrafish (Danio rerio) is a convenient animal model for investigating peripheral O2 chemoreceptors and respiratory reflexes in vertebrates; however, the neurotransmitters and receptors involved in this process are not adequately defined. The goals of the present study were to demonstrate purinergic and cholinergic control of the hyperventilatory response to hypoxia in zebrafish, and to develop a procedure for screening of neurochemicals that affect respiration. Zebrafish larvae were screened in multi-well plates for sensitivity to the cholinergic receptor agonist, nicotine, and antagonist, atropine; and to the purinergic receptor antagonists, suramin and A-317491. Nicotine increased ventilation frequency (fV) maximally at 100 μM (EC50 = 24.5 μM). Hypoxia elevated fV from 93.8 to 145.3 breaths min-1. Atropine reduced the hypoxic response only at 100 μM. Suramin and A-317491 maximally reduced fV at 50 μM (EC50 = 30.4 and 10.8 μM) and abolished the hyperventilatory response to hypoxia. Purinergic P2X3 receptors were identified in neurons and O2-chemosensory neuroepithelial cells of the gills using immunohistochemistry and confocal microscopy. These studies suggest a role for purinergic and nicotinic receptors in O2 sensing in fish and implicate ATP and acetylcholine in excitatory neurotransmission, as in the mammalian carotid body. We demonstrate a rapid approach for screening neuroactive chemicals in zebrafish with implications for respiratory medicine and carotid body disease in humans; as well as for preservation of aquatic ecosystems. PMID:27100625

  17. Cholinergic and ghrelinergic receptors and KCNQ channels in the medial PFC regulate the expression of palatability

    PubMed Central

    Parent, Marc A.; Amarante, Linda M.; Swanson, Kyra; Laubach, Mark

    2015-01-01

    The medial prefrontal cortex (mPFC) is a key brain region for the control of consummatory behavior. Neuronal activity in this area is modulated when rats initiate consummatory licking and reversible inactivations eliminate reward contrast effects and reduce a measure of palatability, the duration of licking bouts. Together, these data suggest the hypothesis that rhythmic neuronal activity in the mPFC is crucial for the control of consummatory behavior. The muscarinic cholinergic system is known to regulate membrane excitability and control low-frequency rhythmic activity in the mPFC. Muscarinic receptors (mAChRs) act through KCNQ (Kv7) potassium channels, which have recently been linked to the orexigenic peptide ghrelin. To understand if drugs that act on KCNQ channels within the mPFC have effects on consummatory behavior, we made infusions of several muscarinic drugs (scopolamine, oxotremorine, physostigmine), the KCNQ channel blocker XE-991, and ghrelin into the mPFC and evaluated their effects on consummatory behavior. A consistent finding across all drugs was an effect on the duration of licking bouts when animals consume solutions with a relatively high concentration of sucrose. The muscarinic antagonist scopolamine reduced bout durations, both systemically and intra-cortically. By contrast, the muscarinic agonist oxotremorine, the cholinesterase inhibitor physostigmine, the KCNQ channel blocker XE-991, and ghrelin all increased the durations of licking bouts when infused into the mPFC. Our findings suggest that cholinergic and ghrelinergic signaling in the mPFC, acting through KCNQ channels, regulates the expression of palatability. PMID:26578914

  18. Purinergic and Cholinergic Drugs Mediate Hyperventilation in Zebrafish: Evidence from a Novel Chemical Screen

    PubMed Central

    Rahbar, Saman; Pan, Wen; Jonz, Michael G.

    2016-01-01

    A rapid test to identify drugs that affect autonomic responses to hypoxia holds therapeutic and ecologic value. The zebrafish (Danio rerio) is a convenient animal model for investigating peripheral O2 chemoreceptors and respiratory reflexes in vertebrates; however, the neurotransmitters and receptors involved in this process are not adequately defined. The goals of the present study were to demonstrate purinergic and cholinergic control of the hyperventilatory response to hypoxia in zebrafish, and to develop a procedure for screening of neurochemicals that affect respiration. Zebrafish larvae were screened in multi-well plates for sensitivity to the cholinergic receptor agonist, nicotine, and antagonist, atropine; and to the purinergic receptor antagonists, suramin and A-317491. Nicotine increased ventilation frequency (fV) maximally at 100 μM (EC50 = 24.5 μM). Hypoxia elevated fV from 93.8 to 145.3 breaths min-1. Atropine reduced the hypoxic response only at 100 μM. Suramin and A-317491 maximally reduced fV at 50 μM (EC50 = 30.4 and 10.8 μM) and abolished the hyperventilatory response to hypoxia. Purinergic P2X3 receptors were identified in neurons and O2-chemosensory neuroepithelial cells of the gills using immunohistochemistry and confocal microscopy. These studies suggest a role for purinergic and nicotinic receptors in O2 sensing in fish and implicate ATP and acetylcholine in excitatory neurotransmission, as in the mammalian carotid body. We demonstrate a rapid approach for screening neuroactive chemicals in zebrafish with implications for respiratory medicine and carotid body disease in humans; as well as for preservation of aquatic ecosystems. PMID:27100625

  19. Enhancing Patient Safety by Reducing Healthcare-Associated Infections: The Role of Discovery and Dissemination

    PubMed Central

    2010-01-01

    Healthcare-associated infections (HAIs) take a major human toll on society and reduce public confidence in the healthcare system. The current convergence of scientific, public, and legislative interest in reducing rates of HAI can provide the necessary momentum to address and answer important questions in HAI research. This position paper outlines priorities for a national approach to HAIs: scrutinizing the science base, developing a prioritized research agenda, conducting studies that address the questions that have been identified, creating and deploying guidelines that are based on the outcomes of these studies, and then initiating new studies that assess the efficacy of the interventions. PMID:20038249

  20. Effects of amyloid-beta on cholinergic and acetylcholinesterase-positive cells in cultured basal forebrain neurons of embryonic rat brain.

    PubMed

    Kasa, Peter; Papp, Henrietta; Kasa, Peter; Pakaski, Magdolna; Balaspiri, Lajos

    2004-02-13

    The neurotoxic effects of amyloid-beta(1-42) and amyloid-beta(25-35) (A beta) on cholinergic and acetylcholinesterase-positive neurons were investigated in primary cultures derived from embryonic 18-day-old rat basal forebrain. After various time intervals, the cultures were treated with 1, 5, 10 or 20 microM A beta for different time periods. The cholinergic neurons and their axon terminals were revealed by vesicular acetylcholine transporter immunohistochemistry and the cholinoceptive cells by acetylcholinesterase histochemical staining. To assess the toxic effects of these A beta peptides on the cholinergic neurons, image analysis was applied for quantitative determination of the numbers of axon varicosities/terminals and cells. The results demonstrate that, following treatment with 1 or 5 microM A beta for 5, 10, 30, 60 or 120 min, no changes in vesicular acetylcholine transporter immunohistochemical staining were observed. However, after treatment for 30 min with 10 or 20 microM A beta, the number of stained axon varicosities was reduced, and treatment for 2 h they had disappeared. In contrast, vesicular acetylcholine transporter-positivity could be seen in some of the neuronal perikarya even after 3 days after treatment. The acetylcholinesterase staining was homogeneously distributed in the control neurons. After A beta treatment, the histochemical reaction end-product was detected in some of the neuronal perikarya or in the dendritic processes near to the soma. It is concluded that the neurotoxic effects of A beta appear more rapidly in the cholinergic axon terminals than in the cholinergic and acetylcholinesterase-positive neuronal perikarya. PMID:14725970

  1. Enhanced reduced sulfur emission from manures of beef cattle fed distiller's byproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced sulfur compounds are normal products of manure decomposition which are emitted from confined animal feeding operations (CAFO). These compounds not only contribute to nuisance odors, but with recent EPA regulations, H2S emissions in excess of 100 lbs per day must be reported by the livestock...

  2. Distillers by-product cattle diets enhance reduced sulfur gas fluxes from feedlot soils and manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total reduced sulfur (TRS) emissions from animal feeding operations are a concern with increased feeding of high-sulfur distillers by-products. Three feeding trials were conducted to evaluate feeding wet distillers grain plus solubles (WDGS) on TRS fluxes. Fresh manure was collected three times duri...

  3. 76 FR 54408 - Human Subjects Research Protections: Enhancing Protections for Research Subjects and Reducing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ...: The comment period for the proposed rule published July 26, 2011, at 76 FR 44512 is extended. Comments... Reducing Burden, Delay, and Ambiguity for Investigators; Extension of Comment Period AGENCIES: The Office... burden, delay, and ambiguity for investigators. Since the ANPRM was published the Department has...

  4. Spaced Learning Enhances Subsequent Recognition Memory by Reducing Neural Repetition Suppression

    ERIC Educational Resources Information Center

    Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi

    2011-01-01

    Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half…

  5. Feeding Distiller's Byproducts May Enhance Reduced Sulfur Emissions from Cattle Feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced sulfur compounds are normal products of manure decomposition which are emitted from confined animal feeding operations (CAFO). These compounds not only contribute to nuisance odors, but with recent EPA regulations, H2S emissions in excess of 100 lbs per day must be reported by the livestock...

  6. Group Counseling to Reduce Maladaptive Behavior and Enhance Self-Esteem in the Middle School.

    ERIC Educational Resources Information Center

    Trumbull, Leon

    Counselors at one middle school would see the same students repeatedly for disruptive behavior in the classroom. The counselors' efforts did not appear to reduce these repetitive referrals. This study used group counseling to address the maladaptive behavior of the students and to improve their self-esteem. Students were selected by six teachers…

  7. ESTROGEN REPLACEMENT THERAPY REDUCES TOTAL PLASMA HOMOCYSTEINE AND CONCURRENTLY ENHANCES GENOMIC DNA METHYLATION IN POSTMENOPAUSAL WOMEN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although estrogen replacement therapy (ERT), which can affect the risk of major cancers, has been known to reduce total plasma homocysteine concentrations in postmenopausal women, the mechanisms and subsequent molecular changes have not yet been defined. To investigate the effect of ERT on homocyste...

  8. Mixed-Mode Surveys: A Strategy to Reduce Costs and Enhance Response Rates

    ERIC Educational Resources Information Center

    Tobin, Daniel; Thomson, Joan; Radhakrishna, Rama; LaBorde, Luke

    2012-01-01

    Mixed-mode surveys present one opportunity for Extension to determine program outcomes at lower costs. In order to conduct a follow-up evaluation, we implemented a mixed-mode survey that relied on communication using the Web, postal mailings, and telephone calls. Using multiple modes conserved costs by reducing the number of postal mailings yet…

  9. FOXO1 Deletion Reduces Dendritic Cell Function and Enhances Susceptibility to Periodontitis

    PubMed Central

    Xiao, Wenmei; Dong, Guangyu; Pacios, Sandra; Alnammary, Maher; Barger, Laura A.; Wang, Yu; Wu, Yingying; Graves, Dana T.

    2016-01-01

    The host response plays both protective and destructive roles in periodontitis. FOXO1 is a transcription factor that is activated in dendritic cells (DCs), but its function in vivo has not been examined. We investigated the role of FOXO1 in activating DCs in experimental (CD11c.Cre+.FOXO1L/L) compared with matched control mice (CD11c.Cre−.FOXO1L/L) in response to oral pathogens. Lineage-specific FOXO1 deletion reduced the recruitment of DCs to oral mucosal epithelium by approximately 40%. FOXO1 was needed for expression of genes that regulate migration, including integrins αν and β3 and matrix metalloproteinase-2. Ablation of FOXO1 in DCs significantly decreased IL-12 produced by DCs in mucosal surfaces. Moreover, FOXO1 deletion reduced migration of DCs to lymph nodes, reduced capacity of DCs to induce formation of plasma cells, and reduced production of bacteria-specific antibody. The decrease in DC function in the experimental mice led to increased susceptibility to periodontitis through a mechanism that involved a compensatory increase in osteoclastogenic factors, IL-1β, IL-17, and RANKL. Thus, we reveal a critical role for FOXO1 in DC recruitment to oral mucosal epithelium and activation of adaptive immunity induced by oral inoculation of bacteria. PMID:25794707

  10. Impacts of enhanced CCN on the organization of convection and recent reduced counts of monsoon depressions

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Martin, Andrew; Krishnamurti, Ruby; Simon, Anu; Thomas, Aype; Kumar, Vinay

    2012-11-01

    Monsoon depressions, that form during the Indian summer monsoon season (June to September) are known to be baroclinic disturbances (horizontal scale 2000 to 3000 km) and are driven by deep convection that carries a very large vertical slope towards cold air aloft in the upper troposphere. Deep convection is nearly always organized around the scale of these depressions. In the maintenance of the monsoon depression the generation of eddy kinetic energy on the scale of the monsoon depression is largely governed by the "in scale" covariance of heating and temperature and of vertical velocity and temperature over the region of the monsoon depression. There are normally about 6 to 8 monsoon depressions during a summer monsoon season. Recent years 2009, 2010 and 2011 saw very few (around 1, 0 and 1 per season respectively). The best numerical models such as those from ECMWF and US (GFS) carried many false alarms in their 3 to 5 day forecasts, more like 6 to 8 disturbances. Even in recent years with fewer observed monsoon depressions a much larger number of depressions is noted in ECMWF forecasts. These are fairly comprehensive models that carry vast data sets (surface and satellite based), detailed data assimilation, and are run at very high resolutions. The monsoon depression is well resolved by these respective horizontal resolutions in these models (at 15 and 35km). These models carry complete and detailed physical parameterizations. The false alarms in their forecasts leads us to suggest that some additional important ingredient may be missing in these current best state of the art models. This paper addresses the effects of pollution for the enhancement of cloud condensation nuclei and the resulting disruption of the organization of convection in monsoon depressions. Our specific studies make use of a high resolution mesoscale model (WRF/CHEM) to explore the impacts of the first and second aerosol indirect effects proposed by Twomey and Albrecht. We have conducted

  11. Impacts of enhanced CCN on the organization of convection and recent reduced counts of monsoon depressions

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Martin, Andrew; Krishnamurti, Ruby; Simon, Anu; Thomas, Aype; Kumar, Vinay

    2013-07-01

    Monsoon depressions, that form during the Indian summer monsoon season (June to September) are known to be baroclinic disturbances (horizontal scale 2,000-3,000 km) and are driven by deep convection that carries a very large vertical slope towards cold air aloft in the upper troposphere. Deep convection is nearly always organized around the scale of these depressions. In the maintenance of the monsoon depression the generation of eddy kinetic energy on the scale of the monsoon depression is largely governed by the "in scale" covariance of heating and temperature and of vertical velocity and temperature over the region of the monsoon depression. There are normally about 6-8 monsoon depressions during a summer monsoon season. Recent years 2009, 2010 and 2011 saw very few (around 1, 0 and 1 per season respectively). The best numerical models such as those from ECMWF and US (GFS) carried many false alarms in their 3-5 day forecasts, more like 6-8 disturbances. Even in recent years with fewer observed monsoon depressions a much larger number of depressions is noted in ECMWF forecasts. These are fairly comprehensive models that carry vast data sets (surface and satellite based), detailed data assimilation, and are run at very high resolutions. The monsoon depression is well resolved by these respective horizontal resolutions in these models (at 15 and 35 km). These models carry complete and detailed physical parameterizations. The false alarms in their forecasts leads us to suggest that some additional important ingredient may be missing in these current best state of the art models. This paper addresses the effects of pollution for the enhancement of cloud condensation nuclei and the resulting disruption of the organization of convection in monsoon depressions. Our specific studies make use of a high resolution mesoscale model (WRF/CHEM) to explore the impacts of the first and second aerosol indirect effects proposed by Twomey and Albrecht. We have conducted preliminary

  12. Cholinergic receptors as target for cancer therapy in a systems medicine perspective.

    PubMed

    Russo, P; Del Bufalo, A; Milic, M; Salinaro, G; Fini, M; Cesario, A

    2014-01-01

    Epithelial cells not innervated by cholinergic neurons express nicotinic and muscarinic acetylcholine (ACh) receptors (nAChR, mAChR). nAChR and mAChR are components of the auto-/paracrine-regulatory loop of non-neuronal ACh release. The cholinergic control of non-neuronal cells may be mediated by different effects (synergistic, additive, or reciprocal) triggered by these receptors. The ionic events (Ca(+2) influx) are generated by the ACh-opening of nAChR channels, while the metabolic events by ACh-binding to G-proteincoupled mAChR. Effective inter- and intracellular signaling is crucial for valuable cancer cells proliferation and survival. Depending on cancer cell type, different AChR have been identified. The proliferation of airways epithelial cancer cells and pancreatic cancer cells may be under the control of α7-nAChR and M3-mAChR, while breast cancer cells and colon cancer cells are regulated by α9-nAChR, and M3-mAChR, respectively. In turn, these receptors may activate different pathways (Ras-Raf-1-Erk-AKT) as well as other receptors (β- adrenergicR). nAChR or mAChR antagonists may inhibit cancer growth. Inhibition of M3 by antisense or antagonists (Darifenacin, Tiotropium) reduces lung or colon cancer proliferation, as well as inhibition of α9- nAChR [polyphenol (-)-epigallocatechin-3-gallate] diminishes breast cancer cells growth. α7-nAChR silencing inhibits lung cancer proliferation. Moreover, inhibition of the nAChR-β-adrenergicR pathway (β-blockers) could be also useful. This review will describe the future translational perspectives of cholinergic receptors druginhibition in a complex disease such as cancer that poses compelling treatment challenges. Cancer happens as consequence of disease-perturbed molecular networks in relevant organ cells that change during progression. The framework for approaching these challenges is a systems approach. PMID:25324001

  13. Alleviating Effects of Bushen-Yizhi Formula on Ibotenic Acid-Induced Cholinergic Impairments in Rat

    PubMed Central

    Hou, Xue-Qin; Zhang, Lei; Yang, Cong; Rong, Cui-Ping; He, Wen-Qing; Zhang, Chun-Xia; Li, Shi; Su, Ru-Yu; Chang, Xiang; Qin, Ji-Huan; Chen, Yun-Bo

    2015-01-01

    Abstract This study explored the curative effect and underlying mechanisms of a traditional Chinese medicine compound prescription, Bushen-Yizhi formula (BSYZ), in ibotenic acid (IBO)-induced rats. Morris water maze and novel object recognition tests showed that BSYZ significantly improved spatial and object memory. Brain immunohistochemistry staining showed that BSYZ significantly up-regulated expression of choline acetyltransferase (ChAT) and nerve growth factor (NGF) in the hippocampus and cortex. The protein tyrosine kinase high-affinity receptor TrkA was slightly increased in the hippocampus and cortex, and significantly enhanced in the nucleus basalis of Meynert (NBM) after BSYZ intervention. The immunoreactivity of the p75 low-affinity receptor in BSYZ-treated rats was significantly strengthened in the cortex. Similar expression trends of nerve growth factor (NGF), TrkA, and p75 mRNA were observed in the hippocampus and cortex. Additionally, BSYZ reversed IBO-induced disorders of acetylcholine (ACh) levels, ChAT, and cholinesterase (ChE) in the cortex, which was consistent with the changes in mRNA levels of ChAT and acetylcholinesterase (AChE). Expression of ChAT and AChE proteins and mRNA in the hippocampus was up-regulated, whereas the apoptosis-relative protein cleaved caspase-3 was decreased after administration of BSYZ. Moreover, changes in cell death were confirmed by histological morphology. Thus, the results indicated that the BSYZ formula could ameliorate memory impairments in IBO-induced rats, and it exerted its therapeutic action probably by modulating cholinergic pathways, NGF signaling, and anti-apoptosis. Overall, it is suggested that the BSYZ formula might be a potential therapeutic approach for the treatment of Alzheimer's disease (AD) and other cholinergic impairment-related diseases. PMID:25482164

  14. Inhibition of cholinergic pathways in Drosophila melanogaster by α-conotoxins.

    PubMed

    Heghinian, Mari D; Mejia, Monica; Adams, David J; Godenschwege, Tanja A; Marí, Frank

