Sample records for chorismate synthase revealed

  1. Structural analysis of a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with an N-terminal chorismate mutase-like regulatory domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Samuel H.; Halavaty, Andrei S.; Minasov, George

    2012-06-27

    3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase - an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis - and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn{sup 2+}more » and Mn{sup 2+} + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.« less

  2. Crystallization and X-ray diffraction analysis of salicylate synthase, a chorismate-utilizing enyme involved in siderophore biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, James F., E-mail: parsonsj@umbi.umd.edu; Shi, Katherine; Calabrese, Kelly

    2006-03-01

    Salicylate synthase, which catalyzes the first step in the synthesis of the siderophore yersiniabactin, has been crystallized. Diffraction data have been collected to 2.5 Å. Bacteria have evolved elaborate schemes that help them thrive in environments where free iron is severely limited. Siderophores such as yersiniabactin are small iron-scavenging molecules that are deployed by bacteria during iron starvation. Several studies have linked siderophore production and virulence. Yersiniabactin, produced by several Enterobacteriaceae, is derived from the key metabolic intermediate chorismic acid via its conversion to salicylate by salicylate synthase. Crystals of salicylate synthase from the uropathogen Escherichia coli CFT073 have beenmore » grown by vapour diffusion using polyethylene glycol as the precipitant. The monoclinic (P2{sub 1}) crystals diffract to 2.5 Å. The unit-cell parameters are a = 57.27, b = 164.07, c = 59.04 Å, β = 108.8°. The solvent content of the crystals is 54% and there are two molecules of the 434-amino-acid protein in the asymmetric unit. It is anticipated that the structure will reveal key details about the reaction mechanism and the evolution of salicylate synthase.« less

  3. Pericyclic reactions catalyzed by chorismate-utilizing enzymes

    PubMed Central

    Lamb, Audrey L.

    2011-01-01

    One of the fundamental questions of enzymology is how catalytic power is derived. This review focuses on recent developments in the structure-function relationships of chorismate-utilizing enzymes involved in siderophore biosynthesis to provide insight into the biocatalysis of pericyclic reactions. Specifically, salicylate synthesis by the two-enzyme pathway in Pseudomonas aeruginosa is examined. The isochorismate-pyruvate lyase is discussed in the context of its homologues, the chorismate mutases, and the isochorismate synthase is compared to its homologues in the MST-family (menaquinone, siderophore or tryptophan biosynthesis) of enzymes. The tentative conclusion is that the activities observed cannot be reconciled by inspection of the active site participants alone. Instead, individual activities must arise from unique dynamic properties of each enzyme that are tuned to promote specific chemistries. PMID:21823653

  4. A novel noncovalent complex of chorismate mutase and DAHP synthase from Mycobacterium tuberculosis: protein purification, crystallization and X-ray diffraction analysis

    PubMed Central

    Ökvist, Mats; Sasso, Severin; Roderer, Kathrin; Kast, Peter; Krengel, Ute

    2009-01-01

    Chorismate mutase catalyzes a key step in the shikimate-biosynthetic pathway and hence is an essential enzyme in bacteria, plants and fungi. Mycobacterium tuberculosis contains two chorismate mutases, a secreted and an intracellular one, the latter of which (MtCM; Rv0948c; 90 amino-acid residues; 10 kDa) is the subject of this work. Here are reported the gene expression, purification and crystallization of MtCM alone and of its complex with another shikimate-pathway enzyme, DAHP synthase (MtDS; Rv2178c; 472 amino-acid residues; 52 kDa), which has been shown to enhance the catalytic efficiency of MtCM. The MtCM–MtDS complex represents the first noncovalent enzyme complex from the common shikimate pathway to be structurally characterized. Soaking experiments with a transition-state analogue are also reported. The crystals of MtCM and the MtCM–MtDS complex diffracted to 1.6 and 2.1 Å resolution, respectively. PMID:19851019

  5. Structure and Mechanism of MbtI, the Salicylate Synthase from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwahlen,J.; Kolappan, S.; Zhou, R.

    2007-01-01

    MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 {angstrom} resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg{sup 2+}-dependent, and in the absence of Mg{sup 2+} MbtI has a promiscuous chorismate mutase activity similar to thatmore » of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.« less

  6. Evolution of allosteric regulation in chorismate mutases from early plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Kourtney; Holland, Cynthia K.; Starks, Courtney M.

    Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plantmore » chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 Å X-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.« less

  7. Structural Evolution of Differential Amino Acid Effector Regulation in Plant Chorismate Mutases*

    PubMed Central

    Westfall, Corey S.; Xu, Ang; Jez, Joseph M.

    2014-01-01

    Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1–3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme. PMID:25160622

  8. Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE

    USDA-ARS?s Scientific Manuscript database

    PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-desoxyisochorismate (ADIC) in the first step of phenazine biosynthesis. At variance with the related anthranilate synthase, the monomer of PhzE consists of a single chain that contains both a chorismate-converting domain of the menaquino...

  9. Crystal structure of chorismate mutase from Burkholderia thailandensis.

    PubMed

    Asojo, Oluwatoyin A; Dranow, David M; Serbzhinskiy, Dmitry; Subramanian, Sandhya; Staker, Bart; Edwards, Thomas E; Myler, Peter J

    2018-05-01

    Burkholderia thailandensis is often used as a model for more virulent members of this genus of proteobacteria that are highly antibiotic-resistant and are potential agents of biological warfare that are infective by inhalation. As part of ongoing efforts to identify potential targets for the development of rational therapeutics, the structures of enzymes that are absent in humans, including that of chorismate mutase from B. thailandensis, have been determined by the Seattle Structural Genomics Center for Infectious Disease. The high-resolution structure of chorismate mutase from B. thailandensis was determined in the monoclinic space group P2 1 with three homodimers per asymmetric unit. The overall structure of each protomer has the prototypical AroQγ topology and shares conserved binding-cavity residues with other chorismate mutases, including those with which it has no appreciable sequence identity.

  10. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  11. Anthranilate synthase subunit organization in Chromobacterium violaceum.

    PubMed

    Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M

    2008-09-16

    Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).

  12. Characterization of a recombinant type II 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Helicobacter pylori.

    PubMed

    Webby, Celia J; Patchett, Mark L; Parker, Emily J

    2005-08-15

    DAH7P (3-Deoxy-D-arabino-heptulosonate 7-phosphate) synthase catalyses the condensation reaction between phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) as the first committed step in the biosynthesis of aromatic compounds in plants and micro-organisms. Previous work has identified two families of DAH7P synthases based on sequence similarity and molecular mass, with the majority of the mechanistic and structural studies being carried out on the type I paralogues from Escherichia coli. Whereas a number of organisms possess genes encoding both type I and type II DAH7P synthases, the pathogen Helicobacter pylori has only a single, type II, enzyme. Recombinant DAH7P synthase from H. pylori was partially solubilized by co-expression with chaperonins GroEL/GroES in E. coli, and purified to homogeneity. The enzyme reaction follows an ordered sequential mechanism with the following kinetic parameters: K(m) (PEP), 3 microM; K(m) (E4P), 6 microM; and kcat, 3.3 s(-1). The enzyme reaction involves interaction of the si face of PEP with the re face of E4P. H. pylori DAH7P synthase is not inhibited by phenylalanine, tyrosine, tryptophan or chorismate. EDTA inactivates the enzyme, and activity is restored by a range of bivalent metal ions, including (in order of decreasing effectiveness) Co2+, Mn2+, Ca2+, Mg2+, Cu2+ and Zn2+. Analysis of type II DAH7P synthase sequences reveals several highly conserved motifs, and comparison with the type I enzymes suggests that catalysis by these two enzyme types occurs on a similar active-site scaffold and that the two DAH7P synthase families may indeed be distantly related.

  13. Refined molecular hinge between allosteric and catalytic domain determines allosteric regulation and stability of fungal chorismate mutase

    PubMed Central

    Helmstaedt, Kerstin; Heinrich, Gabriele; Lipscomb, William N.; Braus, Gerhard H.

    2002-01-01

    The yeast chorismate mutase is regulated by tyrosine as feedback inhibitor and tryptophan as crosspathway activator. The monomer consists of a catalytic and a regulatory domain covalently linked by the loop L220s (212–226), which functions as a molecular hinge. Two monomers form the active dimeric enzyme stabilized by hydrophobic interactions in the vicinity of loop L220s. The role of loop L220s and its environment for enzyme regulation, dimerization, and stability was analyzed. Substitution of yeast loop L220s in place of the homologous loop from the corresponding and similarly regulated Aspergillus enzyme (and the reverse substitution) changed tyrosine inhibition to activation. Yeast loop L220s substituted into the Aspergillus enzyme resulted in a tryptophan-inhibitable enzyme. Monomeric yeast chorismate mutases could be generated by substituting two hydrophobic residues in and near the hinge region. The resulting Thr-212→Asp–Phe-28→Asp enzyme was as stable as wild type, but lost allosteric regulation and showed reduced catalytic activity. These results underline the crucial role of this molecular hinge for inhibition, activation, quaternary structure, and stability of yeast chorismate mutase. PMID:11997452

  14. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.

    PubMed

    Burschowsky, Daniel; van Eerde, André; Ökvist, Mats; Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald; Krengel, Ute

    2014-12-09

    For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.

  15. Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis.

    PubMed

    Sadaka, Carmen; Ellsworth, Edmund; Hansen, Paul Robert; Ewin, Richard; Damborg, Peter; Watts, Jeffrey L

    2018-06-06

    Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop- o -benzyl-desmethylabyssomicin C constitute promising candidates for such programs.

  16. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii

    PubMed Central

    Sutton, Kristin A.; Breen, Jennifer; Russo, Thomas A.; Schultz, L. Wayne; Umland, Timothy C.

    2016-01-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301–Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521

  17. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii.

    PubMed

    Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C

    2016-03-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate.

  18. High level expression of chorismate pyruvate-lyase (UbiC) and HMG-CoA reductase in hairy root cultures of Lithospermum erythrorhizon.

    PubMed

    Köhle, Annegret; Sommer, Susanne; Yazaki, Kazufumi; Ferrer, Albert; Boronat, Albert; Li, Shu-Ming; Heide, Lutz

    2002-08-01

    Shikonin, a red naphthoquinone pigment, is produced by cell cultures of Lithospermum erythrorhizon (Boraginaceae). It is biosynthetically derived from two key precursors, 4-hydroxybenzoate (4HB) and geranyldiphosphate (GPP). The bacterial ubiC gene, encoding chorismate pyruvate-lyase (CPL) which converts chorismate to 4-hydroxybenzoate, was expressed in L. erythrorhizon under the control of the strong (ocs)(3)mas-promoter. This introduced an efficient biosynthetic pathway to 4HB, i.e. a one-step reaction from chorismate, in addition to the endogeneous multi-step phenylpropanoid pathway. Feeding experiments with [1,7-(13)C(2)]shikimic acid showed that in the most active transgenic line, 73% of 4HB was synthesized via the genetically introduced pathway. However, there was no correlation between CPL activity and 4HB glucoside or shikonin accumulation in the transgenic lines. HMG-CoA reductase (HMGR) is involved in the biosynthesis of GPP in L. erythrorhizon. Two forms of HMGR1 of Arabidopsis thaliana were expressed in Lithospermum under control of the (ocs)(3)mas promoter. Only moderate increases in enzyme activity were obtained with the complete enzyme, but high activity was achieved using the soluble cytosolic domain of HMGR1. Shikonin accumulation remained unchanged even upon high expression of soluble HMGR.

  19. An Open and Shut Case: The Interaction of Magnesium with MST Enzymes

    PubMed Central

    2016-01-01

    The shikimate pathway of bacteria, fungi, and plants generates chorismate, which is drawn into biosynthetic pathways that form aromatic amino acids and other important metabolites, including folates, menaquinone, and siderophores. Many of the pathways initiated at this branch point transform chorismate using an MST enzyme. The MST enzymes (menaquinone, siderophore, and tryptophan biosynthetic enzymes) are structurally homologous and magnesium-dependent, and all perform similar chemical permutations to chorismate by nucleophilic addition (hydroxyl or amine) at the 2-position of the ring, inducing displacement of the 4-hydroxyl. The isomerase enzymes release isochorismate or aminodeoxychorismate as the product, while the synthase enzymes also have lyase activity that displaces pyruvate to form either salicylate or anthranilate. This has led to the hypothesis that the isomerase and lyase activities performed by the MST enzymes are functionally conserved. Here we have developed tailored pre-steady-state approaches to establish the kinetic mechanisms of the isochorismate and salicylate synthase enzymes of siderophore biosynthesis. Our data are centered on the role of magnesium ions, which inhibit the isochorismate synthase enzymes but not the salicylate synthase enzymes. Prior structural data have suggested that binding of the metal ion occludes access or egress of substrates. Our kinetic data indicate that for the production of isochorismate, a high magnesium ion concentration suppresses the rate of release of product, accounting for the observed inhibition and establishing the basis of the ordered-addition kinetic mechanism. Moreover, we show that isochorismate is channeled through the synthase reaction as an intermediate that is retained in the active site by the magnesium ion. Indeed, the lyase-active enzyme has 3 orders of magnitude higher affinity for the isochorismate complex relative to the chorismate complex. Apparent negative-feedback inhibition by ferrous

  20. Design, selection, and characterization of a split chorismate mutase

    PubMed Central

    Müller, Manuel M; Kries, Hajo; Csuhai, Eva; Kast, Peter; Hilvert, Donald

    2010-01-01

    Split proteins are versatile tools for detecting protein–protein interactions and studying protein folding. Here, we report a new, particularly small split enzyme, engineered from a thermostable chorismate mutase (CM). Upon dissecting the helical-bundle CM from Methanococcus jannaschii into a short N-terminal helix and a 3-helix segment and attaching an antiparallel leucine zipper dimerization domain to the individual fragments, we obtained a weakly active heterodimeric mutase. Using combinatorial mutagenesis and in vivo selection, we optimized the short linker sequences connecting the leucine zipper to the enzyme domain. One of the selected CMs was characterized in detail. It spontaneously assembles from the separately inactive fragments and exhibits wild-type like CM activity. Owing to the availability of a well characterized selection system, the simple 4-helix bundle topology, and the small size of the N-terminal helix, the heterodimeric CM could be a valuable scaffold for enzyme engineering efforts and as a split sensor for specifically oriented protein–protein interactions. PMID:20306491

  1. Molecular dynamics simulation of the last step of a catalytic cycle: product release from the active site of the enzyme chorismate mutase from Mycobacterium tuberculosis.

    PubMed

    Choutko, Alexandra; van Gunsteren, Wilfred F

    2012-11-01

    The protein chorismate mutase MtCM from Mycobacterium tuberculosis catalyzes one of the few pericyclic reactions known in biology: the transformation of chorismate to prephenate. Chorismate mutases have been widely studied experimentally and computationally to elucidate the transition state of the enzyme catalyzed reaction and the origin of the high catalytic rate. However, studies about substrate entry and product exit to and from the highly occluded active site of the enzyme have to our knowledge not been performed on this enzyme. Crystallographic data suggest a possible substrate entry gate, that involves a slight opening of the enzyme for the substrate to access the active site. Using multiple molecular dynamics simulations, we investigate the natural dynamic process of the product exiting from the binding pocket of MtCM. We identify a dominant exit pathway, which is in agreement with the gate proposed from the available crystallographic data. Helices H2 and H4 move apart from each other which enables the product to exit from the active site. Interestingly, in almost all exit trajectories, two residues arginine 72 and arginine 134, which participate in the burying of the active site, are accompanying the product on its exit journey from the catalytic site. Copyright © 2012 The Protein Society.

  2. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.

    PubMed

    Xu, Jinkun; Ai, Ying; Wang, Jianhui; Xu, Jingwei; Zhang, Yongkang; Yang, Dong

    2017-05-01

    S-limonene synthase is a model monoterpene synthase that cyclizes geranyl pyrophosphate (GPP) to form S-limonene. It is a relatively specific enzyme as the majority of its products are composed of limonene. In this study, we converted it to pinene or phellandrene synthases after introducing N345A/L423A/S454A or N345I mutations. Further studies on N345 suggest the polarity of this residue plays a critical role in limonene production by stabilizing the terpinyl cation intermediate. If it is mutated to a non-polar residue, further cyclization or hydride shifts occurs so the carbocation migrates towards the pyrophosphate, leading to the production of pinene or phellandrene. On the other hand, mutant enzymes that still possess a polar residue at this position produce limonene as the major product. N345 is not the only polar residue that may stabilize the terpinyl cation because it is not strictly conserved among limonene synthases across species and there are also several other polar residues in this area. These residues could form a "polar pocket" that may collectively play this stabilizing role. Our study provides important insights into the catalytic mechanism of limonene synthases. Furthermore, it also has wider implications on the evolution of terpene synthases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments

    PubMed Central

    Varco-Merth, Benjamin; Fromme, Raimund; Wang, Meitian; Fromme, Petra

    2012-01-01

    The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphate, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10–15 c-subunits is commonly thought to drive rotation of the rotor moiety (c10–14γε) relative to stator moiety (α3β3δab2). Here we report the isolation and crystallization of the c14-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 Å. Though ATP synthase was not previously known to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revealed that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase. PMID:18515064

  4. Induction of Shikimic Acid Pathway Enzymes by Light in Suspension Cultured Cells of Parsley (Petroselinum crispum) 1

    PubMed Central

    McCue, Kent F.; Conn, Eric E.

    1990-01-01

    Light treatment of suspension cultured cells of parsley (Petroselinum crispum) was shown to increase the activity of the shikimic acid pathway enzyme, 3-deoxy-d-arabino-heptulosonic acid-7-phosphate (DAHP) synthase (EC 4.1.2.15). DAHP synthase activity was assayed for two isoforms, DS-Mn and DS-Co (RJ Ganson, TA d'Amato, RA Jensen [1986] Plant Physiol 82: 203-210). Light increased the enzymatic activity of the plastidic isoform DS-Mn as much as 2-fold, averaging 1.6-fold with >95% confidence. The cytosolic isoform DS-Co was unaffected. Cycloheximide and actinomycin D, translational and transcriptional inhibitors, respectively, both reversed induction of DS-Mn by light suggesting transcriptional regulation of the gene. Chorismate mutase activity was assayed for the two isoforms CM I and CM II (BK Singh, JA Connelly, EE Conn [1985] Arch Biochem Biophys 243: 374-384). Treatment by light did not significantly affect either chorismate mutase isoform. The ratio of the two chorismate mutase isoforms changed during the growth cycle, with an increase in the ratio of plastidic to cytosolic isoforms occurring towards the end of logarithmic growth. PMID:16667741

  5. Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation

    PubMed Central

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B.; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M.; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A.; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria

    2014-01-01

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. PMID:24360804

  6. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation.

    PubMed

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria

    2014-01-02

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one derivatives as potential inhibitors of chorismate mutase.

    PubMed

    Mallikarjuna Rao, V; Mahesh Kumar, P; Rambabu, D; Kapavarapu, Ravikumar; Shobha Rani, S; Misra, Parimal; Pal, Manojit

    2013-12-01

    A series of novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one (DHPM) derivatives were designed, synthesized and evaluated in vitro as potential inhibitors of chorismate mutase (CM). All these compounds were prepared via a multi-component reaction (MCR) involving sequential I2-mediated Biginelli reaction followed by Cu-free Sonogashira coupling. Some of them showed promising inhibitory activities when tested at 30μM. One compound showed dose dependent inhibition of CM with IC50 value of 14.76±0.54μM indicating o-alkynylphenyl substituted DHPM as a new scaffold for the discovery of promising inhibitors of CM. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Remote Control by Inter-Enzyme Allostery: A Novel Paradigm for Regulation of the Shikimate Pathway.

    PubMed

    Munack, Steffi; Roderer, Kathrin; Ökvist, Mats; Kamarauskaite, Jurate; Sasso, Severin; van Eerde, André; Kast, Peter; Krengel, Ute

    2016-03-27

    DAHP synthase and chorismate mutase catalyze key steps in the shikimate biosynthetic pathway en route to aromatic amino acids. In Mycobacterium tuberculosis, chorismate mutase (MtCM; Rv0948c), located at the branch point toward phenylalanine and tyrosine, has poor activity on its own. However, it is efficiently activated by the first enzyme of the pathway, DAHP synthase (MtDS; Rv2178c), through formation of a non-covalent MtCM-MtDS complex. Here, we show how MtDS serves as an allosteric platform for feedback regulation of both enzymes, using X-ray crystallography, small-angle X-ray scattering, size-exclusion chromatography, and multi-angle light scattering. Crystal structures of the fully inhibited MtDS and the allosterically down-regulated MtCM-MtDS complex, solved at 2.8 and 2.7Å, respectively, reveal how effector binding at the internal MtDS subunit interfaces regulates the activity of MtDS and MtCM. While binding of all three metabolic end products to MtDS shuts down the entire pathway, the binding of phenylalanine jointly with tyrosine releases MtCM from the MtCM-MtDS complex, hence suppressing MtCM activation by 'inter-enzyme allostery'. This elegant regulatory principle, invoking a transient allosteric enzyme interaction, seems to be driven by dynamics and is likely a general strategy used by nature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii.

    PubMed

    MacBeath, G; Kast, P; Hilvert, D

    1998-07-14

    The gene for chorismate mutase (CM) from the archaeon Methanococcus jannaschii, an extreme thermophile, was subcloned and expressed in Escherichia coli. This gene, which belongs to the aroQ class of CMs, encodes a monofunctional enzyme (AroQf) able to complement the CM deficiency of an E. coli mutant strain. The purified protein follows Michaelis-Menten kinetics (kcat = 5.7 s-1 and Km = 41 microM at 30 degreesC) and displays pH-independent activity in the range of pH 5-9. Its activation parameters [Delta H = 16.2 kcal/mol, Delta S = -1. 7 cal/(mol.K)] are similar to those of another well characterized AroQ class CM, the mesophilic AroQp domain from E. coli. Like AroQp, the thermophilic CM is an alpha-helical dimer, but approximately 5 kcal/mol more stable than its mesophilic counterpart as judged from equilibrium denaturation studies. The possible origins of the thermostability of M. jannaschii AroQf, the smallest natural CM characterized to date, are discussed in light of available sequence and tertiary structural information.

  10. Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy Benzoic Acid

    PubMed Central

    Yu, Shiqin; Plan, Manuel R.; Winter, Gal; Krömer, Jens O.

    2016-01-01

    para-Hydroxy benzoic acid (PHBA) is the key component for preparing parabens, a common preservatives in food, drugs, and personal care products, as well as high-performance bioplastics such as liquid crystal polymers. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase encoded by gene aroGD146N were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA) or competing for the precursor chorismate (pheA and trpE) were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose 4-phosphate and NADPH supply. The best strain achieved a maximum titer of 1.73 g L−1 and a carbon yield of 18.1% (C-mol C-mol−1) in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase. PMID:27965953

  11. Superresolution microscopy reveals spatial separation of UCP4 and F0F1-ATP synthase in neuronal mitochondria

    PubMed Central

    Klotzsch, Enrico; Smorodchenko, Alina; Löfler, Lukas; Moldzio, Rudolf; Parkinson, Elena; Schütz, Gerhard J.; Pohl, Elena E.

    2015-01-01

    Because different proteins compete for the proton gradient across the inner mitochondrial membrane, an efficient mechanism is required for allocation of associated chemical potential to the distinct demands, such as ATP production, thermogenesis, regulation of reactive oxygen species (ROS), etc. Here, we used the superresolution technique dSTORM (direct stochastic optical reconstruction microscopy) to visualize several mitochondrial proteins in primary mouse neurons and test the hypothesis that uncoupling protein 4 (UCP4) and F0F1-ATP synthase are spatially separated to eliminate competition for the proton motive force. We found that UCP4, F0F1-ATP synthase, and the mitochondrial marker voltage-dependent anion channel (VDAC) have various expression levels in different mitochondria, supporting the hypothesis of mitochondrial heterogeneity. Our experimental results further revealed that UCP4 is preferentially localized in close vicinity to VDAC, presumably at the inner boundary membrane, whereas F0F1-ATP synthase is more centrally located at the cristae membrane. The data suggest that UCP4 cannot compete for protons because of its spatial separation from both the proton pumps and the ATP synthase. Thus, mitochondrial morphology precludes UCP4 from acting as an uncoupler of oxidative phosphorylation but is consistent with the view that UCP4 may dissipate the excessive proton gradient, which is usually associated with ROS production. PMID:25535394

  12. Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster.

    PubMed

    Fernández-Bodega, Ángeles; Álvarez-Álvarez, Rubén; Liras, Paloma; Martín, Juan F

    2017-08-01

    Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.

  13. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    PubMed

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  14. Functional Mapping of Protein-Protein Interactions in an Enzyme Complex by Directed Evolution

    PubMed Central

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84–90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84–86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes. PMID:25551646

  15. Novel pathway of 3-hydroxyanthranilic acid formation in limazepine biosynthesis reveals evolutionary relation between phenazines and pyrrolobenzodiazepines.

    PubMed

    Pavlikova, Magdalena; Kamenik, Zdenek; Janata, Jiri; Kadlcik, Stanislav; Kuzma, Marek; Najmanova, Lucie

    2018-05-17

    Natural pyrrolobenzodiazepines (PBDs) form a large and structurally diverse group of antitumour microbial metabolites produced through complex pathways, which are encoded within biosynthetic gene clusters. We sequenced the gene cluster of limazepines and proposed their biosynthetic pathway based on comparison with five available gene clusters for the biosynthesis of other PBDs. Furthermore, we tested two recombinant proteins from limazepine biosynthesis, Lim5 and Lim6, with the expected substrates in vitro. The reactions monitored by LC-MS revealed that limazepine biosynthesis involves a new way of 3-hydroxyanthranilic acid formation, which we refer to as the chorismate/DHHA pathway and which represents an alternative to the kynurenine pathway employed for the formation of the same precursor in the biosynthesis of other PBDs. The chorismate/DHHA pathway is presumably also involved in the biosynthesis of PBD tilivalline, several natural products unrelated to PBDs, and its part is shared also with phenazine biosynthesis. The similarities between limazepine and phenazine biosynthesis indicate tight evolutionary links between these groups of compounds.

  16. Gene amplification of 5-enol-pyruvylshikimate-3-phosphate synthase in glyphosate-resistant Kochia scoparia.

    PubMed

    Wiersma, Andrew T; Gaines, Todd A; Preston, Christopher; Hamilton, John P; Giacomini, Darci; Robin Buell, C; Leach, Jan E; Westra, Philip

    2015-02-01

    Field-evolved resistance to the herbicide glyphosate is due to amplification of one of two EPSPS alleles, increasing transcription and protein with no splice variants or effects on other pathway genes. The widely used herbicide glyphosate inhibits the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Globally, the intensive use of glyphosate for weed control has selected for glyphosate resistance in 31 weed species. Populations of suspected glyphosate-resistant Kochia scoparia were collected from fields located in the US central Great Plains. Glyphosate dose response verified glyphosate resistance in nine populations. The mechanism of resistance to glyphosate was investigated using targeted sequencing, quantitative PCR, immunoblotting, and whole transcriptome de novo sequencing to characterize the sequence and expression of EPSPS. Sequence analysis showed no mutation of the EPSPS Pro106 codon in glyphosate-resistant K. scoparia, whereas EPSPS genomic copy number and transcript abundance were elevated three- to ten-fold in resistant individuals relative to susceptible individuals. Glyphosate-resistant individuals with increased relative EPSPS copy numbers had consistently lower shikimate accumulation in leaf disks treated with 100 μM glyphosate and EPSPS protein levels were higher in glyphosate-resistant individuals with increased gene copy number compared to glyphosate-susceptible individuals. RNA sequence analysis revealed seven nucleotide positions with two different expressed alleles in glyphosate-susceptible reads. However, one nucleotide at the seven positions was predominant in glyphosate-resistant sequences, suggesting that only one of two EPSPS alleles was amplified in glyphosate-resistant individuals. No alternatively spliced EPSPS transcripts were detected. Expression of five other genes in the chorismate pathway was unaffected in glyphosate-resistant individuals with increased EPSPS expression. These results indicate

  17. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions.

    PubMed

    Beld, Joris; Blatti, Jillian L; Behnke, Craig; Mendez, Michael; Burkart, Michael D

    2014-08-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes.

  18. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions

    PubMed Central

    Beld, Joris; Blatti, Jillian L.; Behnke, Craig; Mendez, Michael; Burkart, Michael D.

    2014-01-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes. PMID:25110394

  19. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    PubMed

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  20. Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis

    PubMed Central

    Wright, Jaden R.; Keffer-Wilkes, Laura C.; Dobing, Selina R.; Kothe, Ute

    2011-01-01

    Pseudouridine synthases catalyze formation of the most abundant modification of functional RNAs by site-specifically isomerizing uridines to pseudouridines. While the structure and substrate specificity of these enzymes have been studied in detail, the kinetic and the catalytic mechanism of pseudouridine synthases remain unknown. Here, the first pre-steady-state kinetic analysis of three Escherichia coli pseudouridine synthases is presented. A novel stopped-flow absorbance assay revealed that substrate tRNA binding by TruB takes place in two steps with an overall rate of 6 sec−1. In order to observe catalysis of pseudouridine formation directly, the traditional tritium release assay was adapted for the quench-flow technique, allowing, for the first time, observation of a single round of pseudouridine formation. Thereby, the single-round rate constant of pseudouridylation (kΨ) by TruB was determined to be 0.5 sec−1. This rate constant is similar to the kcat obtained under multiple-turnover conditions in steady-state experiments, indicating that catalysis is the rate-limiting step for TruB. In order to investigate if pseudouridine synthases are characterized by slow catalysis in general, the rapid kinetic quench-flow analysis was also performed with two other E. coli enzymes, RluA and TruA, which displayed rate constants of pseudouridine formation of 0.7 and 0.35 sec−1, respectively. Hence, uniformly slow catalysis might be a general feature of pseudouridine synthases that share a conserved catalytic domain and supposedly use the same catalytic mechanism. PMID:21998096

  1. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    PubMed Central

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  2. The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases.

    PubMed

    Tsai, Shiou-Chuan Sheryl

    2018-06-20

    Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.

  3. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Ke-Mian; State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193; Chang, Chia-Chun

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthasemore » 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.« less

  4. Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the TPS-B terpene synthase family.

    PubMed

    Sharkey, Thomas D; Gray, Dennis W; Pell, Heather K; Breneman, Steven R; Topper, Lauren

    2013-04-01

    Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)-β-ocimene synthases form a monophyletic group within the Tps-b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps-b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps-b genes indicates that isoprene emission from non-rosid angiosperms likely arose independently. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  5. Hidden overflow pathway to L-phenylalanine in Pseudomonas aeruginosa.

    PubMed Central

    Fiske, M J; Whitaker, R J; Jensen, R A

    1983-01-01

    Pseudomonas aeruginosa is representative of a large group of pseudomonad bacteria that possess coexisting alternative pathways to L-phenylalanine (as well as to L-tyrosine). These multiple flow routes to aromatic end products apparently account for the inordinate resistance of P. aeruginosa to end product analogs. Manipulation of carbon source nutrition produced a physiological state of sensitivity to p-fluorophenylalanine and m-fluorophenylalanine, each a specific antimetabolite of L-phenylalanine. Analog-resistant mutants obtained fell into two classes. One type lacked feedback sensitivity of prephenate dehydratase and was the most dramatic excretor of L-phenylalanine. The presence of L-tyrosine curbed phenylalanine excretion to one-third, a finding explained by potent early-pathway regulation of 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase-Tyr (a DAHP synthase subject to allosteric inhibition by L-tyrosine). The second class of regulatory mutants possessed a completely feedback-resistant DAHP synthase-Tyr, the major species (greater than 90%) of two isozymes. Deregulation of DAHP synthase-Tyr resulted in the escape of most chorismate molecules produced into an unregulated overflow route consisting of chorismate mutase (monofunctional), prephenate aminotransferase, and arogenate dehydratase. In the wild type the operation of the overflow pathway is restrained by factors that restrict early-pathway flux. These factors include the highly potent feedback control of DAHP synthase isozymes by end products as well as the strikingly variable abilities of different carbon source nutrients to supply the aromatic pathway with beginning substrates. Even in the wild type, where all allosteric regulation in intact, some phenylalanine overflow was found on glucose-based medium, but not on fructose-based medium. This carbon source-dependent difference was much more exaggerated in each class of regulatory mutants. PMID:6132913

  6. Alternative splicing: a novel mechanism of regulation identified in the chorismate mutase gene of the potato cyst nematode Globodera rostochiensis.

    PubMed

    Lu, Shun-Wen; Tian, Duanhua; Borchardt-Wier, Harmony B; Wang, Xiaohong

    2008-11-01

    Chorismate mutase (CM) secreted from the stylet of plant-parasitic nematodes plays an important role in plant parasitism. We isolated and characterized a new nematode CM gene (Gr-cm-1) from the potato cyst nematode, Globodera rostochiensis. The Gr-cm-1 gene was found to exist in the nematode genome as a single-copy gene that has two different alleles, Gr-cm-1A and Gr-cm-1B, both of which could give rise to two different mRNA transcripts of Gr-cm-1 and Gr-cm-1-IRII. In situ mRNA hybridization showed that the Gr-cm-1 gene was exclusively expressed within the subventral oesophageal gland cells of the nematode. Gr-cm-1 was demonstrated to encode a functional CM (GR-CM-1) potentially having a dimeric structure as the secreted bacterial *AroQ CMs. Gr-cm-1-IRII, generated by retention of intron 2 of the Gr-cm-1 pre-mRNA through alternative splicing (AS), would encode a truncated protein (GR-CM-1t) lacking the CM domain with no CM activity. The quantitative real-time reverse transcription-PCR assay revealed that splicing of the Gr-cm-1 gene was developmentally regulated; Gr-cm-1 was up-regulated whereas Gr-cm-1-IRII was down-regulated in early nematode parasitic stages compared to the preparasitic juvenile stage. Low-temperature SDS-PAGE analysis revealed that GR-CM-1 could form homodimers when expressed in Escherichia coli and the dimerization domain was retained in the truncated GR-CM-1t protein. The specific interaction between the two proteins was demonstrated in yeast. Our data suggested that the novel splice variant might function as a dominant negative isoform through heterodimerization with the full-length GR-CM-1 protein and that AS may represent an important mechanism for regulating CM activity during nematode parasitism.

  7. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites.

    PubMed

    Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F

    2011-08-02

    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.

  8. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases

    PubMed Central

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-01-01

    Abstract Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. PMID:28637270

  9. Plasticity and evolution of (+)-3-carene synthase and (-)-sabinene synthase functions of a sitka spruce monoterpene synthase gene family associated with weevil resistance.

