Science.gov

Sample records for cholinergic ligands biochemical

  1. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  2. Muscarinic cholinergic ligand binding to intact mouse pituitary tumor cells (AtT-20/D16-16) coupling with two biochemical effectors: adenylate cyclase and phosphatidylinositol turnover.

    PubMed

    Akiyama, K; Vickroy, T W; Watson, M; Roeske, W R; Reisine, T D; Smith, T L; Yamamura, H I

    1986-03-01

    (-)-[3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors on intact mouse pituitary tumor cells (AtT-20/D16-16) was characterized in an attempt to correlate radioligand binding properties with receptor-coupled biochemical responses. Performing rinse time studies for 2 hr produced a remarkably improved ratio of specific/total (+)-[3H]QNB binding (85%). Kinetic experiments yielded association (k+1) and dissociation (k-1) rate constants of 2.2 X 10(8) M-1 min-1 and 6.8 X 10(-3) min-1, respectively. Receptor occupancy curves demonstrated a uniform population of specific, saturable (-)-[3H]QNB binding sites with a Hill coefficient equal to 1.0 and an apparent dissociation constant (Kd) equal to 34 pM under our conditions. Stereoselectivity was observed with the enantiomers (dexetimide and levetimide) of benzetimide (a factor of 4300). Concentrations of carbachol that produced a half-maximal inhibition of cyclic AMP formation and a concentration of carbachol for producing half-maximal stimulation of phosphatidylinositol turnover in the intact cells were 0.45 and 170 microM, respectively. Schild analysis revealed that pirenzepine, a nonclassical muscarinic antagonist, had a 40-fold greater affinity for reversing carbachol-stimulated phosphatidylinositol turnover (inhibition constant or Ki = 7 nM), compared to its antagonism of the carbachol-mediated inhibition of isoproterenol-stimulated cyclic AMP formation (Ki = 280 nM). Interestingly, pirenzepine inhibited (-)-[3H]QNB binding with a Ki value of 72 nM. In contrast, atropine was nearly equipotent (Ki = 0.3-0.5 nM) in binding studies and in both effector systems. PMID:3005550

  3. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.

    PubMed

    Aráoz, Rómulo; Vilariño, Natalia; Botana, Luis M; Molgó, Jordi

    2010-07-01

    Toxic cyanobacterial blooms are a threat to public health because of the capacity of some cyanobacterial species to produce potent hepatotoxins and neurotoxins. Cyanobacterial neurotoxins are involved in the rapid death of wild and domestic animals by targeting voltage gated sodium channels and cholinergic synapses, including the neuromuscular junction. Anatoxin-a and its methylene homologue homoanatoxin-a are potent agonists of nicotinic acetylcholine receptors. Since the structural determination of anatoxin-a, several mass spectrometry-based methods have been developed for detection of anatoxin-a and, later, homoanatoxin-a. Mass spectrometry-based techniques provide accuracy, precision, selectivity, sensitivity, reproducibility, adequate limit of detection, and structural and quantitative information for analyses of cyanobacterial anatoxins from cultured and environmental cyanobacterial samples. However, these physicochemical techniques will only detect known toxins for which toxin standards are commercially available, and they require highly specialized laboratory personnel and expensive equipment. Receptor-based assays are functional methods that are based on the mechanism of action of a class of toxins and are thus, suitable tools for survey of freshwater reservoirs for cyanobacterial anatoxins. The competition between cyanobacterial anatoxins and a labelled ligand for binding to nicotinic acetylcholine receptors is measured radioactively or non-radioactively providing high-throughput screening formats for routine detection of this class of neurotoxins. The mouse bioassay is the method of choice for marine toxin monitoring, but has to be replaced by fully validated functional methods. In this paper we review the ligand-binding assays developed for detection of cyanobacterial and algal neurotoxins targeting the nicotinic acetylcholine receptors and for high-throughput screening of novel nicotinic agents. PMID:20238109

  4. [Probable mechanism of recognition of cholinergic ligands by acetylcholine receptors].

    PubMed

    Demushkin, V P; Kotelevtsev, Iu V; Pliashkevich, Iu G; Khramtsov, N V

    1982-01-01

    Dryding's models were used for the conformational analysis of compounds affecting muscarin-specific acetylcholine receptor and nicotin-specific acetylcholine receptor. Ammonium group and ether oxygen (3.6 A apart from the ammonium group) specifically oriented to each other were shown to be necessary structural elements to reveal muscarin-type cholinergic activity. Ammonium group along with carbonyl oxygen or its substituent (5 A distance) are the necessary structural units providing nicotin-type cholinergic activity. The presence of two hydrophobic substituents (one in the ammonium area and the other neighbouring the second active grouping) is the additional factor. The developed principles were justified by the use of a series of synthetic samples. The compounds were obtained likely favouring affinitive modification of acetylcholine receptor (dissociation constants of acetylcholine receptor complexes equalling to 10(-4)--10(-7) M-1). PMID:7070378

  5. Cholinergic ligand interactions with acetylcholine receptor proteins and solvent interactions with N,N-dialkylnicotinamides

    SciTech Connect

    Bean, J.W.

    1987-01-01

    A dual-chambered flow dialysis nuclear counting apparatus was used to monitor cholinergic ligand induced displacement of {sup 155}Eu{sup 3+} from acetylcholine receptor proteins. Acetylcholine, nicotine and carbamylcholine induced similar rates of displacement of {sup 155}Eu{sup 3+} probes of calcium binding sites in receptor proteins from wild type Drosophila melanogaster and Torpedo californica. The receptor isolated from a nicotine resistant strain of Drosophila melanogaster displayed an altered dependency of cholinergic ligand induced cation displacement with respect to the other two receptor proteins. Both Drosophila strains' solubilized receptor proteins migrated as three bands of molecular weights 68,000, 66,000, and 60,000 on denaturing polyacrylamide gels. Carbon-13 NMR techniques were employed to examine the effects of solvent environment on rotational energy barriers in a series of molecules related to the analeptic, nikethamide: N,N-dimethylnicotinamide, 1-nicotinoyl piperidine, and N,N-dipropylnicotinamide.

  6. Biochemical pathology and treatment strategies in Alzheimer's disease: emphasis on the cholinergic system.

    PubMed

    Winblad, B; Messamore, E; O'Neill, C; Cowburn, R

    1993-01-01

    The neurochemical pathology of Alzheimer's disease (AD) has been consistently shown to involve cholinergic degeneration in the cerebral cortex. This together with evidence from experimental animal studies showing that cholinergic neurones play a role in learning and memory processes has formed the basis of the cholinergic hypothesis of Alzheimer's dementia and the major rationale for neurotransmitter replacement therapy of the disorder. PMID:8128837

  7. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H.

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  8. Structural characteristics of the recognition site for cholinergic ligands in the nicotinic acetylcholine receptor from squid optical ganglia

    SciTech Connect

    Plyashkevich, Yu.G.; Demushkin, V.P.

    1986-01-20

    The influence of chemical modification on the parameters of the binding of cholinergic ligands by the nicotinic acetylcholine receptor of squid optical ganglia was investigated. The presence of two subpopulations of recognition sites, differing in the composition of the groups contained in them, was detected. It was established with high probability that subpopulation I contains arginine and tyrosine residues and a carboxyl group while subpopulation II contains an amino group, a thyrosine residue, and a carboxyl group. Moreover, in both subpopulations there is an amino group important only for the binding of tubocurarin. On the basis of the results obtained, a model of the recognition sites for cholinergic ligands of the nicotinic acetylcholine receptor of squid optical ganglia is proposed.

  9. [F-18]-(-,-)-FQNPe - an attractive ligand for evaluation of muscarinic-cholinergic neuron activity by PET

    SciTech Connect

    Luo, H.; McPherson, D.W.; Beets, A.L.; Knapp, F.F. Jr.

    1997-05-01

    The stereoisomers of 1-azabicyclo[2.2.2]oct-3-yl {alpha}-{alpha}-(1-fluoropentan-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate ({open_quotes}FQNPe{close_quotes}) have been resolved. (-,-)- receptors (K{sub i}, nM; ml, 0.3; m2, 0.1). [F-18]-(-,-)-FQNPe demonstrated high cerebral and myocardial uptake in rats in vivo. We now report significant blocking of [F-18]-(-.-)-FQNPe uptake in receptor-rich tissues in rats in vivo after (R)-QNB pretreatment and the absence of any TLC detectable FQNPe metabolites in tissue extracts. Rats were injected with (R)-QNB (3 mg/kg) 1 h prior to [F-18]-FQNPe injection (370-629 KBq). After 1 h, rats were sacrificed and tissues removed and counted. (R)-QNB significantly decreased FQNPe uptake in heart and all receptor-rich regions but not blood (Table; Mean % ID/g, n=5); C, control; Q, (R)-QNB; Hrt, heart; Cer, cerebellum; Pon, pons; Med, medulla; Cor, cortex; Stri, striatum; Hip, hippocampus; Th, thallamus; SuC, superior colliculi; InC, inferior colliculi. Tissues from untreated rats were Folch-extracted and 71-77% of activity was in organic extracts from brain and heart. TLC of organic extracts indicated a single radioactive component with R{sub f} of FQNPe. These combined results demonstrate that [F-18]-(-,-)-FQNPe does not appear to be metabolized in heart and brain, shows good receptor localization and is thus an attractive ligand for evaluation as a potential imaging agent by PET.

  10. Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

    PubMed Central

    Nguyen, Thuy-Vi V.; Shen, Lin; Griend, Lilith Vander; Quach, Lisa N.; Belichenko, Nadia P.; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds. PMID:24898660

  11. In vivo biodistribution of two [18F]-labelled muscarinic cholinergic receptor ligands: 2-[18F]- and 4-[18F]-fluorodexetimide.

    PubMed

    Wilson, A A; Scheffel, U A; Dannals, R F; Stathis, M; Ravert, H T; Wagner, H N

    1991-01-01

    Two [18F]-labelled analogues of the potent muscarinic cholinergic receptor (m-AChR) antagonist, dexetimide, were evaluated as potential ligands for imaging m-AChR by positron emission tomography (PET). Intravenous administration of both 2-[18F]- or 4-[18F]-fluorodexetimide resulted in high brain uptake of radioactivity in mice. High binding levels were observed in m-AChR rich areas, such as cortex and striatum, with low levels in the receptor-poor cerebellum. Uptake of radioactivity was saturable and could be blocked by pre-administration of dexetimide or atropine. Drugs with different sites of action were ineffective at blocking receptor binding. The results indicate that both radiotracers are promising candidates for use in PET studies. PMID:2008155

  12. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system.

    PubMed

    Kruk-Slomka, Marta; Michalak, Agnieszka; Biala, Grazyna

    2015-05-01

    The purpose of the experiments was to explore the role of the endocannabinoid system, through cannabinoid (CB) receptor ligands, nicotine and scopolamine, in the depression-related responses using the forced swimming test (FST) in mice. Our results revealed that acute injection of oleamide (10 and 20 mg/kg), a CB1 receptor agonist, caused antidepressant-like effect in the FST, while AM 251 (0.25-3 mg/kg), a CB1 receptor antagonist, did not provoke any effect in this test. Moreover, acute administration of both CB2 receptor agonist, JWH 133 (0.5 and 1 mg/kg) and CB2 receptor antagonist, AM 630 (0.5 mg/kg), exhibited antidepressant action. Antidepressant effects of oleamide and JWH 133 were attenuated by acute injection of both non-effective dose of AM 251, as well as AM 630. Among the all CB compounds used, only the combination of non-effective dose of oleamide (2.5 mg/kg) with non-effective dose of nicotine (0.5 mg/kg) caused an antidepressant effect. However, none of the CB receptor ligands, had influence on the antidepressant effects provoked by nicotine (0.2 mg/kg) injection. In turn, the combination of non-effective dose of oleamide (2.5 mg/kg); JWH (2 mg/kg) or AM 630 (2 mg/kg), but not of AM 251 (0.25 mg/kg), with non-effective dose of scopolamine (0.1 mg/kg), exhibited antidepressant properties. Indeed, all of the CB compounds used, intensified the antidepressant-like effects induced by an acute injection of scopolamine (0.3 mg/kg). Our results provide clear evidence that the endocannabinoid system participates in the depression-related behavior and through interactions with cholinergic system modulate these kind of responses. PMID:25660201

  13. Nematode cholinergic pharmacology

    SciTech Connect

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  14. The cholinergic hypothesis of geriatric memory dysfunction.

    PubMed

    Bartus, R T; Dean, R L; Beer, B; Lippa, A S

    1982-07-30

    Biochemical, electrophysiological, and pharmacological evidence supporting a role for cholinergic dysfunction in age-related memory disturbances is critically reviewed. An attempt has been made to identify pseudoissues, resolve certain controversies, and clarify misconceptions that have occurred in the literature. Significant cholinergic dysfunctions occur in the aged and demented central nervous system, relationships between these changes and loss of memory exist, similar memory deficits can be artificially induced by blocking cholinergic mechanisms in young subjects, and under certain tightly controlled conditions reliable memory improvements in aged subjects can be achieved after cholinergic stimulation. Conventional attempts to reduce memory impairments in clinical trials hav not been therapeutically successful, however. Possible explanations for these disappointments are given and directions for future laboratory and clinical studies are suggested. PMID:7046051

  15. Tumor Necrosis Factor Related Apoptosis Inducing Ligand (Trail) in endothelial response to biomechanical and biochemical stresses in arteries.

    PubMed

    D'Auria, F; Centurione, L; Centurione, M A; Angelini, A; Di Pietro, R

    2015-11-01

    Shear stress is determined by three physical components described in a famous triad: blood flow, blood viscosity and vessel geometry. Through the direct action on endothelium, shear stress is able to radically interfere with endothelial properties and the physiology of the vascular wall. Endothelial cells (ECs) have also to sustain biochemical stresses represented by chemokines, growth factors, cytokines, complement, hormones, nitric oxide (NO), oxygen and reactive oxygen species (ROS). Many growth factors, cytokines, chemokines, hormones, and chemical substances, like NO, act and regulate endothelium functions and homeostasis. Among these cytokines Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) has been assigned a regulatory role in ECs physiology and physiopathology. Thus, the aim of this review is to provide a general overview of the endothelial response pathways after different types of biomechanical and biochemical stress in in vitro models and to analyze the crucial role of TRAIL under pathological conditions of the cardiocirculatory system like atherosclerosis, coronary artery disease, and diabetes. PMID:25974396

  16. Dynamics of cholinergic function

    SciTech Connect

    Hanin, I.

    1986-01-01

    This book presents information on the following topics; cholinergic pathways - anatomy of the central nervous system; aging, DSAT and other clinical conditions; cholinergic pre- and post-synaptic receptors; acetylcholine release; cholinesterases, anticholinesterases and reactivators; acetylcholine synthesis, metabolism and precursors; second messenger messenger mechanisms; interaction of acetylcholine with other neurotransmitter systems; cholinergic mechanisms in physiological function, including cardiovascular events; and neurotoxic agents and false transmitters.

  17. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission.

    PubMed

    Ovsepian, Saak V; O'Leary, Valerie B; Zaborszky, Laszlo

    2016-06-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  18. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission

    PubMed Central

    Ovsepian, Saak V.; O'Leary, Valerie B.; Zaborszky, Laszlo

    2015-01-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  19. Cholinergic dysfunction in Parkinson's disease.

    PubMed

    Müller, Martijn L T M; Bohnen, Nicolaas I

    2013-09-01

    There is increasing interest in the clinical effects of cholinergic basal forebrain and tegmental pedunculopontine complex (PPN) projection degeneration in Parkinson's disease (PD). Recent evidence supports an expanded role beyond cognitive impairment, including effects on olfaction, mood, REM sleep behavior disorder, and motor functions. Cholinergic denervation is variable in PD without dementia and may contribute to clinical symptom heterogeneity. Early in vivo imaging evidence that impaired cholinergic integrity of the PPN associates with frequent falling in PD is now confirmed by human post-mortem evidence. Brainstem cholinergic lesioning studies in primates confirm the role of the PPN in mobility impairment. Degeneration of basal forebrain cholinergic projections correlates with decreased walking speed. Cumulatively, these findings provide evidence for a new paradigm to explain dopamine-resistant features of mobility impairments in PD. Recognition of the increased clinical role of cholinergic system degeneration may motivate new research to expand indications for cholinergic therapy in PD. PMID:23943367

  20. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  1. Biochemical Studies and Ligand-bound Structures of Biphenyl Dehydrogenase from Pandoraea pnomenusa Strain B-356 Reveal a Basis for Broad Specificity of the Enzyme*

    PubMed Central

    Dhindwal, Sonali; Patil, Dipak N.; Mohammadi, Mahmood; Sylvestre, Michel; Tomar, Shailly; Kumar, Pravindra

    2011-01-01

    Biphenyl dehydrogenase, a member of short-chain dehydrogenase/reductase enzymes, catalyzes the second step of the biphenyl/polychlorinated biphenyls catabolic pathway in bacteria. To understand the molecular basis for the broad substrate specificity of Pandoraea pnomenusa strain B-356 biphenyl dehydrogenase (BphBB-356), the crystal structures of the apo-enzyme, the binary complex with NAD+, and the ternary complexes with NAD+-2,3-dihydroxybiphenyl and NAD+-4,4′-dihydroxybiphenyl were determined at 2.2-, 2.5-, 2.4-, and 2.1-Å resolutions, respectively. A crystal structure representing an intermediate state of the enzyme was also obtained in which the substrate binding loop was ordered as compared with the apo and binary forms but it was displaced significantly with respect to the ternary structures. These five structures reveal that the substrate binding loop is highly mobile and that its conformation changes during ligand binding, starting from a disorganized loop in the apo state to a well organized loop structure in the ligand-bound form. Conformational changes are induced during ligand binding; forming a well defined cavity to accommodate a wide variety of substrates. This explains the biochemical data that shows BphBB-356 converts the dihydrodiol metabolites of 3,3′-dichlorobiphenyl, 2,4,4′-trichlorobiphenyl, and 2,6-dichlorobiphenyl to their respective dihydroxy metabolites. For the first time, a combination of structural, biochemical, and molecular docking studies of BphBB-356 elucidate the unique ability of the enzyme to transform the cis-dihydrodiols of double meta-, para-, and ortho-substituted chlorobiphenyls. PMID:21880718

  2. Cholinergic neurotransmission in human corpus cavernosum. II. Acetylcholine synthesis

    SciTech Connect

    Blanco, R.; De Tejada, S.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1988-03-01

    Physiological and histochemical evidence indicates that cholinergic nerves may participate in mediating penile erection. Acetylcholine synthesis and release was studied in isolated human corporal tissue. Human corpus cavernosum incubated with ({sup 3}H)choline accumulated ({sup 3}H)choline and synthesized ({sup 3}H)acethylcholine in an concentration-dependent manner. ({sup 3}H)Acetylcholine accumulation by the tissue was inhibited by hemicholinium-3, a specific antagonist of the high-affinity choline transport in cholinergic nerves. Transmural electrical field stimulation caused release of ({sup 3}H)acetylcholine which was significantly diminished by inhibiting neurotransmission with calcium-free physiological salt solution or tetrodotoxin. These observations provide biochemical and physiological evidence for the existence of cholinergic innervation in human corpus cavernosum.

  3. Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site*

    PubMed Central

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D.; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R.; Vaughan, Roxanne A.; Henry, L. Keith

    2014-01-01

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4′-azido-3′-iodophenylethyl ester ([125I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [125I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220

  4. Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site.

    PubMed

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R; Vaughan, Roxanne A; Henry, L Keith

    2014-10-24

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220

  5. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    SciTech Connect

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.; Fujiwara, M.

    1985-11-18

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM; ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.

  6. Physical urticarias and cholinergic urticaria.

    PubMed

    Abajian, Marina; Schoepke, Nicole; Altrichter, Sabine; Zuberbier, Torsten; Zuberbier, H C Torsten; Maurer, Marcus

    2014-02-01

    Physical urticarias are a unique subgroup of chronic urticaria in which urticarial responses can be reproducibly induced by different specific physical stimuli acting on the skin. These conditions include urticaria factitia/symptomatic dermographism, delayed pressure urticaria, cold contact urticaria, heat contact urticaria, solar urticaria, and vibratory urticaria/angioedema. Physical urticarias and cholinergic urticarias are diagnosed based on the patients' history and provocation tests including trigger threshold testing where possible. Treatment is mainly symptomatic. Many patients benefit from avoiding eliciting triggers, and desensitization to these triggers can be helpful in some physical urticarias and in cholinergic urticaria. PMID:24262690

  7. Generation of Human Embryonic Stem Cell Line Expressing zsGreen in Cholinergic Neurons Using CRISPR/Cas9 System.

    PubMed

    Zhou, Jing; Wang, Chencheng; Zhang, Kunshan; Wang, Yingying; Gong, Xi; Wang, Yanlu; Li, Siguang; Luo, Yuping

    2016-08-01

    Lineage specific human embryonic stem cell (hESC) reporter cell line is a versatile tool for biological studies on real time monitoring of differentiation, physiological and biochemical features of special cell types and pathological mechanism of disease. Here we report the generation of ChAT-zsGreen reporter hESC line that express zsGreen under the control of the choline acetyltransferase (ChAT) promoter using CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)/Cas9 system. We show that the ChAT-zsGreen hESC reporter cell lines retain the features of undifferentiated hESC. After cholinergic neuronal differentiation, cholinergic neurons were clearly labeled with green fluorescence protein (zsGreen). The ChAT-zsGreen reporter hESC lines are invaluable not only for the monitoring cholinergic neuronal differentiation but also for study physiological and biochemical hallmarks of cholinergic neurons. PMID:27113041

  8. Cholinergic influences on feature binding.

    PubMed

    Botly, Leigh C P; De Rosa, Eve

    2007-04-01

    The binding problem refers to the fundamental challenge of the central nervous system to integrate sensory information registered by multiple brain regions to form a unified neural representation of a stimulus. Human behavioral, neuropsychological, and functional neuroimaging evidence suggests a fundamental role for attention in feature binding; however, its neurochemical basis is currently unknown. This study examined whether acetylcholine (ACh), a neuromodulator that has been implicated in attentional processes, plays a critical role in feature binding. Using a within-subjects pharmacological design and the cholinergic muscarinic antagonist scopolamine, the present experiments demonstrate, in a rat model, a critical role for the cortical muscarinic cholinergic system in feature binding. Specifically, ACh and the attentional resources that it supports are essential for the initial feature binding process but are not required to maintain neural representations of bound stimuli. PMID:17469916

  9. Cholinergic modulation of hippocampal network function

    PubMed Central

    Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.

    2013-01-01

    Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628

  10. New Etiology of Cholinergic Urticaria.

    PubMed

    Tokura, Yoshiki

    2016-01-01

    Cholinergic urticaria (CholU) is characterized by pinpoint-sized, highly pruritic wheals occurring upon sweating. Both direct and indirect theories in the interaction of acetylcholine (ACh) with mast cells have been put forward in the sweating-associated histamine release from mast cells. In the mechanism of indirect involvement of ACh, patients are hypersensitive to sweat antigen(s) and develop wheals in response to sweat substances leaking from the syringeal ducts to the dermis, possibly by obstruction of the ducts. Some patients with CholU exhibit a positive reaction to intradermal injection of their own diluted sweat, representing 'sweat allergy (hypersensitivity)'. Regarding the direct interaction theory between ACh and mast cells, we found that CholU with anhidrosis and hypohidrosis lacks cholinergic receptor M3 (CHRM3) expression in eccrine sweat gland epithelial cells. The expression of CHRM3 is completely absent in the anhidrotic areas and lowly expressed in the hypohidrotic areas. In the hypohidrotic area, where CholU occurs, it is hypothesized that ACh released from nerves cannot be completely trapped by cholinergic receptors of eccrine glands and overflows to the adjacent mast cells, leading to wheals. PMID:27584968

  11. Cellular and molecular basis of cholinergic function

    SciTech Connect

    Dowdall, M.J.; Hawthorne, J.N.

    1987-01-01

    This book contains 105 selections. Some of the titles are: Functional correlates of brain nicotine receptors; Muscarinic receptor subclasses; Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system; Developmentally regulated neurontrophic activities of Torpedo electric organ tissue; and Association of a regulatory peptide with cholinergic neurons.

  12. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed Central

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-01-01

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  13. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-06-25

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  14. Potential animal model of multiple chemical sensitivity with cholinergic supersensitivity.

    PubMed

    Overstreet, D H; Miller, C S; Janowsky, D S; Russell, R W

    1996-07-17

    Multiple Chemical Sensitivity (MCS) is a clinical phenomenon in which individuals, after acute or intermittent exposure to one or more chemicals, commonly organophosphate pesticides (OPs), become overly sensitive to a wide variety of chemically-unrelated compounds, which can include ethanol, caffeine and other psychotropic drugs. The Flinders Sensitive Line (FSL) rats were selectively bred to be more sensitive to the OP diisopropylfluorophosphate (DFP) compared to their control counterparts, the Flinders Resistant Line (FRL) rats. The present paper will summarize evidence which indicates that the FSL rats exhibit certain similarities to individuals with MCS. In addition to their greater sensitivity to DFP, the FSL rats are more sensitive to nicotine and the muscarinic agonists arecoline and oxotremorine, suggesting that the number of cholinergic receptors may be increased, a conclusion now supported by biochemical evidence. The FSL rats have also been found to exhibit enhanced responses to a variety of other drugs, including the serotonin agonists m-chlorophenylpiperazine and 8-OH-DPAT, the dopamine antagonist raclopride, the benzodiazepine diazepam, and ethanol. MCS patients report enhanced responses to many of these drugs, indicating some parallels between FSL rats and MCS patients. The FSL rats also exhibit reduced activity and appetite and increased REM sleep relative to their FRL controls. Because these behavioral features and the enhanced cholinergic responses are also observed in human depressives, the FSL rats have been proposed as a genetic animal model of depression. It has also been reported that MCS patients have a greater incidence of depression, both before and after onset of their chemical sensitivities, so cholinergic supersensitivity may be a state predisposing individuals to depressive disorders and/or MCS. Further exploration of the commonalities and differences between MCS patients, human depressives, and FSL rats will help to elucidate the

  15. Heterogeneity of phasic cholinergic signaling in neocortical neurons.

    PubMed

    Gulledge, Allan T; Park, Susanna B; Kawaguchi, Yasuo; Stuart, Greg J

    2007-03-01

    Acetylcholine (ACh) is a neurotransmitter critical for normal cognition. Here we demonstrate heterogeneity of cholinergic signaling in neocortical neurons in the rat prefrontal, somatosensory, and visual cortex. Focal ACh application (100 muM) inhibited layer 5 pyramidal neurons in all cortical areas via activation of an apamin-sensitive SK-type calcium-activated potassium conductance. Cholinergic inhibition was most robust in prefrontal layer 5 neurons, where it relies on the same signal transduction mechanism (M1-like receptors, IP(3)-dependent calcium release, and SK-channels) as exists in somatosensory pyramidal neurons. Pyramidal neurons in layer 2/3 were less responsive to ACh, but substantial apamin-sensitive inhibitory responses occurred in deep layer 3 neurons of the visual cortex. ACh was only inhibitory when presented near the somata of layer 5 pyramidal neurons, where repetitive ACh applications generated discrete inhibitory events at frequencies of up to approximately 0.5 Hz. Fast-spiking (FS) nonpyramidal neurons in all cortical areas were unresponsive to ACh. When applied to non-FS interneurons in layers 2/3 and 5, ACh generated mecamylamine-sensitive nicotinic responses (38% of cells), apamin-insensitive hyperpolarizing responses, with or without initial nicotinic depolarization (7% of neurons), or no response at all (55% of cells). Responses in interneurons were similar across cortical layers and regions but were correlated with cellular physiology and the expression of biochemical markers associated with different classes of nonpyramidal neurons. Finally, ACh generated nicotinic responses in all layer 1 neurons tested. These data demonstrate that phasic cholinergic input can directly inhibit projection neurons throughout the cortex while sculpting intracortical processing, especially in superficial layers. PMID:17122323

  16. Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer's Disease.

    PubMed

    Kim, Hyeon-Joong; Shin, Eun-Joo; Lee, Byung-Hwan; Choi, Sun-Hye; Jung, Seok-Won; Cho, Ik-Hyun; Hwang, Sung-Hee; Kim, Joon Yong; Han, Jung-Soo; Chung, ChiHye; Jang, Choon-Gon; Rhim, Hyewon; Kim, Hyoung-Chun; Nah, Seung-Yeol

    2015-09-01

    Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer's disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced [Ca(2+)]i transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated [Ca(2+)]i transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 2 weeks) also significantly attenuated amyloid-β protein (Aβ)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to Aβ and could be utilized for AD prevention or therapy. PMID:26255830

  17. Striatal cholinergic interneurons: birthdates predict compartmental localization.

    PubMed

    van Vulpen, E H; van der Kooy, D

    1998-07-01

    The striatal patch and matrix compartment neurons are born at different times during rat development. The majority of the early born neurons preferentially end up in the patch compartment, while the majority of the later born neurons end up in the matrix compartment. Although the cholinergic interneurons are all born early in neurogenesis (between embryonic day E12 and E17), and we would therefore expect them to be located mainly in the patches, they are relatively homogeneously distributed in the adult, with a preference for the matrix area just outside the patches (the intermediate zone). To ask if birthdate can predict the compartmental localization of cholinergic neurons in the striatum, we marked new postmitotic neurons in the embryo with a maternal injection of bromodeoxyuridine (BrdU) on E13, E15 or E17 and labeled the patch compartment with an injection of the retrograde tracer True Blue into the substantia nigra on postnatal day (P) 1. The pups were sacrificed at P40 and the tissue was processed for BrdU, choline acetyltransferase, and True Blue triple labeling. Cholinergic neurons that became postmitotic at E13, had a higher chance of ending up in the patch compartment compared to either the intermediate zone or the rest of the matrix compartment. On the other hand cholinergic neurons that became postmitotic at E17 had a higher chance of ending up in the matrix compartment (including the intermediate zone). We conclude that birthdate can predict compartmental localization, with the cholinergic neurons in the intermediate zone following the same pattern as the cholinergic neurons in the rest of the matrix compartment. Cholinergic neurons show the same relative birthdate/compartment relationship as do other striatal neurons, although the absolute birthdates of cholinergic neurons are shifted earlier in neurogenesis. PMID:9706390

  18. Striatal cholinergic neurotransmission requires VGLUT3.

    PubMed

    Nelson, Alexandra B; Bussert, Timothy G; Kreitzer, Anatol C; Seal, Rebecca P

    2014-06-25

    It is now clear that many neuronal populations release more than one classical neurotransmitter, yet in most cases the functional role of corelease is unknown. Striatal cholinergic interneurons release both glutamate and acetylcholine, and vesicular loading of glutamate has been shown to enhance acetylcholine content. Using a combination of optogenetics and whole-cell recordings in mice, we now provide physiological evidence that optogenetic stimulation of cholinergic interneurons triggers monosynaptic glutamate- and acetylcholine-mediated currents in striatal fast-spiking interneurons (FSIs), both of which depend on the expression of the vesicular glutamate transporter 3 (VGLUT3). In contrast to corticostriatal glutamatergic inputs onto FSIs, which are mediated primarily by AMPA-type glutamate receptors, glutamate release by cholinergic interneurons activates both AMPA- and NMDA-type glutamate receptors, suggesting a unique role for these inputs in the modulation of FSI activity. Importantly, we find that the loss of VGLUT3 not only markedly attenuates glutamatergic and cholinergic inputs on FSIs, but also significantly decreases disynaptic GABAergic input onto medium spiny neurons (MSNs), the major output neurons of the striatum. Our data demonstrate that VGLUT3 is required for normal cholinergic signaling onto FSIs, as well as for acetylcholine-dependent disynaptic inhibition of MSNs. Thus, by supporting fast glutamatergic transmission as well as by modulating the strength of cholinergic signaling, VGLUT3 has the capacity to exert widespread influence on the striatal network. PMID:24966377

  19. Striatal Cholinergic Neurotransmission Requires VGLUT3

    PubMed Central

    Nelson, Alexandra B.; Bussert, Timothy G.

    2014-01-01

    It is now clear that many neuronal populations release more than one classical neurotransmitter, yet in most cases the functional role of corelease is unknown. Striatal cholinergic interneurons release both glutamate and acetylcholine, and vesicular loading of glutamate has been shown to enhance acetylcholine content. Using a combination of optogenetics and whole-cell recordings in mice, we now provide physiological evidence that optogenetic stimulation of cholinergic interneurons triggers monosynaptic glutamate- and acetylcholine-mediated currents in striatal fast-spiking interneurons (FSIs), both of which depend on the expression of the vesicular glutamate transporter 3 (VGLUT3). In contrast to corticostriatal glutamatergic inputs onto FSIs, which are mediated primarily by AMPA-type glutamate receptors, glutamate release by cholinergic interneurons activates both AMPA- and NMDA-type glutamate receptors, suggesting a unique role for these inputs in the modulation of FSI activity. Importantly, we find that the loss of VGLUT3 not only markedly attenuates glutamatergic and cholinergic inputs on FSIs, but also significantly decreases disynaptic GABAergic input onto medium spiny neurons (MSNs), the major output neurons of the striatum. Our data demonstrate that VGLUT3 is required for normal cholinergic signaling onto FSIs, as well as for acetylcholine-dependent disynaptic inhibition of MSNs. Thus, by supporting fast glutamatergic transmission as well as by modulating the strength of cholinergic signaling, VGLUT3 has the capacity to exert widespread influence on the striatal network. PMID:24966377

  20. Cholinergic connectivity: it's implications for psychiatric disorders

    PubMed Central

    Scarr, Elizabeth; Gibbons, Andrew S.; Neo, Jaclyn; Udawela, Madhara; Dean, Brian

    2013-01-01

    Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system. PMID:23653591

  1. Clinical Characteristics of Cholinergic Urticaria in Korea

    PubMed Central

    Kim, Jung Eun; Eun, Young Sun; Park, Young Min; Park, Hyun Jeong; Yu, Dong Su; Kang, Hoon; Cho, Sang Hyun; Park, Chul Jong; Kim, Si Yong

    2014-01-01

    Background Cholinergic urticaria is a type of physical urticaria characterized by heat-associated wheals. Several reports are available about cholinergic urticaria; however, the clinical manifestations and pathogenesis are incompletely understood. Objective The purpose of this study was to investigate the clinical characteristics of cholinergic urticaria in Korea. Methods We performed a retrospective study of 92 patients with cholinergic urticaria who were contacted by phone and whose diagnoses were confirmed by the exercise provocation test among those who had visited The Catholic University of Korea, Catholic Medical Center from January 2001 to November 2010. Results All 92 patients were male, and their average age was 27.8 years (range, 17~51 years). Most of the patients had onset of the disease in their 20s and 30s. Non-follicular wheals were located on the trunk and upper extremities of many patients, and the symptoms were aggravated by exercise. Eight patients showed general urticaria symptoms and 15 had accompanying atopic disease. Forty-three patients complained of seasonal aggravation. Most patients were treated with first and second-generation antihistamines. Conclusion Dermatologists should consider these characteristics in patients with cholinergic urticaria. Further investigation and follow-up studies are necessary to better understand the epidemiological and clinical findings of cholinergic urticaria. PMID:24882973

  2. Central cholinergic neurons are rapidly recruited by reinforcement feedback

    PubMed Central

    Hangya, Balázs; Ranade, Sachin P.; Lorenc, Maja; Kepecs, Adam

    2015-01-01

    Summary Basal forebrain cholinergic neurons constitute a major neuromodulatory system implicated in normal cognition and neurodegenerative dementias. Cholinergic projections densely innervate neocortex, releasing acetylcholine to regulate arousal, attention and learning. However, their precise behavioral function is poorly understood because identified cholinergic neurons have never been recorded during behavior. To determine which aspects of cognition their activity might support we recorded cholinergic neurons using optogenetic identification in mice performing an auditory detection task requiring sustained attention. We found that a non-cholinergic basal forebrain population — but not cholinergic neurons — were correlated with trial-to-trial measures of attention. Surprisingly, cholinergic neurons responded to reward and punishment with unusual speed and precision (18±3ms). Cholinergic responses were scaled by the unexpectedness of reinforcement and were highly similar across neurons and two nuclei innervating distinct cortical areas. These results reveal that the cholinergic system broadcasts a rapid and precisely timed reinforcement signal supporting fast cortical activation and plasticity. PMID:26317475

  3. Muscarinic cholinergic receptors in pancreatic acinar carcinoma of rat.

    PubMed

    Taton, G; Delhaye, M; Swillens, S; Morisset, J; Larose, L; Longnecker, D S; Poirier, G G

    1985-04-15

    The active enantiomer of tritiated quinuclidinyl benzilate (3H(-)QNB) was used as a ligand to evaluate the muscarinic receptors. The 3H(-)QNB binding characteristics of muscarinic cholinergic receptors obtained from normal and neoplastic tissues were studied to determine changes in receptor properties during neoplastic transformation. Saturable and stereospecific binding sites for 3H(-)QNB are present in homogenates of rat pancreatic adenocarcinoma. The proportions of high- and low-affinity agonist binding sites are similar for neoplastic and normal tissues. The density of muscarinic receptors is higher in neoplastic (200 femtomoles/mg protein) than in normal pancreatic homogenates (80 femtomoles/mg protein). The muscarinic binding sites of the neoplastic and fetal pancreas show similar KD values which are higher than those observed for normal pancreas. PMID:2580801

  4. Basic and clinical aspects of non-neuronal acetylcholine: overview of non-neuronal cholinergic systems and their biological significance.

    PubMed

    Kawashima, Koichiro; Fujii, Takeshi

    2008-02-01

    Acetylcholine (ACh) is a phylogenetically ancient molecule involved in cell-to-cell signaling in almost all life-forms on earth. Cholinergic components, including ACh, choline acetyltransferase, acetylcholinesterase, and muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively) have been identified in numerous non-neuronal cells and tissues, including keratinocytes, cancer cells, immune cells, urinary bladder, airway epithelial cells, vascular endothelial cells, and reproductive organs, among many others. Stimulation of the mAChRs and nAChRs elicits cell-specific functional and biochemical effects. These findings support the notion that non-neuronal cholinergic systems are expressed in certain cells and tissues and are involved in the regulation of their function and that cholinergic dysfunction is related to the pathophysiology of certain diseases. They also provide clues for development of drugs with novel mechanisms of action. PMID:18285657

  5. A novel cholinergic receptor mediates inhibition of chick cochlear hair cells.

    PubMed

    Fuchs, P A; Murrow, B W

    1992-04-22

    The central nervous system provides feedback regulation at several points within the peripheral auditory apparatus. One component of that feedback is inhibition of cochlear hair cells by release of acetylcholine (ACh) from efferent brainstem neurons. The mechanism of hair cell inhibition, and the character of the presumed cholinergic receptor, however, have eluded understanding. Both nicotinic and muscarinic, as well as some non-cholinergic ligands can affect the efferent action. We have made whole-cell, tight-seal recordings from short (outer) hair cells isolated from the chick's cochlea. These are the principal targets of cochlear efferents in birds. ACh hyperpolarizes short hair cells by opening a cation channel through which Ca2+ enters the cell and subsequently activates Ca(2+)-dependent K+ current (Fuchs & Murrow 1991, 1992). Both curare and atropine are effective-antagonists of cholinergic inhibition at 3 microM, whereas trimethaphan camsylate and strychnine block at 1 microM. The normally irreversible nicotinic antagonist, alpha-bungarotoxin, reversibly blocked the hair cell response, as did kappa-bungarotoxin. The half-blocking concentration for alpha-bungarotoxin was 26 nM. It is proposed that the hair cell AChR is a ligand-gated cation channel related to the nicotinic receptor of nerve and muscle. PMID:1355909

  6. Cholinergic regulation of the vasopressin neuroendocrine system

    SciTech Connect

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The median eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.

  7. Activated cholinergic signaling provides a target in squamous cell lung carcinoma.

    PubMed

    Song, Pingfang; Sekhon, Harmanjatinder S; Fu, Xiao Wen; Maier, Michelle; Jia, Yibing; Duan, Jie; Proskosil, Becky J; Gravett, Courtney; Lindstrom, Jon; Mark, Gregory P; Saha, Saurabh; Spindel, Eliot R

    2008-06-15

    The binding of exogenous nicotine to nicotinic acetylcholine (ACh) receptors (nAChR) and the binding of endogenous ACh to both nAChR and muscarinic ACh receptors (mAChR) stimulate growth of both small cell and non-small cell lung carcinomas. Understanding how cholinergic signaling is up-regulated in lung cancer may suggest new therapeutic approaches. Analysis of 28 squamous cell lung carcinomas (SCC) showed increased levels of alpha5 and beta3 nAChR mRNA and increased levels of ACh associated with increased levels of choline acetyltransferase mRNA and decreased cholinesterase mRNAs. Lynx1, an allosteric inhibitor of nAChR activity, was also decreased in SCC. Thus, cholinergic signaling is broadly increased in SCC caused by increased levels of receptors, increased levels of ligands, and decreased levels of receptor inhibitors. Partially explaining the cholinergic up-regulation seen in SCC, incubation of the H520 SCC cell line with nicotine increased levels of ACh secretion, increased expression of nAChR, and, as measured by electrophysiologic recording, increased activity of the expressed nAChR. Consistent with these effects, nicotine stimulated proliferation of H520 cells. One approach to blocking proliferative effects of nicotine and ACh on growth of lung cancers may be through M3 mAChR antagonists, which can limit the activation of mitogen-activated protein kinase that is caused by both nicotinic and muscarinic signaling. This was tested with the M3-selective muscarinic antagonist darifenacin. Darifenacin blocked nicotine-stimulated H520 growth in vitro and also blocked H520 growth in nude mice in vivo. Thus, cholinergic signaling is broadly up-regulated in SCC and blocking cholinergic signaling can limit basal and nicotine-stimulated growth of SCC. PMID:18559515

  8. In vivo labeling of nicotinic cholinergic receptors in brain with [3H]cytisine.

    PubMed

    Flesher, J E; Scheffel, U; London, E D; Frost, J J

    1994-01-01

    [3H]Cytisine was evaluated as an in vivo ligand for the nicotinic cholinergic receptor (nAchR) in mouse brain. The tracer was injected intravenously, and radioactivity in brain regions was analyzed. Radioactivity peaked in the brain at 30 minutes. It was highest in the thalamus, intermediate in the superior colliculi, prefrontal cortex and hippocampus, and low in the cerebellum. Pretreatment with unlabeled cytisine inhibited binding in the thalamus, but not in the cerebellum. Binding was displaced by l-nicotine, but not by d-nicotine or dexetimide. The results suggest that cytisine, appropriately labeled with a positron emitting radionuclide, may be useful for study of nicotinic cholinergic receptors in humans by emission computed tomography. PMID:8196506

  9. Cholinergic imaging in dementia spectrum disorders.

    PubMed

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios

    2016-07-01

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [(11)C]MP4A and [(11)C]PMP PET for acetylcholinesterase (AChE), [(123)I]5IA SPECT for the α4β2 nicotinic acetylcholine receptor and [(123)I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. PMID:26984612

  10. [Syndrome of partial cholinergic deafferentation of the cortical mantle--a concept for describing the brain-behavior relationship in dementia diseases].

    PubMed

    Arendt, T

    1991-03-01

    The identification of morphological and biochemical changes in neurodegenerative disorders with both common and different patterns of neuropsychological dysfunction may help to define the neurobiological substrate of amnesic and dementing disorders, and, furthermore, will give some insight into the neuronal organisation of memory processes. The concept of "subcortical and cortical dementia" and the "cholinergic hypothesis of memory dysfunction" reflect two different theoretical approaches which relate psychopathological disturbances in Alzheimer's disease, Parkinson's disease, Korsakoff's psychosis and related conditions either to structurally or to chemically defined systems of the brain. In order to overcome limitations arising from this dichotomy of structural and chemical approaches to the brain-behaviour-relationship, the concept of a "syndrome of partial cholinergic deafferentation of the cortical mantle" is suggested in the present paper. This concept is supported by evidence derived from the biochemical, morphological and behavioural sequelae of acute and chronic experimental interference with the cholinergic afferentation of the cortical mantle by the application of neurotoxins, by pharmacological intervention and by neurotransplantation in rat. Regarding the cholinergic projection neurons of the basal forebrain and upper brainstem as components of the reticular activating system, the involvement of the cholinergic afferentation of the cortical mantle in the mediation of memory processes and their dysfunction under the conditions of neurodegenerative disorders can be explained on the basis of the "Hippocampal Memory Indexing Theory" of Teyler and DiScenna. PMID:2050315

  11. Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer’s Disease

    PubMed Central

    Kim, Hyeon-Joong; Shin, Eun-Joo; Lee, Byung-Hwan; Choi, Sun-Hye; Jung, Seok-Won; Cho, Ik-Hyun; Hwang, Sung-Hee; Kim, Joon Yong; Han, Jung-Soo; Chung, ChiHye; Jang, Choon-Gon; Rhim, Hyewon; Kim, Hyoung-Chun; Nah, Seung-Yeol

    2015-01-01

    Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer’s disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced [Ca2+]i transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated [Ca2+]i transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 2 weeks) also significantly attenuated amyloid-β protein (Aβ)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to Aβ and could be utilized for AD prevention or therapy. PMID:26255830

  12. Cholinergic Circuit Control of Postnatal Neurogenesis

    PubMed Central

    Asrican, Brent; Paez-Gonzalez, Patricia; Erb, Joshua; Kuo, Chay T.

    2016-01-01

    New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents a distinct form of nervous system plasticity. During embryonic development, precise temporal and spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell (NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following developmental assembly, it remains relatively unclear what may be the key driving forces that sustain continued production of neurons in the postnatal/adult brain. Recent experimental evidence suggests that patterned activity from specific neural circuits can also directly govern postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic modulation, and how patterns of neuronal activity and acetylcholine release may differentially or synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs regulating cholinergic neuron firing, and their implications in neurogenesis control are also considered. PMID:27468423

  13. Decreased subcortical cholinergic arousal in focal seizures

    PubMed Central

    Motelow, Joshua E.; Li, Wei; Zhan, Qiong; Mishra, Asht M.; Sachdev, Robert N. S.; Liu, Geoffrey; Gummadavelli, Abhijeet; Zayyad, Zaina; Lee, Hyun Seung; Chu, Victoria; Andrews, John P.; Englot, Dario J.; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Blumenfeld, Hal

    2015-01-01

    SUMMARY Impaired consciousness in temporal lobe seizures has a major negative impact on quality of life. The prevailing view holds that this disorder impairs consciousness by seizure spread to the bilateral temporal lobes. We propose instead that seizures invade subcortical regions and depress arousal, causing impairment through decreases rather than through increases in activity. Using functional magnetic resonance imaging in a rodent model, we found increased activity in regions known to depress cortical function including lateral septum and anterior hypothalamus. Importantly, we found suppression of intralaminar thalamic and brainstem arousal systems and suppression of the cortex. At a cellular level, we found reduced firing of identified cholinergic neurons in the brainstem pedunculopontine tegmental nucleus and basal forebrain. Finally, we used enzyme-based amperometry to demonstrate reduced cholinergic neurotransmission in both cortex and thalamus. Decreased subcortical arousal is a novel mechanism for loss of consciousness in focal temporal lobe seizures. PMID:25654258

  14. Cholinergic innervation and receptors in the cerebellum.

    PubMed

    Jaarsma, D; Ruigrok, T J; Caffé, R; Cozzari, C; Levey, A I; Mugnaini, E; Voogd, J

    1997-01-01

    We have studied the source and ultrastructural characteristics of ChAT-immunoreactive fibers in the cerebellum of the rat, and the distribution of muscarinic and nicotinic receptors in the cerebellum of the rat, rabbit, cat and monkey, in order to define which of the cerebellar afferents may use ACh as a neurotransmitter, what target structures are they, and which cholinergic receptor mediate the actions of these pathways. Our data confirm and extend previous observations that cholinergic markers occur at relatively low density in the cerebellum and show not only interspecies variability, but also heterogeneity between cerebellar lobules in the same species. As previously demonstrated by Barmack et al. (1992a,b), the predominant fiber system in the cerebellum that might use ACh as a transmitter or a co-transmitter is formed by mossy fibers originating in the vestibular nuclei and innervating the nodulus and ventral uvula. Our results show that these fibers innervate both granule cells and unipolar brush cells, and that the presumed cholinergic action of these fibers most likely is mediated by nicotinic receptors. In addition to cholinergic mossy fibers, the rat cerebellum is innervated by beaded ChAT-immunoreactive fibers. We have demonstrated that these fibers originate in the pedunculopontine tegmental nucleus (PPTg), the lateral paragigantocellular nucleus (LPGi), and to a lesser extent in various raphe nuclei. In both the cerebellar cortex and the cerebellar nuclei these fibers make asymmetric synaptic junctions with small and medium-sized dendritic profiles. Both muscarinic and nicotinic receptor could mediate the action of these diffuse beaded fibers. In the cerebellar nuclei the beaded cholinergic fibers form a moderately dense network, and could in principle have a significant effect on neuronal activity. For instance, the cholinergic fibers arising in the PPTg may modulate the excitability of the cerebellonuclear neurons in relation to sleep and arousal (e

  15. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence.

    PubMed

    Hshieh, Tammy T; Fong, Tamara G; Marcantonio, Edward R; Inouye, Sharon K

    2008-07-01

    Deficits in cholinergic function have been postulated to cause delirium and cognitive decline. This review examines current understanding of the cholinergic deficiency hypothesis in delirium by synthesizing evidence on potential pathophysiological pathways. Acetylcholine synthesis involves various precursors, enzymes, and receptors, and dysfunction in these components can lead to delirium. Insults to the brain, like ischemia and immunological stressors, can precipitously alter acetylcholine levels. Imbalances between cholinergic and other neurotransmitter pathways may result in delirium. Furthermore, genetic, enzymatic, and immunological overlaps exist between delirium and dementia related to the cholinergic pathway. Important areas for future research include identifying biomarkers, determining genetic contributions, and evaluating response to cholinergic drugs in delirium. Understanding how the cholinergic pathway relates to delirium may yield innovative approaches in the diagnosis, prevention, and treatment of this common, costly, and morbid condition. PMID:18693233

  16. CHOLINERGIC CIRCUITS AND SIGNALING IN THE PATHOPHYSIOLOGY OF SCHIZOPHRENIA

    PubMed Central

    Berman, Joshua A.; Talmage, David A.; Role, Lorna W.

    2008-01-01

    Central cholinergic signaling has long been associated with aspects of memory, motivation, and mood, each affected functions in neuropsychiatric disorders such as schizophrenia. In this chapter, we review evidence related to the core hypothesis that dysregulation of central cholinergic signaling contributes to the pathophysiology of schizophrenia. Although central cholinergic circuits are resistant to simplification—particularly when one tries to parse the contributions of various classes of cholinergic receptors to disease related phenomena—the potential role of ACh signaling in Schizophrenia pathophysiology deserves careful consideration for prospective therapeutics. The established role of cholinergic circuits in attentional tuning is considered along with recent work on how the patterning of cholinergic activity may modulate corticostriatal circuits affected in schizophrenia. PMID:17349862

  17. Alzheimer's Disease: Targeting the Cholinergic System

    PubMed Central

    Ferreira-Vieira, Talita H.; Guimaraes, Isabella M.; Silva, Flavia R.; Ribeiro, Fabiola M.

    2016-01-01

    Acetylcholine (ACh) has a crucial role in the peripheral and central nervous systems. The enzyme choline acetyltransferase (ChAT) is responsible for synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic vesicles. Following depolarization, ACh undergoes exocytosis reaching the synaptic cleft, where it can bind its receptors, including muscarinic and nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is recycled into the presynaptic nerve terminal by the high-affinity choline transporter (CHT1). Cholinergic neurons located in the basal forebrain, including the neurons that form the nucleus basalis of Meynert, are severely lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia affecting 25 million people worldwide. The hallmarks of the disease are the accumulation of neurofibrillary tangles and amyloid plaques. However, there is no real correlation between levels of cortical plaques and AD-related cognitive impairment. Nevertheless, synaptic loss is the principal correlate of disease progression and loss of cholinergic neurons contributes to memory and attention deficits. Thus, drugs that act on the cholinergic system represent a promising option to treat AD patients. PMID:26813123

  18. Alcoholism and depressive disorders: is cholinergic sensitivity a biological marker?

    PubMed

    Overstreet, D H; Janowsky, D S; Rezvani, A H

    1989-01-01

    There is an overlap between alcoholism and depressive disorders. However, alcoholics tend to be resistant to the effect of cholinergic agonists, whereas depressives tend to be more sensitive. A recently developed animal model of depression which is more sensitive to cholinergic agonists is also more sensitive to the acute effects of ethanol. These consistent human and animal studies suggest that cholinergic challenges may be helpful in separating alcoholics from depressives. PMID:2757700

  19. Brain cholinergic impairment in liver failure.

    PubMed

    García-Ayllón, María-Salud; Cauli, Omar; Silveyra, María-Ximena; Rodrigo, Regina; Candela, Asunción; Compañ, Antonio; Jover, Rodrigo; Pérez-Mateo, Miguel; Martínez, Salvador; Felipo, Vicente; Sáez-Valero, Javier

    2008-11-01

    The cholinergic system is involved in specific behavioural responses and cognitive processes. Here, we examined potential alterations in the brain levels of key cholinergic enzymes in cirrhotic patients and animal models with liver failure. An increase (~30%) in the activity of the acetylcholine-hydrolyzing enzyme, acetylcholinesterase (AChE) is observed in the brain cortex from patients deceased from hepatic coma, while the activity of the acetylcholine-synthesizing enzyme, choline acetyltransferase, remains unaffected. In agreement with the human data, AChE activity in brain cortical extracts of bile duct ligated (BDL) rats was increased (~20%) compared to controls. A hyperammonemic diet did not result in any further increase of AChE levels in the BDL model, and no change was observed in hyperammonemic diet rats without liver disease. Portacaval shunted rats which display increased levels of cerebral ammonia did not show any brain cholinergic abnormalities, confirming that high ammonia levels do not play a role in brain AChE changes. A selective increase of tetrameric AChE, the major AChE species involved in hydrolysis of acetylcholine in the brain, was detected in both cirrhotic humans and BDL rats. Histological examination of BDL and non-ligated rat brains shows that the subcellular localization of both AChE and choline acetyltransferase, and thus the accessibility to their substrates, appears unaltered by the pathological condition. The BDL-induced increase in AChE activity was not parallelled by an increase in mRNA levels. Increased AChE in BDL cirrhotic rats leads to a pronounced decrease (~50-60%) in the levels of acetylcholine. Finally, we demonstrate that the AChE inhibitor rivastigmine is able to improve memory deficits in BDL rats. One week treatment with rivastigmine (0.6 mg/kg; once a day, orally, for a week) resulted in a 25% of inhibition in the enzymatic activity of AChE with no change in protein composition, as assessed by sucrose density gradient

  20. Brain cholinergic impairment in liver failure

    PubMed Central

    García-Ayllón, María-Salud; Cauli, Omar; Silveyra, María-Ximena; Rodrigo, Regina; Candela, Asunción; Compañ, Antonio; Jover, Rodrigo; Pérez-Mateo, Miguel; Martínez, Salvador; Felipo, Vicente

    2008-01-01

    The cholinergic system is involved in specific behavioural responses and cognitive processes. Here, we examined potential alterations in the brain levels of key cholinergic enzymes in cirrhotic patients and animal models with liver failure. An increase (∼30%) in the activity of the acetylcholine-hydrolyzing enzyme, acetylcholinesterase (AChE) is observed in the brain cortex from patients deceased from hepatic coma, while the activity of the acetylcholine-synthesizing enzyme, choline acetyltransferase, remains unaffected. In agreement with the human data, AChE activity in brain cortical extracts of bile duct ligated (BDL) rats was increased (∼20%) compared to controls. A hyperammonemic diet did not result in any further increase of AChE levels in the BDL model, and no change was observed in hyperammonemic diet rats without liver disease. Portacaval shunted rats which display increased levels of cerebral ammonia did not show any brain cholinergic abnormalities, confirming that high ammonia levels do not play a role in brain AChE changes. A selective increase of tetrameric AChE, the major AChE species involved in hydrolysis of acetylcholine in the brain, was detected in both cirrhotic humans and BDL rats. Histological examination of BDL and non-ligated rat brains shows that the subcellular localization of both AChE and choline acetyltransferase, and thus the accessibility to their substrates, appears unaltered by the pathological condition. The BDL-induced increase in AChE activity was not parallelled by an increase in mRNA levels. Increased AChE in BDL cirrhotic rats leads to a pronounced decrease (∼50–60%) in the levels of acetylcholine. Finally, we demonstrate that the AChE inhibitor rivastigmine is able to improve memory deficits in BDL rats. One week treatment with rivastigmine (0.6 mg/kg; once a day, orally, for a week) resulted in a 25% of inhibition in the enzymatic activity of AChE with no change in protein composition, as assessed by sucrose density

  1. Adaptive processes of the central and autonomic cholinergic neurotransmitter system: Age-related differences

    SciTech Connect

    Fortuna, S.; Pintor, A.; Michalek, H. )

    1991-01-01

    Potential age-related differences in the response of the ileum strip longitudinal and circular muscle to repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. The response was measured in terms of both biochemical parameters (acetylcholinesterase-AChE inhibition, muscarinic acetylcholine receptor binding sites-mAChRs, choline acetyltransferase-ChAT) and functional responsiveness (contractility of the isolated ileum stimulated by cholinergic agonists). The biochemical data were compared with those obtained for the cerebral cortex. In the ileum strip of control rats there was a significant age-related decline of AChE, maximal density of {sup 3}H-QNB binding sites (Bmax) and ChAT. During the first week of DFP treatment the cholinergic syndrome was more pronounced in aged than in young rats, resulting in 35% and 10% mortality, respectively; subsequently the syndrome attenuated. At the end of DFP treatment ileal AChE were inhibited by about 30%; the down-regulation of mAChRs was about 50% in young and 35% in aged rats. No significant differences in the recovery rate of AChE were noted between young and aged rats. On the contrary, mAChRs normalized within 5 weeks in young and 3 weeks in aged rats.

  2. ( sup 3 H)cytisine binding to nicotinic cholinergic receptors in brain

    SciTech Connect

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J. )

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic {sup 3}H-agonist ligands. Here we have examined the binding of ({sup 3}H)cytisine in rat brain homogenates. ({sup 3}H)Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for ({sup 3}H)cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that ({sup 3}H)cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of ({sup 3}H)cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of ({sup 3}H)cytisine should make it a very useful ligand for studying neuronal nicotinic receptors.