    2015-03-01

    Nicotinic acetylcholine receptors (nAChRs) play a pivotal role in synaptic transmission of neuronal signaling pathways and are fundamentally involved in neuronal disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In vertebrates, cholinergic pathways can be selectively inhibited by α-conotoxins; we show that in the model organism Drosophila, the cholinergic component of the giant fiber system is inhibited by α-conotoxins MII, AuIB, BuIA, EI, PeIA, and ImI. The injection of 45 pmol/fly of each toxin dramatically decreases the response of the giant fiber to dorsal longitudinal muscle (GF-DLM) connection to 20 ± 13.9% for MII; 26 ± 13.7% for AuIB, 12 ± 9.9% for BuIA, 30 ± 11.3% for EI, 1 ± 1% for PeIA, and 34 ± 15.4% for ImI. Through bioassay-guided fractionation of the venom of Conus brunneus, we found BruIB, an α-conotoxin that inhibits Drosophila nicotinic receptors but not its vertebrate counterparts. GF-DLM responses decreased to 43.7 ± 8.02% on injection of 45 pmol/fly of BruIB. We manipulated the Dα7 nAChR to mimic the selectivity of its vertebrate counterpart by placing structurally guided point mutations in the conotoxin-binding site. This manipulation rendered vertebrate-like behavior in the Drosophila system, enhancing the suitability of Drosophila as an in vivo tool to carry out studies related to human neuronal diseases. . PMID:25466886

  15. Reduced caudate volume and enhanced striatal-DMN integration in chess experts.

    PubMed

    Duan, Xujun; He, Sheng; Liao, Wei; Liang, Dongmei; Qiu, Lihua; Wei, Luqing; Li, Yuan; Liu, Chengyi; Gong, Qiyong; Chen, Huafu

    2012-04-01

    The superior capability of chess experts largely depends on quick automatic processing skills which are considered to be mediated by the caudate nucleus. We asked whether continued practice or rehearsal of the skill over a long period of time can lead to structural changes in this region. We found that, comparing to novice controls, grandmaster and master level Chinese chess players (GM/Ms), who had a mean period of over 10years of tournament and training practice, exhibited significant smaller gray-matter volume in the bilateral caudate nuclei. When these regions were used as seeds in functional connectivity analysis in resting-state fMRI, significantly enhanced integration was found in GM/Ms between the caudate and the default mode network (DMN), a constellation of brain areas important for goal-directed cognitive performance and theory of mind. These findings demonstrate the structural changes in the caudate nucleus in response to its extensive engagement in chess problem solving, and its enhanced functional integration with widely distributed circuitry to better support high-level cognitive control of behavior. PMID:22270350

  16. Tamoxifen nanostructured lipid carriers: enhanced in vivo antitumor efficacy with reduced adverse drug effects.

    PubMed

    Shete, Harshad K; Selkar, Nilakash; Vanage, Geeta R; Patravale, Vandana B

    2014-07-01

    A novel approach of enhancing the Tamoxifen uptake via Intestinal Lymphatic System is executed by developing long chain lipid and oil based nanostructured lipid carrier system (Tmx-NLC). The aim was to achieve improved systemic bioavailability of Tamoxifen, prevent systemic and hepatotoxicity and enhance antitumor efficacy. Following the proof of concept achieved in cell culture experiments and in vivo pharmacokinetic and biodistribution study, the current work focuses on investigation of antitumor efficacy and treatment associated toxicity in murine mammary tumor mice model. The efficacy study demonstrated greater tumor suppression and 100% survival with 1.5 and 3 mg/kg Tmx-NLC compared to 3 mg/kg Tamoxifen suspension and Mamofen(®) (Khandelwal Pharmaceuticals, Mumbai, India). Tmx-NLC treatment for a month demonstrated improved systemic toxicity profile and no evidences of hepatotoxicity. Thus, developed Tmx-NLC could prove to be a promising delivery strategy to confer superior therapeutic efficacy and ability to address the biopharmaceutical and toxicity associated issues of drug. PMID:24704438

  17. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing.

    PubMed

    Zabner, J; Seiler, M P; Launspach, J L; Karp, P H; Kearney, W R; Look, D C; Smith, J J; Welsh, M J

    2000-10-10

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface. PMID:11027360

  18. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    PubMed Central

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-01-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface. PMID:11027360

  19. Novel aspects of cholinergic regulation of colonic ion transport.

    PubMed

    Bader, Sandra; Diener, Martin

    2015-06-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (I sc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on I sc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport - up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors - is more complex than previously assumed. PMID:26236483

  20. Heterogeneity of phasic cholinergic signaling in neocortical neurons.

    PubMed

    Gulledge, Allan T; Park, Susanna B; Kawaguchi, Yasuo; Stuart, Greg J

    2007-03-01

    Acetylcholine (ACh) is a neurotransmitter critical for normal cognition. Here we demonstrate heterogeneity of cholinergic signaling in neocortical neurons in the rat prefrontal, somatosensory, and visual cortex. Focal ACh application (100 muM) inhibited layer 5 pyramidal neurons in all cortical areas via activation of an apamin-sensitive SK-type calcium-activated potassium conductance. Cholinergic inhibition was most robust in prefrontal layer 5 neurons, where it relies on the same signal transduction mechanism (M1-like receptors, IP(3)-dependent calcium release, and SK-channels) as exists in somatosensory pyramidal neurons. Pyramidal neurons in layer 2/3 were less responsive to ACh, but substantial apamin-sensitive inhibitory responses occurred in deep layer 3 neurons of the visual cortex. ACh was only inhibitory when presented near the somata of layer 5 pyramidal neurons, where repetitive ACh applications generated discrete inhibitory events at frequencies of up to approximately 0.5 Hz. Fast-spiking (FS) nonpyramidal neurons in all cortical areas were unresponsive to ACh. When applied to non-FS interneurons in layers 2/3 and 5, ACh generated mecamylamine-sensitive nicotinic responses (38% of cells), apamin-insensitive hyperpolarizing responses, with or without initial nicotinic depolarization (7% of neurons), or no response at all (55% of cells). Responses in interneurons were similar across cortical layers and regions but were correlated with cellular physiology and the expression of biochemical markers associated with different classes of nonpyramidal neurons. Finally, ACh generated nicotinic responses in all layer 1 neurons tested. These data demonstrate that phasic cholinergic input can directly inhibit projection neurons throughout the cortex while sculpting intracortical processing, especially in superficial layers. PMID:17122323

  1. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    PubMed Central

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O.; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  2. Purinergic and cholinergic components of bladder contractility and flow.

    PubMed

    Theobald, R J

    1995-01-01

    The role of ATP as a neurotransmitter/neuromodulator in the urinary tract has been the subject of much study, particularly whether ATP has a functional role in producing urine flow. Recent studies suggested significant species variation, specifically a variation between cat and other species. This study was performed to determine the in vivo response of cat urinary bladder to pelvic nerve stimulation (PNS) and to the exogenous administration of cholinergic and purinergic agents. In anesthetized cats, bladder contractions and fluid expulsion was measured in response to PNS and to the exogenous administration of cholinergic and purinergic agents. Fluid was instilled into the bladder and any fluid expelled by bladder contractions induced by PNS or exogenous agents was collected in a beaker. The volume was measured in a graduated cylinder and recorded. PNS, carbachol and APPCP produced sustained contractions with significant expulsion of fluid. ATP, ACh and hypogastric nerve stimulation did not produce any significant expulsion of fluid. Atropine, a cholinergic antagonist, inhibited PNS contractions and fluid expulsion with no effect on purinergic actions. There was a significant relationship between the magnitude of the contraction, duration of the contractions and volume of fluid expelled. The data and information from other studies, strongly suggests a functional role for ATP as a cotransmitter in the lower urinary tract different from ACh's role. ATP stimulation of a specific purinergic receptor plays a role in initiation of bladder contractions and perhaps in the initiation of urine flow from the bladder. ACh's role is functionally different and appears to be more involved in maintenance of contractile activity and flow. PMID:7830505

  3. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  4. Reducing readmissions using teach-back: enhancing patient and family education.

    PubMed

    Peter, Debra; Robinson, Paula; Jordan, Marie; Lawrence, Susan; Casey, Krista; Salas-Lopez, Debbie

    2015-01-01

    This article describes a quality improvement initiative, implemented by a patient education workgroup within a tertiary Magnet® facility. The project focused on the association between inadequate care transitions in patients with heart failure and subsequent costly readmissions. The teach-back initiative was piloted with patients hospitalized with heart failure, because of this population's high risk of readmission. Learning outcomes included documented improvements in patients' understanding of their disease and reduced readmission rates. PMID:25479173

  5. Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure.

    PubMed

    Li, Zan; Guo, Qiang; Li, Zhiqiang; Fan, Genlian; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Zhang, Di

    2015-12-01

    Bulk graphene (reduced graphene oxide)-reinforced Al matrix composites with a bioinspired nanolaminated microstructure were fabricated via a composite powder assembly approach. Compared with the unreinforced Al matrix, these composites were shown to possess significantly improved stiffness and tensile strength, and a similar or even slightly higher total elongation. These observations were interpreted by the facilitated load transfer between graphene and the Al matrix, and the extrinsic toughening effect as a result of the nanolaminated microstructure. PMID:26574873

  6. Stents Eluting 6-Mercaptopurine Reduce Neointima Formation and Inflammation while Enhancing Strut Coverage in Rabbits

    PubMed Central

    Ruiter, Matthijs S.; van Tiel, Claudia M.; Doornbos, Albert; Marinković, Goran; Strang, Aart C.; Attevelt, Nico J. M.; de Waard, Vivian; de Winter, Robbert J.; Steendam, Rob; de Vries, Carlie J. M.

    2015-01-01

    Background The introduction of drug-eluting stents (DES) has dramatically reduced restenosis rates compared with bare metal stents, but in-stent thrombosis remains a safety concern, necessitating prolonged dual anti-platelet therapy. The drug 6-Mercaptopurine (6-MP) has been shown to have beneficial effects in a cell-specific fashion on smooth muscle cells (SMC), endothelial cells and macrophages. We generated and analyzed a novel bioresorbable polymer coated DES, releasing 6-MP into the vessel wall, to reduce restenosis by inhibiting SMC proliferation and decreasing inflammation, without negatively affecting endothelialization of the stent surface. Methods Stents spray-coated with a bioresorbable polymer containing 0, 30 or 300 μg 6-MP were implanted in the iliac arteries of 17 male New Zealand White rabbits. Animals were euthanized for stent harvest 1 week after implantation for evaluation of cellular stent coverage and after 4 weeks for morphometric analyses of the lesions. Results Four weeks after implantation, the high dose of 6-MP attenuated restenosis with 16% compared to controls. Reduced neointima formation could at least partly be explained by an almost 2-fold induction of the cell cycle inhibiting kinase p27Kip1. Additionally, inflammation score, the quantification of RAM11-positive cells in the vessel wall, was significantly reduced in the high dose group with 23% compared to the control group. Evaluation with scanning electron microscopy showed 6-MP did not inhibit strut coverage 1 week after implantation. Conclusion We demonstrate that novel stents coated with a bioresorbable polymer coating eluting 6-MP inhibit restenosis and attenuate inflammation, while stimulating endothelial coverage. The 6-MP-eluting stents demonstrate that inhibition of restenosis without leaving uncovered metal is feasible, bringing stents without risk of late thrombosis one step closer to the patient. PMID:26389595

  7. Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer

    NASA Astrophysics Data System (ADS)

    Twardowska, Magdalena; Kamińska, Izabela; Wiwatowski, Kamil; Ashraf, Khuram U.; Cogdell, Richard J.; Mackowski, Sebastian; Niedziółka-Jönsson, Joanna

    2014-03-01

    We observe that introducing a layer of reduced graphene oxide between electrochemically deposited gold nanoparticles and natural photosynthetic Fenna-Matthews-Olson (FMO) complex from green sulfur bacteria, results in an increase of the fluorescence emission of the FMO. This increase is not accompanied with any substantial change of the fluorescence dynamics. Our findings indicate that incorporating graphene-based materials in hybrid assemblies yields better performance of such structures, thus holds promise for designing biosensing and optoelectronic devices.

  8. Dietary polyunsaturated fatty acids improve cholinergic transmission in the aged brain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cholinergic theory of aging states that dysfunction of cholinergic neurons arising from the basal forebrain and terminating in the cortex and hippocampus may be involved in the cognitive decline that occurs during aging and Alzheimer’s disease. Despite years of research, pharmacological interven...

  9. COLCHICINE INDUCED DEAFFERENTATION OF THE HIPPOCAMPUS SELECTIVELY DISRUPTS CHOLINERGIC RHYTHMICAL SLOW WAVE ACTIVITY

    EPA Science Inventory

    It has been proposed that hippocampal theta rhythm (RSA)is generated by the cholinergic septo-hippocampal system. Although ablations of the septum or its projections to the hippocampus disrupt hippocampal RSA, such non-selective lesions damage both cholinergic and noncholinergic ...

  10. Down regulation of the muscarinic cholinergic receptor of the rat prostate following castration

    SciTech Connect

    Shapiro, E.; Miller, A.R.; Lepor, H.

    1985-07-01

    Prostatic secretion is dependent upon the integrity of the endocrine and autonomic nervous systems and is dramatically influenced by muscarinic cholinergic analogs. In this study, the authors have used radioligand receptor binding methods on whole tissue homogenates and slide mounted tissue sections of rat prostate to determine whether androgens regulate the density of muscarinic cholinergic receptors in the prostate. The muscarinic cholinergic receptor binding affinities (Kd) of (/sup 3/H) N-methylscopolamine in prostatic homogenates obtained from intact, castrate, and castrate rats receiving testosterone replacement (castrate + T) were similar (0.07 to 0.10 nM). The muscarinic cholinergic receptor binding capacity decreased 73 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in castrate rats to intact levels. In order to ensure that the loss of receptor density was not due to a decrease in the epithelial: stromal cell ratio, the number of muscarinic cholinergic receptors per unit area of epithelium was determined in the 3 treatment groups using autoradiography on slide mounted tissue sections. The density of muscarinic cholinergic receptors in a unit area of epithelium was decreased 91 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in the castrate rats to intact levels. The modulation of neurotransmitter receptors by steroid hormones may be a mechanism by which sex steroids regulate biological responsiveness of target tissues.

  11. Central cholinergic control of vasopressin release in conscious rats

    SciTech Connect

    Iitake, K.; Share, L.; Ouchi, Y.; Crofton, J.T.; Brooks, D.P.

    1986-08-01

    Intracerebroventricular (icv) administration of carbachol into conscious rats evoked a substantial increase in vasopressin secretion and blood pressure in a dose-dependent manner. These effects were blocked by pretreatment with the muscarinic blocker, atropine (10 g icv), but not by the nicotinic blocker, hexamethonium (10 g icv). Hexamethonium did, however, block the increase in blood pressure, the decrease in heart rate, and they very small elevation in the plasma vasopressin concentration induced by nicotine (10 g icv). These results indicate that stimulation of either central nicotinic or muscarinic receptors can affect the cardiovascular system and suggest that the cholinergic stimulation of vasopressin secretion may involve primarily muscarinic receptors in the conscious rat.

  12. How we enhanced medical academics skills and reduced social inequities using an academic teaching program.

    PubMed

    Martins, Antonio Camargo; Oliveira, Felipe Renê Alves; Delfino, Breno Matos; Pereira, Thasciany Moraes; de Moraes, Fabio Henrique Pinto; Barbosa, Guilherme Viana; de Macedo, Lucas Felipe; Domingos, Tayna Da Silva; Da Silva, Dyemisson Pinheiro; Menezes, Charlene Cristine Rodrigues; Oliveira Filho, Edmar Santana; Pereira, Thales Augusto Da Silva; Piccirilli, Elizabeth Souza; Pinto, Wagner De Jesus

    2015-01-01

    The training of future physicians should be concurrent with the development of different skills and attitudes. This warrants the need to regularly provide students with opportunities for self-development throughout their academic career. This approach was exemplified in a medical school in the Brazilian Amazon, where students were allowed to play the role of high school teachers. As part of this exercise, they conducted reinforcement classes for high school students to increase the number of university admissions. The medical students were solely responsible for organizing and implementing this project, giving them the opportunity to develop teaching and leadership skills, enhance their understanding of communication and administration and contribute toward the society. PMID:25301145

  13. fMRI feedback enhances emotion regulation as evidenced by a reduced amygdala response.

    PubMed

    Sarkheil, Pegah; Zilverstand, Anna; Kilian-Hütten, Niclas; Schneider, Frank; Goebel, Rainer; Mathiak, Klaus

    2015-03-15

    Deficits in emotion regulation are a prominent feature of psychiatric conditions and a promising target for treatment. For instance, cognitive reappraisal is regarded as an effective strategy for emotion regulation. Neurophysiological models have established the lateral prefrontal cortex (LPFC) as a key structure in the regulation of emotion processing through modulations of emotion-eliciting structures such as the amygdala. Feedback of the LPFC activity by real-time functional magnetic resonance (fMRI) may thus enhance the efficacy of cognitive reappraisal. During cognitive reappraisal of aversive visual stimuli, LPFC activity was fed back to the experimental group, whereas control participants received no such information. As a result, during reappraisal, amygdala activity was lower in the experimental group than in the controls. Furthermore, an increase of inter-hemispheric functional connectivity emerged in the feedback group. The current study extends the neurofeedback literature by suggesting that fMRI feedback can modify brain activity during a given task. PMID:25461265

  14. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  15. Slip knots and unfastening topologies enhance toughness without reducing strength of silk fibroin fibres.

    PubMed

    Berardo, Alice; Pantano, Maria F; Pugno, Nicola M

    2016-02-01

    The combination of high strength and high toughness is a desirable feature that structural materials should display. However, while in the past, engineers had to compromise on either strength or toughness depending on the requested application, nowadays, new toughening strategies are available to provide strong materials with high toughness. In this paper, we focus on one of such strategy, which requires no chemical treatment, but the implementation of slip knots with optimized shape and size in the involved material, which is silkworm silk in this case. In particular, a variety of slip knot topologies with different unfastening mechanisms are investigated, including even complex knots usually used in the textile industry, and their efficiency in enhancing toughness of silk fibres is discussed. PMID:26855750

  16. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity.