    PubMed

    Roach, Christopher R; Hall, Dawn E; Zerbe, Philipp; Bohlmann, Jörg

    2014-08-22

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (-)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (-)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (-)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases.

    PubMed

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-10-01

    Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica.

    PubMed

    Maluf, Mirian Perez; da Silva, Carla Cristina; de Oliveira, Michelle de Paula Abreu; Tavares, Aline Gomes; Silvarolla, Maria Bernadete; Guerreiro, Oliveiro

    2009-10-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  12. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    PubMed Central

    2009-01-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence. PMID:21637458

  13. Cellulose in Cyanobacteria. Origin of Vascular Plant Cellulose Synthase?

    PubMed Central

    Nobles, David R.; Romanovicz, Dwight K.; Brown, R. Malcolm

    2001-01-01

    Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba × Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes. PMID:11598227

  14. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode†

    PubMed Central

    Caner, Sami; Nguyen, Nham; Aguda, Adeleke; Zhang, Ran; Pan, Yuan T; Withers, Stephen G; Brayer, Gary D

    2013-01-01

    Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of the key enzymes in the other two pathways have already been determined. Herein, we present the first structure of TreS from Mycobacterium smegmatis, thereby providing insights into the catalytic machinery involved in this intriguing intramolecular reaction. This structure, which is of interest both mechanistically and as a potential pharmaceutical target, reveals a narrow and enclosed active site pocket within which intramolecular substrate rearrangements can occur. We also present the structure of a complex of TreS with acarbose, revealing a hitherto unsuspected oligosaccharide-binding site within the C-terminal domain. This may well provide an anchor point for the association of TreS with glycogen, thereby enhancing its role in glycogen biosynthesis and degradation. PMID:23735230

  15. HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS.

    PubMed

    PORRA, R J; ROSS, B D

    1965-03-01

    1. The preparation of a crude extract of Clostridium tetanomorphum containing cobalt porphyrin synthase but little haem-synthase activity is described. 2. The properties of cobalt porphyrin synthase in the clostridial extracts is compared with the properties of a haem synthase present in crude extracts of the yeast Torulopsis utilis. 3. Cobalt porphyrin synthase in extracts of C. tetanomorphum inserts Co(2+) ions into the following dicarboxylic porphyrins in descending order of rate of insertion: meso-, deutero- and proto-porphyrins. Esterification renders meso- and deutero-porphyrins inactive as substrates. Neither the tetracarboxylic (coproporphyrin III) nor the octacarboxylic (uroporphyrin III) compounds are converted into cobalt porphyrins by the extract, but the non-enzymic incorporation of Co(2+) ions into these two porphyrins is rapid. These extracts are unable to insert Mn(2+), Zn(2+), Mg(2+) or Cu(2+) ions into mesoporphyrin. 4. Crude extracts of T. utilis readily insert both Co(2+) and Fe(2+) ions into deutero-, meso, and proto-porphyrins. Unlike the extracts of C. tetanomorphum, these preparations catalyse the insertion of Co(2+) ions into deuteroporphyrin more rapidly than into mesoporphyrin. This parallels the formation of haems by the T. utilis extract. 5. Cobalt porphyrin synthase is present in the particulate fraction of the extracts of C. tetanomorphum but requires a heat-stable factor present in the soluble fraction. This soluble factor can be replaced by GSH. 6. Cobalt porphyrin synthase in the clostridial extract is inhibited by iodoacetamide and to a smaller extent by p-chloromercuribenzoate and N-ethylmaleimide. The haem synthases of T. utilis and Micrococcus denitrificans are also inhibited by various thiol reagents.

  16. Characterization of a monoterpene synthase from Paeonia lactiflora producing α-pinene as its single product.

    PubMed

    Ma, Xiaohui; Guo, Juan; Ma, Ying; Jin, Baolong; Zhan, Zhilai; Yuan, Yuan; Huang, Luqi

    2016-07-01

    To identify a terpene synthase that catalyzes the conversion of geranyl pyrophosphate (GPP) to α-pinene and is involved in the biosynthesis of paeoniflorin. Two new terpene synthase genes were isolated from the transcriptome data of Peaonia lactiflora. Phylogenetic analysis and sequence characterization revealed that one gene, named PlPIN, encoded a monoterpene synthase that might be involved in the biosynthesis of paeoniflorin. In vitro enzyme assay showed that, in contrast to most monoterpene synthases, PlPIN encoded an α-pinene synthase which converted GPP into α-pinene as a single product. This newly identified α-pinene synthase could be used for improving paeoniflorin accumulation by metabolic engineering or for producing α-pinene via synthetic biology.

  17. Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases*

    PubMed Central

    Jones, Christopher G.; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg

    2011-01-01

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. PMID:21454632

  18. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    PubMed

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide

  19. Distribution of Callose Synthase, Cellulose Synthase, and Sucrose Synthase in Tobacco Pollen Tube Is Controlled in Dissimilar Ways by Actin Filaments and Microtubules1[W

    PubMed Central

    Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C.; Cresti, Mauro

    2011-01-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules. PMID:21205616

  20. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases.

    PubMed

    Jones, Christopher G; Moniodis, Jessie; Zulak, Katherine G; Scaffidi, Adrian; Plummer, Julie A; Ghisalberti, Emilio L; Barbour, Elizabeth L; Bohlmann, Jörg

    2011-05-20

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei

    PubMed Central

    Pérez, Esclaudys; Rubio, M. Belén; Cardoza, Rosa E.; Gutiérrez, Santiago; Bettiol, Wagner; Monte, Enrique; Hermosa, Rosa

    2015-01-01

    Species of Trichoderma exert direct biocontrol activity against soil-borne plant pathogens due to their ability to compete for nutrients and to inhibit or kill their targets through the production of antibiotics and/or hydrolytic enzymes. In addition to these abilities, Trichoderma spp. have beneficial effects for plants, including the stimulation of defenses and the promotion of growth. Here we study the role in biocontrol of the T. parareesei Tparo7 gene, encoding a chorismate mutase (CM), a shikimate pathway branch point leading to the production of aromatic amino acids, which are not only essential components of protein synthesis but also the precursors of a wide range of secondary metabolites. We isolated T. parareesei transformants with the Tparo7 gene silenced. Compared with the wild-type, decreased levels of Tparo7 expression in the silenced transformants were accompanied by reduced CM activity, lower growth rates on different culture media, and reduced mycoparasitic behavior against the phytopathogenic fungi Rhizoctonia solani, Fusarium oxysporum and Botrytis cinerea in dual cultures. By contrast, higher amounts of the aromatic metabolites tyrosol, 2-phenylethanol and salicylic acid were detected in supernatants from the silenced transformants, which were able to inhibit the growth of F. oxysporum and B. cinerea. In in vitro plant assays, Tparo7-silenced transformants also showed a reduced capacity to colonize tomato roots. The effect of Tparo7-silencing on tomato plant responses was examined in greenhouse assays. The growth of plants colonized by the silenced transformants was reduced and the plants exhibited an increased susceptibility to B. cinerea in comparison with the responses observed for control plants. In addition, the plants turned yellowish and were defective in jasmonic acid- and ethylene-regulated signaling pathways which was seen by expression analysis of lipoxygenase 1 (LOX1), ethylene-insensitive protein 2 (EIN2) and pathogenesis

  2. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  3. The Conformational Flexibility of the Acyltransferase from the Disorazole Polyketide Synthase Is Revealed by an X-ray Free-Electron Laser Using a Room-Temperature Sample Delivery Method for Serial Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas

    The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.

  4. The Conformational Flexibility of the Acyltransferase from the Disorazole Polyketide Synthase Is Revealed by an X-ray Free-Electron Laser Using a Room-Temperature Sample Delivery Method for Serial Crystallography

    DOE PAGES

    Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas; ...

    2017-08-23

    The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.

  5. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    PubMed Central

    Engprasert, Surang; Taura, Futoshi; Kawamukai, Makoto; Shoyama, Yukihiro

    2004-01-01

    Background Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots. PMID:15550168

  6. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  7. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  8. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  9. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  10. Aromatic Polyketide Synthases (Purification, Characterization, and Antibody Development to Benzalacetone Synthase from Raspberry Fruits).

    PubMed Central

    Borejsza-Wysocki, W.; Hrazdina, G.

    1996-01-01

    p-Hydroxyphenylbutan-2-one, the characteristic aroma compound of raspberries (Rubus idaeus L.), is synthesized from p-coumaryl-coenzyme A and malonyl-coenzyme A in a two-step reaction sequence that is catalyzed by benzalacetone synthase and benzalacetone reductase (W. Borejsza-Wysocki and G. Hrazdina [1994] Phytochemistry 35: 623-628). Benzalacetone synthase condenses one malonate with p-coumarate to form the pathway intermediate p-hydroxyphenylbut-3-ene-2-one (p-hydroxybenzalacetone) in a reaction that is similar to those catalyzed by chalcone and stilbene synthases. We have obtained an enzyme preparation from ripe raspberries that was preferentially enriched in benzalacetone synthase (approximately 170-fold) over chalcone synthase (approximately 14-fold) activity. This preparation was used to characterize benzalacetone synthase and to develop polyclonal antibodies in rabbits. Benzalacetone synthase showed similarity in its molecular properties to chalcone synthase but differed distinctly in its substrate specificity, response to 2-mercaptoethanol and ethylene glycol, and induction in cell-suspension cultures. The product of the enzyme, p-hydroxybenzalacetone, inhibited mycelial growth of the raspberry pathogen Phytophthora fragariae var rubi at 250 [mu]M. We do not know whether the dual activity in the benzalacetone synthase preparation is the result of a bifunctional enzyme or is caused by contamination with chalcone synthase that was also present. The rapid induction of the enzyme in cell-suspension cultures upon addition of yeast extract and the toxicity of its product, p-hydroxybenzalacetone, to phytopathogenic fungi also suggest that the pathway may be part of a plant defense response. PMID:12226219

  11. The Conformational Flexibility of the Acyltransferase from the Disorazole Polyketide Synthase Is Revealed by an X-ray Free-Electron Laser Using a Room-Temperature Sample Delivery Method for Serial Crystallography

    PubMed Central

    Allison, Kim; Robbins, Thomas; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Khosla, Chaitan; DeMirci, Hasan; McPhillips, Scott E.; Hollenbeck, Michael; Soltis, Michael; Cohen, Aina E.

    2017-01-01

    The crystal structure of the trans-acyltrans-ferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for the direct delivery of the sample into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes for polyketide synthase reaction dynamics are discussed. PMID:28832129

  12. [Advances in isoprene synthase research].

    PubMed

    Gou, Yan; Liu, Zhongchuan; Wang, Ganggang

    2017-11-25

    Isoprene emission can lead to significant consequence for atmospheric chemistry. In addition, isoprene is a chemical compound for various industrial applications. In the organisms, isoprene is produced by isoprene synthase that eliminates the pyrophosphate from the dimethylallyl diphosphate. As a key enzyme of isoprene formation, isoprene synthase plays an important role in the process of natural emission and artificial synthesis of isoprene. So far, isoprene synthase has been found in various plants. Isoprene synthases from different sources are of conservative structural and similar biochemical properties. In this review, the biochemical and structural characteristics of isoprene synthases from different sources were compared, the catalytic mechanism of isoprene synthase was discussed, and the perspective application of the enzyme in bioengineering was proposed.

  13. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    PubMed

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J; Vassallo, David A; Vega, Irving E; Arold, Stefan T; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  14. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    PubMed Central

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J.; Vassallo, David A.; Vega, Irving E.; Arold, Stefan T.; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  15. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM.

    PubMed

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-10-06

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.

  16. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM

    PubMed Central

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-01-01

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases. DOI: http://dx.doi.org/10.7554/eLife.10180.001 PMID:26439008

  17. Mitochondrial Genome Integrity Mutations Uncouple the Yeast Saccharomyces cerevisiae ATP Synthase*║

    PubMed Central

    Wang, Yamin; Singh, Usha; Mueller, David M.

    2013-01-01

    The mitochondrial ATP synthase is a molecular motor, which couples the flow of rotons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the α-, β-, and γ-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the γ-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk. PMID:17244612

  18. Effects of EPSPS Copy Number Variation (CNV) and Glyphosate Application on the Aromatic and Branched Chain Amino Acid Synthesis Pathways in Amaranthus palmeri

    PubMed Central

    Fernández-Escalada, Manuel; Zulet-González, Ainhoa; Gil-Monreal, Miriam; Zabalza, Ana; Ravet, Karl; Gaines, Todd; Royuela, Mercedes

    2017-01-01

    A key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19), is the known target of the widely used herbicide glyphosate. Glyphosate resistance in Amaranthus palmeri, one of the most troublesome weeds in agriculture, has evolved through increased EPSPS gene copy number. The aim of this work was to study the pleiotropic effects of (i) EPSPS increased transcript abundance due to gene copy number variation (CNV) and of (ii) glyphosate application on the aromatic amino acid (AAA) and branched chain amino acid (BCAA) synthesis pathways. Hydroponically grown glyphosate sensitive (GS) and glyphosate resistant (GR) plants were treated with glyphosate 3 days after treatment. In absence of glyphosate treatment, high EPSPS gene copy number had only a subtle effect on transcriptional regulation of AAA and BCAA pathway genes. In contrast, glyphosate treatment provoked a general accumulation of the transcripts corresponding to genes of the AAA pathway leading to synthesis of chorismate in both GS and GR. After chorismate, anthranilate synthase transcript abundance was higher while chorismate mutase transcription showed a small decrease in GR and remained stable in GS, suggesting a regulatory branch point in the pathway that favors synthesis toward tryptophan over phenylalanine and tyrosine after glyphosate treatment. This was confirmed by studying enzyme activities in vitro and amino acid analysis. Importantly, this upregulation was glyphosate dose dependent and was observed similarly in both GS and GR populations. Glyphosate treatment also had a slight effect on the expression of BCAA genes but no general effect on the pathway could be observed. Taken together, our observations suggest that the high CNV of EPSPS in A. palmeri GR populations has no major pleiotropic effect on the expression of AAA biosynthetic genes, even in response to glyphosate treatment. This finding supports the idea that the fitness cost associated with EPSPS CNV

  19. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients.

    PubMed

    Noon, Jason B; Baum, Thomas J

    2016-04-12

    Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismate mutase (CM), and blastp searches of the non-redundant database resulted in highest similarity to bacterial sequences. Here, we searched nematode and non-nematode sequence databases to identify all the nematodes possible that contain these three genes, and to formulate hypotheses about when they most likely appeared in the phylum Nematoda. We then performed phylogenetic analyses combined with model selection tests of alternative models of sequence evolution to determine whether these genes were horizontally acquired from bacteria. Mining of nematode sequence databases determined that GNATs appeared in Hoplolaimina PPN late in evolution, while both INVs and CMs appeared before the radiation of the Hoplolaimina suborder. Also, Hoplolaimina GNATs, INVs and CMs formed well-supported clusters with different rhizosphere bacteria in the phylogenetic trees, and the model selection tests greatly supported models of HGT over descent via common ancestry. Surprisingly, the phylogenetic trees also revealed additional, well-supported clusters of bacterial GNATs, INVs and CMs with diverse eukaryotes and archaea. There were at least eleven and eight well-supported clusters of GNATs and INVs, respectively, from different bacteria with diverse eukaryotes and archaea. Though less frequent, CMs from different bacteria formed supported clusters with multiple different eukaryotes. Moreover, almost all individual clusters containing bacteria and eukaryotes or archaea contained species that inhabit very similar

  20. Biochemical Characterization and Homology Modeling of Methylbutenol Synthase and Implications for Understanding Hemiterpene Synthase Evolution in Plants*

    PubMed Central

    Gray, Dennis W.; Breneman, Steven R.; Topper, Lauren A.; Sharkey, Thomas D.

    2011-01-01

    2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ∼90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K+, whereas isoprene production is inhibited by K+ such that, at physiologically relevant [K+], little or no isoprene emission should be detected from MBO-emitting trees. The Km of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site. PMID:21504898

  1. Novel Interconnections in Lipid Metabolism Revealed by Overexpression of Sphingomyelin Synthase-1*

    PubMed Central

    Deevska, Gergana M.; Dotson, Patrick P.; Karakashian, Alexander A.; Isaac, Giorgis; Wrona, Mark; Kelly, Samuel B.; Merrill, Alfred H.; Nikolova-Karakashian, Mariana N.

    2017-01-01

    This study investigates the consequences of elevating sphingomyelin synthase 1 (SMS1) activity, which generates the main mammalian sphingolipid, sphingomyelin. HepG2 cells stably transfected with SMS1 (HepG2-SMS1) exhibit elevated enzyme activity in vitro and increased sphingomyelin content (mainly C22:0- and C24:0-sphingomyelin) but lower hexosylceramide (Hex-Cer) levels. HepG2-SMS1 cells have fewer triacylglycerols than controls but similar diacylglycerol acyltransferase activity, triacylglycerol secretion, and mitochondrial function. Treatment with 1 mm palmitate increases de novo ceramide synthesis in both cell lines to a similar degree, causing accumulation of C16:0-ceramide (and some C18:0-, C20:0-, and C22:0-ceramides) as well as C16:0- and C18:0-Hex-Cers. In these experiments, the palmitic acid is delivered as a complex with delipidated BSA (2:1, mol/mol) and does not induce significant lipotoxicity. Based on precursor labeling, the flux through SM synthase also increases, which is exacerbated in HepG2-SMS1 cells. In contrast, palmitate-induced lipid droplet formation is significantly reduced in HepG2-SMS1 cells. [14C]Choline and [3H]palmitate tracking shows that SMS1 overexpression apparently affects the partitioning of palmitate-enriched diacylglycerol between the phosphatidylcholine and triacylglycerol pathways, to the benefit of the former. Furthermore, triacylglycerols from HepG2-SMS1 cells are enriched in polyunsaturated fatty acids, which is indicative of active remodeling. Together, these results delineate novel metabolic interactions between glycerolipids and sphingolipids. PMID:28087695

  2. Functional reconstitution of cellulose synthase in Escherichia coli.

    PubMed

    Imai, Tomoya; Sun, Shi-Jing; Horikawa, Yoshiki; Wada, Masahisa; Sugiyama, Junji

    2014-11-10

    Cellulose is a high molecular weight polysaccharide of β1 → 4-d-glucan widely distributed in nature-from plant cell walls to extracellular polysaccharide in bacteria. Cellulose synthase, together with other auxiliary subunit(s) in the cell membrane, facilitates the fibrillar assembly of cellulose polymer chains into a microfibril. The gene encoding the catalytic subunit of cellulose synthase is cesA and has been identified in many cellulose-producing organisms. Very few studies, however, have shown that recombinant CesA protein synthesizes cellulose polymer, but the mechanism by which CesA protein synthesizes cellulose microfibrils is not known. Here we show that cellulose-synthesizing activity is successfully reconstituted in Escherichia coli by expressing the bacterial cellulose synthase complex of Gluconacetobacter xylinus: CesA and CesB (formerly BcsA and BcsB, respectively). Cellulose synthase activity was, however, only detected when CesA and CesB were coexpressed with diguanyl cyclase (DGC), which synthesizes cyclic-di-GMP (c-di-GMP), which in turn activates cellulose-synthesizing activity in bacteria. Direct observation by electron microscopy revealed extremely thin fibrillar structures outside E. coli cells, which were removed by cellulase treatment. This fiber structure is not likely to be the native crystallographic form of cellulose I, given that it was converted to cellulose II by a chemical treatment milder than ever described. We thus putatively conclude that this fine fiber is an unprecedented structure of cellulose. Despite the inability of the recombinant enzyme to synthesize the native structure of cellulose, the system described in this study, named "CESEC (CEllulose-Synthesizing E. Coli)", represents a useful tool for functional analyses of cellulose synthase and for seeding new nanomaterials.

  3. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  4. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase

    PubMed Central

    Fukuoh, Atsushi; Cannino, Giuseppe; Gerards, Mike; Buckley, Suzanne; Kazancioglu, Selena; Scialo, Filippo; Lihavainen, Eero; Ribeiro, Andre; Dufour, Eric; Jacobs, Howard T

    2014-01-01

    The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number. PMID:24952591

  5. The Sucrose Synthase Gene Family in Chinese Pear (Pyrus bretschneideri Rehd.): Structure, Expression, and Evolution.

    PubMed

    Abdullah, Muhammad; Cao, Yungpeng; Cheng, Xi; Meng, Dandan; Chen, Yu; Shakoor, Awais; Gao, Junshan; Cai, Yongping

    2018-05-11

    Sucrose synthase (SS) is a key enzyme involved in sucrose metabolism that is critical in plant growth and development, and particularly quality of the fruit. Sucrose synthase gene families have been identified and characterized in plants various plants such as tobacco, grape, rice, and Arabidopsis . However, there is still lack of detailed information about sucrose synthase gene in pear. In the present study, we performed a systematic analysis of the pear ( Pyrus bretschneideri Rehd.) genome and reported 30 sucrose synthase genes. Subsequently, gene structure, phylogenetic relationship, chromosomal localization, gene duplications, promoter regions, collinearity, RNA-Seq data and qRT-PCR were conducted on these sucrose synthase genes. The transcript analysis revealed that 10 PbSSs genes (30%) were especially expressed in pear fruit development. Additionally, qRT-PCR analysis verified the RNA-seq data and shown that PbSS30 , PbSS24 , and PbSS15 have a potential role in the pear fruit development stages. This study provides important insights into the evolution of sucrose synthase gene family in pear and will provide assistance for further investigation of sucrose synthase genes functions in the process of fruit development, fruit quality and resistance to environmental stresses.

  6. The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer.

    PubMed

    Cathcart, Mary-Clare; Reynolds, John V; O'Byrne, Kenneth J; Pidgeon, Graham P

    2010-04-01

    Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI(2)/TXA(2) ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer.

  7. A comparative biochemical and structural analysis of the intracellular chorismate mutase (Rv0948c) from Mycobacterium tuberculosis H37Rv and the secreted chorismate mutase (y2828) from Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.K.; Robinson, H.; Reddy, S. K.

    2008-10-01

    The Rv0948c gene from Mycobacterium tuberculosis H{sub 37}R{sub v} encodes a 90 amino acid protein as the natural gene product with chorismate mutase (CM) activity. The protein, 90-MtCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 5.5 {+-} 0.2 s{sup -1} and a K{sub m} of 1500 {+-} 100 {mu}m at 37 C and pH 7.5. The 2.0 {angstrom} X-ray structure shows that 90-MtCM is an all {alpha}-helical homodimer (Protein Data Bank ID: 2QBV) with the topology of Escherichia coli CM (EcCM), and that both protomers contribute to each catalytic site. Superimposition onto the structure of EcCM and the sequencemore » alignment shows that the C-terminus helix 3 is shortened. The absence of two residues in the active site of 90-MtCM corresponding to Ser84 and Gln88 of EcCM appears to be one reason for the low k{sub cat}. Hence, 90-MtCM belongs to a subfamily of {alpha}-helical AroQ CMs termed AroQ{sub {delta}}. The CM gene (y2828) from Yersinia pestis encodes a 186 amino acid protein with an N-terminal signal peptide that directs the protein to the periplasm. The mature protein, *YpCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 70 {+-} 5 s{sup -1} and K{sub m} of 500 {+-} 50 {mu}m at 37 C and pH 7.5. The 2.1 {angstrom} X-ray structure shows that *YpCM is an all {alpha}-helical protein, and functions as a homodimer, and that each protomer has an independent catalytic unit (Protein Data Bank ID: 2GBB). *YpCM belongs to the AroQ{sub {gamma}} class of CMs, and is similar to the secreted CM (Rv1885c, *MtCM) from M. tuberculosis.« less

  8. Alcoholytic Cleavage of Polyhydroxyalkanoate Chains by Class IV Synthases Induced by Endogenous and Exogenous Ethanol

    PubMed Central

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki

    2014-01-01

    Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature. PMID:24334666

  9. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

  10. Crystallization and preliminary X-ray analysis of the isomerase domain of glucosamine-6-phosphate synthase from Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olchowy, Jaroslaw; Jedrzejczak, Robert; Milewski, Slawomir

    2005-11-01

    The isomerase domain of glucosamine-6-phosphate synthase from C. albicans has been crystallized and X-ray diffraction data have been collected. Preliminary analysis of the data reveals the oligomeric structure of the eukaryotic synthase to be a ‘dimer’ of prokaryotic-like dimers. Glucosamine-6-phosphate synthase (EC 2.6.1.16) catalyses the first and practically irreversible step in the hexosamine metabolism pathway, the end product of which, uridine 5′-diphospho-N-acetyl d-glucosamine, is an essential substrate for assembly of the cell wall. The isomerase domain, consisting of residues 346–712 (42 kDa), of glucosamine-6-phosphate synthase from Candida albicans has been crystallized. X-ray analysis revealed that the crystals belonged to spacemore » group I4, with unit-cell parameters a = b = 149, c = 103 Å. Diffraction data were collected to 3.8 Å. Preliminary results from molecular replacement using the homologous bacterial monomer reveal that the asymmetric unit contains two monomers that resemble a bacterial dimer. The crystal lattice consists of pairs of such symmetry-related dimers forming elongated tetramers.« less

  11. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase.

    PubMed

    Hirooka, Kazutake; Bamba, Takeshi; Fukusaki, Ei-ichiro; Kobayashi, Akio

    2003-03-01

    trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.

  12. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase.

    PubMed

    Olteanu, Horatiu; Munson, Troy; Banerjee, Ruma

    2002-11-12

    Methionine synthase reductase (MSR) catalyzes the conversion of the inactive form of human methionine synthase to the active state of the enzyme. This reaction is of paramount physiological importance since methionine synthase is an essential enzyme that plays a key role in the methionine and folate cycles. A common polymorphism in human MSR has been identified (66A --> G) that leads to replacement of isoleucine with methionine at residue 22 and has an allele frequency of 0.5. Another polymorphism is 524C --> T, which leads to the substitution of serine 175 with leucine, but its allele frequency is not known. The I22M polymorphism is a genetic determinant for mild hyperhomocysteinemia, a risk factor for cardiovascular disease. In this study, we have examined the kinetic properties of the M22/S175 and I22/S175 and the I22/L175 and I22/S175 pairs of variants. EPR spectra of the semiquinone forms of variants I22/S175 and M22/S175 are indistinguishable and exhibit an isotropic signal at g = 2.00. In addition, the electronic absorption and reduction stoichiometries with NADPH are identical in these variants. Significantly, the variants activate methionine synthase with the same V(max); however, a 3-4-fold higher ratio of MSR to methionine synthase is required to elicit maximal activity with the M22/S175 and I22/L175 variant versus the I22/S175 enzyme. Differences are also observed between the variants in the efficacies of reduction of the artificial electron acceptors: ferricyanide, 2,6-dichloroindophenol, 3-acetylpyridine adenine dinucleotide phosphate, menadione, and the anticancer drug doxorubicin. These results reveal differences in the interactions between the natural and artificial electron acceptors and MSR variants in vitro, which are predicted to result in less efficient reductive repair of methionine synthase in vivo.

  13. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function.

    PubMed

    Wells, Stephen A; Crennell, Susan J; Danson, Michael J

    2014-10-01

    Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative. © 2014 Wiley Periodicals, Inc.

  14. The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria

    PubMed Central

    Metzger, Ute; Schall, Christoph; Zocher, Georg; Unsöld, Inge; Stec, Edyta; Li, Shu-Ming; Heide, Lutz; Stehle, Thilo

    2009-01-01

    Ergot alkaloids are toxins and important pharmaceuticals that are produced biotechnologically on an industrial scale. The first committed step of ergot alkaloid biosynthesis is catalyzed by dimethylallyl tryptophan synthase (DMATS; EC 2.5.1.34). Orthologs of DMATS are found in many fungal genomes. We report here the x-ray structure of DMATS, determined at a resolution of 1.76 Å. A complex of DMATS from Aspergillus fumigatus with its aromatic substrate L-tryptophan and with an analogue of its isoprenoid substrate dimethylallyl diphosphate reveals the structural basis of this enzyme-catalyzed Friedel-Crafts reaction, which shows strict regiospecificity for position 4 of the indole nucleus of tryptophan as well as unusual independence of the presence of Mg2+ ions. The 3D structure of DMATS belongs to a rare β/α barrel fold, called prenyltransferase barrel, that was recently discovered in a small group of bacterial enzymes with no sequence similarity to DMATS. These bacterial enzymes catalyze the prenylation of aromatic substrates in the biosynthesis of secondary metabolites (i.e., a reaction similar to that of DMATS). PMID:19706516

  15. A Comparative Biochemical and Structural Analysis of the Intracellular chorismate mutase (Rv0948c) from Mycobacterium tuberculosis H(37)R(v) and the Secreted chorismate mutase (y2828) from Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kim; S Reddy; B Nelson

    The Rv0948c gene from Mycobacterium tuberculosis H{sub 37}R{sub v} encodes a 90 amino acid protein as the natural gene product with chorismate mutase (CM) activity. The protein, 90-MtCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 5.5 {+-} 0.2 s{sup -1} and a K{sub m} of 1500 {+-} 100 {micro}m at 37 C and pH 7.5. The 2.0 {angstrom} X-ray structure shows that 90-MtCM is an all {alpha}-helical homodimer (Protein Data Bank ID: 2QBV) with the topology of Escherichia coli CM (EcCM), and that both protomers contribute to each catalytic site. Superimposition onto the structure of EcCM and the sequencemore » alignment shows that the C-terminus helix 3 is shortened. The absence of two residues in the active site of 90-MtCM corresponding to Ser84 and Gln88 of EcCM appears to be one reason for the low k{sub cat}. Hence, 90-MtCM belongs to a subfamily of {alpha}-helical AroQ CMs termed AroQ{delta}. The CM gene (y2828) from Yersinia pestis encodes a 186 amino acid protein with an N-terminal signal peptide that directs the protein to the periplasm. The mature protein, *YpCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 70 {+-} 5 s{sup -1} and Km of 500 {+-} 50 {micro}m at 37 C and pH 7.5. The 2.1 {angstrom} X-ray structure shows that *YpCM is an all {alpha}-helical protein, and functions as a homodimer, and that each protomer has an independent catalytic unit (Protein Data Bank ID: 2GBB). *YpCM belongs to the AroQ{gamma} class of CMs, and is similar to the secreted CM (Rv1885c, *MtCM) from M. tuberculosis.« less

  16. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  17. Resistance Phenotypes Mediated by Aminoacyl-Phosphatidylglycerol Synthases

    PubMed Central

    Arendt, Wiebke; Hebecker, Stefanie; Jäger, Sonja; Nimtz, Manfred

    2012-01-01

    The specific aminoacylation of the phospholipid phosphatidylglycerol (PG) with alanine or with lysine catalyzed by aminoacyl-phosphatidylglycerol synthases (aaPGS) was shown to render various organisms less susceptible to antibacterial agents. This study makes use of Pseudomonas aeruginosa chimeric mutant strains producing lysyl-phosphatidylglycerol (L-PG) instead of the naturally occurring alanyl-phosphatidylglycerol (A-PG) to study the resulting impact on bacterial resistance. Consequences of such artificial phospholipid composition were studied in the presence of an overall of seven antimicrobials (β-lactams, a lipopeptide antibiotic, cationic antimicrobial peptides [CAMPs]) to quantitatively assess the effect of A-PG substitution (with L-PG, L-PG and A-PG, increased A-PG levels). For the employed Gram-negative P. aeruginosa model system, an exclusive charge repulsion mechanism does not explain the attenuated antimicrobial susceptibility due to PG modification. Additionally, the specificity of nine orthologous aaPGS enzymes was experimentally determined. The newly characterized protein sequences allowed for the establishment of a significant group of A-PG synthase sequences which were bioinformatically compared to the related group of L-PG synthesizing enzymes. The analysis revealed a diverse origin for the evolution of A-PG and L-PG synthases, as the specificity of an individual enzyme is not reflected in terms of a characteristic sequence motif. This finding is relevant for future development of potential aaPGS inhibitors. PMID:22267511

  18. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    PubMed

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  19. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    PubMed

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  20. A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase from Rahnella aquatilis with Significantly Reduced Glyphosate Sensitivity

    PubMed Central

    Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroAR.aquatilis, was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroAE.coli), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroAR.aquatilis were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroAE.coli. To probe the sites contributing to increased tolerance to glyphosate, mutant R.aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R.aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious. PMID:22870190

  1. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis

    PubMed Central

    Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052

  2. Cloning and characterization of chsD, a chitin synthase-like gene of Aspergillus fumigatus.

    PubMed

    Mellado, E; Specht, C A; Robbins, P W; Holden, D W

    1996-09-15

    A chitin synthase-like gene (chsD) was isolated from an Aspergillus fumigatus genomic DNA library. Comparisons with the predicted amino acid sequence from chsD reveals low but significant similarity to chitin synthases, to other N-acetylglucosaminyltransferases (NodC from Rhizopus spp., HasA from Streptococcus spp. and DG42 from vertebrates. A chsD- mutant strain constructed by gene disruption has a 20% reduction in total mycelial chitin content; however, no differences between the wild-type strain and the chsD- strain were found with respect to morphology, chitin synthase activity or virulence in a neutropenic murine model of aspergillosis. The results show that the chsD product has an important but inessential role in the synthesis of chitin in A. fumigatus.

  3. Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus.

    PubMed

    Kahlon, Amandeep Kaur; Roy, Sudeep; Sharma, Ashok

    2010-10-01

    Dehydrosqualene synthase of Staphylococcus aureus is involved in the synthesis of golden carotenoid pigment staphyloxanthin. This pigment of S. aureus provides the antioxidant property to this bacterium to survive inside the host cell. Dehydrosqualene synthase (CrtM) is having structural similarity with the human squalene synthase enzyme which is involved in the cholesterol synthesis pathway in humans (Liu et al., 2008). Cholesterol lowering drugs were found to have inhibitory effect on dehydrosqualene synthase enzyme of S. aureus. The present study attempts to focus on squalene synthase inhibitors, lapaquistat acetate and squalestatins reported as cholesterol lowering agents in vitro and in vivo but not studied in context to dehydrosqualene synthase of S. aureus. Mode of binding of lapaquistat acetate and squalestatin analogs on dehydrosqualene synthase (CrtM) enzyme of S. aureus was identified by performing docking analysis with Scigress Explorer Ultra 7.7 docking software. Based on the molecular docking analysis, it was found that the His18, Arg45, Asp48, Asp52, Tyr129, Gln165, Asn168 and Asp172 residues interacted with comparatively high frequency with the inhibitors studied. Comparative docking study with Discovery studio 2.0 also confirmed the involvement of these residues of dehydrosqualene synthase enzyme with the inhibitors studied. This further confirms the importance of these residues in the enzyme function. In silico ADMET analysis was done to predict the ADMET properties of the standard drugs and test compounds. This might provide insights to develop new drugs to target the virulence factor, dehydrosqualene synthase of S. aureus.