  3. Cholinergic Coercion of Synaptic States for Motivational Memories.

    PubMed

    Rossi, Mark A; Stuber, Garret D

    2016-06-01

    Acetylcholine is critical for learning, yet the relationship between cholinergic signaling, plasticity, and behavior remains elusive. In this issue of Neuron, Lee et al. (2016) and Jiang et al. (2016) investigate how cholinergic signaling in the amygdala and nucleus accumbens influences synaptic plasticity and learning. PMID:27253445

  4. Optogenetic cholinergic modulation of the mouse superior colliculus in vivo

    PubMed Central

    Thompson, John A.; Felsen, Gidon

    2015-01-01

    The superior colliculus (SC) plays a critical role in orienting movements, in part by integrating modulatory influences on the sensorimotor transformations it performs. Many species exhibit a robust brain stem cholinergic projection to the intermediate and deep layers of the SC arising mainly from the pedunculopontine tegmental nucleus (PPTg), which may serve to modulate SC function. However, the physiological effects of this input have not been examined in vivo, preventing an understanding of its functional role. Given the data from slice experiments, cholinergic input may have a net excitatory effect on the SC. Alternatively, the input could have mixed effects, via activation of inhibitory neurons within or upstream of the SC. Distinguishing between these possibilities requires in vivo experiments in which endogenous cholinergic input is directly manipulated. Here we used anatomical and optogenetic techniques to identify and selectively activate brain stem cholinergic terminals entering the intermediate and deep layers of the awake mouse SC and recorded SC neuronal responses. We first quantified the pattern of the cholinergic input to the mouse SC, finding that it was predominantly localized to the intermediate and deep layers. We then found that optogenetic stimulation of cholinergic terminals in the SC significantly increased the activity of a subpopulation of SC neurons. Interestingly, cholinergic input had a broad range of effects on the magnitude and timing of SC responses, perhaps reflecting both monosynaptic and polysynaptic innervation. These findings begin to elucidate the functional role of this cholinergic projection in modulating the processing underlying sensorimotor transformations in the SC. PMID:26019317

  5. Probing peripheral and central cholinergic system responses.

    PubMed Central

    Naranjo, C A; Fourie, J; Herrmann, N; Lanctôt, K L; Birt, C; Yau, K K

    2000-01-01

    OBJECTIVE: The pharmacological response to drugs that act on the cholinergic system of the iris has been used to predict deficits in central cholinergic functioning due to diseases such as Alzheimer's disease, yet correlations between central and peripheral responses have not been properly studied. This study assessed the effect of normal aging on (1) the tropicamide-induced increase in pupil diameter, and (2) the reversal of this effect with pilocarpine. Scopolamine was used as a positive control to detect age-dependent changes in central cholinergic functioning in the elderly. DESIGN: Randomized double-blind controlled trial. PARTICIPANTS: Ten healthy elderly (mean age 70) and 9 young (mean age 33) volunteers. INTERVENTIONS: Pupil diameter was monitored using a computerized infrared pupillometer over 4 hours. The study involved 4 sessions. In 1 session, tropicamide (20 microL, 0.01%) was administered to one eye and placebo to the other. In another session, tropicamide (20 microL, 0.01%) was administered to both eyes, followed 23 minutes later by the application of pilocarpine (20 microL, 0.1%) to one eye and placebo to the other. All eye drops were given in a randomized order. In 2 separate sessions, a single dose of scopolamine (0.5 mg, intravenously) or placebo was administered, and the effects on word recall were measured using the Buschke Selective Reminding Test over 2 hours. OUTCOME MEASURES: Pupil size at time points after administration of tropicamide and pilocarpine; scopolamine-induced impairment in word recall. RESULTS: There was no significant difference between elderly and young volunteers in pupillary response to tropicamide at any time point (p > 0.05). The elderly group had a significantly greater pilocarpine-induced net decrease in pupil size 85, 125, 165 and 215 minutes after administration, compared with the young group (p < 0.05). Compared with the young group, the elderly group had greater scopolamine-induced impairment in word recall 60, 90

  6. Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons

    PubMed Central

    Estandian, Daniel; Xu, Min; Kwan, Alex C.; Lee, Seung-Hee; Harrison, Thomas C.; Feng, Guoping; Dan, Yang

    2014-01-01

    The basal forebrain provides the primary source of cholinergic input to the cortex, and it plays a crucial role in promoting wakefulness and arousal. However, whether rapid changes in basal forebrain neuron spiking in awake animals can dynamically influence sensory perception is unclear. Here we show that basal forebrain cholinergic neurons rapidly regulate cortical activity and visual perception in awake, behaving mice. Optogenetic activation of the cholinergic neurons or their V1 axon terminals improved performance of a visual discrimination task on a trial-by-trial basis. In V1, basal forebrain activation enhanced visual responses and desynchronized neuronal spiking, which could partly account for the behavioral improvement. Conversely, optogenetic basal forebrain inactivation decreased behavioral performance, synchronized cortical activity and impaired visual responses, indicating the importance of cholinergic activity in normal visual processing. These results underscore the causal role of basal forebrain cholinergic neurons in fast, bidirectional modulation of cortical processing and sensory perception. PMID:24162654

  7. Estrogen-Cholinergic Interactions: Implications for Cognitive Aging

    PubMed Central

    Newhouse, Paul; Dumas, Julie

    2015-01-01

    While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  8. Estrogen-cholinergic interactions: Implications for cognitive aging.

    PubMed

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  9. CHOLINERGIC REGULATION OF KERATINOCYTE INNATE IMMUNITY AND PERMEABILITY BARRIER INTEGRITY: NEW PERSPECTIVES IN EPIDERMAL IMMUNITY AND DISEASE

    PubMed Central

    Curtis, Brenda J.; Radek, Katherine A.

    2015-01-01

    Several cutaneous inflammatory diseases and their clinical phenotypes are recapitulated in animal models of skin disease. However, the identification of shared pathways for disease progression is limited by the ability to delineate the complex biochemical processes fundamental for development of the disease. Identifying common signaling pathways that contribute to cutaneous inflammation and immune function will facilitate better scientific and therapeutic strategies to span a variety of inflammatory skin diseases. Aberrant antimicrobial peptide (AMP) expression and activity is one mechanism behind the development and severity of several inflammatory skin diseases and directly influences the susceptibility of skin to microbial infections. Our studies have recently exposed a newly identified pathway for negative regulation of AMPs in the skin by the cholinergic anti-inflammatory pathway via acetylcholine (ACh). The role of ACh in AMP regulation of immune and permeability barrier function in keratinocytes is reviewed, and the importance for a better comprehension of cutaneous disease progression by cholinergic signaling is discussed. PMID:21918536

  10. Megakaryocytopoiesis in culture: modulation by cholinergic mechanisms.

    PubMed

    Burstein, S A; Adamson, J W; Harker, L A

    1980-05-01

    Treatment of murine bone marrow cultures with the cholinergic agonist carbamylcholine enhanced megakaryocytic colony growth by as much as 65%. In contrast, adrenergic agonists had no such effect. Addition to cultures of dibutyryl cyclic GMP (db-cGMP) also enhanced megakaryocytic colonies up to 50%, whereas dibutyryl cyclic AMP (db-cAMP) had no effect. Sodium nitroprusside and sodium nitrite, putative guanyl cyclase activators, also enhanced colony numbers, as did imidazole, a postulated cGMP phosphodiesterase inhibitor. Preincubation of marrow for two hours with carbamylcholine resulted both an increase in colony numbers (58%) and percent of progenitors in DNA synthesis (48%, compared to 14% for controls) as determined by tritiated thymidine suicide studies. Treatment of mice with the acetylcholinesterase inhibitor neostigmine resulted in an increase in CFU-M/humerus (62%) and percent in DNA synthesis (45%). These data indicate that 1) cholinergic, but not adrenergic, agonists modulate megakaryocytopoiesis in culture; 2) this effect may be mediated by cyclic GMP; and 3) only a brief period of exposure of marrow cells to agonist results in enhancement of megakaryocytic colonies. PMID:6108328

  11. Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms

    PubMed Central

    Bartolini, Alessandro; Cesare Mannelli, Lorenzo Di; Ghelardini, Carla

    2011-01-01

    The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed. PMID:21585331

  12. Local cholinergic and non-cholinergic neural pathways to the rat supraoptic nucleus

    SciTech Connect

    Meeker, M.L.

    1986-01-01

    An estimated two thirds of the input to the supraoptic nucleus of the rat hypothalamus (SON) including a functionally significant cholinergic innervation, arise from local sources of unknown origin. The sources of these inputs were identified utilizing Golgi-Cox, retrograde tracing, choline acetyltransferase immunocytochemistry and anterograde tracing methodologies. Multipolar Golgi impregnated neurons located dorsal and lateral to the SON extend spiney processes into the nucleus. Injections of the retrograde tracers, wheat germ agglutinin or wheat germ agglutinin-horseradish peroxidase, into the SON labeled cells bilaterally in the arcuate nucleus, and ipsilaterally in the lateral hypothalamus, anterior hypothalamus, nucleus of the diagonal band, subfornical organ, medial preoptic area, lateral preoptic area and in the region dorsolateral to the nucleus. Immunocytochemistry for choline acetyltransferase revealed cells within the ventro-caudal portion of cholinergic cell group, Ch4, which cluster dorsolateral to the SON, and extend axon- and dendrite-like processes into the SON. Cells double-labeled by choline acetyltransferase immunocytochemistry and retrograde tracer injections into the SON are localized within the same cholinergic cell group dorsolateral to the SON. Injections of the anterograde tracer, Phaseolus vulgaris-leucoagglutinin, deposited dorsolateral to the SON results in labeled pre-and post-synaptic processes within the SON. The identification and characterization of endogenous immunoglobulin within the SON and other neurons innervating areas lacking a blood-brain barrier established a novel and potentially important system for direct communication of the supraoptic cells with blood-borne constitutents.

  13. Basic and modern concepts on cholinergic receptor: A review

    PubMed Central

    Tiwari, Prashant; Dwivedi, Shubhangi; Singh, Mukesh Pratap; Mishra, Rahul; Chandy, Anish

    2013-01-01

    Cholinergic system is an important system and a branch of the autonomic nervous system which plays an important role in memory, digestion, control of heart beat, blood pressure, movement and many other functions. This article serves as both structural and functional sources of information regarding cholinergic receptors and provides a detailed understanding of the determinants governing specificity of muscarinic and nicotinic receptor to researchers. The study helps to give overall information about the fundamentals of the cholinergic system, its receptors and ongoing research in this field.

  14. Beyond the cholinergic hypothesis: do current drugs work in Alzheimer's disease?

    PubMed

    Martorana, Alessandro; Esposito, Zaira; Koch, Giacomo

    2010-08-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory and cognitive loss, and represents the leading cause of dementia in elderly people. Besides the complex biochemical processes involved in the neuronal degeneration (formation of senile plaques containing Abeta peptides, and development of neurofibrillary tangles), other molecular and neurochemical alterations, like cholinergic deficit due to basal forebrain degeneration, also occur. Because acetylcholine has been demonstrated to be involved in cognitive processes, the idea to increase acetylcholine levels to restore cognitive deficits has gained interest (the so-called cholinergic hypothesis). This has led to the development of drugs able to prevent acetylcholine hydrolysis (acetylcholinesterase inhibitors). However, the analysis of clinical efficacy of these drugs in alleviating symptoms of dementia showed unsatisfactory results. Despite such critical opinions on the efficacy of these drugs, it should be said that acetylcholinesterase inhibitors, and for some aspects memantine also, improve memory and other cognitive functions throughout most of the duration of the disease. The pharmacological activity of these drugs suggests an effect beyond the mere increase of acetylcholine levels. These considerations are in agreement with the idea that cognitive decline is the result of a complex and not fully elucidated interplay among different neurotransmitters. The role of each of the neurotransmitters implicated has to be related to a cognitive process and as a consequence to its decline. The current review aims to highlight the positive role of cholinergic drugs in alleviating cognitive deficits during wake as well as sleep. Moreover, we suggest that future therapeutic approaches have to be developed to restore the complex interplay between acetylcholine and other neurotransmitters systems, such as dopamine, serotonin, noradrenaline, or glutamate, that are likely involved in the progressive

  15. Striatal cholinergic interneurons drive GABA release from dopamine terminals

    PubMed Central

    Nelson, Alexandra B.; Hammack, Nora; Yang, Cindy F.; Shah, Nirao M.; Seal, Rebecca P.; Kreitzer, Anatol C.

    2014-01-01

    Summary Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically-driven IPSCs were not affected by ablation of striatal fast-spiking interneurons, but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. PMID:24613418

  16. Chronic ethanol consumption impairs spatial remote memory in rats but does not affect cortical cholinergic parameters.

    PubMed

    Pereira, S R; Menezes, G A; Franco, G C; Costa, A E; Ribeiro, A M

    1998-06-01

    We have studied learning, memory and cortical cholinergic parameters after oral administration of 20% v/v ethanol solution to male Fisher rats for 6 months. A group of rats were trained to behave efficiently in an eight-arm radial maze and after that split into two subgroups submitted to ethanol or control treatment. Ethanol-treated rats had more difficulty in relearning the same task 1 year later, compared to ethanol-untreated rats (control). Differences in working memory performance were found, but only in the first 10 training sessions. Another group of rats, which had not been pretrained, was also split into two subgroups submitted to ethanol or control treatment. After that, these rats were trained in the radial maze task for the first time. No significant difference was found between the reference memory performance of the untreated subgroup and the treated one. These two subgroups did not significantly differ in their working memory performance either. Moreover, there were no significant differences between treated and control subjects in the following biochemical brain cortical parameters: in vitro acetylcholinesterase (AChE) activity, and stimulated acetylcholine (ACh) release. This work presents an experimental design that allows assessment of remote memory performance after ethanol chronic consumption and shows that the experimental subject is able to retain the behaviors learned 1 year before. It was concluded that chronic ethanol treatment may cause retrograde amnesia, which does not seem to be linked with a cortical cholinergic deficit. PMID:9632211

  17. Targeting the Cholinergic System for Neuroprotection and/or Enhancement of Functional Recovery Following Neurotrauma.

    PubMed

    Huber, Kathleen B G; Uteshev, Victor V; Pauly, James R

    2016-01-01

    Development of novel pharmacotherapies for the treatment of traumatic injury to the nervous system has been ongoing for over 40 years. Despite many promising compounds discovered using animal models, no treatments have successfully translated into the clinic. The central dogma in this field is that brain trauma initiates a complex chain of biochemical events leading to secondary brain damage and sustained neurological deficits. The delayed secondary brain injury is likely to result from multiple insults including oxidative stress, mitochondrial dysfunction, breakdown of the blood brain barrier, dysregulated release of glutamate, pro-inflammatory cytokines, and other mediators. However, therapies targeting these systems have generally met with failure in clinical trials. The purpose of this review is to summarize the models used for preclinical neurotrauma research, provide a brief overview of previous failed clinical trials in head and spinal cord injury, and finally, to review involvement of the cholinergic system and discuss implications for future research. Possibilities and pitfalls of targeting the cholinergic system for neuroprotection and/or enhancement of functional recovery are also discussed. PMID:26818862

  18. Stress, chemical defense agents, and cholinergic receptors. Midterm report, 1 November 1987-31 July 1989

    SciTech Connect

    Lane, J.D.

    1989-11-30

    This project is assessing the affects of exposure to a chemical defense agent on anxiety and stress, by using rat models of anxiety (conditioned emotional response (CER); conditioned suppression) and unconditioned non-specific stres (exposure to footshock). The specific experiments determined the plasticity of muscarinic cholinergic binding sites in the central nervous system. The neuroanatomical locus and neuropharmacological profile of changes in binding sites were assessed in brain areas enriched in cholinergic markers. Acetylcholine turnover was measured to determine if the receptor response is compensatory or independent. The effects of acute exposure to doses of a chemical defense agent (soman--XGD) on lethality and behaviors were examined. The experiments involved training and conditioning adult rats to CER using standard operant/respondent techniques. The binding of radiolabelled ligand was studied in vitro using brain membranes and tissue sections (autoradiography). The major findings are that CER produces increases in acetylcholine turnover in brain areas involved in anxiety, and that primarily post-synaptic M1 receptors compensatorly decrease in response. These neurochemical phenomena are directly correlated with several behaviors, including onset and extinction of CER and non-specific stress. Followup experiments have been designed to test the interaction of CER, XGD and neurochemistry.

  19. Evidence for Classical Cholinergic Toxicity Associated with Selective Activation of M1 Muscarinic Receptors.

    PubMed

    Alt, Andrew; Pendri, Annapurna; Bertekap, Robert L; Li, Guo; Benitex, Yulia; Nophsker, Michelle; Rockwell, Kristin L; Burford, Neil T; Sum, Chi Shing; Chen, Jing; Herbst, John J; Ferrante, Meredith; Hendricson, Adam; Cvijic, Mary Ellen; Westphal, Ryan S; O'Connell, Jonathan; Banks, Martyn; Zhang, Litao; Gentles, Robert G; Jenkins, Susan; Loy, James; Macor, John E

    2016-02-01

    The muscarinic acetylcholine receptor subtype 1 (M1) receptors play an important role in cognition and memory, and are considered to be attractive targets for the development of novel medications to treat cognitive impairments seen in schizophrenia and Alzheimer's disease. Indeed, the M1 agonist xanomeline has been shown to produce beneficial cognitive effects in both Alzheimer's disease and schizophrenia patients. Unfortunately, the therapeutic utility of xanomeline was limited by cholinergic side effects (sweating, salivation, gastrointestinal distress), which are believed to result from nonselective activation of other muscarinic receptor subtypes such as M2 and M3. Therefore, drug discovery efforts targeting the M1 receptor have focused on the discovery of compounds with improved selectivity profiles. Recently, allosteric M1 receptor ligands have been described, which exhibit excellent selectivity for M1 over other muscarinic receptor subtypes. In the current study, the following three compounds with mixed agonist/positive allosteric modulator activities that are highly functionally selective for the M1 receptor were tested in rats, dogs, and cynomologous monkeys: (3-((1S,2S)-2-hydrocyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one; 1-((4-cyano-4-(pyridin-2-yl)piperidin-1-yl)methyl)-4-oxo-4H-quinolizine-3-carboxylic acid; and (R)-ethyl 3-(2-methylbenzamido)-[1,4'-bipiperidine]-1'-carboxylate). Despite their selectivity for the M1 receptor, all three compounds elicited cholinergic side effects such as salivation, diarrhea, and emesis. These effects could not be explained by activity at other muscarinic receptor subtypes, or by activity at other receptors tested. Together, these results suggest that activation of M1 receptors alone is sufficient to produce unwanted cholinergic side effects such as those seen with xanomeline. This has important implications for the development of M1 receptor-targeted therapeutics since it

  20. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits.

    PubMed

    Paolone, Giovanna; Mallory, Caitlin S; Koshy Cherian, Ajeesh; Miller, Thomas R; Blakely, Randy D; Sarter, Martin

    2013-12-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/- mice. Additionally, CHT+/- mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/- mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/- cholinergic terminals. Further analyses of molecular and functional compensations in the CHT+/- model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders. PMID:23958450

  1. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits

    PubMed Central

    Cherian, Ajeesh Koshy; Miller, Thomas R.; Blakely, Randy D.; Sarter, Martin

    2013-01-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/− mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/− mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/− mice. Additionally, CHT+/− mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/− mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/− cholinergic terminals. Further analyses of molecular and functional compensations in the CHT +/− model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders. PMID:23958450

  2. Striatal cholinergic interneuron regulation and circuit effects

    PubMed Central

    Lim, Sean Austin O.; Kang, Un Jung; McGehee, Daniel S.

    2014-01-01

    The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1–2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction. PMID:25374536

  3. Intrinsic Cholinergic Neurons in the Hippocampus: Fact or Artifact?

    PubMed Central

    Blusztajn, Jan Krzysztof; Rinnofner, Jasmine

    2016-01-01

    It is generally agreed that hippocampal acetylcholine (ACh) is synthesized and released exclusively from the terminals of the long-axon afferents whose cell bodies reside in the medial septum and diagonal band. The search for intrinsic cholinergic neurons in the hippocampus has a long history; however evidence for the existence of these neurons has been inconsistent, with most investigators failing to detect them using in situ hybridization or immunohistochemical staining of the cholinergic markers, choline acetyltransferase (ChAT) or vesicular acetylcholine transporter (VAChT). Advances in the use of bacterial artificial chromosome (BAC) transgenic mice expressing a reporter protein under the control of the genomic elements of the Chat gene (Chat-BAC mice) have facilitated studies of cholinergic neurons. Such mice show robust and faithful expression of the reporter proteins in all known cholinergic cell populations. The availability of the Chat-BAC mice re-ignited interest in hippocampal cholinergic interneurons, because a small number of such reporter-expressing cells is frequently observed in the hippocampus of these mice. However, to date, attempts to confirm that these neurons co-express the endogenous cholinergic marker ChAT, or release ACh, have been unsuccessful. Without such confirmatory evidence it is best to conclude that there are no cholinergic neurons in the hippocampus. Similar considerations apply to other BAC transgenic lines, whose utility as a discovery tool for cell populations heretofore not known to express the genes of interest encoded by the BACs, must be validated by methods that detect expression of the endogenous genes. PMID:27014052

  4. Cholinergic Functioning in Stimulant Addiction: Implications for Medications Development

    PubMed Central

    Sofuoglu, Mehmet; Mooney, Marc

    2009-01-01

    Acetylcholine (ACh), the first neurotransmitter discovered, participates in many CNS functions including sensory and motor processing, sleep, nociception, mood, stress response, attention, arousal, memory, motivation and reward. These diverse cholinergic effects are mediated by nicotinic (nAChR) and muscarinic (mAChR) type cholinergic receptors. The goal of this review is to synthesize a growing literature that supports the potential role of ACh as a treatment target for stimulant addiction. ACh interacts with the dopaminergic reward system in the ventral tegmental area (VTA), nucleus accumbens (NAc) and prefrontal cortex (PFC). In the VTA, both nAChR and mAChR stimulate the dopaminergic system. In the NAc, cholinergic interneurons integrate cortical and subcortical information related to reward. In the PFC, the cholinergic system contributes to the cognitive aspects of addiction. Preclinical studies support a facilitative role of nicotinic agonists in the development of stimulant addiction. Muscarinic agonists seem to have an inhibitory role depending on the subtype of mAChR. In human studies acetylcholine esterase (AChE) inhibitors, which increase synaptic ACh levels, have shown promise for the treatment of stimulant addiction. Further studies testing the efficacy of cholinergic medications for stimulant addiction are warranted. PMID:19845415

  5. Endogenous Cholinergic Neurotransmission Contributes to Behavioral Sensitization to Morphine

    PubMed Central

    Bajic, Dusica; Soiza-Reilly, Mariano; Spalding, Allegra L.; Berde, Charles B.; Commons, Kathryn G.

    2015-01-01

    Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg. PMID:25647082

  6. Astrocyte Intermediaries of Septal Cholinergic Modulation in the Hippocampus.

    PubMed

    Pabst, Milan; Braganza, Oliver; Dannenberg, Holger; Hu, Wen; Pothmann, Leonie; Rosen, Jurij; Mody, Istvan; van Loo, Karen; Deisseroth, Karl; Becker, Albert J; Schoch, Susanne; Beck, Heinz

    2016-05-18

    The neurotransmitter acetylcholine, derived from the medial septum/diagonal band of Broca complex, has been accorded an important role in hippocampal learning and memory processes. However, the precise mechanisms whereby acetylcholine released from septohippocampal cholinergic neurons acts to modulate hippocampal microcircuits remain unknown. Here, we show that acetylcholine release from cholinergic septohippocampal projections causes a long-lasting GABAergic inhibition of hippocampal dentate granule cells in vivo and in vitro. This inhibition is caused by cholinergic activation of hilar astrocytes, which provide glutamatergic excitation of hilar inhibitory interneurons. These results demonstrate that acetylcholine release can cause slow inhibition of principal neuronal activity via astrocyte intermediaries. PMID:27161528

  7. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees

    PubMed Central

    Palmer, Mary J.; Moffat, Christopher; Saranzewa, Nastja; Harvey, Jenni; Wright, Geraldine A.; Connolly, Christopher N.

    2013-01-01

    Pesticides that target cholinergic neurotransmission are highly effective, but their use has been implicated in insect pollinator population decline. Honeybees are exposed to two widely used classes of cholinergic pesticide: neonicotinoids (nicotinic receptor agonists) and organophosphate miticides (acetylcholinesterase inhibitors). Although sublethal levels of neonicotinoids are known to disrupt honeybee learning and behaviour, the neurophysiological basis of these effects has not been shown. Here, using recordings from mushroom body Kenyon cells in acutely isolated honeybee brain, we show that the neonicotinoids imidacloprid and clothianidin, and the organophosphate miticide coumaphos oxon, cause a depolarization-block of neuronal firing and inhibit nicotinic responses. These effects are observed at concentrations that are encountered by foraging honeybees and within the hive, and are additive with combined application. Our findings demonstrate a neuronal mechanism that may account for the cognitive impairments caused by neonicotinoids, and predict that exposure to multiple pesticides that target cholinergic signalling will cause enhanced toxicity to pollinators. PMID:23535655

  8. Hemicholinium mustard derivatives: preliminary assessment of cholinergic neurotoxicity.

    PubMed

    Tagari, P C; Maysinger, D; Cuello, A C

    1986-07-01

    We have attempted to design novel neurotoxins based on the use of hemicholinium derivatives. Three compounds were tested for their neurochemical effects on cholinergic, gabaergic and catecholaminergic markers in the hippocampus, striatum and cortex following intracerebroventricular administration. The effects were compared with those of the non-specific alkylating agent (nitrogen mustard) and the previously reported ethylcholine mustard aziridinium ion (AF 64A). The results indicate that only one of these derivatives (HcM-9) exhibits comparable neurotoxic effects on cholinergic markers with a similar pattern of specificity to that of AF 64A. In addition, HcM-9 showed less overall toxicity, this being reflected in a higher survival rate. The present results indicate that hemicholinium derivatives could be good substrates for further molecular modifications, thus a step towards the design of a more specific cholinergic neurotoxin. PMID:3748277

  9. Cholinergic modulation of food and drug satiety and withdrawal.

    PubMed

    Avena, Nicole M; Rada, Pedro V

    2012-06-01

    Although they comprise only a small portion of the neurons in the region, cholinergic interneurons in the dorsal striatum appear to play an important role in the regulation of various appetitive behaviors, in part, through their interactions with mesolimbic dopamine (DA) systems. In this review, we describe studies that suggest that the activity of cholinergic interneurons in the nucleus accumbens (NAc) and cholinergic projections to the ventral tegmental area (VTA) affect feeding behavior. In vivo microdialysis studies in rats have revealed that the cessation of a meal is associated with a rise in acetylcholine (ACh) levels in the NAc. ACh activation will suppress feeding, and this is also associated with an increase in synaptic accumulation of ACh. Further, we discuss how, in addition to their role in the ending of a meal, cholinergic interneurons in the NAc play an integral role in the cessation of drug use. Another cholinergic system involved in different aspects of appetitive behavior is the projection from the pedunculpontine nuclei directly to the VTA. Activation of this system enhances behaviors through activation of the mesolimbic DA system, and antagonism of ACh receptors in the VTA can reduce drug self-administration. Finally, we discuss the role of accumbens ACh in both drug and palatable food withdrawal. Studies reveal that accumbens ACh is increased during withdrawal from several different drugs of abuse (including cocaine, nicotine and morphine). This rise in extracellular levels of ACh, coupled with a decrease in extracellular levels of DA, is believed to contribute to an aversive state, which can manifest as behaviors associated with drug withdrawal. This theory has also been applied to studies of overeating and/or "food addiction," and the findings suggest a similar imbalance in DA/ACh levels, which is associated with behavioral indications of drug-like withdrawal. In summary, cholinergic neurons play an important role in the modulation of both

  10. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells.

    PubMed Central

    Shirvan, M H; Pollard, H B; Heldman, E

    1991-01-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, we found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca2+ dependent, and both agonists induced 45Ca2+ uptake. Equilibrium binding studies showed that [3H]Oxo-M bound to chromaffin cell membranes with a Kd value of 3.08 x 10(-8) M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. We propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features. Images PMID:2052567

  11. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells

    SciTech Connect

    Shirvan, M.H.; Pollard, H.B.; Heldman, E. )

    1991-06-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, the authors found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca{sup 2+} dependent, and both agonists induced {sup 45}Ca{sup 2+} uptake. Equilibrium binding studies showed that ({sup 3}H)Oxo-M bound to chromaffin cell membranes with a K{sub d} value of 3.08 {times} 10{sup {minus}8}M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. They propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.

  12. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    SciTech Connect

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. )

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  13. Cholinergic modulation of event-related oscillations (ERO).

    PubMed

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N; Havstad, James; Ehlers, Cindy L

    2014-04-22

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  14. Mitochondrial Transplantation Attenuates Airway Hyperresponsiveness by Inhibition of Cholinergic Hyperactivity

    PubMed Central

    Su, Yuan; Zhu, Liping; Yu, Xiangyuan; Cai, Lei; Lu, Yankai; Zhang, Jiwei; Li, Tongfei; Li, Jiansha; Xia, Jingyan; Xu, Feng; Hu, Qinghua

    2016-01-01

    Increased cholinergic activity has been highlighted in the pathogenesis of airway hyperresponsiveness, and alternations of mitochondrial structure and function appear to be involved in many lung diseases including airway hyperresponsiveness. It is crucial to clarify the cause-effect association between mitochondrial dysfunction and cholinergic hyperactivity in the pathogenesis of airway hyperresponsiveness. Male SD rats and cultured airway epithelial cells were exposed to cigarette smoke plus lipopolysaccharide administration; mitochondria isolated from airway epithelium were delivered into epithelial cells in vitro and in vivo. Both the cigarette smoke plus lipopolysaccharide-induced cholinergic hyperactivity in vitro and the airway hyperresponsiveness to acetylcholine in vivo were reversed by the transplantation of exogenous mitochondria. The rescue effects of exogenous mitochondria were imitated by the elimination of excessive reactive oxygen species or blockage of muscarinic M3 receptor, but inhibited by M receptor enhancer. Mitochondrial transplantation effectively attenuates cigarette smoke plus lipopolysaccharide-stimulated airway hyperresponsiveness through the inhibition of ROS-enhanced epithelial cholinergic hyperactivity. PMID:27279915

  15. IL-4 Induces Cholinergic Differentiation of Retinal Cells In Vitro.

    PubMed

    Granja, Marcelo Gomes; Braga, Luis Eduardo Gomes; Carpi-Santos, Raul; de Araujo-Martins, Leandro; Nunes-Tavares, Nilson; Calaza, Karin C; Dos Santos, Aline Araujo; Giestal-de-Araujo, Elizabeth

    2015-07-01

    Interleukin-4 (IL-4) is a pleiotropic cytokine that regulates several phenomena, among them survival and differentiation of neuronal and glial cells. The aim of this work was to investigate the effect of IL-4 on the cholinergic differentiation of neonatal rat retinal cells in vitro, evaluating its effect on the levels of cholinergic markers (CHT1-high-affinity choline transporter; VAChT-vesicular acetylcholine transporter, ChAT-choline acetyltransferase, AChE-acetylcholinesterase), muscarinic receptors, and on the signaling pathways involved. Lister Hooded rat pups were used in postnatal days 0-2 (P0-P2). Our results show that IL-4 treatment (50 U/mL) for 48 h increases the levels of the cholinergic transporters VAChT and CHT1, the acetylcholinesterase activity, and the number of ChAT-positive cells. It also induces changes in muscarinic receptor levels, leading to a small decrease in M1 levels and a significant increase in M3 and M5 levels after 48 h of treatment. We also showed that IL-4 effect on M3 receptors is dependent on type I IL-4 receptor and on an increase in NFκB phosphorylation. These results indicate that IL-4 stimulates cholinergic differentiation of retinal cells. PMID:25682112

  16. Basal ganglia cholinergic and dopaminergic function in progressive supranuclear palsy.

    PubMed

    Warren, Naomi M; Piggott, Margaret A; Greally, Elizabeth; Lake, Michelle; Lees, Andrew J; Burn, David J

    2007-08-15

    Progressive Supranuclear Palsy (PSP) is a progressive neurodegenerative disorder. In contrast to Parkinson's disease (PD) and dementia with Lewy bodies (DLB), replacement therapy with dopaminergic and cholinergic agents in PSP has been disappointing. The neurochemical basis for this is unclear. Our objective was to measure dopaminergic and cholinergic receptors in the basal ganglia of PSP and control brains. We measured, autoradiographically, dopaminergic (dopamine transporter, 125I PE2I and dopamine D2 receptors, 125I epidepride) and cholinergic (nicotinic alpha4beta2 receptors, 125I 5IA85380 and muscarinic M1 receptors, 3H pirenzepine) parameters in the striatum and pallidum of pathologically confirmed PSP cases (n=15) and controls (n=32). In PSP, there was a marked loss of dopamine transporter and nicotinic alpha4beta2 binding in the striatum and pallidum, consistent with loss of nigrostriatal neurones. Striatal D2 receptors were increased in the caudate and muscarinic M1 receptors were unchanged compared with controls. These results do not account for the poor response to dopaminergic and cholinergic replacement therapies in PSP, and suggest relative preservation of postsynaptic striatal projection neurones bearing D2/M1 receptors. PMID:17534953

  17. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  18. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited

    PubMed Central

    van Enkhuizen, Jordy; Janowsky, David S; Olivier, Berend; Minassian, Arpi; Perry, William; Young, Jared W; Geyer, Mark A

    2014-01-01

    Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research. PMID:25107282

  19. Cholinergic modulation of event-related oscillations (ERO)

    PubMed Central

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N.; Havstad, James; Ehlers, Cindy L.

    2014-01-01

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time–frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx–Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC–Amyg and Fctx–DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  20. Cholinergic and perfusion brain networks in Parkinson disease dementia

    PubMed Central

    McKeith, Ian G.; Burn, David J.; Wyper, David J.; O'Brien, John T.; Taylor, John-Paul

    2016-01-01

    Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). Results: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor–naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition. PMID:27306636

  1. Immunization Against Specific Fragments of Neurotrophin p75 Receptor Protects Forebrain Cholinergic Neurons in the Olfactory Bulbectomized Mice

    PubMed Central

    Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Nesterova, Inna; Tatarnikova, Olga; Nekrasov, Pavel; Samokhin, Alexander; Deev, Alexander; Sengpiel, Frank; Koroev, Dmitry; Volpina, Olga

    2016-01-01

    Alzheimer’s disease (AD) is characterized by progressive cognitive impairment associated with marked cholinergic neuron loss and amyloid-β (Aβ) peptide accumulation in the brain. The cytotoxicity in AD is mediated, at least in part, by Aβ binding with the extracellular domain of the p75 neurotrophin receptor (p75NTR), localized predominantly in the membranes of acetylcholine-producing neurons in the basal forebrain. Hypothesizing that an open unstructured loop of p75NTR might be the effective site for Aβ binding, we have immunized both olfactory bulbectomized (OBX) and sham-operated (SO) mice (n = 82 and 49, respectively) with synthetic peptides, structurally similar to different parts of the loops, aiming to block them by specific antibodies. OBX-mice have been shown in previous studies, and confirmed in the present one, to be characterized by typical behavioral, morphological, and biochemical AD hallmarks, including cholinergic deficits in forebrain neurons. Immunization of OBX- or SO-mice with KLH conjugated fragments of p75NTR induced high titers of specific serum antibodies for each of nine chosen fragments. However, maximal protective effects on spatial memory, evaluated in a Morris water maze, and on activity of choline acetyltransferase in forebrain neurons, detected by immunoreactivity to specific antibodies, were revealed only for peptides with amino acid residue sequences of 155–164 and 167–176. We conclude that the approach based on immunological blockade of specific p75NTR sites, linked with the cytotoxicity, is a useful and effective tool for study of AD-associated mechanisms and for development of highly selective therapy of cholinergic malfunctioning in AD patients. PMID:27163825

  2. The role of cholinergic anti-inflammatory pathway in acetic acid-induced colonic inflammation in the rat.

    PubMed

    Kolgazi, Meltem; Uslu, Unal; Yuksel, Meral; Velioglu-Ogunc, Ayliz; Ercan, Feriha; Alican, Inci

    2013-09-01

    The "cholinergic anti-inflammatory pathway" provides neurological modulation of cytokine synthesis to limit the magnitude of the immune response. This study aimed to evaluate the impact of the cholinergic anti-inflammatory pathway on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of acetic acid-induced colitis. Colitis was induced by intrarectal administration of 5% acetic acid (1ml) to Sprague-Dawley rats (200-250g; n=7-8 per group). Control group received an equal volume of saline intrarectally. The rats were treated with either nicotine (1mg/kg/day) or huperzine A (0.1mg/kg/day) intraperitoneally for 3 days. After decapitation, the distal colon was scored macroscopically and microscopically. Tissue samples were used for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Formation of reactive oxygen species was monitored by using chemiluminescence (CL). Nuclear factor (NF)-κB expression was evaluated in colonic samples via immunohistochemical analysis. Trunk blood was collected for the assessment of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-10, resistin and visfatin levels. Both nicotine and huperzine A reduced the extent of colonic lesions, increased colonic MDA level, high MPO activity and NF-κB expression in the colitis group. Elevation of serum IL-1β level due to colitis was also attenuated by both treatments. Additionally, huperzine A was effective to reverse colitis-induced high lucigenin-enhanced CL values and serum TNF-α levels. Colitis group revealed decreased serum visfatin levels compared to control group which was completely reversed by nicotine. In conclusion, modulation of the cholinergic system either by nicotine or ACh esterase inhibition improved acetic acid-induced colonic inflammation as confirmed by macroscopic and microscopic examination and biochemical assays. PMID:23810507

  3. Age-associated leukoaraiosis and cortical cholinergic deafferentation

    PubMed Central

    Bohnen, N I.; Müller, M L.T.M.; Kuwabara, H; Constantine, G M.; Studenski, S A.

    2009-01-01

    Objective: To investigate the relationship between age-associated MRI leukoaraiosis or white matter hyperintensities (WMH) and cortical acetylcholinesterase (AChE) activity. Background: One possible mechanism of cognitive decline in elderly individuals with leukoaraiosis is disruption of cholinergic fibers by strategically located white matter lesions. Periventricular lesions may have a higher chance of disrupting cholinergic projections compared with more superficial nonperiventricular white matter lesions because of anatomic proximity to the major cholinergic axonal projection bundles that originate from the basal forebrain. Methods: Community-dwelling, middle-aged and elderly subjects without dementia (mean age 71.0 ± 9.2 years; 55–84 years; n = 18) underwent brain MRI and AChE PET imaging. The severity of periventricular and nonperiventricular WMH on fluid-attenuated inversion recovery MRI images was scored using the semiquantitative rating scale of Scheltens et al. [11C]methyl-4-piperidinyl propionate AChE PET imaging was used to assess cortical AChE activity. Age-corrected Spearman partial rank correlation coefficients were calculated. Results: The severity of periventricular (R = −0.52, p = 0.04) but not nonperiventricular (R = −0.20, not significant) WMH was inversely related to global cortical AChE activity. Regional cortical cholinergic effects of periventricular WMH were most significant for the occipital lobe (R = −0.58, p = 0.02). Conclusions: The presence of periventricular but not nonperiventricular white matter hyperintensities (WMH) is significantly associated with lower cortical cholinergic activity. These findings support a regionally specific disruption of cholinergic projection fibers by WMH. GLOSSARY AChE = acetylcholinesterase; AD = Alzheimer disease; CADASIL = cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CPT-RT = Conners continuous performance test reaction time; CPT-SE = Conners

  4. Cholinergic modulation of food and drug satiety and withdrawal

    PubMed Central

    Avena, Nicole M.; Rada, Pedro V.

    2015-01-01

    Although they comprise only a small portion of the neurons in the region, cholinergic interneurons in the dorsal striatum appear to play an important role in the regulation of various appetitive behaviors, in part, through their interactions with mesolimbic dopamine (DA) systems. In this review, we describe studies that suggest that the activity of cholinergic interneurons in the nucleus accumbens (NAc) and cholinergic projections to the ventral tegmental area (VTA) affect feeding behavior. In vivo microdialysis studies in rats have revealed that the cessation of a meal is associated with a rise in acetylcholine (ACh) levels in the NAc. ACh activation will suppress feeding, and this is also associated with an increase in synaptic accumulation of ACh. Further, we discuss how, in addition to their role in the ending of a meal, cholinergic interneurons in the NAc play an integral role in the cessation of drug use. Another cholinergic system involved in different aspects of appetitive behavior is the projection from the pedunculpontine nuclei directly to the VTA. Activation of this system enhances behaviors through activation of the mesolimbic DA system, and antagonism of ACh receptors in the VTA can reduce drug self-administration. Finally, we discuss the role of accumbens ACh in both drug and palatable food withdrawal. Studies reveal that accumbens ACh is increased during withdrawal from several different drugs of abuse (including cocaine, nicotine and morphine). This rise in extracellular levels of ACh, coupled with a decrease in extracellular levels of DA, is believed to contribute to an aversive state, which can manifest as behaviors associated with drug withdrawal. This theory has also been applied to studies of overeating and/or “food addiction,” and the findings suggest a similar imbalance in DA/ACh levels, which is associated with behavioral indications of drug-like withdrawal. In summary, cholinergic neurons play an important role in the modulation of

  5. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.

    PubMed

    Jordan, Larry M; McVagh, J R; Noga, B R; Cabaj, A M; Majczyński, H; Sławińska, Urszula; Provencher, J; Leblond, H; Rossignol, Serge

    2014-01-01

    Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a "hyper-cholinergic" state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments

  6. Muscarinic cholinergic inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and CaS transport in guinea pig ventricles

    SciTech Connect

    Lindemann, J.P.; Watanabe, A.M.

    1985-10-25

    The effects of muscarinic cholinergic stimulation on beta-adrenergic induced increases in phospholamban phosphorylation and CaS transport were studied in intact myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with TSPi, after which membrane vesicles were isolated from individual hearts. Isoproterenol produced reversible increases in TSP incorporation into phospholamban. Associated with the increases in TSP incorporation were increases in the initial rate of phosphate-facilitated CaS uptake measured in aliquots of the same membrane vesicles isolated from the perfused hearts. The increases in TSP incorporation and calcium transport were significantly attenuated by the simultaneous administration of acetylcholine. Acetylcholine also attenuated increases in phospholamban phosphorylation and CaS uptake produced by the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin. The contractile effects of all agents which increased cAMP levels (increased contractility and a reduction in the t1/2 of relaxation) were also attenuated by acetylcholine. The inhibitory effects of acetylcholine were associated with attenuation of the increases in cAMP levels produced by isoproterenol and isobutylmethylxanthine but not by forskolin. Acetylcholine also increased the rate of reversal of the functional and biochemical effects of isoproterenol by propranolol without affecting cAMP levels. These results suggest that cholinergic agonists inhibit the functional effects of beta-adrenergic stimulation in part by inhibition of phospholamban phosphorylation. This inhibition may be mediated by two potential mechanisms: inhibition of beta-adrenergic activation of adenylate cyclase and stimulation of dephosphorylation.

  7. Neurocircuitry of the nicotinic cholinergic system

    PubMed Central

    Bertrand, Daniel

    2010-01-01

    Continuing to discover how the brain works is one of the great challenges ahead of us. Although understanding the brain anatomy and its functional organization provided a first and indispensable foundation, it became clear that a static view was insufficient. To understand the complexity of neuronal communication, it is necessary to examine the chemical nature of the neurotransmission and, using the example of the acetylcholine receptors, follow the different layers of networks that can be distinguished. The natural alkaloid nicotine contained in tobacco leaves acts as an agonist with a subclass of acetylcholine receptors, and provides an interesting tool to approach brain functions. Analysis of the nicotinic acetylcholine receptors, which are ligand gated channels, revealed that these receptors are expressed at different critical locations on the neurons including the synaptic boutons, neurites, cell bodies, and even on the axons. These receptors can modulate the activity at the microcircuit synaptic level, in the cell processing of information, and, by acting on the velocity of action potential, the synchrony of communication between brain areas. These actions at multiple levels of brain organization provide an example of the complexity of brain neurocircuitry and an illustration of the relevance of this knowledge for psychiatry. PMID:21319492

  8. Possible influence of AMPD1 on cholinergic neurotransmission and sleep.

    PubMed

    Buyse, Bertien; Van Damme, Philip; Belge, Catharina; Testelmans, Dries

    2016-02-01

    It is known that adenosine excess due to monophosphate deaminase deficiency (AMPD1) can be linked to muscle problems. Recently, Perumal et al., 2014 reported a first case of possible impact of AMPD1 on sleep, REM sleep and cholinergic neurotransmission. We report a second patient with similar sleep complaints: long sleep duration with residual daytime sleepiness and a need to sleep after exercise. On polysomnography we observed a long sleep duration, with high sleep efficiency and a SOREMP; on MSLT a shortened sleep latency and 4 SOREMPS were observed. Frequency power spectral heart rate analysis during slow wave sleep, REM sleep and wakefulness revealed an increased parasympathetic tone. In conclusion, AMPD1 could have a profound influence on cholinergic neurotransmission and sleep; further studies are mandatory. PMID:26439223

  9. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    PubMed

    de Kloet, Sybren F; Mansvelder, Huibert D; De Vries, Taco J

    2015-10-15

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit. PMID:26208783

  10. Genetically Induced Cholinergic Hyper-Innervation Enhances Taste Learning

    PubMed Central

    Neseliler, Selin; Narayanan, Darshana; Fortis-Santiago, Yaihara; Katz, Donald B.; Birren, Susan J.

    2011-01-01

    Acute inhibition of acetylcholine (ACh) has been shown to impair many forms of simple learning, and notably conditioned taste aversion (CTA). The most adhered-to theory that has emerged as a result of this work – that ACh increases a taste’s perceived novelty, and thereby its associability – would be further strengthened by evidence showing that enhanced cholinergic function improves learning above normal levels. Experimental testing of this corollary hypothesis has been limited, however, by side-effects of pharmacological ACh agonism and by the absence of a model that achieves long-term increases in cholinergic signaling. Here, we present this further test of the ACh hypothesis, making use of mice lacking the p75 pan-neurotrophin receptor gene, which show a resultant over-abundance of cholinergic neurons in sub-regions of the basal forebrain (BF). We first demonstrate that the p75−/− abnormality directly affects portions of the CTA circuit, locating mouse gustatory cortex (GC) using a functional assay and then using immunohistochemisty to demonstrate cholinergic hyper-innervation of GC in the mutant mice – hyper-innervation that is unaccompanied by changes in cell numbers or compensatory changes in muscarinic receptor densities. We then demonstrate that both p75−/− and wild-type (WT) mice learn robust CTAs, which extinguish more slowly in the mutants. Further testing to distinguish effects on learning from alterations in memory retention demonstrate that p75−/− mice do in fact learn stronger CTAs than WT mice. These data provide novel evidence for the hypothesis linking ACh and taste learning. PMID:22144949

  11. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  12. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling

    PubMed Central

    Chuhma, Nao; Mingote, Susana; Moore, Holly; Rayport, Stephen

    2014-01-01

    Summary Midbrain dopamine neurons fire in bursts conveying salient information. Bursts are associated with pauses in tonic firing of striatal cholinergic interneurons. While the reciprocal balance of dopamine and acetylcholine in the striatum is well known, how dopamine neurons control cholinergic neurons has not been elucidated. Here we show that dopamine neurons make direct fast dopaminergic and glutamatergic connections with cholinergic interneurons, with regional heterogeneity. Dopamine neurons drive a burst-pause firing sequence in cholinergic interneurons in the medial shell of the nucleus accumbens, mixed actions in the accumbens core, and a pause in the dorsal striatum. This heterogeneity is due mainly to regional variation in dopamine-neuron glutamate cotransmission. A single dose of amphetamine attenuates dopamine neuron connections to cholinergic interneurons with dose-dependent regional specificity. Overall, the present data indicate that dopamine neurons control striatal circuit function via discrete, plastic connections with cholinergic interneurons. PMID:24559678

  13. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  14. Dysfunctional penile cholinergic nerves in diabetic impotent men

    SciTech Connect

    Blanco, R.; Saenz de Tejada, I.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1990-08-01

    Impotence in the diabetic man may be secondary to a neuropathic condition of the autonomic penile nerves. The relationship between autonomic neuropathy and impotence in diabetes was studied in human corporeal tissue obtained during implantation of a penile prosthesis in 19 impotent diabetic and 15 nondiabetic patients. The functional status of penile cholinergic nerves was assessed by determining their ability to accumulate tritiated choline (34), and synthesize (34) and release (19) tritiated-acetylcholine after incubation of corporeal tissue with tritiated-choline (34). Tritiated-choline accumulation, and tritiated-acetylcholine synthesis and release were significantly reduced in the corporeal tissue from diabetic patients compared to that from nondiabetic patients (p less than 0.05). The impairment in acetylcholine synthesis worsened with the duration of diabetes (p less than 0.025). No differences in the parameters measured were found between insulin-dependent (11) and noninsulin-dependent (8) diabetic patients. The ability of the cholinergic nerves to synthesize acetylcholine could not be predicted clinically with sensory vibration perception threshold testing. It is concluded that there is a functional penile neuropathic condition of the cholinergic nerves in the corpus cavernosum of diabetic impotent patients that may be responsible for the erectile dysfunction.

  15. Cholinergic system during the progression of Alzheimer's disease: therapeutic implications

    PubMed Central

    Mufson, Elliott J; Counts, Scott E; Perez, Sylvia E; Ginsberg, Stephen D

    2009-01-01

    Alzheimer's disease (AD) is characterized by a progressive phenotypic downregulation of markers within cholinergic basal forebrain (CBF) neurons, frank CBF cell loss and reduced cortical choline acetyltransferase activity associated with cognitive decline. Delaying CBF neurodegeneration or minimizing its consequences is the mechanism of action for most currently available drug treatments for cognitive dysfunction in AD. Growing evidence suggests that imbalances in the expression of NGF, its precursor proNGF and the high (TrkA) and low (p75NTR) affinity NGF receptors are crucial factors underlying CBF dysfunction in AD. Drugs that maintain a homeostatic balance between TrkA and p75NTR may slow the onset of AD. A NGF gene therapy trial reduced cognitive decline and stimulated cholinergic fiber growth in humans with mild AD. Drugs treating the multiple pathologies and clinical symptoms in AD (e.g., M1 cholinoceptor and/or galaninergic drugs) should be considered for a more comprehensive treatment approach for cholinergic dysfunction. PMID:18986241

  16. Inhibition of airway surface fluid absorption by cholinergic stimulation.

    PubMed

    Joo, Nam Soo; Krouse, Mauri E; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20-70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  17. Distribution of cholinergic cells in guinea pig brainstem

    PubMed Central

    Motts, S.D.; Slusarczyk, A.S.; Sowick, C.S.; Schofield, B.R.

    2008-01-01

    We used an antibody to choline acetyltransferase (ChAT) to label cholinergic cells in guinea pig brainstem. ChAT-immunoreactive (ChAT-IR) cells comprise several prominent groups, including the pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, and parabigeminal nucleus, as well as the cranial nerve somatic motor and parasympathetic nuclei. Additional concentrations are present in the parabrachial nuclei and superior colliculus. Among auditory nuclei, the majority of ChAT-IR cells are in the superior olive, particularly in and around the lateral superior olive, the ventral nucleus of the trapezoid body and the superior paraolivary nucleus. A discrete group of ChAT-IR cells is located in the sagulum, and additional cells are scattered in the nucleus of the brachium of the inferior colliculus. A group of ChAT-IR cells lies dorsal to the dorsal nucleus of the lateral lemniscus. A few ChAT-IR cells are found in the cochlear nucleus and the ventral nucleus of the lateral lemniscus. The distribution of cholinergic cells in guinea pigs is largely similar to that of other species; differences occur mainly in cell groups that have few ChAT-IR cells. The results provide a basis for further studies to characterize the connections of these cholinergic groups. PMID:18222049

  18. Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators

    PubMed Central

    Whittington, Miles A.; Kopell, Nancy J.

    2015-01-01

    The dynamical behavior of the cortex is extremely complex, with different areas and even different layers of a cortical column displaying different temporal patterns. A major open question is how the signals from different layers and different brain regions are coordinated in a flexible manner to support function. Here, we considered interactions between primary auditory cortex and adjacent association cortex. Using a biophysically based model, we show how top-down signals in the beta and gamma regimes can interact with a bottom-up gamma rhythm to provide regulation of signals between the cortical areas and among layers. The flow of signals depends on cholinergic modulation: with only glutamatergic drive, we show that top-down gamma rhythms may block sensory signals. In the presence of cholinergic drive, top-down beta rhythms can lift this blockade and allow signals to flow reciprocally between primary sensory and parietal cortex. SIGNIFICANCE STATEMENT Flexible coordination of multiple cortical areas is critical for complex cognitive functions, but how this is accomplished is not understood. Using computational models, we studied the interactions between primary auditory cortex (A1) and association cortex (Par2). Our model is capable of replicating interaction patterns observed in vitro and the simulations predict that the coordination between top-down gamma and beta rhythms is central to the gating process regulating bottom-up sensory signaling projected from A1 to Par2 and that cholinergic modulation allows this coordination to occur. PMID:26558772

  19. A cholinergic hypothesis of the unconscious in affective disorders

    PubMed Central

    Vakalopoulos, Costa

    2013-01-01

    The interactions between distinct pharmacological systems are proposed as a key dynamic in the formation of unconscious memories underlying rumination and mood disorder, but also reflect the plastic capacity of neural networks that can aid recovery. An inverse and reciprocal relationship is postulated between cholinergic and monoaminergic receptor subtypes. M1-type muscarinic receptor transduction facilitates encoding of unconscious, prepotent behavioral repertoires at the core of affective disorders and ADHD. Behavioral adaptation to new contingencies is mediated by the classic prototype receptor: 5-HT1A (Gi/o) and its modulation of M1-plasticity. Reversal of learning is dependent on increased phasic activation of midbrain monoaminergic nuclei and is a function of hippocampal theta. Acquired hippocampal dysfunction due to abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis predicts deficits in hippocampal-dependent memory and executive function and further impairments to cognitive inhibition. Encoding of explicit memories is mediated by Gq/11 and Gs signaling of monoamines only. A role is proposed for the phasic activation of the basal forebrain cholinergic nucleus by cortical projections from the complex consisting of the insula and claustrum. Although controversial, recent studies suggest a common ontogenetic origin of the two structures and a functional coupling. Lesions of the region result in loss of motivational behavior and familiarity based judgements. A major hypothesis of the paper is that these lost faculties result indirectly, from reduced cholinergic tone. PMID:24319409

  20. Nicotinic cholinergic receptors in rat brain. Annual report No. 3, 1 May 85-30 Apr 86

    SciTech Connect

    Kellar, K.J.

    1986-05-01

    We have compared the characteristics of the recognition sites for 3(H)acetylcholine and 3H(-)nicotine in rat brain and found that the pharmacology, distribution, disulfide bond requirement, and regulation by chronic administration of nicotine and soman are identical. From these studies we conclude that 3Hacetylcholine and 3H(-)nicotine recognize the same recognition site which has the characteristics expected of a nicotinic cholinergic receptor. We have also determined that 3Hacetylcholine of high specific radioactivity (80 Ci/mmol) is an excellent ligand with which to study muscarinic receptors that have high affinity for agonists. These receptors may represent a subtype of muscarinic receptors found in brain, heart, glands, an some smooth muscle. (JS)

  1. Pain sensitivity following loss of cholinergic basal forebrain (CBF) neurons in the rat.

    PubMed

    Vierck, C J; Yezierski, R P; Wiley, R G

    2016-04-01

    Flexion/withdrawal reflexes are attenuated by spinal, intracerebroventricular (ICV) and systemic delivery of cholinergic agonists. In contrast, some affective reactions to pain are suppressed by systemic cholinergic antagonism. Attention to aversive stimulation can be impaired, as is classical conditioning of fear and anxiety to aversive stimuli and psychological activation of stress reactions that exacerbate pain. Thus, in contrast to the suppressive effects of cholinergic agonism on reflexes, pain sensitivity and affective reactions to pain could be attenuated by reduced cerebral cholinergic activation. This possibility was evaluated in the present study, using an operant test of escape from nociceptive thermal stimulation (10 °C and 44.5 °C) before and after destruction of basal forebrain cholinergic neurons. ICV injection of 192 IgG-saporin produced widespread loss of basal forebrain cholinergic innervation of the cerebral cortex and hippocampus. Post-injection, escape from thermal stimulation was decreased with no indication of recovery for upto 19 weeks. Also, the normal hyperalgesic effect of sound stress was absent after ICV 192-sap. Effects of cerebral cholinergic denervation or stress on nociceptive licking and guarding reflexes were not consistent with the effects on operant escape, highlighting the importance of evaluating pain sensitivity of laboratory animals with an operant behavioral test. These results reveal that basal forebrain cholinergic transmission participates in the cerebral processing of pain, which may be relevant to the pain sensitivity of patients with Alzheimer's disease who have prominent degeneration of basal forebrain cholinergic neurons. PMID:26812034

  2. Modified expression of peripheral blood lymphocyte muscarinic cholinergic receptors in asthmatic children.

    PubMed

    Cherubini, Emanuela; Tabbì, Luca; Scozzi, Davide; Mariotta, Salvatore; Galli, Elena; Carello, Rossella; Avitabile, Simona; Tayebati, Seyed Koshrow; Amenta, Francesco; De Vitis, Claudia; Mancini, Rita; Ricci, Alberto

    2015-07-15

    Lymphocytes possess an independent cholinergic system. We assessed the expression of muscarinic cholinergic receptors in lymphocytes from 49 asthmatic children and 10 age matched controls using Western blot. We demonstrated that CD4+ and CD8+ T cells expressed M2 and M4 muscarinic receptors which density were significantly increased in asthmatic children in comparison with controls. M2 and M4 receptor increase was strictly related with IgE and fraction of exhaled nitric oxide (FeNO) measurements and with impairment in objective measurements of airway obstruction. Increased lymphocyte muscarinic cholinergic receptor expression may concur with lung cholinergic dysfunction and with inflammatory molecular framework in asthma. PMID:26025056

  3. Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis

    PubMed Central

    Dautan, Daniel; Hacioğlu Bay, Husniye; Bolam, J. Paul; Gerdjikov, Todor V.; Mena-Segovia, Juan

    2016-01-01

    Acetylcholine in the striatal complex plays an important role in normal behavior and is affected in a number of neurological disorders. Although early studies suggested that acetylcholine in the striatum (STR) is derived almost exclusively from cholinergic interneurons (CIN), recent axonal mapping studies using conditional anterograde tracing have revealed the existence of a prominent direct cholinergic pathway from the pedunculopontine and laterodorsal tegmental nuclei to the dorsal striatum and nucleus accumbens. The identification of the importance of this pathway is essential for creating a complete model of cholinergic modulation in the striatum, and it opens the question as to whether other populations of cholinergic neurons may also contribute to such modulation. Here, using novel viral tracing technologies based on phenotype-specific fluorescent reporter expression in combination with retrograde tracing, we aimed to define other sources of cholinergic innervation of the striatum. Systematic mapping of the projections of all cholinergic structures in the brain (Ch1 to Ch8) by means of conditional tracing of cholinergic axons, revealed that the only extrinsic source of cholinergic innervation arises in the brainstem pedunculopontine and laterodorsal tegmental nuclei. Our results thus place the pedunculopontine and laterodorsal nuclei in a key and exclusive position to provide extrinsic cholinergic modulation of the activity of the striatal systems. PMID:26834571

  4. Ultrafast dynamics of ligands within heme proteins.

    PubMed

    Vos, Marten H

    2008-01-01

    Physiological bond formation and bond breaking events between proteins and ligands and their immediate consequences are difficult to synchronize and study in general. However, diatomic ligands can be photodissociated from heme, and thus in heme proteins ligand release and rebinding dynamics and trajectories have been studied on timescales of the internal vibrations of the protein that drive many biochemical reactions, and longer. The rapidly expanding number of characterized heme proteins involved in a large variety of functions allows comparative dynamics-structure-function studies. In this review, an overview is given of recent progress in this field, and in particular on initial sensing processes in signaling proteins, and on ligand and electron transfer dynamics in oxidases and cytochromes. PMID:17996720

  5. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice

    PubMed Central

    Hedrick, Tristan; Danskin, Bethanny; Larsen, Rylan S.; Ollerenshaw, Doug; Groblewski, Peter; Valley, Matthew; Olsen, Shawn; Waters, Jack

    2016-01-01

    The study of cholinergic signaling in the mammalian CNS has been greatly facilitated by the advent of mouse lines that permit the expression of reporter proteins, such as opsins, in cholinergic neurons. However, the expression of opsins could potentially perturb the physiology of opsin-expressing cholinergic neurons or mouse behavior. Indeed, the published literature includes examples of cellular and behavioral perturbations in preparations designed to drive expression of opsins in cholinergic neurons. Here we investigate expression of opsins, cellular physiology of cholinergic neurons and behavior in two mouse lines, in which channelrhodopsin-2 (ChR2) and archaerhodopsin (Arch) are expressed in cholinergic neurons using the Cre-lox system. The two mouse lines were generated by crossing ChAT-Cre mice with Cre-dependent reporter lines Ai32(ChR2-YFP) and Ai35(Arch-GFP). In most mice from these crosses, we observed expression of ChR2 and Arch in only cholinergic neurons in the basal forebrain and in other putative cholinergic neurons in the forebrain. In small numbers of mice, off-target expression occurred, in which fluorescence did not appear limited to cholinergic neurons. Whole-cell recordings from fluorescently-labeled basal forebrain neurons revealed that both proteins were functional, driving depolarization (ChR2) or hyperpolarization (Arch) upon illumination, with little effect on passive membrane properties, spiking pattern or spike waveform. Finally, performance on a behavioral discrimination task was comparable to that of wild-type mice. Our results indicate that ChAT-Cre x reporter line crosses provide a simple, effective resource for driving indicator and opsin expression in cholinergic neurons with few adverse consequences and are therefore an valuable resource for studying the cholinergic system. PMID:27243816

  6. Molecular decoys: ligand-binding recombinant proteins protect mice from curarimimetic neurotoxins.

    PubMed Central

    Gershoni, J M; Aronheim, A

    1988-01-01

    Mimic ligand-binding sites of the nicotinic acetylcholine receptor bind d-tubocurarine and alpha-bungarotoxin in vitro. Injection of such binding sites into mice could act as molecular decoys in vivo, providing protection against toxic ligands. This hypothesis of molecular "decoyance" has been tested in greater than 250 mice. Bacterially produced cholinergic binding sites provided a 2-fold increase in the survival rate of animals challenged with curarimimetic neurotoxins. Possible considerations for decoy designs and their applications are discussed. Images PMID:3375254

  7. Novel aspects of cholinergic regulation of colonic ion transport.

    PubMed

    Bader, Sandra; Diener, Martin

    2015-06-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (I sc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on I sc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport - up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors - is more complex than previously assumed. PMID:26236483

  8. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    PubMed Central

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O.; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  9. Purinergic and cholinergic components of bladder contractility and flow.