    PubMed

    Zhang, Peng; Sun, Fang; Tsao, Caroline; Liu, Sijun; Jain, Priyesh; Sinclair, Andrew; Hung, Hsiang-Chieh; Bai, Tao; Wu, Kan; Jiang, Shaoyi

    2015-09-29

    Advances in protein therapy are hindered by the poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity of many therapeutic proteins. Polyethylene glycol conjugation (PEGylation) is the most successful strategy to date to overcome these shortcomings, and more than 10 PEGylated proteins have been brought to market. However, anti-PEG antibodies induced by treatment raise serious concerns about the future of PEGylated therapeutics. Here, we demonstrate a zwitterionic polymer network encapsulation technology that effectively enhances protein stability and PK while mitigating the immune response. Uricase modified with a comprehensive zwitterionic polycarboxybetaine (PCB) network exhibited exceptional stability and a greatly prolonged circulation half-life. More importantly, the PK behavior was unchanged, and neither anti-uricase nor anti-PCB antibodies were detected after three weekly injections in a rat model. This technology is applicable to a variety of proteins and unlocks the possibility of adopting highly immunogenic proteins for therapeutic or protective applications. PMID:26371311

  17. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity

    PubMed Central

    Zhang, Peng; Sun, Fang; Tsao, Caroline; Liu, Sijun; Jain, Priyesh; Sinclair, Andrew; Hung, Hsiang-Chieh; Bai, Tao; Wu, Kan; Jiang, Shaoyi

    2015-01-01

    Advances in protein therapy are hindered by the poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity of many therapeutic proteins. Polyethylene glycol conjugation (PEGylation) is the most successful strategy to date to overcome these shortcomings, and more than 10 PEGylated proteins have been brought to market. However, anti-PEG antibodies induced by treatment raise serious concerns about the future of PEGylated therapeutics. Here, we demonstrate a zwitterionic polymer network encapsulation technology that effectively enhances protein stability and PK while mitigating the immune response. Uricase modified with a comprehensive zwitterionic polycarboxybetaine (PCB) network exhibited exceptional stability and a greatly prolonged circulation half-life. More importantly, the PK behavior was unchanged, and neither anti-uricase nor anti-PCB antibodies were detected after three weekly injections in a rat model. This technology is applicable to a variety of proteins and unlocks the possibility of adopting highly immunogenic proteins for therapeutic or protective applications. PMID:26371311

  18. Vitamin E containing polymer micelles for reducing normal cell cytotoxicity and enhancing chemotherapy efficacy.

    PubMed

    Lee, Kuan-Yi; Chiang, Yi-Ting; Hsu, Ning-Yu; Yang, Chieh-Yu; Lo, Chun-Liang; Ku, Chen-An

    2015-09-01

    An α-tocopheryl succinate (α-TOS) containing diblock copolymer micellar system was used to deliver doxorubicin (Dox), an anticancer drug, for HCT116 colon cancer therapy. The α-TOS containing diblock copolymers were synthesized by conjugation of α-TOS molecules and a mPEG-b-PHEMA hydrophilic diblock copolymer by ester bonds. The Dox-loaded polymeric micelles were then obtained by solvent exchange process. In acidic surroundings such as endosomes or secondary lysosomes, the structures of the Dox-loaded polymeric micelles deformed and released the drug loads. Additionally, Dox-loaded polymeric micelles enhanced the cytotoxicity of Dox and α-TOS to cancer cells in vitro. Dox-loaded polymeric micelles also showed an exceptional tumor inhibiting effect in vivo. This study indicates that the α-TOS containing polymeric micelle system can be used as a drug carrier for cancer therapy. PMID:26087112

  19. Differential effects of ω-conotoxin GVIA on cholinergic and non-cholinergic secretomotor neurones in the guinea-pig small intestine

    PubMed Central

    Vremec, Melinda A; Bornstein, Joel C; Wright, Christine E; Humphrey, Andrea

    1997-01-01

    Ussing chambers were used to study the effects of the specific N-type Ca2+ channel antagonist, ω-conotoxin GVIA, on neurally evoked secretion across isolated submucosa/mucosa preparations from the small intestine of the guinea-pig. Cholinergic and non-cholinergic neurones were stimulated with 10 μM dimethylphenylpiperazinium (DMPP). Non-cholinergic secretomotor neurones were preferentially stimulated with 100 nM 5-hydroxytryptamine (5-HT), while cholinergic secretomotor neurones were preferentially stimulated with 3 μM 5-HT in the presence of the 5-HT2 receptor antagonist ketanserin (30 nM). ω-Conotoxin GVIA (1 nM–1 μM) depressed the secretion evoked by DMPP in a concentration-dependent manner, but a substantial residual response was observed. Hyoscine (100 nM) significantly depressed secretion evoked by DMPP, but did not prevent further depression of secretion by ω-conotoxin GVIA. The toxin was substantially more effective when the non-cholinergic secretomotor neurones were preferentially activated with 100 nM 5-HT, with a decrease in the response of more than 75% of the control value in the presence of 1 μM ω-conotoxin GVIA. ω-Conotoxin GVIA (1 μM) was relatively ineffective against secretion evoked by preferential activation of cholinergic secretomotor neurones with 3 μM 5-HT in the presence of 30 nM ketanserin, inhibiting the response by less than 33%. However, this inhibition was significant. Both 100 nM hyoscine and 300 nM tetrodotoxin abolished this effect of ω-conotoxin GVIA. It is concluded that N-type Ca2+ channels play a major role in transmitter release from non-cholinergic secretomotor neurones, but are not important for release from cholinergic secretomotor neurones in the guinea-pig small intestine. PMID:9154332

  20. A cellular and regulatory map of the cholinergic nervous system of C. elegans

    PubMed Central

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-01-01

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001 PMID:26705699

  1. Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association.

    PubMed

    Lee, Junuk; Finkelstein, Joel; Choi, Jung Yoon; Witten, Ilana B

    2016-06-01

    Despite the fact that cholinergic interneurons are a key cell type within the nucleus accumbens, a relationship between synaptic plasticity and the in vivo activity of cholinergic interneurons remains to be established. Here, we identify a three-way link between the activity of cholinergic interneurons, synaptic plasticity, and learning in mice undergoing the extinction of a cocaine-context association. We found that activity of cholinergic interneurons regulates extinction learning for a cocaine-context association and generates a sustained reduction in glutamatergic presynaptic strength onto medium spiny neurons. Interestingly, activation of cholinergic interneurons does not support reinforcement learning or plasticity by itself, suggesting that these neurons have a modulatory rather than a reinforcing function. PMID:27210555

  2. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils

    PubMed Central

    Kramer, Sasha B.; Reganold, John P.; Glover, Jerry D.; Bohannan, Brendan J. M.; Mooney, Harold A.

    2006-01-01

    Conventional agriculture has improved in crop yield but at large costs to the environment, particularly off-site pollution from mineral N fertilizers. In response to environmental concerns, organic agriculture has become an increasingly popular option. One component of organic agriculture that remains in question is whether it can reduce agricultural N losses to groundwater and the atmosphere relative to conventional agriculture. Here we report reduced N pollution from organic and integrated farming systems compared with a conventional farming system. We evaluated differences in denitrification potential and a suite of other soil biological and chemical properties in soil samples taken from organic, integrated, and conventional treatments in an experimental apple orchard. Organically farmed soils exhibited higher potential denitrification rates, greater denitrification efficiency, higher organic matter, and greater microbial activity than conventionally farmed soils. The observed differences in denitrifier function were then assessed under field conditions after fertilization. N2O emissions were not significantly different among treatments; however, N2 emissions were highest in organic plots. Annual nitrate leaching was 4.4–5.6 times higher in conventional plots than in organic plots, with the integrated plots in between. This study demonstrates that organic and integrated fertilization practices support more active and efficient denitrifier communities, shift the balance of N2 emissions and nitrate losses, and reduce environmentally damaging nitrate losses. Although this study specifically examines a perennial orchard system, the ecological and biogeochemical processes we evaluated are present in all agroecosystems, and the reductions in nitrate loss in this study could also be achievable in other cropping systems. PMID:16537377

  3. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils.

    PubMed

    Kramer, Sasha B; Reganold, John P; Glover, Jerry D; Bohannan, Brendan J M; Mooney, Harold A

    2006-03-21

    Conventional agriculture has improved in crop yield but at large costs to the environment, particularly off-site pollution from mineral N fertilizers. In response to environmental concerns, organic agriculture has become an increasingly popular option. One component of organic agriculture that remains in question is whether it can reduce agricultural N losses to groundwater and the atmosphere relative to conventional agriculture. Here we report reduced N pollution from organic and integrated farming systems compared with a conventional farming system. We evaluated differences in denitrification potential and a suite of other soil biological and chemical properties in soil samples taken from organic, integrated, and conventional treatments in an experimental apple orchard. Organically farmed soils exhibited higher potential denitrification rates, greater denitrification efficiency, higher organic matter, and greater microbial activity than conventionally farmed soils. The observed differences in denitrifier function were then assessed under field conditions after fertilization. N(2)O emissions were not significantly different among treatments; however, N(2) emissions were highest in organic plots. Annual nitrate leaching was 4.4-5.6 times higher in conventional plots than in organic plots, with the integrated plots in between. This study demonstrates that organic and integrated fertilization practices support more active and efficient denitrifier communities, shift the balance of N(2) emissions and nitrate losses, and reduce environmentally damaging nitrate losses. Although this study specifically examines a perennial orchard system, the ecological and biogeochemical processes we evaluated are present in all agroecosystems, and the reductions in nitrate loss in this study could also be achievable in other cropping systems. PMID:16537377

  4. Enhanced photothermal effect of surface oxidized silicon nanocrystals anchored to reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Afshani, Parichehr; Moussa, Sherif; Atkinson, Garrett; Kisurin, Vitaly Y.; Samy El-Shall, M.

    2016-04-01

    We demonstrate the coupling of the photothermal effects of silicon nanocrystals and graphene oxide (GO) dispersed in water. Using laser irradiation (532 nm or 355 nm) of suspended Si nanocrystals in an aqueous solution of GO, the synthesis of surface oxidized Si-reduced GO nanocomposites (SiOx/Si-RGO) is reported. The laser reduction of GO is accompanied by surface oxidation of the Si nanocrystals resulting in the formation of the SiOx/Si-RGO nanocomposites. The SiOx/Si-RGO nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal and thermomechanical applications.

  5. Reducing risk and enhancing education: U.S. medical students on global health electives.

    PubMed

    Reid, Michael J A; Biller, Nancy; Lyon, Sarah M; Reilly, John P; Merlin, Jessica; Dacso, Matthew; Friedman, Harvey M

    2014-12-01

    This study assessed the impact of several interventions, including predeparture simulation training and procedure logs, on incidence needlestick injuries (NSIs) among U.S. medical students on global health (GH) elective in Botswana. Review of NSI incident reports before and after introduction of these interventions demonstrated a reduction in the number of splash and body fluid exposures (n = 5 [6%] vs n = 21 [23%]; P < .001), respectively. Simple predeparture training is highly effective in reducing NSIs among students participating in GH electives. PMID:25465263

  6. Facile synthesis of platinum-ruthenium nanodendrites supported on reduced graphene oxide with enhanced electrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zheng, Jie-Ning; Li, Shan-Shan; Chen, Fang-Yi; Bao, Ning; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-11-01

    In this report, a simple and facile solvothermal method is developed for fabrication of platinum-ruthenium (PtRu) nanodendrites supported on reduced graphene oxide (PtRu-RGO) in the ethylene glycol (EG) system, using hexadecylpyridinium chloride (HDPC) as a shape-directing agent. The as-prepared nanocomposites show the superior catalytic activity and better stability towards EG oxidation, compared with RGO-supported Pt nanoparticles and commercial PtRu/C (Pt 30 wt. %, Ru 15 wt. %) catalysts. This strategy may open a new route to design and prepare advanced electrocatalysts in direct EG fuel cells.

  7. Enhancing Hematite Photoanode Activity for Water Oxidation by Incorporation of Reduced Graphene Oxide.

    PubMed

    do Amaral Carminati, Saulo; Souza, Flavio L; Nogueira, Ana F

    2016-01-01

    Two effective methods to prepare reduced graphene oxide (rGO)/hematite nanostructured photoanodes and their photoelectrochemical characterization towards water splitting reactions are presented. First, graphene oxide (GO) is reduced to rGO using hydrazine in a basic solution containing tetrabutylammonium hydroxide (TBAOH), and then deposited over the nanostructured hematite photoanodes previously treated at 750 °C for 30 min. The second method follows the deposition of a paste containing a mixture of hematite nanoparticles and rGO sheets by the doctor-blade method, varying the rGO concentration. Since hematite suffers from low electron mobility, a low absorption coefficient, high recombination rates and slow reaction kinetics, the incorporation of rGO in the hematite can overcome such limitations due to graphene's exceptional properties. Using the first method, the rGO incorporation results in a photocurrent density increase from 0.56 to 0.82 mA cm(-2) at 1.23 VRHE. Our results indicate that the rGO incorporation in the hematite photoanodes shows a positive effect in the reduction of the electron-hole recombination rate. PMID:26561385

  8. Magnetic resonance image enhancement by reducing receptors' effective size and enabling multiple channel acquisition.

    PubMed

    Yepes-Calderon, Fernando; Velasquez, Adriana; Lepore, Natasha; Beuf, Olivier

    2014-01-01

    Magnetic resonance imaging is empowered by parallel reading, which reduces acquisition time dramatically. The time saved by parallelization can be used to increase image quality or to enable specialized scanning protocols in clinical and research environments. In small animals, the sizing constraints render the use of multi-channeled approaches even more necessary, as they help to improve the typically low spatial resolution and lesser signal-to-noise ratio; however, the use of multiple channels also generates mutual induction (MI) effects that impairs imaging creation. Here, we created coils and used the shared capacitor technique to diminish first degree MI effects and pre-amplifiers to deal with higher order MI-related image deterioration. The constructed devices are tested by imaging phantoms that contain identical solutions; thus, creating the conditions for several statistical comparisons. We confirm that the shared capacitor strategy can recover the receptor capacity in compounded coils when working at the dimensions imposed by small animal imaging. Additionally, we demonstrate that the use of pre-amplifiers does not significantly reduce the quality of the images. Moreover, in light of our results, the two MI-avoiding techniques can be used together, therefore establishing the practical feasibility of flexible array coils populated with multiple loops for small animal imaging. PMID:25570478

  9. Immobilized Silver Nanoparticles on Chitosan with Special Surface State-Enhanced Antimicrobial Efficacy and Reduced Cytotoxicity.

    PubMed

    He, Miao; Lu, Liying; Zhang, Jinchi; Li, Danzhen

    2015-09-01

    Immobilized chitosan-Ag nanoparticles (CTS-Ag NPs) with special surface state have been synthesized successfully through immobilizing Ag NPs on the amino-enriched surface of CTS by reducing Ag (I) in situ. The antimicrobial efficiency and potency of CTS-Ag NPs against Escherichia coli and Staphylococcus aureus were studied. Our results reveal that surface-immobilized CTS-Ag NPs show better antimicrobial efficacy than several other reported monodisperse colloidal Ag NPs, because the unique surface state of our CTS-Ag NPs leads to both "contact killing" and "ion mediated killing" functions. Due to the synergetic effect of CTS and Ag NPs, the immobilized CTS-Ag NPs present a broader antimicrobial spectrum and a more effective antifungal activity against Monilia albican. In addition, CTS as an environment friendly dispersant can help to reduce the cytotoxicity of Ag NPs on higher organisms. The immobilized CTS-Ag NPs are stable and can maintain good disinfection potential after 6 months' shelf-time. PMID:26716197

  10. Does Enhancing Work-Time Control and Flexibility Reduce Turnover? A Naturally Occurring Experiment

    PubMed Central

    Moen, Phyllis; Kelly, Erin L.; Hill, Rachelle

    2011-01-01

    We investigate the turnover effects of an organizational innovation (ROWE—Results Only Work Environment) aimed at moving away from standard time practices to focus on results rather than time spent at work. To model rates of turnover, we draw on survey data from a sample of employees at a corporate headquarters (N = 775) and institutional records of turnover over eight months following the ROWE implementation. We find the odds of turnover are indeed lower for employees participating in the ROWE initiative, which offers employees greater work-time control and flexibility, and that this is the case regardless of employees’ gender, age, or family life stage. ROWE also moderates the turnover effects of organizational tenure and negative home-to-work spillover, physical symptoms, and job insecurity, with those in ROWE who report these situations generally less likely to leave the organization. Additionally, ROWE reduces turnover intentions among those remaining with the corporation. This research moves the “opting-out” argument from one of private troubles to an issue of greater employee work-time control and flexibility by showing that an organizational policy initiative can reduce turnover. PMID:21532909

  11. Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmi; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-08-01

    We have prepared a reduced graphene oxide (rGO)-supported silver (Ag) and manganese dioxide (MnO2) deposited porous-like catalyst (denoted as rGO/MnO2/Ag) through a facile electrochemical deposition route and have been used as a cathode catalyst for oxygen reduction reaction (ORR) in alkaline fuel cells. The physical properties of rGO/MnO2/Ag have been investigated via several instrumental methods. This material exhibits a polycrystalline structure characterized by Ag/MnO2 microsphere formation as a result of Ostwald ripening. The X-ray diffraction and X-ray photoelectron spectroscopy data reveal that the MnO2 and Ag have been slightly alloyed and Mn presents with the dioxide form on rGO. The electrochemical properties of the electrocatalyst have been studied via several voltammetric methods. The results demonstrated that the rGO/MnO2/Ag has an excellent catalytic activity for ORR in alkaline media compared to the other tested electrodes. Particularly, it shows 1.2 times higher current density and better electron transfer rate at 0.3 V per O2 than that of 20 wt% Pt/C. The other kinetic analysis reveals that the O2 has reduced directly to H2O through a nearly four-electron pathway with better anodic fuel tolerance and duration performance than that of 20% Pt/C.

  12. Reducing anxiety and enhancing physical performance by using an advanced version of EMDR: a pilot study

    PubMed Central

    Rathschlag, Marco; Memmert, Daniel

    2014-01-01

    Background The main aim of this pilot study was to investigate an advanced version of eye movement desensitization and reprocessing (EMDR) for reducing anxiety. Methods Fifty participants were asked at two times of measurement (T1 and T2 with a rest of 4 weeks) to generate anxiety via the recall of autobiographical memories according to their anxiety. Furthermore, the participants were randomly assigned to an experimental group and a control group, and the experimental group received an intervention of 1–2 h with the advanced version of EMDR in order to their anxiety 2 weeks after T1. At T1 as well as T2, we measured the intensity of participants' anxiety with a Likert scale (LS) and collected participants' state (temporary) and trait (chronic) anxiety with the State-Trait Anxiety Inventory (STAI). In addition, we measured participants' physical performance in a test for the finger musculature under the induction of their anxiety. Results The results showed that participant's ratings of their perceived intensity of anxiety (measured by a 9-point LS) and the state and trait anxiety decreased significantly in the experimental group but not in the control group from T1 to T2. Moreover, the physical performance under the induction of participants' anxiety increased significantly in the experimental group from T1 to T2 and there were no significant changes in the control group. Conclusions The study could show that the advanced version of EMDR is an appropriate method to reduce anxiety. PMID:24944864

  13. Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity.

    PubMed

    Ji, Zhenyuan; Shen, Xiaoping; Yue, Xiaoyang; Zhou, Hu; Yang, Juan; Wang, Yuqin; Ma, Lianbo; Chen, Kangmin

    2015-12-01

    In this study, the combination of magnetite (Fe3O4) with reduced graphene oxide (RGO) generates a new hybrid substrate for the dispersion of noble metal nanoparticles. Well-dispersed silver (Ag) nanoparticles loaded on the surface of Fe3O4 modified RGO are achieved by an efficient two-step approach. Through reducing Ag(+) ions, highly dispersed Ag nanoparticles are in-situ formed on the RGO/Fe3O4 substrate. It is found that the existence of Fe3O4 nanocrystals can significantly improve the dispersity and decrease the particle size of the in-situ formed Ag nanoparticles. Magnetic study reveals that the as-prepared RGO/Fe3O4/Ag ternary nanocomposites display room-temperature superparamagnetic behavior. The catalytic properties of the RGO/Fe3O4/Ag ternary nanocomposites were evaluated with the reduction of 4-nitrophenol into 4-aminophenol as a model reaction. The as-synthesized RGO/Fe3O4/Ag ternary catalysts exhibit excellent catalytic stability and much higher catalytic activity than the corresponding RGO/Ag catalyst. Moreover, the RGO/Fe3O4/Ag catalysts can be easily magnetically separated for reuse. This study further demonstrates that nanoparticles modified graphene can act as an effective hybrid substrate for the synthesis of multi-component and multifunctional graphene-based composites. PMID:26263498

  14. Hormonal Responses to Cholinergic Input Are Different in Humans with and without Type 2 Diabetes Mellitus

    PubMed Central

    Dunai, Judit; Kilpatrick, Rachel; Oestricker, Lauren Z.; Wallendorf, Michael J.; Patterson, Bruce W.; Reeds, Dominic N.; Wice, Burton M.