  4. Discovery of a new polyhydroxyalkanoate synthase from limestone soil through metagenomic approach.

    PubMed

    Tai, Yen Teng; Foong, Choon Pin; Najimudin, Nazalan; Sudesh, Kumar

    2016-04-01

    PHA synthase (PhaC) is the key enzyme in the production of biodegradable plastics known as polyhydroxyalkanoate (PHA). Nevertheless, most of these enzymes are isolated from cultivable bacteria using traditional isolation method. Most of the microorganisms found in nature could not be successfully cultivated due to the lack of knowledge on their growth conditions. In this study, a culture-independent approach was applied. The presence of phaC genes in limestone soil was screened using primers targeting the class I and II PHA synthases. Based on the partial gene sequences, a total of 19 gene clusters have been identified and 7 clones were selected for full length amplification through genome walking. The complete phaC gene sequence of one of the clones (SC8) was obtained and it revealed 81% nucleotide identity to the PHA synthase gene of Chromobacterium violaceum ATCC 12472. This gene obtained from uncultured bacterium was successfully cloned and expressed in a Cupriavidus necator PHB(-)4 PHA-negative mutant resulting in the accumulation of significant amount of PHA. The PHA synthase activity of this transformant was 64 ± 12 U/g proteins. This paper presents a pioneering study on the discovery of phaC in a limestone area using metagenomic approach. Through this study, a new functional phaC was discovered from uncultured bacterium. Phylogenetic classification for all the phaCs isolated from this study has revealed that limestone hill harbors a great diversity of PhaCs with activities that have not yet been investigated. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Structural Characteristics and Function of a New Kind of Thermostable Trehalose Synthase from Thermobaculum terrenum.

    PubMed

    Wang, Junqing; Ren, Xudong; Wang, Ruiming; Su, Jing; Wang, Feng

    2017-09-06

    Trehalose has important applications in the food industry and pharmaceutical manufacturing. The thermostable enzyme trehalose synthase from Thermobaculum terrenum (TtTS) catalyzes the reversible interconversion of maltose and trehalose. Here, we investigated the structural characteristics of TtTS in complex with the inhibitor TriS. TtTS exhibits the typical three domain glycoside hydrolase family 13 structure. The catalytic cleft consists of Asp202-Glu244-Asp310 and various conserved substrate-binding residues. However, among trehalose synthases, TtTS demonstrates obvious thermal stability. TtTS has more polar (charged) amino acids distributed on its protein structure surface and more aromatic amino acids buried within than other mesophilic trehalose synthases. Furthermore, TtTS structural analysis revealed four potential metal ion-binding sites rather than the two in a homologous structure. These factors may render TtTS relatively more thermostable among mesophilic trehalose synthases. The detailed thermophilic enzyme structure provided herein may provide guidance for further protein engineering in the design of stabilized enzymes.

  6. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A preventsmore » the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.« less

  7. Expression and Activity of Nitric Oxide Synthase Isoforms in Methamphetamine-Induced Striatal Dopamine Toxicity

    PubMed Central

    Friend, Danielle M.; Son, Jong H.; Keefe, Kristen A.

    2013-01-01

    Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7–30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury. PMID:23230214

  8. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  9. Impact of drought stress on specialised metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis).

    PubMed

    Radwan, Alzahraa; Kleinwächter, Maik; Selmar, Dirk

    2017-09-01

    In previous experiments, we demonstrated that the amount of monoterpenes in sage is increased massively by drought stress. Our current study is aimed to elucidate whether this increase is due, at least in part, to elevated activity of the monoterpene synthases responsible for the biosynthesis of essential oils in sage. Accordingly, the transcription rates of the monoterpene synthases were analyzed. Salvia officinalis plants were cultivated under moderate drought stress. The concentrations of monoterpenes as well as the expression of the monoterpene synthases were analyzed. The amount of monoterpenes massively increased in response to drought stress; it doubled after just two days of drought stress. The observed changes in monoterpene content mostly match with the patterns of monoterpene synthase expressions. The expression of bornyl diphosphate synthase was strongly up-regulated; its maximum level was reached after two days. Sabinene synthase increased gradually and reached a maximum after two weeks. In contrast, the transcript level of cineole synthase continuously declined. This study revealed that the stress related increase of biosynthesis is not only due to a "passive" shift caused by the stress related over-reduced status, but also is due - at least in part-to an "active" up-regulation of the enzymes involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Complementation analysis of mutants of nitric oxide synthase reveals that the active site requires two hemes.

    PubMed Central

    Xie, Q W; Leung, M; Fuortes, M; Sassa, S; Nathan, C

    1996-01-01

    For catalytic activity, nitric oxide synthases (NOSs) must be dimeric. Previous work revealed that the requirements for stable dimerization included binding of tetrahydrobiopterin (BH4), arginine, and heme. Here we asked what function is served by dimerization. We assessed the ability of individually inactive mutants of mouse inducible NOS (iNOS; NOS2), each deficient in binding a particular cofactor or cosubstrate, to complement each other by generating NO upon cotransfection into human epithelial cells. The ability of the mutants to homodimerize was gauged by gel filtration and/or PAGE under partially denaturing conditions, both followed by immunoblot. Their ability to heterodimerize was assessed by coimmunoprecipitation. Heterodimers that contained only one COOH-terminal hemimer and only one BH4-binding site could both form and function, even though the NADPH-, FAD-, and FMN-binding domains (in the COOH-terminal hemimer) and the BH4-binding sites (in the NH2-terminal hemimer) were contributed by opposite chains. Heterodimers that contained only one heme-binding site (Cys-194) could also form, either in cis or in trans to the nucleotide-binding domains. However, for NO production, both chains had to bind heme. Thus, NO production by iNOS requires dimerization because the active site requires two hemes. Images Fig. 2 Fig. 3 Fig. 4 Fig. 7 PMID:8643499

  11. Biosynthesis of Lipoic Acid in Arabidopsis: Cloning and Characterization of the cDNA for Lipoic Acid Synthase1

    PubMed Central

    Yasuno, Rie; Wada, Hajime

    1998-01-01

    Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide. PMID:9808738

  12. Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3-L1 adipocytes.

    PubMed

    Oreña, S J; Torchia, A J; Garofalo, R S

    2000-05-26

    The role of glycogen-synthase kinase 3 (GSK3) in insulin-stimulated glucose transport and glycogen synthase activation was investigated in 3T3-L1 adipocytes. GSK3 protein was clearly present in adipocytes and was found to be more abundant than in muscle and liver cell lines. The selective GSK3 inhibitor, LiCl, stimulated glucose transport and glycogen synthase activity (20 and 65%, respectively, of the maximal (1 microm) insulin response) and potentiated the responses to a submaximal concentration (1 nm) of insulin. LiCl- and insulin-stimulated glucose transport were abolished by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin; however, LiCl stimulation of glycogen synthase was not. In contrast to the rapid stimulation of glucose transport by insulin, transport stimulated by LiCl increased gradually over 3-5 h reaching 40% of the maximal insulin-stimulated level. Both LiCl- and insulin-stimulated glycogen synthase activity were maximal at 25 min. However, insulin-stimulated glycogen synthase activity returned to basal after 2 h, coincident with reactivation of GSK3. After a 2-h exposure to insulin, glycogen synthase was refractory to restimulation with insulin, indicating selective desensitization of this pathway. However, LiCl could partially stimulate glycogen synthase in desensitized cells. Furthermore, coincubation with LiCl during the 2 h exposure to insulin completely blocked desensitization of glycogen synthase activity. In summary, inhibition of GSK3 by LiCl: 1) stimulated glycogen synthase activity directly and independently of PI3-kinase, 2) stimulated glucose transport at a point upstream of PI3-kinase, 3) stimulated glycogen synthase activity in desensitized cells, and 4) prevented desensitization of glycogen synthase due to chronic insulin treatment. These data are consistent with GSK3 playing a central role in the regulation of glycogen synthase activity and a contributing factor in the regulation of glucose transport in 3T3-L1

  13. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenitzer, Veronika; Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg; Eichner, Norbert

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report themore » heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.« less

  14. Glycogen synthase kinase-3β inhibition of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (Wasabia japonica Matsum).

    PubMed

    Yoshida, Jun; Nomura, Satomi; Nishizawa, Naoyuki; Ito, Yoshiaki; Kimura, Ken-ichi

    2011-01-01

    A new biological activity of 6-(methylsulfinyl)hexyl isothiocyanate derived from Wasabia japonica was discovered as an inhibitor of glycogen synthase kinase-3β. The most potent isothiocyanate, 9-(methylsulfinyl)hexyl isothiocyanate, inhibited glycogen synthase kinase-3β at a K(i) value of 10.5 µM and showed ATP competitive inhibition. The structure-activity relationship revealed an inhibitory potency of methylsulfinyl isothiocyanate dependent on the alkyl chain length and the sulfoxide, sulfone, and/or the isothiocyanate moiety.

  15. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase.

    PubMed

    Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco

    2016-05-01

    (-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.

  16. Protein modelling of triterpene synthase genes from mangrove plants using Phyre2 and Swiss-model

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.; Sulistiyono, N.; Hayati, R.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Molecular cloning of five oxidosqualene cyclases (OSC) genes from Bruguiera gymnorrhiza, Kandelia candel, and Rhizophora stylosa had previously been cloned, characterized, and encoded mono and -multi triterpene synthases. The present study analyzed protein modelling of triterpene synthase genes from mangrove using Phyre2 and Swiss-model. The diversity was noted within protein modelling of triterpene synthases using Phyre2 from sequence identity (38-43%) and residue (696-703). RsM2 was distinguishable from others for template structure; it used lanosterol synthase as a template (PDB ID: w6j.1.A). By contrast, other genes used human lanosterol synthase (1w6k.1.A). The predicted bind sites were correlated with the product of triterpene synthase, the product of BgbAS was β-amyrin, while RsM1 contained a significant amount of β-amyrin. Similarly BgLUS and KcMS, both main products was lupeol, on the other hand, RsM2 with the outcome of taraxerol. Homology modelling revealed that 696 residues of BgbAS, BgLUS, RsM1, and RsM2 (91-92% of the amino acid sequence) had been modelled with 100% confidence by the single highest scoring template using Phyre2. This coverage was higher than Swiss-model (85-90%). The present study suggested that molecular cloning of triterpene genes provides useful tools for studying the protein modelling related regulation of isoprenoids biosynthesis in mangrove forests.

  17. Intersubunit structure within heterodimers of medium-chain prenyl diphosphate synthases. Formation of a hybrid-type heptaprenyl diphosphate synthase.

    PubMed

    Koike-Takeshita, A; Koyama, T; Ogura, K

    1998-10-01

    Among prenyltransferases that catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphate to produce prenyl diphosphates with various chain lengths and stereochemistries, medium-chain prenyl diphosphate synthases are exceptional in that they comprise two dissociable heteromeric protein components. These components exist without binding with each other under physiological conditions, and neither of them has any prenyltransferase activity by itself. In order to elucidate the precise molecular mechanism underlying expression of the catalytic function by such a unique two-component system, we examined the possibility of forming a hybrid between two of the components of three different medium-chain prenyl diphosphate synthases, components I and II of heptaprenyl diphosphate synthase from Bacillus subtilis, components I' and II' of heptaprenyl diphosphate synthase from Bacillus stearothermophilus, and components A and B of hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26. As a result, only the hybrid-type combination of component I and component II' gave distinct prenyltransferase activity. The hybrid-type enzyme catalyzed the synthesis of heptaprenyl diphosphate and showed moderate heat stability, which lay between those of the natural enzymes from B. subtilis and B. stearothermophilus. There is no possibility of forming a hybrid between the heptaprenyl and hexaprenyl diphosphate synthases.

  18. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Maiko; Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065; Ichihara, Masatoshi

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas frommore » melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.« less

  19. Glycogen synthase activation by sugars in isolated hepatocytes.

    PubMed

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  20. Phylogenomic and Domain Analysis of Iterative Polyketide Synthases in Aspergillus Species

    PubMed Central

    Lin, Shu-Hsi; Yoshimoto, Miwa; Lyu, Ping-Chiang; Tang, Chuan-Yi; Arita, Masanori

    2012-01-01

    Aspergillus species are industrially and agriculturally important as fermentors and as producers of various secondary metabolites. Among them, fungal polyketides such as lovastatin and melanin are considered a gold mine for bioactive compounds. We used a phylogenomic approach to investigate the distribution of iterative polyketide synthases (PKS) in eight sequenced Aspergilli and classified over 250 fungal genes. Their genealogy by the conserved ketosynthase (KS) domain revealed three large groups of nonreducing PKS, one group inside bacterial PKS, and more than 9 small groups of reducing PKS. Polyphyly of nonribosomal peptide synthase (NRPS)-PKS genes raised questions regarding the recruitment of the elegant conjugation machinery. High rates of gene duplication and divergence were frequent. All data are accessible through our web database at http://metabolomics.jp/wiki/Category:PK. PMID:22844193

  1. Nitric oxide synthase immunoreactivity in the nematode Trichinella britovi. Evidence for nitric oxide production by the parasite.

    PubMed

    Masetti, Massimo; Locci, Teresa; Cecchettini, Antonella; Lucchesi, Paolo; Magi, Marta; Malvaldi, Gino; Bruschi, Fabrizio

    2004-05-01

    Nitric oxide has been extensively studied as an effector molecule of the host immune response against both protozoa and helminths, but parasites can also produce this molecule, through the action of nitric oxide (NO) synthases or NO synthases-like enzymes. The aim of this study was to verify the possible production of NO by Trichinella britovi L(1) larvae and the enzymes involved in this process. The NO synthase immunoreactivity and putative nitric oxide synthase-activity was analysed using antibodies to mammalian NO synthase III and to nitrotyrosine with immunohistochemistry, gold immunocytochemistry and immunoblot analysis and NADPH-diaphorase histochemistry. Our results show that T. britovi L(1) larvae possess an enzymatic activity capable of producing NO. The localisation of this activity, according to the NADPH-diaphorase histochemistry, is both at the cuticular and the internal level. This localisation is confirmed by nitrotyrosine immunohistochemistry both under optical and electron microscopy. Using the NO synthase III antibody, a similar pattern of labelling was found: in particular, electron microscopy showed a localisation of this immunoreactivity in the cuticle and in the stichocytes, where only the alpha2 granules contained gold particles, mainly concentrated at their periphery. Four polypeptides reacting to the NO synthase III antibody are revealed by Western blotting. Their molecular weight ranged from 38 to 50 kDa. A significant reaction of the anti-nitrotyrosine antibody to polypeptides 95, 60, 48 and 39 kDa from the same sample suggested the presence of different nitrosylated proteins.

  2. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    PubMed

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development.

    PubMed

    Ingrosso, Ilaria; Bonsegna, Stefania; De Domenico, Stefania; Laddomada, Barbara; Blando, Federica; Santino, Angelo; Giovinazzo, Giovanna

    2011-10-01

    A novel strategy to induce parthenocarpy in tomato fruits by the induction of resveratrol biosynthesis in flower tissues was exploited. Two transgenic tomato lines were considered: a higher resveratrol-producing (35SS) line, constitutively expressing a grape stilbene synthase cDNA, and a lower resveratrol-producing (LoxS) line, expressing stilbene synthase under a fruit-specific promoter. The expression of the stilbene synthase gene affected flavonoid metabolism in a different manner in the transgenic lines, and in one of these, the 35SS line, resulted in complete male sterility. Resveratrol was synthesised either in 35SS or LoxS tomato flowers, at an even higher extent (about 8-10 times) in the former line. We further investigated whether stilbene synthase expression may have resulted in impaired naringenin accumulation during flower development. In the 35SS flowers, naringenin was significantly impaired by about 50%, probably due to metabolic competition. Conversely, the amount of glycosylated flavonols increased in transgenic flowers, thereby excluding the diminished production of flavonols as a reason for parthenocarpy in tomato. We further investigated whether resveratrol synthesis may have resulted changes to pollen structure. Microscopic observations revealed the presence of few and abnormal flake-like pollen grains in 35SS flowers with no germination capability. Finally, the analysis of coumaric and ferulic acids, the precursors of lignin and sporopollenin biosynthesis, revealed significant depletion of these compounds, therefore suggesting an impairment in structural compounds as a reason for pollen ablation. These overall outcomes, to the best of our knowledge, reveal for the first time the major role displayed by resveratrol synthesis on parthenocarpy in tomato fruits. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and α-bisabolene synthases.

    PubMed

    Parveen, Iffat; Wang, Mei; Zhao, Jianping; Chittiboyina, Amar G; Tabanca, Nurhayat; Ali, Abbas; Baerson, Scott R; Techen, Natascha; Chappell, Joe; Khan, Ikhlas A; Pan, Zhiqiang

    2015-11-01

    Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including bioactive flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in foliar tissues. Despite this chemical diversity, relatively few enzymes associated with any biosynthetic pathway from ginkgo have been characterized to date. In the present work, predicted transcripts potentially encoding enzymes associated with the biosynthesis of diterpenoid and terpenoid compounds, including putative terpene synthases, were first identified by mining publicly-available G. biloba RNA-seq data sets. Recombinant enzyme studies with two of the TPS-like sequences led to the identification of GbTPS1 and GbTPS2, encoding farnesol and bisabolene synthases, respectively. Additionally, the phylogenetic analysis revealed the two terpene synthase genes as primitive genes that might have evolved from an ancestral diterpene synthase.

  5. Molecular architectures of benzoic acid-specific type III polyketide synthases

    PubMed Central

    Stewart, Charles; Woods, Kate; Macias, Greg; Allan, Andrew C.; Noel, Joseph P.

    2017-01-01

    Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure–function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants. PMID:29199980

  6. X-ray Crystal Structure of Aristolochene Synthase from Aspergillus terreus and Evolution of Templates for the Cyclization of Farnesyl Diphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishova,E.; Di Costanzo, L.; Cane, D.

    2007-01-01

    Aristolochene synthase from Aspergillus terreus catalyzes the cyclization of the universal sesquiterpene precursor, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. The 2.2 {angstrom} resolution X-ray crystal structure of aristolochene synthase reveals a tetrameric quaternary structure in which each subunit adopts the {alpha}-helical class I terpene synthase fold with the active site in the 'open', solvent-exposed conformation. Intriguingly, the 2.15 {angstrom} resolution crystal structure of the complex with Mg{sup 2+}{sub 3}-pyrophosphate reveals ligand binding only to tetramer subunit D, which is stabilized in the 'closed' conformation required for catalysis. Tetramer assembly may hinder conformational changes required for the transition frommore » the inactive open conformation to the active closed conformation, thereby accounting for the attenuation of catalytic activity with an increase in enzyme concentration. In both conformations, but especially in the closed conformation, the active site contour is highly complementary in shape to that of aristolochene, and a catalytic function is proposed for the pyrophosphate anion based on its orientation with regard to the presumed binding mode of aristolochene. A similar active site contour is conserved in aristolochene synthase from Penicillium roqueforti despite the substantial divergent evolution of these two enzymes, while strikingly different active site contours are found in the sesquiterpene cyclases 5-epi-aristolochene synthase and trichodiene synthase. Thus, the terpenoid cyclase active site plays a critical role as a template in binding the flexible polyisoprenoid substrate in the proper conformation for catalysis. Across the greater family of terpenoid cyclases, this template is highly evolvable within a conserved {alpha}-helical fold for the synthesis of terpene natural products of diverse structure and stereochemistry.« less

  7. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    PubMed

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  8. The structure of subunit E of the Pyrococcus horikoshii OT3 A-ATP synthase gives insight into the elasticity of the peripheral stalk.

    PubMed

    Balakrishna, Asha Manikkoth; Hunke, Cornelia; Grüber, Gerhard

    2012-07-13

    A(1)A(O) ATP synthases are the major energy converters of archaea. They are composed of an A(1) region that synthesizes ATP and an integral part A(O) that conducts ions. Subunit E is a component of the peripheral stalk that links the A(1) with the A(O) part of the A-ATP synthase. We have determined the crystal structure of the entire subunit E (PhE) of the Pyrococcus horikoshii OT3 A-ATP synthase at 3.6 Å resolution. The structure reveals an extended S-shaped N-terminal α-helix with 112.29 Å in length, followed by a globular head group. The S-shaped feature, common in elastic connectors and spacers, would facilitate the storage of transient elastic energy during rotary motion in the enzyme. The structure has been superimposed into the asymmetric peripheral stalks of the three-dimensional reconstruction of the Pyrococcus furiosus enzyme, revealing that the S-shaped subunit PhE fits well into the bent peripheral stalk, whereas the previously solved E subunit structure (3.1 Å resolution) of Thermus thermophilus A-ATP synthase is well accommodated in the density of the straight stator domain. The different features of the two stalk subunits are discussed in light of a novel coupling mechanism in A-ATP synthases proposed to differ from the Wankel engine of F-ATP synthases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Functional analysis of (4 S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase

    DOE PAGES

    Srividya, Narayanan; Davis, Edward M.; Croteau, Rodney B.; ...

    2015-03-02

    We used crystal structural data for (4S)-limonene synthase [(4S)-LS] of spearmint (Mentha spicata L.) to infer which amino acid residues are in close proximity to the substrate and carbocation intermediates of the enzymatic reaction. Alanine-scanning mutagenesis of 48 amino acids combined with enzyme fidelity analysis [percentage of (-)-limonene produced] indicated which residues are most likely to constitute the active site. Furthermore, the mutation of residues W324 and H579 caused a significant drop in enzyme activity and formation of products (myrcene, linalool, and terpineol) characteristic of a premature termination of the reaction. A double mutant (W324A/H579A) had no detectable enzyme activity,more » indicating that either substrate binding or the terminating reaction was impaired. Exchanges to other aromatic residues (W324H, W324F, W324Y, H579F, H579Y, and H579W) resulted in enzyme catalysts with significantly reduced activity. Sequence comparisons across the angiosperm lineage provided evidence that W324 is a conserved residue, whereas the position equivalent to H579 is occupied by aromatic residues (H, F, or Y). Our results are consistent with a critical role of W324 and H579 in the stabilization of carbocation intermediates. Finally, the potential of these residues to serve as the catalytic base facilitating the terminal deprotonation reaction is discussed.« less

  10. SbnG, a citrate synthase in Staphylococcus aureus: A new fold on an old enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. In this paper, we present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic genemore » clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. Finally, a structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production.« less

  11. SbnG, a citrate synthase in Staphylococcus aureus: A new fold on an old enzyme

    DOE PAGES

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; ...

    2014-10-21

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. In this paper, we present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic genemore » clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. Finally, a structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production.« less

  12. SbnG, a citrate synthase in Staphylococcus aureus: a new fold on an old enzyme.

    PubMed

    Kobylarz, Marek J; Grigg, Jason C; Sheldon, Jessica R; Heinrichs, David E; Murphy, Michael E P

    2014-12-05

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Unusual features of a recombinant apple alpha-farnesene synthase.

    PubMed

    Green, Sol; Friel, Ellen N; Matich, Adam; Beuning, Lesley L; Cooney, Janine M; Rowan, Daryl D; MacRae, Elspeth

    2007-01-01

    A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.

  14. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  15. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leavesmore » and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.« less

  16. Studies of UMP synthase in orotic aciduria fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, M.E.; Jones, M.E.

    UMP synthase catalyzes the final two reactions of de novo pyrimidine biosynthesis in mammals. UMP synthase activities are low in fibroblasts from a patient with hereditary orotic aciduria, but increase 80-100 fold to normal levels when the cells are incubated in the presence of 6-azauridine (6-azaU). Normal fibroblasts exhibit at most a two-fold increase in UMP synthase activities in response to 6-azaU. The increase in mutant cell enzyme activity is accompanied by increased UMP synthase protein in immunoprecipitates from (/sup 3//sub 5/S)-methionine-labeled cell extracts. This 6-azaU-dependent protein is precipitated by several monoclonal antibodies and polyclonal antibody raised against pure humanmore » UMP synthase. UMP synthase from normal and mutant fibroblasts comigrate on SDS gels and are stable for at least 2 1/2 hrs at 37/sup 0/C in the presence of a substrate, OMP. However, in the absence of substrate, at 57/sup 0/C, they have different inactivation patterns. Stability of the enzyme derived from normal cells > that of the enzyme from mutant cells cultured with 6-azaU > that of the enzyme from mutant cells. Southern blots of DNA from normal and mutant cells show identical restriction patterns with five enzymes. These results are consistent with the theory that the low level of UMP synthase in mutant cells reflects an increased susceptibility to proteolytic degradation which can be blocked by administration of 6-azaU to the cells in culture.« less

  17. Clearing the skies over modular polyketide synthases.

    PubMed

    Sherman, David H; Smith, Janet L

    2006-09-19

    Modular polyketide synthases (PKSs) are large multifunctional proteins that synthesize complex polyketide metabolites in microbial cells. A series of recent studies confirm the close protein structural relationship between catalytic domains in the type I mammalian fatty acid synthase (FAS) and the basic synthase unit of the modular PKS. They also establish a remarkable similarity in the overall organization of the type I FAS and the PKS module. This information provides important new conclusions about catalytic domain architecture, function, and molecular recognition that are essential for future efforts to engineer useful polyketide metabolites with valuable biological activities.

  18. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.

  19. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.

    PubMed

    Ahmad, Zulfiqar; Hassan, Sherif S; Azim, Sofiya

    2017-11-20

    For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phytochemicals is based on tradition or word of mouth with few evidence-based studies. Moreover, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become pertinent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of dietary phytochemicals are known to inhibit ATP synthase. Structural modifications of phytochemicals have been shown to increase the inhibitory potency and extent of inhibition. Sitedirected mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can result in selective binding and inhibition of microbial ATP synthase. In this review, the therapeutic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective targeting of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase

    PubMed Central

    Ahmad, Zulfiqar; Hassan, Sherif S.; Azim, Sofiya

    2017-01-01

    For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phy-tochemicals is based on tradition or word of mouth with few evidence-based studies. Moreo-ver, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become perti-nent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of die-tary phytochemicals are known to inhibit ATP synthase. Structural modifications of phyto-chemicals have been shown to increase the inhibitory potency and extent of inhibition. Site-directed mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can re-sult in selective binding and inhibition of microbial ATP synthase. In this review, the therapeu-tic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective target-ing of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. PMID:28831918

  1. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A [East Lansing, MI; Itoh, Aya [Tsuruoka, JP

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  2. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  3. Homology modelling, molecular docking, and molecular dynamics simulations reveal the inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase enzyme by Withaferin-A.

    PubMed

    Vadloori, Bharadwaja; Sharath, A K; Prabhu, N Prakash; Maurya, Radheshyam

    2018-04-16

    Present in silico study was carried out to explore the mode of inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase (Ld DHFR-TS) enzyme by Withaferin-A, a withanolide isolated from Withania somnifera. Withaferin-A (WA) is known for its profound multifaceted properties, but its antileishmanial activity is not well understood. The parasite's DHFR-TS enzyme is diverse from its mammalian host and could be a potential drug target in parasites. A 3D model of Ld DHFR-TS enzyme was built and verified using Ramachandran plot and SAVES tools. The protein was docked with WA-the ligand, methotrexate (MTX)-competitive inhibitor of DHFR, and dihydrofolic acid (DHFA)-substrate for DHFR-TS. Molecular docking studies reveal that WA competes for active sites of both Hu DHFR and TS enzymes whereas it binds to a site other than active site in Ld DHFR-TS. Moreover, Lys 173 residue of DHFR-TS forms a H-bond with WA and has higher binding affinity to Ld DHFR-TS than Hu DHFR and Hu TS. The MD simulations confirmed the H-bonding interactions were stable. The binding energies of WA with Ld DHFR-TS were calculated using MM-PBSA. Homology modelling, molecular docking and MD simulations of Ld DHFR-TS revealed that WA could be a potential anti-leishmanial drug.

  4. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus.

    PubMed

    Tsuge, Takeharu; Hyakutake, Manami; Mizuno, Kouhei

    2015-08-01

    This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.

  5. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  6. A monogalactosyldiacylglycerol synthase found in the green sulfur bacterium Chlorobaculum tepidum reveals important roles for galactolipids in photosynthesis.

    PubMed

    Masuda, Shinji; Harada, Jiro; Yokono, Makio; Yuzawa, Yuichi; Shimojima, Mie; Murofushi, Kazuhiro; Tanaka, Hironori; Masuda, Hanako; Murakawa, Masato; Haraguchi, Tsuyoshi; Kondo, Maki; Nishimura, Mikio; Yuasa, Hideya; Noguchi, Masato; Oh-Oka, Hirozo; Tanaka, Ayumi; Tamiaki, Hitoshi; Ohta, Hiroyuki

    2011-07-01

    Monogalactosyldiacylglycerol (MGDG), which is conserved in almost all photosynthetic organisms, is the most abundant natural polar lipid on Earth. In plants, MGDG is highly accumulated in the chloroplast membranes and is an important bulk constituent of thylakoid membranes. However, precise functions of MGDG in photosynthesis have not been well understood. Here, we report a novel MGDG synthase from the green sulfur bacterium Chlorobaculum tepidum. This enzyme, MgdA, catalyzes MGDG synthesis using UDP-Gal as a substrate. The gene encoding MgdA was essential for this bacterium; only heterozygous mgdA mutants could be isolated. An mgdA knockdown mutation affected in vivo assembly of bacteriochlorophyll c aggregates, suggesting the involvement of MGDG in the construction of the light-harvesting complex called chlorosome. These results indicate that MGDG biosynthesis has been independently established in each photosynthetic organism to perform photosynthesis under different environmental conditions. We complemented an Arabidopsis thaliana MGDG synthase mutant by heterologous expression of MgdA. The complemented plants showed almost normal levels of MGDG, although they also had abnormal morphological phenotypes, including reduced chlorophyll content, no apical dominance in shoot growth, atypical flower development, and infertility. These observations provide new insights regarding the importance of regulated MGDG synthesis in the physiology of higher plants.

  7. The chloroplast ATP synthase features the characteristic redox regulation machinery.

    PubMed

    Hisabori, Toru; Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-11-20

    Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.

  8. The crystal structure of human GDP-L-fucose synthase.

    PubMed

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  9. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    PubMed Central

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  10. Identification and Functional Characterization of Monofunctional ent-Copalyl Diphosphate and ent-Kaurene Synthases in White Spruce Reveal Different Patterns for Diterpene Synthase Evolution for Primary and Secondary Metabolism in Gymnosperms1[W][OA

    PubMed Central

    Keeling, Christopher I.; Dullat, Harpreet K.; Yuen, Mack; Ralph, Steven G.; Jancsik, Sharon; Bohlmann, Jörg

    2010-01-01

    The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms. PMID:20044448

  11. Feedback inhibition of nitric oxide synthase activity by nitric oxide.

    PubMed Central

    Assreuy, J.; Cunha, F. Q.; Liew, F. Y.; Moncada, S.

    1993-01-01

    1. A murine macrophage cell line, J774, expressed nitric oxide (NO) synthase activity in response to interferon-gamma (IFN-gamma, 10 u ml-1) plus lipopolysaccharide (LPS, 10 ng ml-1). The enzyme activity was first detectable 6 h after incubation, peaked at 12 h and became undetectable after 48 h. 2. The decline in the NO synthase activity was not due to inhibition by stable substances secreted by the cells into the culture supernatant. 3. The decline in the NO synthase activity was significantly slowed down in cells cultured in a low L-arginine medium or with added haemoglobin, suggesting that NO may be involved in a feedback inhibitory mechanism. 4. The addition of NO generators, S-nitroso-acetyl-penicillamine (SNAP) or S-nitroso-glutathione (GSNO) markedly inhibited the NO synthase activity in a dose-dependent manner. The effect of NO on the enzyme was not due to the inhibition of de novo protein synthesis. 5. SNAP directly inhibited the inducible NO synthase extracted from activated J774 cells, as well as the constitutive NO synthase extracted from the rat brain. 6. The enzyme activity of J774 cells was not restored after the removal of SNAP by gel filtration, suggesting that NO inhibits NO synthase irreversibly. PMID:7682140

  12. Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit.

    PubMed

    Rühmann, Susanne; Treutter, Dieter; Fritsche, Steffi; Briviba, Karlis; Szankowski, Iris

    2006-06-28

    A stilbene synthase gene along with the selectable marker gene bar for herbicide resistance was transferred via Agrobacterium tumefaciens mediated transformation into apple (Malus domesticaBorkh.) cvs. 'Elstar' and 'Holsteiner Cox'. The stilbene synthase catalyzes the conversion of 1 molecule of p-coumaroyl-CoA and 3 molecules of malonyl-CoA into 3,4',5-trihydroxystilbene, commonly known as resveratrol. This phytoalexin has implications in both phytopathology and human health. Greenhouse-grown transgenic and nontransformed control plants were grafted onto dwarfing rootstock M27. Flowering and fruiting occurred within the following years, offering the opportunity to analyze transgenic apple fruit and fertility of transgenic plants as well as inheritance of the transgenes into the seedling progeny. Molecular analysis revealed that the stilbene synthase is expressed in transgenic plants and in the skin and flesh of transgenic apple fruit. After formation, resveratrol is modified by the addition of a hexose sugar. The resulting component was characterized as piceid. With the aim of characterizing the influence of the novel biosynthetic pathway on the accumulation of other phenolic compounds naturally present in apple fruit, the amounts of flavanols, flavonols, phloretin derivatives and hydroxycinnamic acids in wild type and transgenic fruit were determined by HPLC. In all investigated transformed lines that accumulated piceid, no negative correlation between levels of piceid and the above-mentioned compounds was observed, except for the flavonol contents, which slightly decreased. Inheritance of the transgenes was confirmed in the seedling progeny, which were obtained after pollination of transgenic plants with nontransgenic pollen and vice versa after pollination of nontransgenic plants with pollen obtained from transgenic plants. The fertility of stilbene synthase transgenic plants was demonstrated. To the authors' knowledge this is the first time that data are

  13. Structural and Functional Studies of a Pyran Synthase Domain from a trans-Acyltransferase Assembly Line.

    PubMed

    Wagner, Drew T; Zhang, Zhicheng; Meoded, Roy A; Cepeda, Alexis J; Piel, Jörn; Keatinge-Clay, Adrian T

    2018-04-20

    trans-Acyltransferase assembly lines possess enzymatic domains often not observed in their better characterized cis-acyltransferase counterparts. Within this repertoire of largely unexplored biosynthetic machinery is a class of enzymes called the pyran synthases that catalyze the formation of five- and six-membered cyclic ethers from diverse polyketide chains. The 1.55 Å resolution crystal structure of a pyran synthase domain excised from the ninth module of the sorangicin assembly line highlights the similarity of this enzyme to the ubiquitous dehydratase domain and provides insight into the mechanism of ring formation. Functional assays of point mutants reveal the central importance of the active site histidine that is shared with the dehydratases as well as the supporting role of a neighboring semiconserved asparagine.