    PubMed

    Theobald, R J

    1995-01-01

    The role of ATP as a neurotransmitter/neuromodulator in the urinary tract has been the subject of much study, particularly whether ATP has a functional role in producing urine flow. Recent studies suggested significant species variation, specifically a variation between cat and other species. This study was performed to determine the in vivo response of cat urinary bladder to pelvic nerve stimulation (PNS) and to the exogenous administration of cholinergic and purinergic agents. In anesthetized cats, bladder contractions and fluid expulsion was measured in response to PNS and to the exogenous administration of cholinergic and purinergic agents. Fluid was instilled into the bladder and any fluid expelled by bladder contractions induced by PNS or exogenous agents was collected in a beaker. The volume was measured in a graduated cylinder and recorded. PNS, carbachol and APPCP produced sustained contractions with significant expulsion of fluid. ATP, ACh and hypogastric nerve stimulation did not produce any significant expulsion of fluid. Atropine, a cholinergic antagonist, inhibited PNS contractions and fluid expulsion with no effect on purinergic actions. There was a significant relationship between the magnitude of the contraction, duration of the contractions and volume of fluid expelled. The data and information from other studies, strongly suggests a functional role for ATP as a cotransmitter in the lower urinary tract different from ACh's role. ATP stimulation of a specific purinergic receptor plays a role in initiation of bladder contractions and perhaps in the initiation of urine flow from the bladder. ACh's role is functionally different and appears to be more involved in maintenance of contractile activity and flow. PMID:7830505

  10. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  11. Dietary polyunsaturated fatty acids improve cholinergic transmission in the aged brain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cholinergic theory of aging states that dysfunction of cholinergic neurons arising from the basal forebrain and terminating in the cortex and hippocampus may be involved in the cognitive decline that occurs during aging and Alzheimer’s disease. Despite years of research, pharmacological interven...

  12. COLCHICINE INDUCED DEAFFERENTATION OF THE HIPPOCAMPUS SELECTIVELY DISRUPTS CHOLINERGIC RHYTHMICAL SLOW WAVE ACTIVITY

    EPA Science Inventory

    It has been proposed that hippocampal theta rhythm (RSA)is generated by the cholinergic septo-hippocampal system. Although ablations of the septum or its projections to the hippocampus disrupt hippocampal RSA, such non-selective lesions damage both cholinergic and noncholinergic ...

  13. Down regulation of the muscarinic cholinergic receptor of the rat prostate following castration

    SciTech Connect

    Shapiro, E.; Miller, A.R.; Lepor, H.

    1985-07-01

    Prostatic secretion is dependent upon the integrity of the endocrine and autonomic nervous systems and is dramatically influenced by muscarinic cholinergic analogs. In this study, the authors have used radioligand receptor binding methods on whole tissue homogenates and slide mounted tissue sections of rat prostate to determine whether androgens regulate the density of muscarinic cholinergic receptors in the prostate. The muscarinic cholinergic receptor binding affinities (Kd) of (/sup 3/H) N-methylscopolamine in prostatic homogenates obtained from intact, castrate, and castrate rats receiving testosterone replacement (castrate + T) were similar (0.07 to 0.10 nM). The muscarinic cholinergic receptor binding capacity decreased 73 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in castrate rats to intact levels. In order to ensure that the loss of receptor density was not due to a decrease in the epithelial: stromal cell ratio, the number of muscarinic cholinergic receptors per unit area of epithelium was determined in the 3 treatment groups using autoradiography on slide mounted tissue sections. The density of muscarinic cholinergic receptors in a unit area of epithelium was decreased 91 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in the castrate rats to intact levels. The modulation of neurotransmitter receptors by steroid hormones may be a mechanism by which sex steroids regulate biological responsiveness of target tissues.

  14. Features of cholinergic cardia regulation under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Markova, Y. A.; Bondarenko, Y. I.; Bolyarskaya, V. A.; Fayfura, V. V.; Rosolovskiy, A. P.; Babinskaya, L. N.

    1980-01-01

    The features of cholinergic processes in the heart on the 4th, 8th, 16th and 30th days of hypokinesia were studied in experiments on 382 albino rats. It was shown that hypokinesia is attended by increased acetylcholine content in the atria, reduced choline acetyltransferase activity in the atria and ventricles and by increased activity of acetylcholinesterase in the ventricles and of pseudocholinesterase in both parts of the heart. The sensitivity of the heart to exogenic acetylcholine and to stimulation of the vagus nerve increases.

  15. Central cholinergic control of vasopressin release in conscious rats

    SciTech Connect

    Iitake, K.; Share, L.; Ouchi, Y.; Crofton, J.T.; Brooks, D.P.

    1986-08-01

    Intracerebroventricular (icv) administration of carbachol into conscious rats evoked a substantial increase in vasopressin secretion and blood pressure in a dose-dependent manner. These effects were blocked by pretreatment with the muscarinic blocker, atropine (10 g icv), but not by the nicotinic blocker, hexamethonium (10 g icv). Hexamethonium did, however, block the increase in blood pressure, the decrease in heart rate, and they very small elevation in the plasma vasopressin concentration induced by nicotine (10 g icv). These results indicate that stimulation of either central nicotinic or muscarinic receptors can affect the cardiovascular system and suggest that the cholinergic stimulation of vasopressin secretion may involve primarily muscarinic receptors in the conscious rat.

  16. Differential effects of ω-conotoxin GVIA on cholinergic and non-cholinergic secretomotor neurones in the guinea-pig small intestine

    PubMed Central

    Vremec, Melinda A; Bornstein, Joel C; Wright, Christine E; Humphrey, Andrea

    1997-01-01

    Ussing chambers were used to study the effects of the specific N-type Ca2+ channel antagonist, ω-conotoxin GVIA, on neurally evoked secretion across isolated submucosa/mucosa preparations from the small intestine of the guinea-pig. Cholinergic and non-cholinergic neurones were stimulated with 10 μM dimethylphenylpiperazinium (DMPP). Non-cholinergic secretomotor neurones were preferentially stimulated with 100 nM 5-hydroxytryptamine (5-HT), while cholinergic secretomotor neurones were preferentially stimulated with 3 μM 5-HT in the presence of the 5-HT2 receptor antagonist ketanserin (30 nM). ω-Conotoxin GVIA (1 nM–1 μM) depressed the secretion evoked by DMPP in a concentration-dependent manner, but a substantial residual response was observed. Hyoscine (100 nM) significantly depressed secretion evoked by DMPP, but did not prevent further depression of secretion by ω-conotoxin GVIA. The toxin was substantially more effective when the non-cholinergic secretomotor neurones were preferentially activated with 100 nM 5-HT, with a decrease in the response of more than 75% of the control value in the presence of 1 μM ω-conotoxin GVIA. ω-Conotoxin GVIA (1 μM) was relatively ineffective against secretion evoked by preferential activation of cholinergic secretomotor neurones with 3 μM 5-HT in the presence of 30 nM ketanserin, inhibiting the response by less than 33%. However, this inhibition was significant. Both 100 nM hyoscine and 300 nM tetrodotoxin abolished this effect of ω-conotoxin GVIA. It is concluded that N-type Ca2+ channels play a major role in transmitter release from non-cholinergic secretomotor neurones, but are not important for release from cholinergic secretomotor neurones in the guinea-pig small intestine. PMID:9154332

  17. A cellular and regulatory map of the cholinergic nervous system of C. elegans

    PubMed Central

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-01-01

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001 PMID:26705699

  18. Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association.

    PubMed

    Lee, Junuk; Finkelstein, Joel; Choi, Jung Yoon; Witten, Ilana B

    2016-06-01

    Despite the fact that cholinergic interneurons are a key cell type within the nucleus accumbens, a relationship between synaptic plasticity and the in vivo activity of cholinergic interneurons remains to be established. Here, we identify a three-way link between the activity of cholinergic interneurons, synaptic plasticity, and learning in mice undergoing the extinction of a cocaine-context association. We found that activity of cholinergic interneurons regulates extinction learning for a cocaine-context association and generates a sustained reduction in glutamatergic presynaptic strength onto medium spiny neurons. Interestingly, activation of cholinergic interneurons does not support reinforcement learning or plasticity by itself, suggesting that these neurons have a modulatory rather than a reinforcing function. PMID:27210555

  19. Tumor Targeting via Integrin Ligands

    PubMed Central

    Marelli, Udaya Kiran; Rechenmacher, Florian; Sobahi, Tariq Rashad Ali; Mas-Moruno, Carlos; Kessler, Horst

    2013-01-01

    Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side-effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability, and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor-specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug-delivery systems, and discuss the prospects of such therapies to specifically target tumor cells. PMID:24010121

  20. Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging

    PubMed Central

    Parikh, Vinay; Howe, William M.; Welchko, Ryan M.; Naughton, Sean X.; D'Amore, Drew E.; Han, Daniel H.; Deo, Monika; Turner, David L.; Sarter, Martin

    2012-01-01

    The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain (BF) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno-associated viral vector-based RNA interference (AAV-RNAi) strategy to suppress the expression of trkA receptors by cholinergic neurons in the nucleus basalis of Meynert/ substantia innominata (nMB/SI) of adult and aged rats. Suppression of trkA receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trkA levels in the nMB/SI. TrkA knockdown neither affected nMB/SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trkA suppression augmented an age-related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release ACh. The capacity of cortical synapses to release acetylcholine (ACh) in vivo was also lower in aged/trkA-AAV-infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age-related increases in cortical proNGF and p75 receptor levels interacted with the vector-induced loss of trkA receptors to shift NGF signaling toward p75-mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early Alzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling. PMID:23228124

  1. Somatostatin modulates cholinergic neurotransmission in canine antral muscle

    SciTech Connect

    Koelbel, C.B.; van Deventer, G.; Khawaja, S.; Mogard, M.; Walsh, J.H.; Mayer, E.A. UCLA Medical Center, Torrance, CA )

    1988-02-01

    Somatostatin has been shown to inhibit antral motility in vivo. To examine the effect of somatostatin on cholinergic neurotransmission in the canine antrum, we studied the mechanical response of and the release of ({sup 3}H)acetylcholine from canine longitudinal antral muscle in response to substance P, gastrin 17, and electrical stimulation. In unstimulated tissues, somatostatin had a positive inotropic effect on spontaneous phasic contractions. In tissues stimulated with substance P and gastrin 17, but not with electrical stimulation, somatostatin inhibited the phasic inotropic response dose dependently. This inhibitory effect was abolished by indomethacin. Somatostatin stimulated the release of prostaglandin E{sub 2} radioimmunoreactivity, and prostaglandin E{sub 2} inhibited the release of ({sup 3}H)acetylcholine induced by substance P and electrical stimulation. Somatostatin increased the release of ({sup 3}H)acetylcholine from unstimulated tissues by a tetrodotoxin-sensitive mechanism but inhibited the release induced by substance P and electrical stimulation. These results suggest that somatostatin has a dual modulatory effect on cholinergic neutrotransmission in canine longitudinal antral muscle. This effect is excitatory in unstimulated tissues and inhibitory in stimulated tissues. The inhibitory effect is partially mediated by prostaglandins.

  2. Dopaminergic and Cholinergic Modulation of Striatal Tyrosine Hydroxylase Interneurons

    PubMed Central

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S.; Tepper, James M.; Koós, Tibor

    2015-01-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2013). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia. PMID:25908399

  3. Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons.

    PubMed

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S; Tepper, James M; Koós, Tibor

    2015-08-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2015). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia. PMID:25908399

  4. Cholinergic transmission underlies modulation of frustration by open field exposure.

    PubMed

    Psyrdellis, Mariana; Pautassi, Ricardo Marcos; Mustaca, Alba; Justel, Nadia

    2016-01-01

    Frustration can be defined as an emotional state generated by the omission or devaluation in the quantity or quality of an expected appetitive reward. Thus, reactivity to a reward is affected by prior experience with the different reinforcer values of that reward. This phenomenon is known as incentive relativity, and can be studied by different paradigms. Although methodologically simple, the exploration of a novel open field (OF) is a complex situation that involves several behavioral processes, including stress induction and novelty detection. OF exposure can enhance or block the acquisition of associative and non-associative memories. These experiments evaluated the effect of OF exploration on frustration and the role played by the cholinergic system in this phenomenon. OF exploration before first or second trial of incentive downshift modulated the expression of frustration. This effect of OF was blocked by the administration of scopolamine either before or after OF exploration. These results indicate that the cholinergic system is involved in the acquisition and consolidation of OF information. PMID:26546747

  5. Low-level microwave irradiation and central cholinergic systems

    SciTech Connect

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W. )

    1989-05-01

    Our previous research showed that 45 min of exposure to low-level, pulsed microwaves (2450-MHz, 2-microseconds pulses, 500 pps, whole-body average specific absorption rate 0.6 W/kg) decreased sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. The effects of microwaves on central cholinergic systems were further investigated in this study. Increases in choline uptake activity in the frontal cortex, hippocampus, and hypothalamus were observed after 20 min of acute microwave exposure, and tolerance to the effect of microwaves developed in the hypothalamus, but not in the frontal cortex and hippocampus, of rats subjected to ten daily 20-min exposure sessions. Furthermore, the effects of acute microwave irradiation on central choline uptake could be blocked by pretreating the animals before exposure with the narcotic antagonist naltrexone. In another series of experiments, rats were exposed to microwaves in ten daily sessions of either 20 or 45 min, and muscarinic cholinergic receptors in different regions of the brain were studied by 3H-QNB binding assay. Decreases in concentration of receptors occurred in the frontal cortex and hippocampus of rats subjected to ten 20-min microwave exposure sessions, whereas increase in receptor concentration occurred in the hippocampus of animals exposed to ten 45-min sessions. This study also investigated the effects of microwave exposure on learning in the radial-arm maze. Rats were trained in the maze to obtain food reinforcements immediately after 20 or 45 min of microwave exposure.

  6. Evaluation of a patient with both aquagenic and cholinergic urticaria.

    PubMed

    Davis, R S; Remigio, L K; Schocket, A L; Bock, S A

    1981-12-01

    An 11-yr-old girl presented with a history of urticaria induced by warm or cool showers, exercise, and emotional stimuli. During evaluation she repeatedly developed generalized punctate urticaria, pruritus, palpitations, and headaches after warm baths or exercise, and she had a positive methacholine skin test. She developed similar lesions and pruritus after local application of sterile water, tap water, ethanol, normal saline, or 3% saline. The diagnosis of combined aquagenic and cholinergic urticaria was made and presented a unique opportunity to study and compare mediator release and clinical symptoms in both conditions. The patient was submerged in bath water at either 37 degree or 41 degree C to induce either aquagenic or cholinergic urticaria, respectively. Histamine was released into the systemic circulation in both conditions in a similar time course; however, systemic symptoms occurred only after the 41 degree C bath. After failure to induce tolerance to the 41 degree C bath water, hydroxyzine therapy was instituted. One week later she was rechallenged; few symptoms appeared, and a rise in serum histamine was not detected as had been shown in previous challenges. The data suggest that in our patient, hydroxyzine may have contributed to the inhibition of both histamine release and the appearance of symptoms during hot bath challenging. PMID:7310013

  7. A Reaction-Diffusion Model of Cholinergic Retinal Waves

    PubMed Central

    Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan

    2014-01-01

    Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327

  8. Long-term effects of selective immunolesions of cholinergic neurons of the nucleus basalis magnocellularis on the ascending cholinergic pathways in the rat: a model for Alzheimer's disease.

    PubMed

    Szigeti, Csaba; Bencsik, Norbert; Simonka, Aurel Janos; Legradi, Adam; Kasa, Peter; Gulya, Karoly

    2013-05-01

    Alzheimer's disease is associated with a significant decrease in the cholinergic input to the neocortex. In a rat model of this depletion, we analyzed the subsequent long-term changes in cholinergic fiber density in two well-defined areas of the frontal and parietal cortices: Fr1, the primary motor cortex, and HL, the hindlimb area of the somatosensory (parietal) cortex, two cortical cholinergic fields that receive inputs from the nucleus basalis magnocellularis (nBM). A specific cholinergic lesion was induced by the intraparenchymal injection of 192 IgG-saporin into the nBM. Choline acetyltransferase (ChAT) immunohistochemistry was applied to identify the loss of cholinergic neurons in the nBM, while acetylcholinesterase (AChE) enzyme histochemistry was used to analyze the decreases in the number of cholinoceptive neurons in the nBM and the cholinergic fiber density in the Fr1 and HL cortical areas in response to the nBM lesion. The immunotoxin differentially affected the number of ChAT- and AChE-positive neurons in the nBM. 192 IgG-saporin induced a massive, irreversible depletion of the ChAT-positive (cholinergic) neurons (to 11.7% of the control level), accompanied by a less dramatic, but similarly persistent loss of the AChE-positive (cholinoceptive) neurons (to 59.2% of the control value) in the nBM within 2 weeks after the lesion. The difference seen in the depletion of ChAT- and AChE-positive neurons is due to the specificity of the immunotoxin to cholinergic neurons. The cholinergic fiber densities in cortical areas Fr1 and HL remained similarly decreased (to 62% and 68% of the control values, respectively) up to 20 weeks. No significant rebound in AChE activity occurred either in the nBM or in the cortices during the period investigated. This study therefore demonstrated that, similarly to the very extensive reduction in the number of ChAT-positive neurons in the nBM, cortical areas Fr1 and HL underwent long-lasting reductions in the number of ACh

  9. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  10. In vivo and in vitro studies on the regulation of cholinergic neurotransmission in striatum, hippocampus and cortex of aged rats.

    PubMed

    Consolo, S; Wang, J X; Fiorentini, F; Vezzani, A; Ladinsky, H

    1986-05-28

    Young (3 months) and senescent (23 months) rats were challenged with oxotremorine both in vivo, to determine its effects on acetylcholine content in hemispheric regions, and in vitro, to assess its action on K+-evoked release of ACh from brain synaptosomes. The drug failed to inhibit KCl-induced [3H]ACh release from the P2 fraction of striatal and hippocampal homogenates of the senescent animals, whereas it was less efficient in increasing striatal ACh content. In contrast, oxotremorine was still able to stimulate an increase in ACh in the hippocampus and cerebral cortex of the aged rats to the same extent as it did in the young ones. The [3H]ACh output from striatal synaptosomes was lower in old rats with respect to young ones at low KCl depolarizing concentrations but was equal in the two groups at a high depolarizing concentration. In the hippocampus of the senescent rats, the release was significantly lower at each concentration of KCl used, resulting in a parallel downward-shift in the concentration-release plot. We also measured cholinergic muscarinic receptor binding in rat hemispheric regions using the radioligand [3H]dexetimide, a classical non-selective muscarinic receptor antagonist. It was found, in conformity with some of the literature, that receptor binding was decreased by about 32% in striatum of aged female rats as compared to younger rats. Changes were not observed in cortex and hippocampus. Analysis of the binding data indicated that the observed decrease in specific ligand binding was due to a decrease in the number of binding sites without a change in affinity. The results favor, once again, the cholinergic hypothesis for geriatric dysfunction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3013365

  11. Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects.

    PubMed Central

    Dewey, S L; Smith, G S; Logan, J; Brodie, J D; Simkowitz, P; MacGregor, R R; Fowler, J S; Volkow, N D; Wolf, A P

    1993-01-01

    Previously we demonstrated that positron emission tomography (PET) can be used to measure changes in the concentrations of synaptic dopamine and acetylcholine. Whether induced directly or indirectly through interactions with other neurotransmitters, these studies support the use of PET for investigating the functional responsiveness of a specific neurotransmitter to a pharmacologic challenge. In an extension of these findings to the human brain, PET studies designed to measure the responsiveness of striatal dopamine release to central cholinergic blockade were conducted in normal male volunteers using high-resolution PET and [11C]raclopride, a D2-dopamine receptor antagonist. [11C]Raclopride scans were performed prior to and 30 min after systemic administration of the potent muscarinic cholinergic antagonist, scopolamine (0.007 mg/kg). After scopolamine administration, [11C]raclopride binding decreased in the striatum (specific binding) but not in the cerebellum (nonspecific binding) resulting in a significant decrease, exceeding the test/retest variability of this ligand (5%), in the ratio of the distribution volumes of the striatum to the cerebellum (17%). Furthermore, scopolamine administration did not alter the systemic rate of [11C]raclopride metabolism or the metabolite-corrected plasma input function. These results are consistent not only with the known inhibitory influence that acetylcholine exerts on striatal dopamine release but also with our initial 18F-labeled N-methylspiroperidol and benztropine studies. Thus these data support the use of PET for measuring the functional responsiveness of an endogenous neurotransmitter to an indirect pharmacologic challenge in the living human brain. Images Fig. 2 PMID:8265632

  12. Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality and performance

    PubMed Central

    Paolone, Giovanna; Lee, Theresa M.; Sarter, Martin

    2012-01-01

    Although the impairments in cognitive performance that result from shifting or disrupting daily rhythms have been demonstrated, the neuronal mechanisms that optimize fixed time daily performance are poorly understood. We previously demonstrated that daily practice of a sustained attention task (SAT) evokes a diurnal activity pattern in rats. Here we report that SAT practice at a fixed time produced practice time-stamped increases in prefrontal cholinergic neurotransmission that persisted after SAT practice was terminated and in a different environment. SAT time-stamped cholinergic activation occurred irrespective of whether the SAT was practiced during the light or dark phase or in constant light conditions. In contrast, prior daily practice of an operant schedule of reinforcement, albeit generating more rewards and lever presses per session than the SAT, neither activated the cholinergic system nor affected the animals' nocturnal activity pattern. Likewise, food-restricted animals exhibited strong food anticipatory activity (FAA) and attenuated activity during the dark period but FAA was not associated with increases in prefrontal cholinergic activity. Removal of cholinergic neurons impaired SAT performance and facilitated the reemergence of nocturnality. Shifting SAT practice away from a fixed time resulted in significantly lower performance. In conclusion, these experiments demonstrated that fixed time, daily practice of a task assessing attention generates a precisely practice time-stamped activation of the cortical cholinergic input system. Time-stamped cholinergic activation benefits fixed time performance and, if practiced during the light phase, contributes to a diurnal activity pattern. PMID:22933795

  13. Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances Plasticity of Cortical-Amygdala Circuits.

    PubMed

    Jiang, Li; Kundu, Srikanya; Lederman, James D; López-Hernández, Gretchen Y; Ballinger, Elizabeth C; Wang, Shaohua; Talmage, David A; Role, Lorna W

    2016-06-01

    We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photostimulation of endogenous cholinergic input (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs), (2) enhances glutamatergic synaptic transmission in the BLA, and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories. PMID:27161525

  14. Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey

    PubMed Central

    Liberia, Teresa; Blasco-Ibáñez, José Miguel; Nácher, Juan; Varea, Emilio; Lanciego, José Luis; Crespo, Carlos

    2015-01-01

    The olfactory bulb (OB) of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca (HDB). At present, the synaptic connectivity of the cholinergic axons on the circuits of the OB has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the OB of the cynomolgus monkey (Macaca fascicularis). Our aim is to investigate whether the cholinergic innervation of the bulbar circuits is phylogenetically conserved between macrosmatic and microsmatic mammals. Our results demonstrate that the cholinergic axons form synaptic contacts on interneurons. In the glomerular layer, their main targets are the periglomerular cells, which receive axo-somatic and axo-dendritic synapses. In the inframitral region, their main targets are the granule cells, which receive synaptic contacts on their dendritic shafts and spines. Although the cholinergic boutons were frequently found in close vicinity of the dendrites of principal cells, we have not found synaptic contacts on them. From a comparative perspective, our data indicate that the synaptic connectivity of the cholinergic circuits is highly preserved in the OB of macrosmatic and microsmatic mammals. PMID:25852490

  15. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    PubMed

    Jeong, Jae Hoon; Woo, Young Jae; Chua, Streamson; Jo, Young-Hwan

    2016-01-01

    The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat. PMID:27611685

  16. Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways.

    PubMed

    Xiao, Cheng; Cho, Jounhong Ryan; Zhou, Chunyi; Treweek, Jennifer B; Chan, Ken; McKinney, Sheri L; Yang, Bin; Gradinaru, Viviana

    2016-04-20

    The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms, we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons; however, although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders. PMID:27100197

  17. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca2+-Dependent Resonance in LDT and PPT Cholinergic Neurons

    PubMed Central

    Ishibashi, Masaru; Gumenchuk, Iryna; Kang, Bryan; Steger, Catherine; Lynn, Elizabeth; Molina, Nancy E.; Eisenberg, Leonard M.; Leonard, Christopher S.

    2015-01-01

    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30–60 Hz) – a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4–14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma. PMID

  18. The role of basal forebrain cholinergic neurons in fear and extinction memory.

    PubMed

    Knox, Dayan

    2016-09-01

    Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed. PMID:27264248

  19. PLIC: protein-ligand interaction clusters.

    PubMed

    Anand, Praveen; Nagarajan, Deepesh; Mukherjee, Sumanta; Chandra, Nagasuma

    2014-01-01

    site attributes are provided as a relational database-protein-ligand interaction clusters (PLIC). Database URL: http://proline.biochem.iisc.ernet.in/PLIC. PMID:24763918

  20. Acute cholinergic syndrome following ingestion of contaminated herbal extract.

    PubMed

    Hsieh, M-J; Yen, Z-S; Chen, S-C; Fang, C-C

    2008-11-01

    Herbal preparations are becoming more and more popular and increasingly used in the USA. Herbs are from natural plants and therefore often considered to be harmless compared with western medicines. Nevertheless, as the use of herbal remedies has risen, so has the incidence of acute and chronic herbal intoxication. The case history is presented of a 68-year-old man who presented with an acute cholinergic syndrome soon after ingesting a herbal preparation containing Flemingia macrophylla and ginseng. His red blood cell acetylcholinesterase activity dropped to 50% of the normal reference range. He was treated successfully with atropine and supportive care. It was thought that contamination with pesticides, such as organophosphate residue, was the probable cause. This case highlights the need to be more aware of the possibility of acute pesticide intoxication in herbal users, even when only small amounts are consumed. PMID:18955628

  1. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation

    PubMed Central

    Saunders, Cecil J.; Christensen, Michael; Finger, Thomas E.; Tizzano, Marco

    2014-01-01

    Solitary chemosensory cells (SCCs) of the nasal cavity are specialized epithelial chemosensors that respond to irritants through the canonical taste transduction cascade involving Gα-gustducin and transient receptor potential melastatin 5. When stimulated, SCCs trigger peptidergic nociceptive (or pain) nerve fibers, causing an alteration of the respiratory rate indicative of trigeminal activation. Direct chemical excitation of trigeminal pain fibers by capsaicin evokes neurogenic inflammation in the surrounding epithelium. In the current study, we test whether activation of nasal SCCs can trigger similar local inflammatory responses, specifically mast cell degranulation and plasma leakage. The prototypical bitter compound, denatonium, a well-established activator of SCCs, caused significant inflammatory responses in WT mice but not mice with a genetic deletion of elements of the canonical taste transduction cascade, showing that activation of taste signaling components is sufficient to trigger local inflammation. Chemical ablation of peptidergic trigeminal fibers prevented the SCC-induced nasal inflammation, indicating that SCCs evoke inflammation only by neural activity and not by release of local inflammatory mediators. Additionally, blocking nicotinic, but not muscarinic, acetylcholine receptors prevents SCC-mediated neurogenic inflammation for both denatonium and the bacterial signaling molecule 3-oxo-C12-homoserine lactone, showing the necessity for cholinergic transmission. Finally, we show that the neurokinin 1 receptor for substance P is required for SCC-mediated inflammation, suggesting that release of substance P from nerve fibers triggers the inflammatory events. Taken together, these results show that SCCs use cholinergic neurotransmission to trigger peptidergic trigeminal nociceptors, which link SCCs to the neurogenic inflammatory pathway. PMID:24711432

  2. Cholinergic enhancement of functional networks in older adults with MCI

    PubMed Central

    Pa, Judy; Berry, Anne S.; Compagnone, Mariana; Boccanfuso, Jacqueline; Greenhouse, Ian; Rubens, Michael T.; Johnson, Julene K.; Gazzaley, Adam

    2013-01-01

    Objective The importance of the cholinergic system for cognitive function has been well-documented in animal and human studies. The objective of this study was to elucidate the cognitive and functional connectivity changes associated with enhanced acetylcholine (ACh) levels. We hypothesized older adults with mild memory deficits would show behavioral and functional network enhancements with an acetylcholinesterase inhibitor treatment (donepezil) when compared to a placebo control group. Methods We conducted a 3-month, double-blind, placebo-controlled study on the effects of donepezil in twenty-seven older adults with mild memory deficits. Participants completed a delayed recognition memory task. FMRI scans were collected at baseline prior to treatment and at 3-month follow-up while on a 10 mg daily dose of donepezil or placebo. Results Donepezil treatment significantly enhanced the response time for face and scene memory probes when compared to the placebo group. A group-by-visit interaction was identified for the functional network connectivity of the left fusiform face area (FFA) with the hippocampus and inferior frontal junction, such that the treatment group showed increased connectivity over time when compared to the placebo group. Additionally, the enhanced functional network connectivity of the FFA and hippocampus significantly predicted memory response time at 3-month follow-up in the treatment group. Interpretation These findings suggest that increased cholinergic transmission improves goal-directed neural processing and cognitive ability and may serve to facilitate communication across functionally-connected attention and memory networks. Longitudinal fMRI is a useful method for elucidating the neural changes associated with pharmacological modulation and is a potential tool for monitoring intervention efficacy in clinical trials. PMID:23447373

  3. Cholinergic urethral brush cells are widespread throughout placental mammals.

    PubMed

    Deckmann, Klaus; Krasteva-Christ, Gabriela; Rafiq, Amir; Herden, Christine; Wichmann, Judy; Knauf, Sascha; Nassenstein, Christina; Grevelding, Christoph G; Dorresteijn, Adriaan; Chubanov, Vladimir; Gudermann, Thomas; Bschleipfer, Thomas; Kummer, Wolfgang

    2015-11-01

    We previously identified a population of cholinergic epithelial cells in murine, human and rat urethrae that exhibits a structural marker of brush cells (villin) and expresses components of the canonical taste transduction signaling cascade (α-gustducin, phospholipase Cβ2 (PLCβ2), transient receptor potential cation channel melanostatin 5 (TRPM5)). These cells serve as sentinels, monitoring the chemical composition of the luminal content for potentially hazardous compounds such as bacteria, and initiate protective reflexes counteracting further ingression. In order to elucidate cross-species conservation of the urethral chemosensory pathway we investigated the occurrence and molecular make-up of urethral brush cells in placental mammals. We screened 11 additional species, at least one in each of the five mammalian taxonomic units primates, carnivora, perissodactyla, artiodactyla and rodentia, for immunohistochemical labeling of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), villin, and taste cascade components (α-gustducin, PLCβ2, TRPM5). Corresponding to findings in previously investigated species, urethral epithelial cells with brush cell shape were immunolabeled in all 11 mammals. In 8 species, immunoreactivities against all marker proteins and ChAT were observed, and double-labeling immunofluorescence confirmed the cholinergic nature of villin-positive and chemosensory (TRPM5-positive) cells. In cat and horse, these cells were not labeled by the ChAT antiserum used in this study, and unspecific reactions of the secondary antiserum precluded conclusions about ChAT-expression in the bovine epithelium. These data indicate that urethral brush cells are widespread throughout the mammalian kingdom and evolved not later than about 64.5millionyears ago. PMID:26044348

  4. New tools for targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster.

    PubMed

    Mejia, Monica; Heghinian, Mari D; Marí, Frank; Godenschwege, Tanja A

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson's disease, Alzheimer's disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR's ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the circuits without

  5. [Involvement and plasticity of brainstem cholinergic neurons in cocaine-induced addiction].

    PubMed

    Kaneda, Katsuyuki; Shinohara, Fumiya; Kurosawa, Ryo; Taoka, Naofumi; Ide, Soichiro; Minami, Masabumi

    2014-04-01

    Although the involvement and plasticity of the mesocorticolimbic dopamine (DA) system in cocaine-induced addiction have been studied extensively, the role of the brainstem cholinergic system in cocaine addiction remains largely unexplored. The laterodorsal tegmental nucleus (LDT) contains cholinergic neurons that innervate the ventral tegmental area (VTA) and is crucial for regulating the activity of VTA DA neurons, implying that LDT may also be associated with cocaine addiction. In this review, we summarize our recent findings showing that cholinergic transmission from the LDT to the VTA is involved in acquisition and expression of cocaine-induced conditioned place preference and that, after repeated cocaine exposures, these neurons exhibit synaptic plasticity, which is dependent on NMDA receptor activation, nitric oxide production, and the activity of medial prefrontal cortex. The findings strongly suggest that LDT cholinergic neurons may critically contribute to developing cocaine-induced addiction. PMID:24946392

  6. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1992-01-01

    The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.

  7. Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Turchi, Janita; Saunders, Richard C.; Mishkin, Mortimer

    2005-01-01

    Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition. PMID:15684066

  8. Cholinergic neurotransmission seems not to be involved in depression but possibly in personality.

    PubMed Central

    Fritze, J; Lanczik, M; Sofic, E; Struck, M; Riederer, P

    1995-01-01

    Concordant with the adrenergic-cholinergic imbalance hypothesis of affective psychosis, there is a cholinergic supersensitivity in depression. Thus, the anticholinergic properties of some antidepressants might contribute to their efficacy. However, in the present double-blind studies (n = 20) with mianserin and viloxazine, respectively, which lack anticholinergic properties, adjunctive treatment with the anticholinergic biperiden versus placebo did not enhance the antidepressive efficacy. Therefore, we hypothesized that cholinergic supersensitivity might be linked to some possibly predisposing dimension of personality. Indeed, in healthy male volunteers (n = 11) the behavioral and cardiovascular sensitivity to physostigmine correlated significantly with "irritability" and "emotional lability" as well as with habitually passive strategies in stress coping. The rise in plasma cortisol and norepinephrine correlated with "retardation"; that of epinephrine with active coping. Thus, the cholinergic supersensitivity in affective psychoses might be linked to a personality dimension like stress sensitivity rather than to the diagnostic category itself. Images Fig. 2 PMID:7865500

  9. Cholinergic inhibition of adrenergic neurosecretion in the rabbit iris-ciliary body

    SciTech Connect

    Jumblatt, J.E.; North, G.T.

    1988-04-01

    The prejunctional effects of cholinergic agents on release of norepinephrine from sympathetic nerve endings were investigated in the isolated, superfused rabbit iris-ciliary body. Stimulation-evoked release of /sup 3/H-norepinephrine was inhibited by the cholinergic agonists methacholine, oxotremorine, muscarine, carbamylcholine and acetylcholine (plus eserine), but was unmodified by pilocarpine or nicotine. Agonist-induced inhibition was antagonized selectively by atropine, indicating a muscarinic response. Atropine alone markedly enhanced norepinephrine release, revealing considerable tonic activation of prejunctional cholinergic receptors in this system. Prejunctional inhibition by carbamylcholine was found to completely override the facilitative action of forskolin or 8-bromo-cyclic AMP on neurotransmitter release. Cholinergic and alpha 2-adrenergic effects on neurosecretion were non-additive, suggesting that the underlying receptors coexist at neurotransmitter release sites.

  10. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: a cholinesterase dependent mechanism.

    PubMed

    Del Pino, Javier; Zeballos, Garbriela; Anadon, María José; Capo, Miguel Andrés; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2014-11-01

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases. PMID:25201352

  11. Cholinergic dysregulation produced by selective inactivation of the dystonia-associated protein TorsinA

    PubMed Central

    Sciamanna, Giuseppe; Hollis, Robert; Ball, Chelsea; Martella, Giuseppina; Tassone, Annalisa; Marshall, Andrea; Parsons, Dee; Li, Xinru; Yokoi, Fumiaki; Zhang, Lin; Li, Yuqing; Pisani, Antonio; Standaert, David G.

    2012-01-01

    DYT1 dystonia, a common and severe primary dystonia, is caused by a 3-bp deletion in TOR1A which encodes torsinA, a protein found in the endoplasmic reticulum. Several cellular functions are altered by the mutant protein, but at a systems level the link between these and the symptoms of the disease is unclear. The most effective known therapy for DYT1 dystonia is use of anticholinergic drugs. Previous studies have revealed that in mice, transgenic expression of human mutant torsinA under a non-selective promoter leads to abnormal function of striatal cholinergic neurons. To investigate what pathological role torsinA plays in cholinergic neurons, we created a mouse model in which the Dyt1 gene, the mouse homolog of TOR1A, is selectively deleted in cholinergic neurons (ChKO animals). These animals do not have overt dystonia, but do have subtle motor abnormalities. There is no change in the number or size of striatal cholinergic cells or striatal acetylcholine content, uptake, synthesis, or release in ChKO mice. There are, however, striking functional abnormalities of striatal cholinergic cells, with paradoxical excitation in response to D2 receptor activation and loss of muscarinic M2/M4 receptor inhibitory function. These effects are specific for cholinergic interneurons, as recordings from nigral dopaminergic neurons revealed normal responses. Amphetamine stimulated dopamine release was also unaltered. These results demonstrate a cell-autonomous effect of Dyt1 deletion on striatal cholinergic function. Therapies directed at modifying the function of cholinergic neurons may prove useful in the treatment of the human disorder. PMID:22579992

  12. The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex

    PubMed Central

    Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J

    2014-01-01

    Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. PMID:24945075

  13. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    PubMed

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  14. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    PubMed Central

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  15. Impairment of reward-related learning by cholinergic cell ablation in the striatum.

    PubMed

    Kitabatake, Yasuji; Hikida, Takatoshi; Watanabe, Dai; Pastan, Ira; Nakanishi, Shigetada

    2003-06-24

    The striatum in the basal ganglia-thalamocortical circuitry is a key neural substrate that is implicated in motor balance and procedural learning. The projection neurons in the striatum are dynamically modulated by nigrostriatal dopaminergic input and intrastriatal cholinergic input. The role of intrastriatal acetylcholine (ACh) in learning behaviors, however, remains to be fully clarified. In this investigation, we examine the involvement of intrastriatal ACh in different categories of learning by selectively ablating the striatal cholinergic neurons with use of immunotoxin-mediated cell targeting. We show that selective ablation of cholinergic neurons in the striatum impairs procedural learning in the tone-cued T-maze memory task. Spatial delayed alternation in the T-maze learning test is also impaired by cholinergic cell elimination. In contrast, the deficit in striatal ACh transmission has no effect on motor learning in the rota-rod test or spatial learning in the Morris water-maze test or on contextual- and tone-cued conditioning fear responses. We also report that cholinergic cell elimination adaptively up-regulates nicotinic ACh receptors not only within the striatum but also in the cerebral cortex and substantia nigra. The present investigation indicates that cholinergic modulation in the local striatal circuit plays a pivotal role in regulation of neural circuitry involving reward-related procedural learning and working memory. PMID:12802017

  16. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    PubMed

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists. PMID:25183542

  17. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits.

    PubMed

    Ramanathan, Dhakshin S; Conner, James M; Anilkumar, Arjun A; Tuszynski, Mark H

    2015-03-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  18. Lesions of the Basal Forebrain Cholinergic System in Mice Disrupt Idiothetic Navigation

    PubMed Central

    Hamlin, Adam S.; Windels, Francois; Boskovic, Zoran; Sah, Pankaj; Coulson, Elizabeth J.

    2013-01-01

    Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer’s disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer’s disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze), and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer’s disease. PMID:23320088

  19. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation

    PubMed Central

    Grace, Kevin P.; Horner, Richard L.

    2015-01-01

    Rapid eye movement (REM) sleep – characterized by vivid dreaming, motor paralysis, and heightened neural activity – is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the “pontine REM sleep generator” by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  20. Melanoma cell galectin-1 ligands functionally correlate with malignant potential*

    PubMed Central

    Yazawa, Erika M.; Geddes-Sweeney, Jenna E.; Cedeno-Laurent, Filiberto; Walley, Kempland C.; Barthel, Steven R.; Opperman, Matthew J.; Liang, Jennifer; Lin, Jennifer Y.; Schatton, Tobias; Laga, Alvaro C.; Mihm, Martin C.; Qureshi, Abrar A.; Widlund, Hans R.; Murphy, George F.; Dimitroff, Charles J.

    2015-01-01

    Galectin-1 (Gal-1)-binding to Gal-1 ligands on immune and endothelial cells can influence melanoma development through dampening anti-tumor immune responses and promoting angiogenesis. However, whether Gal-1 ligands are functionally expressed on melanoma cells to help control intrinsic malignant features remains poorly understood. Here, we analyzed expression, identity and function of Gal-1 ligands in melanoma progression. Immunofluorescent analysis of benign and malignant human melanocytic neoplasms revealed that Gal-1 ligands were abundant in severely-dysplastic nevi as well as in primary and metastatic melanomas. Biochemical assessments indicated that melanoma cell adhesion molecule (MCAM) was a major Gal-1 ligand on melanoma cells that was largely dependent on its N-glycans. Other melanoma cell Gal-1 ligand activity conferred by O-glycans was negatively regulated by α2,6 sialyltransferase ST6GalNAc2. In Gal-1-deficient mice, MCAM-silenced (MCAMKD) or ST6GalNAc2-overexpressing (ST6O/E) melanoma cells exhibited slower growth rates, underscoring a key role for melanoma cell Gal-1 ligands and host Gal-1 in melanoma growth. Further analysis of MCAMKD or ST6O/E melanoma cells in cell migration assays indicated that Gal-1 ligand-dependent melanoma cell migration was severely inhibited. These findings provide a refined perspective on Gal-1 – melanoma cell Gal-1 ligand interactions as contributors to melanoma malignancy. PMID:25756799

  1. Metal-ligand cooperation.

    PubMed

    Khusnutdinova, Julia R; Milstein, David

    2015-10-12

    Metal-ligand cooperation (MLC) has become an important concept in catalysis by transition metal complexes both in synthetic and biological systems. MLC implies that both the metal and the ligand are directly involved in bond activation processes, by contrast to "classical" transition metal catalysis where the ligand (e.g. phosphine) acts as a spectator, while all key transformations occur at the metal center. In this Review, we will discuss examples of MLC in which 1) both the metal and the ligand are chemically modified during bond activation and 2) bond activation results in immediate changes in the 1st coordination sphere involving the cooperating ligand, even if the reactive center at the ligand is not directly bound to the metal (e.g. via tautomerization). The role of MLC in enabling effective catalysis as well as in catalyst deactivation reactions will be discussed. PMID:26436516

  2. Cholinergic receptors in the upper respiratory system of the rat.

    PubMed

    Klaassen, A B; Kuijpers, W; Scheres, H M; Rodrigues de Miranda, J F; Beld, A J

    1986-04-01

    Radioligand receptor binding might give more detailed information on the innervation pattern of the nasal mucosa and the character of the various neuroreceptors involved. With respect to the cholinergic receptors, this technique reveals that specific binding of tritiated I-quinuclidinyl benzilate to rat nasal mucosa homogenates occurs to a homogeneous class of binding sites, with a dissociation constant of 0.06 +/- 0.02 nM and a receptor density of 8 +/- 2 pmole/g of tissue. Binding is stereoselectively inhibited by benzetimide hydrochloride enantiomers. Pirenzepine displacement (inhibition constant = 0.5 X 10(-6) M) classifies tritiated I-quinuclidinyl benzilate binding sites as M2-muscarinic receptors. Methylfurthrethonium inhibits tritiated I-quinuclidinyl benzilate binding at high concentrations, pointing to the presence of low-affinity agonist binding sites, probably admixed with a small proportion of high-affinity agonist binding sites. These data obtained in the rat open new perspectives for studying muscarinic receptors in the human nose to elucidate the supposed disturbance of autonomic nerve regulation in nasal hyperreactivity. PMID:3511926

  3. Cholinergic modulation of cognitive processing: insights drawn from computational models

    PubMed Central

    Newman, Ehren L.; Gupta, Kishan; Climer, Jason R.; Monaghan, Caitlin K.; Hasselmo, Michael E.

    2012-01-01

    Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers. PMID:22707936

  4. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic

    PubMed Central

    Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B.; Perrat, Paola N.; Waddell, Scott

    2016-01-01

    Summary Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. PMID:26948892

  5. MESOPONTINE CHOLINERGIC PROJECTIONS TO THE HYPOGLOSSAL MOTOR NUCLEUS

    PubMed Central

    Rukhadze, Irma; Kubin, Leszek

    2007-01-01

    Mesopontine cholinergic (ACh) neurons have increased discharge during wakefulness, rapid eye movement (REM) sleep, or both. Hypoglossal (12) motoneurons, which play an important role in the control of upper airway patency, are postsynaptically excited by stimulation of nicotinic receptors, whereas muscarinic receptors presynaptically inhibit inputs to 12 motoneurons. These data suggest that ACh contributes to sleep/wake-related changes in the activity of 12 motoneurons by acting within the hypoglossal motor nucleus (Mo12), but the origins of ACh projections to Mo12 are not well established. We used retrograde tracers to assess the projections of ACh neurons of the mesopontine pedinculopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei to the Mo12. In six Sprague-Dawley rats, Fluorogold or B subunit of cholera toxin, were pressure injected (5-20 nl) into the Mo12. Retrogradely labeled neurons, identified as ACh using nitric oxide synthase (NOS) immunohistochemistry, were found bilaterally in discrete subregions of both PPT and LDT nuclei. Most retrogradely labeled PPT cells (96%) were located in the PPT pars compacta region adjacent to the ventrolateral tip of the superior cerebellar peduncle. In the LDT, retrogradely labeled neurons were located exclusively in its pars alpha region. Over twice as many ACh neurons projecting to the Mo12 were located in the PPT than LDT. The results demonstrate direct mesopontine ACh projections to the Mo12. These projections may contribute to the characteristic of wakefulness and REM sleep increases, as well as REM sleep-related decrements, of 12 motoneuronal activity. PMID:17174027

  6. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells

    SciTech Connect

    Haycock, J.W.; Browning, M.D.; Greengard, P.

    1988-03-01

    Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with /sup 32/PO/sub 4/, exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a M/sub r/ approx. = 100,000 protein and a M/sub r/ approx. = 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in NaDodSO/sub 4//polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins (100-kDa, 87-kDa, and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. 100-kDa is a M/sub r/ approx. = 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, 87-kDa is a M/sub r/ approx. = 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of M/sub r/ approx. = 74,000 (IIIa) and M/sub r/ approx. = 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects.

  7. Cholinergic traits in rat mandibular processes observed by electron microscopy.

    PubMed

    Tsuzuki, H; Kitamura, H

    1987-01-01

    Cholinergic traits in rat mandibular processes were examined histochemically, under the electron microscope, at early developmental stages (Stages 20 to 23, by Christie's nomenclature). The histochemical reaction for detection of enzymes was performed by the thiocholine method. Nonspecific cholinesterase (EC 3.1.1.8) activity was found in ectomesenchymal cells, vascular endothelial cells, and in some epidermal cells at stages 20 and 21. The enzymatic activity was localized in the perinuclear and endoplasmic reticular cisternae. At stage 22, the number of cells with enzymatic activity decreased gradually, except in the case of the capillary endothelial cells. At stage 23, when the trigeminal nerve fiber was obvious in the mandibular processes, nonspecific cholinesterase activity was restricted to some of the endothelial cells and trigeminal ganglionic cells. In contrast, acetylcholinesterase activity was found on the membrane of trigeminal nerve fiber. Thus, the transient, nonspecific, cholinesterase activity, found in rat mandibular processes, may serve some functions in transmission, lipid metabolism or destruction of toxic cholinesters during the period that precedes organogenesis. PMID:3631533

  8. Mast cell-cholinergic nerve interaction in mouse airways.

    PubMed

    Weigand, Letitia A; Myers, Allen C; Meeker, Sonya; Undem, Bradley J

    2009-07-01

    We addressed the mechanism by which antigen contracts trachea isolated from actively sensitized mice. Trachea were isolated from mice (C57BL/6J) that had been actively sensitized to ovalbumin (OVA). OVA (10 microg ml(-1)) caused histamine release (approximately total tissue content), and smooth muscle contraction that was rapid in onset and short-lived (t(1/2) < 1 min), reaching approximately 25% of the maximum tissue response. OVA contraction was mimicked by 5-HT, and responses to both OVA and 5-HT were sensitive to 10 microm-ketanserin (5-HT(2) receptor antagonist) and strongly inhibited by atropine (1microm). Epithelial denudation had no effect on the OVA-induced contraction. Histological assessment revealed about five mast cells/tracheal section the vast majority of which contained 5-HT. There were virtually no mast cells in the mast cell-deficient (sash -/-) mouse trachea. OVA failed to elicit histamine release or contractile responses in trachea isolated from sensitized mast cell-deficient (sash -/-) mice. Intracellular recordings of the membrane potential of parasympathetic neurons in mouse tracheal ganglia revealed a ketanserin-sensitive 5-HT-induced depolarization and similar depolarization in response to OVA challenge. These data support the hypothesis that antigen-induced contraction of mouse trachea is epithelium-independent, and requires mast cell-derived 5-HT to activate 5-HT(2) receptors on parasympathetic cholinergic neurons. This leads to acetylcholine release from nerve terminals, and airway smooth muscle contraction. PMID:19403609

  9. Dopaminergic and cholinergic learning mechanisms in nicotine addiction.

    PubMed

    Subramaniyan, Manivannan; Dani, John A

    2015-09-01

    Nicotine addiction drives tobacco use by one billion people worldwide, causing nearly six million deaths a year. Nicotine binds to nicotinic acetylcholine receptors that are normally activated by the endogenous neurotransmitter acetylcholine. The widespread expression of nicotinic receptors throughout the nervous system accounts for the diverse physiological effects triggered by nicotine. A crucial influence of nicotine is on the synaptic mechanisms underlying learning that contribute to the addiction process. Here, we focus on the acquisition phase of smoking addiction and review animal model studies on how nicotine modifies dopaminergic and cholinergic signaling in key nodes of the reinforcement circuitry: ventral tegmental area, nucleus accumbens (NAc), amygdala, and hippocampus. Capitalizing on mechanisms that subserve natural rewards, nicotine activates midbrain dopamine neurons directly and indirectly, and nicotine causes dopamine release in very broad target areas throughout the brain, including the NAc, amygdala, and hippocampus. In addition, nicotine orchestrates local changes within those target structures, alters the release of virtually all major neurotransmitters, and primes the nervous system to the influence of other addictive drugs. Hence, understanding how nicotine affects the circuitry for synaptic plasticity and learning may aid in developing reasoned therapies to treat nicotine addiction. PMID:26301866

  10. Cholinergic capacity mediates prefrontal engagement during challenges to attention: Evidence from imaging genetics

    PubMed Central

    Berry, Anne S; Blakely, Randy D; Sarter, Martin; Lustig, Cindy

    2015-01-01

    In rodent studies, elevated cholinergic neurotransmission in right prefrontal cortex (PFC) is essential for maintaining attentional performance, especially in challenging conditions. Apparently paralleling the rises in acetylcholine seen in rodent studies, fMRI studies in humans reveal right PFC activation at or near Brodmann’s area 9 (BA 9) increases in response to elevated attentional demand. In the present study, we leveraged human genetic variability in the cholinergic system to test the hypothesis that the cholinergic system contributes to the BA 9 response to attentional demand. Specifically, we scanned (BOLD fMRI) participants with a polymorphism of the choline transporter gene that is thought to limit choline transport capacity (Ile89Val variant of the choline transporter gene SLC5A7, rs1013940) and matched controls while they completed a task previously used to demonstrate demand-related increases in right PFC cholinergic transmission in rats and right PFC activation in humans. As hypothesized, we found that although controls showed the typical pattern of robust BA 9 responses to increased attentional demand, Ile89Val participants did not. Further, pattern analysis of activation within this region significantly predicted participant genotype. Additional exploratory pattern classification analyses suggested that Ile89Val participants differentially recruited orbitofrontal cortex and parahippocampal gyrus to maintain attentional performance to the level of controls. These results contribute to a growing body of translational research clarifying the role of cholinergic signaling in human attention and functional neural measures, and begin to outline the risk and resiliency factors associated with potentially suboptimal cholinergic function with implications for disorders characterized by cholinergic dysregulation. PMID:25536497

  11. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.

    PubMed

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919

  12. Sex differences in brain cholinergic activity in MSG-obese rats submitted to exercise.

    PubMed

    Sagae, Sara Cristina; Grassiolli, Sabrina; Raineki, Charlis; Balbo, Sandra Lucinei; Marques da Silva, Ana Carla

    2011-11-01

    Obesity is an epidemic disease most commonly caused by a combination of increased energy intake and lack of physical activity. The cholinergic system has been shown to be involved in the regulation of food intake and energy expenditure. Moreover, physical exercise promotes a reduction of fat pads and body mass by increasing energy expenditure, but also influences the cholinergic system. The aim of this study is to evaluate the interaction between physical exercise (swimming) and central cholinergic activity in rats treated with monosodium glutamate (MSG, a model for obesity) during infancy. Our results show that MSG treatment is able to induce obesity in male and female rats. Specifically, MSG-treated rats presented a reduced body mass and nasoanal length, and increased perigonadal and retroperitoneal fat pads in relation to the body mass. Physical exercise was able to reduce body mass in both male and female rats, but did not change the fat pads in MSG-treated rats. Increased food intake was only seen in MSG-treated females submitted to exercise. Cholinergic activity was increased in the cortex of MSG-treated females and physical exercise was able to reduce this activity. Thalamic cholinergic activity was higher in sedentary MSG-treated females and exercised MSG-treated males. Hypothalamic cholinergic activity was higher in male and female MSG-treated rats, and was not reduced by exercise in the 2 sexes. Taken together, these results show that MSG treatment and physical exercise have different effects in the cholinergic activity of males and females. PMID:22039988

  13. Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis

    PubMed Central

    Casas, Caty; Herrando-Grabulosa, Mireia; Manzano, Raquel; Mancuso, Renzo; Osta, Rosario; Navarro, Xavier

    2013-01-01

    Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1G93A ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30-day-old SOD1G93A mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC-II)-positive microglia and the accumulation of nuclear Tdp-43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC-I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic-related structures were also revealed with a loss of the presence of sigma-1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis. PMID:23531559

  14. Whole-Brain Mapping of Inputs to Projection Neurons and Cholinergic Interneurons in the Dorsal Striatum

    PubMed Central

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919

  15. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization

    PubMed Central

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-01-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer’s disease. PMID:27507101

  16. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization.

    PubMed

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-01-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer's disease. PMID:27507101

  17. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  18. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  19. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  20. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  1. Biochemical Education in Brazil.

    ERIC Educational Resources Information Center

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  2. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    PubMed Central

    Jeong, Jae Hoon; Lee, Dong Kun; Blouet, Clemence; Ruiz, Henry H.; Buettner, Christoph; Chua, Streamson; Schwartz, Gary J.; Jo, Young-Hwan

    2015-01-01

    Objective Brown adipose tissue (BAT) thermogenesis is critical in maintaining body temperature. The dorsomedial hypothalamus (DMH) integrates cutaneous thermosensory signals and regulates adaptive thermogenesis. Here, we study the function and synaptic connectivity of input from DMH cholinergic neurons to sympathetic premotor neurons in the raphe pallidus (Rpa). Methods In order to selectively manipulate DMH cholinergic neuron activity, we generated transgenic mice expressing channelrhodopsin fused to yellow fluorescent protein (YFP) in cholinergic neurons (choline acetyltransferase (ChAT)-Cre::ChR2-YFP) with the Cre-LoxP technique. In addition, we used an adeno-associated virus carrying the Cre recombinase gene to delete the floxed Chat gene in the DMH. Physiological studies in response to optogenetic stimulation of DMH cholinergic neurons were combined with gene expression and immunocytochemical analyses. Results A subset of DMH neurons are ChAT-immunopositive neurons. The activity of these neurons is elevated by warm ambient temperature. A phenotype-specific neuronal tracing shows that DMH cholinergic neurons directly project to serotonergic neurons in the Rpa. Optical stimulation of DMH cholinergic neurons decreases BAT activity, which is associated with reduced body core temperature. Furthermore, elevated DMH cholinergic neuron activity decreases the expression of BAT uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated receptor γ coactivator 1 α (Pgc1α) mRNAs, markers of BAT activity. Injection of M2-selective muscarinic receptor antagonists into the 4th ventricle abolishes the effect of optical stimulation. Single cell qRT-PCR analysis of retrogradely identified BAT-projecting neurons in the Rpa shows that all M2 receptor-expressing neurons contain tryptophan hydroxylase 2. In animals lacking the Chat gene in the DMH, exposure to warm temperature reduces neither BAT Ucp1 nor Pgc1α mRNA expression. Conclusion DMH cholinergic neurons directly

  3. Effects of metoclopramide and domperidone on cholinergically mediated contractions of human isolated stomach muscle.

    PubMed

    Sanger, G J

    1985-09-01

    The experiments examine the actions of metoclopramide and domperidone on the responses evoked by electrical field stimulation or by acetylcholine, in longitudinal muscle strips obtained from human stomach. Electrical field stimulation evoked contractions which were predominantly cholinergically mediated; metoclopramide 0.28-28 microM caused a concentration-dependent increase in the height of these contractions. In the presence of atropine and barium chloride, electrical stimulation evoked relaxations of the stomach muscle, probably by stimulating non-adrenergic, non-cholinergic inhibitory nerves; metoclopramide 28 microM had no effect on these relaxations. Metoclopramide 0.003-2.8 microM had no effect on contractions evoked by exogenous acetylcholine, although higher concentrations of the drug increased the contractions. The results suggest that in human isolated stomach, low concentrations of metoclopramide may increase electrically evoked cholinergic activity by increasing the release of neuronal acetylcholine. Stimulation by metoclopramide of cholinergic activity in the gut may therefore be an important mechanism by which the drug increases gastrointestinal motility during therapy. Cholinergically mediated contractions were not increased by domperidone, and other mechanism(s) of action may therefore be important for this drug. PMID:2867191

  4. Layer-specific cholinergic control of human and mouse cortical synaptic plasticity.

    PubMed

    Verhoog, Matthijs B; Obermayer, Joshua; Kortleven, Christian A; Wilbers, René; Wester, Jordi; Baayen, Johannes C; De Kock, Christiaan P J; Meredith, Rhiannon M; Mansvelder, Huibert D

    2016-01-01

    Individual cortical layers have distinct roles in information processing. All layers receive cholinergic inputs from the basal forebrain (BF), which is crucial for cognition. Acetylcholinergic receptors are differentially distributed across cortical layers, and recent evidence suggests that different populations of BF cholinergic neurons may target specific prefrontal cortical (PFC) layers, raising the question of whether cholinergic control of the PFC is layer dependent. Here we address this issue and reveal dendritic mechanisms by which endogenous cholinergic modulation of synaptic plasticity is opposite in superficial and deep layers of both mouse and human neocortex. Our results show that in different cortical layers, spike timing-dependent plasticity is oppositely regulated by the activation of nicotinic acetylcholine receptors (nAChRs) either located on dendrites of principal neurons or on GABAergic interneurons. Thus, layer-specific nAChR expression allows functional layer-specific control of cortical processing and plasticity by the BF cholinergic system, which is evolutionarily conserved from mice to humans. PMID:27604129

  5. Cholinergic and VIPergic effects on thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1985-07-01

    The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose of carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.

  6. Cholinergic signal activated renin angiotensin system associated with cardiovascular changes in the ovine fetus

    PubMed Central

    Geng, Chunsong; Mao, Caiping; Wu, Lei; Cheng, Yu; Liu, Rulu; Chen, Bingxin; Chen, Ling; Zhang, Lubo; Xu, Zhice

    2010-01-01

    Aim Cholinergic regulation is important in the control of cardiovascular and endocrine responses. The mechanisms behind cardiovascular responses induced by cholinergic activation are explored by studying hormonal systems, including renin-angiotensin and vasopressin (VP). Results In chronically prepared fetal sheep, intravenous infusion of the cholinergic agonist carbachol increased fetal systolic, diastolic, and mean arterial pressure accompanied with bradycardia at near-term. Although intravenous administration of carbachol had no effect on plasma VP concentrations, this agonist increased angiotensin I and angiotensin II levels in fetal plasma. Fetal blood values, including sodium, osmolality, nitric oxide, hemoglobin, and hematocrit were unchanged by intravenous carbachol. Conclusion Cholinergic activation by carbachol controls fetal blood pressure and heart rate in utero. An over-activated fetal renin-angiotensin-system (RAS) is associated with changes in vascular pressure following intravenous administration of carbachol, indicating that the cholinergic stimulation-mediated hormonal mechanism in the fetus might play a critical role in the regulation of cardiovascular homeostasis. PMID:19921993

  7. GABAergic Terminals Are a Source of Galanin to Modulate Cholinergic Neuron Development in the Neonatal Forebrain

    PubMed Central

    Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B.; Schnell, Robert; Mulder, Jan; Luiten, Paul G. M.; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor

    2014-01-01

    The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain. PMID:23897649

  8. A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb

    PubMed Central

    Li, Guoshi; Cleland, Thomas A.