    2016-01-01

    Peripheral muscarinic acetylcholine receptors regulate insulin and glucagon release in rodents but their importance for similar roles in humans is unclear. Bethanechol, an acetylcholine analogue that does not cross the blood-brain barrier, was used to examine the role of peripheral muscarinic signaling on glucose homeostasis in humans with normal glucose tolerance (NGT; n = 10), impaired glucose tolerance (IGT; n = 11), and type 2 diabetes mellitus (T2DM; n = 9). Subjects received four liquid meal tolerance tests, each with a different dose of oral bethanechol (0, 50, 100, or 150 mg) given 60 min before a meal containing acetaminophen. Plasma pancreatic polypeptide (PP), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), glucose, glucagon, C-peptide, and acetaminophen concentrations were measured. Insulin secretion rates (ISRs) were calculated from C-peptide levels. Acetaminophen and PP concentrations were surrogate markers for gastric emptying and cholinergic input to islets. The 150 mg dose of bethanechol increased the PP response 2-fold only in the IGT group, amplified GLP-1 release in the IGT and T2DM groups, and augmented the GIP response only in the NGT group. However, bethanechol did not alter ISRs or plasma glucose, glucagon, or acetaminophen concentrations in any group. Prior studies showed infusion of xenin-25, an intestinal peptide, delays gastric emptying and reduces GLP-1 release but not ISRs when normalized to plasma glucose levels. Analysis of archived plasma samples from this study showed xenin-25 amplified postprandial PP responses ~4-fold in subjects with NGT, IGT, and T2DM. Thus, increasing postprandial cholinergic input to islets augments insulin secretion in mice but not humans. Trial Registration: ClinicalTrials.gov NCT01434901 PMID:27304975

  15. Neonicotinoid insecticides inhibit cholinergic neurotransmission in a molluscan (Lymnaea stagnalis) nervous system.

    PubMed

    Vehovszky, Á; Farkas, A; Ács, A; Stoliar, O; Székács, A; Mörtl, M; Győri, J

    2015-10-01

    Neonicotinoids are highly potent and selective systemic insecticides, but their widespread use also has a growing impact on non-target animals and contaminates the environment, including surface waters. We tested the neonicotinoid insecticides commercially available in Hungary (acetamiprid, Mospilan; imidacloprid, Kohinor; thiamethoxam, Actara; clothianidin, Apacs; thiacloprid, Calypso) on cholinergic synapses that exist between the VD4 and RPeD1 neurons in the central nervous system of the pond snail Lymnaea stagnalis. In the concentration range used (0.01-1 mg/ml), neither chemical acted as an acetylcholine (ACh) agonist; instead, both displayed antagonist activity, inhibiting the cholinergic excitatory components of the VD4-RPeD1 connection. Thiacloprid (0.01 mg/ml) blocked almost 90% of excitatory postsynaptic potentials (EPSPs), while the less effective thiamethoxam (0.1 mg/ml) reduced the synaptic responses by about 15%. The ACh-evoked membrane responses of the RPeD1 neuron were similarly inhibited by the neonicotinoids, confirming that the same ACh receptor (AChR) target was involved. We conclude that neonicotinoids act on nicotinergic acetylcholine receptors (nAChRs) in the snail CNS. This has been established previously in the insect CNS; however, our data indicate differences in the background mechanism or the nAChR binding site in the snail. Here, we provide the first results concerning neonicotinoid-related toxic effects on the neuronal connections in the molluscan nervous system. Aquatic animals, including molluscs, are at direct risk while facing contaminated surface waters, and snails may provide a suitable model for further studies of the behavioral/neuronal consequences of intoxication by neonicotinoids. PMID:26340121

  16. Effects of anti-histaminic and anti-cholinergic substances on human thermoregulation during cold provocation.

    PubMed

    Tribukait, A; Nobel, G; Mekjavic, I B; Eiken, O

    2010-01-15

    The roles of histaminergic and cholinergic neuron systems in the regulation of body temperature have been studied almost exclusively in animals. Recently, we have found that motion sickness, i.e. a condition where hippocampal cholinergic mismatch signals induce a release of histamine in the vomiting centre, accelerates the decline in body temperature in men during exposure to cold. In the present study we measured the thermoregulatory effects of two substances commonly used against motion sickness, i.e. the histamine (H1) receptor blocker dimenhydrinate (DMH) and the muscarine receptor blocker scopolamine (SCOP). In three trials, control (CN), DMH and SCOP, 10 male subjects were immersed in 15 degrees C water for a maximum of 90 min. The trials were separated by a minimum of three days and their order was alternated between subjects. In all trials the subject received, in a double blind fashion, a transdermal patch (SCOP or placebo) 12-14 h before immersion and a tablet (DMH or placebo) 1h before immersion. Mean skin temperature, rectal temperature (T(rec)), the difference in temperature between the non-immersed right forearm and 3rd finger of the right hand (T(ff)), and oxygen uptake (VO(2)) were recorded. The fall in T(rec) was smaller in the DMH than in the CN and SCOP conditions. The recordings of T(ff) and VO(2) suggest that SCOP attenuates peripheral vasoconstriction while DMH increases shivering thermogenesis. Notably, thermal discomfort was reduced in the SCOP condition. Findings are thoroughly discussed in the context of animal studies on the neuropharmacology and neurophysiology of thermoregulation and motion sickness. PMID:19576271

  17. Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging

    PubMed Central

    Parikh, Vinay; Howe, William M.; Welchko, Ryan M.; Naughton, Sean X.; D'Amore, Drew E.; Han, Daniel H.; Deo, Monika; Turner, David L.; Sarter, Martin

    2012-01-01

    The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain (BF) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno-associated viral vector-based RNA interference (AAV-RNAi) strategy to suppress the expression of trkA receptors by cholinergic neurons in the nucleus basalis of Meynert/ substantia innominata (nMB/SI) of adult and aged rats. Suppression of trkA receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trkA levels in the nMB/SI. TrkA knockdown neither affected nMB/SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trkA suppression augmented an age-related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release ACh. The capacity of cortical synapses to release acetylcholine (ACh) in vivo was also lower in aged/trkA-AAV-infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age-related increases in cortical proNGF and p75 receptor levels interacted with the vector-induced loss of trkA receptors to shift NGF signaling toward p75-mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early Alzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling. PMID:23228124

  18. Exposure of Plasmodium sporozoites to the intracellular concentration of potassium enhances infectivity and reduces cell passage activity.

    PubMed

    Kumar, Kota Arun; Garcia, Celia R S; Chandran, Vandana R; Van Rooijen, N; Zhou, Yingyao; Winzeler, Elizabeth; Nussenzweig, Victor

    2007-11-01

    Malaria sporozoites migrate through several cells prior to a productive invasion that involves the formation of a parasitophorous vacuole (PV) where sporozoites undergo transformation into Exo-erythorcytic forms (EEFs). The precise mechanism leading to sporozoite activation for invasion is unknown, but prior traversal of host cells is required. During cell migration sporozoites are exposed to large shifts in K(+) concentration. We report here that incubation of sporozoites to the intracellular K(+) concentration enhances 8-10 times the infectivity of Plasmodium berghei and 4-5 times the infectivity of Plasmodium yoelli sporozoites for a hepatocyte cell line, while simultaneously decreasing cell passage activity. The K(+) enhancing effect was time and concentration dependent, and was significantly decreased by K(+) channel inhibitors. Potassium-treated P. berghei sporozoites also showed enhanced numbers of EEFs in non-permissive cell lines. Treated sporozoites had reduced infectivity for mice, but infectivity was enhanced upon Kupffer cell depletion. Transcriptional analysis of K(+) treated and control sporozoites revealed a high degree of correlation in their levels of gene expression, indicating that the observed phenotypic changes are not due to radical changes in gene transcription. Only seven genes were upregulated by more than two-fold in K(+) treated sporozoites. The highest level was noted in PP2C, a phosphatase known to dephosphorylate the AKT potassium channel in plants. PMID:17714805

  19. The effect-enhancing and toxicity-reducing activity of Hypericum japonicum Thunb. extract in murine liver cancer chemotherapy.

    PubMed

    Zhang, Hong-Bo; Lu, Ping; Cao, Wen-Bo; Zhang, Zhen-Hua; Meng, Xiang-Lei

    2013-03-01

    Chinese herbs are potential sources of antitumor drugs with immunoregulatory activity and few adverse effects. In the present study, we investigated whether the Hypericum japonicum Thunb. (HJT) extract enhanced the efficacy of 5-fluorouracil (5-FU) treatment in murine liver tumor xenografts and reduced toxicity of chemotherapy in hepatoma H22-bearing mice. Tumor weight and inhibition rate, thymus and spleen indices, as well as white blood cell (WBC) count were calculated. The phagocytic function of macrophages was assessed by observing peritoneal macrophages phagocytized chicken red blood cells (RBC). Body weight and toxic reactions of the chemotherapeutic and life prolongation rate were investigated in the mice. Results demonstrated that the HJT extract significantly enhanced the tumor inhibition rate of 5-FU, improved the immune function, reduced the toxic effects and prolonged the survival time in the tumor-bearing mice. Taken together, these results indicated that the HJT extract has a synergistic tumor-inhibiting effect with 5-FU, is able to reduce the toxic side effects and is likely to be safe and efficacious for use in antitumor therapy. PMID:24649182

  20. Topical Mitomycin-C enhances subbasal nerve regeneration and reduces erosion frequency in the debridement wounded mouse cornea.

    PubMed

    Pal-Ghosh, Sonali; Pajoohesh-Ganji, Ahdeah; Tadvalkar, Gauri; Kyne, Briana M; Guo, Xiaoqing; Zieske, James D; Stepp, Mary Ann

    2016-05-01

    Corneal epithelial basement membrane dystrophies and superficial injuries caused by scratches can lead to recurrent corneal erosion syndrome (RCES). Patients and animals with reduced corneal sensory nerve innervation can also develop recurrent erosions. Multiple wild-type mouse strains will spontaneously develop recurrent corneal erosions after single 1.5 mm debridement wounds. Here we show that this wound is accompanied by an increase in corneal epithelial cell proliferation after wound closure but without a commensurate increase in corneal epithelial thickness. We investigated whether excess corneal epithelial cell proliferation contributes to erosion formation. We found that topical application of Mitomycin C (MMC), a drug used clinically to improve healing after glaucoma and refractive surgery, reduces erosion frequency, enhances subbasal axon density to levels seen in unwounded corneas, and prevents excess epithelial cell proliferation after debridement wounding. These results suggest that topically applied MMC, which successfully reduces corneal haze and scarring after PRK, may also function to enhance subbasal nerve regeneration and epithelial adhesion when used to treat RCES. PMID:26332224

  1. Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system.

    PubMed

    Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Brusseau, Mark L; Yan, Ni; Qiu, Zhaofu; Sui, Qian

    2015-12-30

    In this study, the effects of reducing agents on the degradation of tetrachloroethene (PCE) were investigated in the Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC) system. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redox cycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations. The chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO was the predominant radical in the system and that O2(-) played a minor role, which was further confirmed by the results of electron spin resonance measurements. PCE degradation decreased significantly with the addition of isopropanol, a HO scavenger, supporting the hypothesis that HO was primarily responsible for PCE degradation. It is noteworthy that Cl(-) release was slightly delayed in the first 20 min, indicating that intermediate products were produced. However, these intermediates were further degraded, resulting in the complete conversion of PCE to CO2. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater. PMID:26257094

  2. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    PubMed Central

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  3. Reduced RKIP enhances nasopharyngeal carcinoma radioresistance by increasing ERK and AKT activity

    PubMed Central

    Yuan, Li; Yi, Hong-Mei; Yi, Hong; Qu, Jia-Quan; Zhu, Jin-Feng; Li, Li-Na; Xiao, Ta; Zheng, Zhen; Lu, Shan-Shan; Xiao, Zhi-Qiang

    2016-01-01

    Raf kinase inhibitory protein (RKIP) functions as a chemo-immunotherapeutic sensitizer of cancers, but regulation of RKIP on tumor radiosensitivity remains largely unexplored. In this study, we investigate the role and mechanism of RKIP in nasopharyngeal carcinoma (NPC) radioresistance. The results showed that RKIP was frequently downregulated in the radioresistant NPC tissues compared with radiosensitive NPC tissues, and its reduction correlated with NPC radioresistance and poor patient survival, and was an independent prognostic factor. In vitro radioresponse assay showed that RKIP overexpression decreased while RKIP knockdown increased NPC cell radioresistance. In the NPC xenografts, RKIP overexpression decreased while RKIP knockdown increased tumor radioresistance. Mechanistically, RKIP reduction promoted NPC cell radioresistance by increasing ERK and AKT activity, and AKT may be a downstream transducer of ERK signaling. Moreover, the levels of phospho-ERK−1/2 and phospho-AKT were increased in the radioresistant NPC tissues compared with radiosensitive ones, and negatively associated with RKIP expression, indicating that RKIP-regulated NPC radioresponse is mediated by ERK and AKT signaling in the clinical samples. Our data demonstrate that RKIP is a critical determinant of NPC radioresponse, and its reduction enhances NPC radioresistance through increasing ERK and AKT signaling activity, highlighting the therapeutic potential of RKIP-ERK-AKT signaling axis in NPC radiosensitization. PMID:26862850

  4. Reducing non-collision injuries in special transportation services by enhanced safety culture.

    PubMed

    Wretstrand, Anders; Petzäll, Jan; Bylund, Per-Olof; Falkmer, Torbjörn

    2010-04-01

    Previous research has pointed out that non-collision injuries occur among wheelchair users in Special Transportation Services (STS - a demand-responsive transport mode). The organization of such modes is also quite complex, involving both stakeholders and key personnel at different levels. Our objective was therefore to qualitatively explore the state of safety, as perceived and discussed within a workplace context. Focus groups were held with drivers of both taxi companies and bus companies. The results indicated that passengers run the risk of being injured without being involved in a vehicle collision. The pertinent organizational and corporate culture did not prioritize safety. The drivers identified some relatively clear-cut safety threats, primarily before and after a ride, at vehicle standstill. The driver's work place seemed to be surrounded with a reactive instead of proactive structure. We conclude that not only vehicle and wheelchair technical safety must be considered in STS, but also system safety. Instead of viewing drivers' error as a cause, it should be seen as a symptom of systems failure. Human error is connected to aspects of tools, tasks, and operating environment. Enhanced understanding and influence of these connections within STS and accessible public transport systems will promote safety for wheelchair users. PMID:19786361

  5. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity

    NASA Astrophysics Data System (ADS)

    Zang, Arno; Yoon, Jeoung Seok; Stephansson, Ove; Heidbach, Oliver

    2013-11-01

    The occurrence of induced seismic events during hydraulic fracturing of reservoirs to enhance permeability is an unavoidable process. Due to the increased public concern with respect to the risks imposed by induced seismicity, however, the development of a soft stimulation method is needed creating higher permeability with less induced seismicity. We use a discrete element model of naturally fractured rock with pore fluid flow algorithm in order to analyse two scenarios of high-pressure fluid injection (hydraulic fracturing) at depth and associated induced seismicity. The ratio of pumped-in energy to released seismic energy is in agreement with field data. Our results suggest that cyclic reservoir treatment is a safer alternative to conventional hydraulic fracture stimulation as both, the total number of induced events as well as the occurrence of larger magnitude events are lowered. This work is motivated by results of laboratory triaxial indenter tests on granite rock samples where continuous loading leads to a wide fracture process zone while cyclic treatment with frequent starting and stopping of loading fatigues the rock, resulting in smaller damage volume and more persistent fracture growth.

  6. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity.

    PubMed

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  7. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.

    PubMed

    Zhang, Cui-Ying; Lin, Xue; Feng, Bing; Liu, Xiao-Er; Bai, Xiao-Wen; Xu, Jia; Pi, Li; Xiao, Dong-Guang

    2016-07-01

    Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications. PMID:27041690

  8. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    PubMed

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-01-01

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids. PMID:26875982

  9. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations.

    PubMed

    Kim, Bohwa; Praveenkumar, Ramasamy; Lee, Jiye; Nam, Bora; Kim, Dong-Myung; Lee, Kyubock; Lee, Young-Chul; Oh, You-Kwan

    2016-11-01

    Improving lipid productivity and preventing overgrowth of contaminating bacteria are critical issues relevant to the commercialization of the mixotrophic microalgae cultivation process. In this paper, we report the use of magnesium aminoclay (MgAC) nanoparticles for enhanced lipid production from oleaginous Chlorella sp. KR-1 with simultaneous control of KR-1-associated bacterial growth in mixotrophic cultures with glucose as the model substrate. Addition of 0.01-0.1g/L MgAC promoted microalgal biomass production better than the MgAC-less control, via differential biocidal effects on microalgal and bacterial cells (the latter being more sensitive to MgAC's bio-toxicity than the former). The inhibition effect of MgAC on co-existing bacteria was, as based on density-gradient-gel-electrophoresis (DGGE) analysis, largely dosage-dependent and species-specific. MgAC also, by inducing an oxidative stress environment, increased both the cell size and lipid content of KR-1, resulting in a considerable, ∼25% improvement of mixotrophic algal lipid productivity (to ∼410mgFAME/L/d) compared with the untreated control. PMID:27543952

  10. Significant enhancement of the thermoelectric figure of merit of polycrystalline Si films by reducing grain size

    NASA Astrophysics Data System (ADS)

    Valalaki, K.; Vouroutzis, N.; Nassiopoulou, A. G.

    2016-08-01

    The thermoelectric properties of p-type polycrystalline silicon thin films deposited by low pressure chemical vapour deposition (LPCVD) were accurately determined at room temperature and the thermoelectric figure of merit was deduced as a function of film thickness, ranging from 100 to 500 nm. The effect of film thickness on their thermoelectric performance is discussed. More than threefold increase in the thermoelectric figure of merit of the 100 nm thick polysilicon film was observed compared to the 500 nm thick film, reaching a value as high as 0.033. This enhancement is mainly the result of the smaller grain size in the thinner films. With the decrease in grain size the resistivity of the films is increased twofold and electrical conductivity decreased, however the Seebeck coefficient is increased by 30% and the thermal conductivity is decreased eightfold, being mainly at the origin of the increased figure of merit of the 100 nm film. Our experimental results were compared to known theoretical models and the possible mechanisms involved are presented and discussed.

  11. Inhibition of histone deacetylase activity in reduced oxygen environment enhances the osteogenesis of mouse adipose-derived stromal cells.

    PubMed

    Xu, Yue; Hammerick, Kyle E; James, Aaron W; Carre, Antoine L; Leucht, Philipp; Giaccia, Amato J; Longaker, Michael T

    2009-12-01

    Recent studies suggest that oxygen tension has a great impact on the osteogenic differentiation capacity of mesenchymal cells derived from adipose tissue: reduced oxygen impedes osteogenesis. We have found that expansion of mouse adipose-derived stromal cells (mASCs) in reduced oxygen tension (10%) results in increased cell proliferation along with induction of histone deacetylase (HDAC) activity. In this study, we utilized two HDAC inhibitors (HDACi), sodium butyrate (NaB) and valproic acid (VPA), and studied their effects on mASCs expanded in various oxygen tensions (21%, 10%, and 1% O(2)). Significant growth inhibition was observed with NaB or VPA treatment in each oxygen tension. Osteogenesis was enhanced by treatment with NaB or VPA, particularly in reduced oxygen tensions (10% and 1% O(2)). Conversely, adipogenesis was decreased with treatments of NaB or VPA at all oxygen tensions. Finally, NaB- or VPA-treated, reduced oxygen tension-exposed (1% O(2)) ASCs were grafted into surgically created mouse tibial defects and resulted in significantly increased bone regeneration. In conclusion, HDACi significantly promote the osteogenic differentiation of mASCs exposed to reduced oxygen tension; HDACi may hold promise for future clinical applications of ASCs for skeletal regeneration. PMID:19505250

  12. Inhibition of Histone Deacetylase Activity in Reduced Oxygen Environment Enhances the Osteogenesis of Mouse Adipose-Derived Stromal Cells

    PubMed Central

    Xu, Yue; Hammerick, Kyle E.; James, Aaron W.; Carre, Antoine L.; Leucht, Philipp; Giaccia, Amato J.

    2009-01-01

    Recent studies suggest that oxygen tension has a great impact on the osteogenic differentiation capacity of mesenchymal cells derived from adipose tissue: reduced oxygen impedes osteogenesis. We have found that expansion of mouse adipose-derived stromal cells (mASCs) in reduced oxygen tension (10%) results in increased cell proliferation along with induction of histone deacetylase (HDAC) activity. In this study, we utilized two HDAC inhibitors (HDACi), sodium butyrate (NaB) and valproic acid (VPA), and studied their effects on mASCs expanded in various oxygen tensions (21%, 10%, and 1% O2). Significant growth inhibition was observed with NaB or VPA treatment in each oxygen tension. Osteogenesis was enhanced by treatment with NaB or VPA, particularly in reduced oxygen tensions (10% and 1% O2). Conversely, adipogenesis was decreased with treatments of NaB or VPA at all oxygen tensions. Finally, NaB- or VPA-treated, reduced oxygen tension–exposed (1% O2) ASCs were grafted into surgically created mouse tibial defects and resulted in significantly increased bone regeneration. In conclusion, HDACi significantly promote the osteogenic differentiation of mASCs exposed to reduced oxygen tension; HDACi may hold promise for future clinical applications of ASCs for skeletal regeneration. PMID:19505250

  13. Vitamin D₃ improves decline in cognitive function and cholinergic transmission in prefrontal cortex of streptozotocin-induced diabetic rats.

    PubMed

    Alrefaie, Zienab; Alhayani, Abdulmone'em

    2015-01-01

    Complications of diabetes mellitus include cognitive impairments and functional changes in the brain. The present study aimed to investigate the possible beneficial effect of vitamin D3 on episodic memory and cholinergic transmission in the prefrontal cortex of streptozotocin-induced diabetic rats. Thirty male Wistar rats (150-200 g) were included into control, diabetic and diabetic supplemented with vitamin D3 groups. Diabetes was induced by single intraperitoneal injection of streptozotocin 45 mg/kg in citrate buffer. Vitamin D3 was administered orally in a dose of 500 IU/kg/day in corn oil for 10 weeks. Then rats were subjected to novel object recognition test to examine for episodic memory. Animals were sacrificed under diethyl ether anesthesia and prefrontal cortices were dissected to measure the activity of choline acetyl transferase (CAT) and acetyle choline esterase (ACE) enzymes to assess for cholinergic transmission. Diabetic rats spent significantly less time exploring the novel object compared to control animals. Vitamin D3 significantly attenuated the diabetes-induced impairment so that animals again spent significantly more time exploring the novel object. The CAT activity was significantly decreased in diabetic animals while the ACE activity was significantly increased compared to control non-diabetic animals. Diabetes-induced alterations in enzyme activity in the prefrontal cortex were mitigated by vitamin D3 supplementation. The present findings demonstrate the potential effect of vitamin D3 supplementation on cognitive function in diabetic animals. It is possible that this effect is mediated through enhancing the prefrontal cortex cholinergic transmission. PMID:25835318

  14. Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Leong, Kah Hon; Sim, Lan Ching; Bahnemann, Detlef; Jang, Min; Ibrahim, Shaliza; Saravanan, Pichiah

    2015-10-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.