  14. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  15. Genetic Analysis of Comamonas acidovorans Polyhydroxyalkanoate Synthase and Factors Affecting the Incorporation of 4-Hydroxybutyrate Monomer

    PubMed Central

    Sudesh, Kumar; Fukui, Toshiaki; Doi, Yoshiharu

    1998-01-01

    The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp β-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB−4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism’s PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content. PMID:9726894

  16. The Chloroplast ATP Synthase Features the Characteristic Redox Regulation Machinery

    PubMed Central

    Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-01-01

    Abstract Significance: Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. Recent Advances: The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Critical Issues: Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. Future Directions: The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system. Antioxid. Redox Signal. 19, 1846–1854. PMID:23145525

  17. Isolation and functional effects of monoclonal antibodies binding to thymidylate synthase.

    PubMed

    Jastreboff, M M; Todd, M B; Malech, H L; Bertino, J R

    1985-01-29

    Monoclonal antibodies against electrophoretically pure thymidylate synthase from HeLa cells have been produced. Antibodies (M-TS-4 and M-TS-9) from hybridoma clones were shown by enzyme-linked immunoassay to recognize thymidylate synthase from a variety of human cell lines, but they did not bind to thymidylate synthase from mouse cell lines. The strongest binding of antibodies was observed to enzyme from HeLa cells. These two monoclonal antibodies bind simultaneously to different antigenic sites on thymidylate synthase purified from HeLa cells, as reflected by a high additivity index and results of cross-linked radioimmunoassay. Both monoclonal antibodies inhibit the activity of thymidylate synthase from human cell lines. The strongest inhibition was observed with thymidylate synthase from HeLa cells. Monoclonal antibody M-TS-9 (IgM subclass) decreased the rate of binding of [3H]FdUMP to thymidylate synthase in the presence of 5,10-methylenetetrahydrofolate while M-TS-4 (IgG1) did not change the rate of ternary complex formation. These data indicate that the antibodies recognize different epitopes on the enzyme molecule.

  18. Functional analyses of a flavonol synthase-like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation.

    PubMed

    Zhou, Xing-Wen; Fan, Zheng-Qi; Chen, Yue; Zhu, Yu-Lin; Li, Ji-Yuan; Yin, Heng-Fu

    2013-09-01

    The flavonoids metabolic pathway plays central roles in floral coloration, in which anthocyanins and flavonols are derived from common precursors, dihydroflavonols. Flavonol synthase (FLS) catalyses dihydroflavonols into flavonols, which presents a key branch of anthocyanins biosynthesis. The yellow flower of Camellia nitidissima Chi. is a unique feature within the genus Camellia, which makes it a precious resource for breeding yellow camellia varieties. In this work, we characterized the secondary metabolites of pigments during floral development of C. nitidissima and revealed that accumulation of flavonols correlates with floral coloration. We first isolated CnFLS1 and showed that it is a FLS of C. nitidissima by gene family analysis. Second, expression analysis during floral development and different floral organs indicated that the expression level of CnFLS1 was regulated by developmental cues, which was in agreement with the accumulating pattern of flavonols. Furthermore, over-expression of CnFLS1 in Nicotiana tabacum altered floral colour into white or light yellow, and metabolic analysis showed significant increasing of flavonols and reducing of anthocyanins in transgenic plants. Our work suggested CnFLS1 plays critical roles in yellow colour pigmentation and is potentially a key point of genetic engineering toward colour modification in Camellia.

  19. Identification and evaluation of novel acetolactate synthase inhibitors as antifungal agents.

    PubMed

    Richie, Daryl L; Thompson, Katherine V; Studer, Christian; Prindle, Vivian C; Aust, Thomas; Riedl, Ralph; Estoppey, David; Tao, Jianshi; Sexton, Jessica A; Zabawa, Thomas; Drumm, Joseph; Cotesta, Simona; Eichenberger, Jürg; Schuierer, Sven; Hartmann, Nicole; Movva, N Rao; Tallarico, John A; Ryder, Neil S; Hoepfner, Dominic

    2013-05-01

    High-throughput phenotypic screening against the yeast Saccharomyces cerevisiae revealed a series of triazolopyrimidine-sulfonamide compounds with broad-spectrum antifungal activity, no significant cytotoxicity, and low protein binding. To elucidate the target of this series, we have applied a chemogenomic profiling approach using the S. cerevisiae deletion collection. All compounds of the series yielded highly similar profiles that suggested acetolactate synthase (Ilv2p, which catalyzes the first common step in branched-chain amino acid biosynthesis) as a possible target. The high correlation with profiles of known Ilv2p inhibitors like chlorimuron-ethyl provided further evidence for a similar mechanism of action. Genome-wide mutagenesis in S. cerevisiae identified 13 resistant clones with 3 different mutations in the catalytic subunit of acetolactate synthase that also conferred cross-resistance to established Ilv2p inhibitors. Mapping of the mutations into the published Ilv2p crystal structure outlined the chlorimuron-ethyl binding cavity, and it was possible to dock the triazolopyrimidine-sulfonamide compound into this pocket in silico. However, fungal growth inhibition could be bypassed through supplementation with exogenous branched-chain amino acids or by the addition of serum to the medium in all of the fungal organisms tested except for Aspergillus fumigatus. Thus, these data support the identification of the triazolopyrimidine-sulfonamide compounds as inhibitors of acetolactate synthase but suggest that targeting may be compromised due to the possibility of nutrient bypass in vivo.

  20. Identification and Evaluation of Novel Acetolactate Synthase Inhibitors as Antifungal Agents

    PubMed Central

    Richie, Daryl L.; Thompson, Katherine V.; Studer, Christian; Prindle, Vivian C.; Aust, Thomas; Riedl, Ralph; Estoppey, David; Tao, Jianshi; Sexton, Jessica A.; Zabawa, Thomas; Drumm, Joseph; Cotesta, Simona; Eichenberger, Jürg; Schuierer, Sven; Hartmann, Nicole; Movva, N. Rao; Tallarico, John A.

    2013-01-01

    High-throughput phenotypic screening against the yeast Saccharomyces cerevisiae revealed a series of triazolopyrimidine-sulfonamide compounds with broad-spectrum antifungal activity, no significant cytotoxicity, and low protein binding. To elucidate the target of this series, we have applied a chemogenomic profiling approach using the S. cerevisiae deletion collection. All compounds of the series yielded highly similar profiles that suggested acetolactate synthase (Ilv2p, which catalyzes the first common step in branched-chain amino acid biosynthesis) as a possible target. The high correlation with profiles of known Ilv2p inhibitors like chlorimuron-ethyl provided further evidence for a similar mechanism of action. Genome-wide mutagenesis in S. cerevisiae identified 13 resistant clones with 3 different mutations in the catalytic subunit of acetolactate synthase that also conferred cross-resistance to established Ilv2p inhibitors. Mapping of the mutations into the published Ilv2p crystal structure outlined the chlorimuron-ethyl binding cavity, and it was possible to dock the triazolopyrimidine-sulfonamide compound into this pocket in silico. However, fungal growth inhibition could be bypassed through supplementation with exogenous branched-chain amino acids or by the addition of serum to the medium in all of the fungal organisms tested except for Aspergillus fumigatus. Thus, these data support the identification of the triazolopyrimidine-sulfonamide compounds as inhibitors of acetolactate synthase but suggest that targeting may be compromised due to the possibility of nutrient bypass in vivo. PMID:23478965

  1. ATP Synthase Diseases of Mitochondrial Genetic Origin

    PubMed Central

    Dautant, Alain; Meier, Thomas; Hahn, Alexander; Tribouillard-Tanvier, Déborah; di Rago, Jean-Paul; Kucharczyk, Roza

    2018-01-01

    Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures. PMID:29670542

  2. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  3. Identification of Bacillus subtilis men mutants which lack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase.

    PubMed Central

    Meganathan, R; Bentley, R; Taber, H

    1981-01-01

    Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis, whose growth requirement is satisfied by 1,4-dihydroxy-2-naphthoic acid but not by o-succinylbenzoic acid (OSB), have been analyzed for enzymatic defects. Complementation analysis of cell-free extracts of the mutants revealed that there are two groups, as already indicated by genetic analysis. The missing enzyme in each group was identified by complementation of the cell-free extracts with o-succinylbenzoyl-coenzyme A (CoA) synthetase and dihydroxynaphthoate synthase extracted from Mycobacterium phlei. Mutants found to lack dihydroxynaphthoate synthase, and which therefore complement with dihydroxynaphthoate synthase of M. phlei, were designated as menB; those lacking o-succinylbenzoyl-CoA synthetase, and therefore complementing with o-succinylbenzoyl-CoA synthetase, were designated as menE. The menB mutants RB413 (men-325) and RB415 (men-329), when incubated with [2,3-14C2]OSB, produced only the spirodilactone form of OSB in a reaction that was CoA and adenosine 5'-triphosphate dependent. PMID:6780515

  4. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    PubMed Central

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  5. Terpene synthases from Cannabis sativa.

    PubMed

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  6. Molecular cloning and expression of Chimonanthus praecox farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral volatile sesquiterpenoids.

    PubMed

    Xiang, Lin; Zhao, Kaige; Chen, Longqing

    2010-01-01

    Farnesyl pyrophosphate (FPP) synthase catalyzes the biosynthesis of FPP, which is the precursors of sesquiterpenoids such as floral scent volatiles, from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). cDNA encoding wintersweet (Chimonanthus praecox L.) FPP synthase was isolated by the RT-PCR and RACE methods. The deduced amino acid sequence showed a high identity to plant FPP synthases. Expression of the gene in Escherichia coli yielded FPPS activity that catalyzed the synthesis of FPP as a main product. Tissue-specific and developmental analyses of the mRNA levels of CpFPPS and volatile sesquiterpenoids levels in C. praecox flowers revealed that the FPPS may play a regulatory role in floral volatile sesquiterpenoids of wintersweet. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

    PubMed

    Morehouse, Benjamin R; Kumar, Ramasamy P; Matos, Jason O; Olsen, Sarah Naomi; Entova, Sonya; Oprian, Daniel D

    2017-03-28

    Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C 10 ) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

  8. Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase

    PubMed Central

    Kucharczyk, Roza; Ezkurdia, Nahia; Couplan, Elodie; Procaccio, Vincent; Ackerman, Sharon H.; Blondel, Marc; di Rago, Jean-Paul

    2010-01-01

    Summary Several human neurological disorders have been associated with various mutations affecting mitochondrial enzymes involved in cellular ATP production. One of these mutations, T9176C in the mitochondrial DNA (mtDNA), changes a highly conserved leucine residue into proline at position 217 of the mitochondrially encoded Atp6p (or a) subunit of the F1FO-ATP synthase. The consequences of this mutation on the mitochondrial ATP synthase are still poorly defined. To gain insight into the primary pathogenic mechanisms induced by T9176C, we have investigated the consequences of this mutation on the ATP synthase of yeast where Atp6p is also encoded by the mtDNA. In vitro, yeast atp6-T9176C mitochondria showed a 30% decrease in the rate of ATP synthesis. When forcing the F1FO complex to work in the reverse mode, i.e. F1-catalyzed hydrolysis of ATP coupled to proton transport out of the mitochondrial matrix, the mutant showed a normal proton-pumping activity and this activity was fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However, under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was less efficiently inhibited by oligomycin (60% inhibition versus 85% for the wild type control). BN-PAGE analyses revealed that atp6-T9176C yeast accumulated rather good levels of fully assembled ATP synthase complexes. However, a number of subcomplexes (F1, Atp9p-ring, unassembled α-F1 subunits) could be detected as well, presumably because of a decreased stability of Atp6p within the ATP synthase. Although the oxidative phosphorylation capacity was reduced in atp6-T9176C yeast, the number of ATP molecules synthesized per electron transferred to oxygen was similar compared with wild type yeast. It can therefore be inferred that the coupling efficiency within the ATP synthase was mostly unaffected and that the T9176C mutation did not increase the proton permeability of the

  9. Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Wang, Xiao-Chen; Liu, Yang; Du, Hui; Shu, Qing-Yan; Su, Shang; Wang, Li-Jin; Li, Shan-Shan; Wang, Liang-Sheng

    2016-01-01

    Flavones are important secondary metabolites found in many plants. In Lonicera species, flavones contribute both physiological and pharmaceutical properties. However, flavone synthase (FNS), the key enzyme responsible for flavone biosynthesis, has not yet been characterized in Lonicera species. In this study, FNSII genes were identified from Lonicera japonica Thunb. and L. macranthoides Hand.-Mazz. In the presence of NADPH, the recombinant cytochrome P450 proteins encoded by LjFNSII-1.1, LjFNSII-2.1, and LmFNSII-1.1 converted eriodictyol, naringenin, and liquiritigenin to the corresponding flavones directly. The different catalytic properties between LjFNSII-2.1 and LjFNSII-1.1 were caused by a single amino acid substitution at position 242 (glutamic acid to lysine). A methionine at position 206 and a leucine at position 381 contributed considerably to the high catalytic activity of LjFNSII-1.1. In addition, LjFNSII-1.1&2.1 and LmFNSII-1.1 also biosynthesize flavones that were further modified by O-glycosylation in transgenic tobacco. The expression levels of the FNSII genes were consistent with flavone accumulation patterns in flower buds. Our findings suggested that the weak catalytic activity of LmFNSII-1.1 and the relatively low expression of LmFNSII-1.1 in flowers might be responsible for the low levels of flavone accumulation in flower buds of L. macranthoides.

  10. Asymmetric Synthesis of (R)-1-Alkyl Substituted Tetrahydro-ß-carbolines Catalyzed by Strictosidine Synthases.

    PubMed

    Pressnitz, Desiree; Fischereder, Eva-Maria; Pletz, Jakob; Kofler, Christina; Hammerer, Lucas; Hiebler, Katharina; Lechner, Horst; Richter, Nina; Eger, Elisabeth; Kroutil, Wolfgang

    2018-05-31

    Stereoselective methods for the synthesis of tetrahydro-ß-carbolines are of significant interest due to the broad spectrum of biological activity of the target molecules. In the plant kingdom strictosidine synthases catalyze the C-C coupling via a Pictet-Spengler reaction of tryptamine and secologanin to exclusively form the (S)-configured tetrahydro-ß-carboline (S)-strictosidine. Investigating the biocatalytic Pictet-Spengler reaction of tryptamine with small-molecular-weight aliphatic aldehydes revealed that the strictosidine synthases gave unexpectedly access to the (R)-configured product. Developing an efficient expression method of the catalyst allowed the preparative transformation of various aldehydes giving the products with up to >98% ee. With this tool in hand a chemoenzymatic two-step synthesis of (R)-harmicine was achieved giving (R)-harmicine in 67% overall yield in optically pure form. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    PubMed

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-08

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. Copyright © 2016, American Association for the Advancement of Science.

  12. Accommodation of GDP-Linked Sugars in the Active Site of GDP-Perosamine Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Paul D.; Carney, Amanda E.; Holden, Hazel M.

    2009-01-12

    Perosamine (4-amino-4,6-dideoxy-d-mannose), or its N-acetylated form, is one of several dideoxy sugars found in the O-antigens of such infamous Gram-negative bacteria as Vibrio cholerae O1 and Escherichia coli O157:H7. It is added to the bacterial O-antigen via a nucleotide-linked version, namely GDP-perosamine. Three enzymes are required for the biosynthesis of GDP-perosamine starting from mannose 1-phosphate. The focus of this investigation is GDP-perosamine synthase from Caulobacter crescentus, which catalyzes the final step in GDP-perosamine synthesis, the conversion of GDP-4-keto-6-deoxymannose to GDP-perosamine. The enzyme is PLP-dependent and belongs to the aspartate aminotransferase superfamily. It contains the typically conserved active site lysine residue,more » which forms a Schiff base with the PLP cofactor. Two crystal structures were determined for this investigation: a site-directed mutant protein (K186A) complexed with GDP-perosamine and the wild-type enzyme complexed with an unnatural ligand, GDP-3-deoxyperosamine. These structures, determined to 1.6 and 1.7 {angstrom} resolution, respectively, revealed the manner in which products, and presumably substrates, are accommodated within the active site pocket of GDP-perosamine synthase. Additional kinetic analyses using both the natural and unnatural substrates revealed that the K{sub m} for the unnatural substrate was unperturbed relative to that of the natural substrate, but the k{sub cat} was lowered by a factor of approximately 200. Taken together, these studies shed light on why GDP-perosamine synthase functions as an aminotransferase whereas another very similar PLP-dependent enzyme, GDP-4-keto-6-deoxy-d-mannose 3-dehydratase or ColD, catalyzes a dehydration reaction using the same substrate.« less

  13. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater.

    PubMed

    Foong, Choon Pin; Lau, Nyok-Sean; Deguchi, Shigeru; Toyofuku, Takashi; Taylor, Todd D; Sudesh, Kumar; Matsui, Minami

    2014-12-24

    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host. A total of 76 putative phaC PCR fragments were amplified from the whole genome amplified seawater DNA. Of these 55 clones contained conserved PhaC domains and were classified into 20 genetic groups depending on their sequence similarity. Eleven genetic groups have undisclosed PhaC activity based on their distinct phylogenetic lineages from known PHA producers. Three complete DNA coding sequences were determined by IAN-PCR, and one PhaC was able to produce poly(3-hydroxybutyrate) in recombinant Cupriavidus necator PHB-4 (PHB-negative mutant). A new functional PhaC that has close identity to Marinobacter sp. was discovered in this study. Phylogenetic classification for all the phaC genes isolated from uncultured bacteria has revealed that seawater and other environmental resources harbor a great diversity of PhaCs with activities that have not yet been investigated. Functional evaluation of these in silico-based PhaCs via genome walking has provided new insights into the polymerizing ability of these enzymes.

  14. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    PubMed Central

    Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne

    2016-01-01

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  15. Sulfonamide Resistance in Clinical Isolates of Campylobacter jejuni: Mutational Changes in the Chromosomal Dihydropteroate Synthase

    PubMed Central

    Gibreel, Amera; Sköld, Ola

    1999-01-01

    The characterization of the genetic basis of sulfonamide resistance in Campylobacter jejuni was attempted. The resistance determinant from a sulfonamide-resistant strain of C. jejuni was cloned and was found to show 42% identity with the folP gene (which codes for dihydropteroate synthase, the target of sulfonamides) of the related bacterium Helicobacter pylori. The sequences of the areas surrounding the folP gene in C. jejuni showed similarity to those of the areas surrounding the corresponding gene in H. pylori. The folP gene of C. jejuni, which mediates the resistance, was observed to show particular features when it was compared to other known folP genes. One of these features is the presence of two pairs of direct repeats (15 and 27 bp) within the coding sequence of the gene. Comparison of the C. jejuni folP genes that mediate susceptibility and resistance revealed the occurrence of mutations that changed four amino acid residues. Resistance of C. jejuni to sulfonamides could be associated with one or several of these four mutational substitutions, which all occurred in the five different resistant isolates studied. The codon for one of these changed amino acids was found to be located in the second direct repeat within the coding sequence of the gene. The change made the repeat perfect. The transformation of both the resistance and the susceptibility variants of the gene into an Escherichia coli folP knockout mutant was found to complement the dihydropteroate synthase deficiency, confirming that the characterized sulfonamide resistance determinant codes for the C. jejuni dihydropteroate synthase enzyme. Kinetic measurements established different affinities of sulfonamide for the dihydropteroate synthase enzyme isolated from the resistant and susceptible strains. In conclusion, sulfonamide resistance in C. jejuni was shown to be associated with mutational changes in the chromosomally located gene for dihydropteroate synthase, the target of sulfonamides. PMID

  16. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea.

    PubMed

    Daum, Bertram; Nicastro, Daniela; Austin, Jotham; McIntosh, J Richard; Kühlbrandt, Werner

    2010-04-01

    We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.

  17. Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sá-Moura, Bebiana; Albuquerque, Luciana; Empadinhas, Nuno

    2008-08-01

    The enzyme mannosyl-3-phosphoglycerate synthase from R. xylanophilus has been expressed, purified and crystallized. The crystals belong to the hexagonal space group P6{sub 5}22 and diffract to 2.2 Å resolution. Rubrobacter xylanophilus is the only Gram-positive bacterium known to synthesize the compatible solute mannosylglycerate (MG), which is commonly found in hyperthermophilic archaea and some thermophilic bacteria. Unlike the salt-dependent pattern of accumulation observed in (hyper)thermophiles, in R. xylanophilus MG accumulates constitutively. The synthesis of MG in R. xylanophilus was tracked from GDP-mannose and 3-phosphoglycerate, but the genome sequence of the organism failed to reveal any of the genes known to bemore » involved in this pathway. The native enzyme was purified and its N-terminal sequence was used to identify the corresponding gene (mpgS) in the genome of R. xylanophilus. The gene encodes a highly divergent mannosyl-3-phosphoglycerate synthase (MpgS) without relevant sequence homology to known mannosylphosphoglycerate synthases. In order to understand the specificity and enzymatic mechanism of this novel enzyme, it was expressed in Escherichia coli, purified and crystallized. The crystals thus obtained belonged to the hexagonal space group P6{sub 5}22 and contained two protein molecules per asymmetric unit. The structure was solved by SIRAS using a mercury derivative.« less

  18. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans*

    PubMed Central

    Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W. V.; Sivaraman, J.

    2015-01-01

    ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase. PMID:26370083

  19. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.

    PubMed

    Zou, Huibin; Shi, Mengxun; Zhang, Tongtong; Li, Lei; Li, Liangzhi; Xian, Mo

    2017-10-01

    With the finite supply of petroleum and increasing concern with environmental issues associated with their harvest and processing, the development of more eco-friendly, sustainable alternative biopolymers that can effectively fill the role of petro-polymers has become a major focus. Polyhydroxyalkanoate (PHA) can be naturally produced by many species of bacteria and the PHA synthase is believed to be key enzyme in this natural pathway. Natural PHA synthases are diverse and can affect the properties of the produced PHAs, such as monomer composition, molecular weights, and material properties. Moreover, recent studies have led to major advances in the searching of PHA synthases that display specific properties, as well as engineering efforts that offer more efficient PHA synthases, increased PHA compound production, or even novel biopolyesters which cannot be naturally produced. In this article, we review the updated information of natural PHA synthases and their engineering strategies for improved performance in polyester production. We also speculate future trends on the development of robust PHA synthases and their application in biopolyester production.

  20. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.).

    PubMed

    Vickers, Claudia E; Possell, Malcolm; Nicholas Hewitt, C; Mullineaux, Philip M

    2010-07-01

    Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.

  1. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation

    PubMed Central

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme. PMID:26731734

  2. The Barley Genome Sequence Assembly Reveals Three Additional Members of the CslF (1,3;1,4)-β-Glucan Synthase Gene Family

    PubMed Central

    Schreiber, Miriam; Wright, Frank; MacKenzie, Katrin; Hedley, Pete E.; Schwerdt, Julian G.; Little, Alan; Burton, Rachel A.; Fincher, Geoffrey B.; Marshall, David; Waugh, Robbie; Halpin, Claire

    2014-01-01

    An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β- glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-β-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-β-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-β-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls. PMID:24595438

  3. Synthesis and biological evaluation of several dephosphonated analogues of CMP-Neu5Ac as inhibitors of GM3-synthase.

    PubMed

    Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi

    2015-10-05

    Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The rotation of cellulose synthase trajectories is microtubule dependent and influences the texture of epidermal cell walls in Arabidopsis hypocotyls.

    PubMed

    Chan, Jordi; Crowell, Elizabeth; Eder, Magdalena; Calder, Grant; Bunnewell, Susan; Findlay, Kim; Vernhettes, Samantha; Höfte, Herman; Lloyd, Clive

    2010-10-15

    Plant shoots have thick, polylamellate outer epidermal walls based on crossed layers of cellulose microfibrils, but the involvement of microtubules in such wall lamellation is unclear. Recently, using a long-term movie system in which Arabidopsis seedlings were grown in a biochamber, the tracks along which cortical microtubules move were shown to undergo slow rotary movements over the outer surface of hypocotyl epidermal cells. Because microtubules are known to guide cellulose synthases over the short term, we hypothesised that this previously unsuspected microtubule rotation could, over the longer term, help explain the cross-ply structure of the outer epidermal wall. Here, we test that hypothesis using Arabidopsis plants expressing the cellulose synthase GFP-CESA3 and show that cellulose synthase trajectories do rotate over several hours. Neither microtubule-stabilising taxol nor microtubule-depolymerising oryzalin affected the linear rate of GFP-CESA3 movement, but both stopped the rotation of cellulose synthase tracks. Transmission electron microscopy revealed that drug-induced suppression of rotation alters the lamellation pattern, resulting in a thick monotonous wall layer. We conclude that microtubule rotation, rather than any hypothetical mechanism for wall self-assembly, has an essential role in developing cross-ply wall texture.

  5. Cloning and Characterization of Inducible Nitric Oxide Synthase from Mouse Macrophages

    NASA Astrophysics Data System (ADS)

    Xie, Qiao-Wen; Cho, Hearn J.; Calaycay, Jimmy; Mumford, Richard A.; Swiderek, Kristine M.; Lee, Terry D.; Ding, Aihao; Troso, Tiffany; Nathan, Carl

    1992-04-01

    Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.

  6. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album

    PubMed Central

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P.; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S. Shiva; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282

  7. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.

    PubMed

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V

    2015-05-15

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.

  8. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    PubMed

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  9. Quantitative Proteomic Analysis of Human Lung Tumor Xenografts Treated with the Ectopic ATP Synthase Inhibitor Citreoviridin

    PubMed Central

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy. PMID:23990911

  10. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing

    PubMed Central

    Shinde, Mansi Y.; Sidoli, Simone; Kulej, Katarzyna; Mallory, Michael J.; Radens, Caleb M.; Reicherter, Amanda L.; Myers, Rebecca L.; Barash, Yoseph; Lynch, Kristen W.; Garcia, Benjamin A.; Klein, Peter S.

    2017-01-01

    Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3–dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3–dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3–dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins in vitro. RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3–dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing. PMID:28916722

  11. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  12. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  13. Oxidation of thymidylate synthase by inorganic compounds.

    PubMed

    Aull, J L; Ivery, T C; Daron, H H

    1984-10-01

    Thymidylate synthase from methotrexate-resistant Lactobacillus casei was rapidly and completely inactivated by low concentrations of permanganate, periodate, or potassium triiodide at 0 degree C. The enzyme was not inactivated to any appreciable extent by iodate, iodide, ferricyanate, iodosobenzoate, or hydrogen peroxide. The inactivation by permanganate was retarded by the substrate 2'-deoxyuridylate and, to a lesser extent, by phosphate. Titration of enzyme activity with permanganate showed that two moles of permanganate were required to completely inactivate one mole of thymidylate synthase.

  14. Predicted cycloartenol synthase protein from Kandelia obovata and Rhizophora stylosa using online software of Phyre2 and Swiss-model

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sulistiyono, N.; Wati, R.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Cloning of Kandelia obovata KcCAS gene (previously known as Kandelia candel) and Rhizophora stylosa RsCAS have already have been reported and encoded cycloartenol synthases. In this study, the predicted KcCAS and RsCAS protein were analyzed using online software of Phyre2 and Swiss-model. The protein modelling for KcCAS and RsCAS cycloartenol synthases was determined using Pyre2 had similar results with slightly different in sequence identity. By contrast, the Swiss-model for KcCAS slightly had higher sequence identity (47.31%) and Qmean (0.70) compared to RsCAS. No difference of ligands binding site which is considered as modulators for both cycloartenol synthases. The range of predicted protein derived from 91-757 amino acid residues with coverage sequence similarities 0.86, respectively from template model of lanosterol synthase from the human. Homology modelling revealed that 706 residues (93% of the amino acid sequence) had been modelled with 100.0% confidence by the single highest scoring template for both KcCAS and RsCAS using Phyre2. This coverage was more elevated than swiss-model predicted (86%). The present study suggested that both genes are responsible for the genesis of cycloartenol in these mangrove plants.

  15. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.

    PubMed

    Lather, Amit; Sharma, Sunil; Khatkar, Anurag

    2018-01-01

    Infections caused by microorganisms are the major cause of death today. The tremendous and improper use of antimicrobial agents leads to antimicrobial resistance. Various currently available antimicrobial drugs are inadequate to control the infections and lead to various adverse drug reactions. Efforts based on computer-aided drug design (CADD) can excavate a large number of databases to generate new, potent hits and minimize the requirement of time as well as money for the discovery of newer antimicrobials. Pharmaceutical sciences also have made development with advances in drug designing concepts. The current research article focuses on the study of various G-6-P synthase inhibitors from literature cited molecular database. Docking analysis was conducted and ADMET data of various molecules was evaluated by Schrodinger Glide and PreADMET software, respectively. Here, the results presented efficacy of various inhibitors towards enzyme G-6-P synthase. Docking scores, binding energy and ADMET data of various molecules showed good inhibitory potential toward G-6-P synthase as compared to standard antibiotics. This novel antimicrobial drug target G-6-P synthase has not so extensively been explored for its application in antimicrobial therapy, so the work done so far proved highly essential. This article has helped the drug researchers and scientists to intensively explore about this wonderful antimicrobial drug target. The Schrodinger, Inc. (New York, USA) software was utilized to carry out the computational calculations and docking studies. The hardware configuration was Intel® core (TM) i5-4210U CPU @ 2.40GHz, RAM memory 4.0 GB under 64-bit window operating system. The ADMET data was calculated by using the PreADMET tool (PreADMET ver. 2.0). All the computational work was completed in the Laboratory for Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, INDIA. Molecular docking studies were carried out to identify the binding

  16. Terpene synthases from Cannabis sativa

    PubMed Central

    Booth, Judith K.; Page, Jonathan E.

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties. PMID:28355238

  17. CERAMIDE SYNTHASE 1 IS REGULATED BY PROTEASOMAL MEDIATED TURNOVER

    PubMed Central

    Sridevi, Priya; Alexander, Hannah; Laviad, Elad L.; Pewzner-Jung, Yael; Hannink, Mark; Futerman, Anthony H.; Alexander, Stephen

    2009-01-01

    Ceramide is an important bioactive lipid, intimately involved in many cellular functions, including the regulation of cell death, and in cancer and chemotherapy. Ceramide is synthesized de novo from sphinganine and acyl CoA via a family of 6 ceramide synthase enzymes, each having a unique preference for different fatty acyl CoA substrates and a unique tissue distribution. However, little is known regarding the regulation of these important enzymes. In this study we focus on ceramide synthase 1 (CerS1) which is the most structurally and functionally distinct of the enzymes, and describe a regulatory mechanism that specifically controls the level of CerS1 via ubiquitination and proteasome dependent protein turnover. We show that both endogenous and ectopically expressed CerS1 have rapid basal turnover and that diverse stresses including chemotherapeutic drugs, UV light and DTT can induce CerS1 turnover. The turnover requires CerS1 activity and is regulated by the opposing actions of p38 MAP kinase and protein kinase C (PKC). p38 MAP kinase is a positive regulator of turnover, while PKC is a negative regulator of turnover. CerS1 is phosphorylated in vivo and activation of PKC increases the phosphorylation of the protein. This study reveals a novel and highly specific mechanism by which CerS1 protein levels are regulated and which directly impacts ceramide homeostasis. PMID:19393694

  18. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus

    PubMed Central

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-01-01

    SUMMARY Fungi are a rich source of bioactive secondary metabolites and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared to the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as a α-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes δ-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homolog, but instead was found to catalyze highly specific the synthesis of α-cuprenene. Co-expression of cop6 and the two monooxygenase genes next to it yields oxygenated α-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  19. ATP Synthase: A Molecular Therapeutic Drug Target for Antimicrobial and Antitumor Peptides

    PubMed Central

    Ahmad, Zulfiqar; Okafor, Florence; Azim, Sofiya; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the role of ATP synthase as a molecular drug target for natural and synthetic antimi-crobial/antitumor peptides. We start with an introduction of the universal nature of the ATP synthase enzyme and its role as a biological nanomotor. Significant structural features required for catalytic activity and motor functions of ATP synthase are described. Relevant details regarding the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it a potential drug target with respect to antimicrobial peptides and other inhibitors such as dietary polyphenols, is also reviewed. ATP synthase is known to have about twelve discrete inhibitor binding sites including peptides and other inhibitors located at the interface of α/β subunits on the F1 sector of the enzyme. Molecular interaction of peptides at the β DEELSEED site on ATP synthase is discussed with specific examples. An inhibitory effect of other natural/synthetic inhibitors on ATP is highlighted to explore the therapeutic roles played by peptides and other inhibitors. Lastly, the effect of peptides on the inhibition of the Escherichia coli model system through their action on ATP synthase is presented. PMID:23432591

  20. Mitochondrial β-Cyanoalanine Synthase Is Essential for Root Hair Formation in Arabidopsis thaliana[W

    PubMed Central

    García, Irene; Castellano, José María; Vioque, Blanca; Solano, Roberto; Gotor, Cecilia; Romero, Luis C.

    2010-01-01

    Cyanide is stoichiometrically produced as a coproduct of the ethylene biosynthesis pathway and is detoxified by β-cyanoalanine synthase enzymes. The molecular and phenotypical analysis of T-DNA insertion mutants of the mitochondrial β-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild-type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin or by genetic complementation with the CYS-C1 gene. Hydroxocobalamin not only recovers the root phenotype of the mutant but also the formation of reactive oxygen species at the initial step of root hair tip growth. Transcriptional profiling of the cys-c1 mutant reveals that cyanide accumulation acts as a repressive signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial β-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development. PMID:20935247

  1. Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta.