    2013-01-01

    Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions including odor discrimination, perceptual learning, and short term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but has little effect on mitral cell firing rates and hence will not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials, and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations. PMID:23407960

  9. Cholinergic hypofunction impairs memory acquisition possibly through hippocampal Arc and BDNF downregulation.

    PubMed

    Gil-Bea, Francisco J; Solas, Maite; Mateos, Laura; Winblad, Bengt; Ramírez, María J; Cedazo-Mínguez, Angel

    2011-09-01

    Recent evidence suggests that activity-regulated cytoskeleton associated protein (Arc) and brain-derived neurotrophic factor (BDNF) are key players in the cellular mechanisms that trigger synaptic changes and memory consolidation. Cholinergic deafferentiation of hippocampus has been largely shown to induce memory impairments in different behavioral tasks. However, the mechanisms underlying cholinergic-induced memory formation remain unclear. The role of hippocampal cholinergic denervation on synaptic consolidation and further acquisition of spatial memory was hereby examined by analyzing Arc and BDNF in standard environment and after behavioral training in Morris water maze (MWM). In standard environment, a cholinergic hypofunction induced by the toxin (192) IgG-saporin led to significant decreases in Arc protein and mRNA as well as in BDNF. Lesioned rats subjected to MWM showed a worse acquisition performance that was reversed after galantamine treatment. Recovery of memory acquisition was accompanied by normalization of Arc and BDNF levels in hippocampus. Stimulation of muscarinic, but not nicotinic receptors, in hippocampal primary neurons caused a rapid induction of Arc production. These data suggest that cholinergic denervation of hippocampus leads to deficits in muscarinic-dependent induction of Arc and a subsequent impairment of spatial memory acquisition. PMID:20865740

  10. Gene regulation in the rat prefrontal cortex after learning with or without cholinergic insult.

    PubMed

    Paban, Véronique; Chambon, Caroline; Farioli, Fernand; Alescio-Lautier, Béatrice

    2011-05-01

    The prefrontal cortex is essential for a wide variety of higher functions, including attention and memory. Cholinergic neurons are thought to be of prime importance in the modulation of these processes. Degeneration of forebrain cholinergic neurons has been linked to several neurological disorders. The present study was designed to identify genes and networks in rat prefrontal cortex that are associated with learning and cholinergic-loss-memory deficit. Affymetrix microarray technology was used to screen gene expression changes in rats submitted or not to 192 IgG-saporin immunolesion of cholinergic basal forebrain and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes, which were organized in several clusters of highly correlated genes and would be involved in biological processes such as intracellular signaling process, transcription regulation, and filament organization and axon guidance. Memory loss following cortical cholinergic deafferentation was associated with significant expression of genes belonging to only one clearly delineated cluster and would be involved in biological processes related to cytoskeleton organization and proliferation, and glial and vascular remodeling, i.e., in processes associated with brain repair after injury. PMID:21345373

  11. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  12. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport

    SciTech Connect

    Gracz, L.M.; Wang, W.; Parsons, S.M.

    1988-07-12

    Crude cholinergic synaptic vesicles from a homogenate of the electric organ of Torpedo californica were centrifuged to equilibrium in an isosmotic sucrose density gradient. The classical VP/sub 1/ synaptic vesicles banding at 1.055 g/mL actively transported (/sup 3/H)acetylcholine (AcCh). An organelle banding at about 1.071 g/mL transported even more (/sup 3/H)AcCh. Transport by both organelles was inhibited by the known AcCh storage blockers trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol, formerly AH5183) and nigericin. Relative to VP/sub 1/ vesicles the denser organelle was slightly smaller as shown by size-exclusion chromatography. It is concluded that the denser organelle corresponds to the recycling VP/sub 2/ synaptic vesicle originally described in intact Torpedo marmorata electric organ. The properties of the receptor for vesamicol were studied by measuring binding of (/sup 3/H)vesamicol, and the amount of SV2 antigen characteristic of secretory vesicles was assayed with a monoclonal antibody directed against it. Relative to VP/sub 1/ vesicles the VP/sub 2/ vesicles had a ratio of (/sup 3/H)AcCh transport activity to vesamicol receptor concentration that typically was 4-7-fold higher, whereas the ratio of SV2 antigen concentration to vesamicol receptor concentration was about 2-fold higher. The Hill coefficients ..cap alpha../sub H/ and equilibrium dissociation constants K for vesamicol binding to VP/sub 1/ and VP/sub 2/ vesicles were essentially the same. The positive Hill coefficient suggests that the vesamicol receptor exists as a homotropic oligomeric complex. The results demonstrate that VP/sub 1/ and VP/sub 2/ synaptic vesicles exhibit functional differences in the AcCh transport system, presumably as a result of regulatory phenomena.

  13. Ligand modeling and design

    SciTech Connect

    Hay, B.P.

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  14. Multiplexing oscillatory biochemical signals.

    PubMed

    de Ronde, Wiet; ten Wolde, Pieter Rein

    2014-04-01

    In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably. We find that information transmission is reduced not only by noise arising from the intrinsic stochasticity of biochemical reactions, but also by crosstalk between the different channels. Yet, under biologically relevant conditions more than 2 bits of information can be transmitted per channel, even when the two signals are transmitted simultaneously. These observations suggest that oscillatory signals are ideal for multiplexing signals. PMID:24685537

  15. Selective Loss of Cholinergic Neurons in the Ventral Striatum of Patients with Alzheimer Disease

    NASA Astrophysics Data System (ADS)

    Lehericy, Stephane; Hirsch, Etienne C.; Cervera, Pascale; Hersh, Louis B.; Hauw, Jean-Jacques; Ruberg, Merle; Agid, Yves

    1989-11-01

    Cholinergic neurons were studied by immunohistochemistry with an antiserum against human choline acetyltransferase in the caudate nucleus, putamen, and ventral striatum (including the nucleus accumbens) of three patients with Alzheimer disease and three control subjects. Immunoreactive cell bodies were mapped and counted. In the ventral striatum of patients with Alzheimer disease, a 60% decrease in the number of cholinergic neurons was observed, whereas in the caudate nucleus and putamen values for control subjects and patients were similar. To determine whether all neurons in the ventral striatum were affected, neuropeptide Y-containing neurons were also immunostained, mapped, and counted. The number of these neurons was the same in control subjects and patients with Alzheimer disease, indicating that neuronal loss is not generalized in the ventral striatum and may be specific to the cholinergic population.

  16. Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology

    PubMed Central

    Unal, Cagri T.; Golowasch, Jorge P.; Zaborszky, Laszlo

    2012-01-01

    We performed whole-cell recordings from basal forebrain (BF) cholinergic neurons in transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the choline acetyltransferase promoter. BF cholinergic neurons can be differentiated into two electrophysiologically identifiable subtypes: early and late firing neurons. Early firing neurons (∼70%) are more excitable, show prominent spike frequency adaptation and are more susceptible to depolarization blockade, a phenomenon characterized by complete silencing of the neuron following initial action potentials. Late firing neurons (∼30%), albeit being less excitable, could maintain a tonic discharge at low frequencies. In voltage clamp analysis, we have shown that early firing neurons have a higher density of low voltage activated (LVA) calcium currents. These two cholinergic cell populations might be involved in distinct functions: the early firing group being more suitable for phasic changes in cortical acetylcholine release associated with attention while the late firing neurons could support general arousal by maintaining tonic acetylcholine levels. PMID:22586380

  17. Muscarinic signaling influences the patterning and phenotype of cholinergic amacrine cells in the developing chick retina

    PubMed Central

    Stanke, Jennifer J; Lehman, Bret; Fischer, Andy J

    2008-01-01

    Background Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT). Results We found that as ChAT-immunoreactive cells differentiate they expressed the homeodomain transcription factors Pax6 and Islet1, and the cell-cycle inhibitor p27kip1. As differentiation proceeds, type-II cholinergic cells, displaced to the ganglion cell layer, transiently expressed high levels of cellular retinoic acid binding protein (CRABP) and neurofilament, while type-I cells in the inner nuclear layer did not. Although there is a 1:1 ratio of type-I to type-II cells in vivo, in dissociated cell cultures the type-I cells (ChAT-positive and CRABP-negative) out-numbered the type-II cells (ChAT and CRABP-positive cells) by 2:1. The relative abundance of type-I to type-II cells was not influenced by Sonic Hedgehog (Shh), but was affected by compounds that act at muscarinic acetylcholine receptors. In addition, the abundance and mosaic patterning of type-II cholinergic amacrine cells is disrupted by interfering with muscarinic signaling. Conclusion We conclude that: (1) during development type-I and type-II cholinergic amacrine cells are not homotypic, (2) the phenotypic differences between these subtypes of cells is controlled by the local microenvironment, and (3) appropriate levels of muscarinic signaling between the cholinergic amacrine cells are required for proper mosaic patterning. PMID:18254959

  18. Mutual Control of Cholinergic and Low-Threshold Spike Interneurons in the Striatum

    PubMed Central

    Elghaba, Rasha; Vautrelle, Nicolas; Bracci, Enrico

    2016-01-01

    The striatum is the largest nucleus of the basal ganglia and is crucially involved in action selection and reward processing. Cortical and thalamic inputs to the striatum are processed by local networks in which several classes of interneurons play an important, but still poorly understood role. Here we investigated the interactions between cholinergic and low-threshold spike (LTS) interneurons. LTS interneurons were hyperpolarized by co-application of muscarinic and nicotinic receptor antagonists (atropine and mecamylamine, respectively). Mecamylamine alone also caused hyperpolarizations, while atropine alone caused depolarizations and increased firing. LTS interneurons were also under control of tonic GABA, as application of the GABAA receptor antagonist picrotoxin caused depolarizations and increased firing. Frequency of spontaneous GABAergic events in LTS interneurons was increased by co-application of atropine and mecamylamine or by atropine alone, but reduced by mecamylamine alone. In the presence of picrotoxin and tetrodotoxin (TTX), atropine and mecamylamine depolarized the LTS interneurons. We concluded that part of the excitatory effects of tonic acetylcholine (ACh) on LTS interneurons were due to cholinergic modulation of tonic GABA. We then studied the influence of LTS interneurons on cholinergic interneurons. Application of antagonists of somatostatin or neuropeptide Y (NPY) receptors or of an inhibitor of nitric oxide synthase (L-NAME) did not cause detectable effects in cholinergic interneurons. However, prolonged synchronized depolarizations of LTS interneurons (elicited with optogenetics tools) caused slow-onset depolarizations in cholinergic interneurons, which were often accompanied by strong action potential firing and were fully abolished by L-NAME. Thus, a mutual excitatory influence exists between LTS and cholinergic interneurons in the striatum, providing an opportunity for sustained activation of the two cell types. This activation may

  19. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    PubMed

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS. PMID:19960210

  20. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  1. Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei.

    PubMed

    Gould, E; Woolf, N J; Butcher, L L

    1989-01-01

    The cholinergic innervation of the compact and reticular parts of the substantia nigra in the rat was investigated by use of highly sensitive retrograde and anterograde tract-tracing methods in combination with choline acetyltransferase immunohistochemistry. The fluorescent tracers True Blue, propidium iodide, or fluorogold were infused preferentially into either nigral subnucleus. Cells positive for choline acetyltransferase and retrograde tracer were found in both the pedunculopontine and laterodorsal tegmental nuclei, although considerably more double-labeled somata were observed in the former than in the latter component of the pontomesencephalotegmental cholinergic complex. Approximately 2-3 times more cholinergic cells were labeled in the peduculopontine and laterodorsal tegmental nuclei when tracer injections were centered in the compact nigral subdivision than when infusions of about the same size were confined totally to the reticular part. Infusions of the anterogradely transported tracer Phaseolus vulgaris leucoagglutinin into the pontomesencephalotegmental cholinergic complex resulted in uptake and transport of that label to both nigral subnuclei, and some of the Phaseolus vulgaris leucoagglutinin-accumulating somata and proximal processes also demonstrated choline acetyltransferase-like immunoreactivity. The Phaseolus vulgaris agglutinin-labeled entities in the substantia nigra exhibited terminal-like profiles that were reminiscent of the pattern of nigral choline acetyltransferase-positive puncta demonstrated immunohistochemically by use of nickel ammonium sulfate enhancement of the final reaction product in the avidin-biotin procedure. These observations strongly support the contention that the pontomesencephalotegmental cholinergic complex is the major source of cholinergic projections to both the compact and reticular portions of the rat substantia nigra. PMID:2710334

  2. Sox2 Regulates Cholinergic Amacrine Cell Positioning and Dendritic Stratification in the Retina

    PubMed Central

    Whitney, Irene E.; Keeley, Patrick W.; St. John, Ace J.; Kautzman, Amanda G.; Kay, Jeremy N.

    2014-01-01

    The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer. PMID:25057212

  3. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test

    PubMed Central

    Addy, N.A.; Nunes, E.J.; Wickham, R.J.

    2015-01-01

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125 mg/kg, intra-cranial; 1 or 2 μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24 μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30 μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST. PMID:25865152

  4. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans.

    PubMed

    Vianna, Lauro C; Fadel, Paul J; Secher, Niels H; Fisher, James P

    2015-04-01

    A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response of the muscle is relatively small compared with the onset of leg cycling, where a marked increase in muscle blood flow rapidly occurs as a consequence of multiple redundant mechanisms. We recorded blood pressure (BP; brachial artery), stroke volume (pulse contour analysis), cardiac output, and systemic vascular resistance (SVR) in young healthy males, while performing either 20 s of isometric handgrip contraction at 40% maximum voluntary contraction (protocol 1; n = 9) or 20 s of low-intensity leg cycling exercise (protocol 2; n = 8, 42 ± 8 W). Exercise trials were conducted under control (no drug) conditions and following cholinergic blockade (glycopyrrolate). Under control conditions, isometric handgrip elicited an initial increase in BP (+5 ± 2 mmHg at 3 s and +3 ± 1 mmHg at 10 s, P < 0.05), while SVR dropped after 3 s (-27 ± 6% at 20 s; P < 0.05). Cholinergic blockade abolished the isometric handgrip-induced fall in SVR and, thereby, augmented the pressor response (+13 ± 3 mmHg at 10 s; P < 0.05 vs. control). In contrast, cholinergic blockade had a nonsignificant effect on changes in BP and SVR at the onset of leg cycling exercise. These findings suggest that a cholinergic mechanism is important for the BP and SVR responses at the onset of isometric handgrip exercise in humans. PMID:25589014

  5. Habenula cholinergic neurons regulate anxiety during nicotine withdrawal via nicotinic acetylcholine receptors.

    PubMed

    Pang, Xueyan; Liu, Liwang; Ngolab, Jennifer; Zhao-Shea, Rubing; McIntosh, J Michael; Gardner, Paul D; Tapper, Andrew R

    2016-08-01

    Cholinergic neurons in the medial habenula (MHb) modulate anxiety during nicotine withdrawal although the molecular neuroadaptation(s) within the MHb that induce affective behaviors during nicotine cessation is largely unknown. MHb cholinergic neurons are unique in that they robustly express neuronal nicotinic acetylcholine receptors (nAChRs), although their behavioral role as autoreceptors in these neurons has not been described. To test the hypothesis that nAChR signaling in MHb cholinergic neurons could modulate anxiety, we expressed novel "gain of function" nAChR subunits selectively in MHb cholinergic neurons of adult mice. Mice expressing these mutant nAChRs exhibited increased anxiety-like behavior that was alleviated by blockade with a nAChR antagonist. To test the hypothesis that anxiety induced by nicotine withdrawal may be mediated by increased MHb nicotinic receptor signaling, we infused nAChR subtype selective antagonists into the MHb of nicotine naïve and withdrawn mice. While antagonists had little effect on nicotine naïve mice, blocking α4β2 or α6β2, but not α3β4 nAChRs in the MHb alleviated anxiety in mice undergoing nicotine withdrawal. Consistent with behavioral results, there was increased functional expression of nAChRs containing the α6 subunit in MHb neurons that also expressed the α4 subunit. Together, these data indicate that MHb cholinergic neurons regulate nicotine withdrawal-induced anxiety via increased signaling through nicotinic receptors containing the α6 subunit and point toward nAChRs in MHb cholinergic neurons as molecular targets for smoking cessation therapeutics. PMID:27020042

  6. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    PubMed

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST. PMID:25865152

  7. Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri.

    PubMed

    López, Jesús M; Domínguez, Laura; Morona, Ruth; Northcutt, R Glenn; González, Agustín

    2012-04-01

    Lungfishes (dipnoans) are currently considered the closest living relatives of tetrapods. The organization of the cholinergic systems in the brain has been carefully analyzed in most vertebrate groups, and major shared characteristics have been described, although traits particular to each vertebrate class have also been found. In the present study, we provide the first detailed information on the distribution of cholinergic cell bodies and fibers in the central nervous system in two representative species of lungfishes, the African lungfish (Protopterus dolloi) and the Australian lungfish (Neoceratodus forsteri), as revealed by immunohistochemistry against the enzyme choline acetyltransferase (ChAT). Distinct groups of ChAT immunoreactive (ChAT-ir) cells were observed in the basal telencephalon, habenula, isthmic nucleus, laterodorsal tegmental nucleus, cranial nerve motor nuclei, and the motor column of the spinal cord, and these groups seem to be highly conserved among vertebrates. In lungfishes, the presence of a cholinergic cell group in the thalamus and the absence of ChAT-ir cells in the tectum are variable traits, unique to this group and appearing several times during evolution. Other characters were observed exclusively in Neoceratodus, such as the presence of cholinergic cells in the suprachiasmatic nucleus, the pretectal region and the superior raphe nucleus. Cholinergic fibers were found in the medial pallium, basal telencephalon, thalamus and prethalamus, optic tectum and interpeduncular nucleus. Comparison of these results with those from other classes of vertebrates, including a segmental analysis to correlate cell populations, reveals that the cholinergic systems in lungfishes largely resemble those of amphibians and other tetrapods. PMID:21826455

  8. State dependency of the effects of microinjection of cholinergic drugs into the nucleus pontis oralis.

    PubMed

    López-Rodríguez, F; Kohlmeier, K; Morales, F R; Chase, M H

    1994-06-27

    The microinjection of cholinergic drugs into the pontine reticular formation elicits active sleep-like states that are comprised of the principal physiological patterns of activity that characterize naturally-occurring active sleep, i.e., EEG desynchronization, PGO waves, rapid eye movements and atonia. We have reported that other behavioral states arise even when cholinergic drugs are injected into the exact same reticular location. The present study was conducted to explore the basis for the differences in the drug effect. A combination of acetylcholine and neostigmine was injected by microiontophoresis into the dorsal region of the nucleus pontis oralis in four chronic, unanesthetized cats. The states that were induced by cholinergic drug injection depended on the state of the animal at the time of the injection. When the animal was awake, cholinergic injections resulted in a waking-dissociated state, which was characterized by EEG desynchronization and muscle atonia in a cat that appeared to be awake and was able to track objects in its visual field. If the cat was in quiet sleep at the time of the injection, an active sleep-like state followed that was indistinguishable from naturally-occurring active sleep; on a few occasions following cholinergic injections during quiet sleep there was a quiet sleep-dissociated state, which was characterized by PGO waves and muscle atonia in the cat that by other indices appeared to be in quiet sleep. The results of this study indicate that the state of the animal at the time of drug injection is a critical variable that influences the responses which are induced by cholinergic stimulation of the pontine reticular formation. PMID:7953643

  9. GPR30 is Positioned to Mediate Estrogen Effects on Basal Forebrain Cholinergic Neurons and Cognitive Performance

    PubMed Central

    Hammond, R.; Gibbs, R.B.

    2011-01-01

    Beneficial effects of estrogen therapy on cognitive performance diminish with age and time following the loss of ovarian function. This has led to the ‘Window of Opportunity’ hypothesis, which states that estrogen therapy must be administered within a limited period of time following menopause in order to be effective. Effects of estrogen therapy on cognitive performance are due, at least in part, to effects on cholinergic afferents innervating the hippocampus and cortex, and it has been suggested that the loss of estrogen effect with age and time following menopause is due to a substantial reduction in the function of these projections. The mechanisms that underlie the effects are not clear. GPR30 is a novel G-protein coupled estrogen receptor that is expressed in brain and other tissues. Our recent studies show that GPR30 is expressed in areas of the brain important for spatial learning, memory, and attention. In addition, GPR30 in expressed by the vast majority of cholinergic neurons in the basal forebrain, and appears to be an important regulator of basal forebrain cholinergic function. We hypothesize that GPR30 plays an important role in mediating direct effects of estradiol on basal forebrain cholinergic neurons, with corresponding effects on cognitive performance. Hence, GPR30 may be an important target for developing new therapies that can enhance or restore estrogen effects on cognitive performance in older women. Here we briefly review the cholinergic hypothesis and summarize our findings to date showing effects of a GPR30 agonist and antagonist on basal forebrain cholinergic function and cognitive performance. PMID:21138734

  10. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function.

    PubMed

    Fragkouli, A; Stamatakis, A; Zographos, E; Pachnis, V; Stylianopoulou, F

    2006-01-01

    It has been reported recently that mice lacking both alleles of the LIM-homeobox gene Lhx7, display dramatically reduced number of forebrain cholinergic neurons. In the present study, we investigated whether the Lhx7 mutation affects male and female mice differently, given the fact that gender differences are consistently observed in forebrain cholinergic function. Our results show that in adult male as well as female Lhx7 homozygous mutants there is a dramatic loss of choline acetyltransferase immunoreactive forebrain neurons, both projection and interneurons. The reduction of forebrain choline acetyltransferase immunoreactive neurons in Lhx7 homozygous mutants is accompanied by a decrease of acetylcholinesterase histochemical staining in all forebrain cholinergic neuron target areas of both male and female homozygous mutants. Furthermore, there was an increase of M1-, but not M2-, muscarinic acetylcholine receptor binding site density in the somatosensory cortex and basal ganglia of only the female homozygous mutant mice. Such an increase can be regarded as a mechanism acting to compensate for the dramatically reduced cholinergic input, raising the possibility that the forebrain cholinergic system in female mice may be more plastic and responsive to situations of limited neurotransmitter availability. Finally, our study provides additional data for the sexual dimorphism of the forebrain cholinergic system, as female mice appear to have a lower density of M1-muscarinic acetylcholine receptors in the striatal areas of the basal ganglia and a higher density of M2-muscarinic acetylcholine receptors, in a number of cortical areas, as well as the striatal areas of the basal ganglia. PMID:16338089

  11. Cholinergic components of nervous system of Schistosoma mansoni and S. haematobium (Digenea: Schistosomatidae).

    PubMed

    Reda, Enayat S; El-Shabasy, Eman A; Said, Ashraf E; Mansour, Mohamed F A; Saleh, Mai A

    2016-08-01

    A comparison has been made for the first time between the cholinergic components of the nervous system of important human digeneans namely Schistosoma mansoni and Schistosoma haematobium from infected hamster (Cricentus auratus) in Egypt. In each parasite, the central nervous system consists of two cerebral ganglia and three pairs of nerve cords (ventral, lateral, and dorsal) linked together by some transverse connectives and numerous ring commissures. Peripheral cholinergic innervation was detected in oral and ventral suckers and in some parts of female reproductive system in both species, but there were some differences. The possible functions of some of these nervous components are discussed. PMID:27130318

  12. Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system.

    PubMed

    Grando, Sergei A; Kawashima, Koichiro; Kirkpatrick, Charles J; Kummer, Wolfgang; Wessler, Ignaz

    2015-11-01

    This special issue of International Immunopharmacology is the proceedings of the Fourth International Symposium on Non-neuronal Acetylcholine that was held on August 28-30, 2014 at the Justus Liebig University of Giessen in Germany. It contains original contributions of meeting participants covering the significant progress in understanding of the biological and medical significance of the non-neuronal cholinergic system extending from exciting insights into molecular mechanisms regulating this system via miRNAs over the discovery of novel cholinergic cellular signaling circuitries to clinical implications in cancer, wound healing, immunity and inflammation, cardiovascular, respiratory and other diseases. PMID:26362206

  13. Ligand modeling and design

    SciTech Connect

    Hay, B.

    1996-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used tin applications for the cost-effective removal of specific radionuclides from nuclear waste streams.

  14. VEGFR-2 conformational switch in response to ligand binding

    PubMed Central

    Sarabipour, Sarvenaz; Ballmer-Hofer, Kurt; Hristova, Kalina

    2016-01-01

    VEGFR-2 is the primary regulator of angiogenesis, the development of new blood vessels from pre-existing ones. VEGFR-2 has been hypothesized to be monomeric in the absence of bound ligand, and to undergo dimerization and activation only upon ligand binding. Using quantitative FRET and biochemical analysis, we show that VEGFR-2 forms dimers also in the absence of ligand when expressed at physiological levels, and that these dimers are phosphorylated. Ligand binding leads to a change in the TM domain conformation, resulting in increased kinase domain phosphorylation. Inter-receptor contacts within the extracellular and TM domains are critical for the establishment of the unliganded dimer structure, and for the transition to the ligand-bound active conformation. We further show that the pathogenic C482R VEGFR-2 mutant, linked to infantile hemangioma, promotes ligand-independent signaling by mimicking the structure of the ligand-bound wild-type VEGFR-2 dimer. DOI: http://dx.doi.org/10.7554/eLife.13876.001 PMID:27052508

  15. The interaction between methylene blue and the cholinergic system

    PubMed Central

    Pfaffendorf, M; Bruning, T A; Batink, H D; van Zwieten, P A

    1997-01-01

    The inhibitory effects of methylene blue (MB) on different types of cholinesterases and [3H]-N-methylscopolamine ([3H]-NMS) binding to muscarinic receptors were studied. Human plasma from young healthy male volunteers, purified human pseudocholinesterase and purified bovine true acetylcholinesterase were incubated with acetylcholine and increasing concentrations of MB (0.1–100 μmol l−1) in the presence of the pH-indicator m-nitrophenol for 30 min at 25°C. The amount of acetic acid produced by the enzymatic hydrolysis of acetylcholine was determined photometrically. Rat cardiac left ventricle homogenate was incubated with [3H]-NMS and with increasing concentrations of MB (0.1 nmol l−1–100 μmol l−1) at 37°C for 20 min. The binding of [3H]-NMS to the homogenate was quantified by a standard liquid scintillation technique. MB inhibited the esterase activity of human plasma, human pseudocholinesterase and bovine acetylcholinesterase concentration-dependently with IC50 values of 1.05±0.05 μmol l−1, 5.32±0.36 μmol l−1 and 0.42±0.09 μmol l−1, respectively. MB induced complete inhibition of the esterase activity of human plasma and human pseudocholinesterase, whereas bovine acetylcholinesterase was maximally inhibited by 73±3.3%. MB was able to inhibit specific [3H]-NMS binding to rat cardiac left ventricle homogenate completely with an IC50 value of 0.77±0.03 μmol l−1, which resulted in a Ki value for MB of 0.58±0.02 μmol l−1. In conclusion, MB may be considered as a cholinesterase inhibitor with additional, relevant affinity for muscarinic binding sites at concentrations at which MB is used for investigations into the endothelial system. In our opinion these interactions between MB and the cholinergic system invalidate the use of MB as a tool for the investigation of the L-arginine-NO-pathway, in particular when muscarinic receptor stimulation is involved. PMID:9298533

  16. The Conqueror Worm: recent advances with cholinergic anthelmintics and techniques excite research for better therapeutic drugs

    PubMed Central

    Martin, R.J.; Puttachary, S.; Buxton, S.K.; Verma, S.; Robertson, A.P.

    2014-01-01

    The following account is based on a review lecture given recently at the British Society of Parasitology. We point out that nematode parasites cause very widespread infections of humans, particularly in economically underdeveloped areas where sanitation and hygiene are not adequate. In the absence of adequate clean water and effective vaccines, control and prophylaxis relies on anthelmintic drugs. Widespread use of anthelmintics to control nematode parasites of animals has given rise to the development of resistance and so there is a concern that similar problems will occur in humans if mass drug administration is continued. Recent research on the cholinergic anthelmintic drugs has renewed enthusiasm for the further development of cholinergic anthelmintics. Here we illustrate the use of three parasite nematode models, Ascaris suum, Oesophagostomum dentatum and Brugia malayi, microfluidic techniques and the Xenopus oocyte expression system for testing and examining the effects of cholinergic anthelmintics. We also show how the combination of derquantel, the selective nematode cholinergic antagonist and abamectin produce increased inhibition of the nicotinic acetylcholine receptors on the nematode body muscle. We are optimistic that new compounds and combinations of compounds can limit the effects of drug resistance, allowing anthelmintics to be continued to be used for effective treatment of human and animal helminth parasites. PMID:24871674

  17. Dysautonomia Due to Reduced Cholinergic Neurotransmission Causes Cardiac Remodeling and Heart Failure ▿ ‡

    PubMed Central

    Lara, Aline; Damasceno, Denis D.; Pires, Rita; Gros, Robert; Gomes, Enéas R.; Gavioli, Mariana; Lima, Ricardo F.; Guimarães, Diogo; Lima, Patricia; Bueno, Carlos Roberto; Vasconcelos, Anilton; Roman-Campos, Danilo; Menezes, Cristiane A. S.; Sirvente, Raquel A.; Salemi, Vera M.; Mady, Charles; Caron, Marc G.; Ferreira, Anderson J.; Brum, Patricia C.; Resende, Rodrigo R.; Cruz, Jader S.; Gomez, Marcus Vinicius; Prado, Vania F.; de Almeida, Alvair P.; Prado, Marco A. M.; Guatimosim, Silvia

    2010-01-01

    Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction. PMID:20123977

  18. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus

    PubMed Central

    Teipel, Stefan J.; Flatz, Wilhelm; Ackl, Nibal; Grothe, Michel; Kilimann, Ingo; Bokde, Arun L.W.; Grinberg, Lea; Amaro, Edson; Kljajevic, Vanja; Alho, Eduardo; Knels, Christina; Ebert, Anne; Heinsen, Helmut; Danek, Adrian

    2014-01-01

    Primary progressive aphasia (PPA) is characterized by left hemispheric frontotemporal cortical atrophy. Evidence from anatomical studies suggests that the nucleus subputaminalis (NSP), a subnucleus of the cholinergic basal forebrain, may be involved in the pathological process of PPA. Therefore, we studied the pattern of cortical and basal forebrain atrophy in 10 patients with a clinical diagnosis of PPA and 18 healthy age-matched controls using high-resolution magnetic resonance imaging (MRI). We determined the cholinergic basal forebrain nuclei according to Mesulam’s nomenclature and the NSP in MRI reference space based on histological sections and the MRI scan of a post-mortem brain in cranio. Using voxel-based analysis, we found left hemispheric cortical atrophy in PPA patients compared with controls, including prefrontal, lateral temporal and medial temporal lobe areas. We detected cholinergic basal forebrain atrophy in left predominant localizations of Ch4p, Ch4am, Ch4al, Ch3 and NSP. For the first time, we have described the pattern of basal forebrain atrophy in PPA and confirmed the involvement of NSP that had been predicted based on theoretical considerations. Our findings may enhance understanding of the role of cholinergic degeneration for the regional specificity of the cortical destruction leading to the syndrome of PPA. PMID:24434193

  19. MUSCARINIC CHOLINERGIC RECEPTOR REGULATION AND ACETYLCHOLINESTERASE INHIBITION IN RESPONSE TO INSECTICIDE EXPOSURE DURING DEVELOPMENT

    EPA Science Inventory

    Daily injections of low doses of the organophosphorus pesticide, parathion, into neonatal rats during the rapid phase of cholinergic system development (postnatal days 8-20), resulted in an average 67% inhibition of acetylcholinesterase and a 23% down regulation of muscarinic cho...

  20. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  1. Red Dermographism in Autism Spectrum Disorders: A Clinical Sign of Cholinergic Dysfunction?

    ERIC Educational Resources Information Center

    Lemonnier, E.; Grandgeorge, M.; Jacobzone-Leveque, C.; Bessaguet, C.; Peudenier, S.; Misery, L.

    2013-01-01

    The authors hypothesised that red dermographism--a skin reaction involving the cholinergic system--is more frequent in children with autism spectrum disorders (ASDs) than in children exhibiting typical development. We used a dermatological examination to study red dermographism in this transverse study, which compared forty six children with ASDs…

  2. Cholinergic Stimulation Enhances Bayesian Belief Updating in the Deployment of Spatial Attention

    PubMed Central

    Bauer, Markus; Mathys, Christoph; Adams, Rick A.; Dolan, Raymond J.; Stephan, Klaas E.; Friston, Karl J.

    2014-01-01

    The exact mechanisms whereby the cholinergic neurotransmitter system contributes to attentional processing remain poorly understood. Here, we applied computational modeling to psychophysical data (obtained from a spatial attention task) under a psychopharmacological challenge with the cholinesterase inhibitor galantamine (Reminyl). This allowed us to characterize the cholinergic modulation of selective attention formally, in terms of hierarchical Bayesian inference. In a placebo-controlled, within-subject, crossover design, 16 healthy human subjects performed a modified version of Posner's location-cueing task in which the proportion of validly and invalidly cued targets (percentage of cue validity, % CV) changed over time. Saccadic response speeds were used to estimate the parameters of a hierarchical Bayesian model to test whether cholinergic stimulation affected the trial-wise updating of probabilistic beliefs that underlie the allocation of attention or whether galantamine changed the mapping from those beliefs to subsequent eye movements. Behaviorally, galantamine led to a greater influence of probabilistic context (% CV) on response speed than placebo. Crucially, computational modeling suggested this effect was due to an increase in the rate of belief updating about cue validity (as opposed to the increased sensitivity of behavioral responses to those beliefs). We discuss these findings with respect to cholinergic effects on hierarchical cortical processing and in relation to the encoding of expected uncertainty or precision. PMID:25411501

  3. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  4. SPATIAL LEARNING DEFICITS ARE NOT SOLELY DUE TO CHOLINERGIC DEFICITS FOLLOWING MEDIAL SEPTAL LESIONS WITH COLCHICINE

    EPA Science Inventory

    Colchicinc was infused bilaterally into the cerebrolateral ventricles (3.75 ug/side) or directly into the medial septum (5 ug) of adult, male Fischer-344 rats (n=48) and effects on behavior and cholinergic markers were determined. ats receiving intracerebroventricular (ICV) admin...

  5. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer’s Disease-Like Models

    PubMed Central

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-01-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer’s disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697

  6. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer's Disease-Like Models.

    PubMed

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-05-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697

  7. Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in Parkinsonian mice.

    PubMed

    Won, Lisa; Ding, Yunmin; Singh, Pardeep; Kang, Un Jung

    2014-02-19

    3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia (LID) is a debilitating side effect of long-term dopamine replacement therapy in Parkinson's Disease. At present, there are few therapeutic options for treatment of LID and mechanisms contributing to the development and maintenance of these drug-induced motor complications are not well understood. We have previously shown that pharmacological reduction of cholinergic tone attenuates the expression of LID in parkinsonian mice with established dyskinesia after chronic L-DOPA treatment. The present study was undertaken to provide anatomically specific evidence for the role of striatal cholinergic interneurons by ablating them before initiation of L-DOPA treatment and determining whether it decreases LID. We used a novel approach to ablate striatal cholinergic interneurons (ChIs) via Cre-dependent viral expression of the diphtheria toxin A subunit (DT-A) in hemiparkinsonian transgenic mice expressing Cre recombinase under control of the choline acetyltransferase promoter. We show that Cre recombinase-mediated DT-A ablation selectively eliminated ChIs when injected into striatum. The depletion of ChIs markedly attenuated LID without compromising the therapeutic efficacy of L-DOPA. These results provide evidence that ChIs play a key and selective role in LID and that strategies to reduce striatal cholinergic tone may represent a promising approach to decreasing L-DOPA-induced motor complications in Parkinson's disease. PMID:24553948

  8. The Cholinergic Lesion of Alzheimer's Disease: Pivotal Factor or Side Show?

    ERIC Educational Resources Information Center

    Mesulam, Marsel

    2004-01-01

    A profound loss of cortical cholinergic innervation is a nearly invariant feature of advanced Alzheimer's disease (AD). The temporal course of this lesion and its relationship to other aspects of the disease have not yet been fully clarified. Despite assertions to the contrary, a review of the evidence suggests that a perturbation of cholinergic…

  9. Cholinergic Activity as a New Target in Diseases of the Heart

    PubMed Central

    Roy, Ashbeel; Guatimosim, Silvia; Prado, Vania F; Gros, Robert; Prado, Marco A M

    2014-01-01

    The autonomic nervous system is an important modulator of cardiac signaling in both health and disease. In fact, the significance of altered parasympathetic tone in cardiac disease has recently come to the forefront. Both neuronal and nonneuronal cholinergic signaling likely play a physiological role, since modulating acetylcholine (ACh) signaling from neurons or cardiomyocytes appears to have significant consequences in both health and disease. Notably, many of these effects are solely due to changes in cholinergic signaling, without altered sympathetic drive, which is known to have significant adverse effects in disease states. As such, it is likely that enhanced ACh-mediated signaling not only has direct positive effects on cardiomyocytes, but it also offsets the negative effects of hyperadrenergic tone. In this review, we discuss recent studies that implicate ACh as a major regulator of cardiac remodeling and provide support for the notion that enhancing cholinergic signaling in human patients with cardiac disease can reduce morbidity and mortality. These recent results support the idea of developing large clinical trials of strategies to increase cholinergic tone, either by stimulating the vagus or by increased availability of Ach, in heart failure. PMID:25222914

  10. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    SciTech Connect

    Pauly, J.R.; Marks, M.J.; Gross, S.D.; Collins, A.C. )

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the number of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.

  11. A Computational Model of How Cholinergic Interneurons Protect Striatal-Dependent Learning

    ERIC Educational Resources Information Center

    Ashby, F. Gregory; Crossley, Matthew J.

    2011-01-01

    An essential component of skill acquisition is learning the environmental conditions in which that skill is relevant. This article proposes and tests a neurobiologically detailed theory of how such learning is mediated. The theory assumes that a key component of this learning is provided by the cholinergic interneurons in the striatum known as…

  12. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  13. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    ERIC Educational Resources Information Center

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  14. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    PubMed Central

    Yi, Feng; Catudio-Garrett, Elizabeth; Gábriel, Robert; Wilhelm, Marta; Erdelyi, Ferenc; Szabo, Gabor; Deisseroth, Karl; Lawrence, Josh

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlap with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM) exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP) of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-tauGFP and ChAT-Rosa mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations. PMID:25798106

  15. Long-term changes in brain cholinergic system and behavior in rats following gestational exposure to lead: protective effect of calcium supplement

    PubMed Central

    Basha, Chand D.

    2015-01-01

    Our earlier studies showed that lactational exposure to lead (Pb) caused irreversible neurochemical alterations in rats. The present study was carried out to examine whether gestational exposure to Pb can cause long-term changes in the brain cholinergic system and behavior of rats. The protective effect of calcium (Ca) supplementation against Pb toxicity was also examined. Pregnant rats were exposed to 0.2% Pb (Pb acetate in drinking water) from gestational day (GD) 6 to GD 21. The results showed decrease in body weight gain (GD 6–21) of dams, whereas no changes were observed in offspring body weight at different postnatal days following Pb exposure. Male offspring treated with Pb showed marginal alterations in developmental landmarks such as unfolding of pinnae, lower and upper incisor eruption, fur development, eye slit formation and eye opening on postnatal day (PND) 1, whereas significant alterations were found in the righting reflex (PNDs 4–7), slant board behavior (PNDs 8–10) and forelimb hang performance (PNDs 12–16). Biochemical analysis showed decrease in synaptosomal acetylcholinesterase (AChE) activity and an increase in acetylcholine (ACh) levels in the cortex, cerebellum and hippocampus on PND 14, PND 21, PND 28 and in the four-month age group of rats following Pb exposure. Significant deficits were also observed in total locomotor activity, exploratory behavior and open field behavior in selected age groups of Pb-exposed rats. These alterations were found to be maximal on PND 28, corresponding with the greater blood lead levels observed on PND 28. Addition of 0.02% Ca to Pb reversed the Pb-induced impairments in the cholinergic system as well as in behavioral parameters of rats. In conclusion, these data suggest that gestational exposure to Pb is able to induce long-term changes in neurological functions of offspring. Maternal Ca administration reversed these neurological effects of Pb later in life, suggesting a protective effect of calcium

  16. Long-term changes in brain cholinergic system and behavior in rats following gestational exposure to lead: protective effect of calcium supplement.

    PubMed

    Basha, Chand D; Reddy, Rajarami G

    2015-12-01

    Our earlier studies showed that lactational exposure to lead (Pb) caused irreversible neurochemical alterations in rats. The present study was carried out to examine whether gestational exposure to Pb can cause long-term changes in the brain cholinergic system and behavior of rats. The protective effect of calcium (Ca) supplementation against Pb toxicity was also examined. Pregnant rats were exposed to 0.2% Pb (Pb acetate in drinking water) from gestational day (GD) 6 to GD 21. The results showed decrease in body weight gain (GD 6-21) of dams, whereas no changes were observed in offspring body weight at different postnatal days following Pb exposure. Male offspring treated with Pb showed marginal alterations in developmental landmarks such as unfolding of pinnae, lower and upper incisor eruption, fur development, eye slit formation and eye opening on postnatal day (PND) 1, whereas significant alterations were found in the righting reflex (PNDs 4-7), slant board behavior (PNDs 8-10) and forelimb hang performance (PNDs 12-16). Biochemical analysis showed decrease in synaptosomal acetylcholinesterase (AChE) activity and an increase in acetylcholine (ACh) levels in the cortex, cerebellum and hippocampus on PND 14, PND 21, PND 28 and in the four-month age group of rats following Pb exposure. Significant deficits were also observed in total locomotor activity, exploratory behavior and open field behavior in selected age groups of Pb-exposed rats. These alterations were found to be maximal on PND 28, corresponding with the greater blood lead levels observed on PND 28. Addition of 0.02% Ca to Pb reversed the Pb-induced impairments in the cholinergic system as well as in behavioral parameters of rats. In conclusion, these data suggest that gestational exposure to Pb is able to induce long-term changes in neurological functions of offspring. Maternal Ca administration reversed these neurological effects of Pb later in life, suggesting a protective effect of calcium in Pb

  17. Interaction between the antioxidant activity of curcumin and cholinergic system on memory retention in adult male Wistar rats

    PubMed Central

    Sarlak, Zeynab; Oryan, Shahrbanoo; Moghaddasi, Mehrnoush

    2015-01-01

    Objective(s): The cholinergic system plays an important role in learning and memory. This study investigated the effects of curcumin (turmeric extract) and the cholinergic system and their interaction on memory retention of passive avoidance learning in adult male Wistar rats. Materials and Methods: At first, an injection cannula was implanted in right ventricles of the animals. One week after the surgery, the animals were trained with a shuttle box set up. Post-training, injections were performed in all experiments. Administration of curcumin increased memory retention. Also administrations of nicotine and pilocarpine, the cholinergic receptor agonists, increased memory retention, while it is decreased by succinylcholine and scopolamine, the cholinergic receptor antagonists. Then co-administration of curcumin and cholinergic drugs were performed. Intraperitoneal and intracerebroventricular injections were applied for the curcumin and cholinergic drugs, respectively. Results: Co-administration of curcumin (45 mg/kg) with a low dose of nicotine (0.1 µg/rat) or pilocarpine (0.5 µg/rat) increased memory retention significantly. Effects of succinylcholine (0.01, 0.1 and 0.5 µg/rat) or scopolamine (0.1, 1 and 5 µg/rat) were attenuated by curcumin markedly (45 mg/kg). Conclusion: The results suggest that curcumin has a close interaction with cholinergic system in memory retention process. PMID:26019804

  18. The Cholinergic Signaling Responsible for the Expression of a Memory-Related Protein in Primary Rat Cortical Neurons.

    PubMed

    Chen, Tsan-Ju; Chen, Shun-Sheng; Wang, Dean-Chuan; Hung, Hui-Shan

    2016-11-01

    Cholinergic dysfunction in the brain is closely related to cognitive impairment including memory loss. In addition to the degeneration of basal forebrain cholinergic neurons, deficits in the cholinergic receptor signaling may also play an important role. In the present study, to examine the cholinergic signaling pathways responsible for the induction of a memory-related postsynaptic protein, a cholinergic agonist carbachol was used to induce the expression of activity-regulated cytoskeleton associated protein (Arc) in primary rat cortical neurons. After pretreating neurons with various antagonists or inhibitors, the levels of carbachol-induced Arc protein expression were detected by Western blot analysis. The results show that carbachol induces Arc protein expression mainly through activating M1 acetylcholine receptors and the downstream phospholipase C pathway, which may lead to the activation of the MAPK/ERK signaling pathway. Importantly, carbachol-mediated M2 receptor activation exerts negative effects on Arc protein expression and thus counteracts the enhanced effects of M1 activation. Furthermore, it is suggested for the first time that M1-mediated enhancement of N-methyl-D-aspartate receptor (NMDAR) responses, leading to Ca(2+) entry through NMDARs, contributes to carbachol-induced Arc protein expression. These findings reveal a more complete cholinergic signaling that is responsible for carbachol-induced Arc protein expression, and thus provide more information for developing treatments that can modulate cholinergic signaling and consequently alleviate cognitive impairment. J. Cell. Physiol. 231: 2428-2438, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895748

  19. Cholinergic Responses and Intrinsic Membrane Properties of Developing Thalamic Parafascicular Neurons

    PubMed Central

    Ye, Meijun; Hayar, Abdallah; Garcia-Rill, Edgar

    2009-01-01

    Parafascicular (Pf) neurons receive cholinergic input from the pedunculopontine nucleus (PPN), which is active during waking and REM sleep. There is a developmental decrease in REM sleep in humans between birth and puberty and 10–30 days in rat. Previous studies have established an increase in muscarinic and 5-HT1 serotonergic receptor–mediated inhibition and a transition from excitatory to inhibitory GABAA responses in the PPN during the developmental decrease in REM sleep. However, no studies have been conducted on the responses of Pf cells to the cholinergic input from the PPN during development, which is a major target of ascending cholinergic projections and may be an important mechanism for the generation of rhythmic oscillations in the cortex. Whole cell patch-clamp recordings were performed in 9- to 20-day-old rat Pf neurons in parasagittal slices, and responses to the cholinergic agonist carbachol (CAR) were determined. Three types of responses were identified: inhibitory (55.3%), excitatory (31.1%), and biphasic (fast inhibitory followed by slow excitatory, 6.8%), whereas 6.8% of cells showed no response. The proportion of CAR-inhibited Pf neurons increased with development. Experiments using cholinergic antagonists showed that M2 receptors mediated the inhibitory response, whereas excitatory modulation involved M1, nicotinic, and probably M3 or M5 receptors, and the biphasic response was caused by the activation of multiple types of muscarinic receptors. Compared with CAR-inhibited cells, CAR-excited Pf cells showed 1) a decreased membrane time constant, 2) higher density of hyperpolarization-activated channels (Ih), 3) lower input resistance (Rin), 4) lower action potential threshold, and 5) shorter half-width duration of action potentials. Some Pf cells exhibited spikelets, and all were excited by CAR. During development, we observed decreases in Ih density, Rin, time constant, and action potential half-width. These results suggest that cholinergic

  20. Cholinergic responses and intrinsic membrane properties of developing thalamic parafascicular neurons.

    PubMed

    Ye, Meijun; Hayar, Abdallah; Garcia-Rill, Edgar

    2009-08-01

    Parafascicular (Pf) neurons receive cholinergic input from the pedunculopontine nucleus (PPN), which is active during waking and REM sleep. There is a developmental decrease in REM sleep in humans between birth and puberty and 10-30 days in rat. Previous studies have established an increase in muscarinic and 5-HT1 serotonergic receptor-mediated inhibition and a transition from excitatory to inhibitory GABA(A) responses in the PPN during the developmental decrease in REM sleep. However, no studies have been conducted on the responses of Pf cells to the cholinergic input from the PPN during development, which is a major target of ascending cholinergic projections and may be an important mechanism for the generation of rhythmic oscillations in the cortex. Whole cell patch-clamp recordings were performed in 9- to 20-day-old rat Pf neurons in parasagittal slices, and responses to the cholinergic agonist carbachol (CAR) were determined. Three types of responses were identified: inhibitory (55.3%), excitatory (31.1%), and biphasic (fast inhibitory followed by slow excitatory, 6.8%), whereas 6.8% of cells showed no response. The proportion of CAR-inhibited Pf neurons increased with development. Experiments using cholinergic antagonists showed that M2 receptors mediated the inhibitory response, whereas excitatory modulation involved M1, nicotinic, and probably M3 or M5 receptors, and the biphasic response was caused by the activation of multiple types of muscarinic receptors. Compared with CAR-inhibited cells, CAR-excited Pf cells showed 1) a decreased membrane time constant, 2) higher density of hyperpolarization-activated channels (I(h)), 3) lower input resistance (R(in)), 4) lower action potential threshold, and 5) shorter half-width duration of action potentials. Some Pf cells exhibited spikelets, and all were excited by CAR. During development, we observed decreases in I(h) density, R(in), time constant, and action potential half-width. These results suggest that

  1. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    PubMed

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity. PMID:25339734

  2. Selective lesions of the cholinergic neurons within the posterior pedunculopontine do not alter operant learning or nicotine sensitization.

    PubMed

    MacLaren, Duncan A A; Wilson, David I G; Winn, Philip

    2016-04-01

    Cholinergic neurons within the pedunculopontine tegmental nucleus have been implicated in a range of functions, including behavioral state control, attention, and modulation of midbrain and basal ganglia systems. Previous experiments with excitotoxic lesions have found persistent learning impairment and altered response to nicotine following lesion of the posterior component of the PPTg (pPPTg). These effects have been attributed to disrupted input to midbrain dopamine systems, particularly the ventral tegmental area. The pPPTg contains a dense collection of cholinergic neurons and also large numbers of glutamatergic and GABAergic neurons. Because these interdigitated populations of neurons are all susceptible to excitotoxins, the effects of such lesions cannot be attributed to one neuronal population. We wished to assess whether the learning impairments and altered responses to nicotine in excitotoxic PPTg-lesioned rats were due to loss of cholinergic neurons within the pPPTg. Selective depletion of cholinergic pPPTg neurons is achievable with the fusion toxin Dtx-UII, which targets UII receptors expressed only by cholinergic neurons in this region. Rats bearing bilateral lesions of cholinergic pPPTg neurons (>90 % ChAT+ neuronal loss) displayed no deficits in the learning or performance of fixed and variable ratio schedules of reinforcement for pellet reward. Separate rats with the same lesions had a normal locomotor response to nicotine and furthermore sensitized to repeated administration of nicotine at the same rate as sham controls. Previously seen changes in these behaviors following excitotoxic pPPTg lesions cannot be attributed solely to loss of cholinergic neurons. These findings indicate that non-cholinergic neurons within the pPPTg are responsible for the learning deficits and altered responses to nicotine seen after excitotoxic lesions. The functions of cholinergic neurons may be related to behavioral state control and attention rather than learning

  3. Dynamic changes in GABAA receptors on basal forebrain cholinergic neurons following sleep deprivation and recovery

    PubMed Central

    Modirrousta, Mandana; Mainville, Lynda; Jones, Barbara E

    2007-01-01

    Background The basal forebrain (BF) cholinergic neurons play an important role in cortical activation and arousal and are active in association with cortical activation of waking and inactive in association with cortical slow wave activity of sleep. In view of findings that GABAA receptors (Rs) and inhibitory transmission undergo dynamic changes as a function of prior activity, we investigated whether the GABAARs on cholinergic cells might undergo such changes as a function of their prior activity during waking vs. sleep. Results In the brains of rats under sleep control (SC), sleep deprivation (SD) or sleep recovery (SR) conditions in the 3 hours prior to sacrifice, we examined immunofluorescent staining for β2–3 subunit GABAARs on choline acetyltransferase (ChAT) immunopositive (+) cells in the magnocellular BF. In sections also stained for c-Fos, β2–3 GABAARs were present on ChAT+ neurons which expressed c-Fos in the SD group alone and were variable or undetectable on other ChAT+ cells across groups. In dual-immunostained sections, the luminance of β2–3 GABAARs over the membrane of ChAT+ cells was found to vary significantly across conditions and to be significantly higher in SD than SC or SR groups. Conclusion We conclude that membrane GABAARs increase on cholinergic cells as a result of activity during sustained waking and reciprocally decrease as a result of inactivity during sleep. These changes in membrane GABAARs would be associated with increased GABA-mediated inhibition of cholinergic cells following prolonged waking and diminished inhibition following sleep and could thus reflect a homeostatic process regulating cholinergic cell activity and thereby indirectly cortical activity across the sleep-waking cycle. PMID:17316437

  4. Stress-induced altered cholinergic-glutamatergic interactions in the mouse hippocampus.

    PubMed

    Pavlovsky, Lev; Bitan, Yifat; Shalev, Hadar; Serlin, Yonatan; Friedman, Alon

    2012-09-01

    Psychological stress may lead to long-lasting brain dysfunction, specifically altered emotional and cognitive capabilities. Previous studies have demonstrated persistent changes in the expression of key cholinergic genes in the neocortex and hippocampus following stress with muscarinic receptor-mediated enhanced excitability. In the present study we examined cholinergic-mediated glutamatergic transmission in the hippocampus of mice after exposure to stress and its potential role in synaptic plasticity and altered behavior. Adult male mice were tested one month after repeated forced swimming test. Non-treated age-matched animals served as controls. Electrophysiological recordings were performed in the acute in-vitro slice preparation. CA1 pyramidal neurons were recorded using whole cell patch configuration. Extracellular recordings were done in response to Shaffer collaterals (SC) or stratum orien (SO) stimulation. Animal behavior in response to inhibition of acetylcholinesterase (AChE) was tested in open field paradigms. In whole cell patch recordings the frequency of excitatory post-synaptic currents (EPSCs) was significantly increased in response to muscarinic activation in stress-exposed animals. This enhanced cholinergic-modulated excitatory transmission is associated with facilitation of long-term potentiation (LTP) in response to tetanic stimulation at the SO but not at the SC. Stress-related behavioral modulation via central cholinergic pathways was enhanced by the central AChE inhibitor, physostigmine, thus further supporting the notion that stress is associated with long lasting hypersensitivity to acetylcholine. Our results revealed a pathway-specific enhancement of cholinergic-dependent glutamatergic transmission in the hippocampus after stress. These changes may underlie specific hippocampal malfunction, including cognitive and emotional disturbances, as observed in patients with post-traumatic stress disorder (PTSD). PMID:22796599

  5. Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain.

    PubMed

    Shah, Disha; Blockx, Ines; Keliris, Georgios A; Kara, Firat; Jonckers, Elisabeth; Verhoye, Marleen; Van der Linden, Annemie

    2016-07-01

    Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders. PMID:26195064

  6. A novel cholinergic epithelial cell with chemosensory traits in the murine conjunctiva.

    PubMed

    Wiederhold, Stephanie; Papadakis, Tamara; Chubanov, Vladimir; Gudermann, Thomas; Krasteva-Christ, Gabriela; Kummer, Wolfgang

    2015-11-01

    We recently identified a specialized cholinergic cell type in tracheal and urethral epithelium that utilizes molecules of the canonical taste transduction signaling cascade to sense potentially harmful substances in the luminal content. Upon stimulation, this cell initiates protective reflexes. Assuming a sentinel role of such cells at mucosal surfaces exposed to bacteria, we hypothesized their occurrence also in ocular mucosal surfaces. Utilizing a mouse strain expressing eGFP under the promoter of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT-eGFP), we observed a cholinergic cell in the murine conjunctiva. Singular cholinergic cells reaching the epithelial surface with slender processes were detected in fornical, but neither in bulbar nor palpebral epithelia. These cells were found neither in the lacrimal canaliculi, nor in the lacrimal sac and the nasolacrimal duct. Cholinergic conjunctival epithelial cells were immunoreactive for components of the canonical taste transduction signaling cascade, i.e. α-gustducin, phospholipase Cβ2 and the monovalent cation channel TRPM5. Calcitonin gene-related peptide- and substance P-immunoreactive sensory nerve fibers were observed extending into the conjunctival epithelium approaching slender ChAT-eGFP-positive cells. In addition, we noted both ChAT-eGFP expression and α-gustducin-immunoreactivity, albeit in different cell populations, in occasionally occurring lymphoid follicles of the nictitating membrane. The data show a previously unidentified cholinergic cell in murine conjunctiva with chemosensory traits that presumably utilizes acetylcholine for signaling. In analogy to similar cells described in the respiratory and urethral epithelium, it might serve to detect bacterial products and to initiate protective reflexes. PMID:26119492

  7. Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats.

    PubMed

    Kamat, Pradeep Kumar; Tota, Santoshkumar; Rai, Shivika; Shukla, Rakesh; Ali, Shakir; Najmi, Abul Kalam; Nath, Chandishwar

    2012-09-01

    Central cholinergic system is involved in regulation of memory and disturbances in these results in memory loss. Previously, we examined the effect of okadaic acid, OKA (200ng, i.c.v.) on memory impairment and mitochondrial dysfunction in rats. In the present study, we investigated effect of OKA (i.c.v) on cholinergic function by observing acetylcholine level (ACh), acetylcholinestrase (AChE) activity, and mRNA expression of acetylcholinestrase and α7nicotinic receptor (α7-nAChR) as a cholinergic markers in brain areas (cerebellum, striatum cortex and hippocampus). In present work OKA, caused a significant decrease in acetylcholine level, acetylcholinestrase activity and mRNA expression of acetylcholinestrase and α7-nicotinic receptor in rat but these changes were mainly observed in cortex and hippocampus. Further, histopathological study by cresyl violet staining showed neuronal loss in cortex and hippocampus after OKA administration indicating neurotoxicity. Pretreatment with anti-dementic drugs donepezil (AChE inhibitor; 5mg/kg, p.o) and memantine (NMDA receptor antagonist; 10mg/kg, p.o) daily for 13 day prevented cholinergic dysfunction and neuronal loss in cortex and hippocampus of OKA treated rat. Daily per se treatment for 13 day with donepezil decreased acetylcholinestrase activity and increased mRNA expression of acetylcholinestrase and α7-nicotinic receptor. Whereas, per se treatment with memantine daily for 13 day did not affect acetylcholinestrase activity, mRNA expression of acetylcholinestrase and α7-nicotinic receptor. Findings of this work shows that OKA (i.c.v.), apart from memory impairment and mitochondrial dysfunction, as our previous study showed, also induced cholinergic dysfunction and neuronal loss, which can be addressed by antidementic drugs like donepezil and memantine. PMID:22749976

  8. EFFECTS OF SUSTAINED PRONGF BLOCKADE ON ATTENTIONAL CAPACITIES IN AGED RATS WITH COMPROMISED CHOLINERGIC SYSTEM

    PubMed Central

    YEGLA, BRITTNEY; PARIKH, VINAY

    2014-01-01

    Disruption in nerve growth factor (NGF) signaling via trkA receptors compromises the integrity of the basal forebrain (BF) cholinergic system, yielding cognitive, specifically attentional, impairments in Alzheimer’s disease (AD). Although normal aging is considered a risk factor for AD, the mechanisms underlying the selective vulnerability of the aging cholinergic system to trkA disruption is not clear. The levels of proNGF, a proneurotrophin that possesses higher affinity for p75 receptors, increase in aging. The present study was designed to test the hypothesis that cholinergic and attentional dysfunction in aged rats with reduced BF trkA receptors occurs due to the overactivation of endogenous proNGF signaling. We employed a viral vector that produced trkA shRNA to suppress trkA receptors in the corticopetal cholinergic neurons of aged rats. BF trkA suppression impaired animals’ performance on signal trials in both the sustained attention task (SAT) and the cognitively-taxing distractor version of SAT (dSAT) and these deficits were normalized by chronic intracerebroventricular administration of proNGF antibody. Moreover, depolarization-evoked ACh release and the density of cortical cholinergic fibers were partially restored in these animals. However, SAT/dSAT scores reflecting overall performance did not improve following proNGF blockade in trkA knockdown rats due to impaired performance in non-signal trials. Sustained proNGF blockade alone did not alter baseline attentional performance but produced moderate impairments during challenging conditions. Collectively, our findings indicate that barring proNGF-p75 signaling may exert some beneficial effects on attentional capacities specifically when BF trkA signaling is abrogated. However, endogenous proNGF may also possess neurotrophic effects and blockade of this proneurotrophin may not completely ameliorate attentional impairments in AD and potentially hinder performance during periods of high cognitive load

  9. Misleading biochemical laboratory test results

    PubMed Central

    Nanji, Amin A.