  15. Modulated surface nanostructures for enhanced light trapping and reduced surface reflection of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Hoshi, Yusuke; Hirai, Yuji; Matsuo, Yasutaka; Usami, Noritaka

    2016-05-01

    We demonstrated the fabrication of modulated surface nanostructures as a new surface texture design for thin wafer solar cells. Using a combination of conventional alkali etching and colloidal lithography, we fabricated surface textures with micrometer and nanometre scales on a Si substrate. These modulated surface nanostructures exhibit reduced surface reflection in a broad spectral range, compared with conventional micrometer textures. We investigated optical absorption using a rigorous coupled wave analysis simulation, which revealed a significant reduction in surface reflection over a broad spectral range and efficient light trapping (comparable to that of conventional micrometer-scale textures) for the modulated nanostructures. We found that the modulated surface nanostructures have a high potential of improving the performance of thin wafer crystalline Si solar cells.

  16. A reduced propensity to cooperate under enhanced exploitation risk in a social mammal.

    PubMed

    Ferrari, Manuela; Lindholm, Anna K; König, Barbara

    2016-05-11

    Conditional adjustment of cooperativeness to the expected pay-off might be a useful strategy to avoid being exploited in public good situations. Parental care provided towards all offspring in a communal nest (containing offspring of several females) resembles a public good. Females indiscriminately caring for all young share the costs equally, but the pay-off may vary depending on their contribution to the joint nest (number of own offspring). Females with fewer offspring in the joint nest will be exploited and overinvest relative to their contribution. We experimentally created a situation of high conflict in communally nursing house mice, by using a genetic tool to create a difference in birth litter sizes. Females in the high conflict situation (unequal litter sizes at birth) showed a reduced propensity to give birth as part of a communal nest, therefore adjusting their cooperativeness to the circumstances. PMID:27170710

  17. Regulatory risk assessments: Is there a need to reduce uncertainty and enhance robustness?

    PubMed

    Snodin, D J

    2015-12-01

    A critical evaluation of several recent regulatory risk assessments has been undertaken. These relate to propyl paraben (as a food additive, cosmetic ingredient or pharmaceutical excipient), cobalt (in terms of a safety-based limit for pharmaceuticals) and the cancer Threshold of Toxicological Concern as applied to food contaminants and pharmaceutical impurities. In all cases, a number of concerns can be raised regarding the reliability of the current assessments, some examples being absence of data audits, use of single-dose and/or non-good laboratory practice studies to determine safety metrics, use of a biased data set and questionable methodology and lack of consistency with precedents and regulatory guidance. Drawing on these findings, a set of recommendations is provided to reduce uncertainty and improve the quality and robustness of future regulatory risk assessments. PMID:26614814

  18. Reduced graphene oxide-yttria nanocomposite modified electrode for enhancing the sensitivity of electrochemical genosensor.

    PubMed

    Rasheed, P Abdul; Radhakrishnan, Thulasi; Shihabudeen, P K; Sandhyarani, N

    2016-09-15

    Reduced graphene oxide-yttria nanocomposite (rGO:Y) is applied as electrochemical genosensor platform for ultrahigh sensitive detection of breast cancer 1 (BRCA1) gene for the first time. The sensor is based on the sandwich assay in which gold nanoparticle cluster labeled reporter DNA hybridize to the target DNA. Glassy carbon electrode modified with rGO-yttria serves as the immobilization platform for capture probe DNA. The sensor exhibited a fine capability of sensing BRCA1 gene with linear range of 10attomolar (aM) to 1nanomolar (nM) and a detection limit of 5.95attomolar. The minimum distinguishable response concentration is down to the attomolar level with a high sensitivity and selectivity. We demonstrated that the use of rGO:Y modified electrode along with gold nanoparticle cluster (AuNPC) label leads to the highly sensitive electrochemical detection of BRCA1 gene. PMID:27153526

  19. Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores.

    PubMed

    Terrones, Jeronimo; Kiley, Patrick J; Elliott, James A

    2016-01-01

    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials. PMID:27265098

  20. Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores

    NASA Astrophysics Data System (ADS)

    Terrones, Jeronimo; Kiley, Patrick J.; Elliott, James A.

    2016-06-01

    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials.

  1. On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows

    NASA Astrophysics Data System (ADS)

    Dubief, Yves; White, Christopher M.; Terrapon, Vincent E.; Shaqfeh, Eric S. G.; Moin, Parviz; Lele, Sanjiva K.

    2004-09-01

    Numerical simulations of turbulent polymer solutions using the FENE-P model are used to characterize the action of polymers on turbulence in drag-reduced flows. The energetics of turbulence is investigated by correlating the work done by polymers on the flow with turbulent structures. Polymers are found to store and to release energy to the flow in a well-organized manner. The storage of energy occurs around near-wall vortices as has been anticipated for a long time. Quite unexpectedly, coherent release of energy is observed in the very near-wall region. Large fluctuations of polymer work are shown to re-energize decaying streamwise velocity fluctuations in high-speed streaks just above the viscous sublayer. These distinct behaviours are used to propose an autonomous regeneration cycle of polymer wall turbulence, in the spirit of Jiménez & Pinelli (1999).

  2. Enhancing Motivation to Reduce the Risk of HIV Infection for Economically Disadvantaged Urban Women

    PubMed Central

    Carey, Michael P.; Maisto, Stephen A.; Kalichman, Seth C.; Forsyth, Andrew D.; Wright, Ednita M.; Johnson, Blair T.

    2008-01-01

    This research evaluated a motivation-based HIV-risk-reduction intervention for economically disadvantaged urban women. Participants completed a survey that assessed HIV-related knowledge, risk perceptions, behavioral intentions, sexual communication, substance use, and risk behavior. A total of 102 at-risk women (76% African-American) were randomly assigned to either the risk-reduction intervention or to a waiting list. Women were reassessed at three and twelve weeks. Results indicated that treated women increased their knowledge and risk awareness, strengthened their intentions to adopt safer sexual practices, communicated their intentions with partners, reduced substance use proximal to sexual activities, and engaged in fewer acts of unprotected vaginal intercourse. These effects were observed immediately and most were maintained at follow-up. PMID:9256553

  3. Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores

    PubMed Central

    Terrones, Jeronimo; Kiley, Patrick J.; Elliott, James A.

    2016-01-01

    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials. PMID:27265098

  4. Smoke exposure of human macrophages reduces HDAC3 activity, resulting in enhanced inflammatory cytokine production.

    PubMed

    Winkler, Aaron R; Nocka, Karl N; Williams, Cara M M

    2012-08-01

    Chronic obstructive pulmonary disease (COPD) is a debilitating condition resulting from exposure to pollutants such as cigarette smoke. Pulmonary macrophages secrete a plethora of inflammatory mediators that are increased in the lungs of COPD patients, but whether this phenotype results directly from smoke exposure remains unknown. Using an in vitro model for alveolar macrophages (AM) derived from human peripheral blood monocytes with granulocyte-macrophage stimulating factor (GM-MØ), we analyzed the mechanistic connection between cigarette smoke exposure and histone deacetylase (HDAC) regulation, hypothesized to be a contributing factor in COPD pathophysiology. Here we show that acute smoke exposure inhibits HDAC enzymatic activity in GM-MØ. Analysis of mRNA and total cellular proteins for expression of class I (1, 2, 3 and 8), class II (4, 5, 6, 7, 9, 10), and class IV (11) HDAC revealed no effect of smoke exposure, whereas nuclear HDAC3 protein content was reduced. To better understand the physiological significance of reduced HDAC3 activity, we utilized siRNA to knockdown HDAC1, 2 and 3 individually. Interestingly, siRNA-mediated reduction of HDAC3 resulted in increased production of IL8 and IL1β in response to LPS stimulation, while HDAC2 knockdown had no effect on either cytokine. Lower nuclear content of HDAC3 in the context of equivalent total HDAC protein levels following smoke exposure may reflect increased nuclear export of HDAC3, allowing increased nuclear factor kappa b (NF-κB ) driven cytokine expression that can contribute to inflammation. PMID:22613758

  5. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model.

    PubMed

    Chen, C H; Manaenko, A; Zhan, Y; Liu, W W; Ostrowki, R P; Tang, J; Zhang, J H

    2010-08-11

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation. PMID:20423721

  6. Propranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats.

    PubMed

    Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-01-01

    This study examined the role of β-adrenergic and opioid receptors in spinal reflex bladder activity and in the inhibition induced by pudendal nerve stimulation (PNS) or tibial nerve stimulation (TNS). Spinal reflex bladder contractions were induced by intravesical infusion of 0.25% acetic acid in α-chloralose-anesthetized cats after an acute spinal cord transection (SCT) at the thoracic T9/T10 level. PNS or TNS at 5 Hz was applied to inhibit these spinal reflex contractions at 2 and 4 times the threshold intensity (T) for inducing anal or toe twitch, respectively. During a cystrometrogram (CMG), PNS at 2T and 4T significantly (P < 0.05) increased bladder capacity from 58.0 ± 4.7% to 85.8 ± 10.3% and 96.5 ± 10.7%, respectively, of saline control capacity, while TNS failed to inhibit spinal reflex bladder contractions. After administering propranolol (3 mg/kg iv, a β₁/β₂-adrenergic receptor antagonist), the effects of 2T and 4T PNS on bladder capacity were significantly (P < 0.05) reduced to 64.5 ± 9.5% and 64.7 ± 7.3%, respectively, of the saline control capacity. However, the residual PNS inhibition (about 10% increase in capacity) was still statistically significant (P < 0.05). Propranolol treatment also significantly (P = 0.0019) increased the amplitude of bladder contractions but did not change the control bladder capacity. Naloxone (1 mg/kg iv, an opioid receptor antagonist) had no effect on either spinal reflex bladder contractions or PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P < 0.05) reduced the amplitude of the reflex bladder contractions. This study indicates an important role of β₁/β₂-adrenergic receptors in pudendal inhibition and spinal reflex bladder activity. PMID:25394827

  7. Hydrogen Gas Reduced Acute Hyperglycemia-Enhanced Hemorrhagic Transformation in a Focal Ischemia Rat Model

    PubMed Central

    CHEN, C.H.; ANATOL, M.; ZHAN, Y.; LIU, W.W.; OSTROWKI, R.P.; TANG, JIPING; ZHANG, J. H.

    2010-01-01

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague–Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H2); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H2 (MCAO+H2). All the rats received an injection of 50% dextrose (6ml/kg intraperitoneally) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 hr during reperfusion. We measured the level of blood glucose at 0 hr, 0.5 hr, 4 hr, and 6 hr after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluating by the level of 8OHG, HNE and nitrotyrosine), MMP-2/MMP-9 activity were measured at 24 hr after ischemia. We found that hydrogen inhalation for 2 hr reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen is accompanied by a reduction of the expressions of 8OHG, HNE, nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500±32.51 to 366±68.22 mg/dl at 4 hr after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occluding, collagen IV or AQP4. In conclusion, hydrogen gas reduced the infarction, hemorrhagic transformation, and improved neurological functions in rat. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation. PMID:20423721

  8. Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS.

    PubMed

    Liang, Xiu; You, Tingting; Liu, Dapeng; Lang, Xiufeng; Tan, Enzhong; Shi, Jihua; Yin, Penggang; Guo, Lin

    2015-04-21

    Graphene-based nanocomposites have recently attracted tremendous research interest in the field of catalysis due to their unique optical and electronic properties. However, direct observation of enhanced plasmon-driven catalytic activity of Au nanoparticles (NPs) supported on reduced graphene oxides (Au/rGO) has rarely been reported. Herein, based on the reduction from 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobenzene (DMAB), the catalytic property of Au/rGO nanocomposites was investigated and compared with corresponding Au NP samples with similar size distribution. Our results show that Au/rGO nanocomposites could serve as a good catalytic and analytic platform for plasmon-driven chemical reactions. In addition, systematic comparisons were conducted during power- and time-dependent surface-enhanced Raman scattering (SERS) experiments, which exhibited a lower power threshold and higher catalytic efficiency for Au/rGO as compared to Au NPs toward the reaction. PMID:25793752

  9. Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications

    NASA Astrophysics Data System (ADS)

    Zhao, Chao

    2015-02-01

    An effective molecular-level mixing approach was used to prepare reduced graphene oxide (rGO)/Ni powders, which were directly consolidated into rGO/Ni composites by spark plasma sintering. The rGO/Ni composites were found to exhibit a homogeneous dispersion of rGO and a strong interfacial bonding between the rGO and the Ni matrix. The enhanced interfacial bonding was attributed to the oxygen-mediated bonding generated from the interactions between the residue functional groups of rGO and the Ni atoms. Tensile test revealed that 1.5 wt% rGO/Ni composites demonstrated a 95.2 % increase in tensile strength and a 327.6 % increase in yield strength, while simultaneously retained a 12.1 % of elongation. This study thus proposed an effective way to fabricate rGO/Ni composites with enhanced tensile properties.

  10. Somatostatin modulates cholinergic neurotransmission in canine antral muscle

    SciTech Connect

    Koelbel, C.B.; van Deventer, G.; Khawaja, S.; Mogard, M.; Walsh, J.H.; Mayer, E.A. UCLA Medical Center, Torrance, CA )

    1988-02-01

    Somatostatin has been shown to inhibit antral motility in vivo. To examine the effect of somatostatin on cholinergic neurotransmission in the canine antrum, we studied the mechanical response of and the release of ({sup 3}H)acetylcholine from canine longitudinal antral muscle in response to substance P, gastrin 17, and electrical stimulation. In unstimulated tissues, somatostatin had a positive inotropic effect on spontaneous phasic contractions. In tissues stimulated with substance P and gastrin 17, but not with electrical stimulation, somatostatin inhibited the phasic inotropic response dose dependently. This inhibitory effect was abolished by indomethacin. Somatostatin stimulated the release of prostaglandin E{sub 2} radioimmunoreactivity, and prostaglandin E{sub 2} inhibited the release of ({sup 3}H)acetylcholine induced by substance P and electrical stimulation. Somatostatin increased the release of ({sup 3}H)acetylcholine from unstimulated tissues by a tetrodotoxin-sensitive mechanism but inhibited the release induced by substance P and electrical stimulation. These results suggest that somatostatin has a dual modulatory effect on cholinergic neutrotransmission in canine longitudinal antral muscle. This effect is excitatory in unstimulated tissues and inhibitory in stimulated tissues. The inhibitory effect is partially mediated by prostaglandins.

  11. Low-level microwave irradiation and central cholinergic systems

    SciTech Connect

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W. )

    1989-05-01

    Our previous research showed that 45 min of exposure to low-level, pulsed microwaves (2450-MHz, 2-microseconds pulses, 500 pps, whole-body average specific absorption rate 0.6 W/kg) decreased sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. The effects of microwaves on central cholinergic systems were further investigated in this study. Increases in choline uptake activity in the frontal cortex, hippocampus, and hypothalamus were observed after 20 min of acute microwave exposure, and tolerance to the effect of microwaves developed in the hypothalamus, but not in the frontal cortex and hippocampus, of rats subjected to ten daily 20-min exposure sessions. Furthermore, the effects of acute microwave irradiation on central choline uptake could be blocked by pretreating the animals before exposure with the narcotic antagonist naltrexone. In another series of experiments, rats were exposed to microwaves in ten daily sessions of either 20 or 45 min, and muscarinic cholinergic receptors in different regions of the brain were studied by 3H-QNB binding assay. Decreases in concentration of receptors occurred in the frontal cortex and hippocampus of rats subjected to ten 20-min microwave exposure sessions, whereas increase in receptor concentration occurred in the hippocampus of animals exposed to ten 45-min sessions. This study also investigated the effects of microwave exposure on learning in the radial-arm maze. Rats were trained in the maze to obtain food reinforcements immediately after 20 or 45 min of microwave exposure.

  12. Evaluation of a patient with both aquagenic and cholinergic urticaria.

    PubMed

    Davis, R S; Remigio, L K; Schocket, A L; Bock, S A

    1981-12-01

    An 11-yr-old girl presented with a history of urticaria induced by warm or cool showers, exercise, and emotional stimuli. During evaluation she repeatedly developed generalized punctate urticaria, pruritus, palpitations, and headaches after warm baths or exercise, and she had a positive methacholine skin test. She developed similar lesions and pruritus after local application of sterile water, tap water, ethanol, normal saline, or 3% saline. The diagnosis of combined aquagenic and cholinergic urticaria was made and presented a unique opportunity to study and compare mediator release and clinical symptoms in both conditions. The patient was submerged in bath water at either 37 degree or 41 degree C to induce either aquagenic or cholinergic urticaria, respectively. Histamine was released into the systemic circulation in both conditions in a similar time course; however, systemic symptoms occurred only after the 41 degree C bath. After failure to induce tolerance to the 41 degree C bath water, hydroxyzine therapy was instituted. One week later she was rechallenged; few symptoms appeared, and a rise in serum histamine was not detected as had been shown in previous challenges. The data suggest that in our patient, hydroxyzine may have contributed to the inhibition of both histamine release and the appearance of symptoms during hot bath challenging. PMID:7310013

  13. A Reaction-Diffusion Model of Cholinergic Retinal Waves

    PubMed Central

    Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan

    2014-01-01

    Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327

  14. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli.

    PubMed

    Maeß, Marten B; Wittig, Berith; Cignarella, Andrea; Lorkowski, Stefan

    2014-01-15

    Macrophages are versatile cells of the immune system which react to various external stimuli through different polarization patterns which adjust the cells to the required function whether it is removal of pathogens or necrotic cells, tissue repair or propagation of inflammation. As much of macrophage behavior is determined by their polarization, appropriate models to study macrophage polarization are required. Previously we have published a protocol for transfection of THP-1 macrophages, which in brief pre-differentiates THP-1 monocytes for 48h using 100ng/ml PMA, followed by detachment of the cells and eletroporation using Lonza nucleofector technology and finally includes further 48h of differentiation with 100ng/ml PMA. When we applied this protocol to study interleukin (IL) 10 dependent polarization, the cells were inert to the IL10 stimulus, as indicated by a failure to induce IL10 target genes such as SOCS3. Further investigation revealed that the cells were classically activated by the differentiation agent phorbol 12-myristate 13-acetate (PMA) as shown by induction of chemokine receptor CCR7. Subsequent reduction of PMA concentration during THP-1 macrophage differentiation significantly improved their response to IL10 as SOCS3 increased more than 40-fold. This increased responsiveness of the THP-1 macrophages was also confirmed for polarization with LPS and IFNγ. Up-regulation of classical activation markers CCL3, CCR7 and TNFα was enhanced from 18-, 21- and 70-fold, respectively, to 48-, 222- and 951-fold, respectively. Reduction of PMA concentration did not negatively affect macrophage differentiation or transfection efficiency. Expression of macrophage differentiation markers CD11b and CD68 as well as cell morphology remained unchanged. In addition transfection efficiency and rates of apoptosis and necrosis remained unaffected. Thus our revised protocol combines high transfection efficiency and cell vitality with a strong response to polarizing

  15. The beneficial effects of dietary restriction: reduced oxidative damage and enhanced apoptosis.

    PubMed

    Wachsman, J T

    1996-02-19

    There is compelling evidence for the central role of oxidative damage in the aging process and for the participation of reactive oxygen species in tumor initiation and promotion. Caloric restriction (CR) or energy restriction retards age-associated increases in mitochondrial free-radical production and reduces the accumulation of oxidatively damaged cell components. CR has also been shown to slow down age-related declines in various repair capabilities, including some types of DNA repair. It is proposed that inhibitors of mitochondrial electron transport and/or uncouplers of oxidative phosphorylation (rotenone, amytal, amiodarone, valinomycin, etc.), when used at extremely low doses, could mimic the effects of CR in model systems. The objective is to lower mitochondrial free-radical production by decreasing the fraction of electron carriers in the reduced state. In addition to a variety of other effects, CR has been shown to increase the rate of apoptosis, particularly in preneoplastic cells, and in general, to promote elevated levels of free glucocorticoids (GCs). GCs are known to induce tissue-specific apoptosis and to upregulate gap-junction-mediated intercellular communication (GJIC). Tumor promoters like phorbol esters have the opposite effect, in that they inhibit both the process of apoptosis and GJIC. The enzyme poly (ADP-ribose) polymerase (PARP) is thought to play a central role in apoptosis, in a manner that has been highly conserved in evolution. There is good evidence that the apoptosis-associated Ca/Mg-dependent DNA endonuclease is maintained in a latent form by being poly (ADP-ribosylated). Apoptosis would require the removal of this polymer from the endonuclease, and, most likely, its removal from topoisomerase II and histone H1 as well. The role of poly (ADP-ribose) in apoptosis, carcinogenesis, and aging could be studied by the use of modulators of PARP activity (3-aminobenzamide, 3-nitrosobenzamide, 1% ethanol, etc.), inhibitors of poly ADP

  16. Enhanced photocatalytic performance of ZnO-reduced graphene oxide hybrid synthesized via ultrasonic probe-assisted study

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Sahu, N. K.; Bahadur, D.