    PubMed

    Zhu, Yu-Cheng; Specht, Charles A; Dittmer, Neal T; Muthukrishnan, Subbaratnam; Kanost, Michael R; Kramer, Karl J

    2002-11-01

    Glycosyltransferases are enzymes that synthesize oligosaccharides, polysaccharides and glycoconjugates. One type of glycosyltransferase is chitin synthase, a very important enzyme in biology, which is utilized by insects, fungi, and other invertebrates to produce chitin, a polysaccharide of beta-1,4-linked N-acetylglucosamine. Chitin is an important component of the insect's exoskeletal cuticle and gut lining. To identify and characterize a chitin synthase gene of the tobacco hornworm, Manduca sexta, degenerate primers were designed from two highly conserved regions in fungal and nematode chitin synthase protein sequences and then used to amplify a similar region from Manduca cDNA. A full-length cDNA of 5152 nucleotides was assembled for the putative Manduca chitin synthase gene, MsCHS1, and sequencing of genomic DNA verified the contiguity of the sequence. The MsCHS1 cDNA has an ORF of 4692 nucleotides that encodes a transmembrane protein of 1564 amino acid residues with a mass of approximately 179 kDa (GenBank no. AY062175). It is most similar, over its entire length of protein sequence, to putative chitin synthases from other insects and nematodes, with 68% identity to enzymes from both the blow fly, Lucilia cuprina, and the fruit fly, Drosophila melanogaster. The similarity with fungal chitin synthases is restricted to the putative catalytic domain, and the MsCHS1 protein has, at equivalent positions, several amino acids that are essential for activity as revealed by mutagenesis of the fungal enzymes. A 5.3-kb transcript of MsCHS1 was identified by northern blot hybridization of RNA from larval epidermis, suggesting that the enzyme functions to make chitin deposited in the cuticle. Further examination by RT-PCR showed that MsCHS1 expression is regulated in the epidermis, with the amount of transcript increasing during phases of cuticle deposition.

  2. Sucrose synthase in wild tomato Lycopersicon chmielewskii and tomato fruit sink strength

    Treesearch

    Shi-Jean S. Sung; T. Loboda; S.S. Sung; C.C. Black

    1992-01-01

    Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers.In mature, nongrowing fruits, sucrose synthase activities approached nil values.Therefore, sucrose synthase...

  3. Identification and analysis of putative polyhydroxyalkanoate synthase (PhaC) in Pseudomonas fluorescens.

    PubMed

    Lim, Ju Hyoung; Rhie, Ho-Gun; Kim, Jeong Nam

    2018-05-11

    Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. PHA granules mainly consisted of poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate- co -3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas . In vivo expression of the putative PHA synthase gene ( phaC Pf ) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli ( phaC Pf + , pUMS) grown in medium containing glucose accumulated PHA granules mainly consisting of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from E. coli fadR mutant ( phaC Pf + ) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified PhaC Pf , suggesting that the putative PHA synthase of P. fluorescens mainly utilizes short-chain-length PHA precursors as a substrate.

  4. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae.

    PubMed

    Chen, Xujun; Chen, Hao; Yuan, Joshua S; Köllner, Tobias G; Chen, Yuying; Guo, Yufen; Zhuang, Xiaofeng; Chen, Xinlu; Zhang, Yong-Jun; Fu, Jianyu; Nebenführ, Andreas; Guo, Zejian; Chen, Feng

    2018-03-06

    Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up-regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)-limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)-limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)-limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple.

    PubMed

    Nieuwenhuizen, Niels J; Green, Sol A; Chen, Xiuyin; Bailleul, Estelle J D; Matich, Adam J; Wang, Mindy Y; Atkinson, Ross G

    2013-02-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies.

  6. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain.

    PubMed

    Yokom, Adam L; Morishima, Yoshihiro; Lau, Miranda; Su, Min; Glukhova, Alisa; Osawa, Yoichi; Southworth, Daniel R

    2014-06-13

    Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Transcriptome profiling of the Australian arid-land plant Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) for the identification of monoterpene synthases.

    PubMed

    Kracht, Octavia Natascha; Ammann, Ann-Christin; Stockmann, Julia; Wibberg, Daniel; Kalinowski, Jörn; Piotrowski, Markus; Kerr, Russell; Brück, Thomas; Kourist, Robert

    2017-04-01

    Plant terpenoids are a large and highly diverse class of metabolites with an important role in the immune defense. They find wide industrial application as active pharmaceutical ingredients, aroma and fragrance compounds. Several Eremophila sp. derived terpenoids have been documented. To elucidate the terpenoid metabolism, the transcriptome of juvenile and mature Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) leaves was sequenced and a transcript library was generated. We report on the first transcriptomic dataset of an Eremophila plant. IlluminaMiSeq sequencing (2 × 300 bp) revealed 7,093,266 paired reads, which could be assembled to 34,505 isogroups. To enable detection of terpene biosynthetic genes, leaves were separately treated with methyl jasmonate, a well-documented inducer of plant secondary metabolites. In total, 21 putative terpene synthase genes were detected in the transcriptome data. Two terpene synthase isoenzymatic genes, termed ES01 and ES02, were successfully expressed in E. coli. The resulting proteins catalyzed the conversion of geranyl pyrophosphate, the universal substrate of monoterpene synthases to myrcene and Z-(b)-ocimene, respectively. The transcriptomic data and the discovery of the first terpene synthases from Eremophila serrulata are the initial step for the understanding of the terpene metabolism in this medicinally important plant genus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Inhibition of inducible nitric oxide synthase expression by novel nonsteroidal anti-inflammatory derivatives with gastrointestinal-sparing properties.

    PubMed Central

    Cirino, G.; Wheeler-Jones, C. P.; Wallace, J. L.; Del Soldato, P.; Baydoun, A. R.

    1996-01-01

    1. The effects of novel nitric oxide-releasing nonsteroidal anti-inflammatory compounds (NO-NSAIDs) on induction of nitric oxide (NO) synthase by bacterial lipopolysaccharide (LPS) were examined in a murine cultured macrophage cell line, J774. 2. LPS-induced nitrite production was markedly attenuated by the nitroxybutylester derivatives of flurbiprofen (FNBE), aspirin, ketoprofen, naproxen, diclofenac and ketorolac, with each compound reducing accumulated nitrite levels by > 40% at the maximum concentrations (100 micrograms ml-1) used. 3. Further examination revealed that nitrite production was inhibited in a concentration-dependent (1-100 micrograms ml-1) manner by FNBE which at 100 micrograms ml-1 decreased LPS-stimulated levels by 63.3 +/- 8.6% (n = 7). The parent compound flurbiprofen was relatively ineffective over the same concentration-range, inhibiting nitrite accumulation by 24 +/- 0.9% (n = 3) at the maximum concentration used (100 micrograms ml-1). 4. FNBE reduced LPS-induced nitrite production when added to cells up to 4 h after LPS. Thereafter, FNBE caused very little or no reduction in nitrite levels. Furthermore NO-NSAIDs (100 micrograms ml-1) did not inhibit the metabolism of L-[3H]-arginine to citrulline by NO synthase isolated from LPS-activated macrophages. 5. Western blot analysis demonstrated that NO synthase expression was markedly attenuated following co-incubation of J774 cell with LPS (1 microgram ml-1; 24 h) and FNBE (100 micrograms ml-1; 24 h). Thus taken together, these findings indicate that NO-NSAIDs inhibit induction of NO synthase without directly affecting enzyme activity. 6. In conclusion our results indicate that NO-NSAIDs can inhibit the inducible L-arginine-NO pathway, and are capable of suppressing NO synthesis by inhibiting expression of NO synthase. The clinical implications of these findings remain to be established. Images Figure 4 PMID:8730734

  9. Isolation and structural determination of squalene synthase inhibitor from Prunus mume fruit.

    PubMed

    Choi, Sung-Won; Hur, Nam-Yoon; Ahn, Soon-Cheol; Kim, Dong-Seob; Lee, Jae-Kwon; Kim, Dae-Ok; Park, Seung-Kook; Kim, Byung-Yong; Baik, Moo-Yeol

    2007-12-01

    Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of C16H18O9 based on UV spectrophotometry, 1H and 13C NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an IC50 level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia.

  10. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome

    PubMed Central

    Müller, Christina A.; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C. A.; Wellington, Elizabeth M. H.

    2015-01-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. PMID:26002894

  11. Biophysical Characterization of a Thermoalkaliphilic Molecular Motor with a High Stepping Torque Gives Insight into Evolutionary ATP Synthase Adaptation*

    PubMed Central

    McMillan, Duncan G. G.; Watanabe, Rikiya; Ueno, Hiroshi; Cook, Gregory M.; Noji, Hiroyuki

    2016-01-01

    F1F0 ATP synthases are bidirectional molecular motors that translocate protons across the cell membrane by either synthesizing or hydrolyzing ATP. Alkaliphile ATP synthases are highly adapted, performing oxidative phosphorylation at high pH against an inverted pH gradient (acidin/alkalineout). Unlike mesophilic ATP synthases, alkaliphilic enzymes have tightly regulated ATP hydrolysis activity, which can be relieved in the presence of lauryldimethylamine oxide. Here, we characterized the rotary dynamics of the Caldalkalibacillus thermarum TA2.A1 F1 ATPase (TA2F1) with two forms of single molecule analysis, a magnetic bead duplex and a gold nanoparticle. TA2F1 rotated in a counterclockwise direction in both systems, adhering to Michaelis-Menten kinetics with a maximum rotation rate (Vmax) of 112.4 revolutions/s. TA2F1 displayed 120° unitary steps coupled with ATP hydrolysis. Torque measurements revealed the highest torque (52.4 piconewtons) derived from an F1 molecule using fluctuation theorem. The implications of high torque in terms of extreme environment adaptation are discussed. PMID:27624936

  12. Emerging lipid-lowering drugs: squalene synthase inhibitors.

    PubMed

    Elsayed, Raghda K; Evans, Jeffery D

    2008-06-01

    Lapaquistat was the only squalene synthase inhibitor in Phase III clinical trials in Europe and the United States, but was recently discontinued from clinical development. Unlike statins, the inhibition of de novo cholesterol biosynthesis by lapaquistat does not deplete mevalonate, a precursor of isoprenoids. Isoprenoids are critical in cell growth and metabolism. The present review will focus on the chemistry, pharmacology, and lipid-lowering effects of novel squalene synthase inhibitors. A search of Pubmed, IPA, and GoogleScholar for studies (animal and human) and review articles published in English between 1990 and April 2008, using the search terms "squalene synthase inhibitors" or "lapaquistat". All clinical trials identified were then cross-referenced for their citations. All literature identified was then complied for this analysis. Lapaquistat mainly targets LDL-C, but may have some effect on HDL-C and TG. Preliminary reports on Phase II and Phase III associated lapaquistat 100 mg with elevated hepatic enzymes. Hepatotoxicity, possible drug-drug interaction with statins, and the investigation of a statin/coenzyme Q10 combination are among the few challenges that impeded lapaquistat's clinical development.

  13. Heterologous expression of an active chitin synthase from Rhizopus oryzae.

    PubMed

    Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José

    2016-12-01

    Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly. Copyright © 2016. Published by Elsevier Inc.

  14. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  15. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis.

    PubMed

    Omadjela, Okako; Narahari, Adishesh; Strumillo, Joanna; Mélida, Hugo; Mazur, Olga; Bulone, Vincent; Zimmer, Jochen

    2013-10-29

    Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200-300. Catalytic activity critically depends on the presence of the allosteric activator cyclic-di-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP.

  16. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis

    PubMed Central

    Omadjela, Okako; Narahari, Adishesh; Strumillo, Joanna; Mélida, Hugo; Mazur, Olga; Bulone, Vincent; Zimmer, Jochen

    2013-01-01

    Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200–300. Catalytic activity critically depends on the presence of the allosteric activator cyclic-di-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP. PMID:24127606

  17. Purification and Biochemical Properties of Phytochromobilin Synthase from Etiolated Oat Seedlings1

    PubMed Central

    McDowell, Michael T.; Lagarias, J. Clark

    2001-01-01

    Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (PΦB) for photoactivity. In planta, biliverdin IXα (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme PΦB synthase to yield 3Z-PΦB. Here, we describe the >50,000-fold purification of PΦB synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, PΦB synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s−1, which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat PΦB synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of PΦB synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A Km for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 μm. PΦB synthase has a high affinity for its bilin substrate, with a sub-micromolar Km for BV. PMID:11500553

  18. Discovery of DF-461, a Potent Squalene Synthase Inhibitor

    PubMed Central

    2013-01-01

    We report the development of a new trifluoromethyltriazolobenzoxazepine series of squalene synthase inhibitors. Structure–activity studies and pharmacokinetics optimization on this series led to the identification of compound 23 (DF-461), which exhibited potent squalene synthase inhibitory activity, high hepatic selectivity, excellent rat hepatic cholesterol synthesis inhibitory activity, and plasma lipid lowering efficacy in nonrodent repeated dose studies. PMID:24900587

  19. Inhibition of ATP Synthase by Chlorinated Adenosine Analogue

    PubMed Central

    Chen, Lisa S.; Nowak, Billie J.; Ayres, Mary L.; Krett, Nancy L.; Rosen, Steven T.; Zhang, Shuxing; Gandhi, Varsha

    2009-01-01

    8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; FO intermembrane base and F1 domain, containing α and β subunits. Crystal structures of both α and β subunits that bind to the substrate, ADP, are known in tight binding (αdpβdp) and loose binding (αtpβtp) states. Molecular docking demonstrated that 8-Cl-ADP/8-Cl-ATP occupied similar binding modes as ADP/ATP in the tight and loose binding sites of ATP synthase, respectively, suggesting that the chlorinated nucleotide metabolites may be functional substrates and inhibitors of the enzyme. The computational predictions were consistent with our whole cell biochemical results. Oligomycin, an established pharmacological inhibitor of ATP synthase, decreased both ATP and 8-Cl-ATP formation from exogenous substrates, however, did not affect pyrimidine nucleoside analogue triphosphate accumulation. Synthesis of ATP from ADP was inhibited in cells loaded with 8-Cl-ATP. These biochemical studies are in consent with the computational modeling; in the αtpβtp state 8-Cl-ATP occupies similar binding as ANP, a non-hydrolyzable ATP mimic that is a known inhibitor. Similarly, in the substrate binding site (αdpβdp) 8-Cl-ATP occupies a similar position as ATP mimic ADP-BeF3 −. Collectively, our current work suggests that 8-Cl-ADP may serve as a substrate and the 8-Cl-ATP may be an inhibitor of ATP synthase. PMID:19477165

  20. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation

    PubMed Central

    Teixeira, Felipe K.; Sanchez, Carlos G.; Hurd, Thomas R.; Seifert, Jessica R. K.; Czech, Benjamin; Preall, Jonathan B.; Hannon, Gregory J.; Lehmann, Ruth

    2015-01-01

    The differentiation of stem cells is a tightly regulated process essential for animal development and tissue homeostasis. Through this process, attainment of new identity and function is achieved by marked changes in cellular properties. Intrinsic cellular mechanisms governing stem cell differentiation remain largely unknown, in part because systematic forward genetic approaches to the problem have not been widely used1,2. Analysing genes required for germline stem cell differentiation in the Drosophila ovary, we find that the mitochondrial ATP synthase plays a critical role in this process. Unexpectedly, the ATP synthesizing function of this complex was not necessary for differentiation, as knockdown of other members of the oxidative phosphorylation system did not disrupt the process. Instead, the ATP synthase acted to promote the maturation of mitochondrial cristae during differentiation through dimerization and specific upregulation of the ATP synthase complex. Taken together, our results suggest that ATP synthase-dependent crista maturation is a key developmental process required for differentiation independent of oxidative phosphorylation. PMID:25915123

  1. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    PubMed

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. New insights into the catalytic mechanism of Bombyx mori prostaglandin E synthase gained from structure–function analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Kohji, E-mail: yamamok@agr.kyushu-u.ac.jp; Suzuki, Mamoru; Higashiura, Akifumi

    2013-11-01

    Highlights: •Structure of Bombyx mori prostaglandin E synthase is determined. •Bound glutathione sulfonic acid is located at the glutathione-binding site. •Electron-sharing network is present in this protein. •This network includes Asn95, Asp96, and Arg98. •Site-directed mutagenesis reveals that the residues contribute to the catalytic activity. -- Abstract: Prostaglandin E synthase (PGES) catalyzes the isomerization of PGH{sub 2} to PGE{sub 2}. We previously reported the identification and structural characterization of Bombyx mori PGES (bmPGES), which belongs to Sigma-class glutathione transferase. Here, we extend these studies by determining the structure of bmPGES in complex with glutathione sulfonic acid (GTS) at a resolutionmore » of 1.37 Å using X-ray crystallography. GTS localized to the glutathione-binding site. We found that electron-sharing network of bmPGES includes Asn95, Asp96, and Arg98. Site-directed mutagenesis of these residues to create mutant forms of bmPGES mutants indicate that they contribute to catalytic activity. These results are, to our knowledge, the first to reveal the presence of an electron-sharing network in bmPGES.« less

  3. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein.

    PubMed

    Banerjee, Ruma; Zou, Cheng-Gang

    2005-01-01

    Cystathionine beta-synthase in mammals lies at a pivotal crossroad in methionine metabolism directing flux toward cysteine synthesis and catabolism. The enzyme exhibits a modular organization and complex regulation. It catalyzes the beta-replacement of the hydroxyl group of serine with the thiolate of homocysteine and is unique in being the only known pyridoxal phosphate-dependent enzyme that also contains heme b as a cofactor. The heme functions as a sensor and modulates enzyme activity in response to redox change and to CO binding. Mutations in this enzyme are the single most common cause of hereditary hyperhomocysteinemia. Elucidation of the crystal structure of a truncated and highly active form of the human enzyme containing the heme- and pyridoxal phosphate binding domains has afforded a structural perspective on mechanistic and mutation analysis studies. The C-terminal regulatory domain containing two CBS motifs exerts intrasteric regulation and binds the allosteric activator, S-adenosylmethionine. Studies with mammalian cells in culture as well as with animal models have unraveled multiple layers of regulation of cystathionine beta-synthase in response to redox perturbations and reveal the important role of this enzyme in glutathione-dependent redox homestasis. This review discusses the recent advances in our understanding of the structure, mechanism, and regulation of cystathionine beta-synthase from the perspective of its physiological function, focusing on the clinically relevant human enzyme.

  4. A Novel N-Acetylglutamate Synthase Architecture Revealed by the Crystal Structure of the Bifunctional Enzyme from Maricaulis maris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Dashuang; Li, Yongdong; Cabrera-Luque, Juan

    2012-05-24

    Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 {angstrom} resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS aremore » tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26{sup o} is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.« less

  5. The Small Subunit of Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta[W

    PubMed Central

    Orlova, Irina; Nagegowda, Dinesh A.; Kish, Christine M.; Gutensohn, Michael; Maeda, Hiroshi; Varbanova, Marina; Fridman, Eyal; Yamaguchi, Shinjiro; Hanada, Atsushi; Kamiya, Yuji; Krichevsky, Alexander; Citovsky, Vitaly; Pichersky, Eran; Dudareva, Natalia

    2009-01-01

    Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta. PMID:20028839

  6. The type I fatty acid and polyketide synthases: a tale of two megasynthases

    PubMed Central

    Tsai, Shiou-Chuan

    2008-01-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897

  7. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  8. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    PubMed

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively). Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchi, Mariko; Mizuno, Haruo; Tsuboi, Takashi

    Uridine monophosphate (UMP) synthase is a bifunctional enzyme catalyzing the last two steps of de novo pyrimidine biosynthesis, orotate phosphoribosyltransferase (OPRT) and orotidine-5{prime}-monophosphate decarboxylase (ODC). Loss of either enzymatic activity results in hereditary orotic aciduria, a rare autosomal recessive disorder characterized by retarded growth, anemia, and excessive urinary excretion of orotic acid. We have isolated the UMP synthase chromosomal gene from a {lambda}EMBL-3 human genomic library and report a single-copy gene spanning {approximately}15 kb. The UMP synthase genomic structure encodes six exons ranging in size from 115 bp to 672 bp, and all splicing junctions adhere to the canonical GT/AGmore » rule. Cognate promoter elements implicated in glucocorticoid- and cAMP-mediated regulation as well as in liver-, myeloid-, and lymphocyte-specific expression are located within the 5{prime} flanking sequence. Molecular investigation of UMP synthase deficiency in a Japanese orotic aciduria patient revealed mutations R96G (A- to-G transition; nt 286) and G429R (G-to-C transversion; nt 1285) in one allele and V109G (T-to-G transversion; nt 326) in the other allele. Expression of human UMP synthase cDNAs containing these mutations in pyrimidine auxotrophic Escherichia coli and in recombinant baculovirus-infected Sf21 cells demonstrates impaired activity presumably associated with the urinary orotic acid substrate accumulations observed in vivo. We further establish the identity of two polymorphisms, G213A ({nu} = .26) and 440 Gpoly ({nu} = .27) located in exons 3 and 6, respectively, which did not significantly compromise either OPRT or ODC function. 76 refs., 5 figs., 7 tabs.« less

  10. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening

    PubMed Central

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion. PMID:22949808

  11. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    PubMed

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE PAGES

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; ...

    2016-05-23

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  13. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    PubMed Central

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  14. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  15. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.

    PubMed

    Degenhardt, Jörg; Köllner, Tobias G; Gershenzon, Jonathan

    2009-01-01

    The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.

  16. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    PubMed

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  17. CTP synthase forms the cytoophidium in human hepatocellular carcinoma.

    PubMed

    Chang, Chia-Chun; Jeng, Yung-Ming; Peng, Min; Keppeke, Gerson Dierley; Sung, Li-Ying; Liu, Ji-Long

    2017-12-15

    CTP synthase (CTPS) can aggregate into an intracellular macrostructure, the cytoophidium, in various organisms including human cells. Previous studies have shown that assembly of human CTPS cytoophidia may be correlated with the cellular metabolic status, and is able to promote the activity of CTPS. A correlation between the cytoophidium and cancer metabolism has been proposed but not yet been revealed. In the current study we provide clear evidence of the presence of CTPS cytoophidia in various human cancers and some non-cancerous tissues. Moreover, among 203 tissue samples of hepatocellular carcinoma, 56 (28%) samples exhibited many cytoophidia, whereas no cytoophidia were detected in adjacent non-cancerous hepatocytes for all samples. Our findings suggest that the CTPS cytoophidium may participate in the adaptive metabolism of human hepatocellular carcinoma. Copyright © 2017. Published by Elsevier Inc.

  18. Combinatorial analysis of enzymatic bottlenecks of L-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae.

    PubMed

    Mao, Jiwei; Liu, Quanli; Song, Xiaofei; Wang, Hesuiyuan; Feng, Hui; Xu, Haijin; Qiao, Mingqiang

    2017-07-01

    To identify new enzymatic bottlenecks of L-tyrosine pathway for further improving the production of L-tyrosine and its derivatives. When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l -1 , respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l -1 ) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain. Combinatorial metabolic engineering provides a new strategy for further improvement of L-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.

  19. The N253F mutant structure of trehalose synthase from Deinococcus radiodurans reveals an open active-site topology.

    PubMed

    Chow, Sih Yao; Wang, Yung Lin; Hsieh, Yu Chiao; Lee, Guan Chiun; Liaw, Shwu Huey

    2017-11-01

    Trehalose synthase (TS) catalyzes the reversible conversion of maltose to trehalose and belongs to glycoside hydrolase family 13 (GH13). Previous mechanistic analysis suggested a rate-limiting protein conformational change, which is probably the opening and closing of the active site. Consistently, crystal structures of Deinococcus radiodurans TS (DrTS) in complex with the inhibitor Tris displayed an enclosed active site for catalysis of the intramoleular isomerization. In this study, the apo structure of the DrTS N253F mutant displays a new open conformation with an empty active site. Analysis of these structures suggests that substrate binding induces a domain rotation to close the active site. Such a substrate-induced domain rotation has also been observed in some other GH13 enzymes.

  20. Purification and Characterization of 1-Aminocyclopropane-1-Carboxylate Synthase from Apple Fruits 1

    PubMed Central

    Yip, Wing-Kin; Dong, Jian-Guo; Yang, Shang Fa

    1991-01-01

    1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine. Images Figure 4 Figure 6 PMID:16667960

  1. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarlymore » low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.« less

  2. Predicted Structures of the Proton-Bound Membrane-Embedded Rotor Rings of the Saccharomyces cerevisiae and Escherichia coli ATP Synthases.

    PubMed

    Zhou, Wenchang; Leone, Vanessa; Krah, Alexander; Faraldo-Gómez, José D

    2017-04-20

    Recent years have witnessed a renewed interest in the ATP synthase as a drug target against human pathogens. Indeed, clinical, biochemical, and structural data indicate that hydrophobic inhibitors targeting the membrane-embedded proton-binding sites of the c-subunit ring could serve as last-resort antibiotics against multidrug resistant strains. However, because inhibition of the mitochondrial ATP synthase in humans is lethal, it is essential that these inhibitors be not only potent but also highly selective for the bacterial enzyme. To this end, a detailed understanding of the structure of this protein target is arguably instrumental. Here, we use computational methods to predict the atomic structures of the proton-binding sites in two prototypical c-rings: that of the ATP synthase from Saccharomyces cerevisiae, which is a model system for mitochondrial enzymes, and that from Escherichia coli, which can be pathogenic for humans. Our study reveals the structure of these binding sites loaded with protons and in the context of the membrane, that is, in the state that would mediate the recognition of a potential inhibitor. Both structures reflect a mode of proton coordination unlike those previously observed in other c-ring structures, whether experimental or modeled.

  3. Functional Identification of Valerena-1,10-diene Synthase, a Terpene Synthase Catalyzing a Unique Chemical Cascade in the Biosynthesis of Biologically Active Sesquiterpenes in Valeriana officinalis*

    PubMed Central

    Yeo, Yun-Soo; Nybo, S. Eric; Chittiboyina, Amar G.; Weerasooriya, Aruna D.; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C. Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A. Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A.; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A.; Coates, Robert M.; Watt, David S.; Chappell, Joe

    2013-01-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [13C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes. PMID:23243312

  4. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis.

    PubMed

    Yeo, Yun-Soo; Nybo, S Eric; Chittiboyina, Amar G; Weerasooriya, Aruna D; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A; Coates, Robert M; Watt, David S; Chappell, Joe

    2013-02-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.

  5. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    PubMed Central

    Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia

    2016-01-01

    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance

  6. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.].

    PubMed

    Trusov, Yuri; Botella, José Ramón

    2006-01-01

    Flowering is a crucial developmental stage in the plant life cycle. A number of different factors, from environmental to chemical, can trigger flowering. In pineapple, and other bromeliads, it has been proposed that flowering is triggered by a small burst of ethylene production in the meristem in response to environmental cues. A 1-amino-cyclopropane-1-carboxylate synthase (ACC synthase) gene has been cloned from pineapple (ACACS2), which is induced in the meristem under the same environmental conditions that induce flowering. Two transgenic pineapple lines have been produced containing co-suppression constructs designed to down-regulate the expression of the ACACS2 gene. Northern analysis revealed that the ACACS2 gene was silenced in a number of transgenic plants in both lines. Southern hybridization revealed clear differences in the methylation status of silenced versus non-silenced plants by the inability of a methylation-sensitive enzyme to digest within the ACACS2 DNA extracted from silenced plants, indicating that methylation is the cause of the observed co-suppression of the ACACS2 gene. Flowering characteristics of the transgenic plants were studied under field conditions in South East Queensland, Australia. Flowering dynamics studies revealed significant differences in flowering behaviour, with transgenic plants exhibiting silencing showing a marked delay in flowering when compared with non-silenced transgenic plants and control non-transformed plants. It is argued that the ACACS2 gene is one of the key contributors towards triggering 'natural flowering' in mature pineapples under commercial field conditions.

  7. Terminal Olefin Profiles and Phylogenetic Analyses of Olefin Synthases of Diverse Cyanobacterial Species.

    PubMed

    Zhu, Tao; Scalvenzi, Thibault; Sassoon, Nathalie; Lu, Xuefeng; Gugger, Muriel

    2018-07-01

    Cyanobacteria can synthesize alkanes and alkenes, which are considered to be infrastructure-compatible biofuels. In terms of physiological function, cyanobacterial hydrocarbons are thought to be essential for membrane flexibility for cell division, size, and growth. The genetic basis for the biosynthesis of terminal olefins (1-alkenes) is a modular type I polyketide synthase (PKS) termed olefin synthase (Ols). The modular architectures of Ols and structural characteristics of alkenes have been investigated only in a few species of the small percentage (approximately 10%) of cyanobacteria that harbor putative Ols pathways. In this study, investigations of the domains, modular architectures, and phylogenies of Ols in 28 cyanobacterial strains suggested distinctive pathway evolution. Structural feature analyses revealed 1-alkenes with three carbon chain lengths (C 15 , C 17 , and C 19 ). In addition, the total cellular fatty acid profile revealed the diversity of the carbon chain lengths, while the fatty acid feeding assay indicated substrate carbon chain length specificity of cyanobacterial Ols enzymes. Finally, in silico analyses suggested that the N terminus of the modular Ols enzyme exhibited characteristics typical of a fatty acyl-adenylate ligase (FAAL), suggesting a mechanism of fatty acid activation via the formation of acyl-adenylates. Our results shed new light on the diversity of cyanobacterial terminal olefins and a mechanism for substrate activation in the biosynthesis of these olefins. IMPORTANCE Cyanobacterial terminal olefins are hydrocarbons with promising applications as advanced biofuels. Despite the basic understanding of the genetic basis of olefin biosynthesis, the structural diversity and phylogeny of the key modular olefin synthase (Ols) have been poorly explored. An overview of the chemical structural traits of terminal olefins in cyanobacteria is provided in this study. In addition, we demonstrated by in vivo fatty acid feeding assays that

  8. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase*

    PubMed Central

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.

    2015-01-01

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  9. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Fang; Yep, Alejandra; Feng, Lei

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of themore » enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.« less

  10. Identification of a Novel Prostaglandin F2α Synthase in Trypanosoma brucei

    PubMed Central

    Kubata, Bruno Kilunga; Duszenko, Michael; Kabututu, Zakayi; Rawer, Marc; Szallies, Alexander; Fujimori, Ko; Inui, Takashi; Nozaki, Tomoyoshi; Yamashita, Kouwa; Horii, Toshihiro; Urade, Yoshihiro; Hayaishi, Osamu

    2000-01-01

    Members of the genus Trypanosoma cause African trypanosomiasis in humans and animals in Africa. Infection of mammals by African trypanosomes is characterized by an upregulation of prostaglandin (PG) production in the plasma and cerebrospinal fluid. These metabolites of arachidonic acid (AA) may, in part, be responsible for symptoms such as fever, headache, immunosuppression, deep muscle hyperaesthesia, miscarriage, ovarian dysfunction, sleepiness, and other symptoms observed in patients with chronic African trypanosomiasis. Here, we show that the protozoan parasite T. brucei is involved in PG production and that it produces PGs enzymatically from AA and its metabolite, PGH2. Among all PGs synthesized, PGF2α was the major prostanoid produced by trypanosome lysates. We have purified a novel T. brucei PGF2α synthase (TbPGFS) and cloned its cDNA. Phylogenetic analysis and molecular properties revealed that TbPGFS is completely distinct from mammalian PGF synthases. We also found that TbPGFS mRNA expression and TbPGFS activity were high in the early logarithmic growth phase and low during the stationary phase. The characterization of TbPGFS and its gene in T. brucei provides a basis for the molecular analysis of the role of parasite-derived PGF2α in the physiology of the parasite and the pathogenesis of African trypanosomiasis. PMID:11067881

  11. The Role of Light-Dark Regulation of the Chloroplast ATP Synthase.

    PubMed

    Kohzuma, Kaori; Froehlich, John E; Davis, Geoffry A; Temple, Joshua A; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A; Kramer, David M

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se . Instead

  12. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    PubMed Central

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; Temple, Joshua A.; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A.; Kramer, David M.

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  13. Identification and Characterization of Daurichromenic Acid Synthase Active in Anti-HIV Biosynthesis.

    PubMed

    Iijima, Miu; Munakata, Ryosuke; Takahashi, Hironobu; Kenmoku, Hiromichi; Nakagawa, Ryuichi; Kodama, Takeshi; Asakawa, Yoshinori; Abe, Ikuro; Yazaki, Kazufumi; Kurosaki, Fumiya; Taura, Futoshi

    2017-08-01

    Daurichromenic acid (DCA) synthase catalyzes the oxidative cyclization of grifolic acid to produce DCA, an anti-HIV meroterpenoid isolated from Rhododendron dauricum We identified a novel cDNA encoding DCA synthase by transcriptome-based screening from young leaves of R. dauricum The gene coded for a 533-amino acid polypeptide with moderate homologies to flavin adenine dinucleotide oxidases from other plants. The primary structure contained an amino-terminal signal peptide and conserved amino acid residues to form bicovalent linkage to the flavin adenine dinucleotide isoalloxazine ring at histidine-112 and cysteine-175. In addition, the recombinant DCA synthase, purified from the culture supernatant of transgenic Pichia pastoris , exhibited structural and functional properties as a flavoprotein. The reaction mechanism of DCA synthase characterized herein partly shares a similarity with those of cannabinoid synthases from Cannabis sativa , whereas DCA synthase catalyzes a novel cyclization reaction of the farnesyl moiety of a meroterpenoid natural product of plant origin. Moreover, in this study, we present evidence that DCA is biosynthesized and accumulated specifically in the glandular scales, on the surface of R. dauricum plants, based on various analytical studies at the chemical, biochemical, and molecular levels. The extracellular localization of DCA also was confirmed by a confocal microscopic analysis of its autofluorescence. These data highlight the unique feature of DCA: the final step of biosynthesis is completed in apoplastic space, and it is highly accumulated outside the scale cells. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).

    PubMed

    Landmann, Christian; Fink, Barbara; Festner, Maria; Dregus, Márta; Engel, Karl-Heinz; Schwab, Wilfried

    2007-09-15

    The essential oil of lavender (Lavandula angustifolia) is mainly composed of mono- and sesquiterpenes. Using a homology-based PCR strategy, two monoterpene synthases (LaLIMS and LaLINS) and one sesquiterpene synthase (LaBERS) were cloned from lavender leaves and flowers. LaLIMS catalyzed the formation of (R)-(+)-limonene, terpinolene, (1R,5S)-(+)-camphene, (1R,5R)-(+)-alpha-pinene, beta-myrcene and traces of alpha-phellandrene. The proportions of these products changed significantly when Mn(2+) was supplied as the cofactor instead of Mg(2+). The second enzyme LaLINS produced exclusively (R)-(-)-linalool, the main component of lavender essential oil. LaBERS transformed farnesyl diphosphate and represents the first reported trans-alpha-bergamotene synthase. It accepted geranyl diphosphate with higher affinity than farnesyl diphosphate and also produced monoterpenes, albeit at low rates. LaBERS is probably derived from a parental monoterpene synthase by the loss of the plastidial signal peptide and by broadening its substrate acceptance spectrum. The identification and description of the first terpene synthases from L. angustifolia forms the basis for the biotechnological modification of essential oil composition in lavender.

  15. Producing alpha-olefins using polyketide synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.

    2018-01-02

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.