    1984-01-01

    This article reviews the general and specific factors that interfere with the performance of common biochemical laboratory tests and the interpretation of their results. The clinical status of the patient, drug interactions, and in-vivo and in-vitro biochemical interactions and changes may alter the results obtained from biochemical analysis of blood constituents. Failure to recognize invalid laboratory test results may lead to injudicious and dangerous management of patients. PMID:6375845

  10. Biochemical Reversal of Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2006-03-01

    We cite our progress on biochemical reversal of aging. However, it may be circa 2 years before we have necessary substances at low cost. Meanwhile, without them, a number of measures can be adopted providing marked improvement for the problems of aging in modern societies. For example, enzymes are needed to excrete toxins that accelerate aging; Hg is the ultimate toxin that disables all enzymes (including those needed to excrete Hg itself). Low Hg level in the urine, due to loss of excretory ability, causes the diagnosis of Hg toxicity to almost always be missed. Hg sources must be removed from the body! Another example is excess sugar; hyperglycemia decreases intracellular ascorbic acid (AA) by competitively inhibiting the insulin- mediated active transport of AA into cells. Thus, immunity is impaired by low leucocyte AA. AA is needed for new proteins in aging tissues. Humans must supplement AA; their need same as in AA-synthesizing mammals.

  11. Cholinergic neuronal lesions in the medial septum and vertical limb of the diagonal bands of Broca induce contextual fear memory generalization and impair acquisition of fear extinction.

    PubMed

    Knox, Dayan; Keller, Samantha M

    2016-06-01

    Previous research has shown that the ventral medial prefrontal cortex (vmPFC) and hippocampus (Hipp) are critical for extinction memory. Basal forebrain (BF) cholinergic input to the vmPFC and Hipp is critical for neural function in these substrates, which suggests BF cholinergic neurons may be critical for extinction memory. In order to test this hypothesis, we applied cholinergic lesions to different regions of the BF and observed the effects these lesions had on extinction memory. Complete BF cholinergic lesions induced contextual fear memory generalization, and this generalized fear was resistant to extinction. Animals with complete BF cholinergic lesions could not acquire cued fear extinction. Restricted cholinergic lesions in the medial septum and vertical diagonal bands of Broca (MS/vDBB) mimicked the effects that BF cholinergic lesions had on contextual fear memory generalization and acquisition of fear extinction. Cholinergic lesions in the horizontal diagonal band of Broca and nucleus basalis (hDBB/NBM) induced a small deficit in extinction of generalized contextual fear memory with no accompanying deficits in cued fear extinction. The results of this study reveal that MS/vDBB cholinergic neurons are critical for inhibition and extinction of generalized contextual fear memory, and via this process, may be critical for acquisition of cued fear extinction. Further studies delineating neural circuits and mechanisms through which MS/vDBB cholinergic neurons facilitate these emotional memory processes are needed. © 2015 Wiley Periodicals, Inc. PMID:26606423

  12. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  13. Rescue of NGF-deficient mice II: basal forebrain cholinergic projections require NGF for target innervation but not guidance.

    PubMed

    Phillips, Heidi S; Nishimura, Merry; Armanini, Mark P; Chen, Karen; Albers, Kathryn M; Davis, Brian M

    2004-04-29

    Basal forebrain cholinergic (BFC) neurons are an important substrate of cognitive function and are hypothesized to require the presence of nerve growth factor (NGF) for survival and target innervation. NGF-deficient mice develop BFC neurons that extend projections into telencephalic targets, but the mice perish before innervation is fully established. Rescue of NGF-deficient mice by transgenic expression of NGF under the keratin promoter yields viable mice with disrupted CNS expression of NGF. In the current study, rescued NGF-deficient mice contain normal numbers of septal cholinergic neurons yet reveal severe compromise of cholinergic innervation of both cortex and hippocampus. Surprisingly, intracerebroventricular infusion of NGF into juvenile mice can induce an essentially normal pattern of cholinergic innervation of the hippocampus. These results indicate that NGF is required for induction of proper innervation by BFC neurons, but that the cellular pattern of expression of this factor is not critical for specifying the distribution of axon terminals. PMID:15093680

  14. Differentiation of muscarinic cholinergic receptor subtypes in human cortex and pons - Implications for anti-motion sickness therapy

    NASA Technical Reports Server (NTRS)

    Mccarthy, Bruce G.; Peroutka, Stephen J.

    1988-01-01

    Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.

  15. Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis.

    PubMed

    Muller, Jay F; Mascagni, Franco; Zaric, Violeta; Mott, David D; McDonald, Alexander J

    2016-08-15

    Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R(+) . The main targets of M2R(+) terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R(+) dendritic shafts. M2R-ir was also seen in VAChT(+) cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R-mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ-aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400-2417, 2016. © 2016 Wiley Periodicals, Inc. PMID:26779591

  16. Basal Forebrain Cholinergic Neurons Primarily Contribute to Inhibition of Electroencephalogram Delta Activity, Rather Than Inducing Behavioral Wakefulness in Mice.

    PubMed

    Chen, Li; Yin, Dou; Wang, Tian-Xiao; Guo, Wei; Dong, Hui; Xu, Qi; Luo, Yan-Jia; Cherasse, Yoan; Lazarus, Michael; Qiu, Zi-Long; Lu, Jun; Qu, Wei-Min; Huang, Zhi-Li

    2016-07-01

    The basal forebrain (BF) cholinergic neurons have long been thought to be involved in behavioral wakefulness and cortical activation. However, owing to the heterogeneity of BF neurons and poor selectivity of traditional methods, the precise role of BF cholinergic neurons in regulating the sleep-wake cycle remains unclear. We investigated the effects of cell-selective manipulation of BF cholinergic neurons on the sleep-wake behavior and electroencephalogram (EEG) power spectrum using the pharmacogenetic technique, the 'designer receptors exclusively activated by designer drugs (DREADD)' approach, and ChAT-IRES-Cre mice. Our results showed that activation of BF cholinergic neurons expressing hM3Dq receptors significantly and lastingly decreased the EEG delta power spectrum, produced low-delta non-rapid eye movement sleep, and slightly increased wakefulness in both light and dark phases, whereas inhibition of BF cholinergic neurons expressing hM4Di receptors significantly increased EEG delta power spectrum and slightly decreased wakefulness. Next, the projections of BF cholinergic neurons were traced by humanized Renilla green fluorescent protein (hrGFP). Abundant and highly dense hrGFP-positive fibers were observed in the secondary motor cortex and cingulate cortex, and sparse hrGFP-positive fibers were observed in the ventrolateral preoptic nucleus, a known sleep-related structure. Finally, we found that activation of BF cholinergic neurons significantly increased c-Fos expression in the secondary motor cortex and cingulate cortex, but decreased c-Fos expression in the ventrolateral preoptic nucleus. Taken together, these findings reveal that the primary function of BF cholinergic neurons is to inhibit EEG delta activity through the activation of cerebral cortex, rather than to induce behavioral wakefulness. PMID:26797244

  17. Synthesis and biological evaluation of [125I]- and [123I]-4-iododexetimide, a potent muscarinic cholinergic receptor antagonist.

    PubMed

    Wilson, A A; Dannals, R F; Ravert, H T; Frost, J J; Wagner, H N

    1989-05-01

    A series of halogenated racemic analogues of dexetimide (1) was synthesized and their affinity for the muscarinic cholinergic receptor measured. One analogue, 4-iododexetimide (21), was efficiently labeled with 125I and 123I at high specific activity. In vitro binding studies and in vivo biodistribution studies suggest that 123I-labeled 21 may be useful for imaging muscarinic cholinergic receptors in the living human brain with single photon emission computed tomography. PMID:2785211

  18. Does age matter? Behavioral and neuro-anatomical effects of neonatal and adult basal forebrain cholinergic lesions.

    PubMed

    De Bartolo, Paola; Cutuli, Debora; Ricceri, Laura; Gelfo, Francesca; Foti, Francesca; Laricchiuta, Daniela; Scattoni, Maria Luisa; Calamandrei, Gemma; Petrosini, Laura

    2010-01-01

    The "cholinergic hypothesis" of dementia posits that the progressive loss of basal forebrain cholinergic neurons and the consequent decrease of acetylcholine levels in the deafferented projection sites are correlated with degree of cognitive decline in dementia. It has also been proposed that early dysfunction of the basal forebrain (BF) cholinergic system may be a risk factor for subsequent cognitive decline and possibly dementia. To characterize how age when BF cholinergic system is lesioned affects behavioral performances and morphology of neocortical neurons, seven-day-old rats were bilaterally i.c.v. injected with 192 IgG-saporin. In adulthood, these animals were subjected to spatial and associative tests. Subsequently, the morphology of parietal pyramidal neurons was assessed. The same behavioral and morphological evaluations were made in 80-day-old rats tested three weeks after bilateral i.c.v. injections of 192 IgG-saporin. The behavioral consequences of both cholinergic depletions were markedly similar. While both groups of lesioned animals exhibited very subtle deficits in the Morris water maze, they were significantly impaired in spatial discrimination in the open field and the radial maze. Paralleling behavioral data, the results of the morphological analysis revealed comparable increases in number and density of spines in apical and basal dendrites in layer-III parietal pyramidal neurons following both neonatal and adult cholinergic depletions. The present results demonstrate that the consequences of abnormal maturation of the cholinergic system are not substantially different from those evoked by cholinergic dysfunction in adulthood and provide a developmental psychobiological perspective of the neuronal foundations of the impaired cognitive functions. PMID:20164586

  19. Functional mu opioid receptors are expressed in cholinergic interneurons of the rat dorsal striatum: territorial specificity and diurnal variation.

    PubMed

    Jabourian, Maritza; Venance, Laurent; Bourgoin, Sylvie; Ozon, Sylvie; Pérez, Sylvie; Godeheu, Gérard; Glowinski, Jacques; Kemel, Marie-Louise

    2005-06-01

    Striatal cholinergic interneurons play a crucial role in the control of movement as well as in motivational and learning aspects of behaviour. Neuropeptides regulate striatal cholinergic transmission and particularly activation of mu opioid receptor (MOR) inhibits acetylcholine (ACh) release in the dorsal striatum. In the present study we investigated whether this cholinergic transmission could be modulated by an enkephalin/MOR direct process. We show that mRNA and protein of MORs are expressed by cholinergic interneurons in the limbic/prefrontal territory but not by those in the sensorimotor territory of the dorsal striatum. These MORs are functional because potassium-evoked release of ACh from striatal synaptosomes was dose-dependently reduced by a selective MOR agonist, this effect being suppressed by a MOR antagonist. The MOR regulation of cholinergic interneurons presented a diurnal variation. (i) The percentage of cholinergic interneurons containing MORs that was 32% at the beginning of the light period (morning) increased to 80% in the afternoon. (ii) The MOR-mediated inhibition of synaptosomal ACh release was higher in the afternoon than in the morning. (iii) While preproenkephalin mRNA levels remained stable, enkephalin tissue content was the lowest (-32%) in the afternoon when the spontaneous (+35%) and the N-methyl-d-aspartate-evoked (+140%) releases of enkephalin (from microsuperfused slices) were the highest. Therefore, by acting on MORs present on cholinergic interneurons, endogenously released enkephalin reduces ACh release. This direct enkephalin/MOR regulation of cholinergic transmission that operates only in the limbic/prefrontal territory of the dorsal striatum might contribute to information processing in fronto-cortico-basal ganglia circuits. PMID:16026468

  20. Persistent Binding of Ligands to the Aryl Hydrocarbon Receptor

    PubMed Central

    Bohonowych, Jessica E.; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxic effects of halogenated aromatic hydrocarbons (HAHs), polycyclic aromatic hydrocarbons (PAHs), and other structurally diverse ligands. While HAHs are several orders of magnitude more potent in producing AhR-dependent biochemical effects than PAHs or other AhR agonists, only the HAHs have been observed to produce AhR-dependent toxicity in vivo. Here we have characterized the dissociation of a prototypical HAH ligand ([3H] 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) and PAH-like ligand ([3H] β-naphthoflavone [βNF]) from the guinea pig, hamster, mouse, and rat hepatic cytosolic AhR in order to elucidate the relationship between the apparent ligand-binding affinities and the divergent potency of these chemicals. Both compounds dissociated very slowly from the AhR with the amount of specific binding remaining at 96 h ranging from 53% to 70% for [3H]TCDD and 26% to 85% for [3H] βNF, depending upon the species examined. The rate of ligand dissociation was unaffected by protein concentration or incubation temperature. Preincubation of cytosol with 2,3,7,8-tetrachlorodibenzofuran, carbaryl, or primaquine, prior to the addition of [3H]TCDD, shifted the apparent IC50 of these compounds as competitive AhR ligands by ∼10- to 50-fold. Our results support the need for reassessment of previous AhR ligand-binding affinity calculations and competitive binding analysis since these measurements are not carried out at equilibrium binding conditions. Our studies suggest that AhR binding affinity/occupancy has little effect on the observed differences in the persistence of gene expression by HAHs and PAHs. PMID:17431010

  1. LigandRNA: computational predictor of RNA–ligand interactions

    PubMed Central

    Philips, Anna; Milanowska, Kaja; Łach, Grzegorz; Bujnicki, Janusz M.

    2013-01-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. PMID:24145824

  2. The distribution and morphological characteristics of cholinergic cells in the brain of monotremes as revealed by ChAT immunohistochemistry.

    PubMed

    Manger, P R; Fahringer, H M; Pettigrew, J D; Siegel, J M

    2002-01-01

    The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. PMID:12476054

  3. Platelet-derived nerve growth factor supports the survival of cholinergic neurons in organotypic rat brain slices.

    PubMed

    Kniewallner, Kathrin M; Grimm, Natalia; Humpel, Christian

    2014-06-27

    Platelets play a role in repair of vessels and contain different growth factors, including nerve growth factor (NGF). Since NGF is the most potent growth factor to support survival of cholinergic neurons, we aimed to study the effects of platelet-derived NGF on cholinergic neurons in organotypic brain slices. Brain slices of the nucleus basalis of Meynert (nBM) were cultured with or without NGF (10ng/ml) or platelet extracts (100μg/ml) or fresh platelets (10(8) platelets/ml). In order to enhance NGF in platelets recombinant NGF (100ng) was loaded into platelets using ultrasound (3h). Our data show that recombinant NGF markedly supports survival of cholinergic neurons. The addition of fresh platelets showed a tendency for enhancing cholinergic neuron numbers, while platelet extracts had no effects. Ultrasound was highly effective to load recombinant NGF into platelets. The addition of NGF-loaded platelets markedly enhanced cholinergic neuron numbers. In conclusion, our data provide evidence that NGF-derived platelets may counteract cell death of cholinergic neurons. PMID:24861506

  4. Loss of medial septum cholinergic neurons in THY-Tau22 mouse model: what links with tau pathology?

    PubMed

    Belarbi, K; Burnouf, S; Fernandez-Gomez, F-J; Desmercières, J; Troquier, L; Brouillette, J; Tsambou, L; Grosjean, M-E; Caillierez, R; Demeyer, D; Hamdane, M; Schindowski, K; Blum, D; Buée, L

    2011-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder histologically defined by the cerebral accumulation of amyloid deposits and neurofibrillary tangles composed of hyperphosphorylated tau proteins. Loss of basal forebrain cholinergic neurons is another hallmark of the disease thought to contribute to the cognitive dysfunctions. To this date, the mechanisms underlying cholinergic neurons degeneration remain uncertain. The present study aimed to investigate the relationship between neurofibrillary degeneration and cholinergic defects in AD using THY-Tau22 transgenic mouse model exhibiting a major hippocampal AD-like tau pathology and hyperphosphorylated tau species in the septohippocampal pathway. Here, we report that at a time THY-Tau22 mice display strong reference memory alterations, the retrograde transport of fluorogold through the septohippocampal pathway is altered. This impairment is associated with a significant reduction in the number of choline acetyltransferase (ChAT)-immunopositive cholinergic neurons in the medial septum. Analysis of nerve growth factor (NGF) levels supports an accumulation of the mature neurotrophin in the hippocampus of THY-Tau22 mice, consistent with a decrease of its uptake or retrograde transport by cholinergic terminals. Finally, our data strongly support that tau pathology could be instrumental in the cholinergic neuronal loss observed in AD. PMID:21605043

  5. Differential effects of selective lesions of cholinergic and dopaminergic neurons on serotonin-type 1 receptors in rat brain

    SciTech Connect

    Quirion, R.; Richard, J.

    1987-01-01

    Serotonin (5-HT)-type1 receptor binding sites are discretely distributed in rat brain. High densities of (3H)5-HT1 binding sites are especially located in areas enriched with cholinergic and dopaminergic innervation, such as the substantia innominata/ventral pallidum, striatum, septal nuclei, hippocampus and substantia nigra. The possible association of (3H)5-HT1 binding sites with cholinergic or dopaminergic cell bodies and/or nerve fiber terminals was investigated by selective lesions of the substantia innominata/ventral pallidum-cortical and septohippocampal cholinergic pathways and the nigrostriatal dopaminergic projection. (3H)5-HT1 receptor binding sites are possibly located on cholinergic cell bodies in the ventral pallidum-cortical pathway since (3H)5-HT1 binding in the substantia innominata/ventral pallidal area was markedly decreased following kainic acid lesions. Fimbriaectomies markedly decreased (3H)5-HT1 binding in the hippocampus, suggesting the presence of 5-HT1 binding sites on cholinergic nerve fiber terminals in the septohippocampal pathway. Lesions of the nigrostriatal dopaminergic projection did not modify (3H)5-HT1 binding in the substantia nigra and the striatum, suggesting that 5-HT1 receptors are not closely associated with dopaminergic cell bodies and nerve terminals in this pathway. These results demonstrate differential association between 5-HT1 receptors and cholinergic and dopaminergic innervation in rat brain.

  6. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B.

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  7. The effects of baclofen and cholinergic drugs on upbeat and downbeat nystagmus.

    PubMed Central

    Dieterich, M; Straube, A; Brandt, T; Paulus, W; Büttner, U

    1991-01-01

    The GABAergic drug baclofen and the cholinergic drug physostigmine were administered to patients with upbeat and downbeat nystagmus. Baclofen (orally, 5 mg three times daily) reduced nystagmus slow phase velocity and distressing oscillopsia by 25-75% in four out of five patients (two upbeat nystagmus; two downbeat nystagmus). Physostigmine (1 mg single intravenous injection) increased nystagmus in five additional patients with downbeat (1) or positional downbeat nystagmus (4) for a duration of 15-20 minutes. The different interactions of baclofen and physostigmine on neurotransmission subserving vertical vestibulo-ocular reflex could account for these effects. The response to baclofen appears to be a GABA-B-ergic effect with augmentation of the physiological inhibitory influence of the vestibulo-cerebellum on the vestibular nuclei. Similarly baclofen has an inhibitory effect on the velocity storage mechanism. Cholinergic action may cause the increment of nystagmus by physostigmine. PMID:1654396

  8. A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses.

    PubMed

    Stone, Emily; Haario, Heikki; Lawrence, J Josh

    2014-12-01

    In this paper we use a simple model of presynaptic neuromodulation of GABA signaling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Markov Chain Monte Carlo (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation. PMID:25445738

  9. Spontaneous Synaptic Activation of Muscarinic Receptors by Striatal Cholinergic Neuron Firing.

    PubMed

    Mamaligas, Aphroditi A; Ford, Christopher P

    2016-08-01

    Cholinergic interneurons (CHIs) play a major role in motor and learning functions of the striatum. As acetylcholine does not directly evoke postsynaptic events at most striatal synapses, it remains unclear how postsynaptic cholinergic receptors encode the firing patterns of CHIs in the striatum. To examine the dynamics of acetylcholine release, we used optogenetics and paired recordings from CHIs and medium spiny neurons (MSNs) virally overexpressing G-protein-activated inwardly rectifying potassium (GIRK) channels. Due to the efficient coupling between endogenous muscarinic receptors and GIRK channels, we found that firing of individual CHIs resulted in monosynaptic spontaneous inhibitory post-synaptic currents (IPSCs) in MSNs. Paired CHI-MSN recordings revealed that the high probability of acetylcholine release at these synapses allowed muscarinic receptors to faithfully encode physiological activity patterns from individual CHIs without failure. These results indicate that muscarinic receptors in striatal output neurons reliably decode CHI firing. PMID:27373830

  10. Neuropharmacology of memory consolidation and reconsolidation: Insights on central cholinergic mechanisms.

    PubMed

    Blake, M G; Krawczyk, M C; Baratti, C M; Boccia, M M

    2014-01-01

    Central cholinergic system is critically involved in all known memory processes. Endogenous acetylcholine release by cholinergic neurons is necessary for modulation of acquisition, encoding, consolidation, reconsolidation, extinction, retrieval and expression. Experiments from our laboratory are mainly focused on elucidating the mechanisms by which acetylcholine modulates memory processes. Blockade of hippocampal alpha-7-nicotinic receptors (α7-nAChRs) with the antagonist methyllycaconitine impairs memory reconsolidation. However, the administration of a α7-nAChR agonist (choline) produce a paradoxical modulation, causing memory enhancement in mice trained with a weak footshock, but memory impairment in animals trained with a strong footshock. All these effects are long-lasting, and depend on the age of the memory trace. This review summarizes and discusses some of our recent findings, particularly regarding the involvement of α7-nAChRs on memory reconsolidation. PMID:24819880

  11. Increased hypothermic responses to ethanol in rats selectively bred for cholinergic supersensitivity.

    PubMed

    Overstreet, D H; Rezvani, A H; Janowsky, D S

    1990-01-01

    The behavioral and hypothermic effects of ethanol were studied in the Flinders Sensitive Line (FSL) and Flinders Resistant Line (FRL) rats, selectively bred for differences in cholinergic sensitivity. The FSL hypercholinergic rats exhibited a significantly greater degree of hypothermia than the FRL rats, or a group of weight-matched randomly bred rats. Although there were some trends for the FSL rats to appear more depressed behaviorally after receiving ethanol, there were no significant differences between the FSL and FRL rats on quantitative behavioral measures. Blood ethanol concentrations were slightly lower in the FRL rats, but there were no differences between the FSL and control rats. These findings suggest an association between cholinergic mechanisms and ethanol sensitivity with regard to body temperature effect, but a direct causal relationship cannot be established because of similar differential sensitivities of FSL and FRL rats to a range of other neurotransmitter-altering drugs on this parameter. PMID:2334497

  12. Brain cholinergic involvement during the rapid development of tolerance to morphine

    NASA Technical Reports Server (NTRS)

    Wahba, Z. Z.; Oriaku, E. T.; Soliman, S. F. A.

    1987-01-01

    The effect of repeated administration of morphine on the activities of the cholinergic enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), in specific brain regions were studied in rats treated with 10 mg/kg morphine for one or two days. Repeated administration of morphine was associated with a decline in the degree of analgesia produced and with a significant increase of AChE activity of the medulla oblongata. A single injection of morphine resulted in a significant decline in ChAT activity in the hypothalamus, cerebellum, and medulla oblongata regions. After two consecutive injections, no decline in ChAT was observed in these regions, while in the cerebral cortex the second administration elicited a significant decline. The results suggest that the development of tolerance to morphine may be mediated through changes in ChAT activity and lend support to the involvement of the central cholinergic system in narcotic tolerance.

  13. A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses

    PubMed Central

    Stone, Emily; Haario, Heikki; Lawrence, J. Josh

    2014-01-01

    In this paper we use a simple model of presynaptic neuromodulation of GABA signalling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Monte Carlo Markov Chain (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation. PMID:25445738

  14. Optogenetic studies of nicotinic contributions to cholinergic signaling in the central nervous system

    PubMed Central

    Jiang, Li; López-Hernández, Gretchen Y.; Lederman, James; Talmage, David A.; Role, Lorna W.

    2015-01-01

    Molecular manipulations and targeted pharmacological studies provide a compelling picture of which nicotinic receptor subtypes are where in the central nervous system (CNS) and what happens if one activates or deletes them. However, understanding the physiological contribution of nicotinic receptors to endogenous acetylcholine (ACh) signaling in the CNS has proven a more difficult problem to solve. In this review, we provide a synopsis of the literature on the use of optogenetic approaches to control the excitability of cholinergic neurons and to examine the role of CNS nicotinic ACh receptors (nAChRs). As is often the case, this relatively new technology has answered some questions and raised others. Overall, we believe that optogenetic manipulation of cholinergic excitability in combination with some rigorous pharmacology will ultimately advance our understanding of the many functions of nAChRs in the brain. PMID:25051276

  15. EGF receptor ligands: recent advances

    PubMed Central

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J.

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.

  16. A genetic rat model of cholinergic hypersensitivity: implications for chemical intolerance, chronic fatigue, and asthma.

    PubMed

    Overstreet, D H; Djuric, V

    2001-03-01

    The fact that only some individuals exposed to environmental chemicals develop chemical intolerance raises the possibility that genetic factors could be contributing factors. The present communication summarizes evidence from a genetic animal model of cholinergic supersensitivity that suggests that an abnormal cholinergic system could be one predisposing genetic factor. The Flinders Sensitive Line (FSL) rats were established by selective breeding for increased responses to an organophosphate. It was subsequently found that these FSL rats were also more sensitive to direct-acting muscarinic agonists and had elevated muscarinic receptors compared to the selectively bred parallel group, the Flinders Resistant Line (FRL) rats, or randomly bred control rats. Increased sensitivity to cholinergic agents has also been observed in several human populations, including individuals suffering from chemical intolerance. Indeed, the FSL rats exhibit certain behavioral characteristics such as abnormal sleep, activity, and appetite that are similar to those reported in these human populations. In addition, the FSL rats have been reported to exhibit increased sensitivity to a variety of other chemical agents. Peripheral tissues, such as intestinal and airway smooth muscle, appear to be more sensitive to both cholinergic agonists and an antigen, ovalbumin. Hypothermia, a centrally mediated response, is more pronounced in the FSL rats after nicotine and alcohol, as well as agents that are selective for the dopaminergic and serotonergic systems. In some cases, the increased sensitivity has been detected in the absence of any changes in the receptors with which the drugs interact (dopamine receptors), while receptor changes have been seen in other cases (nicotine receptors). Therefore, there may be multiple mechanisms underlying the multiple chemical sensitivity-chemical intolerance of the FSL rats. An elucidation of these mechanisms may provide useful clues to those involved in

  17. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    SciTech Connect

    Srivastava, Pranay; Yadav, Rajesh S.; Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S.; Dwivedi, Hari N.; Pant, Aditiya B.; Khanna, Vinay K.

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  18. Gut feeling: MicroRNA discriminators of the intestinal TLR9-cholinergic links.

    PubMed

    Nadorp, Bettina; Soreq, Hermona

    2015-11-01

    The intestinal tissue notably responds to stressful, cholinergic and innate immune signals by microRNA (miRNA) changes, but whether and how those miRNA regulators modify the intestinal cholinergic and innate immune pathways remained unexplored. Here, we report changes in several miRNA regulators of cholinesterases (ChEs) and correspondingly modified ChE activities in intestine, splenocytes and the circulation of mice exposed to both stress and canonical or alternative Toll-Like Receptor 9 (TLR9) oligonucleotide (ODN) aptamer activators or blockers. Stressful intraperitoneal injection of saline, the anti-inflammatory TLR9 agonist mEN101 aptamer or the inflammation-activating TLR9 aptamer ODN 1826 all increased the expression of the acetylcholinesterase (AChE)-targeting miR-132. In comparison, mEN101 but neither ODN 1826 nor saline injections elevated intestinal miR-129-5p, miR-186 and miR-200c, all predicted to target both AChE and the homologous enzyme butyrylcholinesterase (BChE). In cultured immune cells, BL-7040, the human counterpart of mEN101, reduced AChE activity reflecting inflammatory reactions in a manner preventable by the TLR9 blocking ODN 2088. Furthermore, the anti-inflammatory BL-7040 TLR9 aptamer caused reduction in nitric oxide and AChE activity in both murine splenocytes and human mononuclear cells at molar concentrations four orders of magnitude lower than ODN 1826. Our findings demonstrate differential reaction of cholinesterase-targeting miRNAs to distinct TLR9 challenges, indicating upstream miRNA co-regulation of the intestinal alternative NFκB pathway and cholinergic signaling. TLR9 aptamers may hence potentiate miRNA regulation that enhances cholinergic signaling and the resolution of inflammation, which opens new venues for manipulating bowel diseases. PMID:26003847

  19. Central cholinergic signal-mediated neuroendocrine regulation of vasopressin and oxytocin in ovine fetuses

    PubMed Central

    Shi, Lijun; Mao, Caiping; Zeng, Fanxing; Zhang, Yuying; Xu, Zhice

    2008-01-01

    Background The hypothalamic-neurohypophysial system plays a fundamental role in the maintenance of body fluid homeostasis by secreting arginine vasopressin (AVP) and oxytocin (OT) in response to a variety of signals, including osmotic and nonosmotic stimuli. It is well established that central cholinergic mechanisms are critical in the regulation of cardiovascular responses and maintenance of body fluid homeostasis in adults. Our recent study demonstrated that intracerebroventricular (i.c.v.) injection of carbachol elicited an increase of blood pressure in the near-term ovine fetuses. However, in utero development of brain cholinergic mechanisms in the regulation of the hypothalamic neuropeptides is largely unknown. This study investigated AVP and OT neural activation in the fetal hypothalamus induced by central carbachol. Results Chronically prepared near-term ovine fetuses (0.9 gestation) received an i.c.v. carbachol (3 μg/kg). Fetal blood samples were collected for AVP and OT assay, and brains were used for c-fos mapping studies. I.c.v. carbachol significantly increased fetal plasma AVP and OT concentrations. Intense FOS immunoreactivity (FOS-ir) was observed in the fetal supraoptic nuclei (SON) and paraventricular nuclei (PVN) in the hypothalamus. Double labeling demonstrated that a number of AVP- and OT-containing neurons in the fetal SON and PVN were expressing c-fos in response to central carbachol. Conclusion The results indicate that the central cholinergic mechanism is established and functional in the regulation of the hypothalamic neuropeptides during the final trimester of pregnancy. This provides evidence for a functional link between the development of central cholinergic mechanisms and hypothalamic neuropeptide systems in the fetus. PMID:18828925

  20. Effects of estrogen on beta-amyloid-induced cholinergic cell death in the nucleus basalis magnocellularis.

    PubMed

    Szego, Eva M; Csorba, Attila; Janáky, Tamás; Kékesi, Katalin A; Abrahám, István M; Mórotz, Gábor M; Penke, Botond; Palkovits, Miklós; Murvai, Unige; Kellermayer, Miklós S Z; Kardos, József; Juhász, Gábor D

    2011-01-01

    Alzheimer disease is characterized by accumulation of β-amyloid (Aβ) and cognitive dysfunctions linked to early loss of cholinergic neurons. As estrogen-based hormone replacement therapy has beneficial effects on cognition of demented patients, and it may prevent memory impairments, we investigated the effect of estrogen-pretreatment on Aβ-induced cholinergic neurodegeneration in the nucleus basalis magnocellularis (NBM). We tested which Aβ species induces the more pronounced cholinotoxic effect in vivo. We injected different Aβ assemblies in the NBM of mice, and measured cholinergic cell and cortical fiber loss. Spherical Aβ oligomers had the most toxic effect. Pretreatment of ovariectomized mice with estrogen before Aβ injection decreased cholinergic neuron loss and partly prevented fiber degeneration. By using proteomics, we searched for proteins involved in estrogen-mediated protection and in Aβ toxicity 24 h following injection. The change in expression of, e.g., DJ-1, NADH ubiquinone oxidoreductase, ATP synthase, phosphatidylethanolamine-binding protein 1, protein phosphatase 2A and dimethylarginine dimethylaminohydrolase 1 support our hypothesis that Aβ induces mitochondrial dysfunction, decreases MAPK signaling, and increases NOS activation in NBM. On the other hand, altered expression of, e.g., MAP kinase kinase 1 and 2, protein phosphatase 1 and 2A by Aβ might increase MAPK suppression and NOS signaling in the cortical target area. Estrogen pretreatment reversed most of the changes in the proteome in both areas. Our experiments suggest that regulation of the MAPK pathway, mitochondrial pH and NO production may all contribute to Aβ toxicity, and their regulation can be prevented partly by estrogen pretreatment. PMID:20938166

  1. Impaired microtubule function correctable by cyclic GMP and cholinergic agonists in the Chediak-Higashi syndrome.

    PubMed Central

    Oliver, J. M.

    1976-01-01

    The Chediak-Higashi (CH) syndrome of man and several animal species is characterized by the presence of abnormal giant granules in all granule-containing cells and by defects in chemotaxis and lysosomal degranulation during phagocytosis in polymorphonuclear leukocytes (PMNs). Since similar functional abnormalities have been reported in normal PMNs following exposure to colchicine and other agents that disrupt microtubles it was proposed that microtubule function may be impaired in the CH syndrome. The mobility of concanavalin A (con A)-receptor complexes on PMN membranes was used to test microtubule integrity. Normal PMNs showed a uniform distribution of membrane-bound con A. By contrast, con A was aggregated into surface caps on both colchicine-treated normal PMNs and untreated PMNs from mice and a patient with CH syndrome. This result is consistent with impaired microtubule function in the CH cells. The spontaneous capping response of CH PMNs was inhibited by cyclic GMP and by cholinergic agonists that can elevate cyclic GMP levels in neutrophils. This raised the possibility that the microtubule defect in CH cells may be correctable by treatments that increase cyclic GMP generation. Direct evidence for both the absence of microtubule assembly in con A-treated PMNs from the CH patient and for normal microtubule assembly in CH PMNs incubated with cyclic GMP and cholinergic agonists prior to con A treatment was obtained by electron microscopy. In addition, evidence for a direct relationship between the microtubule defect and the development of giant lysosomes in CH cells was obtained. Thus, CH fibroblasts grown in vitro developed abnormal lysosomes in the majority of cells. However, the same cells cultured in the presence of cholinergic agonists developed a majority of lysosomes that were morphologically normal at the level of the light microscope. Similarly, granule morphology appeared normal in peripheral blood leukocytes from mice treated chronically in vivo with

  2. Endothelin-1 increases cholinergic nerve-mediated contraction of human bronchi via tachykinin synthesis induction

    PubMed Central

    D'Agostino, Bruno; Advenier, Charles; Falciani, Maddalena; Gallelli, Luca; Marrocco, Giuseppina; Piegari, Elena; Filippelli, Amelia; Rossi, Francesco

    2001-01-01

    In some asthmatics, muscarinic receptor antagonists are effective in limiting bronchoconstrictor response, suggesting an abnormal cholinergic drive in these subjects. There is a growing body of evidences indicating that cholinergic neurotransmission is also enhanced by endothelin-1 (ET-1) in rabbit bronchi, mouse trachea and in human isolated airway preparations.We investigated the role of secondary mediators in ET-1 induced potentiation of cholinergic nerve-mediated contraction in human bronchi, in particular the possible role of neuropeptides in this phenomenon.Bronchial tissues after endothelin treatment were exposed to a standard electrical field stimulation (EFS) (30% of EFS 30Hz)-induced contraction. In addition, in some experiments, preparations were treated with a tachykinin NK2 receptor antagonist and subsequently exposed to the same protocol. HPLC and RIA were performed on organ bath fluid samples. Moreover, the human bronchi were used for the β-PPT (preprotachykinin) mRNA extraction and semiquantitative reverse transcription polymerase chain reaction (RT – PCR), prior to and 30 – 40 min following ET-1 challenge.The selective tachykinin NK2 receptor antagonist, SR48968, was effective to reduce ET-1 potentiation of EFS mediated contraction. HPLC or RIA showed significant increased quantities of NKA in organ bath effluents after EFS stimulation in bronchi pretreated with ET-1. Finally, β-PPT mRNA level after stimulation of bronchi with ET-1 was increased about 2 fold respect to control untreated bronchi.In conclusion, this study demonstrated that, at least in part, the ET-1 potentiation of cholinergic nerve-mediated contraction is mediated by tachykinin release, suggesting that in addition to nerves, several type of cells, such as airway smooth muscle cell, may participate to neuropeptide production. PMID:11724750

  3. Chagas’ disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells

    PubMed Central

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V.; PereiraPerrin, Mercio

    2008-01-01

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas’ disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas’ disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas’ disease patients. PMID:18502403

  4. Chagas' disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells.

    PubMed

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V; PereiraPerrin, Mercio

    2008-06-27

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas' disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, and activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas' disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas' disease patients. PMID:18502403

  5. Mesopontine organization of cholinergic and catecholaminergic cell groups in the normal and narcoleptic dog.

    PubMed

    Tafti, M; Nishino, S; Liao, W; Dement, W C; Mignot, E

    1997-03-10

    Canine narcolepsy is a unique experimental model of a human sleep disorder characterized by excessive daytime sleepiness and cataplexy. There is a consensus recognition of an imbalance between cholinergic and catecholaminergic systems in narcolepsy although the underlying mechanisms remain poorly understood. Possible substrates could be an abnormal organization, numbers and/or ratio of cholinergic to catecholaminergic cells in the brain of narcoleptic dogs. Therefore, we sought to characterize the corresponding neuronal populations in normal and narcoleptic dogs (Doberman Pinscher) by using choline acetyltransferase (ChAT), nicotinamide adenosine dinucleotide phosphate (NADPH)-diaphorase, tyrosine hydroxylase (TH), and dopamine beta-hydroxylase (DBH). Cholinergic cell groups were found in an area extending from the central to the gigantocellular tegmental field and the periventricular gray corresponding to the pedunculopontine tegmental nucleus (PPT), the laterodorsal tegmental nucleus (LDT), and the parabrachial nucleus. An almost perfect co-localization of ChAT and NADPH-diaphorase was also observed. Catecholaminergic cell groups detected included the ventral tegmental area, the substantia nigra, and the locus coeruleus nucleus (LC). The anatomical distribution of catecholaminergic neurons was unusual in the dog in two important aspects: i) TH- and/or DBH-immunoreactive neurons of the LC were found almost exclusively in the reticular formation and not within the periventricular gray, ii) very few, if any TH-positive neurons were found in the central gray and dorsal raphe. Quantitative analysis did not reveal any significant differences in the organization and the number of cells identified in the LDT, PPT, and LC of normal and narcoleptic dogs. Moreover, the cholinergic to catecholaminergic ratio was found identical in the two groups. In conclusion, the present results do not support the hypothesis that the neurochemical imbalance in narcolepsy could result from

  6. Cold, cholinergic and aquagenic urticaria in children: presentation of three cases and review of the literature.

    PubMed

    Arıkan-Ayyıldız, Zeynep; Işık, Sakine; Cağlayan-Sözmen, Sule; Karaman, Ozkan; Uzuner, Nevin

    2013-01-01

    Urticaria can be induced with a wide variety of environmental stimuli, such as cold, pressure, vibration, sunlight, exercise, temperature changes, heat, and water. Urticaria caused by physical factors has been reported as the cause of 6-17% of the chronic urticaria in children. We present three cases here - cholinergic, cold and aquagenic urticaria - in which the diagnosis was proven with exercise, ice-cube and water provocation tests, respectively. PMID:23692841

  7. Loss of neurons in the rat basal forebrain cholinergic projection system after prolonged intake of ethanol.

    PubMed

    Arendt, T; Henning, D; Gray, J A; Marchbanks, R

    1988-10-01

    A reduction in the number of acetylcholinesterase (AChE)-positive neurons in the basal nucleus of Meynert complex (NbM, Ch 1 to Ch4) to 83% of control values was observed in rat after ethanol intake (20% v/v) for 12 weeks. Activity of choline acetyltransferase (ChAT) and AChE in the basal forebrain was simultaneously reduced to 74% and 81% and content of acetylcholine (ACh) to 56% of control values respectively. Neuronal loss showed a gradient over the rostro-caudal extension of the cholinergic projection system being most pronounced in the septal-diagonal band area and reaching 27% in the medial septum (Ch1). Number of AChE-positive neurons was insignificantly reduced in the pedunculopontine nucleus (Ch5) and unchanged in the laterodorsal tegmental gray of the periventricular area (Ch6). ACh content and activity of AChE was significantly reduced in target areas of the NbM such as cortex, hippocampus and amygdala, but changes were less pronounced than in the basal nucleus. The results indicate a neurotoxic effect of prolonged intake of ethanol on cholinergic neurons in the NbM leading to a partial cholinergic denervation of cortex, hippocampus and amygdala. Chronic intake of ethanol in rat is suggested to represent an animal model suitable to test the cholinergic hypothesis of geriatric memory dysfunction and to develop strategies for an amelioration of the impairment in memory and cognitive function in dementing disorders associated with a degeneration in the NbM such as postalcoholic dementia and Alzheimer's disease. PMID:2850095

  8. Satb2-Independent Acquisition of the Cholinergic Sudomotor Phenotype in Rodents

    PubMed Central

    Schütz, Burkhard; Schaäfer, Martin K.-H.; Gördes, Markus; Eiden, Lee E.; Weihe, Eberhard

    2014-01-01

    Expression of Satb2 (Special AT-rich sequence-binding protein-2) elicits expression of the vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) in cultured rat sympathetic neurons exposed to soluble differentiation factors. Here, we determined whether or not Satb2 plays a similar role in cholinergic differentiation in vivo, by comparing the postnatal profile of Satb2 expression in the rodent stellate ganglion to that of VAChT and ChAT. Throughout postnatal development, VAChT and ChAT were found to be co-expressed in a numerically stable subpopulation of rat stellate ganglion neurons. Nerve fibers innervating rat forepaw sweat glands on P1 were VAChT immunoreactive, while ChAT was detectable at this target only after P5. The postnatal abundance of VAChT transcripts in the stellate ganglion was at maximum already on P1, whereas ChAT mRNA levels increased from low levels on P1 to reach maximum levels between P5 and P21. Satb2 mRNA was detected in cholinergic neurons in the stellate ganglion beginning with P8, thus coincident with the onset of unequivocal detection of ChAT immunoreactivity in forepaw sweat gland endings. Satb2 knockout mice exhibited no change in the P1 cholinergic VAChT/ChAT co-phenotype in stellate ganglion neurons. Thus, cholinergic phenotype maturation involves first, early target (sweat-gland)-independent expression and trafficking of VAChT, and later, potentially target- and Satb2-dependent elevation of ChAT mRNA and protein transport into sweat gland endings. In rat sudomotor neurons that, unlike mouse sudomotor neurons, co-express calcitonin gene-related peptide (CGRP), Satb2 may also be related to the establishment of species-specific neuropeptide co-phenotypes during postnatal development. PMID:25239161

  9. Gut feeling: MicroRNA discriminators of the intestinal TLR9–cholinergic links

    PubMed Central

    Nadorp, Bettina; Soreq, Hermona

    2015-01-01

    The intestinal tissue notably responds to stressful, cholinergic and innate immune signals by microRNA (miRNA) changes, but whether and how those miRNA regulators modify the intestinal cholinergic and innate immune pathways remained unexplored. Here, we report changes in several miRNA regulators of cholinesterases (ChEs) and correspondingly modified ChE activities in intestine, splenocytes and the circulation of mice exposed to both stress and canonical or alternative Toll-Like Receptor 9 (TLR9) oligonucleotide (ODN) aptamer activators or blockers. Stressful intraperitoneal injection of saline, the anti-inflammatory TLR9 agonist mEN101 aptamer or the inflammation-activating TLR9 aptamer ODN 1826 all increased the expression of the acetylcholinesterase (AChE)-targeting miR-132. In comparison, mEN101 but neither ODN 1826 nor saline injections elevated intestinal miR-129-5p, miR-186 and miR-200c, all predicted to target both AChE and the homologous enzyme butyrylcholinesterase (BChE). In cultured immune cells, BL-7040, the human counterpart of mEN101, reduced AChE activity reflecting inflammatory reactions in a manner preventable by the TLR9 blocking ODN 2088. Furthermore, the anti-inflammatory BL-7040 TLR9 aptamer caused reduction in nitric oxide and AChE activity in both murine splenocytes and human mononuclear cells at molar concentrations four orders of magnitude lower than ODN 1826. Our findings demonstrate differential reaction of cholinesterase-targeting miRNAs to distinct TLR9 challenges, indicating upstream miRNA co-regulation of the intestinal alternative NFκB pathway and cholinergic signaling. TLR9 aptamers may hence potentiate miRNA regulation that enhances cholinergic signaling and the resolution of inflammation, which opens new venues for manipulating bowel diseases. PMID:26003847

  10. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.

    PubMed

    Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang

    2015-11-01

    The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. PMID:26102274

  11. Eye Movements and Abducens Motoneuron Behavior after Cholinergic Activation of the Nucleus Reticularis Pontis Caudalis

    PubMed Central

    Márquez-Ruiz, Javier; Escudero, Miguel

    2010-01-01

    Study Objectives: The aim of this work was to characterize eye movements and abducens (ABD) motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis (NRPC). Methods: Six female adult cats were prepared for chronic recording of eye movements (using the scleral search-coil technique), electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves in the lateral geniculate nucleus, and ABD motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPC. Results: Unilateral microinjections of carbachol in the NRPC induced tonic and phasic phenomena in the oculomotor system. Tonic effects consisted of ipsiversive rotation to the injected side, convergence, and downward rotation of the eyes. Phasic effects consisted of bursts of rhythmic rapid eye movements directed contralaterally to the injected side along with PGO-like waves in the lateral geniculate and ABD nuclei. Although tonic effects were dependent on the level of drowsiness, phasic effects were always present and appeared along with normal saccades when the animal was vigilant. ABD motoneurons showed phasic activities associated with ABD PGO-like waves during bursts of rapid eye movements, and tonic and phasic activities related to eye position and velocity during alertness. Conclusion The cholinergic activation of the NRPC induces oculomotor phenomena that are somewhat similar to those described during REM sleep. A precise comparison of the dynamics and timing of the eye movements further suggests that a temporal organization of both NRPCs is needed to reproduce the complexity of the oculomotor behavior during REM sleep. Citation: Márquez-Ruiz J; Escudero M. Eye movements and abducens motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis. SLEEP 2010;33(11):1517-1527. PMID:21102994

  12. Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias.

    PubMed

    Bordia, Tanuja; Perez, Xiomara A; Heiss, Jaime E; Zhang, Danhui; Quik, Maryka

    2016-07-01

    L-dopa-induced dyskinesias (LIDs) are a serious complication of L-dopa therapy for Parkinson's disease. Emerging evidence indicates that the nicotinic cholinergic system plays a role in LIDs, although the pathways and mechanisms are poorly understood. Here we used optogenetics to investigate the role of striatal cholinergic interneurons in LIDs. Mice expressing cre-recombinase under the control of the choline acetyltransferase promoter (ChAT-Cre) were lesioned by unilateral injection of 6-hydroxydopamine. AAV5-ChR2-eYFP or AAV5-control-eYFP was injected into the dorsolateral striatum, and optical fibers implanted. After stable virus expression, mice were treated with L-dopa. They were then subjected to various stimulation protocols for 2h and LIDs rated. Continuous stimulation with a short duration optical pulse (1-5ms) enhanced LIDs. This effect was blocked by the general muscarinic acetylcholine receptor (mAChR) antagonist atropine indicating it was mAChR-mediated. By contrast, continuous stimulation with a longer duration optical pulse (20ms to 1s) reduced LIDs to a similar extent as nicotine treatment (~50%). The general nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine blocked the decline in LIDs with longer optical pulses showing it was nAChR-mediated. None of the stimulation regimens altered LIDs in control-eYFP mice. Lesion-induced motor impairment was not affected by optical stimulation indicating that cholinergic transmission selectively regulates LIDs. Longer pulse stimulation increased the number of c-Fos expressing ChAT neurons, suggesting that changes in this immediate early gene may be involved. These results demonstrate that striatal cholinergic interneurons play a critical role in LIDs and support the idea that nicotine treatment reduces LIDs via nAChR desensitization. PMID:26921469

  13. Somatostatin inhibits cANP-mediated cholinergic transmission in the myenteric plexus

    SciTech Connect

    Wiley, J.; Owyang, C. )

    1987-11-01

    The mechanism by which somatostatin acts to modulate cholinergic transmission is not clear. In this study the authors investigated the role of the adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) system in mediating cholinergic transmission in the guinea pig myenteric plexus and examined the ability of somatostatin to alter acetylcholine (ACh) release stimulated by various cAMP agonists. Forskolin, 8-bromo-cAMP, vasoactive intestinal peptide (VIP), and cholera toxin each stimulated the release of ({sup 3}H)ACh in a dose-related manner. Addition of theophylline enhanced the release of ({sup 3}H)ACh stimulated by these cAMP agonists. The observations suggest that cAMP may serve as a physiological mediator for ACh release from myenteric neurons. Somatostatin inhibited release of ({sup 3}H)ACh evoked by various cAMP agonists in a dose-related manner. Pretreatment with pertussis toxin antagonized the inhibitory effect of somatostatin on the release of ({sup 3}H)ACh evoked by forskolin, VIP, or cholera toxin but had no effect on the inhibitory action of somatostatin on the release of ({sup 3}H)ACh evoked by 8-bromo-cAMP. This suggests that the principal mechanism by which somatostatin inhibits cAMP-mediated cholinergic transmission is via activation of the inhibitory regulatory protein (N{sub i} subunit) of adenyalte cyclase.

  14. The basal ganglia cholinergic neurochemistry of progressive supranuclear palsy and other neurodegenerative diseases

    PubMed Central

    Warren, N M; Piggott, M A; Lees, A J; Burn, D J

    2007-01-01

    Background Progressive supranuclear palsy (PSP) is a progressive neurodegenerative disorder involving motor and cognitive dysfunction. Currently, there is no effective treatment either for symptomatic relief or disease modification. This relates, in part, to a lack of knowledge of the underlying neurochemical abnormalities, including cholinergic receptor status in the basal ganglia. Aim To measure muscarinic M2 and M4 receptors in the basal ganglia in PSP. Methods The muscarinic M2 (presynaptic) and M4 (postsynaptic) receptors in the striatum, pallidum and adjacent insular cortex were autoradiographically measured in pathologically confirmed cases of PSP (n = 18), and compared with cases of Lewy body dementias (LBDs; n = 45), Alzheimer's disease (AD; n = 39) and controls (n = 50). Results In cases of PSP, there was a reduction in M2 and M4 receptors in the posterior caudate and putamen compared to controls, but no significant changes in the pallidum. Cases with AD showed lower M2 receptors in the posterior striatum. Groups with LBD and AD showed higher M2 binding in the insular cortex compared with controls. Conclusions The results suggest loss of posterior striatal cholinergic interneurones in PSP, and reduction in medium spiny projection neurones bearing M4 receptors. These results should be taken in the context of more widespread pathology in PSP, but may have implications for future trials of cholinergic treatments. PMID:17178818

  15. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  16. Chronic administration of sulbutiamine improves long term memory formation in mice: possible cholinergic mediation.

    PubMed

    Micheau, J; Durkin, T P; Destrade, C; Rolland, Y; Jaffard, R

    1985-08-01

    Thiamine deficiency in both man and animals is known to produce memory dysfunction and cognitive disorders which have been related to an impairment of cholinergic activity. The present experiment was aimed at testing whether, inversely, chronic administration of large doses of sulbutiamine would have a facilitative effect on memory and would induce changes in central cholinergic activity. Accordingly mice received 300 mg/kg of sulbutiamine daily for 10 days. They were then submitted to an appetitive operant level press conditioning test. When compared to control subjects, sulbutiamine treated mice learned the task at the same rate in a single session but showed greatly improved performance when tested 24 hr after partial acquisition of the same task. Parallel neurochemical investigations showed that the treatment induced a slight (+ 10%) but significant increase in hippocampal sodium-dependent high affinity choline uptake. The present findings and previous results suggest that sulbutiamine improves memory formation and that this behavioral effect could be mediated by an increase in hippocampal cholinergic activity. PMID:4059305

  17. Effects of diazinon on the lymphocytic cholinergic system of Nile tilapia fish (Oreochromis niloticus).

    PubMed

    Toledo-Ibarra, G A; Díaz-Resendiz, K J G; Pavón-Romero, L; Rojas-García, A E; Medina-Díaz, I M; Girón-Pérez, M I

    2016-08-01

    Fish rearing under intensive farming conditions can be easily disturbed by pesticides, substances that have immunotoxic properties and may predispose to infections. Organophosphorus pesticides (OPs) are widely used in agricultural activities; however, the mechanism of immunotoxicity of these substances is unclear. The aim of this study was to evaluate the effect of diazinon pesticides (OPs) on the cholinergic system of immune cells as a possible target of OP immunotoxicity. We evaluated ACh levels and cholinergic (nicotinic and muscarinic) receptor concentration. Additionally, AChE activity was evaluated in mononuclear cells of Nile tilapia (Oreochromis niloticus), a freshwater fish mostly cultivated in tropical regions around the world. The obtained results indicate that acute exposure to diazinon induces an increase in ACh concentration and a decrease in nAChR and mAChR concentrations and AChE activity in fish immune cells, This suggests that the non-neuronal lymphocytic cholinergic system may be the main target in the mechanism of OP immunotoxicity. This study contributes to the understanding of the mechanisms of immunotoxicity of pollutants and may help to take actions for animal health improvement. PMID:27260186

  18. Weakened Cholinergic Blockade of Inflammation Associates with Diabetes-Related Depression

    PubMed Central

    Shenhar-Tsarfaty, Shani; Toker, Sharon; Shapira, Itzhak; Rogowski, Ori; Berliner, Shlomo; Ritov, Yaacov; Soreq, Hermona

    2016-01-01

    —Melancholia: Fears and despondencies, if they last a long time.” —Hippocrates, Aphorisms, Section 6.23 Emerging evidence demonstrates association of depression with both immune malfunctioning and worsened course of diverse aging-related diseases, but there is no explanation for the pathway(s) controlling this dual association. Here, we report that in post-reproductive and evolutionarily –blind” years, depression may weaken pathogen–host defense, compatible with the antagonistic pleiotropy hypothesis. In 15,532 healthy volunteers, depression scores associated with both inflammatory parameters and with increased circulation cholinesterase activities, implicating debilitated cholinergic blockade of inflammation as an underlying mechanism; furthermore, depression, inflammation and cholinesterase activities all increased with aging. In the entire cohort, combined increases in inflammation and the diabetic biomarker hemoglobin A1c associated with elevated depression. Moreover, metabolic syndrome patients with higher risk of diabetes showed increased cholinesterase levels and pulse values, and diabetic patients presented simultaneous increases in depression, inflammation and circulation cholinesterase activities, suggesting that cholinergic impairment precedes depression. Our findings indicate that dysfunctioning cholinergic regulation weakens the otherwise protective link between depression and pathogen–host defense, with global implications for aging-related diseases. PMID:27257683

  19. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome

    PubMed Central

    Xu, Meiyu; Kobets, Andrew; Du, Jung-Chieh; Lennington, Jessica; Li, Lina; Banasr, Mounira; Duman, Ronald S.; Vaccarino, Flora M.; DiLeone, Ralph J.; Pittenger, Christopher

    2015-01-01

    Gilles de la Tourette syndrome (TS) is characterized by tics, which are transiently worsened by stress, acute administration of dopaminergic drugs, and by subtle deficits in motor coordination and sensorimotor gating. It represents the most severe end of a spectrum of tic disorders that, in aggregate, affect ∼5% of the population. Available treatments are frequently inadequate, and the pathophysiology is poorly understood. Postmortem studies have revealed a reduction in specific striatal interneurons, including the large cholinergic interneurons, in severe disease. We tested the hypothesis that this deficit is sufficient to produce aspects of the phenomenology of TS, using a strategy for targeted, specific cell ablation in mice. We achieved ∼50% ablation of the cholinergic interneurons of the striatum, recapitulating the deficit observed in patients postmortem, without any effect on GABAergic markers or on parvalbumin-expressing fast-spiking interneurons. Interneuron ablation in the dorsolateral striatum (DLS), corresponding roughly to the human putamen, led to tic-like stereotypies after either acute stress or d-amphetamine challenge; ablation in the dorsomedial striatum, in contrast, did not. DLS interneuron ablation also led to a deficit in coordination on the rotorod, but not to any abnormalities in prepulse inhibition, a measure of sensorimotor gating. These results support the causal sufficiency of cholinergic interneuron deficits in the DLS to produce some, but not all, of the characteristic symptoms of TS. PMID:25561540

  20. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: a review

    PubMed Central

    Colucci, Luisa; Bosco, Massimiliano; Rosario Ziello, Antonio; Rea, Raffaele; Amenta, Francesco; Fasanaro, Angiola Maria

    2012-01-01

    Nootropics represent probably the first “smart drugs” used for the treatment of cognitive deficits. The aim of this paper is to verify, by a systematic analysis of the literature, the effectiveness of nootropics in this indication. The analysis was limited to nootropics with cholinergic activity, in view of the role played by acetylcholine in learning and memory. Acetylcholine was the first neurotransmitter identified in the history of neuroscience and is the main neurotransmitter of the peripheral, autonomic, and enteric nervous systems. We conducted a systematic review of the literature for the 5-year period 2006–2011. From the data reported in the literature, it emerges that nootropics may be an effective alternative for strengthening and enhancing cognitive performance in patients with a range of pathologies. Although nootropics, and specifically the cholinergic precursors, already have a long history behind them, according to recent renewal of interest, they still seem to have a significant therapeutic role. Drugs with regulatory indications for symptomatic treatment of Alzheimer’s disease, such as cholinesterase inhibitors and memantine, often have transient effects in dementia disorders. Nootropics with a cholinergic profile and documented clinical effectiveness in combination with cognate drugs such as cholinesterase inhibitors or alone in patients who are not suitable for these inhibitors should be taken into account and evaluated further.

  1. Identification of cholinergic chemosensory cells in mouse tracheal and laryngeal glandular ducts.

    PubMed

    Krasteva-Christ, G; Soultanova, A; Schütz, B; Papadakis, T; Weiss, C; Deckmann, K; Chubanov, V; Gudermann, T; Voigt, A; Meyerhof, W; Boehm, U; Weihe, E; Kummer, W

    2015-11-01

    Specialized epithelial cells in the respiratory tract such as solitary chemosensory cells and brush cells sense the luminal content and initiate protective reflexes in response to the detection of potentially harmful substances. The majority of these cells are cholinergic and utilize the canonical taste signal transduction cascade to detect "bitter" substances such as bacterial quorum sensing molecules. Utilizing two different mouse strains reporting expression of choline acetyltransferase (ChAT), the synthesizing enzyme of acetylcholine (ACh), we detected cholinergic cells in the submucosal glands of the murine larynx and trachea. These cells were localized in the ciliated glandular ducts and were neither found in the collecting ducts nor in alveolar or tubular segments of the glands. ChAT expression in tracheal gland ducts was confirmed by in situ hybridization. The cholinergic duct cells expressed the brush cell marker proteins, villin and cytokeratin-18, and were immunoreactive for components of the taste signal transduction cascade (Gα-gustducin, transient receptor potential melastatin-like subtype 5 channel = TRPM5, phospholipase C(β2)), but not for carbonic anhydrase IV. Furthermore, these cells expressed the bitter taste receptor Tas2r131, as demonstrated utilizing an appropriate reporter mouse strain. Our study identified a previously unrecognized presumptive chemosensory cell type in the duct of the airway submucosal glands that likely utilizes ACh for paracrine signaling. We propose that these cells participate in infection-sensing mechanisms and initiate responses assisting bacterial clearance from the lower airways. PMID:26033492

  2. Naltrexone pretreatment blocks microwave-induced changes in central cholinergic receptors

    SciTech Connect

    Lai, H.; Carino, M.A.; Wen, Y.F.; Horita, A.; Guy, A.W. )

    1991-01-01

    Repeated exposure of rats to pulsed, circularly polarized microwaves (2,450-MHz, 2-microseconds pulses at 500 pps, power density 1 mW/cm2, at an averaged, whole-body SAR of 0.6 W/kg) induced biphasic changes in the concentration of muscarinic cholinergic receptors in the central nervous system. An increase in receptor concentration occurred in the hippocampus of rats subjected to ten 45-min sessions of microwave exposure, whereas a decrease in concentration was observed in the frontal cortex and hippocampus of rats exposed to ten 20-min sessions. These findings, which confirm earlier work in the authors' laboratory, were extended to include pretreatment of rats with the narcotic antagonist naltrexone (1 mg/kg, IP) before each session of exposure. The drug treatment blocked the microwave-induced changes in cholinergic receptors in the brain. These data further support the authors' hypothesis that endogenous opioids play a role in the effects of microwaves on central cholinergic systems.