    2013-02-01

    A facile ultrasonic horn-assisted reaction has been used to synthesize zinc oxide-reduced graphene oxide (ZnO-RGO) hybrids in dimethylformamide. The incorporation of graphene oxide prevents the cluster formation of ZnO nanoparticles. The photocatalytic performance in degradation of methylene blue has been investigated with ZnO and ZnO-RGO hybrids and the results show that the RGO plays an important role in the enhancement of photocatalytic performance of ZnO-RGO. A direct evidence of electron exchange between ZnO and RGO is confirmed by zeta potentials measurements, which is an established reason for photocatalytic degradation of organic dyes.

  17. Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies

    NASA Astrophysics Data System (ADS)

    Liu, Zhang; Xu, Weicheng; Fang, Jianzhang; Xu, Xiaoxin; Wu, Shuxing; Zhu, Ximiao; Chen, Zehua

    2012-10-01

    Herein, a reverse microemulsion route was developed to synthesize bismuth oxyiodide (BiOI) nanocrystals and reduced graphene oxide (RGO) nanocomposites as a highly efficient photocatalyst, and both the formation of BiOI and the reduction of RGO were achieved in situ in microemulsions simultaneously at low temperature (60 °C). The uniform nanocrystal size and structure were indicated by XRD, TEM, and the reduction of GO by ascorbic acid was evidenced by FTIR, XPS, and Raman spectra techniques. The enhanced photoactivity of RGO/BiOI nanocomposites under visible light was attributed to improved light absorption and efficient charge separation and transportation.

  18. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition

    PubMed Central

    Kato, Kouki; Muraoka, Tetsuro; Mizuguchi, Nobuaki; Nakagawa, Kento; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition. PMID:27242482

  19. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion

    PubMed Central

    Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A.; Gates, Fred K.; Wickham, Martin S. J.; Shewry, Peter R.; Bakalis, Serafim; Padfield, Philip; Mills, E. N. Clare

    2015-01-01

    Scope Resistance of proteins to gastrointestinal digestion may play a role in determining immune‐mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Methods and results Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS‐PAGE and immunoblotting using monoclonal antibodies specific for celiac‐toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. Conclusion The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten‐starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. PMID:26202208

  20. Chronic cerebral hypoperfusion enhances Tau hyperphosphorylation and reduces autophagy in Alzheimer's disease mice.

    PubMed

    Qiu, Lifeng; Ng, Gandi; Tan, Eng King; Liao, Ping; Kandiah, Nagaendran; Zeng, Li

    2016-01-01

    Cerebral hypoperfusion and impaired autophagy are two etiological factors that have been identified as being associated with the development of Alzheimer's disease (AD). Nevertheless, the exact relationships among these pathological processes remain unknown. To elucidate the impact of cerebral hypoperfusion in AD, we created a unilateral common carotid artery occlusion (UCCAO) model by occluding the left common carotid artery in both young and old 3xTg-AD mice. Two months after occlusion, we found that ligation increases phospho-Tau (p-Tau) at Serine 199/202 in the hippocampus of 3-month-old AD mice, compared to sham-operated AD mice; whereas, there is no change in the wild type (WT) mice after ligation. Moreover, cerebral hypoperfusion led to significant increase of p-Tau in both the hippocampus and cortex of 16-month-old AD mice and WT mice. Notably, we did not detect any change in Aβ42 level in either young or old AD and WT mice after ligation. Interestingly, we observed a downregulation of LC3-II in the cortex of aged AD mice and WT mice after ligation. Our results suggest that elevated p-Tau and reduced autophagy are major cellular changes that are associated with hypoperfusion in AD. Therefore, targeting p-Tau and autophagy pathways may ameliorate hypoperfusion-induced brain damage in AD. PMID:27050297

  1. Chronic cerebral hypoperfusion enhances Tau hyperphosphorylation and reduces autophagy in Alzheimer’s disease mice

    PubMed Central

    Qiu, Lifeng; Ng, Gandi; Tan, Eng King; Liao, Ping; Kandiah, Nagaendran; Zeng, Li

    2016-01-01

    Cerebral hypoperfusion and impaired autophagy are two etiological factors that have been identified as being associated with the development of Alzheimer’s disease (AD). Nevertheless, the exact relationships among these pathological processes remain unknown. To elucidate the impact of cerebral hypoperfusion in AD, we created a unilateral common carotid artery occlusion (UCCAO) model by occluding the left common carotid artery in both young and old 3xTg-AD mice. Two months after occlusion, we found that ligation increases phospho-Tau (p-Tau) at Serine 199/202 in the hippocampus of 3-month-old AD mice, compared to sham-operated AD mice; whereas, there is no change in the wild type (WT) mice after ligation. Moreover, cerebral hypoperfusion led to significant increase of p-Tau in both the hippocampus and cortex of 16-month-old AD mice and WT mice. Notably, we did not detect any change in Aβ42 level in either young or old AD and WT mice after ligation. Interestingly, we observed a downregulation of LC3-II in the cortex of aged AD mice and WT mice after ligation. Our results suggest that elevated p-Tau and reduced autophagy are major cellular changes that are associated with hypoperfusion in AD. Therefore, targeting p-Tau and autophagy pathways may ameliorate hypoperfusion-induced brain damage in AD. PMID:27050297

  2. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium.

    PubMed

    Moreno-Jiménez, Eduardo; Meharg, Andrew A; Smolders, Erik; Manzano, Rebeca; Becerra, Daniel; Sánchez-Llerena, Javier; Albarrán, Ángel; López-Piñero, Antonio

    2014-07-01

    Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding. Both irrigation techniques resulted in similar grain yields (~3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinkler systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result. PMID:24742557

  3. Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis

    NASA Astrophysics Data System (ADS)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Ma, Cai-Xia; Li, Xin; Li, Chang Ming

    2015-02-01

    A small sized TiO2 nanocrystal (∼10 nm)/reduced graphene oxide (TiO2/rGO) hybrid is synthesized through a sol-gel process for hybrid TiO2/GO followed by solvothermal reduction of GO to rGO and is further used as a microbial fuel cell (MFC) anode. The strong synergistic effect from a large surface area produced by uniformly deposited TiO2 nanocrystals, good hydrophilicity of TiO2 nanocrystals and superior conductivity of rGO leads to significantly improved electrocatalysis. In particular, a direct electrochemistry is realized by generating endogenous flavins from a large amount of microbes grown on the highly biocompatible TiO2 nanocrystals to mediate fast electron transfer between microbes and conductive rGO for a high performance anode. The TiO2/rGO hybrid anode delivers a maximum power density of 3169 mW m-2 in Shewanella putrefaciens CN32 MFC, which is much large than that of the conventional carbon cloth anode and reported TiO2/carbon hybrid anode, thus offering great potential for practical applications of MFC. This work is for the first time to report that the synergistic effect from tailoring the physical structure to achieve small sized TiO2 nanocrystals while rationally designing chemistry to introduce highly conductive rGO and superior biocompatible TiO2 is able to significantly boost the MFC performance.

  4. Low-level laser therapy (LLLT) reduces inflammatory infiltrate and enhances skeletal muscle repair: Histomorphometric parameters

    NASA Astrophysics Data System (ADS)

    Paiva-Oliveira, E. L.; Lima, N. C.; Silva, P. H.; Sousa, N. T. A.; Barbosa, F. S.; Orsini, M.; Silva, J. G.

    2012-09-01

    Low level laser therapy (LLLT) has been suggested as an effective therapeutics in inflammatory processes modulation and tissue repairing. However, there is a lack of studies that analyze the anti-inflammatory effects of the infrared lasers in muscular skeletal injury. The aim of this study was to investigate the effects of low-level laser therapy 904 nm in the repair process of skeletal muscle tissue. Swiss mice were submitted to cryoinjury and divided in test (LLLT-treated) and control groups. Histological sections were stained with hematoxylin-eosin to assess general morphology and inflammatory influx, and Picrossirus to quantify collagen fibers deposition. Our results showed significant reduction in inflammatory infiltrated in irradiated mice after 4 days of treatment compared to control ( p = 0.01). After 8 days, the irradiated group showed high levels at regenerating myofibers with significant statistically differences in relation at control group ( p < 0.01). Collagen deposition was significantly increased in the final stages of regeneration at test group, when compared with control group ( p = 0.05). Our data suggests that LLLT reduces the inflammatory response in the initial stages of injury and accelerates the process of muscular tissue repair.

  5. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts.

    PubMed

    Jabłońska-Trypuć, Agata; Pankiewicz, Walentyn; Czerpak, Romuald

    2016-09-01

    Traumatic acid (TA) is a plant hormone (cytokinin) that in terms of chemical structure belongs to the group of fatty acids derivatives. It was isolated from Phaseolus vulgaris. TA activity and its influence on human cells and organism has not previously been the subject of research. The aim of this study was to examine the effects of TA on collagen content and basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione, thiol group content, and lipid peroxidation in physiological conditions. The results show a stimulatory effect of TA on tested parameters. TA caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against ROS production. It also increases protein and collagen biosynthesis and its secretion into the culture medium. The present findings reveal that TA exhibits multiple and complex activity in fibroblast cells in vitro. TA, with its activity similar to unsaturated fatty acids, shows antioxidant and stimulatory effects on collagen biosynthesis. It is a potentially powerful agent with applications in the treatment of many skin diseases connected with oxidative stress and collagen biosynthesis disorders. PMID:27423205

  6. Reduced ventilation and enhanced magnitude of the deep Pacific carbon pool during the last glacial period

    NASA Astrophysics Data System (ADS)

    Skinner, L.; McCave, I. N.; Carter, L.; Fallon, S.; Scrivner, A. E.; Primeau, F.

    2015-02-01

    It has been proposed that the ventilation of the deep Pacific carbon pool was not significantly reduced during the last glacial period, posing a problem for canonical theories of glacial-interglacial CO2 change. However, using radiocarbon dates of marine tephra deposited off New Zealand, we show that deep- (> 2000 m) and shallow sub-surface ocean-atmosphere 14C age offsets (i.e. "reservoir-" or "ventilation" ages) in the southwest Pacific increased by ˜1089 and 337 yrs respectively, reaching ˜2689 and ˜1037 yrs during the late glacial. A comparison with other radiocarbon data from the southern high-latitudes suggests that broadly similar changes were experienced right across the Southern Ocean. If, like today, the Southern Ocean was the main source of water to the glacial ocean interior, these observations would imply a significant change in the global radiocarbon inventory during the last glacial period, possibly equivalent to an increase in the average radiocarbon age > 2 km of ˜ 700 yrs. Simple mass balance arguments and numerical model sensitivity tests suggest that such a change in the ocean's mean radiocarbon age would have had a major impact on the marine carbon inventory and atmospheric CO2, possibly accounting for nearly half of the glacial-interglacial CO2 change. If confirmed, these findings would underline the special role of high latitude shallow sub-surface mixing and air-sea gas exchange in regulating atmospheric CO2 during the late Pleistocene.

  7. Early life adversity reduces stress reactivity and enhances impulsive behavior: Implications for health behaviors

    PubMed Central

    Lovallo, William R.

    2012-01-01

    Altered reactivity to stress, either in the direction of exaggerated reactivity or diminished reactivity, may signal a dysregulation of systems intended to maintain homeostasis and a state of good health. Evidence has accumulated that diminished reactivity to psychosocial stress may signal poor health outcomes. One source of diminished cortisol and autonomic reactivity is the experience of adverse rearing during childhood and adolescence. The Oklahoma Family Health Patterns Project has examined a cohort of 426 healthy young adults with and without a family history of alcoholism. Regardless of family history, persons who had experienced high degrees of adversity prior to age 16 had a constellation of changes including reduced cortisol and heart rate reactivity, diminished cognitive capacity, and unstable regulation of affect, leading to behavioral impulsivity and antisocial tendencies. We present a model whereby this constellation of physiological, cognitive, and affective tendencies is consistent with altered central dopaminergic activity leading to changes in brain function that may foster impulsive and risky behaviors. These in turn may promote greater use of alcohol other drugs along with adopting poor health behaviors. This model provides a pathway from early life adversity to low stress reactivity that forms a basis for risky behaviors and poor health outcomes. PMID:23085387

  8. Cognitive Enrichment in Piglet Rearing: An Approach to Enhance Animal Welfare and to Reduce Aggressive Behaviour

    PubMed Central

    Rauterberg, Sally; Viazzi, Stefano; Oczak, Maciej; Bahr, Claudia; Guarino, Marcella; Vranken, Erik; Berckmans, Daniel; Hartung, Jörg

    2013-01-01

    It is known that pigs raised in enriched environments express less aggressive behaviour. For this reason, a new method of cognitive environmental enrichment was experimented at the University of Veterinary Medicine Hannover, Germany. In the first phase, 78 suckling piglets were trained to learn the link between a sound given by an electronic feeder and a feed reward in the form of chocolate candies during a period of 8 days. In the second phase, the same piglets were used in resident-intruder tests to verify the potential of the feeding system to interrupt aggressive behaviour. The analysis of all training rounds revealed that piglets learned the commands during 8 days of training and the interest of the piglets increased within training days (P < 0.05). In the resident-intruder test, 79.5% of aggressive interactions were broken by feeder activation. In interactions where either the aggressor or the receiver reacted, a high number of fights were stopped (96.7% versus 93.1%) indicating that it was not relevant if the aggressor or the receiver responded to the feeder activation. We conclude that the electronic feeding system has the potential to be used as cognitive enrichment for piglets, being suitable for reducing aggressive behaviour in resident-intruder situations. PMID:24198969

  9. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition.

    PubMed

    Kato, Kouki; Muraoka, Tetsuro; Mizuguchi, Nobuaki; Nakagawa, Kento; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition. PMID:27242482

  10. One-pot synthesis of cuprous oxide-reduced graphene oxide nanocomposite with enhanced photocatalytic and electrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Han, Fugui; Li, Heping; Yang, Jun; Cai, Xiaodong; Fu, Li

    2016-03-01

    We report on the facile one-step synthesis of porous cuprous oxide nanoparticles on reduced graphene oxide (Cu2O-RGO) by synchronously reducing Cu2+ ions and GO with ethylene glycol. The basic chemical components, crystal structure and surface morphology of prepared nanocomposite was carefully characterized. The photocatalytic activities of the as-prepared nanocomposite was investigated by photodegrading methylene blue (MB) under visible light. The electrocatalytic property of the nanocomposite was investigated by electrocatalytic determination of acetaminophen. The results indicate that the corporation of RGO with Cu2O nanoparticles could high enhance the both photocatalytic and electrocatalytic properties. Moreover, we found that the content of RGO introduced into nanocomposite could highly affect the product properties.

  11. Long-term effects of selective immunolesions of cholinergic neurons of the nucleus basalis magnocellularis on the ascending cholinergic pathways in the rat: a model for Alzheimer's disease.

    PubMed

    Szigeti, Csaba; Bencsik, Norbert; Simonka, Aurel Janos; Legradi, Adam; Kasa, Peter; Gulya, Karoly

    2013-05-01

    Alzheimer's disease is associated with a significant decrease in the cholinergic input to the neocortex. In a rat model of this depletion, we analyzed the subsequent long-term changes in cholinergic fiber density in two well-defined areas of the frontal and parietal cortices: Fr1, the primary motor cortex, and HL, the hindlimb area of the somatosensory (parietal) cortex, two cortical cholinergic fields that receive inputs from the nucleus basalis magnocellularis (nBM). A specific cholinergic lesion was induced by the intraparenchymal injection of 192 IgG-saporin into the nBM. Choline acetyltransferase (ChAT) immunohistochemistry was applied to identify the loss of cholinergic neurons in the nBM, while acetylcholinesterase (AChE) enzyme histochemistry was used to analyze the decreases in the number of cholinoceptive neurons in the nBM and the cholinergic fiber density in the Fr1 and HL cortical areas in response to the nBM lesion. The immunotoxin differentially affected the number of ChAT- and AChE-positive neurons in the nBM. 192 IgG-saporin induced a massive, irreversible depletion of the ChAT-positive (cholinergic) neurons (to 11.7% of the control level), accompanied by a less dramatic, but similarly persistent loss of the AChE-positive (cholinoceptive) neurons (to 59.2% of the control value) in the nBM within 2 weeks after the lesion. The difference seen in the depletion of ChAT- and AChE-positive neurons is due to the specificity of the immunotoxin to cholinergic neurons. The cholinergic fiber densities in cortical areas Fr1 and HL remained similarly decreased (to 62% and 68% of the control values, respectively) up to 20 weeks. No significant rebound in AChE activity occurred either in the nBM or in the cortices during the period investigated. This study therefore demonstrated that, similarly to the very extensive reduction in the number of ChAT-positive neurons in the nBM, cortical areas Fr1 and HL underwent long-lasting reductions in the number of ACh

  12. Reducing Health Disparities and Enhancing the Responsible Conduct of Research Involving LGBT Youth.

    PubMed

    Fisher, Celia B; Mustanski, Brian

    2014-09-01

    Although there is clearly a need for evidenced-based behavioral or biomedical prevention or treatment programs for suicide, substance abuse, and sexual health targeted to members of the LGBT population under the age of eighteen, few such programs exist, due in substantial part to limited research knowledge. Ambiguities in regulations that govern human subjects protections and the related inconsistencies in institutional review board (IRB) interpretations of regulatory language are the key reason for the lack of rigorous clinical trial evidence to support treatment choices and prevention approaches to reducing health disparities for this population. Given the socially sensitive nature of suicide, substance abuse, and HIV and STI research in general and LGBT research specifically, in the absence of empirical data to guide their decisions, IRBs must often rely on subjective judgments of minimal risk, which can lead to overestimation of the magnitude and probability of psychological, social, and informational harms that might arise from LGBT youth participation in clinical trials. In addition, more than other youth, LGBT adolescents whose families are unaware of their sexual orientation or gender identity or whose families have victimized them on account of it may be reluctant to participate in studies that require guardian permission. This, in turn, intensifies problems of recruitment and unbiased sampling. However, many IRBs are reluctant to apply federal regulations permitting waiver of guardian permission under conditions in which such permission is clearly not "feasible" or "reasonable" to require. Consequently, many investigators have excluded LGBT individuals under eighteen years of age in health intervention research proposals because of anticipated or actual difficulties obtaining IRB approval. This situation is in conflict with current ethical discourse focusing on the right of youths to participate in trials that will protect them from receiving

  13. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation.