  16. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Lei; Singh, Abhishek; Bashline, Logan

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasmamore » membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress.« less

  17. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... Hyperammonemia due to N-acetylglutamate synthase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (4 links) Children Living with Inherited Metabolic Diseases National Organization for ...

  19. S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics.

    PubMed

    Módis, Katalin; Ju, YoungJun; Ahmad, Akbar; Untereiner, Ashley A; Altaany, Zaid; Wu, Lingyun; Szabo, Csaba; Wang, Rui

    2016-11-01

    Mammalian cells can utilize hydrogen sulfide (H 2 S) to support mitochondrial respiration. The aim of our study was to explore the potential role of S-sulfhydration (a H 2 S-induced posttranslational modification, also known as S-persulfidation) of the mitochondrial inner membrane protein ATP synthase (F1F0 ATP synthase/Complex V) in the regulation of mitochondrial bioenergetics. Using a biotin switch assay, we have detected S-sulfhydration of the α subunit (ATP5A1) of ATP synthase in response to exposure to H 2 S in vitro. The H 2 S generator compound NaHS induced S-sulfhydration of ATP5A1 in HepG2 and HEK293 cell lysates in a concentration-dependent manner (50-300μM). The activity of immunocaptured mitochondrial ATP synthase enzyme isolated from HepG2 and HEK293 cells was stimulated by NaHS at low concentrations (10-100nM). Site-directed mutagenesis of ATP5A1 in HEK293 cells demonstrated that cysteine residues at positions 244 and 294 are subject to S-sulfhydration. The double mutant ATP synthase protein (C244S/C294S) showed a significantly reduced enzyme activity compared to control and the single-cysteine-mutated recombinant proteins (C244S or C294S). To determine whether endogenous H 2 S plays a role in the basal S-sulfhydration of ATP synthase in vivo, we compared liver tissues harvested from wild-type mice and mice deficient in cystathionine-gamma-lyase (CSE, one of the three principal mammalian H 2 S-producing enzymes). Significantly reduced S-sulfhydration of ATP5A1 was observed in liver homogenates of CSE -/- mice, compared to wild-type mice, suggesting a physiological role for CSE-derived endogenous H 2 S production in the S-sulfhydration of ATP synthase. Various forms of critical illness (including burn injury) upregulate H 2 S-producing enzymes and stimulate H 2 S biosynthesis. In liver tissues collected from mice subjected to burn injury, we detected an increased S-sulfhydration of ATP5A1 at the early time points post-burn. At later time points

  20. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.

    PubMed

    Lassmann, G; Curtis, J; Liermann, B; Mason, R P; Eling, T E

    1993-01-01

    Using ESR spectroscopy, the ability of enzyme inhibitors to quench protein-derived tyrosyl radicals was studied in two different enzymes, prostaglandin H synthase and ribonucleotide reductase. The prostaglandin H synthase inhibitors indomethacin, eugenol, and MK-410 effectively prevent the formation of tyrosyl radicals during the oxidation of arachidonic acid by prostaglandin H synthase from ram seminal vesicles. A direct reaction with preformed tyrosyl radicals was observed only with eugenol. The other prostaglandin H synthase inhibitors were ineffective. The ribonucleotide reductase inhibitors hydroxyurea and 4-hydroxyanisole, which effectively inactivate the tyrosyl radical in the active site of ribonucleotide reductase present in tumor cells, exhibit a different reactivity with tyrosyl radicals formed by prostaglandin H synthase. Hydroxyurea quenches preformed tyrosyl radicals in prostaglandin H synthase weakly, whereas 4-hydroxyanisole does not quench tyrosyl radicals in prostaglandin H synthase at all. Eugenol, which quenches preformed prostaglandin H synthase-derived tyrosyl radicals, also quenches the tyrosyl radical in ribonucleotide reductase. The results suggest that the reactivity of protein-linked tyrosyl radicals in ribonucleotide reductase and those formed during prostaglandin H synthase catalysis are very different and have unrelated roles in enzyme catalysis.

  1. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers

    PubMed Central

    Aros, Danilo; Gonzalez, Veronica; Allemann, Rudolf K.; Müller, Carsten T.; Rosati, Carlo; Rogers, Hilary J.

    2012-01-01

    Native to South America, Alstroemeria flowers are known for their colourful tepals, and Alstroemeria hybrids are an important cut flower. However, in common with many commercial cut flowers, virtually all the commercial Alstroemeria hybrids are not scented. The cultivar ‘Sweet Laura’ is one of very few scented commercial Alstroemeria hybrids. Characterization of the volatile emission profile of these cut flowers revealed three major terpene compounds: (E)-caryophyllene, humulene (also known as α-caryophyllene), an ocimene-like compound, and several minor peaks, one of which was identified as myrcene. The profile is completely different from that of the parental scented species A. caryophyllaea. Volatile emission peaked at anthesis in both scented genotypes, coincident in cv. ‘Sweet Laura’ with the maximal expression of a putative terpene synthase gene AlstroTPS. This gene was preferentially expressed in floral tissues of both cv. ‘Sweet Laura’ and A. caryophyllaea. Characterization of the AlstroTPS gene structure from cv. ‘Sweet Laura’ placed it as a member of the class III terpene synthases, and the predicted 567 amino acid sequence placed it into the subfamily TPS-b. The conserved sequences R28(R)X8W and D321DXXD are the putative Mg2+-binding sites, and in vitro assay of AlstroTPS expressed in Escherichia coli revealed that the encoded enzyme possesses myrcene synthase activity, consistent with a role for AlstroTPS in scent production in Alstroemeria cv. ‘Sweet Laura’ flowers. PMID:22268153

  2. Regulatory functions of trehalose-6-phosphate synthase in the chitin biosynthesis pathway in Tribolium castaneum (Coleoptera: Tenebrionidae) revealed by RNA interference.

    PubMed

    Chen, Q W; Jin, S; Zhang, L; Shen, Q D; Wei, P; Wei, Z M; Wang, S G; Tang, B

    2018-06-01

    RNA interference (RNAi) is a very effective technique for studying gene function and may be an efficient method for controlling pests. Trehalose-6-phosphate synthase (TPS), which plays a key role in the synthesis of trehalose and insect development, was cloned in Tribolium castaneum (Herbst) (TcTPS) and the putative functions were studied using RNAi via the injection of double-stranded RNA (dsRNA) corresponding to conserved TPS and trehalose-6-phosphate phosphatase domains. Expression analyses show that TcTPS is expressed higher in the fat body, while quantitative real-time polymerase chain reaction results show that the expression of four trehalase isoforms was significantly suppressed by dsTPS injection. Additionally, the expression of six chitin synthesis-related genes, such as hexokinase 2 and glutamine-fructose-6-phosphate aminotransferase, was suppressed at 48 and 72 h post-dsTPS-1 and dsTPS-2 RNA injection, which were two dsTPS fragments that had been designed for two different locations in TcTPS open reading frame, and that trehalose content and trehalase 1 activity decreased significantly at 72 h post-dsRNA injection. Furthermore, T. castaneum injected with dsTPS-1 and dsTPS-2 RNA displayed significantly lower levels of chitin and could not complete the molting process from larvae to pupae, revealing abnormal molting phenotypes. These results demonstrate that silencing TPS gene leads to molting deformities and high mortality rates via regulation of gene expression in the chitin biosynthetic pathway, and may be a promising approach for pest control in the future.

  3. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for themore » first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.« less

  4. The Maize Gene terpene synthase 1 Encodes a Sesquiterpene Synthase Catalyzing the Formation of (E)-β-Farnesene, (E)-Nerolidol, and (E,E)-Farnesol after Herbivore Damage1

    PubMed Central

    Schnee, Christiane; Köllner, Tobias G.; Gershenzon, Jonathan; Degenhardt, Jörg

    2002-01-01

    Maize (Zea mays) emits a mixture of volatile compounds upon attack by the Egyptian cotton leafworm (Spodoptera littoralis). These substances, primarily mono- and sesquiterpenes, are used by parasitic wasps to locate the lepidopteran larvae, which are their natural hosts. This interaction among plant, lepidopteran larvae, and hymenopteran parasitoids benefits the plant and has been termed indirect defense. The committed step in the biosynthesis of the different skeletal types of mono- and sesquiterpenes is catalyzed by terpene synthases, a class of enzymes that forms a large variety of mono- and sesquiterpene products from prenyl diphosphate precursors. We isolated a terpene synthase gene, terpene synthase 1 (tps1), from maize that exhibits only a low degree of sequence identity to previously identified terpene synthases. Upon expression in a bacterial system, the encoded enzyme produced the acyclic sesquiterpenes, (E)-β-farnesene, (E,E)-farnesol, and (3R)-(E)-nerolidol, the last an intermediate in the formation of (3E)-4,8-dimethyl-1,3,7-nonatriene. Both (E)-β-farnesene and (3E)-4,8-dimethyl-1,3,7-nonatriene are prominent compounds of the maize volatile blend that is emitted after herbivore damage. The biochemical characteristics of the encoded enzyme are similar to those of terpene synthases from both gymnosperms and dicotyledonous angiosperms, suggesting that catalysis involves a similar electrophilic reaction mechanism. The transcript level of tps1 in the maize cv B73 was elevated after herbivory, mechanical damage, and treatment with elicitors. In contrast, the increase in the transcript level of the tps1 gene or gene homolog in the maize cv Delprim after herbivory was less pronounced, suggesting that the regulation of terpene synthase expression may vary among maize varieties. PMID:12481088

  5. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    PubMed Central

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  6. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    DOE PAGES

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; ...

    2017-07-24

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  7. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  8. Interactions of citrate synthases from osmoconforming and osmoregulating animals with salt: possible signs of molecular eco-adaptation?

    PubMed

    Sarkissian, I V

    1977-01-01

    This study considers differential sensitivity of citrate synthase (citrate oxaloacetatelyase [CoA acetylating]) EC 4.1.3.7. from an osmoconforming animal (sea anemone) and an osmoregulating animal (the pig) to salt. Attention is drawn to the fact that the osmoconforming sea anemone is in essence a sessile creature while the pig is readily mobile and able to change its ionic environment at will. It had been shown earlier that citrate synthase from another osmoconformer (oyster) is also not sensitive to ionic strength while citrate synthase from osmoregulating white shrimp is sensitive to increasing levels of salt. However, these enzymes are characteristically regulated by ATP and alpha-ketoglutarate. Both forms of citrate synthase are denatured by 6 M guanidine hydrochloride and are aided by salt levels in their refolding but the rate and extent of refolding of the osmoconformer citrate synthase are greater than those of the osmoregulator citrate synthase. Catalytic activity of both forms of citrate synthase is inhibited by incubation in distilled water; osmoconformer citrate synthase was inhibited completely in 7 h while osmoregulator citrate synthase was inhibited only 60% in this time and 80% after 22 h in distilled water. The eco-adaptive and evolutionary implications of these findings are discussed.

  9. Insights into the surface topology of polyhydroxyalkanoate synthase: self-assembly of functionalized inclusions.

    PubMed

    Hooks, David O; Rehm, Bernd H A

    2015-10-01

    The polyhydroxyalkanoate (PHA) synthase catalyzes the synthesis of PHA and remains attached to the hydrophobic PHA inclusions it creates. Although this feature is actively exploited to generate functionalized biobeads via protein engineering, little is known about the structure of the PHA synthase. Here, the surface topology of Ralstonia eutropha PHA synthase was probed to inform rational protein engineering toward the production of functionalized PHA beads. Surface-exposed residues were detected by conjugating biotin to inclusion-bound PHA synthase and identifying the biotin-conjugated lysine and cysteine residues using peptide fingerprinting analysis. The identified sites (K77, K90, K139, C382, C459, and K518) were investigated as insertion sites for the generation of new protein fusions. Insertions of FLAG epitopes into exposed sites K77, K90, K139, and K518 were tolerated, retaining >65 % of in vivo activity. Sites K90, K139, and K518 were also tested by insertion of the immunoglobulin G (IgG)-binding domain (ZZ), successfully producing PHA inclusions able to bind human IgG in vitro. Although simultaneous insertions of the ZZ domain into two sites was permissive, insertion at all three lysine sites inactivated the synthase. The K90/K139 double ZZ insertion had the optimum IgG-binding capacity of 16 mg IgG/g wet PHA beads and could selectively purify the IgG fraction from human serum. Overall, this study identified surface-exposed flexible regions of the PHA synthase which either tolerate protein/peptide insertions or are critical for protein function. This further elucidates the structure and function of PHA synthase and provides new opportunities for generating functionalized PHA biobeads.

  10. Exploring the Influence of Domain Architecture on the Catalytic Function of Diterpene Synthases.

    PubMed

    Pemberton, Travis A; Chen, Mengbin; Harris, Golda G; Chou, Wayne K W; Duan, Lian; Köksal, Mustafa; Genshaft, Alex S; Cane, David E; Christianson, David W

    2017-04-11

    Terpenoid synthases catalyze isoprenoid cyclization reactions underlying the generation of more than 80,000 natural products. Such dramatic chemodiversity belies the fact that these enzymes generally consist of only three domain folds designated as α, β, and γ. Catalysis by class I terpenoid synthases occurs exclusively in the α domain, which is found with α, αα, αβ, and αβγ domain architectures. Here, we explore the influence of domain architecture on catalysis by taxadiene synthase from Taxus brevifolia (TbTS, αβγ), fusicoccadiene synthase from Phomopsis amygdali (PaFS, (αα) 6 ), and ophiobolin F synthase from Aspergillus clavatus (AcOS, αα). We show that the cyclization fidelity and catalytic efficiency of the α domain of TbTS are severely compromised by deletion of the βγ domains; however, retention of the β domain preserves significant cyclization fidelity. In PaFS, we previously demonstrated that one α domain similarly influences catalysis by the other α domain [ Chen , M. , Chou , W. K. W. , Toyomasu , T. , Cane , D. E. , and Christianson , D. W. ( 2016 ) ACS Chem. Biol. 11 , 889 - 899 ]. Here, we show that the hexameric quaternary structure of PaFS enables cluster channeling. We also show that the α domains of PaFS and AcOS can be swapped so as to make functional chimeric αα synthases. Notably, both cyclization fidelity and catalytic efficiency are altered in all chimeric synthases. Twelve newly formed and uncharacterized C 20 diterpene products and three C 25 sesterterpene products are generated by these chimeras. Thus, engineered αβγ and αα terpenoid cyclases promise to generate chemodiversity in the greater family of terpenoid natural products.

  11. Lessons from 455 Fusarium polyketide synthases

    USDA-ARS?s Scientific Manuscript database

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  12. Bisabosquals, novel squalene synthase inhibitors. I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Minagawa, K; Kouzuki, S; Nomura, K; Yamaguchi, T; Kawamura, Y; Matsushima, K; Tani, H; Ishii, K; Tanimoto, T; Kamigauchi, T

    2001-11-01

    In the course of screening for yeast squalene synthase inhibitors, bisabosqual A was isolated from the culture broth of Stachybotrys sp. RF-7260. The related compounds bisabosquals B, C and D were also isolated from Stachybotrys ruwenzoriensis RF-6853. Bisabosquals inhibited squalene synthases. IC50 values of bisabosqual A against the microsomal squalene synthases from Saccharomyces cerevisiae, Candida albicans, HepG2 cell and rat liver were 0.43, 0.25, 0.95 and 2.5 microg/ml, respectively. Bisabosqual C exhibited inhibitory activities similar to bisabosqual A. Bisabosqual A showed broad spectrum antifungal activity in vitro.

  13. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  15. The β-cyanoalanine synthase pathway: beyond cyanide detoxification.

    PubMed

    Machingura, Marylou; Salomon, Eitan; Jez, Joseph M; Ebbs, Stephen D

    2016-10-01

    Production of cyanide through biological and environmental processes requires the detoxification of this metabolic poison. In the 1960s, discovery of the β-cyanoalanine synthase (β-CAS) pathway in cyanogenic plants provided the first insight on cyanide detoxification in nature. Fifty years of investigations firmly established the protective role of the β-CAS pathway in cyanogenic plants and its role in the removal of cyanide produced from ethylene synthesis in plants, but also revealed the importance of this pathway for plant growth and development and the integration of nitrogen and sulfur metabolism. This review describes the β-CAS pathway, its distribution across and within higher plants, and the diverse biological functions of the pathway in cyanide assimilation, plant growth and development, stress tolerance, regulation of cyanide and sulfide signalling, and nitrogen and sulfur metabolism. The collective roles of the β-CAS pathway highlight its potential evolutionary and ecological importance in plants. © 2016 John Wiley & Sons Ltd.

  16. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua

    PubMed Central

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography–mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant–environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  17. Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis).

    PubMed

    Kwon, Moonhyuk; Cochrane, Stephen A; Vederas, John C; Ro, Dae-Kyun

    2014-12-20

    Drimenol, a sesquiterpene alcohol, and its derivatives display diverse bio-activities in nature. However, a drimenol synthase gene has yet to be identified. We identified a new sesquiterpene synthase cDNA (VoTPS3) in valerian plant (Valeriana officinalis). Purification and NMR analyses of the VoTPS3-produced terpene, and characterization of the VoTPS3 enzyme confirmed that VoTPS3 synthesizes (-)-drimenol. In feeding assays, possible reaction intermediates, farnesol and drimenyl diphosphate, could not be converted to drimenol, suggesting that the intermediate remains tightly bound to VoTPS3 during catalysis. A mechanistic consideration of (-)-drimenol synthesis suggests that drimenol synthase is likely to use a protonation-initiated cyclization, which is rare for sesquiterpene synthases. VoTPS3 can be used to produce (-)-drimenol, from which useful drimane-type terpenes can be synthesized. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Athenstaedt, Karin

    2011-10-01

    The oleaginous yeast Yarrowia lipolytica has an outstanding capacity to produce and store triacylglycerols resembling adipocytes of higher eukaryotes. Here, the identification of two genes YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encoding major triacylglycerol synthases of Yarrowia lipolytica is reported. Heterologous expression of either DGA1 or LRO1 in a mutant of the budding yeast Saccharomyces cerevisiae defective in triacylglycerol synthesis restores the formation of this neutral lipid. Whereas Dga1p requires acyl-CoA as a substrate for acylation of diacylglycerol, Lro1p is an acyl-CoA independent triacylglycerol synthase using phospholipids as acyl-donor. Growth of Yarrowia lipolytica strains deleted of DGA1 and/or LRO1 on glucose containing medium significantly decreases triacylglycerol accumulation. Most interestingly, when oleic acid serves as the carbon source the ratio of triacylglycerol accumulation in mutants to wild-type is significantly increased in strains defective in DGA1 but not in lro1Δ. In vitro experiments revealed that under these conditions an additional acyl-CoA dependent triacylglycerol synthase contributes to triacylglycerol synthesis in the respective mutants. Taken together, evidence is provided that Yarrowia lipolytica contains at least four triacylglycerol synthases, namely Lro1p, Dga1p and two additional triacylglycerol synthases whereof one is acyl-CoA dependent and specifically induced upon growth on oleic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila.

    PubMed

    Sawyer, Eric M; Brunner, Elizabeth C; Hwang, Yihharn; Ivey, Lauren E; Brown, Olivia; Bannon, Megan; Akrobetu, Dennis; Sheaffer, Kelsey E; Morgan, Oshauna; Field, Conroy O; Suresh, Nishita; Gordon, M Grace; Gunnell, E Taylor; Regruto, Lindsay A; Wood, Cricket G; Fuller, Margaret T; Hales, Karen G

    2017-03-23

    In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.

  20. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera

    PubMed Central

    Mishra, Bhawana; Sangwan, Rajender Singh; Asha; Jadaun, Jyoti Singh; Sangwan, Neelam S.

    2016-01-01

    Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides. PMID:26919744

  1. Early growth and development impairments in patients with ganglioside GM3 synthase deficiency.

    PubMed

    Wang, H; Wang, A; Wang, D; Bright, A; Sency, V; Zhou, A; Xin, B

    2016-05-01

    Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GSD) causes a complete absence of GM3 and all downstream biosynthetic derivatives. The individuals affected by this disorder manifest severe irritability, intractable seizures and profound intellectual disability. However, we have found that most newborns seem symptom-free for a period of time after birth. In order to further understand the onset of the disease, we investigated the early growth and development of patients with this condition through this study. We compared 37 affected individuals with their normal siblings and revealed that all children with GSD had relatively normal intrauterine growth and development, as their weight, length and head circumference were similar to their normal siblings at birth. However, the disease progresses quickly after birth and causes significant constitutional impairments of growth and development by 6 months of age. Neither breastfeeding nor gastrostomy tube placement made significant difference on growth and development as all groups of patients showed the similar pattern. We conclude that GSD causes significant postnatal growth and developmental impairments and the amount of gangliosides in breast milk and general nutritional intervention do not seem to alter these outcomes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Revised phylogeny of the Cellulose Synthase gene superfamily: insights into cell wall evolution.

    PubMed

    Little, Alan; Schwerdt, Julian G; Shirley, Neil J; Khor, Shi F; Neumann, Kylie; O'Donovan, Lisa A; Lahnstein, Jelle; Collins, Helen M; Henderson, Marilyn; Fincher, Geoffrey B; Burton, Rachel A

    2018-05-20

    Cell walls are crucial for the integrity and function of all land plants, and are of central importance in human health, livestock production, and as a source of renewable bioenergy. Many enzymes that mediate the biosynthesis of cell wall polysaccharides are encoded by members of the large cellulose synthase (CesA) gene superfamily. Here, we analyzed 29 sequenced genomes and 17 transcriptomes to revise the phylogeny of the CesA gene superfamily in angiosperms. Our results identify ancestral gene clusters that predate the monocot-eudicot divergence and reveal several novel evolutionary observations, including the expansion of the Poaceae-specific cellulose synthase-like CslF family to the graminids and restiids and the characterisation of a previously unreported eudicot lineage, CslM, that forms a reciprocally monophyletic eudicot-monocot grouping with the CslJ clade. The CslM lineage is widely distributed in eudicots, and the CslJ clade, which was previously thought to be restricted to the Poales, is widely distributed in monocots. Our analyses show that some members of the CslJ lineage, but not the newly identified CslM genes, are capable of directing (1,3;1,4)-β-glucan biosynthesis, which, contrary to current dogma, is not restricted to Poaceae. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  3. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... Testing (1 link) Genetic Testing Registry: Amish infantile epilepsy syndrome Other Diagnosis and Management Resources (2 links) ...

  4. Functional characterization of ent-copalyl diphosphate synthase from Andrographis paniculata with putative involvement in andrographolides biosynthesis.

    PubMed

    Shen, Qinqin; Li, Lixia; Jiang, Yu; Wang, Qiang

    2016-01-01

    To characterize the ent-copalyl diphosphate (ent-CPP) synthase involved in the biosynthetic pathway of andrographolides in a medicinal plant, Andrographis paniculata. The ent-CPP synthase (ent-CPS) gene was cloned from A. paniculata and its encoded ApCPS was demonstrated to react with (E,E,E)-geranylgeranyl diphosphate to form ent-CPP through recombinant expression in Escherichia coli. Site-directed mutagenesis of the Asp to Ala in the conserved DXDD motif of ApCPS resulted in loss of function. One Arg is located in the conserved position close to DXDD motif indicating the involvement of ApCPS in specialized metabolism. In addition, RT-PCR analysis revealed that ApCPS was expressed in all tissues of A. paniculata at all growth stages, which is consistent with andrographolides accumulating in these organs. Methyl jasmonate induced ApCPS gene expression, matching inducible accumulation of andrographolides in vivo. ApCPS is the first ent-CPS characterized in A. paniculata and is suggested to be involved in biosynthesis of andrographolides that have high pharmaceutical values.

  5. Identification and characterization of multiple curcumin synthases from the herb Curcuma longa.

    PubMed

    Katsuyama, Yohei; Kita, Tomoko; Horinouchi, Sueharu

    2009-09-03

    Curcuminoids are pharmaceutically important compounds isolated from the herb Curcuma longa. Two additional type III polyketide synthases, named CURS2 and CURS3, that are capable of curcuminoid synthesis were identified and characterized. In vitro analysis revealed that CURS2 preferred feruloyl-CoA as a starter substrate and CURS3 preferred both feruloyl-CoA and p-coumaroyl-CoA. These results suggested that CURS2 synthesizes curcumin or demethoxycurcumin and CURS3 synthesizes curcumin, bisdemethoxycurcumin and demethoxycurcumin. The availability of the substrates and the expression levels of the three different enzymes capable of curcuminoid synthesis with different substrate specificities might influence the composition of curcuminoids in the turmeric and in different cultivars.

  6. Producing dicarboxylic acids using polyketide synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  7. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    PubMed

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  8. Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented. PMID:20586714

  9. A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene.

    PubMed

    Burton, Rachel A; Ma, Gang; Baumann, Ute; Harvey, Andrew J; Shirley, Neil J; Taylor, Jillian; Pettolino, Filomena; Bacic, Antony; Beatty, Mary; Simmons, Carl R; Dhugga, Kanwarpal S; Rafalski, J Antoni; Tingey, Scott V; Fincher, Geoffrey B

    2010-08-01

    The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion. Sequencing of the HvCesA4 genes revealed the presence of a 964-bp solo long terminal repeat of a Copia-like retroelement in the first intron of the HvCesA4 genes of both mutant lines. The retroelement appears to interfere with transcription of the HvCesA4 gene or with processing of the mRNA, and this is likely to account for the lower crystalline cellulose content and lower stem strength of the mutants. The HvCesA4 gene maps to a position on chromosome 1H of barley that coincides with the previously reported position of fs2.

  10. ATP Synthase, a Target for Dementia and Aging?

    PubMed

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2018-02-01

    Advancing age is the biggest risk factor for development for the major life-threatening diseases in industrialized nations accounting for >90% of deaths. Alzheimer's dementia (AD) is among the most devastating. Currently approved therapies fail to slow progression of the disease, providing only modest improvements in memory. Recently reported work describes mechanistic studies of J147, a promising therapeutic molecule previously shown to rescue the severe cognitive deficits exhibited by aged, transgenic AD mice. Apparently, J147 targets the mitochondrial alpha-F1-ATP synthase (ATP5A). Modest inhibition of the ATP synthase modulates intracellular calcium to activate AMP-activated protein kinase to inhibit mammalian target of rapamycin, a known mechanism of lifespan extension from worms to mammals.

  11. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    PubMed Central

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  12. Interaction of Constitutive Nitric Oxide Synthases with Cyclooxygenases in Regulation of Bicarbonate Secretion in the Gastric Mucosa.

    PubMed

    Zolotarev, V A; Andreeva, Yu V; Vershinina, E; Khropycheva, R P

    2017-05-01

    Neuronal NO synthase blocker 7-nitroindazole suppressed bicarbonate secretion in rat gastric mucosa induced by mild local irritation with 1 M NaCl (pH 2.0). Non-selective blocker of neuronal and endothelial synthases, Nω-nitro-L-arginine (L-NNA), did not affect HCO 3 - production, but inhibited secretion after pretreatment with omeprazole. Non-selective cyclooxygenase blocker indomethacin inhibited HCO 3 - production under conditions of normal synthase activity and in the presence of L-NNA, but was ineffective when co-administered with 7-nitroindazole. It was concluded that neuronal and endothelial synthases are involved in different mechanisms of regulation of HCO 3 - secretion in the gastric mucosa induced by mild irritation. Activation of neuronal synthase stimulated HCO 3 - production, which is mediated mainly through activation of cyclooxygenase. Theoretically, activation of endothelial synthase should suppress HCO 3 - production. The effect of endothelial synthase depends on acid secretion in the stomach and bicarbonate concentration in the submucosa, as it was demonstrated in experiments with intravenous NaHCO 3 infusion.

  13. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    PubMed

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  14. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS.

    PubMed

    von Wettstein-Knowles, Penny

    2017-07-10

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c , -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols.

  15. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    PubMed Central

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  16. Protein-Protein Interactions, Not Substrate Recognition, Dominate the Turnover of Chimeric Assembly Line Polyketide Synthases*

    PubMed Central

    Klaus, Maja; Ostrowski, Matthew P.; Austerjost, Jonas; Robbins, Thomas; Lowry, Brian; Cane, David E.; Khosla, Chaitan

    2016-01-01

    The potential for recombining intact polyketide synthase (PKS) modules has been extensively explored. Both enzyme-substrate and protein-protein interactions influence chimeric PKS activity, but their relative contributions are unclear. We now address this issue by studying a library of 11 bimodular and 8 trimodular chimeric PKSs harboring modules from the erythromycin, rifamycin, and rapamycin synthases. Although many chimeras yielded detectable products, nearly all had specific activities below 10% of the reference natural PKSs. Analysis of selected bimodular chimeras, each with the same upstream module, revealed that turnover correlated with the efficiency of intermodular chain translocation. Mutation of the acyl carrier protein (ACP) domain of the upstream module in one chimera at a residue predicted to influence ketosynthase-ACP recognition led to improved turnover. In contrast, replacement of the ketoreductase domain of the upstream module by a paralog that produced the enantiomeric ACP-bound diketide caused no changes in processing rates for each of six heterologous downstream modules compared with those of the native diketide. Taken together, these results demonstrate that protein-protein interactions play a larger role than enzyme-substrate recognition in the evolution or design of catalytically efficient chimeric PKSs. PMID:27246853

  17. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice

    PubMed Central

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer’s disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD. PMID:27834780

  18. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice.

    PubMed

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.

  19. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase.

    PubMed

    Bunney, T D; van Walraven, H S; de Boer, A H

    2001-03-27

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F(1) beta-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CF(o)F(1) activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply.

  20. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula).

    PubMed

    Adal, Ayelign M; Sarker, Lukman S; Malli, Radesh P N; Liang, Ping; Mahmoud, Soheil S

    2018-06-09

    Using RNA-Seq, we cloned and characterized a unique monoterpene synthase responsible for the formation of a scent-determining S-linalool constituent of lavender oils from Lavandula × intermedia. Several species of Lavandula produce essential oils (EOs) consisting mainly of monoterpenes including linalool, one of the most abundant and scent-determining oil constituents. Although R-linalool dominates the EOs of lavenders, varying amounts (depending on the species) of the S-linalool enantiomer can also be found in these plants. Despite its relatively low abundance, S-linalool contributes a sweet, pleasant scent and is an important constituent of lavender EOs. While several terpene synthase genes including R-linalool synthase have been cloned from lavenders many important terpene synthases including S-linalool synthase have not been described from these plants. In this study, we employed RNA-Seq and other complementary sequencing data to clone and functionally characterize the sparsely expressed S-linalool synthase cDNA (LiS-LINS) from Lavandula × intermedia. Recombinant LiS-LINS catalyzed the conversion of the universal monoterpene precursor geranyl diphosphate to S-linalool as the sole product. Intriguingly, LiS-LINS exhibited very low (~ 30%) sequence similarity to other Lavandula terpene synthases, including R-linalool synthase. However, the predicted 3D structure of this protein, including the composition and arrangement of amino acids at the active site, is highly homologous to known terpene synthase proteins. LiS-LINS transcripts were detected in flowers, but were much less abundant than those corresponding to LiR-LINS, paralleling enantiomeric composition of linalool in L. × intermedia oils. These data indicate that production of S-linalool is at least partially controlled at the level of transcription from LiS-LINS. The cloned LiS-LINS cDNA may be used to enhance oil composition in lavenders and other plants through metabolic engineering.

  1. Glycogen synthase kinase-3 regulation of urinary concentrating ability

    PubMed Central

    Rao, Reena

    2013-01-01

    Purpose of review Glycogen synthase kinase-3 (GSK3) is an enzyme that is gaining prominence as a critical signaling molecule in the epithelial cells of renal tubules. This review will focus on recent findings exploring the role of GSK3 in renal collecting ducts, especially its role in urine concentration involving vasopressin signaling. Recent findings Recent studies using inhibition or tissue-specific gene deletion of GSK3 revealed the mechanism by which GSK3 regulates aquaporin 2 water channels via adenylate cyclase or the prostaglandin-E2 pathway. In other studies, postnatal treatment with lithium, an inhibitor of GSK3, increased cell proliferation and led to microcyst formation in rat kidneys. These studies suggest that loss of GSK3 activity could interfere with renal water transport at two levels. In the short term, it could disrupt vasopressin signaling in collecting duct cells and in the long term it could alter the structure of the collecting ducts, making them less responsive to the hydro-osmotic effects of vasopressin. Summary Ongoing studies reveal the crucial role played by GSK3 in the regulation of vasopressin action in the renal collecting ducts and suggest a possible use of GSK3 inhibitors in disease conditions associated with disrupted vasopressin signaling. PMID:22691876

  2. Glycogen synthase kinase-3 regulation of urinary concentrating ability.

    PubMed

    Rao, Reena

    2012-09-01

    Glycogen synthase kinase-3 (GSK3) is an enzyme that is gaining prominence as a critical signaling molecule in the epithelial cells of renal tubules. This review will focus on recent findings exploring the role of GSK3 in renal collecting ducts, especially its role in urine concentration involving vasopressin signaling. Recent studies using inhibition or tissue-specific gene deletion of GSK3 revealed the mechanism by which GSK3 regulates aquaporin 2 water channels via adenylate cyclase or the prostaglandin-E2 pathway. In other studies, postnatal treatment with lithium, an inhibitor of GSK3, increased cell proliferation and led to microcyst formation in rat kidneys. These studies suggest that loss of GSK3 activity could interfere with renal water transport at two levels. In the short term, it could disrupt vasopressin signaling in collecting duct cells and in the long term it could alter the structure of the collecting ducts, making them less responsive to the hydro-osmotic effects of vasopressin. Ongoing studies reveal the crucial role played by GSK3 in the regulation of vasopressin action in the renal collecting ducts and suggest a possible use of GSK3 inhibitors in disease conditions associated with disrupted vasopressin signaling.