  3. [Bowel obstruction-induced cholinergic crisis with progressive respiratory failure following distigmine bromide treatment].

    PubMed

    Kobayashi, Kazuki; Sekiguchi, Hiroshi; Sato, Nobuhiro; Hirose, Yasuo

    2016-03-01

    A 54-year-old female experienced rapid respiratory failure while being transported in an ambulance to our emergency department for evaluation and management of constipation and abdominal pain. The patient was on treatment with distigmine bromide for postoperative urination disorder and magnesium oxide for constipation. Increased salivary secretions, diminished respiratory excursion, type 2 respiratory failure (PaCO2 : 65 mmHg), low serum cholinesterase, and hypermagnesemia were detected. Imaging studies revealed that the patient had bilateral aspiration pneumonia, fecal impaction in the rectum, and a distended colon causing ileus. The patient was mechanically ventilated and was weaned off the ventilator on day 3. Therapeutic drug monitoring after discharge revealed that the serum level of distigmine bromide on admission was markedly elevated (377.8 ng/mL vs. the normal therapeutic level of 5-10 ng/mL). Distigmine bromide induced a cholinergic crisis with a resultant increase in airway secretions and respiratory failure. In this particular case, orally administered distigmine bromide was excessively absorbed because of prolonged intestinal transit time secondary to fecal impaction and sluggish bowel movement; this caused a cholinergic crisis and hypermagnesemia contributing to respiratory failure. Clinicians should be aware that bowel obstruction in a patient treated with distigmine bromide can increase the risk of a cholinergic crisis. PMID:27255021

  4. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    PubMed Central

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer’s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory. PMID:26246157

  5. THE ROLE OF VENTRAL MIDLINE THALAMUS IN CHOLINERGIC-BASED RECOVERY IN THE AMNESTIC RAT

    PubMed Central

    Bobal, Michael G.; Savage, Lisa M.

    2014-01-01

    The thalamus is a critical node for several pathways involved in learning and memory. Damage to the thalamus by trauma, disease or malnourishment can impact the effectiveness of the prefrontal cortex (PFC) and hippocampus (HPC) and lead to a profound amnesia state. Using the pyrithiamine-induced thiamine deficiency (PTD) rat model of human Wernicke-Korsakoff syndrome, we tested the hypothesis that co-infusion of the acetylcholinesterase inhibitor physostigmine across the PFC and HPC would recover spatial alternation performance in PTD rats. When cholinergic tone was increased by dual injections across the PFC-HPC, spontaneous alternation performance in PTD rats was recovered. In addition, we tested a second hypothesis that two ventral midline thalamic nuclei, the rhomboid nucleus and nucleus reuniens (Rh-Re), form a critical node needed for the recovery of function observed when cholinergic tone was increased across the PFC and HPC. By using the GABAA agonist muscimol to temporarily deactivate the Rh-Re the recovery of alternation behavior obtained in the PTD model by cholinergic stimulation across the PFC-HPC was blocked. In control pair-fed (PF) rats, inactivation of the Rh-Re impaired spontaneous alternation. However, when inactivation of the Rh-Re co-occurred with physostigmine infusions across the PFC-HPC, PF rats had normal performance. These results further demonstrate that the Rh-Re is critical in facilitating interactions between the HPC and PFC, but other redundant pathways also exist. PMID:25446352

  6. The role of ventral midline thalamus in cholinergic-based recovery in the amnestic rat.

    PubMed

    Bobal, M G; Savage, L M

    2015-01-29

    The thalamus is a critical node for several pathways involved in learning and memory. Damage to the thalamus by trauma, disease or malnourishment can impact the effectiveness of the prefrontal cortex (PFC) and hippocampus (HPC) and lead to a profound amnesia state. Using the pyrithiamine-induced thiamine deficiency (PTD) rat model of human Wernicke-Korsakoff syndrome, we tested the hypothesis that co-infusion of the acetylcholinesterase inhibitor physostigmine across the PFC and HPC would recover spatial alternation performance in PTD rats. When cholinergic tone was increased by dual injections across the PFC-HPC, spontaneous alternation performance in PTD rats was recovered. In addition, we tested a second hypothesis that two ventral midline thalamic nuclei, the rhomboid nucleus and nucleus reuniens (Rh-Re), form a critical node needed for the recovery of function observed when cholinergic tone was increased across the PFC and HPC. By using the GABAA agonist muscimol to temporarily deactivate the Rh-Re the recovery of alternation behavior obtained in the PTD model by cholinergic stimulation across the PFC-HPC was blocked. In control pair-fed (PF) rats, inactivation of the Rh-Re impaired spontaneous alternation. However, when inactivation of the Rh-Re co-occurred with physostigmine infusions across the PFC-HPC, PF rats had normal performance. These results further demonstrate that the Rh-Re is critical in facilitating interactions between the HPC and PFC, but other redundant pathways also exist. PMID:25446352

  7. Effect of neostigmine on organ injury in murine endotoxemia: missing facts about the cholinergic antiinflammatory pathway.

    PubMed

    Akinci, Seda B; Ulu, Nadir; Yondem, Omer Z; Firat, Pinar; Guc, M Oguz; Kanbak, Meral; Aypar, Ulku

    2005-11-01

    Electrical and pharmacologic stimulation of the efferent cholinergic antiinflammatory pathway suppress the systemic inflammatory response and can prevent lethal endotoxemia. Neostigmine, a cholinergic agent, has not been tested to determine if it can prevent histopathologic organ injury in endotoxemia. In the present study, the effects of neostigmine treatment on the histopathologic organ injury inflicted by Escherichia coli endotoxin in a mouse model of septic shock was investigated. Endotoxemia in mice caused weight loss and increased spleen, liver, and lung weight. When the organs were examined for histopathologic injury, endotoxemia increased interstitial inflammation in the lungs, liver injury, and organ injury in general terms; neostigmine, at a dose of 0.1 mg/kg, failed to attenuate these effects. Although the simultaneous administration of neostigmine at a dose of 0.3 mg/kg and endotoxin decreased interstitial inflammation in the lungs, vacuolar degeneration in the liver, and total liver injury, mortality was increased with this dose in the presence of endotoxemia. We conclude that neostigmine at a dose of 0.1 mg/kg was not protective against histopathologic organ injury in mice with endotoxemia, and a higher dose (0.3 mg/kg) was not tolerated probably owing to nonspecific parasympathetic action including cardiovascular effects. Further studies are required to determine the contribution of sites in the cholinergic antiinflammatory pathway. PMID:16222449

  8. Developmental Neurotoxicity of Tobacco Smoke Directed Toward Cholinergic and Serotonergic Systems: More Than Just Nicotine.

    PubMed

    Slotkin, Theodore A; Skavicus, Samantha; Card, Jennifer; Stadler, Ashley; Levin, Edward D; Seidler, Frederic J

    2015-09-01

    Tobacco smoke contains thousands of compounds in addition to nicotine, a known neuroteratogen. We evaluated the developmental neurotoxicity of tobacco smoke extract (TSE) administered to pregnant rats starting preconception and continued through the second postnatal week. We simulated nicotine concentrations encountered with second-hand smoke, an order of magnitude below those seen in active smokers, and compared TSE with an equivalent dose of nicotine alone, and to a 10-fold higher nicotine dose. We conducted longitudinal evaluations in multiple brain regions, starting in adolescence (postnatal day 30) and continued to full adulthood (day 150). TSE exposure impaired presynaptic cholinergic activity, exacerbated by a decrement in nicotinic cholinergic receptor concentrations. Although both nicotine doses produced presynaptic cholinergic deficits, these were partially compensated by hyperinnervation and receptor upregulation, effects that were absent with TSE. TSE also produced deficits in serotonin receptors in females that were not seen with nicotine. Regression analysis showed a profound sex difference in the degree to which nicotine could account for overall TSE effects: whereas the 2 nicotine doses accounted for 36%-46% of TSE effects in males, it accounted for only 7%-13% in females. Our results show that the adverse effects of TSE on neurodevelopment exceed those that can be attributed to just the nicotine present in the mixture, and further, that the sensitivity extends down to levels commensurate with second-hand smoke exposure. Because nicotine itself evoked deficits at low exposures, "harm reduction" nicotine products do not eliminate the potential for neurodevelopmental damage. PMID:26085346

  9. Acute and long-term exposure to chlorpyrifos induces cell death of basal forebrain cholinergic neurons through AChE variants alteration.

    PubMed

    del Pino, Javier; Moyano, Paula; Anadon, María José; García, José Manuel; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2015-10-01

    Chlorpyrifos (CPF) is one of the most widely used organophosphates insecticides that has been reported to induce cognitive disorders both after acute and repeated administration similar to those induced in Alzheimer's disease (AD). However, the mechanisms through which it induces these effects are unknown. On the other hand, the cholinergic system, mainly basal forebrain cholinergic neurons, is involved in learning and memory regulation, and an alteration of cholinergic transmission or/and cholinergic cell loss could induce these effects. In this regard, it has been reported that CPF can affect cholinergic transmission, and alter AChE variants, which have been shown to be related with basal forebrain cholinergic neuronal loss. According to these data, we hypothesized that CPF could induce basal forebrain cholinergic neuronal loss through cholinergic transmission and AChE variants alteration. To prove this hypothesis, we evaluated in septal SN56 basal forebrain cholinergic neurons, the CPF toxic effects after 24h and 14 days exposure on neuronal viability and the cholinergic mechanisms related to it. This study shows that CPF impaired cholinergic transmission, induced AChE inhibition and, only after long-term exposure, increased CHT expression, which suggests that acetylcholine levels alteration could be mediated by these actions. Moreover, CPF induces, after acute and long-term exposure, cell death in cholinergic neurons in the basal forebrain and this effect is independent of AChE inhibition and acetylcholine alteration, but was mediated partially by AChE variants alteration. Our present results provide a new understanding of the mechanisms contributing to the harmful effects of CPF on neuronal function and viability, and the possible relevance of CPF in the pathogenesis of neurodegenerative diseases. PMID:26210949

  10. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  11. History of falls in Parkinson disease is associated with reduced cholinergic activity

    PubMed Central

    Bohnen, N I.; Müller, M L.T.M.; Koeppe, R A.; Studenski, S A.; Kilbourn, M A.; Frey, K A.; Albin, R L.

    2009-01-01

    Objective: To investigate the relationships between history of falls and cholinergic vs dopaminergic denervation in patients with Parkinson disease (PD). Background: There is a need to explore nondopaminergic mechanisms of gait control as the majority of motor impairments associated with falls in PD are resistant to dopaminergic treatment. Alterations in cholinergic neurotransmission in PD may be implicated because of evidence that gait control depends on cholinergic system–mediated higher-level cortical and subcortical processing, including pedunculopontine nucleus (PPN) function. Methods: In this cross-sectional study, 44 patients with PD (Hoehn & Yahr stages I–III) without dementia and 15 control subjects underwent a clinical assessment and [11C]methyl-4-piperidinyl propionate (PMP) acetylcholinesterase (AChE) and [11C]dihydrotetrabenazine (DTBZ) vesicular monoamine transporter type 2 (VMAT2) brain PET imaging. Results: Seventeen patients (38.6%) reported a history of falls and 27 patients had no falls. Analysis of covariance of the cortical AChE hydrolysis rates demonstrated reduced cortical AChE in the PD fallers group (−12.3%) followed by the PD nonfallers (−6.6%) compared to control subjects (F = 7.22, p = 0.0004). Thalamic AChE activity was lower only in the PD fallers group (−11.8%; F = 4.36, p = 0.008). There was no significant difference in nigrostriatal dopaminergic activity between PD fallers and nonfallers. Conclusions: Unlike nigrostriatal dopaminergic denervation, cholinergic hypofunction is associated with fall status in Parkinson disease (PD). Thalamic AChE activity in part represents cholinergic output of the pedunculopontine nucleus (PPN), a key node for gait control. Our results are consistent with other data indicating that PPN degeneration is a major factor leading to impaired postural control and gait dysfunction in PD. GLOSSARY AChE = acetylcholinesterase; ANCOVA = analysis of covariance; MMSE = Mini-Mental State Examination; PD

  12. Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit's retinal directional selectivity?

    PubMed

    Grzywacz, N M; Tootle, J S; Amthor, F R

    1997-01-01

    We examined contrast, direction of motion, and concentration dependencies of the effects of GABAergic and cholinergic antagonists, and anticholinesterases on responses to movement of On-Off directionally selective (DS) ganglion cells of the rabbit's retina. The drugs tested were curare and hexamethonium bromide (cholinergic antagonists), physostigmine (anticholinesterase), and picrotoxin (GABAergic antagonist). They all reduced the cells' directional selectivity, while maintaining their preferred-null axis. However, cholinergic antagonists did not block directional selectivity completely even at saturating concentrations. The failure to eliminate directional selectivity was probably not due to an incomplete blockade of cholinergic receptors. In a extension of a Masland and Ames (1976) experiment, saturating concentrations of antagonists blocked the effects of exogenous acetylcholine or nicotine applied during synaptic blockade. Consequently, a noncholinergic pathway may be sufficient to account for at least some directional selectivity. This putative pathway interacts with the cholinergic pathway before spike generation, since physostigmine eliminated directional selectivity at contrasts lower than those saturating responses. This elimination apparently resulted from cholinergic-induced saturation, since reduction of contrast restored directional selectivity. Under picrotoxin, directional selectivity was lost in 33% of the cells regardless of contrast. However, 47% maintained their preferred direction despite saturating concentrations of picrotoxin, and 20% reversed the preferred and null directions. Therefore, models based solely on a GABAergic implementation of Barlow and Levick's asymmetric-inhibition model or solely on a cholinergic implementation of asymmetric-excitation models are not complete models of directional selectivity in the rabbit. We propose an alternate model for this retinal property. PMID:9057267

  13. Pharmacological modulation of Alzheimer's beta-amyloid precursor protein levels in the CSF of rats with forebrain cholinergic system lesions.

    PubMed

    Haroutunian, V; Greig, N; Pei, X F; Utsuki, T; Gluck, R; Acevedo, L D; Davis, K L; Wallace, W C

    1997-06-01

    Abnormal deposition and accumulation of Alzheimer's amyloid beta-protein (A beta) and degeneration of forebrain cholinergic neurons are among the principal features of Alzheimer's disease. Studies in rat model systems have shown that forebrain cholinergic deficits are accompanied by induction of cortical beta-amyloid precursor protein (beta-APP) mRNAs and increased levels of secreted beta-APP in the CSF. The studies reported here determined whether the CSF levels of secreted beta-APP could be altered pharmacologically. In different experiments, rats with lesions of the forebrain cholinergic system received injections of vehicle, a muscarinic receptor antagonist scopolamine, or one of two cholinesterase inhibitors - diisopropyl phosphorofluoridate (DFP) or phenserine. Scopolamine was administered to determine whether the levels of beta-APP in the CSF could be increased by anticholinergic agents. The cholinesterase inhibitors were administered to determine whether the forebrain cholinergic system lesion-induced increases in CSF beta-APP could be reduced by cholinergic augmentation. Scopolamine administration led to a significant increase in the CSF levels of secreted beta-APP in sham-lesioned rats. Phenserine, a novel, reversible acetyl-selective cholinesterase inhibitor, significantly decreased the levels of secreted beta-APP in the CSF of forebrain cholinergic system-lesioned rats whereas DFP, a relatively non-specific cholinesterase inhibitor, failed to affect CSF levels of secreted beta-APP. These results suggest that the levels of secreted beta-APP in the CSF can be pharmacologically modulated but that this modulation is dependent upon the status of the forebrain cholinergic system and the pharmacological properties of the drugs used to influence it. PMID:9191090

  14. GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state.

    PubMed

    Kohlmeier, K A; Kristiansen, U

    2010-12-15

    Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated. In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored. Therefore, we studied the actions of GABA agonists and antagonists on cholinergic LDT cells by performing patch clamp recordings in mouse brain slices. Under conditions where detection of Cl(-) -mediated events was optimized, GABA induced gabazine (GZ)-sensitive inward currents in the majority of LDT neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for δ-subunit containing GABA(A) receptors, induced inward currents, suggesting the existence of extrasynaptic GABA(A) receptors. LDT cells also possess GABA(B) receptors as baclofen-activated a TTX- and low Ca(2+)-resistant outward current that was attenuated by the GABA(B) antagonists CGP 55845 and saclofen. The tertiapin sensitivity of baclofen-induced outward currents suggests that a G(IRK) mediated this effect. Further, outward currents were never additive with those induced by application of carbachol, suggesting that they were mediated by activation of GABA(B) receptors linked to the same G(IRK) activated in these cells by muscarinic receptor stimulation. Activation of GABA(B) receptors inhibited Ca(2+) increases induced by a depolarizing voltage step shown previously to activate VOCCs in cholinergic LDT neurons. Baclofen-mediated reductions in depolarization

  15. Cholinergic parameters and the retrieval of learned and re-learned spatial information: a study using a model of Wernicke-Korsakoff Syndrome.

    PubMed

    Pires, Rita G W; Pereira, Silvia R C; Oliveira-Silva, Ieda F; Franco, Glaura C; Ribeiro, Angela M

    2005-07-01

    This is a factorial (2 x 2 x 2) spatial memory and cholinergic parameters study in which the factors are chronic ethanol, thiamine deficiency and naivety in Morris water maze task. Both learning and retention of the spatial version of the water maze were assessed. To assess retrograde retention of spatial information, half of the rats were pre-trained on the maze before the treatment manipulations of pyrithiamine (PT)-induced thiamine deficiency and post-tested after treatment (pre-trained group). The other half of the animals was only trained after treatment to assess anterograde amnesia (post-trained group). Thiamine deficiency, associated to chronic ethanol treatment, had a significant deleterious effect on spatial memory performance of post-trained animals. The biochemical data revealed that chronic ethanol treatment reduced acetylcholinesterase (AChE) activity in the hippocampus while leaving the neocortex unchanged, whereas thiamine deficiency reduced both cortical and hippocampal AChE activity. Regarding basal and stimulated cortical acetylcholine (ACh) release, both chronic ethanol and thiamine deficiency treatments had significant main effects. Significant correlations were found between both cortical and hippocampal AChE activity and behaviour parameters for pre-trained but not for post-trained animals. Also for ACh release, the correlation found was significant only for pre-trained animals. These biochemical parameters were decreased by thiamine deficiency and chronic ethanol treatment, both in pre-trained and post-trained animals. But the correlation with the behavioural parameters was observed only for pre-trained animals, that is, those that were retrained and assessed for retrograde retention. PMID:15922063

  16. Nuclear organization of cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brain of the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Patzke, Nina; Bertelsen, Mads F; Fuxe, Kjell; Manger, Paul R

    2014-11-01

    This study investigated the nuclear organization of four immunohistochemically identifiable neural systems (cholinergic, catecholaminergic, serotonergic and orexinergic) within the brains of three male Tasmanian devils (Sarcophilus harrisii), which had a mean brain mass of 11.6g. We found that the nuclei generally observed for these systems in other mammalian brains were present in the brain of the Tasmanian devil. Despite this, specific differences in the nuclear organization of the cholinergic, catecholaminergic and serotonergic systems appear to carry a phylogenetic signal. In the cholinergic system, only the dorsal hypothalamic cholinergic nucleus could be observed, while an extra dorsal subdivision of the laterodorsal tegmental nucleus and cholinergic neurons within the gelatinous layer of the caudal spinal trigeminal nucleus were observed. Within the catecholaminergic system the A4 nucleus of the locus coeruleus complex was absent, as was the caudal ventrolateral serotonergic group of the serotonergic system. The organization of the orexinergic system was similar to that seen in many mammals previously studied. Overall, while showing strong similarities to the organization of these systems in other mammals, the specific differences observed in the Tasmanian devil reveal either order specific, or class specific, features of these systems. Further studies will reveal the extent of change in the nuclear organization of these systems in marsupials and how these potential changes may affect functionality. PMID:25150966

  17. Histaminergic modulation of cholinergic release from the nucleus basalis magnocellularis into insular cortex during taste aversive memory formation.

    PubMed

    Purón-Sierra, Liliana; Miranda, María Isabel

    2014-01-01

    The ability of acetylcholine (ACh) to alter specific functional properties of the cortex endows the cholinergic system with an important modulatory role in memory formation. For example, an increase in ACh release occurs during novel stimulus processing, indicating that ACh activity is critical during early stages of memory processing. During novel taste presentation, there is an increase in ACh release in the insular cortex (IC), a major structure for taste memory recognition. There is extensive evidence implicating the cholinergic efferents of the nucleus basalis magnocellularis (NBM) in cortical activity changes during learning processes, and new evidence suggests that the histaminergic system may interact with the cholinergic system in important ways. However, there is little information as to whether changes in cholinergic activity in the IC are modulated during taste memory formation. Therefore, in the present study, we evaluated the influence of two histamine receptor subtypes, H1 in the NBM and H3 in the IC, on ACh release in the IC during conditioned taste aversion (CTA). Injection of the H3 receptor agonist R-α-methylhistamine (RAMH) into the IC or of the H1 receptor antagonist pyrilamine into the NBM during CTA training impaired subsequent CTA memory, and simultaneously resulted in a reduction of ACh release in the IC. This study demonstrated that basal and cortical cholinergic pathways are finely tuned by histaminergic activity during CTA, since dual actions of histamine receptor subtypes on ACh modulation release each have a significant impact during taste memory formation. PMID:24625748

  18. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions.

    PubMed

    Gonzales, Kalynda K; Smith, Yoland

    2015-09-01

    Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction. PMID:25876458

  19. Decrease of a Current Mediated by Kv1.3 Channels Causes Striatal Cholinergic Interneuron Hyperexcitability in Experimental Parkinsonism.

    PubMed

    Tubert, Cecilia; Taravini, Irene R E; Flores-Barrera, Eden; Sánchez, Gonzalo M; Prost, María Alejandra; Avale, María Elena; Tseng, Kuei Y; Rela, Lorena; Murer, Mario Gustavo

    2016-09-01

    The mechanism underlying a hypercholinergic state in Parkinson's disease (PD) remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels. PMID:27568555

  20. Systematic review of cholinergic drugs for neuroleptic-induced tardive dyskinesia: a meta-analysis of randomized controlled trials.

    PubMed

    Tammenmaa, Irina A; Sailas, Eila; McGrath, John J; Soares-Weiser, Karla; Wahlbeck, Kristian

    2004-11-01

    The authors evaluated the efficacy of cholinergic drugs in the treatment of neuroleptic-induced tardive dyskinesia (TD) by a systematic review of the literature on the following agents: choline, lecithin, physostigmine, tacrine, 7-methoxyacridine, ipidacrine, galantamine, donepezil, rivastigmine, eptastigmine, metrifonate, arecoline, RS 86, xanomeline, cevimeline, deanol, and meclofenoxate. All relevant randomized controlled trials, without any language or year limitations, were obtained from the Cochrane Schizophrenia Group's Register of Trials. Trials were classified according to their methodological quality. For binary and continuous data, relative risks (RR) and weighted or standardized mean differences (SMD) were calculated, respectively. Eleven trials with a total of 261 randomized patients were included in the meta-analysis. Cholinergic drugs showed a minor trend for improvement of tardive dyskinesia symptoms, but results were not statistically significant (RR 0.84, 95% confidence interval (CI) 0.68 to 1.04, p=0.11). Despite an extensive search of the literature, eligible data for the meta-analysis were few and no results reached statistical significance. In conclusion, we found no evidence to support administration of the old cholinergic agents lecithin, deanol, and meclofenoxate to patients with tardive dyskinesia. In addition, two trials were found on novel cholinergic Alzheimer drugs in tardive dyskinesia, one of which was ongoing. Further investigation of the clinical effects of novel cholinergic agents in tardive dyskinesia is warranted. PMID:15610922

  1. Cholinergic activation enhances retinoic acid-induced differentiation in the human NB-4 acute promyelocytic leukemia cell line.

    PubMed

    Chotirat, Sadudee; Suriyo, Tawit; Hokland, Marianne; Hokland, Peter; Satayavivad, Jutamaad; Auewarakul, Chirayu U

    2016-07-01

    The non-neuronal cholinergic system (NNCS) has been shown to play a role in regulating hematopoietic differentiation. We determined the expression of cholinergic components in leukemic cell lines by Western blotting and in normal leukocyte subsets by flow cytometry and found a heterogeneous expression of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), choline transporter (CHT), M3 muscarinic acetylcholine receptor (M3-mAChR) and α7 nicotinic acetylcholine receptor (α7-nAChR). We then evaluated NNCS role in differentiation of human NB-4 acute promyelocytic leukemia cell line and discovered a dramatic induction of M3-mAChR after all-trans retinoic acid (ATRA) treatment (p<0.0001). Adding carbachol which is a cholinergic agonist to the ATRA treatment resulted in an increase of a granulocytic differentiation marker (CD11b) as compared with ATRA treatment alone (p<0.05), indicating that cholinergic activation enhanced ATRA in inducing NB-4 maturation. The combination of carbachol and ATRA treatment for 72h also resulted in decreased viability and increased cleaved caspase-3 expression when compared with ATRA treatment alone (p<0.05). However, this combination did not cause poly (ADP-ribose) polymerase (PARP) cleavage. Overall, we have shown that NB-4 cells expressed M3-mAChR in a differentiation-dependent manner and cholinergic stimulation induced maturation and death of ATRA-induced differentiated NB-4 cells. PMID:27282572

  2. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    PubMed

    Guzman, Monica S; De Jaeger, Xavier; Raulic, Sanda; Souza, Ivana A; Li, Alex X; Schmid, Susanne; Menon, Ravi S; Gainetdinov, Raul R; Caron, Marc G; Bartha, Robert; Prado, Vania F; Prado, Marco A M

    2011-11-01

    Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease. PMID:22087075

  3. Attentional Control of Gait and Falls: Is Cholinergic Dysfunction a Common Substrate in the Elderly and Parkinson’s Disease?

    PubMed Central

    Pelosin, Elisa; Ogliastro, Carla; Lagravinese, Giovanna; Bonassi, Gaia; Mirelman, Anat; Hausdorff, Jeffrey M.; Abbruzzese, Giovanni; Avanzino, Laura

    2016-01-01

    The aim of this study was to address whether deficits in the central cholinergic activity may contribute to the increased difficulty to allocate attention during gait in the elderly with heightened risk of falls. We recruited 50 participants with a history of two or more falls (33 patients with Parkinson’s Disease and 17 older adults) and 14 non-fallers age-matched adults. Cholinergic activity was estimated by means of short latency afferent inhibition (SAI), a transcranial magnetic stimulation (TMS) technique that assesses an inhibitory circuit in the sensorimotor cortex and is regarded as a global marker of cholinergic function in the brain. Increased difficulty to allocate attention during gait was evaluated by measuring gait performance under single and dual-task conditions. Global cognition was also assessed. Results showed that SAI was reduced in patients with PD than in the older adults (fallers and non-fallers) and in older adults fallers with respect to non-fallers. Reduction in SAI indicates less inhibition i.e., less cholinergic activity. Gait speed was reduced in the dual task gait compared to normal gait only in our faller population and changes in gait speed under dual task significantly correlated with the mean value of SAI. This association remained significant after adjusting for cognitive status. These findings suggest that central cholinergic activity may be a predictor of change in gait characteristics under dual tasking in older adults and PD fallers independently of cognitive status. PMID:27242515

  4. Attentional Control of Gait and Falls: Is Cholinergic Dysfunction a Common Substrate in the Elderly and Parkinson's Disease?

    PubMed

    Pelosin, Elisa; Ogliastro, Carla; Lagravinese, Giovanna; Bonassi, Gaia; Mirelman, Anat; Hausdorff, Jeffrey M; Abbruzzese, Giovanni; Avanzino, Laura

    2016-01-01

    The aim of this study was to address whether deficits in the central cholinergic activity may contribute to the increased difficulty to allocate attention during gait in the elderly with heightened risk of falls. We recruited 50 participants with a history of two or more falls (33 patients with Parkinson's Disease and 17 older adults) and 14 non-fallers age-matched adults. Cholinergic activity was estimated by means of short latency afferent inhibition (SAI), a transcranial magnetic stimulation (TMS) technique that assesses an inhibitory circuit in the sensorimotor cortex and is regarded as a global marker of cholinergic function in the brain. Increased difficulty to allocate attention during gait was evaluated by measuring gait performance under single and dual-task conditions. Global cognition was also assessed. Results showed that SAI was reduced in patients with PD than in the older adults (fallers and non-fallers) and in older adults fallers with respect to non-fallers. Reduction in SAI indicates less inhibition i.e., less cholinergic activity. Gait speed was reduced in the dual task gait compared to normal gait only in our faller population and changes in gait speed under dual task significantly correlated with the mean value of SAI. This association remained significant after adjusting for cognitive status. These findings suggest that central cholinergic activity may be a predictor of change in gait characteristics under dual tasking in older adults and PD fallers independently of cognitive status. PMID:27242515

  5. (68)Ga-PSMA ligand PET/CT in patients with prostate cancer: How we review and report.

    PubMed

    Rauscher, Isabel; Maurer, Tobias; Fendler, Wolfgang P; Sommer, Wieland H; Schwaiger, Markus; Eiber, Matthias

    2016-01-01

    Recently, positron emission tomography (PET) imaging using PSMA-ligands has gained high attention as a promising new radiotracer in patients with prostate cancer (PC). Several studies promise accurate staging of primary prostate cancer and restaging after biochemical recurrence with (68)Ga-PSMA ligand Positron emission tomography/computed tomography (PET/CT). However, prospective trials and clinical guidelines for this new technique are still missing. Therefore, we summarized our experience with (68)Ga-PSMA ligand PET/CT examinations in patients with primary PC and biochemical recurrence. It focuses on the technical and logistical aspects of (68)Ga-PSMA ligand PET/CT examination as well as on the specific background for image reading discussing also potential pitfalls. Further, it includes relevant issues on free-text as well as structured reporting used in daily clinical routine. PMID:27277843

  6. Configurational entropy and cooperativity between ligand binding and dimerization in glycopeptide antibiotics.

    PubMed

    Jusuf, Sutjano; Loll, Patrick J; Axelsen, Paul H

    2003-04-01

    Oligomerization and ligand binding are thermodynamically cooperative processes in many biochemical systems, and the mechanisms giving rise to cooperative behavior are generally attributed to changes in structure. In glycopeptide antibiotics, however, these cooperative processes are not accompanied by significant structural changes. To investigate the mechanism by which cooperativity arises in these compounds, fully solvated molecular dynamics simulations and quasiharmonic normal-mode analysis were performed on chloroeremomycin, vancomycin, and dechlorovancomycin. Configurational entropies were derived from the vibrational modes recovered from ligand-free and ligand-bound forms of the monomeric and dimeric species. Results indicate that both ligand binding and dimerization incur an entropic cost as vibrational activity in the central core of the antibiotic is shifted to higher frequencies with lower amplitudes. Nevertheless, ligand binding and dimerization are cooperative because the entropic cost of both processes occurring together is less than the cost of these processes occurring separately. These reductions in configurational entropy are more than sufficient in magnitude to account for the experimentally observed cooperativity between dimerization and ligand binding. We conclude that biochemical cooperativity can be mediated through changes in vibrational activity, irrespective of the presence or absence of concomitant structural change. This may represent a general mechanism of allostery underlying cooperative phenomena in diverse macromolecular systems. PMID:12656635

  7. BEST: Biochemical Engineering Simulation Technology

    SciTech Connect

    Not Available

    1996-01-01

    The idea of developing a process simulator that can describe biochemical engineering (a relatively new technology area) was formulated at the National Renewable Energy Laboratory (NREL) during the late 1980s. The initial plan was to build a consortium of industrial and U.S. Department of Energy (DOE) partners to enhance a commercial simulator with biochemical unit operations. DOE supported this effort; however, before the consortium was established, the process simulator industry changed considerably. Work on the first phase of implementing various fermentation reactors into the chemical process simulator, ASPEN/SP-BEST, is complete. This report will focus on those developments. Simulation Sciences, Inc. (SimSci) no longer supports ASPEN/SP, and Aspen Technology, Inc. (AspenTech) has developed an add-on to its ASPEN PLUS (also called BioProcess Simulator [BPS]). This report will also explain the similarities and differences between BEST and BPS. ASPEN, developed by the Massachusetts Institute of Technology for DOE in the late 1970s, is still the state-of-the-art chemical process simulator. It was selected as the only simulator with the potential to be easily expanded into the biochemical area. ASPEN/SP, commercially sold by SimSci, was selected for the BEST work. SimSci completed work on batch, fed-batch, and continuous fermentation reactors in 1993, just as it announced it would no longer commercially support the complete ASPEN/SP product. BEST was left without a basic support program. Luckily, during this same time frame, AspenTech was developing a biochemical simulator with its version of ASPEN (ASPEN PLUS), which incorporates most BEST concepts. The future of BEST will involve developing physical property data and models appropriate to biochemical systems that are necessary for good biochemical process design.

  8. Galanin Receptors and Ligands

    PubMed Central

    Webling, Kristin E. B.; Runesson, Johan; Bartfai, Tamas; Langel, Ülo

    2012-01-01

    The neuropeptide galanin was first discovered 30 years ago. Today, the galanin family consists of galanin, galanin-like peptide (GALP), galanin-message associated peptide (GMAP), and alarin and this family has been shown to be involved in a wide variety of biological and pathological functions. The effect is mediated through three GPCR subtypes, GalR1-3. The limited number of specific ligands to the galanin receptor subtypes has hindered the understanding of the individual effects of each receptor subtype. This review aims to summarize the current data of the importance of the galanin receptor subtypes and receptor subtype specific agonists and antagonists and their involvement in different biological and pathological functions. PMID:23233848

  9. Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum.

    PubMed

    Ponterio, G; Tassone, A; Sciamanna, G; Riahi, E; Vanni, V; Bonsi, P; Pisani, A

    2013-12-01

    Cholinergic interneurons (ChIs) of dorsal striatum play a key role in motor control and in behavioural learning. Neuropeptides regulate cholinergic transmission and mu opioid receptor (MOR) activation modulates striatal acetylcholine release. However, the mechanisms underlying this effect are yet uncharacterized. Here, we examined the electrophysiological responses of ChIs to the selective MOR agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol)5] enkephalin}. We observed a robust, dose-dependent inhibition of spontaneous firing activity (0.06-3 μM) which was reversible upon drug washout and blocked by the selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) (1 μM). Voltage-clamp analysis of the reversal potential of the DAMGO effect did not provide univocal results, indicating the involvement of multiple membrane conductances. The MOR-dependent effect persisted in the presence of GABAA and ionotropic glutamate receptor antagonists, ruling out an indirect effect. Additionally, it depended upon G-protein activation, as it was prevented by intrapipette GDP-β-S. Because D2 dopamine receptors (D2R) and MOR share a common post-receptor signalling pathway, occlusion experiments were performed with maximal doses of both D2R and MOR agonists. The D2R agonist quinpirole decreased spike discharge, which was further reduced by adding DAMGO. Then, D2R or MOR antagonists were used to challenge the response to the respective agonists, DAMGO or quinpirole. No cross-effect was observed, suggesting that the two receptors act independently. Our findings demonstrate a postsynaptic inhibitory modulation by MOR on ChIs excitability. Such opioidergic regulation of cholinergic transmission might contribute to shape information processing in basal ganglia circuits, and represent a potential target for pharmacological intervention. PMID:23891638

  10. Frontal decortication and adaptive changes in striatal cholinergic neurons in the rat.

    PubMed

    Consolo, S; Sieklucka, M; Fiorentini, F; Forloni, G; Ladinsky, H

    1986-01-15

    Interruption of the corticostriatal pathway by undercutting the cortex resulted in a reduction of glutamate uptake by 55% and in a depression of acetylcholine (ACh) synthesis by 30% in striatum after two postlesion weeks without affecting the content of ACh and choline, the specific binding of [3H]dexetimide to muscarinic receptors, the activity of choline acetyltransferase and the levels of noradrenaline, serotonin, dopamine and 3,4-dihydroxyphenylacetic acid. The influence of this excitatory pathway on striatal cholinergic neuropharmacology was investigated. It was found that the effect of a number of agonists (R-apomorphine, bromocriptine, lisuride, quinpirole, JL-14389, 2-chloroadenosine, oxotremorine and methadone), capable of depressing cholinergic activity in the striatum through receptor-mediated responses--reflected as an increase in ACh content--is operative only when the corticostriatal pathway is intact. By contrast, antagonists capable of decreasing ACh content, i.e. the typical neuroleptics pimozide, haloperidol and the atypical ones clozapine, L-sulpiride, as well as the anti-muscarinic agent scopolamine, were not influenced by the lesion. The possibility that the lesion non-specifically damaged striatal cells on which the agonists, but not the antagonists acted was excluded by results showing, firstly, that the increase in striatal ACh elicited by the ACh precursor, choline, was not blocked by decortication, and secondly, that the degeneration of the corticostriatal neurons did not prevent the ACh-increasing effect of bromocriptine, a long-acting ergot alkaloid, when sufficient time was allowed for the drug to act. It was furthermore possible to restore the inhibitory action of apomorphine on cholinergic neurons either by short-term chemical lesion of the nigrostriatal dopaminergic input or by the administration of choline.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3004639

  11. Involvement of HCN Channel in Muscarinic Inhibitory Action on Tonic Firing of Dorsolateral Striatal Cholinergic Interneurons

    PubMed Central

    Zhao, Zhe; Zhang, Kang; Liu, Xiaoyan; Yan, Haitao; Ma, Xiaoyun; Zhang, Shuzhuo; Zheng, Jianquan; Wang, Liyun; Wei, Xiaoli

    2016-01-01

    The striatum is the most prominent nucleus in the basal ganglia and plays an important role in motor movement regulation. The cholinergic interneurons (ChIs) in striatum are involved in the motion regulation by releasing acetylcholine (ACh) and modulating the output of striatal projection neurons. Here, we report that muscarinic ACh receptor (M receptor) agonists, ACh and Oxotremorine (OXO-M), decreased the firing frequency of ChIs by blocking the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Scopolamine (SCO), a nonselective antagonist of M receptors, abolished the inhibition. OXO-M exerted its function by activating the Gi/o cAMP signaling cascade. The single-cell reverse transcription polymerase chain reaction (scRT-PCR) revealed that all the five subtypes of M receptors and four subtypes of HCN channels were expressed on ChIs. Among them, M2 receptors and HCN2 channels were the most dominant ones and expressed in every single studied cholinergic interneuron (ChI).Our results suggest that ACh regulates not only the output of striatal projection neurons, but also the firing activity of ChIs themselves by activating presynaptic M receptors in the dorsal striatum. The activation of M2 receptors and blockage of HCN2 channels may play an important role in ACh inhibition on the excitability of ChIs. This finding adds a new G-protein coupled receptor mediated regulation on ChIs and provides a cellular mechanism for control of cholinergic activity and ACh release in the dorsal striatum. PMID:27047336

  12. Neuropathological analysis of brainstem cholinergic and catecholaminergic nuclei in relation to REM sleep behaviour disorder

    PubMed Central

    Dugger, Brittany N.; Murray, Melissa E.; Boeve, Bradley F.; Parisi, Joseph E.; Benarroch, Eduardo E.; Ferman, Tanis J.; Dickson, Dennis W.

    2011-01-01

    Aims Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by loss of muscle atonia during REM sleep and is associated with dream enactment behaviour. RBD is often associated with α-synuclein pathology, and we examined if there is a relationship of RBD with cholinergic neuronal loss in the pedunculopontine/laterodorsal tegmental nucleus (PPN/LDT), compared to catecholaminergic neurons in a neighbouring nucleus, the locus coeruleus (LC). Methods This retrospective study, utilized human brain banked tissues of 11 Lewy body disease (LBD) cases with RBD, 10 LBD without RBD, 19 AD and 10 neurologically normal controls. Tissues were stained with choline acetyl transferase immunohistochemistry to label neurons of PPN/LDT and tyrosine hydroxylase for the LC. The burden of tau and α-synuclein pathology was measured in the same regions with immunohistochemistry. Results Both the LC and PPN/LDT were vulnerable to α-synuclein pathology in LBD and tau pathology in AD, but significant neuronal loss was only detected in these nuclei in LBD. Greater cholinergic depletion was found in both LBD groups, regardless of RBD status, when compared with normals and AD. There were no differences in either degree of neuronal loss or burden of α-synuclein pathology in LBD with and without RBD. Conclusions Whether decreases in brainstem cholinergic neurons in LBD contribute to RBD is uncertain, but our findings indicate these neurons are highly vulnerable to α-synuclein pathology in LBD and tau pathology in AD. The mechanism of selective α-synuclein-mediated neuronal loss in these nuclei remains to be determined. PMID:21696423

  13. Cholinergic blockade with scopolamine in adult cats. Effects on the behaviors evoked by apomorphine and amphetamine.

    PubMed

    Motles, E; Gómez, A; Tetas, M; González, M; Acuña, C

    1992-03-01

    1. The aim of this work is to analyse the role that the cholinergic system could play in the production of the behaviors evoked by apomorphine and amphetamine in adult cats. These two drugs were injected s.c. in separate sessions, before and after a s.c. administration of scopolamine which blocked the muscarinic receptors. The pre and post-scopolamine results of the behaviors produced by the two catecholaminergic drugs were compared using the non-parametric Wilcoxon signed rank test. 2. In a previous step a dose-response study of the behavioral effects of scopolamine, in doses of 0.05, 0.1, 0.4 and 0.8 mg/kg was carried out in ten cats. The Kruskal-Wallis and the non-parametric multiple comparison tests were employed. A dose-dependent decrease in motility (locomotion) and a dose-dependent increase in inappetence and pupillary dilation were found. 3. In thirteen cats which were injected with 2 mg/kg of apomorphine and 2.5 mg/kg of amphetamine the findings were: 1--apomorphine after scopolamine produced a decrease in the hypermotility, compared with the results observed with the former drug previous to scopolamine; 2--with amphetamine an increase in immobility and a decrease in indifference were observed. 4. The authors conclude that the decrease in motility recorded with apomorphine and amphetamine after scopolamine, could be attributed to the proper effect of scopolamine. No explanation could be found for the decrease in indifference found by injecting amphetamine after scopolamine. 5. Considering the antagonistic effect between the dopaminergic and the cholinergic systems and that the latter one has an arousal effect, we postulate that the behavioral indifference produced by apomorphine and amphetamine could be the result of a kind of blockade of the cholinergic system when the catecholaminergic system is activated through the administration of the two cited drugs. PMID:1579638

  14. Developmental alterations of the septohippocampal cholinergic projection in a lissencephalic mouse model.

    PubMed

    Garcia-Lopez, Raquel; Pombero, Ana; Dominguez, Eduardo; Geijo-Barrientos, Emilio; Martinez, Salvador

    2015-09-01

    LIS1 is one of principal genes related with Type I lissencephaly, a severe human brain malformation characterized by abnormal neuronal migration in the cortex. The LIS1 gene encodes a brain-specific 45kDa non-catalytic subunit of platelet-activating factor (PAF) acetylhydrolase-1b (PAFAH1b), an enzyme that inactivates the PAF. We have studied the role of Lis1 using a Lis1/sLis1 murine model, which has deleted the first coding exon from Lis1 gene. Homozygous mice are not viable but heterozygous have shown a delayed corticogenesis and neuronal dysplasia, with enhanced cortical excitability. Lis1/sLis1 embryos also exhibited a delay of cortical innervation by the thalamocortical fibers. We have explored in Lis1/sLis1 mice anomalies in forebrain cholinergic neuron development, which migrate from pallium to subpallium, and functionally represent the main cholinergic input to the cerebral cortex, modulating cortical activity and facilitating attention, learning, and memory. We hypothesized that primary migration anomalies and/or disorganized cortex could affect cholinergic projections from the basal forebrain and septum in Lis1/sLis1 mouse. To accomplish our objective we have first studied basal forebrain neurons in Lis1/sLis1 mice during development, and described structural and hodological differences between wild-type and Lis1/sLis1 embryos. In addition, septohippocampal projections showed altered development in mutant embryos. Basal forebrain abnormalities could contribute to hippocampal excitability anomalies secondary to Lis1 mutations and may explain the cognitive symptoms associated to cortical displasia-related mental diseases and epileptogenic syndromes. PMID:26079645

  15. The cholinergic system in the olfactory center of the terrestrial slug Limax.

    PubMed

    Matsuo, Ryota; Kobayashi, Suguru; Wakiya, Kyoko; Yamagishi, Miki; Fukuoka, Masayuki; Ito, Etsuro

    2014-09-01

    Acetylcholine plays various important roles in the central nervous system of invertebrates as well as vertebrates. In the olfactory center of the terrestrial slug Limax, the local field potential (LFP) oscillates, and the change in its oscillatory frequency is thought to correlate with the detection of odor that potentially changes an ongoing behavior of the animal. Acetylcholine is known to upregulate the frequency of the LFP oscillation, and is one of the candidates for the neurotransmitters that are involved in such higher cognitive functions. However, there have been no histological data on the cholinergic system in gastropods, nor are there data on the receptors that are responsible for the upregulation of the oscillatory frequency of LFP due to the lack of analytical tools (such as antibodies or cDNA sequence information on cholinergic system-related genes). Here we cloned the cDNAs of choline acetyltransferase (ChAT), acetylcholinesterase, vesicular acetylcholine transporter, and several nicotinic acetylcholine receptors (nAChRs), and investigated their localization in the brain of Limax. We also generated a polyclonal antibody against ChAT to examine its localization, and investigated pharmacologically the involvement of nAChRs in the LFP oscillation. Our data showed: 1) dense distribution of the neurons expressing mRNAs of ChAT and vesicular acetylcholine transporter in the olfactory center; 2) spatially unique expression patterns of different nAChRs in the olfactory center; 3) involvement of nAChRs in the upregulation of the oscillation; 4) localization of ChAT protein in nerve fibers and/or terminals; and 5) the presence of cholinergic nerves in the tentacles. PMID:24523205

  16. Cannabinoids inhibit cholinergic contraction in human airways through prejunctional CB1 receptors

    PubMed Central

    Grassin-Delyle, S; Naline, E; Buenestado, A; Faisy, C; Alvarez, J-C; Salvator, H; Abrial, C; Advenier, C; Zemoura, L; Devillier, P

    2014-01-01

    Background and Purpose Marijuana smoking is widespread in many countries, and the use of smoked synthetic cannabinoids is increasing. Smoking a marijuana joint leads to bronchodilation in both healthy subjects and asthmatics. The effects of Δ9-tetrahydrocannabinol and synthetic cannabinoids on human bronchus reactivity have not previously been investigated. Here, we sought to assess the effects of natural and synthetic cannabinoids on cholinergic bronchial contraction. Experimental Approach Human bronchi isolated from 88 patients were suspended in an organ bath and contracted by electrical field stimulation (EFS) in the presence of the phytocannabinoid Δ9-tetrahydrocannabinol, the endogenous 2-arachidonoylglycerol, the synthetic dual CB1 and CB2 receptor agonists WIN55,212-2 and CP55,940, the synthetic, CB2-receptor-selective agonist JWH-133 or the selective GPR55 agonist O-1602. The receptors involved in the response were characterized by using selective CB1 and CB2 receptor antagonists (SR141716 and SR144528 respectively). Key Results Δ9-tetrahydrocannabinol, WIN55,212-2 and CP55,940 induced concentration-dependent inhibition of cholinergic contractions, with maximum inhibitions of 39, 76 and 77% respectively. JWH-133 only had an effect at high concentrations. 2-Arachidonoylglycerol and O-1602 were devoid of any effect. Only CB1 receptors were involved in the response because the effects of cannabinoids were antagonized by SR141716, but not by SR144528. The cannabinoids did not alter basal tone or contractions induced by exogenous Ach. Conclusions and Implications Activation of prejunctional CB1 receptors mediates the inhibition of EFS-evoked cholinergic contraction in human bronchus. This mechanism may explain the acute bronchodilation produced by marijuana smoking. PMID:24467410

  17. Inhibition of cholinergic pathways in Drosophila melanogaster by α-conotoxins

    PubMed Central

    Heghinian, Mari D.; Mejia, Monica; Adams, David J.; Godenschwege, Tanja A.; Marí, Frank

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) play a pivotal role in synaptic transmission of neuronal signaling pathways and are fundamentally involved in neuronal disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In vertebrates, cholinergic pathways can be selectively inhibited by α-conotoxins; we show that in the model organism Drosophila, the cholinergic component of the giant fiber system is inhibited by α-conotoxins MII, AuIB, BuIA, EI, PeIA, and ImI. The injection of 45 pmol/fly of each toxin dramatically decreases the response of the giant fiber to dorsal longitudinal muscle (GF-DLM) connection to 20 ± 13.9% for MII; 26 ± 13.7% for AuIB, 12 ± 9.9% for BuIA, 30 ± 11.3% for EI, 1 ± 1% for PeIA, and 34 ± 15.4% for ImI. Through bioassay-guided fractionation of the venom of Conus brunneus, we found BruIB, an α-conotoxin that inhibits Drosophila nicotinic receptors but not its vertebrate counterparts. GF-DLM responses decreased to 43.7 ± 8.02% on injection of 45 pmol/fly of BruIB. We manipulated the Dα7 nAChR to mimic the selectivity of its vertebrate counterpart by placing structurally guided point mutations in the conotoxin-binding site. This manipulation rendered vertebrate-like behavior in the Drosophila system, enhancing the suitability of Drosophila as an in vivo tool to carry out studies related to human neuronal diseases.—Heghinian, M. D., Mejia, M., Adams, D. J., Godenschwege, T. A., Marí, F. Inhibition of cholinergic pathways in Drosophila melanogaster by α-conotoxins. PMID:25466886

  18. Cooling effects on nitric oxide production by rabbit ear and femoral arteries during cholinergic stimulation.

    PubMed Central

    Fernández, N; Monge, L; García-Villalón, A L; García, J L; Gómez, B; Diéguez, G

    1994-01-01

    1. Ear (cutaneous) and femoral (deep) arteries from rabbit were perfused at 37 degrees C and 24 degrees C (cooling) and the production of nitrite, as an index of nitric oxide production, was measured under basal conditions and cholinergic stimulation. 2. In both types of arteries under control conditions, the basal production of nitrite was similar at 24 degrees C and 37 degrees C. Compared with the control conditions, the basal production of nitrite was significantly lower in ear and femoral arteries without endothelium or treated with NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) but it was similar in those treated with atropine (10(-6) M). 3. At 37 degrees C, methacholine (10(-7)-10(-5) M) increased the production of nitrite in ear and femoral arteries; this increase persisted during 30-60 min and was practically abolished by L-NAME (10(-4) M), atropine (10(-6) M), or removal of the endothelium. In ear arteries the total nitrite production to activation with methacholine was higher at 24 degrees C than at 37 degrees C due to this production persisted increased for a longer period (> 150 min), whereas in femoral arteries it was lower at 24 degrees C than at 37 degrees C. 4. It is suggested that: (a) the endothelium of rabbit ear and femoral arteries produce nitric oxide under basal conditions, which is increased by cholinergic stimulation, and (b) cooling potentiates endothelial nitric oxide production to cholinergic stimulation in cutaneous arteries, whereas it inhibits this production in deep arteries. PMID:7834207

  19. Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons.

    PubMed

    Ye, Meijun; Hayar, Abdallah; Strotman, Beau; Garcia-Rill, Edgar

    2010-05-01

    The pedunculopontine nucleus (PPN) is part of the cholinergic arm of the reticular activating system, which is mostly active during waking and rapid-eye movement sleep. The PPN projects to the thalamus and receives cholinergic inputs from the laterodorsal tegmental nucleus and contralateral PPN. We employed retrograde labeling and whole cell recordings to determine the modulation of GABAergic, glycinergic, and glutamatergic transmission to PPN thalamic projecting neurons, and their postsynaptic responses to the nonspecific cholinergic agonist carbachol. M2 and M4 muscarinic receptor-modulated inhibitory postsynaptic responses were observed in 73% of PPN output neurons; in 12.9%, M1 and nicotinic receptor-mediated excitation was detected; and muscarinic and nicotinic-modulated fast inhibitory followed by slow excitatory biphasic responses were evident in 6.7% of cells. A significant increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents during carbachol application was observed in 66.2% and 65.2% of efferent neurons, respectively. This effect was blocked by a M1 antagonist or nonselective muscarinic blocker, indicating that glutamatergic, GABAergic, and/or glycinergic neurons projecting to PPN output neurons are excited through muscarinic receptors. Decreases in the frequency of miniature EPSCs, and amplitude of electrical stimulation-evoked EPSCs, were blocked by a M2 antagonist, suggesting the presence of M2Rs at terminals of presynaptic glutamatergic neurons. Carbachol-induced multiple types of postsynaptic responses, enhancing both inhibitory and excitatory fast transmission to PPN thalamic projecting neurons through muscarinic receptors. These results provide possible implications for the generation of different frequency oscillations in PPN thalamic projecting neurons during distinct sleep-wake states. PMID:20181729

  20. Thermoregulatory effects of chlorpyrifos in the rat: long-term changes in cholinergic and noradrenergic sensitivity.

    PubMed

    Gordon, C J

    1994-01-01

    Subcutaneous injection of a sublethal dose of chlorpyrifos (CHLP), an organophosphate (OP) pesticide, causes long-term inhibition in cholinesterase activity (ChE) of brain, blood, and other tissues. Such prolonged inhibition in ChE should lead to marked behavioral and autonomic thermoregulatory patterns, especially in terms of altered noradrenergic and cholinergic sensitivity. To evaluate the behavioral and autonomic effects of long-term ChE inhibition, Long-Evans rats were implanted with radiotelemetry transmitters that continuously monitored core temperature (Tc), heart rate (HR), and motor activity (MA). These parameters were monitored for 7 days following a single injection of peanut oil (vehicle control) or 280 mg/kg CHLP. CHLP led to a significant reduction in Tc during the first night after treatment but had no other effects on Tc. CHLP also resulted in a significant elevation in HR which lasted for approximately 72 h. Motor activity was unaffected by CHLP. Cholinergic and noradrenergic drug sensitivity was assessed between 7 and 25 days after CHLP. CHLP-treated rats were more sensitive to norepinephrine as based on a greater hyperthermic response. MA of CHLP-treated rats was more sensitive to scopolamine. On the other hand, the hypothermic effects of oxotremorine (0.4 mg/kg) were nearly abolished by CHLP treatment, indicating tolerance to cholinergic stimulation. The tachycardic effects of methyscopolamine were also greater in the CHLP group. Overall, the acute effects of CHLP are unusual compared to other OP's in that there is no hypothermic response, an attenuated nocturnal elevation in Tc and a prolonged elevation in HR.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7514260

  1. Involvement of HCN Channel in Muscarinic Inhibitory Action on Tonic Firing of Dorsolateral Striatal Cholinergic Interneurons.

    PubMed

    Zhao, Zhe; Zhang, Kang; Liu, Xiaoyan; Yan, Haitao; Ma, Xiaoyun; Zhang, Shuzhuo; Zheng, Jianquan; Wang, Liyun; Wei, Xiaoli

    2016-01-01

    The striatum is the most prominent nucleus in the basal ganglia and plays an important role in motor movement regulation. The cholinergic interneurons (ChIs) in striatum are involved in the motion regulation by releasing acetylcholine (ACh) and modulating the output of striatal projection neurons. Here, we report that muscarinic ACh receptor (M receptor) agonists, ACh and Oxotremorine (OXO-M), decreased the firing frequency of ChIs by blocking the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Scopolamine (SCO), a nonselective antagonist of M receptors, abolished the inhibition. OXO-M exerted its function by activating the Gi/o cAMP signaling cascade. The single-cell reverse transcription polymerase chain reaction (scRT-PCR) revealed that all the five subtypes of M receptors and four subtypes of HCN channels were expressed on ChIs. Among them, M2 receptors and HCN2 channels were the most dominant ones and expressed in every single studied cholinergic interneuron (ChI).Our results suggest that ACh regulates not only the output of striatal projection neurons, but also the firing activity of ChIs themselves by activating presynaptic M receptors in the dorsal striatum. The activation of M2 receptors and blockage of HCN2 channels may play an important role in ACh inhibition on the excitability of ChIs. This finding adds a new G-protein coupled receptor mediated regulation on ChIs and provides a cellular mechanism for control of cholinergic activity and ACh release in the dorsal striatum. PMID:27047336

  2. Characterization of a novel mechanism accounting for the adverse cholinergic effects of the anticancer drug irinotecan

    PubMed Central

    Blandizzi, Corrado; De Paolis, Barbara; Colucci, Rocchina; Lazzeri, Gloria; Baschiera, Fabio; Del Tacca, Mario

    2001-01-01

    This study investigates the mechanisms accounting for the adverse cholinergic effects of the antitumour drug irinotecan. The activity of irinotecan and its active metabolite, 7-ethyl-10-hydroxy-camptothecin (SN-38), was assayed in models suitable for pharmacological studies on cholinergic system. Irinotecan moderately inhibited human or electric eel acetylcholinesterase activity, SN-38 had no effect, whereas physostigmine blocked both the enzymes with high potency and efficacy. Irinotecan and SN-38 did not affect spontaneous or electrically-induced contractile activity of human colonic muscle. Acetylcholine and dimethylphenylpiperazinium (DMPP) caused phasic contractions or relaxations, respectively. Physostigmine enhanced the motor responses elicited by electrical stimulation. Although irinotecan and SN-38 did not modify the basal contractile activity of guinea-pig ileum longitudinal muscle strips, irinotecan 100 μM moderately enhanced cholinergic twitch contractions. Acetylcholine or DMPP caused phasic contractions, whereas physostigmine enhanced the twitch responses. Electrically-induced [3H]-acetylcholine release was reduced by irinotecan (100 μM) or physostigmine (0.1 μM). Intravenous irinotecan stimulated gastric acid secretion in rats, but no effects were obtained with SN-38, physostigmine or i.c.v. irinotecan. Hypersecretion induced by irinotecan was partly prevented by ondansetron, and unaffected by capsazepine. In the presence of atropine, vagotomy and systemic or vagal ablation of capsaicin-sensitive afferent fibres, irinotecan did not stimulate gastric secretion. The present results indicate that irinotecan and SN-38 do not act as specific acetylcholinesterase blockers or acetylcholine receptor agonists. It is rather suggested that irinotecan promotes a parasympathetic discharge to peripheral organs, mediated by capsaicin-sensitive vagal afferent fibres, and that serotonin 5-HT3 receptors are implicated in the genesis of vago-vagal reflex

  3. Eye Movements and Abducens Motoneuron Behavior During Cholinergically Induced REM Sleep

    PubMed Central

    Marquez-Ruiz, Javier; Escudero, Miguel

    2009-01-01

    Study objectives: The injection of cholinergic drugs in the pons has been largely used to induce REM sleep as a useful model to study different processes during this period. In the present study, microinjections of carbachol in the nucleus reticularis pontis oralis (NRPO) were performed to test the hypothesis that eye movements and the behavior of extraocular motoneurons during induced REM sleep do not differ from those during spontaneous REM sleep. Methods: Six female adult cats were prepared for chronic recording of eye movements (by means of the search-coil technique) and electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves at the lateral geniculate nucleus, and identified abducens motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPO. Results: Unilateral microinjections (n = 13) of carbachol in the NRPO induced REM sleep-like periods in which the eyes performed a convergence and downward rotation interrupted by phasic complex rapid eye movements associated to PGO waves. During induced-REM sleep abducens motoneurons lost their tonic activity and eye position codification, but continued codifying eye velocity during the burst of eye movements. Conclusion: The present results show that eye movements and the underlying behavior of abducens motoneurons are very similar to those present during natural REM sleep. Thus, microinjection of carbachol seems to activate the structures responsible for the exclusive oculomotor behavior observed during REM sleep, validating this pharmacological model and enabling a more efficient exploration of phasic and tonic phenomena underlying eye movements during REM sleep. Citation: Marquez-Ruiz J; Escudero M. Eye movements and abducens motoneuron behavior during cholinergically induced REM sleep. SLEEP 2009;32(4):471–481. PMID:19413141

  4. Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea.