    PubMed

    Stern, Jennifer C; Chanton, Jeff; Abichou, Tarek; Powelson, David; Yuan, Lei; Escoriza, Sharon; Bogner, Jean

    2007-01-01

    Biologically-active landfill cover soils (biocovers) that serve to minimize CH4 emissions by optimizing CH4 oxidation were investigated at a landfill in Florida, USA. The biocover consisted of 50 cm pre-composted yard or garden waste placed over a 10-15 cm gas distribution layer (crushed glass) over a 40-100 cm interim cover. The biocover cells reduced CH4 emissions by a factor of 10 and doubled the percentage of CH4 oxidation relative to control cells. The thickness and moisture-holding capacity of the biocover resulted in increased retention times for transported CH4. This increased retention of CH4 in the biocover resulted in a higher fraction oxidized. Overall rates between the two covers were similar, about 2g CH4 m(-2)d(-1), but because CH4 entered the biocover from below at a slower rate relative to the soil cover, a higher percentage was oxidized. In part, methane oxidation controlled the net flux of CH4 to the atmosphere. The biocover cells became more effective than the control sites in oxidizing CH4 3 months after their initial placement: the mean percent oxidation for the biocover cells was 41% compared to 14% for the control cells (p<0.001). Following the initial 3 months, we also observed 29 (27%) negative CH4 fluxes and 27 (25%) zero fluxes in the biocover cells but only 6 (6%) negative fluxes and 22 (21%) zero fluxes for the control cells. Negative fluxes indicate uptake of atmospheric CH4. If the zero and negative fluxes are assumed to represent 100% oxidation, then the mean percent oxidation for the biocover and control cells, respectively, for the same period would increase to 64% and 30%. PMID:17005386

  14. Distillers By-Product Cattle Diets Enhance Reduced Sulfur Gas Fluxes from Feedlot Soils and Manures.

    PubMed

    Miller, Daniel N; Spiehs, Mindy J; Varel, Vincent H; Woodbury, Bryan L; Wells, James E; Berry, Elaine D

    2016-07-01

    Total reduced sulfur (TRS) emissions from animal feeding operations are a concern with increased feeding of high-sulfur distillers by-products. Three feeding trials were conducted to evaluate feeding wet distillers grain plus solubles (WDGS) on TRS fluxes. Fresh manure was collected three times during Feeding Trial 1 from cattle fed 0, 20, 40, and 60% WDGS. Fluxes of TRS from 40 and 60% WDGS manures were 3- to 13-fold greater than the 0 and 20% WDGS manures during the first two periods. In the final period, TRS flux from 60% WDGS was 5- to 22-fold greater than other WDGS manures. During Feeding Trial 2, 0 and 40% WDGS diets on four dates were compared in feedlot-scale pens. On two dates, fluxes from mixed manure and soil near the feed bunk were 3.5-fold greater from 40% WDGS pens. After removing animals, soil TRS flux decreased 82% over 19 d but remained 50% greater in 40% WDGS pens, principally from the wetter pen edges (1.9-fold greater than the drier central mound). During two cycles of cattle production in Feeding Trial 3, TRS soil fluxes were 0.3- to 4-fold greater over six dates for pens feeding WDGS compared with dry-rolled corn diet and principally from wetter pen edges. Soil TRS flux correlated with %WDGS, total N, total P, manure pack temperature, and surface temperature. Consistent results among these three trials indicate that TRS fluxes increase by two- to fivefold when cattle were fed greater levels of WDGS, but specific manure management practices may help control TRS fluxes. PMID:27380063

  15. Intranasal oxytocin administration is associated with enhanced endogenous pain inhibition and reduced negative mood states

    PubMed Central

    Goodin, Burel R.; Anderson, Austen J. B.; Freeman, Emily L.; Bulls, Hailey W.; Robbins, Meredith T.; Ness, Timothy J.

    2014-01-01

    Objectives This study examined whether the administration of intranasal oxytocin was associated with pain sensitivity, endogenous pain inhibitory capacity, and negative mood states. Methods A total of 30 pain-free, young adults each completed three laboratory sessions on consecutive days. The first session (baseline) assessed ischemic pain sensitivity, endogenous pain inhibition via conditioned pain modulation (CPM), and negative mood using the Profile of Mood States (POMS). CPM was tested on the dominant forearm and ipsilateral masseter muscle using algometry (test stimulus) and the cold pressor task (conditioning stimulus; non-dominant hand). For the second and third sessions, participants initially completed the State-Trait Anxiety Inventory (STAI) and then self-administered a single (40IU/1mL) dose of intranasal oxytocin or placebo in a randomized counter-balanced order. Thirty minutes post-administration, participants again completed the STAI and repeated assessments of ischemic pain sensitivity and CPM followed by the POMS. Results Findings demonstrated that ischemic pain sensitivity did not significantly differ across the three study sessions. CPM at the masseter, but not the forearm, was significantly greater following administration of oxytocin compared to placebo. Negative mood was also significantly lower following administration of oxytocin compared to placebo. Similarly, anxiety significantly decreased following administration of oxytocin but not placebo. Discussion This study incorporated a placebo-controlled, double-blind, within-subjects crossover design with randomized administration of intranasal oxytocin and placebo. The data suggest that the administration of intranasal oxytocin may augment endogenous pain inhibitory capacity and reduce negative mood states including anxiety. PMID:25370147

  16. Enhanced Energetic Stability and Optical Activity of Symmetry-Reduced C60

    SciTech Connect

    Manaa, M R

    2006-01-24

    Since its discovery in 1985, the celebrated geodesic cage structure of the C{sub 60} molecule has been recognized: a truncated icosahedron in which all sixty vertices are equivalent and has the full I{sub h} symmetry, making it thus far the most spherical of all known molecules. Inherent in this high symmetry is an intricate network of electron-phonon coupling, evident in phonon progressions and vibronic peak broadening, and resulting in structural distortions of neutral C{sub 60} in the presence of solvent. Within the I{sub h} symmetry group of this molecule, of the forty-six distinct vibrational frequencies only ten are Raman-active and four are IR-active (in the first order), while the remaining 32 modes are optically silent. Symmetry-reduced structures of C{sub 60} would activate some of these silent modes, which could then be amenable to experimental verification such as in resonance Raman scattering. Here, quantum chemical calculations within density functional theory establish for the first times (1) lower-symmetry, energetically more stable structures for C{sub 60}, the lowest of which is of D{sub 3d} symmetry, and with a new assignment of the ground state as the {sup 1}A{sub 1g} state, (2) the activation of some IR and Raman I{sub h} silent modes: the IR H{sub u} mode around 540 cm{sup -1} and G{sub u} band at 1465 cm{sup -1}, and the Raman G{sub g} mode around 1530 cm{sup -1}.

  17. An Interprofessional Approach to Reducing the Risk of Falls Through Enhanced Collaborative Practice.

    PubMed

    Eckstrom, Elizabeth; Neal, Margaret B; Cotrell, Vicki; Casey, Colleen M; McKenzie, Glenise; Morgove, Megan W; DeLander, Gary E; Simonson, William; Lasater, Kathie

    2016-08-01

    Falls are the leading cause of accidental deaths in older adults and are a growing public health concern. The American Geriatrics Society (AGS) and British Geriatrics Society (BGS) published guidelines for falls screening and risk reduction, yet few primary care providers report following any guidelines for falls prevention. This article describes a project that engaged an interprofessional teaching team to support interprofessional clinical teams to reduce fall risk in older adults by implementing the AGS/BGS guidelines. Twenty-five interprofessional clinical teams with representatives from medicine, nursing, pharmacy, and social work were recruited from ambulatory, long-term care, hospital, and home health settings for a structured intervention: a 4-hour training workshop plus coaching for implementation for 1 year. The workshop focused on evidence-based strategies to decrease the risk of falls, including screening for falls; assessing gait, balance, orthostatic blood pressure, and other medical conditions; exercise including tai chi; vitamin D supplementation; medication review and reduction; and environmental assessment. Quantitative and qualitative data were collected using chart reviews, coaching plans and field notes, and postintervention structured interviews of participants. Site visits and coaching field notes confirmed uptake of the strategies. Chart reviews showed significant improvement in adoption of all falls prevention strategies except vitamin D supplementation. Long-term care facilities were more likely to address environmental concerns and add tai chi classes, and ambulatory settings were more likely to initiate falls screening. The intervention demonstrated that interprofessional practice change to target falls prevention can be incorporated into primary care and long-term care settings. PMID:27467774

  18. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury

    PubMed Central

    Novitskaya, Tatiana; McDermott, Lee; Zhang, Ke Xin; Chiba, Takuto; Paueksakon, Paisit; Hukriede, Neil A.

    2013-01-01

    Phenylthiobutanoic acids (PTBAs) are a new class of histone deacetylase (HDAC) inhibitors that accelerate recovery and reduce postinjury fibrosis after ischemia-reperfusion-induced acute kidney injury. However, unlike the more common scenario in which patients present with protracted and less clearly defined onset of renal injury, this model of acute kidney injury gives rise to a clearly defined injury that begins to resolve over a short period of time. In these studies, we show for the first time that treatment with the PTBA analog methyl-4-(phenylthio)butanoate (M4PTB) accelerates recovery and reduces postinjury fibrosis in a progressive model of acute kidney injury and renal fibrosis that occurs after aristolochic acid injection in mice. These effects are apparent when M4PTB treatment is delayed 4 days after the initiating injury and are associated with increased proliferation and decreased G2/M arrest of regenerating renal tubular epithelial cells. In addition, there is reduced peritubular macrophage infiltration and decreased expression of the macrophage chemokines CX3Cl1 and CCL2. Since macrophage infiltration plays a role in promoting kidney injury, and since renal tubular epithelial cells show defective repair and a marked increase in maladaptive G2/M arrest after aristolochic acid injury, these findings suggest M4PTB may be particularly beneficial in reducing injury and enhancing intrinsic cellular repair even when administered days after aristolochic acid ingestion. PMID:24370591

  19. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging.

    PubMed

    Moon, Hyungwon; Kumar, Dinesh; Kim, Haemin; Sim, Changbeom; Chang, Jin-Ho; Kim, Jung-Mu; Kim, Hyuncheol; Lim, Dong-Kwon

    2015-03-24

    We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect. PMID:25751167

  20. Central Muscarinic Cholinergic Activation Alters Interaction between Splenic Dendritic Cell and CD4+CD25- T Cells in Experimental Colitis

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.; Khafipour, Ehsan; Ghia, Jean-Eric

    2014-01-01

    Background The cholinergic anti-inflammatory pathway (CAP) is based on vagus nerve (VN) activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR) signaling. Inflammatory bowel disease (IBD) patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs) and sequential CD4+/CD25−T cell activation in the context of experimental colitis. Methods The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP)-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25−T cell co-culture were determined. Results McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25−T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy. Conclusions Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD. PMID:25295619

  1. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway.

    PubMed

    Liu, Xiaojie; Mei, Zhigang; Qian, Jingping; Zeng, Yongbao; Wang, Mingzhi

    2013-12-01

    Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that anti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic anti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be involved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) reduced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-α in brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-κB) inhibition. These observations were inhibited by the alpha7 nicotinic acetylcholine receptor (α7nAchR) antagonist α-bungarotoxin (α-BGT). In addition, puerarin pretreatment increased the expression of α7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory response. Our results also indicated that the anti-inflammatory effect of puerarin may partly be mediated through the activation of the cholinergic anti-inflammatory pathway. PMID:25206641

  2. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification.

    PubMed

    Eudes, Aymerick; George, Anthe; Mukerjee, Purba; Kim, Jin S; Pollet, Brigitte; Benke, Peter I; Yang, Fan; Mitra, Prajakta; Sun, Lan; Cetinkol, Ozgül P; Chabout, Salem; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Balzergue, Sandrine; Singh, Seema; Holmes, Bradley M; Mukhopadhyay, Aindrila; Keasling, Jay D; Simmons, Blake A; Lapierre, Catherine; Ralph, John; Loqué, Dominique

    2012-06-01

    Lignocellulosic biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic, hydrophobic and mildly branched polymer integrally associated with polysaccharides within the biomass, which negatively affects their extraction and hydrolysis during industrial processing. Engineering the monomer composition of lignins offers an attractive option towards new lignins with reduced recalcitrance. The presented work describes a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers to reduce lignin polymerization degree (DP). Biosynthesis of these 'DP reducers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side-chain of hydroxycinnamoyl-CoA lignin precursors to produce the corresponding hydroxybenzaldehydes so that plant stems expressing HCHL accumulate in their cell wall higher amounts of hydroxybenzaldehyde and hydroxybenzoate derivatives. Engineered plants with intermediate HCHL activity levels show no reduction in total lignin, sugar content or biomass yield compared with wild-type plants. However, cell wall characterization of extract-free stems by thioacidolysis and by 2D-NMR revealed an increased amount of unusual C₆C₁ lignin monomers most likely linked with lignin as end-groups. Moreover the analysis of lignin isolated from these plants using size-exclusion chromatography revealed a reduced molecular weight. Furthermore, these engineered lines show saccharification improvement of pretreated stem cell walls. Therefore, we conclude that enhancing the biosynthesis and incorporation of C₆C₁ monomers ('DP reducers') into lignin polymers represents a promising strategy to reduce lignin DP and to decrease cell wall recalcitrance to enzymatic hydrolysis. PMID:22458713

  3. Genetic deletion or TWEAK blocking antibody administration reduce atherosclerosis and enhance plaque stability in mice

    PubMed Central

    Sastre, Cristina; Fernández-Laso, Valvanera; Madrigal-Matute, Julio; Muñoz-García, Begoña; Moreno, Juan A; Pastor-Vargas, Carlos; Llamas-Granda, Patricia; Burkly, Linda C; Egido, Jesús; Martín-Ventura, Jose L; Blanco-Colio, Luis M

    2014-01-01

    Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. Tumour necrosis factor ligand superfamily member 12 (TNFSF12) also known as TNF-related weak inducer of apoptosis (TWEAK) is a proinflammatory cytokine that participates in atherosclerotic plaque development, but its role in plaque stability remains unclear. Using two different approaches, genetic deletion of TNFSF12 and treatment with a TWEAK blocking mAb in atherosclerosis-prone mice, we have analysed the effect of TWEAK inhibition on atherosclerotic plaques progression and stability. Mice lacking both TNFSF12 and Apolipoprotein E (TNFSF12−/−ApoE−/−) exhibited a diminished atherosclerotic burden and lesion size in their aorta. Advanced atherosclerotic plaques of TNFSF12−/−ApoE−/− or anti-TWEAK treated mice exhibited an increase collagen/lipid and vascular smooth muscle cell/macrophage ratios compared with TNFSF12+/+ApoE−/− control mice, reflecting a more stable plaque phenotype. These changes are related with two different mechanisms, reduction of the inflammatory response (chemokines expression and secretion and nuclear factor kappa B activation) and decrease of metalloproteinase activity in atherosclerotic plaques of TNFSF12−/−ApoE−/−. A similar phenotype was observed with anti-TWEAK mAb treatment in TNFSF12+/+ApoE−/− mice. Brachiocephalic arteries were also examined since they exhibit additional features akin to human atherosclerotic plaques associated with instability and rupture. Features of greater plaque stability including augmented collagen/lipid ratio, reduced macrophage content, and less presence of lateral xanthomas, buried caps, medial erosion, intraplaque haemorrhage and calcium content were present in TNFSF12−/−ApoE−/− or anti-TWEAK treatment in TNFSF12+/+ApoE−/− mice. Overall, our data indicate that anti-TWEAK treatment has the capacity to diminish

  4. Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Shan-Shan; Zheng, Jie-Ning; Ma, Xiaohong; Hu, Yuan-Yuan; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-05-01

    A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media.A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c3nr06808k

  5. Artemether-lumefantrine nanostructured lipid carriers for oral malaria therapy: Enhanced efficacy at reduced dose and dosing frequency.

    PubMed

    Prabhu, Priyanka; Suryavanshi, Shital; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2016-09-10

    Artemether-lumefantrine (ARM-LFN) is a World Health Organization (WHO) approved fixed-dose combination having low solubility and poor oral bioavailability. Nanostructured lipid carriers (NLC) were developed to enhance the oral efficacy of this combination using the microemulsion template technique. They were characterized for drug content, entrapment efficiency, size distribution, in vitro release, antimalarial efficacy, and toxicity. The NLC showed sustained drug release. The recommended adult therapeutic dose is 80mg ARM and 480mg LFN (4 tablets) twice a day, which amounts to 160mg ARM and 960mg LFN daily. ARM-LFN NLC given once a day at 1/5 of therapeutic dose (16mg ARM and 96mg LFN) showed complete parasite clearance and 100% survival in Plasmodium berghei-infected mice. 33% of the mice treated with marketed tablets twice a day at the therapeutic dose showed late-stage recrudescence. Thus, NLC showed enhanced efficacy at 1/10 of the daily dose of ARM-LFN. The 10-fold reduced daily dose was formulated in two soft gelatin capsules thus reducing the number of units to be taken at a time by the patient. The capsules showed good stability at room temperature for a year. The NLC were found to be safe in rats. The biocompatible NLC developed using an industrially feasible technique offer a promising solution for oral malaria therapy. PMID:27421912

  6. Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity.

    PubMed

    Zhang, Mei; Zhao, Yanhua; Yan, Li; Peltier, Raoul; Hui, Wenli; Yao, Xi; Cui, Yali; Chen, Xianfeng; Sun, Hongyan; Wang, Zuankai

    2016-04-01

    Environmental biofouling caused by the formation of biofilm has been one of the most urgent global concerns. Silver nanoparticles (NPs), owing to their wide-spectrum antimicrobial property, have been widely explored to combat biofilm, but their extensive use has raised growing concern because they persist in the environment. Here we report a novel hybrid nanocomposite that imparts enhanced antimicrobial activity and low cytotoxicity yet with the advantage of reduced silver loading. The nanocomposite consists of Pt/Ag bimetallic NPs (BNPs) decorated on the porous reduced graphene oxide (rGO) nanosheets. We demonstrate that the enhanced antimicrobial property against Escherichia coli is ascribed to the intricate control of the interfaces between metal compositions, rGO matrix, and bacteria, where the BNPs lead to a rapid release of silver ions, and the trapping of bacteria by the porous rGO matrix further provides high concentration silver ion sites for efficient bacteria-bactericide interaction. We envision that our facile approach significantly expands the design space for the creation of silver-based antimicrobial materials to achieve a wide spectrum of functionalities. PMID:27007980

  7. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate.

    PubMed

    Lou, Hongming; Wang, Mengxia; Lai, Huanran; Lin, Xuliang; Zhou, Mingsong; Yang, Dongjie; Qiu, Xueqing

    2013-10-01

    Four fractions of one commercial sodium lignosulfonate (SXP) with different molecular weight (MW) and anionic polymers were studied to reduce non-productive adsorption of cellulase on bound lignin in a lignocellulosic substrate. SXP with higher MW had stronger blocking effect on non-productive adsorption of a commercial Trichoderma reesi cellulase cocktail (CTec2) on lignin measured by quartz crystal microgravimetry with dissipation monitoring. Linear anionic aromatic polymers have strong blocking effect, but they would also reduce CTec2 adsorption on cellulose to decrease the enzymatic activity. The copolymer of lignin and polyethylene glycol (AL-PEG1000) has strong enhancement in enzymatic hydrolysis of lignocelluloses, because it not only improves the cellulase activity to cellulose, but also blocks the non-productive cellulase adsorption on lignin. Apart from improving the cellulase activity to cellulose, the enhancements of enzymatic hydrolysis of lignocellulose by adding AL-PEG1000 and SXPs are the result of the decreased cellulase non-productive adsorption on lignin. PMID:23958680

  8. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex.

    PubMed

    Kugelman, Tara; Zuloaga, Damian G; Weber, Sydney; Raber, Jacob

    2016-02-01

    The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. PMID:26522840

  9. The Helminth-Derived Immunomodulator AvCystatin Reduces Virus Enhanced Inflammation by Induction of Regulatory IL-10+ T Cells

    PubMed Central

    Schuijs, Martijn J.; Hartmann, Susanne; Selkirk, Murray E.; Roberts, Luke B.