  3. Polyketide synthases of Diaporthe helianthi and involvement of DhPKS1 in virulence on sunflower.

    PubMed

    Ruocco, Michelina; Baroncelli, Riccardo; Cacciola, Santa Olga; Pane, Catello; Monti, Maurilia Maria; Firrao, Giuseppe; Vergara, Mariarosaria; Magnano di San Lio, Gaetano; Vannacci, Giovanni; Scala, Felice

    2018-01-06

    The early phases of Diaporthe helianthi pathogenesis on sunflower are characterized by the production of phytotoxins that may play a role in host colonisation. In previous studies, phytotoxins of a polyketidic nature were isolated and purified from culture filtrates of virulent strains of D. helianthi isolated from sunflower. A highly aggressive isolate (7/96) from France contained a gene fragment of a putative nonaketide synthase (lovB) which was conserved in a virulent D. helianthi population. In order to investigate the role of polyketide synthases in D. helianthi 7/96, a draft genome of this isolate was examined. We were able to find and phylogenetically analyse 40 genes putatively coding for polyketide synthases (PKSs). Analysis of their domains revealed that most PKS genes of D. helianthi are reducing PKSs, whereas only eight lacked reducing domains. Most of the identified PKSs have orthologs shown to be virulence factors or genetic determinants for toxin production in other pathogenic fungi. One of the genes (DhPKS1) corresponded to the previously cloned D. helianthi lovB gene fragment and clustered with a nonribosomal peptide synthetase (NRPS) -PKS hybrid/lovastatin nonaketide like A. nidulans LovB. We used DhPKS1 as a case study and carried out its disruption through Agrobacterium-mediated transformation in the isolate 7/96. D. helianthi DhPKS1 deleted mutants were less virulent to sunflower compared to the wild type, indicating a role for this gene in the pathogenesis of the fungus. The PKS sequences analysed and reported here constitute a new genomic resource that will be useful for further research on the biology, ecology and evolution of D. helianthi and generally of fungal plant pathogens.

  4. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) hasmore » been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.« less

  5. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4

    PubMed Central

    Preiss, Laura; Klyszejko, Adriana L.; Hicks, David B.; Liu, Jun; Fackelmayer, Oliver J.; Yildiz, Özkan; Krulwich, Terry A.; Meier, Thomas

    2013-01-01

    The c-rings of ATP synthases consist of individual c-subunits, all of which harbor a conserved motif of repetitive glycine residues (GxGxGxG) important for tight transmembrane α-helix packing. The c-ring stoichiometry determines the number of ions transferred during enzyme operation and has a direct impact on the ion-to-ATP ratio, a cornerstone parameter of cell bioenergetics. In the extreme alkaliphile Bacillus pseudofirmus OF4, the glycine motif is replaced by AxAxAxA. We performed a structural study on two mutants with alanine-to-glycine changes using atomic force microscopy and X-ray crystallography, and found that mutants form smaller c12 rings compared with the WT c13. The molar growth yields of B. pseudofirmus OF4 cells on malate further revealed that the c12 mutants have a considerably reduced capacity to grow on limiting malate at high pH. Our results demonstrate that the mutant ATP synthases with either c12 or c13 can support ATP synthesis, and also underscore the critical importance of an alanine motif with c13 ring stoichiometry for optimal growth at pH >10. The data indicate a direct connection between the precisely adapted ATP synthase c-ring stoichiometry and its ion-to-ATP ratio on cell physiology, and also demonstrate the bioenergetic challenges and evolutionary adaptation strategies of extremophiles. PMID:23613590

  6. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    PubMed

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Inhibition of neuronal nitric oxide synthase in ovine model of acute lung injury*

    PubMed Central

    Enkhbaatar, Perenlei; Connelly, Rhykka; Wang, Jianpu; Nakano, Yoshimitsu; Lange, Matthias; Hamahata, Atsumori; Horvath, Eszter; Szabo, Csaba; Jaroch, Stefan; Hölscher, Peter; Hillmann, Margrit; Traber, Lillian D.; Schmalstieg, Frank C.; Herndon, David N.; Traber, Daniel L.

    2013-01-01

    Objective Acute respiratory distress syndrome/acute lung injury is a serious complication of burn patients with concomitant smoke inhalation injury. Nitric oxide has been shown to play a major role in pulmonary dysfunction from thermal damage. In this study, we have tested the hypothesis that inhibition of neuronal nitric oxide synthase could ameliorate the severity of acute lung injury using our well-established ovine model of cutaneous burn and smoke inhalation. Design Prospective, randomized, controlled, experimental animals study. Setting Investigational intensive care unit at university hospital. Subjects Adult female sheep Interventions Female sheep (n = 16) were surgically prepared for the study. Seven days after surgery, all sheep were randomly allocated into three study groups: sham (noninjured, nontreated, n = 6); control (injured, treated with saline, n = 6); and neuronal nitric oxide synthase (injured, treated with specific neuronal nitric oxide synthase inhibitor, ZK 234238 (n = 4). Control and neuronal nitric oxide synthase groups were given a cutaneous burn (40% of total body surface, third degree) and insufflated with cotton smoke (48 breaths, <40°C) under halothane anesthesia. Animals in sham group received fake injury also under halothane anesthesia. After injury or fake injury procedure, all sheep were placed on ventilators and resuscitated with lactated Ringer's solution. Neuronal nitric oxide synthase group was administered with continuous infusion of ZK 234238 started 1 hr postinjury with a dose of 100 μg/kg/hr. Sham and control groups received same amount of saline. Measurements and Main Results Cardiopulmonary hemodynamics monitored during the 24-hr experimental time period was stable in the sham group. Control sheep developed multiple signs of acute lung injury. This pathophysiology included decreased pulmonary gas exchange and lung compliance, increased pulmonary edema, and inflammatory indices, such as interleukin-8. Treatment of

  8. Isolation and characterization of beta-glucan synthase: A potential biochemical regulator of gravistimulated differential cell wall loosening

    NASA Technical Reports Server (NTRS)

    Kuzmanoff, K. M.

    1984-01-01

    In plants, gravity stimulates differential growth in the upper and lower halves of horizontally oriented organs. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the activity of Golgi-localized Beta-1,4-glucan synthase, an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. The primary objective is to determine if auxin induces de novo formation of Golgi glucan synthase and increases the level of this glucan synthase mRNA. This shall be accomplished by (a) preparation of a monoclonal antibody to the synthase, (b) isolation, and characterization of the glucan synthase, and (c) examination for cross reactivity between the antibody and translation products of auxin induced mRNAs in pea tissue. The antibody will also be used to localize the glucan synthase in upper and lower halves of pea stem tissue before, during and after the response to gravity.

  9. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    PubMed

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Twisting and subunit rotation in single FOF1-ATP synthase

    PubMed Central

    Sielaff, Hendrik; Börsch, Michael

    2013-01-01

    FOF1-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single FOF1-ATP synthases. PMID:23267178

  11. Phasin Proteins Activate Aeromonas caviae Polyhydroxyalkanoate (PHA) Synthase but Not Ralstonia eutropha PHA Synthase

    PubMed Central

    Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji

    2014-01-01

    In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc. PMID:24584238

  12. Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme.

    PubMed

    Abbadi, A; Brummel, M; Schütt, B S; Slabaugh, M B; Schuch, R; Spener, F

    2000-01-01

    A unique feature of fatty acid synthase (FAS) type II of higher plants and bacteria is 3-oxoacyl-[acyl-carrier-protein (ACP)] synthase III (KAS III), which catalyses the committing condensing reaction. Working with KAS IIIs from Cuphea seeds we obtained kinetic evidence that KAS III catalysis follows a Ping-Pong mechanism and that these enzymes have substrate-binding sites for acetyl-CoA and malonyl-ACP. It was the aim of the present study to identify these binding sites and to elucidate the catalytic mechanism of recombinant Cuphea wrightii KAS III, which we expressed in Escherichia coli. We engineered mutants, which allowed us to dissect the condensing reaction into three stages, i.e. formation of acyl-enzyme, decarboxylation of malonyl-ACP, and final Claisen condensation. Incubation of recombinant enzyme with [1-(14)C]acetyl-CoA-labelled Cys(111), and the replacement of this residue by Ala and Ser resulted in loss of overall condensing activity. The Cys(111)Ser mutant, however, still was able to bind acetyl-CoA and to catalyse subsequent binding and decarboxylation of malonyl-ACP to acetyl-ACP. We replaced His(261) with Ala and Arg and found that the former lost activity, whereas the latter retained overall condensing activity, which indicated a general-base action of His(261). Double mutants Cys(111)Ser/His(261)Ala and Cys(111)Ser/His(261)Arg were not able to catalyse overall condensation, but the double mutant containing Arg induced decarboxylation of [2-(14)C]malonyl-ACP, a reaction indicating the role of His(261) in general-acid catalysis. Finally, alanine scanning revealed the involvement of Arg(150) and Arg(306) in KAS III catalysis. The results offer for the first time a detailed mechanism for a condensing reaction catalysed by a FAS type II condensing enzyme.

  13. Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme.

    PubMed Central

    Abbadi, A; Brummel, M; Schütt, B S; Slabaugh, M B; Schuch, R; Spener, F

    2000-01-01

    A unique feature of fatty acid synthase (FAS) type II of higher plants and bacteria is 3-oxoacyl-[acyl-carrier-protein (ACP)] synthase III (KAS III), which catalyses the committing condensing reaction. Working with KAS IIIs from Cuphea seeds we obtained kinetic evidence that KAS III catalysis follows a Ping-Pong mechanism and that these enzymes have substrate-binding sites for acetyl-CoA and malonyl-ACP. It was the aim of the present study to identify these binding sites and to elucidate the catalytic mechanism of recombinant Cuphea wrightii KAS III, which we expressed in Escherichia coli. We engineered mutants, which allowed us to dissect the condensing reaction into three stages, i.e. formation of acyl-enzyme, decarboxylation of malonyl-ACP, and final Claisen condensation. Incubation of recombinant enzyme with [1-(14)C]acetyl-CoA-labelled Cys(111), and the replacement of this residue by Ala and Ser resulted in loss of overall condensing activity. The Cys(111)Ser mutant, however, still was able to bind acetyl-CoA and to catalyse subsequent binding and decarboxylation of malonyl-ACP to acetyl-ACP. We replaced His(261) with Ala and Arg and found that the former lost activity, whereas the latter retained overall condensing activity, which indicated a general-base action of His(261). Double mutants Cys(111)Ser/His(261)Ala and Cys(111)Ser/His(261)Arg were not able to catalyse overall condensation, but the double mutant containing Arg induced decarboxylation of [2-(14)C]malonyl-ACP, a reaction indicating the role of His(261) in general-acid catalysis. Finally, alanine scanning revealed the involvement of Arg(150) and Arg(306) in KAS III catalysis. The results offer for the first time a detailed mechanism for a condensing reaction catalysed by a FAS type II condensing enzyme. PMID:10600651

  14. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non-insulin dependent diabetes mellitus.

    PubMed Central

    Thorburn, A W; Gumbiner, B; Bulacan, F; Brechtel, G; Henry, R R

    1991-01-01

    To define the mechanisms of impaired muscle glycogen synthase and reduced glycogen formation in non-insulin dependent diabetes mellitus (NIDDM), glycogen synthase activity was kinetically analyzed during the basal state and three glucose clamp studies (insulin approximately equal to 300, 700, and 33,400 pmol/liter) in eight matched nonobese NIDDM and eight control subjects. Muscle glycogen content was measured in the basal state and following clamps at insulin levels of 33,400 pmol/liter. NIDDM subjects had glucose uptake matched to controls in each clamp by raising serum glucose to 15-20 mmol/liter. The insulin concentration required to half-maximally activate glycogen synthase (ED50) was approximately fourfold greater for NIDDM than control subjects (1,004 +/- 264 vs. 257 +/- 110 pmol/liter, P less than 0.02) but the maximal insulin effect was similar. Total glycogen synthase activity was reduced approximately 38% and glycogen content was approximately 30% lower in NIDDM. A positive correlation was present between glycogen content and glycogen synthase activity (r = 0.51, P less than 0.01). In summary, defects in muscle glycogen synthase activity and reduced glycogen content are present in NIDDM. NIDDM subjects also have less total glycogen synthase activity consistent with reduced functional mass of the enzyme. These findings and the correlation between glycogen synthase activity and glycogen content support the theory that multiple defects in glycogen synthase activity combine to cause reduced glycogen formation in NIDDM. PMID:1899428

  15. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    PubMed

    Ogawa, Hiroyasu; Hatano, Sonoko; Sugiura, Nobuo; Nagai, Naoko; Sato, Takashi; Shimizu, Katsuji; Kimata, Koji; Narimatsu, Hisashi; Watanabe, Hideto

    2012-01-01

    Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/-) mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/-) chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  16. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 Mmore » sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.« less

  17. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  18. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    PubMed

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.

    PubMed

    Cheng, Jiujun; Charles, Trevor C

    2016-09-01

    Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.

  20. Gene cloning and overexpression of a geranylgeranyl diphosphate synthase of an extremely thermophilic bacterium, Thermus thermophilus.

    PubMed

    Ohto, C; Ishida, C; Koike-Takeshita, A; Yokoyama, K; Muramatsu, M; Nishino, T; Obata, S

    1999-02-01

    A geranylgeranyl diphosphate (GGPP) synthase gene of an extremely thermophilic bacterium, Thermus thermophilus, was cloned and sequenced. T. thermophilus GGPP synthase, overexpressed in Escherichia coli cells as a glutathione S-transferase fusion protein, was purified and characterized. The fusion protein, retaining thermostability, formed a homodimer, and showed higher specific activity than did a partially purified thermostable enzyme previously reported. Optimal reaction conditions and kinetic parameters were also examined. The deduced amino acid sequence indicated that T. thermophilus GGPP synthase was excluded from the group of bacterial type GGPP synthases and lacked the insertion amino acid residues in the first aspartate-rich motif as do archaeal and eukaryotic short-chain prenyltransferases.

  1. Pyridoxal phosphate synthases PdxS/PdxT are required for Actinobacillus pleuropneumoniae viability, stress tolerance and virulence.

    PubMed

    Xie, Fang; Li, Gang; Wang, Yalei; Zhang, Yanhe; Zhou, Long; Wang, Chengcheng; Liu, Shuanghong; Liu, Siguo; Wang, Chunlai

    2017-01-01

    Pyridoxal 5'-phosphate (PLP) is an essential cofactor for numerous enzymes involved in a diversity of cellular processes in living organisms. Previous analysis of the Actinobacillus pleuropneumoniae S-8 genome sequence revealed the presence of pdxS and pdxT genes, which are implicated in deoxyxylulose 5-phosphate (DXP)-independent pathway of PLP biosynthesis; however, little is known about their roles in A. pleuropneumoniae pathogenicity. Our data demonstrated that A. pleuropneumoniae could synthesize PLP by PdxS and PdxT enzymes. Disruption of the pdxS and pdxT genes rendered the pathogen auxotrophic for PLP, and the defective growth as a result of these mutants was chemically compensated by the addition of PLP, suggesting the importance of PLP production for A. pleuropneumoniae growth and viability. Additionally, the pdxS and pdxT deletion mutants displayed morphological defects as indicated by irregular and aberrant shapes in the absence of PLP. The reduced growth of the pdxS and pdxT deletion mutants under osmotic and oxidative stress conditions suggests that the PLP synthases PdxS/PdxT are associated with the stress tolerance of A. pleuropneumoniae. Furthermore, disruption of the PLP biosynthesis pathway led to reduced colonization and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model. The data presented in this study reveal the critical role of PLP synthases PdxS/PdxT in viability, stress tolerance, and virulence of A. pleuropneumoniae.

  2. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    USDA-ARS?s Scientific Manuscript database

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  3. Sesquiterpene furan compound CJ-01, a novel chitin synthase 2 inhibitor from Chloranthus japonicus SIEB.

    PubMed

    Yim, Nam Hui; Hwang, Eui Il; Yun, Bong Sik; Park, Ki Duk; Moon, Jae Sun; Lee, Sang Han; Sung, Nack Do; Kim, Sung Uk

    2008-05-01

    A novel sesquiterpene furan compound CJ-01 was isolated from the methanol extract of the whole plant of Chloranthus japonicus SIEB. by monitoring the inhibitory activity of chitin synthase 2 from Saccharomyces cerevisiae. Based on spectroscopic analysis, the structure of compound CJ-01 was determined as 3,4,8a-trimethyl-4a,7,8,8a-tetrahydro-4a-naphto[2,3-b]furan-9-one. The compound inhibited chitin synthase 2 of Saccharomyces cerevisiae in a dose-dependent manner with an IC50 of 39.6 microg/ml, whereas it exhibited no inhibitory activities against chitin synthase 1 and 3 of S. cerevisiae up to 280 microg/ml. CJ-01 has 1.7-fold stronger inhibitory activity than polyoxin D (IC50=70 microg/ml), a well-known chitin synthase inhibitor. These results indicate that the compound is a specific inhibitor of chitin synthase 2 from S. cerevisiae. In addition, CJ-01 showed antifungal activities against various human and phytopathogenic fungi. Therefore, the compound might be an interesting lead to develop effective antifungal agents.

  4. Energy transduction in the F1 motor of ATP synthase.

    PubMed

    Wang, H; Oster, G

    1998-11-19

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central 'shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

  5. Energy transduction in the F1 motor of ATP synthase

    NASA Astrophysics Data System (ADS)

    Wang, Hongyun; Oster, George

    1998-11-01

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis, after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central `shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

  6. Regulation of expression, activity and localization of fungal chitin synthases

    PubMed Central

    Rogg, Luise E.; Fortwendel, Jarrod R.; Juvvadi, Praveen R.; Steinbach, William J.

    2013-01-01

    The fungal cell wall represents an attractive target for pharmacologic inhibition, as many of the components are fungal-specific. Though targeted inhibition of β-glucan synthesis is effective treatment for certain fungal infections, the ability of the cell wall to dynamically compensate via the cell wall integrity pathway may limit overall efficacy. To date, chitin synthesis inhibitors have not been successfully deployed in the clinical setting. Fungal chitin synthesis is a complex and highly regulated process. Regulation of chitin synthesis occurs on multiple levels, thus targeting of these regulatory pathways may represent an exciting alternative approach. A variety of signaling pathways have been implicated in chitin synthase regulation, at both transcriptional and post-transcriptional levels. Recent research suggests that localization of chitin synthases likely represents a major regulatory mechanism. However, much of the regulatory machinery is not necessarily shared among different chitin synthases. Thus, an in depth understanding of the precise roles of each protein in cell wall maintenance and repair will be essential to identifying the most likely therapeutic targets. PMID:21526913

  7. The Crystal Structures of the Open and Catalytically Competent Closed Conformation of Escherichia coli Glycogen Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Fang; Jia, Xiaofei; Yep, Alejandra

    2009-07-06

    Escherichia coli glycogen synthase (EcGS, EC 2.4.1.21) is a retaining glycosyltransferase (GT) that transfers glucose from adenosine diphosphate glucose to a glucan chain acceptor with retention of configuration at the anomeric carbon. EcGS belongs to the GT-B structural superfamily. Here we report several EcGS x-ray structures that together shed considerable light on the structure and function of these enzymes. The structure of the wild-type enzyme bound to ADP and glucose revealed a 15.2 degrees overall domain-domain closure and provided for the first time the structure of the catalytically active, closed conformation of a glycogen synthase. The main chain carbonyl groupmore » of His-161, Arg-300, and Lys-305 are suggested by the structure to act as critical catalytic residues in the transglycosylation. Glu-377, previously thought to be catalytic is found on the alpha-face of the glucose and plays an electrostatic role in the active site and as a glucose ring locator. This is also consistent with the structure of the EcGS(E377A)-ADP-HEPPSO complex where the glucose moiety is either absent or disordered in the active site« less

  8. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    PubMed

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartwig, S.; Frister, T.; Alemdar, S.

    2015-03-20

    An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ∼325 mg/L{sup −1} were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni{sup 2+}-IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pImore » 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg{sup 2+} containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC–MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis–Menten model, kinetic parameters of K{sub M} = 1.111 μM (±0.113), v{sub max} = 0.3245 μM min{sup −1} (±0.0035), k{sub cat} = 2.95 min{sup −1}, as well as a catalytic efficiency k{sub cat}/K{sub M} = 4.43 × 10{sup 4} M{sup −1} s{sup −1} were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. - Highlights: • Uncharacterized (+)-zizaene synthase from C. zizanoides was

  10. Molecular cloning and functional characterization of psoralen synthase, the first committed monooxygenase of furanocoumarin biosynthesis.

    PubMed

    Larbat, Romain; Kellner, Sandra; Specker, Silvia; Hehn, Alain; Gontier, Eric; Hans, Joachim; Bourgaud, Frederic; Matern, Ulrich

    2007-01-05

    Ammi majus L. accumulates linear furanocoumarins by cytochrome P450 (CYP)-dependent conversion of 6-prenylumbelliferone via (+)-marmesin to psoralen. Relevant activities, i.e. psoralen synthase, are induced rapidly from negligible background levels upon elicitation of A. majus cultures with transient maxima at 9-10 h and were recovered in labile microsomes. Expressed sequence tags were cloned from elicited Ammi cells by a nested DD-RT-PCR strategy with CYP-specific primers, and full-size cDNAs were generated from those fragments correlated in abundance with the induction profile of furanocoumarin-specific activities. One of these cDNAs representing a transcript of maximal abundance at 4 h of elicitation was assigned CYP71AJ1. Functional expression in Escherichia coli or yeast cells initially failed but was accomplished eventually in yeast cells after swapping the N-terminal membrane anchor domain with that of CYP73A1. The recombinant enzyme was identified as psoralen synthase with narrow substrate specificity for (+)-marmesin. Psoralen synthase catalyzes a unique carbon-chain cleavage reaction concomitantly releasing acetone by syn-elimination. Related plants, i.e. Heracleum mantegazzianum, are known to produce both linear and angular furanocoumarins by analogous conversion of 8-prenylumbelliferone via (+)-columbianetin to angelicin, and it was suggested that angelicin synthase has evolved from psoralen synthase. However, (+)-columbianetin failed as substrate but competitively inhibited psoralen synthase activity. Analogy modeling and docked solutions defined the conditions for high affinity substrate binding and predicted the minimal requirements to accommodate (+)-columbianetin in the active site cavity. The studies suggested that several point mutations are necessary to pave the road toward angelicin synthase evolution.

  11. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase

    PubMed Central

    Balakrishna, Asha Manikkoth; Seelert, Holger; Marx, Sven-Hendric; Dencher, Norbert A.; Grüber, Gerhard

    2014-01-01

    In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector. Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å. PMID:27919036

  12. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    PubMed Central

    Mullaney, Brendan; Ashrafi, Kaveh

    2010-01-01

    Summary Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3, a long-chain acyl-CoA synthase, causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation of enlarged, neutral lipid rich intestinal depots. Here, we show that ACS-3 functions in seam cells, epidermal cells anatomically distinct from sites of fat uptake and storage, and that acs-3 mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3 derived long chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans. PMID:20889131

  13. Thiamine pyrophosphate requirement for o-succinylbenzoic acid synthesis in Escherichia coli and evidence for an intermediate.

    PubMed Central

    Meganathan, R; Bentley, R

    1983-01-01

    Cell-free extracts of various strains of Escherichia coli synthesize the menaquinone biosynthetic intermediate o-succinylbenzoic acid (OSB) when supplied with chorismic acid, 2-ketoglutaric acid, and thiamine pyrophosphate (TPP). To assay for OSB synthesis, 2-[U-14C]ketoglutaric acid was used as substrate, and the synthesized OSB was examined by radiogas chromatography (as the dimethyl ester). [U-14C]Shikimic acid also gave rise to radioactive OSB if the cofactors necessary for enzymatic conversion to chorismic acid were added. Use of 2-[1-14C]ketoglutaric acid does not give rise to labeled OSB. In the absence of TPP during the incubations, OSB synthesis was much reduced; these observations are consistent with the proposed role for the succinic semialdehyde-TPP anion as the reagent adding to chorismic acid. Extracts of cells from menC and menD mutants did not form OSB separately, but did so in combination. There was evidence for formation of a product, X, by extracts of a menC mutant incubated with chorismic acid, TPP, and 2-ketoglutaric acid; X was converted to OSB by extracts of a menD mutant. It appears that the intermediate, X, is formed by one gene product and converted to OSB by the second gene product. PMID:6337125

  14. Native granule associated short chain length polyhydroxyalkanoate synthase from a marine derived Bacillus sp. NQ-11/A2.

    PubMed

    Prabhu, Nimali N; Santimano, Maria Celisa; Mavinkurve, Suneela; Bhosle, Saroj N; Garg, Sandeep

    2010-01-01

    A rapidly growing marine derived Bacillus sp. strain NQ-11/A2, identified as Bacillus megaterium, accumulated 61% polyhydroxyalkanoate by weight. Diverse carbon sources served as substrates for the accumulation of short chain length polyhydroxyalkanoate. Three to nine granules either single or attached as buds could be isolated intact from each cell. Maximum activity of polyhydroxyalkanoate synthase was associated with the granules. Granule-bound polyhydroxyalkanoate synthase had a K(m) of 7.1 x 10(-5) M for DL-beta-hydroxybutyryl-CoA. Temperature and pH optima for maximum activity were 30 degrees C and 7.0, respectively. Sodium ions were required for granule-bound polyhydroxyalkanoate synthase activity and inhibited by potassium. Granule-bound polyhydroxyalkanoate synthase was apparently covalently bound to the polyhydroxyalkanoate-core of the granules and affected by the chaotropic reagent urea. Detergents inhibited the granule-bound polyhydroxyalkanoate synthase drastically whilst glycerol and bovine serum albumin stabilized the synthase.

  15. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli.

    PubMed Central

    Gollop, N; Tavori, H; Barak, Z

    1982-01-01

    Acetohydroxy acid synthase from a mutant resistant to leucine-containing peptides was insensitive to leucine inhibition. It is concluded that acetohydroxy acid synthase is a target for the toxicity of the high concentrations of leucine brought into Escherichia coli K-12 by leucine-containing peptides. PMID:7033214

  16. Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-­acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase

    PubMed Central

    Shi, Dashuang; Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2006-01-01

    A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6222, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method. PMID:17142901

  17. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning.

    PubMed

    Formentini, Laura; Pereira, Marta P; Sánchez-Cenizo, Laura; Santacatterina, Fulvio; Lucas, José J; Navarro, Carmen; Martínez-Serrano, Alberto; Cuezva, José M

    2014-04-01

    A key transducer in energy conservation and signaling cell death is the mitochondrial H(+)-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H(+)-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H(+)-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H(+)-ATP synthase as a target to prevent neuronal cell death.

  18. Acute electroacupuncture inhibits nitric oxide synthase expression in the spinal cord of neuropathic rats.

    PubMed

    Cha, Myeoung Hoon; Bai, Sun Joon; Lee, Kyung Hee; Cho, Zang Hee; Kim, Young-Bo; Lee, Hye-Jung; Lee, Bae Hwan

    2010-02-01

    To examine the effects of electroacupuncture stimulation on behavioral changes and neuronal nitric oxide synthase expression in the rat spinal cord after nerve injury. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to neuropathic surgery by tightly ligating and cutting the left tibial and sural nerves. Behavioral responses to mechanical stimulation were tested for 2 weeks post-operatively. At the end of behavioral testing, electroacupuncture stimulation was applied to ST36 (Choksamni) and SP9 (Eumleungcheon) acupoints. Immunocytochemical staining was performed to investigate changes in the expression of neuronal nitric oxide synthase-immunoreactive neurons in the L4-5 spinal cord. Mechanical allodynia was observed by nerve injury. The mechanical allodynia was decreased after electroacupuncture stimulation. Neuronal nitric oxide synthase expression was also decreased in L4-5 spinal cord by electroacupuncture treatment. These results suggest that electroacupuncture relieves mechanical allodynia in the neuropathic rats possibly by the inhibition of neuronal nitric oxide synthase expression in the spinal cord.

  19. Crystal structure and enzymatic characterization of thymidylate synthase X from Helicobacter pylori strain SS1

    PubMed Central

    Wang, Kuifeng; Wang, Qi; Chen, Jing; Chen, Lili; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Thymidylate synthase X (ThyX) catalyzes the methylation of dUMP to form dTMP in bacterial life cycle and is regarded as a promising target for antibiotics discovery. Helicobacter pylori is a human pathogen associated with a number of human diseases. Here, we cloned and purified the ThyX enzyme from H. pylori SS1 strain (HpThyX). The recombinant HpThyX was discovered to exhibit the maximum activity at pH 8.5, and Km values of the two substrates dUMP and CH2H4folate were determined to be 15.3 ± 1.25 μM and 0.35 ± 0.18 mM, respectively. The analyzed crystal structure of HpThyX with the cofactor FAD and the substrate dUMP (at 2.31 Å) revealed that the enzyme was a tetramer bound to four dUMP and four FAD molecules. Different from the catalytic feature of the classical thymidylate synthase (ThyA), N5 atom of the FAD functioned as a nucleophile in the catalytic reaction instead of Ser84 and Ser85 residues. Our current work is expected to help better understand the structural and enzymatic features of HpThyX thus further providing valuable information for anti-H. pylori inhibitor discovery. PMID:21633987

  20. Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabelli,S.; McLellan, J.; Montalvetti, A.

    2006-01-01

    Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformationalmore » change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.« less

  1. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    PubMed

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  2. Development of genetically engineered bacteria for production of selected aromatic compounds

    DOEpatents

    Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan

    2001-01-01

    The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.

  3. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance

    2011-07-01

    Bacterial acyl carrier protein synthase plays an essential role in the synthesis of fatty acids, nonribosomal peptides and polyketides. In Mycobacterium tuberculosis, AcpS or group I phosphopentatheine transferase exhibits two different structural conformations depending upon the pH. The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS–ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix andmore » in the conformation of the α3–α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4–6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS–ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS–ADP adopt different conformations depending upon the pH conditions of the crystallization solution.« less

  4. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Esposito, Davide; Donnarumma, Erminia; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.

  5. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity. PMID:26368121

  6. Genetic-deletion of Cyclooxygenase-2 Downstream Prostacyclin Synthase Suppresses Inflammatory Reactions but Facilitates Carcinogenesis, unlike Deletion of Microsomal Prostaglandin E Synthase-1.

    PubMed

    Sasaki, Yuka; Kamiyama, Shuhei; Kamiyama, Azusa; Matsumoto, Konomi; Akatsu, Moe; Nakatani, Yoshihito; Kuwata, Hiroshi; Ishikawa, Yukio; Ishii, Toshiharu; Yokoyama, Chieko; Hara, Shuntaro

    2015-11-27

    Prostacyclin synthase (PGIS) and microsomal prostaglandin E synthase-1 (mPGES-1) are prostaglandin (PG) terminal synthases that function downstream of inducible cyclooxygenase (COX)-2 in the PGI2 and PGE2 biosynthetic pathways, respectively. mPGES-1 has been shown to be involved in various COX-2-related diseases such as inflammatory diseases and cancers, but it is not yet known how PGIS is involved in these COX-2-related diseases. Here, to clarify the pathophysiological role of PGIS, we investigated the phenotypes of PGIS and mPGES-1 individual knockout (KO) or double KO (DKO) mice. The results indicate that a thioglycollate-induced exudation of leukocytes into the peritoneal cavity was suppressed by the genetic-deletion of PGIS. In the PGIS KO mice, lipopolysaccharide-primed pain nociception (as assessed by the acetic acid-induced writhing reaction) was also reduced. Both of these reactions were suppressed more effectively in the PGIS/mPGES-1 DKO mice than in the PGIS KO mice. On the other hand, unlike mPGES-1 deficiency (which suppressed azoxymethane-induced colon carcinogenesis), PGIS deficiency up-regulated both aberrant crypt foci formation at the early stage of carcinogenesis and polyp formation at the late stage. These results indicate that PGIS and mPGES-1 cooperatively exacerbate inflammatory reactions but have opposing effects on carcinogenesis, and that PGIS-derived PGI2 has anti-carcinogenic effects.

  7. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  8. High Polyhydroxybutyrate Production in Pseudomonas extremaustralis Is Associated with Differential Expression of Horizontally Acquired and Core Genome Polyhydroxyalkanoate Synthase Genes

    PubMed Central

    Catone, Mariela V.; Ruiz, Jimena A.; Castellanos, Mildred; Segura, Daniel; Espin, Guadalupe; López, Nancy I.

    2014-01-01

    Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases. PMID:24887088

  9. SNP in Chalcone Synthase gene is associated with variation of 6-gingerol content in contrasting landraces of Zingiber officinale.Roscoe.

    PubMed

    Ghosh, Subhabrata; Mandi, Swati Sen

    2015-07-25

    Zingiber officinale, medicinally the most important species within Zingiber genus, contains 6-gingerol as the active principle. This compound obtained from rhizomes of Z.officinale, has immense medicinal importance and is used in various herbal drug formulations. Our record of variation in content of this active principle, viz. 6-gingerol, in land races of this drug plant collected from different locations correlated with our Gene expression studies exhibiting high Chalcone Synthase gene (Chalcone Synthase is the rate limiting enzyme of 6-gingerol biosynthesis pathway) expression in high 6-gingerol containing landraces than in the low 6-gingerol containing landraces. Sequencing of Chalcone Synthase cDNA and subsequent multiple sequence alignment revealed seven SNPs between these contrasting genotypes. Converting this nucleotide sequence to amino acid sequence, alteration of two amino acids becomes evident; one amino acid change (asparagine to serine at position 336) is associated with base change (A→G) and another change (serine to leucine at position 142) is associated with the base change (C→T). Since asparagine at position 336 is one of the critical amino acids of the catalytic triad of Chalcone Synthase enzyme, responsible for substrate binding, our study suggests that landraces with a specific amino acid change viz. Asparagine (found in high 6-gingerol containing landraces) to serine causes low 6-gingerol content. This is probably due to a weak enzyme substrate association caused by the absence of asparagine in the catalytic triad. Detailed study of this finding could also help to understand molecular mechanism associated with variation in 6-gingerol content in Z.officinale genotypes and thereby strategies for developing elite genotypes containing high 6-gingerol content. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Homocysteine threshold value based on cystathionine beta synthase and paraoxonase 1 activities in mice.

    PubMed

    Hamelet, J; Aït-Yahya-Graison, E; Matulewicz, E; Noll, C; Badel-Chagnon, A; Camproux, A-C; Demuth, K; Paul, J-L; Delabar, J M; Janel, N

    2007-12-01

    Hyperhomocysteinaemia is a metabolic disorder associated with the development of premature atherosclerosis. Among the determinants which predispose to premature thromboembolic and atherothrombotic events, serum activity of paraoxonase 1, mainly synthesized in the liver, has been shown to be a predictor of cardiovascular disease and to be negatively correlated with serum homocysteine levels in human. Even though treatments of hyperhomocysteinaemic patients ongoing cardiovascular complications are commonly used, it still remains unclear above which homocysteine level a preventive therapy should be started. In order to establish a threshold of plasma homocysteine concentration we have analyzed the hepatic cystathionine beta synthase and paraoxonase 1 activities in a moderate to intermediate murine model of hyperhomocysteinaemia. Using wild type and heterozygous cystathionine beta synthase deficient mice fed a methionine enriched diet or a control diet, we first studied the link between cystathionine beta synthase and paraoxonase 1 activities and plasma homocysteine concentration. Among the animals used in this study, we observed a negative correlation between plasma homocysteine level and cystathionine beta synthase activity (rho=-0.52, P=0.0008) or paraoxonase 1 activity (rho=-0.49, P=0.002). Starting from these results, a homocysteine cut-off value of 15 microm has been found for both cystathionine beta synthase (P=0.0003) and paraoxonase 1 (P=0.0007) activities. Our results suggest that both cystathionine beta synthase and paraoxonase 1 activities are significantly decreased in mice with a plasma homocysteine value greater than 15 microm. In an attempt to set up preventive treatment for cardiovascular disease our results indicate that treatments should be started from 15 microm of plasma homocysteine.