    PubMed

    Roux, Isabelle; Wersinger, Eric; McIntosh, J Michael; Fuchs, Paul A; Glowatzki, Elisabeth

    2011-10-19

    In the developing mammalian cochlea, the sensory hair cells receive efferent innervation originating in the superior olivary complex. This input is mediated by α9/α10 nicotinic acetylcholine receptors (nAChRs) and is inhibitory due to the subsequent activation of calcium-dependent SK2 potassium channels. We examined the acquisition of this cholinergic efferent input using whole-cell voltage-clamp recordings from inner hair cells (IHCs) in acutely excised apical turns of the rat cochlea from embryonic day 21 to postnatal day 8 (P8). Responses to 1 mm acetylcholine (ACh) were detected from P0 on in almost every IHC. The ACh-activated current amplitude increased with age and demonstrated the same pharmacology as α9-containing nAChRs. Interestingly, at P0, the ACh response was not coupled to SK2 channels, so that the initial cholinergic response was excitatory and could trigger action potentials in IHCs. Coupling to SK current was detected earliest at P1 in a subset of IHCs and by P3 in every IHC studied. Clustered nAChRs and SK2 channels were found on IHCs from P1 on using Alexa Fluor 488 conjugated α-bungarotoxin and SK2 immunohistochemistry. The number of nAChRs clusters increased with age to 16 per IHC at P8. Cholinergic efferent synaptic currents first appeared in a subset of IHCs at P1 and by P3 in every IHC studied, contemporaneously with ACh-evoked SK currents, suggesting that SK2 channels may be necessary at onset of synaptic function. An analogous pattern of development was observed for the efferent synapses that form later (P6-P8) on outer hair cells in the basal cochlea. PMID:22016543

  5. Cytochemical demonstration of cholinergic, serotoninergic and peptidergic nerve elements in Gorgoderina vitelliloba (Trematoda: Digenea).

    PubMed

    McKay, D M; Halton, D W; Johnston, C F; Fairweather, I; Shaw, C

    1991-02-01

    Standard enzyme cytochemical and indirect immunocytochemical techniques have been used in conjunction with light and confocal scanning laser microscopy (CSLM) to visualize cholinergic, serotoninergic and peptidergic nerve elements in whole-mount preparations of the amphibian urinary-bladder fluke, Gorgoderina vitelliloba. Cholinesterase (ChE) activity was localized in paired anterior ganglia, a connecting dorsal commissure and in the origins of the ventral nerve cords. Cholinergic ganglia were also evident in shelled embryos in the uterus. Serotonin-immunoreactivity (IR) was more extensive than ChE activity and was identified in both the central and peripheral nervous systems. Serotoninergic nerve fibres were associated with the somatic musculature and female reproductive ducts. Antisera to nine mammalian peptides and one invertebrate (FMRFamide) peptide have been used to investigate the peptidergic nervous system in the parasite. Immunoreactivity was obtained to five peptides, namely pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), substance P (SP) and FMRFamide. Peptidergic nerve fibres were found to be more abundant than demonstrable cholinergic or serotoninergic nerve fibres. NPY-IR was identified only in the main components of the central nervous system. However, PP- and PYY-IR occurred in the anterior ganglia, dorsal commissure, main nerve cords and in numerous small varicose fibres that ramified throughout the worm. Additionally, PP-immunoreactive nerve fibres were found to innervate the musculature of the female reproductive tracts. Six sites of IR were found in the acetabulum, using antisera directed towards the C-terminal end of PP and PYY, and these matched with the distribution of six non-ciliated rosette-like papillae observed by scanning electron microscopy. SP- and FMRFamide-IR were identified in the CNS, and FMRFamide-immunopositive nerve fibres were also evident in association with the gonopore cirrus region and with the

  6. Endogenous ghrelin attenuates pressure overload-induced cardiac hypertrophy via a cholinergic anti-inflammatory pathway.

    PubMed

    Mao, Yuanjie; Tokudome, Takeshi; Kishimoto, Ichiro; Otani, Kentaro; Nishimura, Hirohito; Yamaguchi, Osamu; Otsu, Kinya; Miyazato, Mikiya; Kangawa, Kenji

    2015-06-01

    Cardiac hypertrophy, which is commonly caused by hypertension, is a major risk factor for heart failure and sudden death. Endogenous ghrelin has been shown to exert a beneficial effect on cardiac dysfunction and postinfarction remodeling via modulation of the autonomic nervous system. However, ghrelin's ability to attenuate cardiac hypertrophy and its potential mechanism of action are unknown. In this study, cardiac hypertrophy was induced by transverse aortic constriction in ghrelin knockout mice and their wild-type littermates. After 12 weeks, the ghrelin knockout mice showed significantly increased cardiac hypertrophy compared with wild-type mice, as evidenced by their significantly greater heart weight/tibial length ratios (9.2±1.9 versus 7.9±0.8 mg/mm), left ventricular anterior wall thickness (1.3±0.2 versus 1.0±0.2 mm), and posterior wall thickness (1.1±0.3 versus 0.9±0.1 mm). Furthermore, compared with wild-type mice, ghrelin knockout mice showed suppression of the cholinergic anti-inflammatory pathway, as indicated by reduced parasympathetic nerve activity and higher plasma interleukin-1β and interleukin-6 levels. The administration of either nicotine or ghrelin activated the cholinergic anti-inflammatory pathway and attenuated cardiac hypertrophy in ghrelin knockout mice. In conclusion, our results show that endogenous ghrelin plays a crucial role in the progression of pressure overload-induced cardiac hypertrophy via a mechanism that involves the activation of the cholinergic anti-inflammatory pathway. PMID:25870195

  7. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity. PMID:26438517

  8. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation

    PubMed Central

    Jacobson, Tara K.; Howe, Matthew D.; Schmidt, Brandy; Hinman, James R.; Escabí, Monty A.

    2013-01-01

    Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information. PMID:23303862

  9. Impaired Cholinergic Excitation of Prefrontal Attention Circuitry in the TgCRND8 Model of Alzheimer’s Disease

    PubMed Central

    Proulx, Éliane; Fraser, Paul; McLaurin, JoAnne; Lambe, Evelyn K.

    2015-01-01

    Attention deficits in Alzheimer’s disease can exacerbate its other cognitive symptoms, yet relevant disruptions of key prefrontal circuitry are not well understood. Here, in the TgCRND8 mouse model of this neurological disorder, we demonstrate and characterize a disruption of cholinergic excitation in the major corticothalamic layer of the prefrontal cortex, in which modulation by acetylcholine is essential for optimal attentional function. Using electrophysiology with concurrent multiphoton imaging, we show that layer 6 pyramidal cells are unable to sustain cholinergic excitation to the same extent as their nontransgenic littermate controls, as a result of the excessive activation of calcium-activated hyperpolarizing conductances. We report that cholinergic excitation can be improved in TgCRND8 cortex by pharmacological blockade of SK channels, suggesting a novel target for the treatment of cognitive dysfunction in Alzheimer’s disease. PMID:26377466

  10. [The role of the basal forebrain cholinergic dysfunction in pathogenesis of declarative memory disorder in Alzheimer's disease].

    PubMed

    Mukhin, V N

    2013-06-01

    Alzheimer's disease is the most common cause of the declarative memory disorder: 30-40% cases of dementia among all of age groups, and 50-60% among the people older 65 years. In addition, disorder of declarative memory is the genuine symptom of the disease, which certainly appears on early stage of the disease and it is an obligate diagnostic symptom. Proponents of the "cholinergic theory" of pathogenesis of Alzheimer's disease suggest that the basis disorder of declarative memory is cholinergic dysfunction. Several neurodynamic mechanisms associated with declarative memory depend on the level of acetylcholine in hippocampus and neocortex. It is believed that dysfunction of the basal cholinergic system in Alzheimer's disease leads to the impairment of these mechanisms. In this review, we summarize available literature data concerning the mechanisms of Alzheimer's disease. PMID:24459876

  11. Bifunctional DTPA-type ligand

    SciTech Connect

    Gansow, O.A.; Brechbiel, M.W.

    1990-03-26

    The subject matter of the invention relates to bifunctional cyclohexyl DTPA ligands and methods of using these compounds. Specifically, such ligands are useful for radiolabeling proteins with radioactive metals, and can consequently be utilized with respect to radioimmunoimaging and/or radioimmunotherapy.

  12. Al(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Sodupe, M.; Bauschlicher, Charles W., Jr.

    1991-01-01

    Ab initio calculations are used to optimize the structure and determine the binding energies of Al(+) to a series of ligands. For Al(+)-CN, the bonding was found to have a large covalent component. For the remaining ligands, the bonding is shown to be electrostatic in origin. The results obtained for Al(+) are compared with those previously reported for Mg(+).

  13. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease

    PubMed Central

    Müller, Martijn L. T. M.; Kotagal, Vikas; Koeppe, Robert A.; Kilbourn, Michael A.; Albin, Roger L.; Frey, Kirk A.

    2010-01-01

    Olfactory dysfunction is common in subjects with Parkinson’s disease. The pathophysiology of such dysfunction, however, remains poorly understood. Neurodegeneration within central regions involved in odour perception may contribute to olfactory dysfunction in Parkinson’s disease. Central cholinergic deficits occur in Parkinson’s disease and cholinergic neurons innervate regions, such as the limbic archicortex, involved in odour perception. We investigated the relationship between performance on an odour identification task and forebrain cholinergic denervation in Parkinson’s disease subjects without dementia. Fifty-eight patients with Parkinson’s disease (mean Hoehn and Yahr stage 2.5 ± 0.5) without dementia (mean Mini-Mental State Examination, 29.0 ± 1.4) underwent a clinical assessment, [11C]methyl-4-piperidinyl propionate acetylcholinesterase brain positron emission tomography and olfactory testing with the University of Pennsylvania Smell Identification Test. The diagnosis of Parkinson’s disease was confirmed by [11C]dihydrotetrabenazine vesicular monoamine transporter type 2 positron emission tomography. We found that odour identification test scores correlated positively with acetylcholinesterase activity in the hippocampal formation (r = 0.56, P < 0.0001), amygdala (r = 0.50, P < 0.0001) and neocortex (r = 0.46, P = 0.0003). Striatal monoaminergic activity correlated positively with odour identification scores (r = 0.30, P < 0.05). Multiple regression analysis including limbic (hippocampal and amygdala) and neocortical acetylcholinesterase activity as well as striatal monoaminergic activity, using odour identification scores as the dependent variable, demonstrated a significant regressor effect for limbic acetylcholinesterase activity (F = 10.1, P < 0.0001), borderline for striatal monoaminergic activity (F = 1.6, P = 0.13), but not significant for cortical acetylcholinesterase activity (F = 0.3, P = 0.75). Odour identification scores

  14. Protein kinase C-α attenuates cholinergically stimulated gastric acid secretion of rabbit parietal cells

    PubMed Central

    Fährmann, Michael; Kaufhold, Marc; Pfeiffer, Andreas F; Seidler, Ursula

    2003-01-01

    The phorbolester 12-O-tetradecanoyl phorbol-13-acetate (TPA), an activator of protein kinase C (PKC), inhibits cholinergic stimulation of gastric acid secretion. We observed that this effect strongly correlated with the inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity in rabbit parietal cells. The aim of this study was to specify the function of PKC-α in cholinergically stimulated H+ secretion. PKC-α represents the only calcium-dependent PKC isoenzyme that has been detected in rabbit parietal cells. Gö 6976, an inhibitor of calcium-dependent PKC, concentration-dependently antagonized the inhibitory effect of TPA, and, therefore, revealed the action of PKC-α on carbachol-induced acid secretion in rabbit parietal cells. TPA exerted no additive inhibition of carbachol-stimulated acid secretion if acid secretion was partially inhibited by the potent CaMKII inhibitor 1-[N,O-bis(5-isoquinolinsulfonyl)-N-methyl-L-tyrosyl]-4-phenyl-piperazine (KN-62). Since both kinase modulators, TPA and KN-62, affected no divergent signal transduction pathways in the parietal cell, an in vitro model has been used to study if PKC directly targets CaMKII. CaMKII purified from parietal cell-containing gastric mucosa of pig, was transphosphorylated by purified cPKC containing PKC-α up to 1.8 mol Pi per mol CaMKII in vitro. The autonomy site of CaMKII was not transphosphorylated by PKC. The phosphotransferase activity of the purified CaMKII was in vitro inhibited after transphosphorylation by PKC if calmodulin was absent during transphosphorylation. Attenuation of CaMKII activity by PKC showed strong similarity to the downregulation of CaMKII by basal autophosphorylation. Our results suggest that PKC-α and CaMKII are closely functionally linked in a cholinergically induced signalling pathway in rabbit parietal cells. We assume that in cholinergically stimulated parietal cells PKC-α transinhibits CaMKII activity, resulting in an attenuation of acid secretion

  15. In silico Identification and Characterization of Protein-Ligand Binding Sites.

    PubMed

    Roche, Daniel Barry; McGuffin, Liam James

    2016-01-01

    Protein-ligand binding site prediction methods aim to predict, from amino acid sequence, protein-ligand interactions, putative ligands, and ligand binding site residues using either sequence information, structural information, or a combination of both. In silico characterization of protein-ligand interactions has become extremely important to help determine a protein's functionality, as in vivo-based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, such as drug discovery. Thus, in silico prediction of protein-ligand interactions must be utilized to aid in functional elucidation. Here, we briefly discuss protein function prediction, prediction of protein-ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed prediction of protein-ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation. PMID:27094282

  16. Immunotoxins, ligand-toxin conjugates and molecular targeting.

    PubMed

    Soria, M

    1989-01-01

    Biotechnology provides tools for therapeutic exploitation following advances in the elucidation of protein-to-cell and cell-to-cell interactions. Molecular targeting of bacterial and plant toxins to the desired district of action can be achieved through effector molecules like monoclonal antibodies or protein ligands. Biochemical conjugation of these effectors to SO-6, a single-chain Ribosome Inactivating Protein from Saponaria officinalis, yielded powerful cytotoxic agents that are attractive candidates for therapeutic evaluation. Cloning of the gene for this plant toxin has been achieved. Technologies for expression of protein ligands, such as apolipoproteins or several growth factors, are available in recombinant microorganisms, providing adequate partners for the assembly of targeted chimaeras. Domain engineering of structural and functional regions in effector proteins is now possible and will be carried out with the available technologies to improve existing therapy. PMID:2698471

  17. Purification and biochemical characterization of the D6 chemokine receptor.

    PubMed Central

    Blackburn, Paul E; Simpson, Clare V; Nibbs, Robert J B; O'Hara, Maureen; Booth, Rhona; Poulos, Jemma; Isaacs, Neil W; Graham, Gerard J

    2004-01-01

    There is much interest in chemokine receptors as therapeutic targets in diseases such as AIDS, autoimmune and inflammatory disorders, and cancer. Hampering such studies is the lack of accurate three-dimensional structural models of these molecules. The CC-chemokine receptor D6 is expressed at exceptionally high levels in heterologous transfectants. Here we report the purification and biochemical characterization of milligram quantities of D6 protein from relatively small cultures of transfected mammalian cells. Importantly, purified D6 retains full functional activity, shown by displaceable binding of 125I-labelled MIP-1beta (macrophage inflammatory protein-1beta) and by complete binding of the receptor to a MIP-1alpha affinity column. In addition, we show that D6 is decorated on the N-terminus by N-linked glycosylation. Mutational analysis reveals that this glycosylation is dispensable for ligand binding and high expression in transfected cells. Metabolic labelling has revealed the receptor to also be sulphated and phosphorylated. Phosphorylation is ligand independent and is not enhanced by ligand binding and internalization, suggesting similarities with the viral chemokine receptor homologue US28. Like US28, an analysis of the full cellular complement of D6 in transfected cells indicates that >80% is found associated with intracellular vesicular structures. This may account for the high quantities of D6 that can be synthesized in these cells. These unusual properties of D6, and the biochemical characterization described here, leads the way towards work aimed at generating the three-dimensional structure of this seven-transmembrane-spanning receptor. PMID:14723600

  18. The maximal affinity of ligands

    PubMed Central

    Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A.

    1999-01-01

    We explore the question of what are the best ligands for macromolecular targets. A survey of experimental data on a large number of the strongest-binding ligands indicates that the free energy of binding increases with the number of nonhydrogen atoms with an initial slope of ≈−1.5 kcal/mol (1 cal = 4.18 J) per atom. For ligands that contain more than 15 nonhydrogen atoms, the free energy of binding increases very little with relative molecular mass. This nonlinearity is largely ascribed to nonthermodynamic factors. An analysis of the dominant interactions suggests that van der Waals interactions and hydrophobic effects provide a reasonable basis for understanding binding affinities across the entire set of ligands. Interesting outliers that bind unusually strongly on a per atom basis include metal ions, covalently attached ligands, and a few well known complexes such as biotin–avidin. PMID:10468550

  19. Elevated Hippocampal Cholinergic Neurostimulating Peptide Precursor Protein (HCNP-pp) mRNA in the amygdala in major depression

    PubMed Central

    Bassi, Sabrina; Seney, Marianne L.; Argibay, Pablo; Sibille, Etienne

    2015-01-01

    The amygdala is innervated by the cholinergic system and is involved in major depressive disorder (MDD). Evidence suggests a hyper-activate cholinergic system in MDD. Hippocampal Cholinergic Neurostimulating Peptide (HCNP) regulates acetylcholine synthesis. The aim of the present work was to investigate expression levels of HCNP-precursor protein (HCNP-pp) mRNA and other cholinergic-related genes in the postmortem amygdala of MDD patients and matched controls (females: N=16 pairs; males: N=12 pairs), and in the mouse unpredictable chronic mild stress (UCMS) model that induced elevated anxiety-/depressive-like behaviors (females: N=6 pairs; males: N=6 pairs). Results indicate an up-regulation of HCNP-pp mRNA in the amygdala of women with MDD (p<0.0001), but not males, and of UCMS-exposed mice (males and females; p=0.037). HCNP-pp protein levels were investigated in the human female cohort, but no difference was found. There were no differences in gene expression of acetylcholinesterase (AChE), muscarinic (mAChRs) or nicotinic receptors (nAChRs) between MDD subjects and controls or UCMS and control mice, except for an up-regulation of AChE in UCMS-exposed mice (males and females; p=0.044). Exploratory analyses revealed a baseline expression difference of cholinergic signaling-related genes between women and men (p<0.0001). In conclusion, elevated amygdala HCNP-pp expression may contribute to mechanisms of MDD in women, potentially independently from regulating the cholinergic system. The differential expression of genes between women and men could also contribute to the increased vulnerability of females to develop MDD. PMID:25819500

  20. A ten fold reduction of nicotine yield in tobacco smoke does not spare the central cholinergic system in adolescent mice.

    PubMed

    Abreu-Villaça, Yael; Correa-Santos, Monique; Dutra-Tavares, Ana C; Paes-Branco, Danielle; Nunes-Freitas, Andre; Manhães, Alex C; Filgueiras, Cláudio C; Ribeiro-Carvalho, Anderson

    2016-08-01

    The tobacco industry has gradually decreased nicotine content in cigarette smoke but the impact of this reduction on health is still controversial. Since the central cholinergic system is the primary site of action of nicotine, here, we investigated the effects of exposure of adolescent mice to tobacco smoke containing either high or low levels of nicotine on the central cholinergic system and the effects associated with cessation of exposure. From postnatal day (PN) 30 to 45, male and female Swiss mice were exposed to tobacco smoke (whole body exposure, 8h/day, 7 days/week) generated from 2R1F (HighNic group: 1.74mg nicotine/cigarette) or 4A1 (LowNic group: 0.14mg nicotine/cigarette) research cigarettes, whereas control mice were exposed to ambient air. Cholinergic biomarkers were assessed in the cerebral cortex and midbrain by the end of exposure (PN45), at short- (PN50) and long-term (PN75) deprivation. In the cortex, nicotinic cholinergic receptor upregulation was observed with either type of cigarette. In the midbrain, upregulation was detected only in HighNic mice and remained significant in females at short-term deprivation. The high-affinity choline transporter was reduced in the cortex: of HighNic mice by the end of exposure; of both HighNic and LowNic females at short-term deprivation; of LowNic mice at long-term deprivation. These decrements were separable from effects on choline acetyltransferase and acetylcholinesterase activities, suggesting cholinergic synaptic impairment. Here, we demonstrated central cholinergic alterations in an animal model of tobacco smoke exposure during adolescence. This system was sensitive even to tobacco smoke with very low nicotine content. PMID:27287270

  1. Control of heart rate during thermoregulation in the heliothermic lizard Pogona barbata: importance of cholinergic and adrenergic mechanisms.

    PubMed

    Seebacher, F; Franklin, C E

    2001-12-01

    During thermoregulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a beta-adrenergic antagonist. Cholinergic and beta-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3 %) at the commencement of heating, and decreased to 30.7 % at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min(-1)) as the heat source was switched off, and this drop in heart rate coincided with either a drop in beta-adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and beta-adrenergic blockade. The results showed that cholinergic and beta-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling. PMID:11815660

  2. THREE-DIMENSIONAL CHEMOARCHITECTURE OF THE BASAL FOREBRAIN: SPATIALLY SPECIFIC ASSOCIATION OF CHOLINERGIC AND CALCIUM BINDING PROTEIN-CONTAINING NEURONS

    PubMed Central

    ZABORSZKY, L.; BUHL, D. L.; POBALASHINGHAM, S.; BJAALIE, J. G.; NADASDY, Z.

    2007-01-01

    The basal forebrain refers to heterogeneous structures located close to the medial and ventral surfaces of the cerebral hemispheres. It contains diverse populations of neurons, including the cholinergic cortically projecting cells that show severe loss in Alzheimer’s and related neurodegenerative diseases. The basal forebrain does not display any cytoarchitectural or other structural features that make it easy to demarcate functional boundaries, a problem that allowed different investigators to propose different organizational schemes. The present paper uses novel three-dimensional reconstructions and numerical analyses for studying the spatial organization of four major basal forebrain cell populations, the cholinergic, parvalbumin, calbindin and calretinin containing neurons in the rat. Our analyses suggest that the distribution of these four cell populations is not random but displays a general pattern of association. Within the cholinergic space (i.e. the volume occupied by the cortically projecting cholinergic cell bodies) the three other cell types form twisted bands along the longitudinal axis of a central dense core of cholinergic cells traversing the traditionally defined basal forebrain regions, (i.e. the medial septum, diagonal bands, the substantia innominata, pallidal regions and the bed nucleus of the stria terminalis). At a smaller scale, the different cell types within the cholinergic space occupy overlapping high-density cell clusters that are either chemically uniform or mixed. However, the cell composition of these high-density clusters is regionally specific. The proposed scheme of basal forebrain organization, using cell density or density relations as criteria, offers a new perspective on structure–function relationship, unconstrained by traditional region boundaries. PMID:16344145

  3. Identification of the origin of adrenergic and cholinergic nerve fibers within the superior hypogastric plexus of the human fetus

    PubMed Central

    Zaitouna, Mazen; Alsaid, Bayan; Diallo, Djibril; Benoit, Gérard; Bessede, Thomas

    2013-01-01

    Nerve fibers contributing to the superior hypogastric plexus (SHP) and the hypogastric nerves (HN) are currently considered to comprise an adrenergic part of the autonomic nervous system located between vertebrae (T1 and L2), with cholinergic aspects originating from the second to fourth sacral spinal segments (S2, S3 and S4). The aim of this study was to identify the origin and the nature of the nerve fibers within the SHP and the HN, especially the cholinergic fibers, using computer-assisted anatomic dissection (CAAD). Serial histological sections were performed at the level of the lumbar spine and pelvis in five human fetuses between 14 and 30 weeks of gestation. Sections were treated with histological staining [hematoxylin-eosin (HE) and Masson's trichrome (TriM)] and with immunohistochemical methods to detect nerve fibers (anti-S100), adrenergic fibers (anti-TH), cholinergic fibers (anti-VAChT) and nitrergic fibers (anti-nNOS). The sections were then digitalized using a high-resolution scanner and the 3D images were reconstructed using winsurf software. These experiments revealed the coexistence of adrenergic and cholinergic fibers within the SHP and the HNs. One-third of these cholinergic fibers were nitrergic fibers [anti-VACHT (+)/anti-NOS (+)] and potentially pro-erectile, while the others were non-nitrergic [anti-VACHT (+)/anti-NOS (−)]. We found these cholinergic fibers arose from the lumbar nerve roots. This study described the nature of the SHP nerve fibers which gives a better understanding of the urinary and sexual dysfunctions after surgical injuries. PMID:23668336

  4. How special is the biochemical function of native proteins?

    PubMed Central

    Skolnick, Jeffrey; Gao, Mu; Zhou, Hongyi

    2016-01-01

    Native proteins perform an amazing variety of biochemical functions, including enzymatic catalysis, and can engage in protein-protein and protein-DNA interactions that are essential for life. A key question is how special are these functional properties of proteins. Are they extremely rare, or are they an intrinsic feature? Comparison to the properties of compact conformations of artificially generated compact protein structures selected for thermodynamic stability but not any type of function, the artificial (ART) protein library, demonstrates that a remarkable number of the properties of native-like proteins are recapitulated. These include the complete set of small molecule ligand-binding pockets and most protein-protein interfaces. ART structures are predicted to be capable of weakly binding metabolites and cover a significant fraction of metabolic pathways, with the most enriched pathways including ancient ones such as glycolysis. Native-like active sites are also found in ART proteins. A small fraction of ART proteins are predicted to have strong protein-protein and protein-DNA interactions. Overall, it appears that biochemical function is an intrinsic feature of proteins which nature has significantly optimized during evolution. These studies raise questions as to the relative roles of specificity and promiscuity in the biochemical function and control of cells that need investigation. PMID:26962440

  5. Predicting target-ligand interactions using protein ligand-binding site and ligand substructures

    PubMed Central

    2015-01-01

    Background Cell proliferation, differentiation, Gene expression, metabolism, immunization and signal transduction require the participation of ligands and targets. It is a great challenge to identify rules governing molecular recognition between chemical topological substructures of ligands and the binding sites of the targets. Methods We suppose that the ligand-target interactions are determined by ligand substructures as well as the physical-chemical properties of the binding sites. Therefore, we propose a fragment interaction model (FIM) to describe the interactions between ligands and targets, with the purpose of facilitating the chemical interpretation of ligand-target binding. First we extract target-ligand complexes from sc-PDB database, based on which, we get the target binding sites and the ligands. Then we represent each binding site as a fragment vector based on a target fragment dictionary that is composed of 199 clusters (denoted as fragements in this work) obtained by clustering 4200 trimers according to their physical-chemical properties. And then, we represent each ligand as a substructure vector based on a dictionary containing 747 substructures. Finally, we build the FIM by generating the interaction matrix M (representing the fragment interaction network), and the FIM can later be used for predicting unknown ligand-target interactions as well as providing the binding details of the interactions. Results The five-fold cross validation results show that the proposed model can get higher AUC score (92%) than three prevalence algorithms CS-PD (80%), BLM-NII (85%) and RF (85%), demonstrating the remarkable predictive ability of FIM. We also show that the ligand binding sites (local information) overweight the sequence similarities (global information) in ligand-target binding, and introducing too much global information would be harmful to the predictive ability. Moreover, The derived fragment interaction network can provide the chemical insights on

  6. Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques.

    PubMed

    Ward, Richard J; Milligan, Graeme

    2014-01-01

    The interaction between ligands and the G protein-coupled receptors (GPCRs) to which they bind has long been the focus of intensive investigation. The signalling cascades triggered by receptor activation, due in most cases to ligand binding, are of great physiological and medical importance; indeed, GPCRs are targeted by in excess of 30% of small molecule therapeutic medicines. Attempts to identify further pharmacologically useful GPCR ligands, for receptors with known and unknown endogenous ligands, continue apace. In earlier days direct assessment of such interactions was restricted largely to the use of ligands incorporating radioactive isotope labels as this allowed detection of the ligand and monitoring its interaction with the GPCR. This use of such markers has continued with the development of ligands labelled with fluorophores and their application to the study of receptor-ligand interactions using both light microscopy and resonance energy transfer techniques, including homogenous time-resolved fluorescence resonance energy transfer. Details of ligand-receptor interactions via X-ray crystallography are advancing rapidly as methods suitable for routine production of substantial amounts and stabilised forms of GPCRs have been developed and there is hope that this may become as routine as the co-crystallisation of serine/threonine kinases with ligands, an approach that has facilitated widespread use of rapid structure-based ligand design. Conformational changes involved in the activation of GPCRs, widely predicted by biochemical and biophysical means, have inspired the development of intramolecular FRET-based sensor forms of GPCRs designed to investigate the events following ligand binding and resulting in a signal propagation across the cell membrane. Finally, a number of techniques are emerging in which ligand-GPCR binding can be studied in ways that, whilst indirect, are able to monitor its results in an unbiased and integrated manner. This article is part

  7. Cholinergic afferent stimulation induces axonal function plasticity in adult hippocampal granule cells.

    PubMed

    Martinello, Katiuscia; Huang, Zhuo; Lujan, Rafael; Tran, Baouyen; Watanabe, Masahiko; Cooper, Edward C; Brown, David A; Shah, Mala M

    2015-01-21

    Acetylcholine critically influences hippocampal-dependent learning. Cholinergic fibers innervate hippocampal neuron axons, dendrites, and somata. The effects of acetylcholine on axonal information processing, though, remain unknown. By stimulating cholinergic fibers and making electrophysiological recordings from hippocampal dentate gyrus granule cells, we show that synaptically released acetylcholine preferentially lowered the action potential threshold, enhancing intrinsic excitability and synaptic potential-spike coupling. These effects persisted for at least 30 min after the stimulation paradigm and were due to muscarinic receptor activation. This caused sustained elevation of axonal intracellular Ca(2+) via T-type Ca(2+) channels, as indicated by two-photon imaging. The enhanced Ca(2+) levels inhibited an axonal KV7/M current, decreasing the spike threshold. In support, immunohistochemistry revealed muscarinic M1 receptor, CaV3.2, and KV7.2/7.3 subunit localization in granule cell axons. Since alterations in axonal signaling affect neuronal firing patterns and neurotransmitter release, this is an unreported cellular mechanism by which acetylcholine might, at least partly, enhance cognitive processing. PMID:25578363

  8. Functions of adrenergic and cholinergic nerves in canine effectors of seminal emission.

    PubMed

    Arver, S; Sjöstrand, N O

    1982-05-01

    Spontaneous activity responses to acetylcholine (ACh), adrenaline (A), noradrenaline (NA) and barium chloride as well as the effects of various autonomic drugs on effects of field stimulation of nerves and muscle cells of isolated pieces or strips of cauda epididymidis, vas deferens, ampulla ductus deferentis and prostate of dog were studied. The main results and conclusions are: the muscles show little spontaneous activity but rhythmicity can easily be produced by e.g. stimulating agonists. The muscles are contracted by alpha-adrenoceptor stimulants. ACh has usually no or a very weak contractile effect in high concentrations. Muscles of young dogs are more sensitive to ACh. The excitatory innervation of the muscles is adrenergic and completely blocked by adrenergic neuron blockers as well as alpha-adrenoceptor blocking drugs. Stimulation of adrenergic nerves leads to maximum response already at low frequencies (4-6 Hz). This response is very similar to that provoked by a supramaximal dose of NA. Scopolamine enhances neurogenic contractile effects while physostigmine suppresses them. Hence cholinergic nerves may act by muscarinic prejunctional inhibition of the excitatory adrenergic neurotransmission rather than act directly upon the smooth muscle cells. Since secretory cells receive cholinergic innervation prejunctional inhibition of the adrenergic myomotor nerves may be of functional significance in at least the long copulatory events of the dog. PMID:6127870

  9. Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice.

    PubMed

    Wang, Li; Zhang, Xiaoyu; Xu, Huadong; Zhou, Li; Jiao, Ruiying; Liu, Wei; Zhu, Feipeng; Kang, Xinjiang; Liu, Bin; Teng, Sasa; Wu, Qihui; Li, Mingli; Dou, Haiqiang; Zuo, Panli; Wang, Changhe; Wang, Shirong; Zhou, Zhuan

    2014-08-15

    Striatal dopamine (DA) is critically involved in major brain functions such as motor control and deficits such as Parkinson's disease. DA is released following stimulation by two pathways: the nigrostriatal pathway and the cholinergic interneuron (ChI) pathway. The timing of synaptic transmission is critical in striatal circuits, because millisecond latency changes can reverse synaptic plasticity from long-term potentiation to long-term depression in a DA-dependent manner. Here, we determined the temporal components of ChI-driven DA release in striatal slices from optogenetic ChAT-ChR2-EYFP mice. After a light stimulus at room temperature, ChIs fired an action potential with a delay of 2.8 ms. The subsequent DA release mediated by nicotinic acetylcholine (ACh) receptors had a total latency of 17.8 ms, comprising 7.0 ms for cholinergic transmission and 10.8 ms for the downstream terminal DA release. Similar latencies of DA release were also found in striatal slices from wild-type mice. The latency of ChI-driven DA release was regulated by inhibiting the presynaptic vesicular ACh release. Moreover, we describe the time course of recovery of DA release via the two pathways and that of vesicle replenishment in DA terminals. Our work provides an example of unravelling the temporal building blocks during fundamental synaptic terminal-terminal transmission in motor regulation. PMID:24973407

  10. Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum.

    PubMed

    Virk, Michael S; Sagi, Yotam; Medrihan, Lucian; Leung, Jenny; Kaplitt, Michael G; Greengard, Paul

    2016-01-19

    Little is known about the molecular similarities and differences between neurons in the ventral (vSt) and dorsal striatum (dSt) and their physiological implications. In the vSt, serotonin [5-Hydroxytryptamine (5-HT)] modulates mood control and pleasure response, whereas in the dSt, 5-HT regulates motor behavior. Here we show that, in mice, 5-HT depolarizes cholinergic interneurons (ChIs) of the dSt whereas hyperpolarizing ChIs from the vSt by acting on different 5-HT receptor isoforms. In the vSt, 5-HT1A (a postsynaptic receptor) and 5-HT1B (a presynaptic receptor) are highly expressed, and synergistically inhibit the excitability of ChIs. The inhibitory modulation by 5-HT1B, but not that by 5-HT1A, is mediated by p11, a protein associated with major depressive disorder. Specific deletion of 5-HT1B from cholinergic neurons results in impaired inhibition of ACh release in the vSt and in anhedonic-like behavior. PMID:26733685

  11. Preclinical Evidence for a Role of the Nicotinic Cholinergic System in Parkinson's Disease.

    PubMed

    Perez, Xiomara A

    2015-12-01

    One of the primary deficits in Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta which leads to striatal dopaminergic deficits that underlie the motor symptoms associated with the disease. A plethora of animal models have been developed over the years to uncover the molecular alterations that lead to PD development. These models have provided valuable information on neurotransmitter pathways and mechanisms involved. One such a system is the nicotinic cholinergic system. Numerous studies show that nigrostriatal damage affects nicotinic receptor-mediated dopaminergic signaling; therefore therapeutic modulation of the nicotinic cholinergic system may offer a novel approach to manage PD. In fact, there is evidence showing that nicotinic receptor drugs may be useful as neuroprotective agents to prevent Parkinson's disease progression. Additional preclinical studies also show that nicotinic receptor drugs may be beneficial for the treatment of L-dopa induced dyskinesias. Here, we review preclinical findings supporting the idea that nicotinic receptors are valuable therapeutic targets for PD. PMID:26553323

  12. Effects of lithium on behavioral reactivity: relation to increases in brain cholinergic activity.

    PubMed

    Russell, R W; Pechnick, R; Jope, R S

    1981-01-01

    Suppression of behavior accompanying increased ACh synthesis in the brain might account, at least in part, for the preferred use of lithium in antimanic therapy. Three experiments using rats as subjects were designed to test hypotheses about relationships among lithium, ACh synthesis and behavior. Experiment 1 established that hyporeactivity and greater exploratory behavior occurred in animals under LiCl treatment conditions shown to stimulate cholinergic activity in brain. Experiment 2 provided evidence of significant differences between controls and animals on the LiCl diet. Groups tested after 1 or 2 days of LiCl showed the decrease in reactivity to successive presentations of a loud auditory stimulus which characterizes the normal process of habituation. Groups tested after 5 or 10 days of liCl showed no evidence of habituation, their reactivity throughout the period of stimulation being at a level attained by the other groups when habituation reached its final asymptote. Experiment 3 established that effects of LiCl treatment were not manifested in all aspects of behavior: there was no evidence of impairment of motor activity or coordination; no analgesia; no impairment in sensory input nor in acquisition of new behaviors. The effect of the LiCl treatment was not complete inhibition but instead suppression of reactivity to environmental stimulation under conditions shown previously to increase cholinergic activity in brain. PMID:6785802

  13. Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum

    PubMed Central

    Virk, Michael S.; Sagi, Yotam; Medrihan, Lucian; Leung, Jenny; Kaplitt, Michael G.; Greengard, Paul

    2016-01-01

    Little is known about the molecular similarities and differences between neurons in the ventral (vSt) and dorsal striatum (dSt) and their physiological implications. In the vSt, serotonin [5-Hydroxytryptamine (5-HT)] modulates mood control and pleasure response, whereas in the dSt, 5-HT regulates motor behavior. Here we show that, in mice, 5-HT depolarizes cholinergic interneurons (ChIs) of the dSt whereas hyperpolarizing ChIs from the vSt by acting on different 5-HT receptor isoforms. In the vSt, 5-HT1A (a postsynaptic receptor) and 5-HT1B (a presynaptic receptor) are highly expressed, and synergistically inhibit the excitability of ChIs. The inhibitory modulation by 5-HT1B, but not that by 5-HT1A, is mediated by p11, a protein associated with major depressive disorder. Specific deletion of 5-HT1B from cholinergic neurons results in impaired inhibition of ACh release in the vSt and in anhedonic-like behavior. PMID:26733685

  14. Behavioral deficits and cholinergic pathway abnormalities in male Sanfilippo B mice.

    PubMed

    Kan, Shih-Hsin; Le, Steven Q; Bui, Quang D; Benedict, Braeden; Cushman, Jesse; Sands, Mark S; Dickson, Patricia I

    2016-10-01

    Sanfilippo B syndrome is a progressive neurological disorder caused by inability to catabolize heparan sulfate glycosaminoglycans. We studied neurobehavior in male Sanfilippo B mice and heterozygous littermate controls from 16 to 20 weeks of age. Affected mice showed reduced anxiety, with a decrease in the number of stretch-attend postures during the elevated plus maze (p=0.001) and an increased tendency to linger in the center of an open field (p=0.032). Water maze testing showed impaired spatial learning, with reduced preference for the target quadrant (p=0.01). In radial arm maze testing, affected mice failed to achieve above-chance performance in a win-shift working memory task (t-test relative to 50% chance: p=0.289), relative to controls (p=0.037). We found a 12.4% reduction in mean acetylcholinesterase activity (p<0.001) and no difference in choline acetyltransferase activity or acetylcholine in whole brain of affected male animals compared to controls. Cholinergic pathways are affected in adult-onset dementias, including Alzheimer disease. Our results suggest that male Sanfilippo B mice display neurobehavioral deficits at a relatively early age, and that as in adult dementias, they may display deficits in cholinergic pathways. PMID:27340089

  15. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    SciTech Connect

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. )

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  16. Relative Contributions of Sympathetic, Cholinergic, and Myogenic Mechanisms to Cerebral Autoregulation

    PubMed Central

    Hamner, J.W.; Tan, Can Ozan

    2014-01-01

    Background and Purpose Prior work aimed at improving our understanding of human cerebral autoregulation has explored individual physiologic mechanisms of autoregulation in isolation, but none has attempted to consolidate the individual roles of these mechanisms into a comprehensive model of the overall cerebral pressure–flow relation. Methods We retrospectively analyzed this relation before and after pharmacologic blockade of alpha-adrenergic, muscarinic, and calcium channel-mediated mechanisms in 43 healthy volunteers to determine the relative contributions of the sympathetic, cholinergic, and myogenic controllers to cerebral autoregulation. Projection pursuit regression was used to assess the effect of pharmacologic blockade on the cerebral pressure–flow relation. Subsequently, analysis of covariance decomposition was used to determine the cumulative effect of these three mechanisms on cerebral autoregulation and whether they can fully explain it. Results Sympathetic, cholinergic, and myogenic mechanisms together accounted for 62% of the cerebral pressure–flow relation (p < 0.05), with significant and distinct contributions from each of the three effectors. ANCOVA decomposition demonstrated that myogenic effectors were the largest determinant of the cerebral pressure–flow relation but their effect was outside of the autoregulatory region where neurogenic control appeared prepotent. Conclusions Our results suggest that myogenic effects occur outside the active region of autoregulation, whereas neurogenic influences are largely responsible for cerebral blood flow control within it. However, our model of cerebral autoregulation left 38% of the cerebral pressure–flow relation unexplained, suggesting that there are other physiologic mechanisms that contribute to cerebral autoregulation. PMID:24723314

  17. Laminar organization and age-related loss of cholinergic receptors in temporal neocortex of rhesus monkey.

    PubMed

    Wagster, M V; Whitehouse, P J; Walker, L C; Kellar, K J; Price, D L

    1990-09-01

    Using in vitro receptor autoradiography, the distributions of cholinergic muscarinic [3H-N-methyl scopolamine (NMS), 3H-pirenzepine (PZ), and 3H-oxotremorine-M (OXO-M)] and nicotinic [3H-acetylcholine (ACh)] receptors were mapped in the temporal cortices of rhesus monkeys (Macaca mulatta) ranging from 2-22 years of age. Although high-affinity 3H-PZ, low-affinity 3H-NMS binding (M1 sites) and high-affinity 3H-OXO-M, high-affinity 3H-NMS binding (M2 sites) occurred across all layers of the temporal neocortex, the laminar distribution of M1 and M2 receptor binding sites was different. M1 muscarinic receptor binding was concentrated in layers II and III, whereas M2 muscarinic receptor binding was greatest in layers IV and V. The concentration of both muscarinic (M1 and M2) and nicotinic receptor binding sites declined with increasing age, and decrements were uniform across all cortical layers. This investigation provides evidence for a decrease in cholinergic receptor binding with age in temporal cortices of rhesus monkeys. Moreover, these changes appear to precede previously reported age-associated memory deficits and neuropathological changes that occur in this species. PMID:2398366

  18. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain

    SciTech Connect

    Dewey, S.L.; Brodie, J.D.; Fowler, J.S.; MacGregor, R.R.; Schlyer, D.J.; King, P.T.; Alexoff, D.L.; Volkow, N.D.; Shiue, C.Y.; Wolf, A.P. )

    1990-01-01

    Interactions between the dopaminergic D2 receptor system and the muscarinic cholinergic system in the corpus striatum of adult female baboons (Papio anubis) were examined using positron emission tomography (PET) combined with (18F)N-methylspiroperidol (( 18F)NMSP) (to probe D2 receptor availability) and (N-11C-methyl)benztropine (to probe muscarinic cholinergic receptor availability). Pretreatment with benztropine, a long-lasting anticholinergic drug, bilaterally reduced the incorporation of radioactivity in the corpus striatum but did not alter that observed in the cerebellum or the rate of metabolism of (18F)NMSP in plasma. Pretreatment with unlabelled NMSP, a potent dopaminergic antagonist, reduced the incorporation of (N-11C-methyl)benztropine in all brain regions, with the greatest effect being in the corpus striatum greater than cortex greater than thalamus greater than cerebellum, but did not alter the rate of metabolism of the labelled benztropine in the plasma. These reductions in the incorporation of either (18F)NMSP or (N-11C-methyl)benztropine exceeded the normal variation in tracer incorporation in repeated studies in the same animal. This study demonstrates that PET can be used as a tool for investigating interactions between neurochemically different yet functionally linked neurotransmitters systems in vivo and provides insight into the consequences of multiple pharmacologic administration.

  19. An invertebrate-specific miRNA targeted the ancient cholinergic neuroendocrine system of oyster.

    PubMed

    Chen, Hao; Zhou, Zhi; Wang, Lingling; Wang, Hao; Liu, Rui; Zhang, Huan; Song, Linsheng

    2016-08-01

    Acetylcholine (ACh) is the main neurotransmitter in the cholinergic neuroendocrine system and plays an indispensable role in modulating diverse immune responses. As important transporters in choline uptake, choline transporter-like proteins (CTLs) can control ACh synthesis and release indirectly in multiple organisms. In this study, cgi-miR-2d, an invertebrate-specific miRNA in oyster Crassostrea gigas, is proved to repress the synthesis/release of ACh by targeting CgCTL1 and choline uptake in haemocytes during the early stage of pathogen infection. In short, an opposite expression pattern between CgCTL1 and cgi-miR-2d is observed during Vibrio splendidus infection, accompanied by changes in haemolymph ACh. In addition, the expression level of CgCTL1 is found to be significantly repressed after cgi-miR-2d overexpression in vivo, while both haemocyte choline and haemolymph ACh are also decreased simultaneously, similar to the finding in CgCTL1 knock-down assay. As a result, the expression of two tumour necrosis factor-like proteins and the bacteriostatic activity of oyster haemocytes are found to be altered significantly by either gain-of-function cgi-miR-2d or knock-down of CgCTL1. To our knowledge, this is the first miRNA identified in invertebrates that can target the ancient cholinergic system and augment immune response during infection. PMID:27488375

  20. The effect of the augmentation of cholinergic neurotransmission by nicotine on EEG indices of visuospatial attention.

    PubMed

    Logemann, H N A; Böcker, K B E; Deschamps, P K H; Kemner, C; Kenemans, J L

    2014-03-01

    The cholinergic system has been implicated in visuospatial attention but the exact role remains unclear. In visuospatial attention, bias refers to neuronal signals that modulate the sensitivity of sensory cortex, while disengagement refers to the decoupling of attention making reorienting possible. In the current study we investigated the effect of facilitating cholinergic neurotransmission by nicotine (Nicorette Freshmint 2mg, polacrilex chewing gum) on behavioral and electrophysiological indices of bias and disengagement. Sixteen non-smoking participants performed in a Visual Spatial Cueing (VSC) task while EEG was recorded. A randomized, single-blind, crossover design was implemented. Based on the scarce literature, it was expected that nicotine would specifically augment disengagement related processing, especially manifest as an increase of the modulation of the Late Positive Deflection (LPD) by validity of cueing. No effect was expected on bias related components (cue-locked: EDAN, LDAP; target-locked: P1 and N1 modulations). Results show weak indications for a reduction of the reaction time validity effect by nicotine, but only for half of the sample in which the validity effect on the pretest was largest. Nicotine reduced the result of bias as indexed by a reduced P1 modulation by validity, especially in subjects with strong peripheral responses to nicotine. Nicotine did not affect ERP manifestations of the directing of bias (EDAN, LDAP) or disengagement (LPD). PMID:24316088

  1. Hypothesis for synergistic toxicity of organophosphorus poisoning-induced cholinergic crisis and anaphylactoid reactions

    SciTech Connect

    Cowan, F.M.; Shih, T.M.; Lenz, D.E.; Madsen, J.M.; Broomfield, C.A.

    1996-08-01

    The neurotoxicity of organophosphorus (OP) compounds Involves the Inhibition of acetylchollnesterase (AChE), causing accumulation of acetyicholine (ACh) at synapses. However, cholinergic crisis may not be the sole mechanism of OP toxicity. Adverse drug reactions caused by synergistic toxicity between drugs with distinct pharmacological mechanisms are a common problem. Likewise, the multiple pharmacological activities of a single molecule might also contribute to either toxicity or efficacy. For example, certain OP compounds (e.g. soman) exhibit anti-AChE activity and also act as secretagogues by inducing mast cell degranulation with associated autacoid release and anaphylactoid reactions. Anaphylactoid shock can produce a lethal syndrome with symptoms of respiratory failure and circulatory collapse similar to the physiological sequelae observed for OP poisoning. Moreover, the major classes of drugs used as antidotes for OP intoxication can affect anaphylaxis. Acetylcholine can act as an agonist of autacoid release, and autacoids such as histamine can augment soman-Induced bronchial spasm. In concert with the demonstrably critical role of cholinergic crisis In OP toxicity, the precepts of neuroimmunology indicate that secondary adverse reactions encompassing anaphylactold reactions may complicate OP toxicity.

  2. Cholinergic mechanisms of the context preexposure facilitation effect in adolescent rats.

    PubMed

    Robinson-Drummer, Patrese A; Dokovna, Lisa B; Heroux, Nicholas A; Stanton, Mark E

    2016-04-01

    The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which context learning, context-shock association, and expression of context conditioning occur in 3 separate phases-preexposure, training, and testing. During the preexposure phase, the CPFE is disrupted by hippocampal NMDA receptor blockade in juvenile rats (Schiffino et al., 2011), and a similar deficit is seen with a subcutaneous injection of the muscarinic receptor antagonist, scopolamine, in adult mice (Brown, Kennard, Sherer, Comalli, & Woodruff-Pak, 2011). As a foundation for further developmental research, the present study examined the role of cholinergic function in the CPFE in adolescent rats during each phase of the CPFE protocol. In Experiment 1, an i.p injection of either 0.5 or 1.0 mg/kg dose of scopolamine administered prior to all 3 phases of the CPFE protocol impaired the CPFE. Experiment 2 further showed that a 0.5 mg/kg injection prior to just 1 of the 3 phases of the CPFE also disrupted contextual fear conditioning. We further showed that the CPFE is impaired by localized scopolamine infusions into dorsal hippocampus on the preexposure day (Experiment 3a), training day (Experiment 3b), and test day (Experiment 3c). These findings demonstrate a role of cholinergic signaling in hippocampus during each of the 3 phases of the CPFE in adolescent rats. Implications for the development and neural basis of the CPFE are discussed. (PsycINFO Database Record PMID:26866360

  3. A cholinergic-dependent role for the entorhinal cortex in trace fear conditioning.

    PubMed

    Esclassan, Frederic; Coutureau, Etienne; Di Scala, Georges; Marchand, Alain R

    2009-06-24

    Trace conditioning is considered a model of higher cognitive involvement in simple associative tasks. Studies of trace conditioning have shown that cortical areas and the hippocampal formation are required to associate events that occur at different times. However, the mechanisms that bridge the trace interval during the acquisition of trace conditioning remain unknown. In four experiments with fear conditioning in rats, we explored the involvement of the entorhinal cortex (EC) in the acquisition of fear under a trace-30 s protocol. We first determined that pretraining neurotoxic lesions of the EC selectively impaired trace-, but not delay-conditioned fear as evaluated by freezing behavior. A local cholinergic deafferentation of the EC using 192-IgG-saporin did not replicate this deficit, presumably because cholinergic interneurons were spared by the toxin. However, pretraining local blockade of EC muscarinic receptors with the M1 antagonist pirenzepine yielded a specific and dose-dependent deficit in trace-conditioned responses. The same microinjections performed after conditioning were without effect on trace fear responses. These effects of blocking M1 receptors are consistent with the notion that conditioned stimulus (CS)-elicited, acetylcholine-dependent persistent activities in the EC are needed to maintain a representation of a tone CS across the trace interval during the acquisition of trace conditioning. This function of the EC is consistent with recent views of this region as a short-term stimulus buffer. PMID:19553448

  4. Local infusion of interleukin-6 attenuates the neurotoxic effects of NMDA on rat striatal cholinergic neurons.

    PubMed

    Toulmond, S; Vige, X; Fage, D; Benavides, J

    1992-09-14

    The potential neuroprotective effects of IL-6 against the excitotoxic neuronal loss induced by N-methyl-D-aspartate (NMDA) have been studied. Infusion into the rat striatum of excitotoxic amounts (250 nmol) of NMDA resulted in a 45% decrease in striatal choline acetyl transferase activity (ChAT; a marker of cholinergic neurons) and glutamate decarboxylase (GAD, a marker of GABAergic neurons) at 2 days post-injection. Co-infusion of 10 U of IL-6 reduced the loss of ChAT activity to 21% but failed to prevent the loss of GAD activity. IL-6 per se, up to the dose of 500 U, failed to affect ChAT or GAD activities. The in vivo effects of IL-6 are not mediated by a direct antagonism of NMDA toxicity, since IL-6 (up to a concentration of 500 and 5000 U/ml, respectively) did not antagonize either the increase in cyclic GMP levels resulting from NMDA receptor activation in cerebellar slices or the glutamate-induced release of lactate dehydrogenase, an index of neurotoxicity, by cultured cortical neurons. These results suggest that the increase in IL-6 levels observed in experimental brain lesions may play a role in the protection and regeneration of cholinergic neurons. PMID:1331914

  5. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia.

    PubMed

    Eskow Jaunarajs, K L; Bonsi, P; Chesselet, M F; Standaert, D G; Pisani, A

    2015-04-01

    Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestation of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia. PMID:25697043

  6. Low-level microwave irradiation and central cholinergic activity: a dose-response study

    SciTech Connect

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W.

    1989-01-01

    Rats were irradiated with circularly polarized, 2,450-MHz pulsed microwaves (2-microseconds pulses, 500 pulses per second (pps)) for 45 min in the cylindrical waveguide system of Guy et al. Immediately after exposure, sodium-dependent high-affinity choline uptake, an indicator of cholinergic activity in neural tissue, was measured in the striatum, frontal cortex, hippocampus, and hypothalamus. The power density was set to give average whole-body specific absorption rates (SAR) of 0.3, 0.45, 0.6, 0.75, 0.9, or 1.2 W/kg to study the dose-response relationship between the rate of microwave energy absorption and cholinergic activity in the different areas of the brain. Decrease in choline uptake was observed in the striatum at a SAR of 0.75 W/kg and above, whereas for the frontal cortex and hippocampus, decreases in choline uptake were observed at a SAR of 0.45 W/kg and above. No significant effect was observed in the hypothalamus at the irradiation power densities studied. The probit analysis was used to determine the SAR50 in each brain area, i.e., the SAR at which 50% of maximum response was elicited. SAR50 values for the striatum, frontal cortex, and hippocampus were 0.65, 0.38, and 0.44 W/kg, respectively.

  7. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition

    PubMed Central

    Aoki, Chiye; Hawken, Michael J.

    2012-01-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABAA receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701–713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width. PMID:22786955

  8. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition.

    PubMed

    Disney, Anita A; Aoki, Chiye; Hawken, Michael J

    2012-10-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABA(A) receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701-713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width. PMID:22786955

  9. Invasive versus noninvasive measurement of allergic and cholinergic airway responsiveness in mice

    PubMed Central

    Glaab, Thomas; Ziegert, Michaela; Baelder, Ralf; Korolewitz, Regina; Braun, Armin; Hohlfeld, Jens M; Mitzner, Wayne; Krug, Norbert; Hoymann, Heinz G

    2005-01-01

    Background This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR) in intact, spontaneously breathing BALB/c mice. Methods Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF50), we determined early AR (EAR) to inhaled Aspergillus fumigatus antigens in conscious mice. These measurements were paralleled by invasive determination of pulmonary conductance (GL), dynamic compliance (Cdyn) and EF50 in another group of anesthetized, orotracheally intubated mice. Results With both methods, allergic mice, sensitized and boosted with A. fumigatus, elicited allergen-specific EAR to A. fumigatus (p < 0.05 versus controls). Dose-response studies to aerosolized methacholine (MCh) were performed in the same animals 48 h later, showing that allergic mice relative to controls were distinctly more responsive (p < 0.05) and revealed acute airway inflammation as evidenced from increased eosinophils and lymphocytes in bronchoalveolar lavage. Conclusion We conclude that invasive and noninvasive pulmonary function tests are capable of detecting both allergen-specific and cholinergic AR in intact, allergic mice. The invasive determination of GL and Cdyn is superior in sensitivity, whereas the noninvasive EF50 method is particularly appropriate for quick and repeatable screening of respiratory function in large numbers of conscious mice. PMID:16309547

  10. Administration of MPTP to the common marmoset does not alter cortical cholinergic function

    SciTech Connect

    Garvey, J.; Petersen, M.; Waters, C.M.; Rose, S.P.; Hunt, S.; Briggs, R.; Jenner, P.; Marsden, C.D.

    1986-01-01

    The administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to common marmosets induced persistent motor deficits and decreased concentrations of dopamine, homovanillic acid, and 3,4-dihydroxy-phenylacetic acid (DOPAC) and (TH)dopamine uptake in the caudate-putamen. There was an 80% reduction in tyrosine hydroxylase immunoreactive cells in substantia nigra. At 10 days following the start of MPTP administration, the activity of choline acetyltransferase in the thalamus and frontal cortex was unchanged compared with control animals. Similarly, specific (TH)QNB binding was unaltered. At 4-6 weeks following the start of MPTP treatment, choline acetyltransferase activity and (TH)QNB binding in the frontal cortex and thalamus remained unaffected. There was no evidence for cell loss in the nucleus basalis of Meynert or alteration in the intensity of staining for acetylcholinesterase. MPTP treatment of the common marmoset produces a nigrostriatal lesion. In contrast, MPTP did not alter cortical cholinergic function and was not neurotoxic to the cholinergic cells in the nucleus basalis of Meynert.

  11. Muscarinic cholinergic enhancement of inositide turnover in cerebral nerve endings is not mediated by calcium uptake.

    PubMed

    Van Rooijen, L A; Traber, J

    1986-08-15

    Muscarinic cholinergic stimulation of rat cerebral nerve endings incubated with 32Pi causes an enhancement of the labeling of phosphatidic acid (PA) and phosphatidylinositol (PI). The involvement of Ca2+ in the stimulation of PA and PI labeling by carbamylcholine (CCh) was investigated. Enhancement of Ca2+-influx with veratridine and the Ca2+-ionophore A23187 caused a vast decrease of the labeling of the polyphosphoinositides, which was not accompanied by an enhancement of the labeling of PA and PI. The dihydropyridine Ca2+-agonist BAY K8644 did not affect phospholipid labeling. A23187, veratridine and BAY K 8644 did not enhance stimulation of the labeling of PA and PI by CCh. When Ca2+ was omitted from the incubation, A23187 caused an enhancement of basal and CCh-stimulated labeling of PA and PI, possibly indicating a particular feature of A23187 unrelated to its iontophoretic properties. The Ca2+-channel antagonists nimodipine, verapamil and flunarizine were virtually without effect on basal and CCh-stimulated labeling of PI and PA. These data support the notion that the muscarinic cholinergic inositide response is not mediated or controlled by Ca2+-flux. PMID:2427087

  12. An invertebrate-specific miRNA targeted the ancient cholinergic neuroendocrine system of oyster

    PubMed Central

    Chen, Hao; Zhou, Zhi; Wang, Hao; Liu, Rui; Zhang, Huan; Song, Linsheng

    2016-01-01

    Acetylcholine (ACh) is the main neurotransmitter in the cholinergic neuroendocrine system and plays an indispensable role in modulating diverse immune responses. As important transporters in choline uptake, choline transporter-like proteins (CTLs) can control ACh synthesis and release indirectly in multiple organisms. In this study, cgi-miR-2d, an invertebrate-specific miRNA in oyster Crassostrea gigas, is proved to repress the synthesis/release of ACh by targeting CgCTL1 and choline uptake in haemocytes during the early stage of pathogen infection. In short, an opposite expression pattern between CgCTL1 and cgi-miR-2d is observed during Vibrio splendidus infection, accompanied by changes in haemolymph ACh. In addition, the expression level of CgCTL1 is found to be significantly repressed after cgi-miR-2d overexpression in vivo, while both haemocyte choline and haemolymph ACh are also decreased simultaneously, similar to the finding in CgCTL1 knock-down assay. As a result, the expression of two tumour necrosis factor-like proteins and the bacteriostatic activity of oyster haemocytes are found to be altered significantly by either gain-of-function cgi-miR-2d or knock-down of CgCTL1. To our knowledge, this is the first miRNA identified in invertebrates that can target the ancient cholinergic system and augment immune response during infection. PMID:27488375

  13. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia

    PubMed Central

    Jaunarajs, K.L. Eskow; Bonsi, P.; Chesselet, M.F.; Standaert, D.G.; Pisani, A.

    2015-01-01

    Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestion of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia. PMID:25697043

  14. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses

    PubMed Central

    Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern. PMID:25520631

  15. Alterations in alpha-adrenergic and muscarinic cholinergic receptor binding in rat brain following nonionizing radiation

    SciTech Connect

    Gandhi, V.C.; Ross, D.H.

    1987-01-01

    Microwave radiation produces hyperthermia. The mammalian thermoregulatory system defends against changes in temperature by mobilizing diverse control mechanisms. Neurotransmitters play a major role in eliciting thermoregulatory responses. The involvement of adrenergic and muscarinic cholinergic receptors was investigated in radiation-induced hyperthermia. Rats were subjected to radiation at 700 MHz frequency and 15 mW/cm/sup 2/ power density and the body temperature was raised by 2.5 degrees C. Of six brain regions investigated only the hypothalamus showed significant changes in receptor states, confirming its pivotal role in thermoregulation. Adrenergic receptors, studied by (/sup 3/H)clonidine binding, showed a 36% decrease in binding following radiation after a 2.5 degrees C increase in body temperature, suggesting a mechanism to facilitate norepinephrine release. Norepinephrine may be speculated to maintain thermal homeostasis by activating heat dissipation. Muscarinic cholinergic receptors, studied by (3H)quinuclidinyl benzilate binding, showed a 65% increase in binding at the onset of radiation. This may be attributed to the release of acetylcholine in the hypothalamus in response to heat cumulation. The continued elevated binding during the period of cooling after radiation was shut off may suggest the existence of an extra-hypothalamic heat-loss pathway.