    2016-01-01

    Respiratory Syncytial Virus (RSV) is a major pathogen causing low respiratory tract disease (bronchiolitis), primarily in infants. Helminthic infections may alter host immune responses to both helminths and to unrelated immune triggers. For example, we have previously shown that filarial cystatin (AvCystatin/Av17) ameliorates allergic airway inflammation. However, helminthic immunomodulators have so far not been tested in virus-induced disease. We now report that AvCystatin prevents Th2-based immunopathology in vaccine-enhanced RSV lung inflammation, a murine model for bronchiolitis. AvCystatin ablated eosinophil influx, reducing both weight loss and neutrophil recruitment without impairing anti-viral immune responses. AvCystatin also protected mice from excessive inflammation following primary RSV infection, significantly reducing neutrophil influx and cytokine production in the airways. Interestingly, we found that AvCystatin induced an influx of CD4+ FoxP3+ interleukin-10-producing T cells in the airway and lungs, correlating with immunoprotection, and the corresponding cells could also be induced by adoptive transfer of AvCystatin-primed F4/80+ macrophages. Thus, AvCystatin ameliorates enhanced RSV pathology without increasing susceptibility to, or persistence of, viral infection and warrants further investigation as a possible therapy for virus-induced airway disease. PMID:27560829

  10. Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality and performance

    PubMed Central

    Paolone, Giovanna; Lee, Theresa M.; Sarter, Martin

    2012-01-01

    Although the impairments in cognitive performance that result from shifting or disrupting daily rhythms have been demonstrated, the neuronal mechanisms that optimize fixed time daily performance are poorly understood. We previously demonstrated that daily practice of a sustained attention task (SAT) evokes a diurnal activity pattern in rats. Here we report that SAT practice at a fixed time produced practice time-stamped increases in prefrontal cholinergic neurotransmission that persisted after SAT practice was terminated and in a different environment. SAT time-stamped cholinergic activation occurred irrespective of whether the SAT was practiced during the light or dark phase or in constant light conditions. In contrast, prior daily practice of an operant schedule of reinforcement, albeit generating more rewards and lever presses per session than the SAT, neither activated the cholinergic system nor affected the animals' nocturnal activity pattern. Likewise, food-restricted animals exhibited strong food anticipatory activity (FAA) and attenuated activity during the dark period but FAA was not associated with increases in prefrontal cholinergic activity. Removal of cholinergic neurons impaired SAT performance and facilitated the reemergence of nocturnality. Shifting SAT practice away from a fixed time resulted in significantly lower performance. In conclusion, these experiments demonstrated that fixed time, daily practice of a task assessing attention generates a precisely practice time-stamped activation of the cortical cholinergic input system. Time-stamped cholinergic activation benefits fixed time performance and, if practiced during the light phase, contributes to a diurnal activity pattern. PMID:22933795

  11. Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey

    PubMed Central

    Liberia, Teresa; Blasco-Ibáñez, José Miguel; Nácher, Juan; Varea, Emilio; Lanciego, José Luis; Crespo, Carlos

    2015-01-01

    The olfactory bulb (OB) of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca (HDB). At present, the synaptic connectivity of the cholinergic axons on the circuits of the OB has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the OB of the cynomolgus monkey (Macaca fascicularis). Our aim is to investigate whether the cholinergic innervation of the bulbar circuits is phylogenetically conserved between macrosmatic and microsmatic mammals. Our results demonstrate that the cholinergic axons form synaptic contacts on interneurons. In the glomerular layer, their main targets are the periglomerular cells, which receive axo-somatic and axo-dendritic synapses. In the inframitral region, their main targets are the granule cells, which receive synaptic contacts on their dendritic shafts and spines. Although the cholinergic boutons were frequently found in close vicinity of the dendrites of principal cells, we have not found synaptic contacts on them. From a comparative perspective, our data indicate that the synaptic connectivity of the cholinergic circuits is highly preserved in the OB of macrosmatic and microsmatic mammals. PMID:25852490

  12. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    PubMed

    Jeong, Jae Hoon; Woo, Young Jae; Chua, Streamson; Jo, Young-Hwan

    2016-01-01

    The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat. PMID:27611685

  13. Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways.

    PubMed

    Xiao, Cheng; Cho, Jounhong Ryan; Zhou, Chunyi; Treweek, Jennifer B; Chan, Ken; McKinney, Sheri L; Yang, Bin; Gradinaru, Viviana

    2016-04-20

    The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms, we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons; however, although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders. PMID:27100197

  14. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    SciTech Connect

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.; Fujiwara, M.

    1985-11-18

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM; ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.

  15. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca2+-Dependent Resonance in LDT and PPT Cholinergic Neurons

    PubMed Central

    Ishibashi, Masaru; Gumenchuk, Iryna; Kang, Bryan; Steger, Catherine; Lynn, Elizabeth; Molina, Nancy E.; Eisenberg, Leonard M.; Leonard, Christopher S.

    2015-01-01

    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30–60 Hz) – a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4–14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma. PMID

  16. The role of basal forebrain cholinergic neurons in fear and extinction memory.

    PubMed

    Knox, Dayan

    2016-09-01

    Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed. PMID:27264248

  17. An enhanced treatment program with markedly reduced mortality after a transtibial or higher non-traumatic lower extremity amputation.

    PubMed

    Kristensen, Morten T; Holm, Gitte; Krasheninnikoff, Michael; Jensen, Pia S; Gebuhr, Peter

    2016-06-01

    Background and purpose - Historically, high 30-day and 1-year mortality post-amputation rates (> 30% and 50%, respectively) have been reported in patients with a transtibial or higher non-traumatic lower extremity amputation (LEA). We evaluated whether allocating experienced staff and implementing an enhanced, multidisciplinary recovery program would reduce the mortality rates. We also determined factors that influenced mortality rates. Patients and methods - 129 patients with a LEA were consecutively included over a 2-year period, and followed after admission to an acute orthopedic ward. Mortality was compared with historical and concurrent national controls in Denmark. Results - The 30-day and 1-year mortality rates were 16% and 37%, respectively, in the intervention group, as compared to 35% and 59% in the historical control group treated in the same orthopedic ward. Cox proportional harzards models adjusted for age, sex, residential and health status, the disease that caused the amputation, and the index amputation level showed that 30-day and 1-year mortality risk was reduced by 52% (HR =0.48, 95% CI: 0.25-0.91) and by 46% (HR =0.54, 95% CI: 0.35-0.86), respectively, in the intervention group. The risk of death was increased for patients living in a nursing home, for patients with a bilateral LEA, and for patients with low health status. Interpretation - With similarly frail patient groups and instituting an enhanced program for patients after LEA, the risks of death by 30 days and by 1 year after LEA were markedly reduced after allocating staff with expertise. PMID:27088484

  18. Combination process of limited filamentous bulking and nitrogen removal via nitrite for enhancing nitrogen removal and reducing aeration requirements.

    PubMed

    Guo, Jianhua; Peng, Yongzhen; Yang, Xiong; Gao, Chundi; Wang, Shuying

    2013-03-01

    Limited filamentous bulking (LFB) activated sludge process was proposed by Guo et al. (2010) to increase the removal of tiny suspended particulates in the clarifier and reduce aeration energy consumption. However, when the use of LFB process, ammonium removal efficiency would be compromised due to low dissolved oxygen (DO). In this study, the combination process of nitrogen removal via nitrite and LFB was achieved to enhance nitrogen removal and reduce aeration energy consumption by controlling low DO levels (0.5-1.0 mg L(-1)) in a lab-scale anoxic-oxic reactor (V=66 L) treating real domestic wastewater at room temperature. Above 85% of nitrite accumulation ratio was steadily maintained during continuous operation period. The combined process improved the total nitrogen (TN) removal by about 20% in comparison to the traditional process via the nitrate pathway, and also reduced the specific aeration energy consumption by 35%. COD, ammonium and TN removal efficiencies were up to 86%, 94% and 75%, respectively. The process proved effective in achieving a steady LFB state, whereby sludge volume index between 150 and 250 mL g(-1) was sustained for long-term operation. The microbial community structure was analyzed by fluorescence in situ hybridization, which indicated ammonia-oxidizing bacteria out-competed nitrite-oxidizing bacteria. Moreover, the filaments Type 0041 and Microthrix parvicella proliferated with limited abundance. The results indicated the combination process of LFB and nitrogen removal via nitrite under low DO was a feasible solution for saving energy and enhancing nitrogen removal when treating domestic wastewater. PMID:23305749

  19. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.

    PubMed

    Zhang, Afeng; Bian, Rongjun; Li, Lianqing; Wang, Xudong; Zhao, Ying; Hussain, Qaiser; Pan, Genxing

    2015-12-01

    Soil amendment of biochar (BSA) had been shown effective for mitigating greenhouse gas (GHG) emission and alleviating metal stress to plants and microbes in soil. It has not yet been addressed if biochar exerts synergy effects on crop production, GHG emission, and microbial activity in metal-polluted soils. In a field experiment, biochar was amended at sequential rates at 0, 10, 20, and 40 t ha(-1), respectively, in a cadmium- and lead-contaminated rice paddy from the Tai lake Plain, China, before rice cropping in 2010. Fluxes of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored using a static chamber method during the whole rice growing season (WRGS) of 2011. BSA significantly reduced soil CaCl2 extractable pool of Cd, and DTPA extractable pool of Cd and Pb. As compared to control, soil CO2 emission under BSA was observed to have no change at 10 t ha(-1) but decreased by 16-24% at 20 and 40 t ha(-1). In a similar trend, BSA at 20 and 40 t ha(-1) increased rice yield by 25-26% and thus enhanced ecosystem CO2 sequestration by 47-55% over the control. Seasonal total N2O emission was reduced by 7.1, 30.7, and 48.6% under BSA at 10, 20, and 40 t ha(-1), respectively. Overall, a net reduction in greenhouse gas balance (NGHGB) by 53.9-62.8% and in greenhouse gas intensity (GHGI) by 14.3-28.6% was observed following BSA at 20 and 40 t ha(-1). The present study suggested a great potential of biochar to enhancing grain yield while reducing carbon emission in metal-polluted rice paddies. PMID:26213131

  20. Lack of LCAT reduces the LPS-neutralizing capacity of HDL and enhances LPS-induced inflammation in mice.

    PubMed

    Petropoulou, Peristera-Ioanna; Berbée, Jimmy F P; Theodoropoulos, Vassilios; Hatziri, Aikaterini; Stamou, Panagiota; Karavia, Eleni A; Spyridonidis, Alexandros; Karagiannides, Iordanes; Kypreos, Kyriakos E

    2015-10-01

    HDL has important immunomodulatory properties, including the attenuation of lipopolysaccharide (LPS)-induced inflammatory response. As lecithin-cholesterol acyltransferase (LCAT) is a critical enzyme in the maturation of HDL we investigated whether LCAT-deficient (Lcat(-/-)) mice present an increased LPS-induced inflammatory response. LPS (100μg/kg body weight)-induced cytokine response in Lcat(-/-) mice was markedly enhanced and prolonged compared to wild-type mice. Importantly, reintroducing LCAT expression using adenovirus-mediated gene transfer reverted their phenotype to that of wild-type mice. Ex vivo stimulation of whole blood with LPS (1-100ng/mL) showed a similar enhanced pro-inflammatory phenotype. Further characterization in RAW 264.7 macrophages in vitro showed that serum and HDL, but not chylomicrons, VLDL or the lipid-free protein fraction of Lcat(-/-) mice, had a reduced capacity to attenuate the LPS-induced TNFα response. Analysis of apolipoprotein composition revealed that LCAT-deficient HDL lacks significant amounts of ApoA-I and ApoA-II and is primarily composed of ApoE, while HDL from Apoa1(-/-) mice is highly enriched in ApoE and ApoA-II. ApoA-I-deficiency did not affect the capacity of HDL to neutralize LPS, though Apoa1(-/-) mice showed a pronounced LPS-induced cytokine response. Additional immunophenotyping showed that Lcat(-/-) , but not Apoa1(-/-) mice, have markedly increased circulating monocyte numbers as a result of increased Cd11b(+)Ly6C(med) monocytes, whereas 'pro-inflammatory' Cd11b(+)Ly6C(hi) monocytes were reduced. In line with this observation, peritoneal macrophages of Lcat(-/-) mice showed a markedly dampened LPS-induced TNFα response. We conclude that LCAT-deficiency increases LPS-induced inflammation in mice due to reduced LPS-neutralizing capacity of immature discoidal HDL and increased monocyte number. PMID:26170061

  1. Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis.

    PubMed Central

    Tramontana, J. M.; Utaipat, U.; Molloy, A.; Akarasewi, P.; Burroughs, M.; Makonkawkeyoon, S.; Johnson, B.; Klausner, J. D.; Rom, W.; Kaplan, G.

    1995-01-01

    BACKGROUND: The monocyte-derived cytokine, tumor necrosis factor alpha (TNF alpha), is essential for host immunity, but overproduction of this cytokine may have serious pathologic consequences. Excess TNF alpha produced in pulmonary tuberculosis may cause fevers, weakness, night sweats, necrosis, and progressive weight loss. Thalidomide (alpha-N-phthalimidoglutarimide) has recently been shown to suppress TNF alpha production by human monocytes in vitro and to reduce serum TNF alpha in leprosy patients. We have therefore conducted a two-part placebo-controlled pilot study of thalidomide in patients with active tuberculosis to determine its effects on clinical response, immune reactivity, TNF alpha levels, and weight. MATERIALS AND METHODS: 30 male patients with active tuberculosis, either human immunodeficiency virus type 1 positive (HIV-1+) or HIV-1-, received thalidomide or placebo for single or multiple 14 day cycles. Toxicity of the study drug, delayed type hypersensitivity (DTH), cytokine production, and weight gain were evaluated. RESULTS: Thalidomide treatment was well tolerated, without serious adverse events. The drug did not adversely affect the DTH response to purified protein derivative (PPD), total leukocyte, or differential cell counts. TNF alpha production was significantly reduced during thalidomide treatment while interferon-gamma (IFN gamma) production was enhanced. Daily administration of thalidomide resulted in a significant enhancement of weight gain. CONCLUSIONS: The results indicate that thalidomide is well tolerated by patients receiving anti-tuberculosis therapy. Thalidomide treatment reduces TNF alpha production both in vivo and in vitro and is associated with an accelerated weight gain during the study period. PMID:8521296

  2. An enhanced treatment program with markedly reduced mortality after a transtibial or higher non-traumatic lower extremity amputation

    PubMed Central

    Kristensen, Morten T; Holm, Gitte; Krasheninnikoff, Michael; Jensen, Pia S; Gebuhr, Peter

    2016-01-01

    Background and purpose Historically, high 30-day and 1-year mortality post-amputation rates (> 30% and 50%, respectively) have been reported in patients with a transtibial or higher non-traumatic lower extremity amputation (LEA). We evaluated whether allocating experienced staff and implementing an enhanced, multidisciplinary recovery program would reduce the mortality rates. We also determined factors that influenced mortality rates. Patients and methods 129 patients with a LEA were consecutively included over a 2-year period, and followed after admission to an acute orthopedic ward. Mortality was compared with historical and concurrent national controls in Denmark. Results The 30-day and 1-year mortality rates were 16% and 37%, respectively, in the intervention group, as compared to 35% and 59% in the historical control group treated in the same orthopedic ward. Cox proportional harzards models adjusted for age, sex, residential and health status, the disease that caused the amputation, and the index amputation level showed that 30-day and 1-year mortality risk was reduced by 52% (HR =0.48, 95% CI: 0.25–0.91) and by 46% (HR =0.54, 95% CI: 0.35–0.86), respectively, in the intervention group. The risk of death was increased for patients living in a nursing home, for patients with a bilateral LEA, and for patients with low health status. Interpretation With similarly frail patient groups and instituting an enhanced program for patients after LEA, the risks of death by 30 days and by 1 year after LEA were markedly reduced after allocating staff with expertise. PMID:27088484

  3. A High Soy Diet Reduces Programmed Cell Death and Enhances Bcl-xL Expression In Experimental Stroke

    PubMed Central

    Lovekamp-Swan, Tara; Glendenning, Michele; Schreihofer, Derek A.

    2009-01-01

    Soy phytoestrogens have been proposed as an alternative to estrogen replacement therapy and have demonstrated potential neuroprotective effects in the brain. We have shown that a high soy diet significantly reduces infarct size following permanent middle cerebral artery occlusion (MCAO). Here, we tested the hypothesis that a high soy diet would attenuate programmed cell death after stroke. Adult female Sprague-Dawley rats were ovariectomized and fed either an isoflavone-reduced diet (IFP) or a high soy diet (SP) for 2 weeks before undergoing 90 minutes of transient MCAO (tMCAO) followed by 22.5 hr reperfusion. Infarct size, as assessed by TTC staining, was significantly reduced by a high soy diet (p< 0.05). Apoptosis in the ischemic cortex, measured by TUNEL staining, was significantly reduced by the high soy diet. The number of active caspase-3 positive cells and caspase-mediated α-spectrin cleavage was also significantly decreased in the ischemic cortex of SP rats. Furthermore, nuclear translocation of apoptosis-inducing factor (AIF) was significantly reduced in the ischemic cortex of SP rats. Soy significantly increased bcl-xL mRNA and protein expression in the ischemic cortex compared to IFP rats. Immunohistochemistry revealed increased neuronal expression of bcl-2 and bcl-xL in the ischemic cortex of both IFP and SP rats following tMCAO. These results suggest that a high soy diet decreases both caspase-dependent and caspase-independent programmed cell death following tMCAO. Further, a high soy diet enhances expression of the cell survival factor bcl-xL following tMCAO, contributing to the neuroprotective effects of soy in the ischemic cortex. PMID:17706879

  4. Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells

    SciTech Connect

    Li, Tian E-mail: dage@ece.umd.edu; Dagenais, Mario E-mail: dage@ece.umd.edu; Lu, Haofeng; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2015-02-02

    Reduced quantum dot (QD) absorption due to state filling effects and enhanced electron transport in doped QDs are demonstrated to play a key role in solar energy conversion. Reduced QD state absorption with increased n-doping is observed in the self-assembled In{sub 0.5}Ga{sub 0.5}As/GaAs QDs from high resolution below-bandgap external quantum efficiency (EQE) measurement, which is a direct consequence of the Pauli exclusion principle. We also show that besides partial filling of the quantum states, electron-doping produces negatively charged QDs that exert a repulsive Coulomb force on the mobile electrons, thus altering the electron trajectory and reducing the probability of electron capture, leading to an improved collection efficiency of photo-generated carriers, as indicated by an absolute above-bandgap EQE measurement. The resulting redistribution of the mobile electron in the planar direction is further validated by the observed photoluminescence intensity dependence on doping.

  5. Dual actions of albumin packaging and tumor targeting enhance the antitumor efficacy and reduce the cardiotoxicity of doxorubicin in vivo

    PubMed Central

    Zheng, Ke; Li, Rui; Zhou, Xiaolei; Hu, Ping; Zhang, Yaxin; Huang, Yunmei; Chen, Zhuo; Huang, Mingdong

    2015-01-01

    Doxorubicin (DOX) is an effective chemotherapy drug used to treat different types of cancers. However, DOX has severe side effects, especially life-threatening cardiotoxicity. We herein report a new approach to reduce the toxicity of DOX by embedding DOX inside human serum albumin (HSA). HSA is further fused by a molecular biology technique with a tumor-targeting agent, amino-terminal fragment of urokinase (ATF). ATF binds with a high affinity to urokinase receptor, which is a cell-surface receptor overexpressed in many types of tumors. The as-prepared macromolecule complex (ATF–HSA:DOX) was not as cytotoxic as free DOX to cells in vitro, and was mainly localized in cell cytosol in contrast to DOX that was localized in cell nuclei. However, in tumor-bearing mice, ATF–HSA:DOX was demonstrated to have an enhanced tumor-targeting and antitumor efficacy compared with free DOX. More importantly, histopathological examinations of the hearts from the mice treated with ATF–HSA:DOX showed a significantly reduced cardiotoxicity compared with hearts from mice treated with free DOX. These results demonstrate the feasibility of this approach in reducing the cardiotoxicity of DOX while strengthening its antitumor efficacy. Such a tumor-targeted albumin packaging strategy can also be applied to other antitumor drugs. PMID:26346331

  6. Muscarinic cholinergic receptors in pancreatic acinar carcinoma of rat.

    PubMed

    Taton, G; Delhaye, M; Swillens, S; Morisset, J; Larose, L; Longnecker, D S; Poirier, G G

    1985-04-15

    The active enantiomer of tritiated quinuclidinyl benzilate (3H(-)QNB) was used as a ligand to evaluate the muscarinic receptors. The 3H(-)QNB binding characteristics of muscarinic cholinergic receptors obtained from normal and neoplastic tissues were studied to determine changes in receptor properties during neoplastic transformation. Saturable and stereospecific binding sites for 3H(-)QNB are present in homogenates of rat pancreatic adenocarcinoma. The proportions of high- and low-affinity agonist binding sites are similar for neoplastic and normal tissues. The density of muscarinic receptors is higher in neoplastic (200 femtomoles/mg protein) than in normal pancreatic homogenates (80 femtomoles/mg protein). The muscarinic binding sites of the neoplastic and fetal pancreas show similar KD values which are higher than those observed for normal pancreas. PMID:2580801

  7. Acute cholinergic syndrome following ingestion of contaminated herbal extract.

    PubMed

    Hsieh, M-J; Ye