  16. Antagonist of the amylin receptor blocks beta-amyloid toxicity in rat cholinergic basal forebrain neurons.

    PubMed

    Jhamandas, Jack H; MacTavish, David

    2004-06-16

    Salvage of cholinergic neurons in the brain through a blockade of the neurotoxic effects of amyloidbeta protein (Abeta) is one of the major, but still elusive, therapeutic goals of current research in Alzheimer's disease (AD). To date, no receptor has been unequivocally identified for Abeta. Human amylin, which acts via a receptor composed of the calcitonin receptor-like receptor and a receptor-associated membrane protein, possesses amyloidogenic properties and has a profile of neurotoxicity that is strikingly similar to Abeta. In this study, using primary cultures of rat cholinergic basal forebrain neurons, we show that acetyl-[Asn30, Tyr32] sCT(8-37) (AC187), an amylin receptor antagonist, blocks Abeta-induced neurotoxicity. Treatment of cultures with AC187 before exposure to Abeta results in significantly improved neuronal survival as judged by MTT and live-dead cell assays. Quantitative measures of Abeta-evoked apoptotic cell death, using Hoechst and phosphotidylserine staining, confirm neuroprotective effects of AC187. We also demonstrate that AC187 attenuates the activation of initiator and effector caspases that mediate Abeta-induced apoptotic cell death. These data are the first to show that expression of Abeta toxicity may occur through the amylin receptor and suggest a novel therapeutic target for the treatment of AD. PMID:15201330

  17. Neuroprotective effects of sulforaphane on cholinergic neurons in mice with Alzheimer's disease-like lesions.

    PubMed

    Zhang, Rui; Zhang, Jingzhu; Fang, Lingduo; Li, Xi; Zhao, Yue; Shi, Wanying; An, Li

    2014-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disease in elderly individuals, and effective therapies are unavailable. This study was designed to investigate the neuroprotective effects of sulforaphane (an activator of NF-E2-related factor 2) on mice with AD-like lesions induced by combined administration of aluminum and D-galactose. Step-down-type passive avoidance tests showed sulforaphane ameliorated cognitive impairment in AD-like mice. Immunohistochemistry results indicated sulforaphane attenuated cholinergic neuron loss in the medial septal and hippocampal CA1 regions in AD-like mice. However, spectrophotometry revealed no significant difference in acetylcholine level or the activity of choline acetyltransferase or acetylcholinesterase in the cerebral cortex among groups of control and AD-like mice with and without sulforaphane treatment. Sulforaphane significantly increased the numbers of 5-bromo-2'-deoxyuridine-positive neurons in the subventricular and subgranular zones in AD-like mice which were significantly augmented compared with controls. Atomic absorption spectrometry revealed significantly lower aluminum levels in the brains of sulforaphane-treated AD-like mice than in those that did not receive sulforaphane treatment. In conclusion, sulforaphane ameliorates neurobehavioral deficits by reducing cholinergic neuron loss in the brains of AD-like mice, and the mechanism may be associated with neurogenesis and aluminum load reduction. These findings suggest that phytochemical sulforaphane has potential application in AD therapeutics. PMID:25196440

  18. Selective septohippocampal- but not forebrain amygdalar- cholinergic dysfunction in diencephalic amnesia

    PubMed Central

    Savage, Lisa M.; Roland, Jessica; Klintsova, Anna

    2007-01-01

    A rodent model of diencephalic amnesia, pyrithiamine-induced thiamine deficiency (PTD), was used to investigate diencephalic-limbic interactions. In-vivo acetylcholine (ACh) efflux, a marker of memory-related activation, was measured in the hippocampus and the amygdala of PTD-treated and pair-fed (PF) control rats while they were tested on a spontaneous alternation task. During behavioral testing, all animals displayed increases in ACh efflux in both the hippocampus and amygdala. However, during spontaneous alternation testing ACh efflux in the hippocampus and the alternation scores were higher in PF rats relative to PTD-treated rats. In contrast, ACh efflux in the amygdala was not suppressed in PTD treated rats, relative to PF rats, prior to or during behavioral testing. In addition, unbiased stereological estimates of the number of choline acetyltransferase (ChAT) immunopositive neurons in the medial septal/diagonal band (MS/DB) and nucleus basalis of Meynert (NBM) also reveal a selective cholinergic dysfunction: In PTD-treated rats a significant loss of ChAT-immunopositive cells was found only in the MS/DB, but not in the NBM. Significantly, these results demonstrate that thiamine deficiency causes selective cholinergic dysfunction in the septohippocampal pathway. PMID:17289001

  19. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system.

    PubMed

    Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C

    2013-06-15

    The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system. PMID:23599398

  20. Inhibitory Effects of Botulinum Toxin Type A on Pyloric Cholinergic Muscle Contractility of Rat.

    PubMed

    Zhao, Peng; Sun, Hong-Xu; Chu, Min; Hou, Yi-Ping

    2016-08-31

    Botulinum toxin type A (BTX-A) selectively cleaves synaptosomal-associated protein of 25 kDa (SNAP-25) and results in inhibition of the fusion of synaptic vesicles containing neurotransmitters with the presynaptic membrane to undergo exocytosis and release. The aim of this study was to investigate whether BTX-A inhibited the pyloric smooth muscle contractility induced by acetylcholine (ACh) after BTX-A-mediated cleavage of SNAP-25 antagonized by toosendanin (TSN). Three groups of rat pyloric muscle strips were studied in vitro. All strips were allowed to equilibrate for 52 min under a basal loading tension of 1 g in Krebs solution and spontaneous contractile waves were recorded as their own controls before adding each drug. According to experimental protocols, 100 μM ACh, 1 μM atropine, 29.6 μM TSN and 10 U/ml BTX-A was added, respectively. BTX-A directly inhibited pyloric spontaneous contraction and ACh-induced contractile response. Addition of 10 U/ml BTX-A still inhibited pyloric smooth muscle contractility following incubation of TSN, while subsequent administration of 100 μM ACh had no effect. BTX-A inhibits pyloric smooth muscle contractility in our study suggesting BTX-A inhibits not only ACh release from cholinergic nerves but also muscarinic cholinergic muscular transmission. PMID:27426259

  1. Biochemical Engineering. Part II: Process Design

    ERIC Educational Resources Information Center

    Atkinson, B.

    1972-01-01

    Describes types of industrial techniques involving biochemical products, specifying the advantages and disadvantages of batch and continuous processes, and contrasting biochemical and chemical engineering. See SE 506 318 for Part I. (AL)

  2. Development of M1 mAChR Allosteric and Bitopic Ligands: Prospective Therapeutics for the Treatment of Cognitive Deficits

    PubMed Central

    2013-01-01

    Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer’s disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues. PMID:23659787

  3. Dorsal raphe nucleus acetylcholine-mediated neurotransmission modulates post-ictal antinociception: The role of muscarinic and nicotinic cholinergic receptors.

    PubMed

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Francisco; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2016-01-15

    The dorsal raphe nucleus (DRN) is a key structure of the endogenous pain inhibitory system. Although the DRN is rich in serotoninergic neurons, cholinergic neurons are also found in that nucleus. Both ictal and inter-ictal states are followed by post-ictal analgesia. The present study investigated the role of cholinergic mechanisms in postictal antinociceptive processes using microinjections of atropine and mecamylamine, muscarinic and nicotinic cholinergic receptor antagonists, respectively, in the DRN of rats. Intraperitoneal injection of pentylenetetrazole (PTZ) (at 64mg/kg) caused tonic and tonic-clonic seizures. The convulsive motor reactions were followed by an increase in pain thresholds, a phenomenon known as post-ictal analgesia. Pre-treatment of the DRN with atropine or mecamylamine at 1µg, 3µg and 5µg/0.2µL decreased the post-ictal antinociceptive phenomenon. The present results showed that the post-ictal analgesia was mediated by muscarinic and nicotinic cholinergic receptors in the DRN, a structure crucially involved in the neural network that organises post-ictal hypoalgesia. PMID:26620541

  4. Subtle learning and memory impairment in an idiopathic rat model of Alzheimer's disease utilizing cholinergic depletions and β-amyloid.

    PubMed

    Deibel, S H; Weishaupt, N; Regis, A M; Hong, N S; Keeley, R J; Balog, R J; Bye, C M; Himmler, S M; Whitehead, S N; McDonald, R J

    2016-09-01

    Alzheimer's disease (AD) is a disease of complex etiology, involving multiple risk factors. When these risk factors are presented concomitantly, cognition and brain pathology are more severely compromised than if those risk factors were presented in isolation. Reduced cholinergic tone and elevated amyloid-beta (Aβ) load are pathological hallmarks of AD. The present study sought to investigate brain pathology and alterations in learning and memory when these two factors were presented together in rats. Rats received either sham surgeries, cholinergic depletions of the medial septum, intracerebroventricular Aβ25-35 injections, or both cholinergic depletion and Aβ25-35 injections (Aβ+ACh group). The Aβ+ACh rats were unimpaired in a striatal dependent visual discrimination task, but had impaired acquisition in the standard version of the Morris water task. However, these rats displayed normal Morris water task retention and no impairment in acquisition of a novel platform location during a single massed training session. Aβ+ACh rats did not have exacerbated brain pathology as indicated by activated astroglia, activated microglia, or accumulation of Aβ. These data suggest that cholinergic depletions and Aβ injections elicit subtle cognitive deficits when behavioural testing is conducted shortly after the presentation of these factors. These factors might have altered hippocampal synaptic plasticity and thus resemble early AD pathology. PMID:27208489

  5. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro.

    PubMed Central

    Ward, J K; Belvisi, M G; Fox, A J; Miura, M; Tadjkarimi, S; Yacoub, M H; Barnes, P J

    1993-01-01

    Human airway smooth muscle possesses an inhibitory nonadrenergic noncholinergic neural bronchodilator response mediated by nitric oxide (NO). In guinea pig trachea both endogenous NO and vasoactive intestinal peptide (VIP) modulate cholinergic neural contractile responses. To identify whether endogenous NO or VIP can modulate cholinergic contractile responses in human airways in vitro, we studied the effects of specific NO synthase inhibitors and the peptidase alpha-chymotrypsin on contractile responses evoked by electrical field stimulation (EFS) at three airway levels. Endogenous NO, but not VIP, was shown to inhibit cholinergic contractile responses at all airway levels but this inhibition was predominantly in trachea and main bronchus and less marked in segmental and subsegmental bronchi. To elucidate the mechanism of this modulation we then studied the effects of endogenous NO on acetylcholine (ACh) release evoked by EFS from tracheal smooth muscle strips. We confirmed that release was neural in origin, frequency dependent, and that endogenous NO did not affect ACh release. These findings show that endogenous NO, but not VIP, evoked by EFS can inhibit cholinergic neural responses via functional antagonism of ACh at the airway smooth muscle and that the contribution of this modulation is less marked in lower airways. PMID:8349813

  6. Structure-activity studies on a novel series of cholinergic channel activators based on a heteroaryl ether framework.

    PubMed

    Lin, N H; Abreo, M A; Gunn, D E; Lebold, S A; Lee, E L; Wasicak, J T; Hettinger, A M; Daanen, J F; Garvey, D S; Campbell, J E; Sullivan, J P; Williams, M; Arneric, S P

    1999-09-20

    Analogs of compound 1 with a variety of azacycles and heteroaryl groups were synthesized. These analogs exhibited Ki values ranging from 0.15 to > 10,000 nM when tested in vitro for cholinergic channel receptor binding activity (displacement of [3H](-) cytisine from whole rat brain synaptic membranes). PMID:10509928

  7. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: Relationship with spatial impairment

    PubMed Central

    Bañuelos, C.; LaSarge, C. L.; McQuail, J. A.; Hartman, J. J.; Gilbert, R. J.; Ormerod, B. K.; Bizon, J. L.

    2013-01-01

    Both cholinergic and GABAergic projections from the rostral basal forebrain have been implicated in hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in co-distributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase (ChAT) immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 (GAD67) immunopositive) neurons, and total (NeuN immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline. PMID:22817834

  8. Learning to Ignore: A Modeling Study of a Decremental Cholinergic Pathway and Its Influence on Attention and Learning

    ERIC Educational Resources Information Center

    Oros, Nicolas; Chiba, Andrea A.; Nitz, Douglas A.; Krichmar, Jeffrey L.

    2014-01-01

    Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus…

  9. Pairing Cholinergic Enhancement with Perceptual Training Promotes Recovery of Age-Related Changes in Rat Primary Auditory Cortex

    PubMed Central

    Voss, Patrice; Thomas, Maryse; Chou, You Chien; Cisneros-Franco, José Miguel; Ouellet, Lydia; de Villers-Sidani, Etienne

    2016-01-01

    We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible. PMID:27057359

  10. Disposed to distraction: genetic variation in the cholinergic system influences distractibility but not time-on-task effects.

    PubMed

    Berry, Anne S; Demeter, Elise; Sabhapathy, Surya; English, Brett A; Blakely, Randy D; Sarter, Martin; Lustig, Cindy

    2014-09-01

    Both the passage of time and external distraction make it difficult to keep attention on the task at hand. We tested the hypothesis that time-on-task and external distraction pose independent challenges to attention and that the brain's cholinergic system selectively modulates our ability to resist distraction. Participants with a polymorphism limiting cholinergic capacity (Ile89Val variant [rs1013940] of the choline transporter gene SLC5A7) and matched controls completed self-report measures of attention and a laboratory task that measured decrements in sustained attention with and without distraction. We found evidence that distraction and time-on-task effects are independent and that the cholinergic system is strongly linked to greater vulnerability to distraction. Ile89Val participants reported more distraction during everyday life than controls, and their task performance was more severely impacted by the presence of an ecologically valid video distractor (similar to a television playing in the background). These results are the first to demonstrate a specific impairment in cognitive control associated with the Ile89Val polymorphism and add to behavioral and cognitive neuroscience studies indicating the cholinergic system's critical role in overcoming distraction. PMID:24666128

  11. Pairing Cholinergic Enhancement with Perceptual Training Promotes Recovery of Age-Related Changes in Rat Primary Auditory Cortex.

    PubMed

    Voss, Patrice; Thomas, Maryse; Chou, You Chien; Cisneros-Franco, José Miguel; Ouellet, Lydia; de Villers-Sidani, Etienne

    2016-01-01

    We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible. PMID:27057359

  12. Coordinate High-Frequency Pattern of Stimulation and Calcium Levels Control the Induction of LTP in Striatal Cholinergic Interneurons

    ERIC Educational Resources Information Center

    Bonsi, Paola; De Persis, Cristiano; Calabresi, Paolo; Bernardi, Giorgio; Pisani, Antonio

    2004-01-01

    Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium…

  13. The Role of Muscarinic and Nicotinic Cholinergic Neurotransmission in Aversive Conditioning: Comparing Pavlovian Fear Conditioning and Inhibitory Avoidance

    ERIC Educational Resources Information Center

    Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S.

    2004-01-01

    Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…

  14. Mental Stress in Atopic Dermatitis – Neuronal Plasticity and the Cholinergic System Are Affected in Atopic Dermatitis and in Response to Acute Experimental Mental Stress in a Randomized Controlled Pilot Study

    PubMed Central

    Peters, Eva Milena Johanne; Michenko, Anna; Kupfer, Jörg; Kummer, Wolfgang; Wiegand, Silke; Niemeier, Volker; Potekaev, Nikolay; Lvov, Andrey; Gieler, Uwe

    2014-01-01

    Rationale In mouse models for atopic dermatitis (AD) hypothalamus pituitary adrenal axis (HPA) dysfunction and neuropeptide-dependent neurogenic inflammation explain stress-aggravated flares to some extent. Lately, cholinergic signaling has emerged as a link between innate and adaptive immunity as well as stress responses in chronic inflammatory diseases. Here we aim to determine in humans the impact of acute stress on neuro-immune interaction as well as on the non-neuronal cholinergic system (NNCS). Methods Skin biopsies were obtained from 22 individuals (AD patients and matched healthy control subjects) before and after the Trier social stress test (TSST). To assess neuro-immune interaction, nerve fiber (NF)-density, NF-mast cell contacts and mast cell activation were determined by immunohistomorphometry. To evaluate NNCS effects, expression of secreted mammal Ly-6/urokinase-type plasminogen activator receptor-related protein (SLURP) 1 and 2 (endogenous nicotinic acetylcholine receptor ligands) and their main corresponding receptors were assessed by quantitative RT-PCR. Results With respect to neuro-immune interaction we found higher numbers of NGF+ dermal NF in lesional compared to non-lesional AD but lower numbers of Gap43+ growing NF at baseline. Mast cell-NF contacts correlated with SCORAD and itch in lesional skin. With respect to the NNCS, nicotinic acetylcholine receptor α7 (α7nAChR) mRNA was significantly lower in lesional AD skin at baseline. After TSST, PGP 9.5+ NF numbers dropped in lesional AD as did their contacts with mast cells. NGF+ NF now correlated with SCORAD and mast cell-NF contacts with itch in non-lesional skin. At the same time, SLURP-2 levels increased in lesional AD skin. Conclusions In humans chronic inflammatory and highly acute psycho-emotional stress interact to modulate cutaneous neuro-immune communication and NNCS marker expression. These findings may have consequences for understanding and treatment of chronic inflammatory

  15. Nicotinic acetylcholine receptor-mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum.

    PubMed

    Inoue, Ritsuko; Suzuki, Takeo; Nishimura, Kinya; Miura, Masami

    2016-06-01

    The striatum consists of two neurochemically distinct compartments: the striosomes (or patches) and the extrastriosomal matrix. Although striatal neurons are strongly innervated by intrinsic cholinergic interneurons, acetylcholinesterase is expressed more abundantly in the matrix than in the striosomes. At present, little is known about the different cholinergic functions of the striatal compartments. In this study, we examined gamma-aminobutyric acidergic (GABAergic) inputs to cholinergic interneurons in both compartments. We found that nicotinic receptor-mediated GABAergic responses were evoked more frequently in the matrix than in the striosomes. Furthermore, a single action potential of cholinergic neurons induced nicotinic receptor-mediated GABAergic inputs to the cholinergic neurons themselves, suggesting mutual connections that shape the temporal firing pattern of cholinergic neurons. The nicotinic receptor-mediated GABAergic responses were attenuated by continuous application of acetylcholine or the acetylcholinesterase inhibitor eserine and were enhanced by desformylflustrabromine, a positive allosteric modulator of the α4β2 subunit containing a nicotinic receptor. These results suggest that the nicotinic impact on the GABAergic responses are not uniform despite the massive and continuous cholinergic innervation. It has been reported that differential activation of neurons in the striosomes and the matrix produce a repetitive behavior called stereotypy. Drugs acting on α4β2 nicotinic receptors might provide potential tools for moderating the imbalanced activities between the compartments. PMID:26808315

  16. Non-cholinergic component of rat splanchnic nerves predominates at low neuronal activity and is eliminated by naloxone.

    PubMed

    Malhotra, R K; Wakade, A R

    1987-02-01

    1. Effects of nicotinic (mecamylamine) and muscarinic (atropine) receptor antagonists were investigated on the secretion of catecholamines evoked by stimulation of splanchnic nerve terminals and acetylcholine in the isolated perfused adrenal gland of the rat to determine whether non-cholinergic substances released from nerve terminals participate in the secretion of catecholamines. 2. Increasing the frequency of stimulation from 0.5 to 10 Hz (300 pulses) caused enhanced secretion of catecholamines (26-110 ng/collection period). After blockade of nicotinic and muscarinic receptors with mecamylamine and atropine, the secretion was reduced by 40, 65 and 80% at 0.5, 1 and 10 Hz, respectively. Acetylcholine-evoked secretion of catecholamines, which was roughly equivalent to that produced by stimulation at 10 Hz, was blocked by over 90% by the cholinergic antagonists. 3. Naloxone (3-300 microM) caused a concentration-dependent inhibition of catecholamine secretion evoked by stimulation of splanchnic nerves (1 Hz); acetylcholine-evoked secretion was much less affected by naloxone. 4. The secretion of catecholamines that remained after blockade of cholinergic receptors at different frequencies of stimulation (see 2 above) was almost completely inhibited by inclusion of 30 microM-naloxone in the medium. The inhibitory effect of naloxone was concentration dependent (3-30 microM) and reversible. 5. Splanchnic nerve-evoked secretion of catecholamines was facilitated by 400% in the presence of tetraethylammonium or tetraethylammonium plus mecamylamine and atropine. The facilitatory effect of tetraethylammonium was inversely related to the frequency of stimulation. 6. The residual secretion of catecholamines obtained after blockade of cholinergic receptors was facilitated by increasing concentrations of tetraethylammonium (1-5 mM). 30 microM-naloxone antagonized the facilitatory effects of tetraethylammonium at 1 and 3 mM by 60% and 25%, respectively, but failed at 5 m

  17. Ligand Identification Scoring Algorithm (LISA)

    PubMed Central

    Zheng, Zheng; Merz, Kenneth M.

    2011-01-01

    A central problem in de novo drug design is determining the binding affinity of a ligand with a receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification Scoring Algorithm), uses an empirical scoring function to describe the binding free energy. Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen bonding, desolvation effects and metal chelation to model the dissociation equilibrium constants using a linear model. Atom types have been introduced to differentiate the parameters for VDW, H-bonding interactions and metal chelation between different atom pairs. A training set of 492 protein-ligand complexes was selected for the fitting process. Different test sets have been examined to evaluate its ability to predict experimentally measured binding affinities. By comparing with other well known scoring functions, the results show that LISA has advantages over many existing scoring functions in simulating protein-ligand binding affinity, especially metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to demonstrate that the energy terms in LISA are well designed and do not require extra cross terms. PMID:21561101

  18. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system.

    PubMed

    Schäfer, M K; Eiden, L E; Weihe, E

    1998-05-01

    The peripheral sympathetic and parasympathetic cholinergic innervation was investigated with antibodies directed against the C-terminus of the rat vesicular acetylcholine transporter. Immunohistochemistry for the vesicular acetylcholine transporter resulted in considerably more detailed visualization of cholinergic terminal fields in the peripheral nervous system than reported previously and was well suited to also identify cholinergic perikarya. Vesicular acetylcholine transporter immunoreactivity completely delineated the preganglionic sympathetic terminals in pre- and paravertebral sympathetic ganglia, and in the adrenal medulla as well as postganglionic cholinergic neurons in the paravertebral chain. Cholinergic terminals of sudomotor and vasomotor nerves of skeletal muscle were optimally visualized. Mixed peripheral ganglia, including periprostatic and uterovaginal ganglia, exhibited extensive preganglionic cholinergic innervation of both noradrenergic and cholinergic postganglionic principal neurons which were intermingled in these ganglia. Varicose vesicular acetylcholine transporter-positive fibres and terminals, representing the cranial parasympathetic innervation of the cerebral vasculature, of salivary and lacrimal glands, of the eye, of the respiratory tract and of the upper digestive tract innervated various target structures including seromucous gland epithelium and myoepithelium, respiratory epithelium, and smooth muscle of the tracheobronchial tree. The only macrovascular elements receiving vesicular acetylcholine transporter-positive innervation were the cerebral arteries. The microvasculature throughout the viscera, with the exception of lymphoid tissues, the liver and kidney, received vesicular acetylcholine transporter-positive innervation while the microvasculature of limb and trunk skeletal muscle appeared to be the only relevant somatic target of vesicular acetylcholine transporter innervation. Vesicular acetylcholine transporter

  19. Memory and learning seems to be related to cholinergic dysfunction in the JE rat model.

    PubMed

    Chauhan, Prashant Singh; Misra, Usha Kant; Kalita, Jayantee; Chandravanshi, Lalit Pratap; Khanna, Vinay Kumar

    2016-03-15

    Cognitive changes have been known in encephalitis but in Japanese encephalitis (JE) such studies are limited. This study aims at evaluating the spatial memory and learning and correlate with markers of cholinergic activity in the brain.12day old Wistar rats were inoculated with dose of 3×10(6)pfu/ml of JE virus. On 10, 33 and 48days post-inoculation (dpi), spatial memory and learning was assessed by Y maze. Brain biopsies from frontal cortex, corpus striatum, hippocampus and cerebellum were taken. Muscarinic cholinergic receptor was assayed by Quinuclidinyl benzylate (H3-QNB) binding, CHRM2 gene expression by real time PCR and choline acetyl transferase (ChAT) by Western blot. Spatial learning and memory showed significant decline in rats inoculated with JEV on 10 and 33dpi (47.5%, p<0.01; 30.2%, p<0.01). It started recovering on 48dpi. Muscarinic cholinergic receptors showed significant decrease in frontal cortex (31%, p=0.001; 26%, p=0.003), hippocampus (57%, p=0.001; 39.9%, p=0.002) and cerebellum (31.2%, p=0.008; 21.6%, p=0.007) but not in corpus striatum as compared to control. The mRNA expression of CHRM2 receptor gene showed significant decrease in the expression in frontal cortex (48%, p<0.001; 38%, p<0.01), hippocampus (43%, p<0.001; 37%, p<0.05) and cerebellum (46%, p<0.001; 42%, p<0.05) on 10 and 33dpi. ChAT showed significant fold decrease in the expression in frontal cortex (2.11, p<0.01, 1.12, p<0.05) and hippocampus (2.2, p<0.01, 1.41, p<0.05) on 10 and 33dpi. Correlation between ChAT, CHRM2 and total muscarinic receptor activity with spatial memory were found at different dpi. There was transient spatial learning and memory impairment which was associated with reduction of total muscarinic receptor binding, CHRM2 gene and ChAT expression in different brain region of rat infected with JE Virus. PMID:26792528

  20. Cholinergic receptors as target for cancer therapy in a systems medicine perspective.

    PubMed

    Russo, P; Del Bufalo, A; Milic, M; Salinaro, G; Fini, M; Cesario, A

    2014-01-01

    Epithelial cells not innervated by cholinergic neurons express nicotinic and muscarinic acetylcholine (ACh) receptors (nAChR, mAChR). nAChR and mAChR are components of the auto-/paracrine-regulatory loop of non-neuronal ACh release. The cholinergic control of non-neuronal cells may be mediated by different effects (synergistic, additive, or reciprocal) triggered by these receptors. The ionic events (Ca(+2) influx) are generated by the ACh-opening of nAChR channels, while the metabolic events by ACh-binding to G-proteincoupled mAChR. Effective inter- and intracellular signaling is crucial for valuable cancer cells proliferation and survival. Depending on cancer cell type, different AChR have been identified. The proliferation of airways epithelial cancer cells and pancreatic cancer cells may be under the control of α7-nAChR and M3-mAChR, while breast cancer cells and colon cancer cells are regulated by α9-nAChR, and M3-mAChR, respectively. In turn, these receptors may activate different pathways (Ras-Raf-1-Erk-AKT) as well as other receptors (β- adrenergicR). nAChR or mAChR antagonists may inhibit cancer growth. Inhibition of M3 by antisense or antagonists (Darifenacin, Tiotropium) reduces lung or colon cancer proliferation, as well as inhibition of α9- nAChR [polyphenol (-)-epigallocatechin-3-gallate] diminishes breast cancer cells growth. α7-nAChR silencing inhibits lung cancer proliferation. Moreover, inhibition of the nAChR-β-adrenergicR pathway (β-blockers) could be also useful. This review will describe the future translational perspectives of cholinergic receptors druginhibition in a complex disease such as cancer that poses compelling treatment challenges. Cancer happens as consequence of disease-perturbed molecular networks in relevant organ cells that change during progression. The framework for approaching these challenges is a systems approach. PMID:25324001

  1. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  2. Fetal chlorpyrifos exposure: adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood.

    PubMed Central

    Qiao, Dan; Seidler, Frederic J; Tate, Charlotte A; Cousins, Mandy M; Slotkin, Theodore A

    2003-01-01

    Fetal and childhood exposures to widely used organophosphate pesticides, especially chlorpyrifos (CPF), have raised concerns about developmental neurotoxicity. Previously, biomarkers for brain cell number, cell packing density, and cell size indicated that neonatal rats were more sensitive to CPF than were fetal rats, yet animals exposed prenatally still developed behavioral deficits in adolescence and adulthood. In the present study, we administered CPF to pregnant rats on gestational days 17-20, using regimens devoid of overt fetal toxicity. We then examined subsequent development of acetylcholine systems in forebrain regions involved in cognitive function and compared the effects with those on general biomarkers of cell development. Choline acetyltransferase, a constitutive marker for cholinergic nerve terminals, showed only minor CPF-induced changes during the period of rapid synaptogenesis. In contrast, hemicholinium-3 binding to the presynaptic choline transporter, which is responsive to nerve impulse activity, displayed marked suppression in the animals exposed to CPF; despite a return to nearly normal values by weaning, deficits were again apparent in adolescence and adulthood. There was no compensatory up-regulation of cholinergic receptors, as m2-muscarinic cholinergic receptor binding was unchanged. CPF also elicited delayed-onset alterations in biomarkers for general aspects of cell integrity, with reductions in cell packing density, increases in relative cell size, and contraction of neuritic extensions; however, neither the magnitude nor timing of these changes was predictive of the cholinergic defects. The present findings indicate a wide window of vulnerability of cholinergic systems to CPF, extending from prenatal through postnatal periods, occurring independently of adverse effects on general cellular neurotoxicity. PMID:12676612

  3. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    PubMed

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD. PMID:26638718

  4. Screening Ligands by X-ray crystallography.

    PubMed

    Davies, Douglas R

    2014-01-01

    X-ray crystallography is an invaluable technique in structure-based drug discovery, including fragment-based drug discovery, because it is the only technique that can provide a complete three dimensional readout of the interaction between the small molecule and its macromolecular target. X-ray diffraction (XRD) techniques can be employed as the sole method for conducting a screen of a fragment library, or it can be employed as the final technique in a screening campaign to confirm putative "hit" compounds identified by a variety of biochemical and/or biophysical screening techniques. Both approaches require an efficient technique to prepare dozens to hundreds of crystals for data collection, and a reproducible way to deliver ligands to the crystal. Here, a general method for screening cocktails of fragments is described. In cases where X-ray crystallography is employed as a method to verify putative hits, the cocktails of fragments described below would simply be replaced with single fragment solutions. PMID:24590727

  5. Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss).

    PubMed

    Beauvais, S L; Jones, S B; Parris, J T; Brewer, S K; Little, E E

    2001-05-01

    Pesticides and heavy metals are common environmental contaminants that can cause neurotoxicity to aquatic organisms, impairing reproduction and survival. Neurotoxic effects of cadmium and carbaryl exposures were estimated in larval rainbow trout (RBT; Oncorhynchus mykiss) using changes in physiological endpoints and correlations with behavioral responses. Following exposures, RBT were videotaped to assess swimming speed. Brain tissue was used to measure cholinesterase (ChE) activity, muscarinic cholinergic receptor (MChR) number, and MChR affinity. ChE activity decreased with increasing concentrations of carbaryl but not of cadmium. MChR were not affected by exposure to either carbaryl or cadmium. Swimming speed correlated with ChE activity in carbaryl-exposed RBT, but no correlation occurred in cadmium-exposed fish. Thus, carbaryl exposure resulted in neurotoxicity reflected by changes in physiological and behavioral parameters measured, while cadmium exposure did not. Correlations between behavior and physiology provide a useful assessment of neurotoxicity. PMID:11386719

  6. Presynaptic Excitation via GABAB Receptors in Habenula Cholinergic Neurons Regulates Fear Memory Expression.

    PubMed

    Zhang, Juen; Tan, Lubin; Ren, Yuqi; Liang, Jingwen; Lin, Rui; Feng, Qiru; Zhou, Jingfeng; Hu, Fei; Ren, Jing; Wei, Chao; Yu, Tao; Zhuang, Yinghua; Bettler, Bernhard; Wang, Fengchao; Luo, Minmin

    2016-07-28

    Fear behaviors are regulated by adaptive mechanisms that dampen their expression in the absence of danger. By studying circuits and the molecular mechanisms underlying this adaptive response, we show that cholinergic neurons of the medial habenula reduce fear memory expression through GABAB presynaptic excitation. Ablating these neurons or inactivating their GABAB receptors impairs fear extinction in mice, whereas activating the neurons or their axonal GABAB receptors reduces conditioned fear. Although considered exclusively inhibitory, here, GABAB mediates excitation by amplifying presynaptic Ca(2+) entry through Cav2.3 channels and potentiating co-release of glutamate, acetylcholine, and neurokinin B to excite interpeduncular neurons. Activating the receptors for these neurotransmitters or enhancing neurotransmission with a phosphodiesterase inhibitor reduces fear responses of both wild-type and GABAB mutant mice. We identify the role of an extra-amygdalar circuit and presynaptic GABAB receptors in fear control, suggesting that boosting neurotransmission in this pathway might ameliorate some fear disorders. PMID:27426949

  7. Non-neuronal cholinergic system in airways and lung cancer susceptibility

    PubMed Central

    Saracino, Laura; Zorzetto, Michele; Inghilleri, Simona; Pozzi, Ernesto

    2013-01-01

    In the airway tract acetylcholine (ACh) is known to be the mediator of the parasympathetic nervous system. However ACh is also synthesized by a large variety of non-neuronal cells. Strongest expression is documented in neuroendocrine and in epithelial cells (ciliated, basal and secretory elements). Growing evidence suggests that a cell-type specific Ach expression and release do exist and act with local autoparacrine loop in the non-neuronal airway compartment. Here we review the molecular mechanism by which Ach is involved in regulating various aspects of innate mucosal defense, including mucociliary clearance, regulation of macrophage activation as well as in promoting epithelial cells proliferation and conferring susceptibility to lung carcinoma onset. Importantly this non-neuronal cholinergic machinery is differently regulated than the neuronal one and could be specifically therapeutically targeted. PMID:25806244

  8. Influence of clitoria ternatea extracts on memory and central cholinergic activity in rats.

    PubMed

    Taranalli, A D; Cheeramkuzhy, T C

    2000-01-01

    Clitoria ternatea , commonly known as Shankpushpi, is widely used in the traditional Indian system of medicine as a brain tonic and is believed to promote memory and intelligence. We examined the effectiveness of alcoholic extracts of aerial and root parts of C. ternatea at 300 and 500 mg/kg doses orally in rats in attenuating electroshock-induced amnesia. Extracts at 300 mg/kg dose produced significant memory retention, and the root parts were found to be more effective. In order to delineate the possible mechanism through which C. ternatea elicits the anti-amnesic effects, we studied its influence on central cholinergic activity by estimating the acetylcholine content of the whole brain and acetylcholinesterase activity at different regions of the rat brain, viz., cerebral cortex, midbrain, medulla oblongata and cerebellum. Our results suggest that C. ternatea extracts increase rat brain acetylcholine content and acetyl cholinesterase a ctivity in a similar fashion to the standard cerebro protective drug Pyritinol. PMID:21214440

  9. Mixed cholinergic/glutamatergic neuromuscular innervation of Onychophora: a combined histochemical/electrophysiological study.

    PubMed

    Stern, Michael; Bicker, Gerd

    2008-08-01

    Morphological and molecular phylogenetic data show that the Onychophora are close relatives of the Arthropoda. However, onychophoran neuromuscular junctions have been reported to employ acetylcholine, as in annelids, nematodes, and other bilaterians, rather than glutamate, as in arthropods. Here, we show that the large longitudinal muscles of Peripatoides respond indeed only to acetylcholine, whereas the oblique and ring muscles of the body wall are sensitive both to acetylcholine and to L-glutamate. Moreover, cytochemical staining reveals both acetylcholinesterase- and glutamate-positive synaptic boutons on oblique and ring muscles. These novel findings agree with a phylogenetic position of onychophorans basal to that of the arthropods. Although the glutamatergic phenotype of excitatory neuromuscular transmission may be a characteristic feature of arthropods and present even in a subset of onychophoran motor neurons, the motor neurons of the longitudinal muscles still retain the cholinergic phenotype typical for annelids and other taxa. PMID:18563449

  10. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

    PubMed Central

    Stouffer, Melissa A.; Woods, Catherine A.; Patel, Jyoti C.; Lee, Christian R.; Witkovsky, Paul; Bao, Li; Machold, Robert P.; Jones, Kymry T.; de Vaca, Soledad Cabeza; Reith, Maarten E. A.; Carr, Kenneth D.; Rice, Margaret E.

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  11. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability

    PubMed Central

    He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T.; Morgan, Dave; Burns, Jeffery M.; Swerdlow, Russell H.; Suo, William Z.

    2016-01-01

    Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer’s disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration. PMID:27193825

  12. Memory in myasthenia gravis: neuropsychological tests of central cholinergic function before and after effective immunologic treatment.

    PubMed

    Glennerster, A; Palace, J; Warburton, D; Oxbury, S; Newsom-Davis, J

    1996-04-01

    There are reports of central cholinergic deficits in myasthenia gravis (MG) describing impaired performance on a variety of tests of memory with varying benefits from plasmapheresis. We tested 11 patients with symptomatic MG at the start of a trial of immunosuppressive treatment (prednisolone plus azathioprine or placebo) and again when in remission. The tests included the Logical Memory and Design Reproduction parts of the Wechsler Memory Scale, the Rey Auditory Verbal Learning Test, Peterson-Peterson task, and an auditory vigilance task. Muscle strength improved significantly over the period of treatment, but overall performance on tests of memory or attention did not. These results fail to substantiate reports of functionally significant and reversible central deficits in myasthenia gravis. PMID:8780106

  13. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism.

    PubMed

    Maurice, Nicolas; Liberge, Martine; Jaouen, Florence; Ztaou, Samira; Hanini, Marwa; Camon, Jeremy; Deisseroth, Karl; Amalric, Marianne; Kerkerian-Le Goff, Lydia; Beurrier, Corinne

    2015-10-27

    Despite evidence showing that anticholinergic drugs are of clinical relevance in Parkinson's disease (PD), the causal role of striatal cholinergic interneurons (CINs) in PD pathophysiology remains elusive. Here, we show that optogenetic inhibition of CINs alleviates motor deficits in PD mouse models, providing direct demonstration for their implication in parkinsonian motor dysfunctions. As neural correlates, CIN inhibition in parkinsonian mice differentially impacts the excitability of striatal D1 and D2 medium spiny neurons, normalizes pathological bursting activity in the main basal ganglia output structure, and increases the functional weight of the direct striatonigral pathway in cortical information processing. By contrast, CIN inhibition in non-lesioned mice does not affect locomotor activity, equally modulates medium spiny neuron excitability, and does not modify spontaneous or cortically driven activity in the basal ganglia output, suggesting that the role of these interneurons in motor function is highly dependent on dopamine tone. PMID:26489458

  14. The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons

    PubMed Central

    Stiefel, Klaus M.; Gutkin, Boris S.; Sejnowski, Terrence J.

    2010-01-01

    The response of an oscillator to perturbations is described by its phase-response curve (PRC), which is related to the type of bifurcation leading from rest to tonic spiking. In a recent experimental study, we have shown that the type of PRC in cortical pyramidal neurons can be switched by cholinergic neuromodulation from type II (biphasic) to type I (monophasic). We explored how intrinsic mechanisms affected by acetylcholine influence the PRC using three different types of neuronal models: a theta neuron, single-compartment neurons and a multi-compartment neuron. In all of these models a decrease in the amount of a spike-frequency adaptation current was a necessary and sufficient condition for the shape of the PRC to change from biphasic (type II) to purely positive (type I). PMID:18784991

  15. Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (oncorhynchus mykiss)

    USGS Publications Warehouse

    Beauvais, S.L.; Jones, S.B.; Parris, J.T.; Brewer, S.K.; Little, E.E.

    2001-01-01

    Pesticides and heavy metals are common environmental contaminants that can cause neurotoxicity to aquatic organisms, impairing reproduction and survival. Neurotoxic effects of cadmium and carbaryl exposures were estimated in larval rainbow trout (RBT; Oncorhynchus mykiss) using changes in physiological endpoints and correlations with behavioral responses. Following exposures, RBT were videotaped to assess swimming speed. Brain tissue was used to measure cholinesterase (ChE) activity, muscarinic cholinergic receptor (MChR) number, and MChR affinity. ChE activity decreased with increasing concentrations of carbaryl but not of cadmium. MChR were not affected by exposure to either carbaryl or cadmium. Swimming speed correlated with ChE activity in carbaryl-exposed RBT, but no correlation occurred in cadmium-exposed fish. Thus, carbaryl exposure resulted in neurotoxicity reflected by changes in physiological and behavioral parameters measured, while cadmium exposure did not. Correlations between behavior and physiology provide a useful assessment of neurotoxicity. ?? 2001 Academic Press.

  16. Biochemically designed polymers as self-organized materials

    NASA Astrophysics Data System (ADS)

    Alva, Shridhara; Sarma, Rupmoni; Marx, Kenneth A.; Kumar, Jayant; Tripathy, Sukant K.; Akkara, Joseph A.; Kaplan, David L.

    1997-02-01

    Self assembled molecular systems are a focus of attention for material scientists as they provide an inherent molecular level organization responsible for enhanced material properties. We have developed polymeric molecular systems with interesting optical properties by biochemical engineering, which can be self assembled to thin films. Horseradish peroxidase catalyzed polymerizations of phenolic monomers: 9-hydroxyquinoline-5-sulfonic acid, acid red and decyl ester (d&l isomers) of tyrosine, have been achieved in the presence of hydrogen peroxide. The polymer of 8- hydroxyquinoline-5-sulfonic acid acts as a polymeric ligand that can be used for metal ion sensing. The polymer of acid red, with azo functional groups in the polymer backbone, shows interesting optical properties. Amphiphilic derivatives of tyrosine self assemble into tubules from micelles in aqueous solutions. These tubules have been enzymatically polymerized to polymeric tubules. The tubules are of 5 micrometers average diameter and > 200 micrometers length. The formation and properties of these tubules are discussed.

  17. Alleviating Effects of Bushen-Yizhi Formula on Ibotenic Acid-Induced Cholinergic Impairments in Rat

    PubMed Central

    Hou, Xue-Qin; Zhang, Lei; Yang, Cong; Rong, Cui-Ping; He, Wen-Qing; Zhang, Chun-Xia; Li, Shi; Su, Ru-Yu; Chang, Xiang; Qin, Ji-Huan; Chen, Yun-Bo

    2015-01-01

    Abstract This study explored the curative effect and underlying mechanisms of a traditional Chinese medicine compound prescription, Bushen-Yizhi formula (BSYZ), in ibotenic acid (IBO)-induced rats. Morris water maze and novel object recognition tests showed that BSYZ significantly improved spatial and object memory. Brain immunohistochemistry staining showed that BSYZ significantly up-regulated expression of choline acetyltransferase (ChAT) and nerve growth factor (NGF) in the hippocampus and cortex. The protein tyrosine kinase high-affinity receptor TrkA was slightly increased in the hippocampus and cortex, and significantly enhanced in the nucleus basalis of Meynert (NBM) after BSYZ intervention. The immunoreactivity of the p75 low-affinity receptor in BSYZ-treated rats was significantly strengthened in the cortex. Similar expression trends of nerve growth factor (NGF), TrkA, and p75 mRNA were observed in the hippocampus and cortex. Additionally, BSYZ reversed IBO-induced disorders of acetylcholine (ACh) levels, ChAT, and cholinesterase (ChE) in the cortex, which was consistent with the changes in mRNA levels of ChAT and acetylcholinesterase (AChE). Expression of ChAT and AChE proteins and mRNA in the hippocampus was up-regulated, whereas the apoptosis-relative protein cleaved caspase-3 was decreased after administration of BSYZ. Moreover, changes in cell death were confirmed by histological morphology. Thus, the results indicated that the BSYZ formula could ameliorate memory impairments in IBO-induced rats, and it exerted its therapeutic action probably by modulating cholinergic pathways, NGF signaling, and anti-apoptosis. Overall, it is suggested that the BSYZ formula might be a potential therapeutic approach for the treatment of Alzheimer's disease (AD) and other cholinergic impairment-related diseases. PMID:25482164

  18. Purinergic and Cholinergic Drugs Mediate Hyperventilation in Zebrafish: Evidence from a Novel Chemical Screen.

    PubMed

    Rahbar, Saman; Pan, Wen; Jonz, Michael G

    2016-01-01

    A rapid test to identify drugs that affect autonomic responses to hypoxia holds therapeutic and ecologic value. The zebrafish (Danio rerio) is a convenient animal model for investigating peripheral O2 chemoreceptors and respiratory reflexes in vertebrates; however, the neurotransmitters and receptors involved in this process are not adequately defined. The goals of the present study were to demonstrate purinergic and cholinergic control of the hyperventilatory response to hypoxia in zebrafish, and to develop a procedure for screening of neurochemicals that affect respiration. Zebrafish larvae were screened in multi-well plates for sensitivity to the cholinergic receptor agonist, nicotine, and antagonist, atropine; and to the purinergic receptor antagonists, suramin and A-317491. Nicotine increased ventilation frequency (fV) maximally at 100 μM (EC50 = 24.5 μM). Hypoxia elevated fV from 93.8 to 145.3 breaths min-1. Atropine reduced the hypoxic response only at 100 μM. Suramin and A-317491 maximally reduced fV at 50 μM (EC50 = 30.4 and 10.8 μM) and abolished the hyperventilatory response to hypoxia. Purinergic P2X3 receptors were identified in neurons and O2-chemosensory neuroepithelial cells of the gills using immunohistochemistry and confocal microscopy. These studies suggest a role for purinergic and nicotinic receptors in O2 sensing in fish and implicate ATP and acetylcholine in excitatory neurotransmission, as in the mammalian carotid body. We demonstrate a rapid approach for screening neuroactive chemicals in zebrafish with implications for respiratory medicine and carotid body disease in humans; as well as for preservation of aquatic ecosystems. PMID:27100625

  19. Treatment of Alzheimer's Disease: The Legacy of the Cholinergic Hypothesis, Neuroplasticity, and Future Directions.

    PubMed

    Wesson Ashford, J

    2015-01-01

    In this issue, an article by Waring et al. provides a meta-analysis of the effects of apo-lipo-protein E (APOE) genotype on the beneficial effect of acetyl-cholinesterase inhibitors (AChEIs) in patients with Alzheimer's disease (AD). There was no significant effect found. As of 2015, AChEI medications are the mainstay of AD treatment, and APOE genotype is the most significant factor associated with AD causation. This lack of a significant effect of APOE is analyzed with respect to the "Cholinergic Hypothesis" of AD, dating from 1976, through the recognition that cholinergic neurons are not the sole target of AD, but rather that AD attacks all levels of neuroplasticity in the brain, an idea originated by Ashford and Jarvik in 1985 and which still provides the clearest explanation for AD dementia. The "Amyloid Hypothesis" is dissected back to the alpha/beta pathway switching mechanism affecting the nexin-amyloid pre-protein (NAPP switch). The NAPP switch may be the critical neuroplasticity component of all learning involving synapse remodeling and subserve all learning mechanisms. The gamma-secretase cleavage is discussed, and its normal complementary products, beta-amyloid and the NAPP intracellular domain (NAICD), appear to be involved in natural synapse removal, but the link to AD dementia may involve the NAICD rather than beta-amyloid. Understanding neuroplasticity and the critical pathways to AD dementia are needed to determine therapies and preventive strategies for AD. In particular, the effect of APOE on AD predisposition needs to be established and a means found to adjust its effect to prevent AD. PMID:26402763

  20. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    PubMed

    Swartzwelder, H Scott; Acheson, Shawn K; Miller, Kelsey M; Sexton, Hannah G; Liu, Wen; Crews, Fulton T; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE. PMID:26529506

  1. A muscarinic cholinergic mechanism underlies activation of the central pattern generator for locust flight.

    PubMed

    Buhl, Edgar; Schildberger, Klaus; Stevenson, Paul A

    2008-07-01

    A central question in behavioural control is how central pattern generators (CPGs) for locomotion are activated. This paper disputes the key role generally accredited to octopamine in activating the CPG for insect flight. In deafferented locusts, fictive flight was initiated by bath application of the muscarinic agonist pilocarpine, the acetylcholine analogue carbachol, and the acetylcholinesterase blocker eserine, but not by nicotine. Furthermore, in addition to octopamine, various other amines including dopamine, tyramine and histamine all induced fictive flight, but not serotonin or the amine-precursor amino acid tyrosine. However, flight initiation was not reversibly blocked by aminergic antagonists, and was still readily elicited by both natural stimulation (wind) and pilocarpine in reserpinized, amine-depleted locusts. By contrast, the muscarinic antagonists atropine and scopolamine reversibly blocked flight initiated by wind, cholinergic agonists, octopamine, and by selective stimulation of a flight-initiating interneurone (TCG). The short delay from TCG stimulation to flight onset suggests that TCG acts directly on the flight CPG, and accordingly that TCG, or its follower cell within the flight generating circuit, is cholinergic. We conclude that acetylcholine acting via muscarinic receptors is the key neurotransmitter in the mechanism underlying the natural activation of the locust flight CPG. Amines are not essential for this, but must be considered as potential neuromodulators for facilitating flight release and tuning the motor pattern. We speculate that muscarinic activation coupled to aminergic facilitation may be a general feature of behavioural control in insects for ensuring conditional recruitment of individual motor programs in accordance with momentary adaptive requirements. PMID:18587129

  2. Cholinergic mechanisms of analgesia produced by physostigmine, morphine and cold water swimming.

    PubMed

    Romano, J A; Shih, T M

    1983-07-01

    This study concerns the cholinergic involvement in three experimental procedures which produce analgesia. Rats were given one of seven treatments: saline (1.0 ml/kg, i.p.); morphine sulfate (3.5, 6.0 or 9.0 mg/kg, i.p.); physostigmine salicylate (0.65 mg/kg, i.p.); warm water swim (3.5 min at 28 degrees C); and cold water swim (3.5 min at 2 degrees C). Each rat was tested on a hot plate (59.1 degrees C) once prior to and 30 min after treatment. Immediately after the last test the rats were killed with focussed microwave radiation. Levels of acetylcholine (ACh) and choline (Ch) in six brain areas (brain stem, cerebral cortex, hippocampus, midbrain, cerebellum and striatum) were analyzed by gas chromatograph-mass spectrometer. Morphine (9.0 mg/kg), physostigmine and cold water swimming caused significant analgesia. Morphine elevated the levels of ACh in the cerebellum and striatum, cold water swimming--in the cerebellum, striatum and cortex, and physostigmine--in the striatum and hippocampus. Levels of choline were elevated by morphine in the cerebellum, cortex and hippocampus, while cold water swimming elevated levels of choline in the cerebellum, cortex, striatum and hippocampus. Physostigmine did not change levels of choline in any of the brain areas studied. These data suggest that the analgetic effects of morphine or cold water swimming may be mediated by components of the cholinergic system that differ from those involved in the analgetic effects of physostigmine. PMID:6621812

  3. Hormonal Responses to Cholinergic Input Are Different in Humans with and without Type 2 Diabetes Mellitus

    PubMed Central

    Dunai, Judit; Kilpatrick, Rachel; Oestricker, Lauren Z.; Wallendorf, Michael J.; Patterson, Bruce W.; Reeds, Dominic N.; Wice, Burton M.

    2016-01-01

    Peripheral muscarinic acetylcholine receptors regulate insulin and glucagon release in rodents but their importance for similar roles in humans is unclear. Bethanechol, an acetylcholine analogue that does not cross the blood-brain barrier, was used to examine the role of peripheral muscarinic signaling on glucose homeostasis in humans with normal glucose tolerance (NGT; n = 10), impaired glucose tolerance (IGT; n = 11), and type 2 diabetes mellitus (T2DM; n = 9). Subjects received four liquid meal tolerance tests, each with a different dose of oral bethanechol (0, 50, 100, or 150 mg) given 60 min before a meal containing acetaminophen. Plasma pancreatic polypeptide (PP), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), glucose, glucagon, C-peptide, and acetaminophen concentrations were measured. Insulin secretion rates (ISRs) were calculated from C-peptide levels. Acetaminophen and PP concentrations were surrogate markers for gastric emptying and cholinergic input to islets. The 150 mg dose of bethanechol increased the PP response 2-fold only in the IGT group, amplified GLP-1 release in the IGT and T2DM groups, and augmented the GIP response only in the NGT group. However, bethanechol did not alter ISRs or plasma glucose, glucagon, or acetaminophen concentrations in any group. Prior studies showed infusion of xenin-25, an intestinal peptide, delays gastric emptying and reduces GLP-1 release but not ISRs when normalized to plasma glucose levels. Analysis of archived plasma samples from this study showed xenin-25 amplified postprandial PP responses ~4-fold in subjects with NGT, IGT, and T2DM. Thus, increasing postprandial cholinergic input to islets augments insulin secretion in mice but not humans. Trial Registration: ClinicalTrials.gov NCT01434901 PMID:27304975

  4. beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy

    SciTech Connect

    Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

    1985-05-01

    Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with (/sup 3/H)-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with (/sup 3/H)-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension.

  5. Cholinergic and ghrelinergic receptors and KCNQ channels in the medial PFC regulate the expression of palatability

    PubMed Central

    Parent, Marc A.; Amarante, Linda M.; Swanson, Kyra; Laubach, Mark

    2015-01-01

    The medial prefrontal cortex (mPFC) is a key brain region for the control of consummatory behavior. Neuronal activity in this area is modulated when rats initiate consummatory licking and reversible inactivations eliminate reward contrast effects and reduce a measure of palatability, the duration of licking bouts. Together, these data suggest the hypothesis that rhythmic neuronal activity in the mPFC is crucial for the control of consummatory behavior. The muscarinic cholinergic system is known to regulate membrane excitability and control low-frequency rhythmic activity in the mPFC. Muscarinic receptors (mAChRs) act through KCNQ (Kv7) potassium channels, which have recently been linked to the orexigenic peptide ghrelin. To understand if drugs that act on KCNQ channels within the mPFC have effects on consummatory behavior, we made infusions of several muscarinic drugs (scopolamine, oxotremorine, physostigmine), the KCNQ channel blocker XE-991, and ghrelin into the mPFC and evaluated their effects on consummatory behavior. A consistent finding across all drugs was an effect on the duration of licking bouts when animals consume solutions with a relatively high concentration of sucrose. The muscarinic antagonist scopolamine reduced bout durations, both systemically and intra-cortically. By contrast, the muscarinic agonist oxotremorine, the cholinesterase inhibitor physostigmine, the KCNQ channel blocker XE-991, and ghrelin all increased the durations of licking bouts when infused into the mPFC. Our findings suggest that cholinergic and ghrelinergic signaling in the mPFC, acting through KCNQ channels, regulates the expression of palatability. PMID:26578914

  6. Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas

    PubMed Central

    Stornetta, Ruth L.; Macon, Conrad J.; Nguyen, Thanh M.; Coates, Melissa B.; Guyenet, Patrice G.

    2012-01-01

    The rostral ventrolateral medulla (RVLM) primarily regulates respiration and the autonomic nervous system. Its medial portion (mRVLM) contains many choline acetyltransferase (ChAT)-immunoreactive (ir) neurons of unknown function. We sought to clarify the role of these cholinergic cells by tracing their axonal projections. We first established that these neurons are neither parasympathetic preganglionic neurons nor motor neurons because they did not accumulate intraperitoneally administered Fluorogold. We traced their axonal projections by injecting a Cre-dependent vector (floxed-AAV2) expressing either GFP or mCherrry into the mRVLM of ChAT-Cre mice. Transduced neurons expressing GFP or mCherry were confined to the injection site and were exclusively ChAT-ir. Their axonal projections included the dorsal column nuclei, medullary trigeminal complex, cochlear nuclei, superior olivary complex and spinal cord lamina III. For control experiments, the floxed-AAV2 (mCherry) was injected into the RVLM of dopamine beta-hydroxylase-Cre mice. In these mice mCherry was exclusively expressed by RVLM catecholaminergic neurons. Consistent with data from rats, these catecholaminergic neurons targeted brain regions involved in autonomic and endocrine regulation. These regions were almost totally different from those innervated by the intermingled mRVLM-ChAT neurons. This study emphasizes the advantages of using Cre-driver mouse strains in combination with floxed-AAV2 to trace the axonal projections of chemically defined neuronal groups. Using this technique, we revealed previously unknown projections of mRVLM-ChAT neurons and showed that despite their close proximity to the cardiorespiratory region of the RVLM, these cholinergic neurons regulate sensory afferent information selectively and presumably have little to do with respiration or circulatory control. PMID:22460939

  7. Inhibition of cholinergic pathways in Drosophila melanogaster by α-conotoxins.

    PubMed

    Heghinian, Mari D; Mejia, Monica; Adams, David J; Godenschwege, Tanja A; Marí, Frank

    2015-03-01

    Nicotinic acetylcholine receptors (nAChRs) play a pivotal role in synaptic transmission of neuronal signaling pathways and are fundamentally involved in neuronal disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In vertebrates, cholinergic pathways can be selectively inhibited by α-conotoxins; we show that in the model organism Drosophila, the cholinergic component of the giant fiber system is inhibited by α-conotoxins MII, AuIB, BuIA, EI, PeIA, and ImI. The injection of 45 pmol/fly of each toxin dramatically decreases the response of the giant fiber to dorsal longitudinal muscle (GF-DLM) connection to 20 ± 13.9% for MII; 26 ± 13.7% for AuIB, 12 ± 9.9% for BuIA, 30 ± 11.3% for EI, 1 ± 1% for PeIA, and 34 ± 15.4% for ImI. Through bioassay-guided fractionation of the venom of Conus brunneus, we found BruIB, an α-conotoxin that inhibits Drosophila nicotinic receptors but not its vertebrate counterparts. GF-DLM responses decreased to 43.7 ± 8.02% on injection of 45 pmol/fly of BruIB. We manipulated the Dα7 nAChR to mimic the selectivity of its vertebrate counterpart by placing structurally guided point mutations in the conotoxin-binding site. This manipulation rendered vertebrate-like behavior in the Drosophila system, enhancing the suitability of Drosophila as an in vivo tool to carry out studies related to human neuronal diseases. . PMID:25466886

  8. Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons.

    PubMed

    Sciamanna, Giuseppe; Napolitano, Francesco; Pelosi, Barbara; Bonsi, Paola; Vitucci, Daniela; Nuzzo, Tommaso; Punzo, Daniela; Ghiglieri, Veronica; Ponterio, Giulia; Pasqualetti, Massimo; Pisani, Antonio; Usiello, Alessandro

    2015-06-01

    Ras homolog enriched in striatum (Rhes) is highly expressed in striatal medium spiny neurons (MSNs) of rodents. In the present study, we characterized the expression of Rhes mRNA across species, as well as its functional role in other striatal neuron subtypes. Double in situ hybridization analysis showed that Rhes transcript is selectively localized in striatal cholinergic interneurons (ChIs), but not in GABAergic parvalbumin- or in neuropeptide Y-positive cell populations. Rhes is closely linked to dopamine-dependent signaling. Therefore, we recorded ChIs activity in basal condition and following dopamine receptor activation. Surprisingly, instead of an expected dopamine D2 receptor (D2R)-mediated inhibition, we observed an aberrant excitatory response in ChIs from Rhes knockout mice. Conversely, the effect of D1R agonist on ChIs was less robust in Rhes mutants than in controls. Although Rhes deletion in mutants occurs throughout the striatum, we demonstrate that the D2R response is altered specifically in ChIs, since it was recorded in pharmacological isolation, and prevented either by intrapipette BAPTA or by GDP-β-S. Moreover, we show that blockade of Cav2.2 calcium channels prevented the abnormal D2R response. Finally, we found that the abnormal D2R activation in ChIs was rescued by selective PI3K inhibition thus suggesting that Rhes functionally modulates PI3K/Akt signaling pathway in these neurons. Our findings reveal that, besides its expression in MSNs, Rhes is localized also in striatal ChIs and, most importantly, lack of this G-protein, significantly alters D2R modulation of striatal cholinergic excitability. PMID:25818655

  9. Nicotine-Induced Modulation of the Cholinergic Twitch Response in the Ileum of Guinea Pig.

    PubMed

    Donnerer, Josef; Liebmann, Ingrid

    2015-01-01

    In the present study, the direct drug effects of nicotine and its effects on the cholinergic twitch responses of the electrically stimulated longitudinal muscle-myenteric plexus strip from the ileum of guinea pig were investigated. Nicotine dose-dependently (0.3-10 µmol/l) evoked the well-known contractile responses on its own. Whereas the interposed twitch responses remained present without a change in height at 1 µmol/l nicotine, a nicotine concentration of 3 µmol/l slightly and a concentration of 10 µmol/l markedly diminished the twitch during their presence. After the washout of 1-10 µmol/l nicotine, the height of the twitch response was also temporarily and significantly reduced by 30-77%. The P2X purinoceptor agonist αβ-methylene ATP (1-10 µmol/l) dose-dependently induced contractions on its own and reduced the twitch response during its presence in the organ bath; however, it did not diminish the twitch responses after washout of the drug as nicotine did. The P2X antagonist pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid, the NMDA channel blocker MK-801 and the inhibitor of small conductance Ca(2+)-activated K(+) (SK) channel