  11. Genetic construction and functional analysis of hybrid polyketide synthases containing heterologous acyl carrier proteins.

    PubMed Central

    Khosla, C; McDaniel, R; Ebert-Khosla, S; Torres, R; Sherman, D H; Bibb, M J; Hopwood, D A

    1993-01-01

    The gene that encodes the acyl carrier protein (ACP) of the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2) was replaced with homologs from the granaticin, oxytetracycline, tetracenomycin, and putative frenolicin polyketide synthase gene clusters. All of the replacements led to expression of functional synthases, and the recombinants synthesized aromatic polyketides similar in chromatographic properties to actinorhodin or to shunt products produced by mutants defective in the actinorhodin pathway. Some regions within the ACP were also shown to be interchangeable and allow production of a functional hybrid ACP. Structural analysis of the most abundant polyketide product of one of the recombinants by electrospray mass spectrometry suggested that it is identical to mutactin, a previously characterized shunt product of an actVII mutant (deficient in cyclase and dehydrase activities). Quantitative differences in the product profiles of strains that express the various hybrid synthases were observed. These can be explained, at least in part, by differences in ribosome-binding sites upstream of each ACP gene, implying either that the ACP concentration in some strains is rate limiting to overall PKS activity or that the level of ACP expression also influences the expression of another enzyme(s) encoded by a downstream gene(s) in the same operon as the actinorhodin ACP gene. These results reaffirm the idea that construction of hybrid polyketide synthases will be a useful approach for dissecting the molecular basis of the specificity of PKS-catalyzed reactions. However, they also point to the need for reducing the chemical complexity of the approach by minimizing the diversity of polyketide products synthesized in strains that produce recombinant polyketide synthases. Images PMID:8468280

  12. A mutated ARO4 gene for feedback-resistant DAHP synthase which causes both o-fluoro-DL-phenylalanine resistance and beta-phenethyl-alcohol overproduction in Saccharomyces cerevisiae.

    PubMed

    Fukuda, K; Watanabe, M; Asano, K; Ouchi, K; Takasawa, S

    1991-12-01

    o-Fluoro-DL-phenylalanine (OFP)-resistant mutants which overproduce beta-phenethyl-alcohol were isolated from a laboratory strain of Saccharomyces cerevisiae. Cells of one of the mutants accumulated tyrosine and phenylalanine 1.5-3 fold more than did wild-type cells. Its 3-deoxy-D-arabino-hepturosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15), encoded by ARO4, was free from feedback inhibition by tyrosine. Genetic analysis revealed that the mutation was controlled by a single dominant gene, ARO4-OFP, encoding feedback-resistant DAHP synthase by tyrosine, and that this gene caused both the OFP resistance and beta-phenethyl-alcohol overproduction. This was supported by molecular genetic studies using cloned ARO4 both from the wild-type and its mutant strain.

  13. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions.

    PubMed

    Liang, Jing; Han, Qian; Ding, Haizhen; Li, Jianyong

    2017-12-01

    In available insect genomes, there are several L-3,4-dihydroxyphenylalanine (L-dopa) decarboxylase (DDC)-like or aromatic amino acid decarboxylase (AAAD) sequences. This contrasts to those of mammals whose genomes contain only one DDC. Our previous experiments established that two DDC-like proteins from Drosophila actually mediate a complicated decarboxylation-oxidative deamination process of dopa in the presence of oxygen, leading to the formation of 3,4-dihydroxyphenylacetaldehyde (DHPA), CO 2 , NH 3, and H 2 O 2 . This contrasts to the typical DDC-catalyzed reaction, which produces CO 2 and dopamine. These DDC-like proteins were arbitrarily named DHPA synthases based on their critical role in insect soft cuticle formation. Establishment of reactions catalyzed by these AAAD-like proteins solved a puzzle that perplexed researchers for years, but to tell a true DHPA synthase from a DDC in the insect AAAD family remains problematic due to high sequence similarity. In this study, we performed extensive structural and biochemical comparisons between DHPA synthase and DDC. These comparisons identified several target residues potentially dictating DDC-catalyzed and DHPA synthase-catalyzed reactions, respectively. Comparison of DHPA synthase homology models with crystal structures of typical DDC proteins, particularly residues in the active sites, provided further insights for the roles these identified target residues play. Subsequent site-directed mutagenesis of the tentative target residues and activity evaluations of their corresponding mutants determined that active site His192 and Asn192 are essential signature residues for DDC- and DHPA synthase-catalyzed reactions, respectively. Oxygen is required in DHPA synthase-mediated process and this oxidizing agent is reduced to H 2 O 2 in the process. Biochemical assessment established that H 2 O 2 , formed in DHPA synthase-mediated process, can be reused as oxidizing agent and this active oxygen species is reduced to H 2

  14. Live imaging of β-1,3-glucan synthase FKS-1 in Neurospora crassa hyphae.

    PubMed

    Sánchez-León, Eddy; Riquelme, Meritxell

    2015-09-01

    The subcellular localization and dynamics of FKS-1, the putative catalytic subunit of the β-1,3-glucan synthase complex, was analyzed in growing hyphae of Neurospora crassa by live confocal microscopy. GFP-tagged FKS-1 accumulated at the outer layer of the Spitzenkörper (Spk), and at the apical plasma membrane (PM). Fluorescence recovery after photobleaching analysis revealed arrival of FKS-1-containing carriers first at the immediate surroundings of the core region of the Spk, and thereafter to the Spk most outer region. The results obtained here and previous data suggest that FKS-1 is transported to the Spk in macrovesicles. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Binding Isotope Effects for para-Aminobenzoic Acid with Dihydropteroate Synthase from Staphylococcus aureus and Plasmodium falciparum.

    PubMed

    Stratton, Christopher F; Namanja-Magliano, Hilda A; Cameron, Scott A; Schramm, Vern L

    2015-10-16

    Dihydropteroate synthase is a key enzyme in folate biosynthesis and is the target of the sulfonamide class of antimicrobials. Equilibrium binding isotope effects and density functional theory calculations indicate that the substrate binding sites for para-aminobenzoic acid on the dihydropteroate synthase enzymes from Staphylococcus aureus and Plasmodium falciparum present distinct chemical environments. Specifically, we show that para-aminobenzoic acid occupies a more sterically constrained vibrational environment when bound to dihydropteroate synthase from P. falciparum relative to that of S. aureus. Deletion of a nonhomologous, parasite-specific insert from the plasmodial dihydropteroate synthase abrogated the binding of para-aminobenzoic acid. The loop specific to P. falciparum is important for effective substrate binding and therefore plays a role in modulating the chemical environment at the substrate binding site.

  16. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    USDA-ARS?s Scientific Manuscript database

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  18. Geranylgeranyl Diphosphate Synthase Modulates Fetal Lung Branching Morphogenesis Possibly through Controlling K-Ras Prenylation.

    PubMed

    Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun

    2016-06-01

    G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Squalene synthase inhibition: a novel target for the management of dyslipidemia.

    PubMed

    Davidson, Michael H

    2007-01-01

    A new class of compounds, known as squalene synthase inhibitors, has recently reached phase III clinical trials and may provide another therapeutic option for clinicians to improve risk management of low-density lipoprotein cholesterol (LDL-C). The clinical need for another LDL-C-lowering therapy is evident by the inability to achieve an LDL-C target of less than 70 mg/dL in the majority of very high-risk patients on statin monotherapy. Human clinical trial data with TAK-475, a novel and potent inhibitor of squalene synthase, have not yet been published.

  20. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysismore » of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.« less

  1. Biochemical and Structural Basis for Inhibition of Enterococcus faecalis Hydroxymethylglutaryl-CoA Synthase, mvaS, by Hymeglusin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaff, D. Andrew; Ramyar, Kasra X.; McWhorter, William J.

    Hymeglusin (1233A, F244, L-659-699) is established as a specific {beta}-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct;more » substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 {angstrom}) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.« less

  2. Sphingomyelin Synthase 1 Is Essential for Male Fertility in Mice

    PubMed Central

    Scherthan, Harry; Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Ford, Steven J.; Burton, Neal C.; Razansky, Daniel; Trümbach, Dietrich; Aichler, Michaela; Walch, Axel Karl; Calzada-Wack, Julia; Neff, Frauke; Wurst, Wolfgang; Hartmann, Tobias; Floss, Thomas

    2016-01-01

    Sphingolipids and the derived gangliosides have critical functions in spermatogenesis, thus mutations in genes involved in sphingolipid biogenesis are often associated with male infertility. We have generated a transgenic mouse line carrying an insertion in the sphingomyelin synthase gene Sms1, the enzyme which generates sphingomyelin species in the Golgi apparatus. We describe the spermatogenesis defect of Sms1-/- mice, which is characterized by sloughing of spermatocytes and spermatids, causing progressive infertility of male homozygotes. Lipid profiling revealed a reduction in several long chain unsaturated phosphatidylcholins, lysophosphatidylcholins and sphingolipids in the testes of mutants. Multi-Spectral Optoacoustic Tomography indicated blood-testis barrier dysfunction. A supplementary diet of the essential omega-3 docosahexaenoic acid and eicosapentaenoic acid diminished germ cell sloughing from the seminiferous epithelium and restored spermatogenesis and fertility in 50% of previously infertile mutants. Our findings indicate that SMS1 has a wider than anticipated role in testis polyunsaturated fatty acid homeostasis and for male fertility. PMID:27788151

  3. Glycogen Synthase Kinase-3 (GSK3): Inflammation, Diseases, and Therapeutics

    PubMed Central

    Jope, Richard S.; Yuskaitis, Christopher J.; Beurel, Eléonore

    2007-01-01

    Deciphering what governs inflammation and its effects on tissues is vital for understanding many pathologies. The recent discovery that glycogen synthase kinase-3 (GSK3) promotes inflammation reveals a new component of its well-documented actions in several prevalent diseases which involve inflammation, including mood disorders, Alzheimer’s disease, diabetes, and cancer. Involvement in such disparate conditions stems from the widespread influences of GSK3 on many cellular functions, with this review focusing on its regulation of inflammatory processes. GSK3 promotes the production of inflammatory molecules and cell migration, which together make GSK3 a powerful regulator of inflammation, while GSK3 inhibition provides protection from inflammatory conditions in animal models. The involvement of GSK3 and inflammation in these diseases are highlighted. Thus, GSK3 may contribute not only to primary pathologies in these diseases, but also to the associated inflammation, suggesting that GSK3 inhibitors may have multiple effects influencing these conditions. PMID:16944320

  4. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species.

    PubMed

    Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing

    2016-03-01

    Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Modeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in Brucella melitensis 16M.

    PubMed

    Adi, Pradeepkiran Jangampalli; Yellapu, Nanda Kumar; Matcha, Bhaskar

    2016-12-01

    There are enormous evidences and previous reports standpoint that the enzyme of glyoxylate pathway malate synthase G (MSG) is a potential virulence factor in several pathogenic organisms, including Brucella melitensis 16M. Where the lack of crystal structures for best candidate proteins like MSG of B. melitensis 16M creates big lacuna to understand the molecular pathogenesis of brucellosis. In the present study, we have constructed a 3-D structure of MSG of Brucella melitensis 16M in MODELLER with the help of crystal structure of Mycobacterium tuberculosis malate synthase (PDB ID: 2GQ3) as template. The stereo chemical quality of the restrained model was evaluated by SAVES server; remarkably we identified the catalytic functional core domain located at 4 th cleft with conserved catalytic amino acids, start at ILE 59 to VAL 586 manifest the function of the protein. Furthermore, virtual screening and docking results reveals that best leadmolecules binds at the core domain pocket of MSG catalytic residues and these ligand leads could be the best prospective inhibitors to treat brucellosis.

  6. Molecular cloning and expression of an encoding galactinol synthase gene (AnGolS1) in seedling of Ammopiptanthus nanus.

    PubMed

    Liu, YuDong; Zhang, Li; Chen, LiJing; Ma, Hui; Ruan, YanYe; Xu, Tao; Xu, ChuanQiang; He, Yi; Qi, MingFang

    2016-10-27

    Based on the galactinol synthase (AnGolS1) fragment sequence from a cold-induced Suppression Subtractive Hybridization (SSH) library derived from Ammopiptanthus nanus (A. nanus) seedlings, AnGolS1 mRNA (including the 5' UTR and 3' UTR) (GenBank accession number: GU942748) was isolated and characterized by rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR). A substrate reaction test revealed that AnGolS1 possessed galactinol synthase activity in vitro and could potentially be an early-responsive gene. Furthermore, quantitative real-time PCR (qRT-PCR) indicated that AnGolS1 was responded to cold, salts and drought stresses, however, significantly up-regulated in all origans by low temperatures, especially in plant stems. In addition, the hybridization signals in the fascicular cambium were strongest in all cells under low temperature. Thus, we propose that AnGolS1 plays critical roles in A. nanus low-temperature stress resistance and that fascicular cambium cells could be involved in AnGolS1 mRNA transcription, galactinol transportation and coordination under low-temperature stress.

  7. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR.

    PubMed

    Chin, Randall M; Fu, Xudong; Pai, Melody Y; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S; Monsalve, Gabriela C; Hu, Eileen; Whelan, Stephen A; Wang, Jennifer X; Jung, Gwanghyun; Solis, Gregory M; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S; Godwin, Hilary A; Chang, Helena R; Faull, Kym F; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R; Clarke, Catherine F; Teitell, Michael A; Petrascheck, Michael; Reue, Karen; Jung, Michael E; Frand, Alison R; Huang, Jing

    2014-06-19

    Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing

  8. Studies on the Expression of Sesquiterpene Synthases Using Promoter-β-Glucuronidase Fusions in Transgenic Artemisia annua L

    PubMed Central

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E.

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production. PMID:24278301

  9. Archaeal Shikimate Kinase, a New Member of the GHMP-Kinase Family

    PubMed Central

    Daugherty, Matthew; Vonstein, Veronika; Overbeek, Ross; Osterman, Andrei

    2001-01-01

    Shikimate kinase (EC 2.7.1.71) is a committed enzyme in the seven-step biosynthesis of chorismate, a major precursor of aromatic amino acids and many other aromatic compounds. Genes for all enzymes of the chorismate pathway except shikimate kinase are found in archaeal genomes by sequence homology to their bacterial counterparts. In this study, a conserved archaeal gene (gi|1500322 in Methanococcus jannaschii) was identified as the best candidate for the missing shikimate kinase gene by the analysis of chromosomal clustering of chorismate biosynthetic genes. The encoded hypothetical protein, with no sequence similarity to bacterial and eukaryotic shikimate kinases, is distantly related to homoserine kinases (EC 2.7.1.39) of the GHMP-kinase superfamily. The latter functionality in M. jannaschii is assigned to another gene (gi|1591748), in agreement with sequence similarity and chromosomal clustering analysis. Both archaeal proteins, overexpressed in Escherichia coli and purified to homogeneity, displayed activity of the predicted type, with steady-state kinetic parameters similar to those of the corresponding bacterial kinases: Km,shikimate = 414 ± 33 μM, Km,ATP = 48 ± 4 μM, and kcat = 57 ± 2 s−1 for the predicted shikimate kinase and Km,homoserine = 188 ± 37 μM, Km,ATP = 101 ± 7 μM, and kcat = 28 ± 1 s−1 for the homoserine kinase. No overlapping activity could be detected between shikimate kinase and homoserine kinase, both revealing a >1,000-fold preference for their own specific substrates. The case of archaeal shikimate kinase illustrates the efficacy of techniques based on reconstruction of metabolism from genomic data and analysis of gene clustering on chromosomes in finding missing genes. PMID:11114929

  10. Orotic aciduria and uridine monophosphate synthase: a reappraisal.

    PubMed

    Bailey, C J

    2009-12-01

    Three subtypes of hereditary orotic aciduria are described in the literature, all related to deficiencies in uridine monophosphate synthase, the multifunctional enzyme that contains both orotate: pyrophosphoryl transferase and orotidine monophosphate decarboxylase activities. The type of enzyme defect present in the subtypes has been re-examined by steady-state modelling of the relative outputs of the three enzymic products, uridine monophosphate, urinary orotic acid and urinary orotidine. It is shown that the ratio of urinary outputs of orotidine to orotate provides a means of testing for particular forms of enzyme defect. It is confirmed that the type I defect is caused by loss of uridine monophosphate synthase activity. Cells and tissue of type I cases have a residual amount of activity that is qualitatively unchanged: the relative rates of the transferase and decarboxylase do not differ from those of wild-type enzyme. The single claimed case of type II, thought to be due to specific inactivation of orotidine monophosphate decarboxylase, is shown to have a product spectrum inconsistent with that claim. It is proposed that this type II form does not differ sufficiently to be accepted as separate from type I. The third subtype, hereditary orotic aciduria without megaloblastic anaemia, occurs in two cases. It has the product spectrum expected of a defect in orotidine monophosphate decarboxylase. This form is the only one that appears to have a qualitatively different uridine monophosphate synthase. The possibility that orotidine monophosphate may control flux through the pyrimidine biosynthesis pathway in hereditary orotic aciduria is discussed.

  11. A Customized Gene Expression Microarray Reveals That the Brittle Stem Phenotype fs2 of Barley Is Attributable to a Retroelement in the HvCesA4 Cellulose Synthase Gene1[W][OA

    PubMed Central

    Burton, Rachel A.; Ma, Gang; Baumann, Ute; Harvey, Andrew J.; Shirley, Neil J.; Taylor, Jillian; Pettolino, Filomena; Bacic, Antony; Beatty, Mary; Simmons, Carl R.; Dhugga, Kanwarpal S.; Rafalski, J. Antoni; Tingey, Scott V.; Fincher, Geoffrey B.

    2010-01-01

    The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion. Sequencing of the HvCesA4 genes revealed the presence of a 964-bp solo long terminal repeat of a Copia-like retroelement in the first intron of the HvCesA4 genes of both mutant lines. The retroelement appears to interfere with transcription of the HvCesA4 gene or with processing of the mRNA, and this is likely to account for the lower crystalline cellulose content and lower stem strength of the mutants. The HvCesA4 gene maps to a position on chromosome 1H of barley that coincides with the previously reported position of fs2. PMID:20530215

  12. Inverted stereocontrol of iridoid synthase in snapdragon

    PubMed Central

    Kries, Hajo; Kellner, Franziska; Kamileen, Mohamed Omar; O'Connor, Sarah E.

    2017-01-01

    The natural product class of iridoids, found in various species of flowering plants, harbors astonishing chemical complexity. The discovery of iridoid biosynthetic genes in the medicinal plant Catharanthus roseus has provided insight into the biosynthetic origins of this class of natural product. However, not all iridoids share the exact five- to six-bicyclic ring scaffold of the Catharanthus iridoids. For instance, iridoids in the ornamental flower snapdragon (Antirrhinum majus, Plantaginaceae family) are derived from the C7 epimer of this scaffold. Here we have cloned and characterized the iridoid synthase enzyme from A. majus (AmISY), the enzyme that is responsible for converting 8-oxogeranial into the bicyclic iridoid scaffold in a two-step reduction–cyclization sequence. Chiral analysis of the reaction products reveals that AmISY reduces C7 to generate the opposite stereoconfiguration in comparison with the Catharanthus homologue CrISY. The catalytic activity of AmISY thus explains the biosynthesis of 7-epi-iridoids in Antirrhinum and related genera. However, although the stereoselectivity of the reduction step catalyzed by AmISY is clear, in both AmISY and CrISY, the cyclization step produces a diastereomeric mixture. Although the reduction of 8-oxogeranial is clearly enzymatically catalyzed, the cyclization step appears to be subject to less stringent enzyme control. PMID:28701463

  13. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    NASA Astrophysics Data System (ADS)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  14. Crystallization of Δ1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    PubMed Central

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi; Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota; Shoyama, Yukihiro; Morimoto, Satoshi

    2005-01-01

    Δ1-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å3 Da−1 assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively. PMID:16511162

  15. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    PubMed Central

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; De Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-01-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65–74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase. PMID:27874020

  16. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    NASA Astrophysics Data System (ADS)

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-11-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.

  17. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes

    USGS Publications Warehouse

    Holmes, Dawn E.; Nevin, Kelly P.; O'Neil, Regina A.; Ward, Joy E.; Adams, Lorrie A.; Woodard, Trevor L.; Vrionis, Helen A.; Lovely, Derek R.

    2005-01-01

    The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene.

  18. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    PubMed Central

    2016-01-01

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs. PMID:27490479

  19. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase.

    PubMed

    Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  20. Sucrose Synthase Expression during Cold Acclimation in Wheat 1

    PubMed Central

    Crespi, Martin D.; Zabaleta, Eduardo J.; Pontis, Horacio G.; Salerno, Graciela L.

    1991-01-01

    When wheat (Triticum aestivum) seedlings are exposed to a cold temperature (2-4°C) above 0°C, sucrose accumulates and sucrose synthase activity increases. The effect of a cold period on the level of sucrose synthase (SS) was investigated. Using antibodies against wheat germ SS, Western blots studies showed that the amount of the SS peptide increased during 14 days in the cold, when plants were moved from 23°C to 4°C. The level of SS diminished when plants were moved back to 23°C. Northern blots of poly(A)+ RNA, confirmed a five- to sixfold induction of SS in wheat leaves during cold acclimation. These results indicate that SS is involved in the plant response to a chilling stress. ImagesFigure 1Figure 2Figure 3 PMID:16668270

  1. Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

    PubMed

    Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T

    2017-01-01

    Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.

  2. Hypotensive effect of agmatine, arginine metabolite, is affected by NO synthase.

    PubMed

    Gerová, M; Török, J

    2004-01-01

    The metabolites of arginine were recently shown to be involved in cardiovascular control. The study addresses the general cardiovascular response of anaesthetized rats to agmatine, a decarboxylated arginine. The relation between two arginine metabolic pathways governed by arginine decarboxylase and nitric oxide synthase was investigated. Intravenous administration of agmatine 30 and 60 microM/0.1 ml saline elicited remarkable hypotension of 42.6+/-4.6 and 70.9+/-6.5 mm Hg, respectively. The hypotension was characterized by long duration with half-time of return 171.6+/-2.9 and 229.2+/-3.8 s, respectively. The time of total blood pressure BP recovery was about 10 min. Dose-dependent relaxation to agmatine was also found in aorta rings in vitro. Both doses of agmatine administered 60-180 min after NO synthase inhibition L-NAME 40 mg/kg i.v. caused greater hypotension 59.0+/-7.6 and 95.8 8.8 mm Hg P<0.01 both compared to animals with intact NO synthase, but this was accompanied by a significant shortening of the half-time of BP return. If agmatine was administered to hypertensive NO-deficient rats treated with 40 mg/kg/day L-NAME for 4 weeks, similar significant enhancement of hypotension was observed at both agmatine doses, again with a significant shortening of half-time of BP return. It can be summarized that the long-lasting hypotension elicited by agmatine was amplified after acute or chronic NO synthase inhibition, indicating a feedback relation between the two metabolic pathways of arginine.

  3. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    PubMed

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  4. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    PubMed Central

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501

  5. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  6. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  7. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  8. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris R.; Scieble, Wolf

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS genemore » can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.« less

  9. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    PubMed

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Overexpression of an archaeal geranylgeranyl diphosphate synthase in Escherichia coli cells.

    PubMed

    Ohto, C; Nakane, H; Hemmi, H; Ohnuma, S; Obata, S; Nishino, T

    1998-06-01

    An archaeal geranylgeranyl diphosphate synthase was overexpressed in Escherichia coli cells as fusion proteins. These fusion proteins retained their thermostability and had higher specific activity than did a partially purified native enzyme Previously reported. We purified 24.3 mg of MBP (maltose-binding protein)-fusion protein and 5.4 mg of GST (glutathione S-transferase)-fusion protein from a one-liter culture of E. coli. The MBP-fusion proteins existed in dimer, tetramer, octamer, or dodecamer form, and their product specificities were altered according to the oligomerization. The MBP-fusion protein has protease-sensitive sites in the portion corresponding to geranylgeranyl diphosphate synthase.

  11. Effect of inhibition of glycogen synthase kinase-3 on cardiac hypertrophy during acute pressure overload.

    PubMed

    Tateishi, Atsushi; Matsushita, Masayuki; Asai, Tomohiro; Masuda, Zenichi; Kuriyama, Mitsuhito; Kanki, Kazushige; Ishino, Kozo; Kawada, Masaaki; Sano, Shunji; Matsui, Hideki

    2010-06-01

    A large number of diverse signaling molecules in cell and animal models participate in the stimulus-response pathway through which the hypertrophic growth of the myocardium is controlled. However, the mechanisms of signaling pathway including the influence of lithium, which is known as an inhibitor of glycogen synthase kinase-3beta, in pressure overload hypertrophy remain unclear. The aim of our study was to determine whether glycogen synthase kinase-3beta inhibition by lithium has acute effects on the myocyte growth mechanism in a pressure overload rat model. First, we created a rat model of acute pressure overload cardiac hypertrophy by abdominal aortic banding. Protein expression time courses for beta-catenin, glycogen synthase kinase-3beta, and phosphoserine9-glycogen synthase kinase-3beta were then examined. The rats were divided into four groups: normal rats with or without lithium administration and pressure-overloaded rats with or without lithium administration. Two days after surgery, Western blot analysis of beta-catenin, echo-cardiographic evaluation, left ventricular (LV) weight, and LV atrial natriuretic peptide mRNA levels were evaluated. We observed an increase in the level of glycogen synthase kinase-3beta phosphorylation on Ser 9. A significant enhancement of LV heart weight (P < 0.05) and interventricular septum and posterior wall thickness (P < 0.05) with pressure-overloaded hypertrophy in animals treated with lithium were also observed. Atrial natriuretic peptide mRNA levels were significantly increased with pressure overload hypertrophy in animals treated with lithium. We have shown in an animal model that inhibition of glycogen synthase kinase-3beta by lithium has an additive effect on pressure overload cardiac hypertrophy.

  12. Promotion of beta-glucan synthase activity in corn microsomal membranes by calcium and protein phosphorylation

    NASA Technical Reports Server (NTRS)

    Paliyath, G.; Poovaiah, B. W.

    1988-01-01

    Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.

  13. Glyphosate Inhibition of 5-Enolpyruvylshikimate 3-Phosphate Synthase from Suspension-Cultured Cells of Nicotiana silvestris.

    PubMed

    Rubin, J L; Gaines, C G; Jensen, R A

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg. et Comes with glyphosate (N-[phosphonomethyl]glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK(a) values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO(-)CH(2)NH(2) (+)CH(2)PO(3) (2-), and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K(i) = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K(i)' = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an [enzyme:shikimate-3-P] complex and ultimately forms the dead-end complex of [enzyme:shikimate-3-P:glyphosate].

  14. A Polyketide Synthase Encoded by the Gene An15g07920 Is Involved in the Biosynthesis of Ochratoxin A in Aspergillus niger.

    PubMed

    Zhang, Jian; Zhu, Liuyang; Chen, Haoyu; Li, Min; Zhu, Xiaojuan; Gao, Qiang; Wang, Depei; Zhang, Ying

    2016-12-28

    The polyketide synthase gene An15g07920 was known in Aspergillus niger CBS 513.88 as putatively involved in the production of ochratoxin A (OTA). Genome resequencing analysis revealed that the gene An15g07920 is also present in the ochratoxin-producing A. niger strain 1062. Disruption of An15g07920 in A. niger 1062 removed its capacity to biosynthesize ochratoxin β (OTβ), ochratoxin α (OTα), and OTA. These results indicate that the polyketide synthase encoded by An15g07920 is a crucial player in the biosynthesis of OTA, in the pathway prior to the phenylalanine ligation step. The gene An15g07920 reached its maximum transcription level before OTA accumulation reached its highest level, confirming that gene transcription precedes OTA production. These findings will not only help explain the mechanism of OTA production in A. niger but also provide necessary information for the development of effective diagnostic, preventive, and control strategies to reduce the risk of OTA contamination in foods.

  15. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    NASA Astrophysics Data System (ADS)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  16. Discovering Peptide Inhibitors of Human Squalene Synthase Through Screening the Phage-Displayed Cyclic Peptide c7c Library.

    PubMed

    Shiuan, David; Chen, Yue-Hao; Lin, Hwan-Kang; Huang, Kao-Jean; Tai, Da-Fu; Chang, Ding-Kwo

    2016-06-01

    Many drugs for the treatment of hypercholesterolemia are targeting the enzymes involved in human cholesterol biosynthesis pathway. Squalene synthase, the rate-limiting enzyme located at the downstream of cholesterol synthesis pathway, has become a better candidate to develop next-generation hypocholesterolemia drugs. In the present study, we cloned and expressed the recombinant human squalene synthase (hSQS) as the lure to isolate potential peptide inhibitors from screening the conformation-constrained phage-displayed cyclic peptide c7c library. Their binding capabilities were further estimated by ELISA. Their pharmaceutical potentials were then analyzed through molecular modeling and the ADMET property evaluations. Four ennea-peptides and nine tetra-peptides were finally synthesized to evaluate their inhibitory potentials toward hSQS. The results indicate that the ennea-peptide CLSPHSMFC, tetra-peptides SMFC, CKTE, and WHQW can effectively inhibit hSQS activities (IC50 values equal to 64, 76, 87, and 90 μM, respectively). These peptides may have potentials to develop future cholesterol-lowering therapeutics. The ligand-protein interaction analysis also reveals that the inner hydrophobic pocket could be a more critical site of hSQS.

  17. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis.

    PubMed

    Vandesteene, Lies; Ramon, Matthew; Le Roy, Katrien; Van Dijck, Patrick; Rolland, Filip

    2010-03-01

    Higher plants typically do not produce trehalose in large amounts, but their genome sequences reveal large families of putative trehalose metabolism enzymes. An important regulatory role in plant growth and development is also emerging for the metabolic intermediate trehalose-6-P (T6P). Here, we present an update on Arabidopsis trehalose metabolism and a resource for further detailed analyses. In addition, we provide evidence that Arabidopsis encodes a single trehalose-6-P synthase (TPS) next to a family of catalytically inactive TPS-like proteins that might fulfill specific regulatory functions in actively growing tissues.

  18. 7-Carboxy-7-deazaguanine Synthase: A Radical S-Adenosyl-l-methionine Enzyme with Polar Tendencies

    PubMed Central

    2017-01-01

    Radical S-adenosyl-l-methionine (SAM) enzymes are widely distributed and catalyze diverse reactions. SAM binds to the unique iron atom of a site-differentiated [4Fe-4S] cluster and is reductively cleaved to generate a 5′-deoxyadenosyl radical, which initiates turnover. 7-Carboxy-7-deazaguanine (CDG) synthase (QueE) catalyzes a key step in the biosynthesis of 7-deazapurine containing natural products. 6-Carboxypterin (6-CP), an oxidized analogue of the natural substrate 6-carboxy-5,6,7,8-tetrahydropterin (CPH4), is shown to be an alternate substrate for CDG synthase. Under reducing conditions that would promote the reductive cleavage of SAM, 6-CP is turned over to 6-deoxyadenosylpterin (6-dAP), presumably by radical addition of the 5′-deoxyadenosine followed by oxidative decarboxylation to the product. By contrast, in the absence of the strong reductant, dithionite, the carboxylate of 6-CP is esterified to generate 6-carboxypterin-5′-deoxyadenosyl ester (6-CP-dAdo ester). Structural studies with 6-CP and SAM also reveal electron density consistent with the ester product being formed in crystallo. The differential reactivity of 6-CP under reducing and nonreducing conditions highlights the ability of radical SAM enzymes to carry out both polar and radical transformations in the same active site. PMID:28045519

  19. 7-Carboxy-7-deazaguanine Synthase: A Radical S -Adenosyl- l -methionine Enzyme with Polar Tendencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruender, Nathan A.; Grell, Tsehai A. J.; Dowling, Daniel P.

    Radical S-adenosyl-l-methionine (SAM) enzymes are widely distributed and catalyze diverse reactions. SAM binds to the unique iron atom of a site-differentiated [4Fe-4S] cluster and is reductively cleaved to generate a 5'-deoxyadenosyl radical, which initiates turnover. 7-Carboxy-7-deazaguanine (CDG) synthase (QueE) catalyzes a key step in the biosynthesis of 7-deazapurine containing natural products. 6-Carboxypterin (6-CP), an oxidized analogue of the natural substrate 6-carboxy-5,6,7,8-tetrahydropterin (CPH4), is shown to be an alternate substrate for CDG synthase. Under reducing conditions that would promote the reductive cleavage of SAM, 6-CP is turned over to 6-deoxyadenosylpterin (6-dAP), presumably by radical addition of the 5'-deoxyadenosine followed by oxidativemore » decarboxylation to the product. By contrast, in the absence of the strong reductant, dithionite, the carboxylate of 6-CP is esterified to generate 6-carboxypterin-5'-deoxyadenosyl ester (6-CP-dAdo ester). Structural studies with 6-CP and SAM also reveal electron density consistent with the ester product being formed in crystallo. The differential reactivity of 6-CP under reducing and nonreducing conditions highlights the ability of radical SAM enzymes to carry out both polar and radical transformations in the same active site.« less

  20. Regulation of CTP Synthase Filament Formation During DNA Endoreplication in Drosophila.

    PubMed

    Wang, Pei-Yu; Lin, Wei-Cheng; Tsai, Yi-Cheng; Cheng, Mei-Ling; Lin, Yu-Hung; Tseng, Shu-Heng; Chakraborty, Archan; Pai, Li-Mei

    2015-12-01

    CTP synthase (CTPsyn) plays an essential role in DNA, RNA, and lipid synthesis. Recent studies in bacteria, yeast, and Drosophila all reveal a polymeric CTPsyn structure, which dynamically regulates its enzymatic activity. However, the molecular mechanism underlying the formation of CTPsyn polymers is not completely understood. In this study, we found that reversible ubiquitination regulates the dynamic assembly of the filamentous structures of Drosophila CTPsyn. We further determined that the proto-oncogene Cbl, an E3 ubiquitin ligase, controls CTPsyn filament formation in endocycles. While the E3 ligase activity of Cbl is required for CTPsyn filament formation, Cbl does not affect the protein levels of CTPsyn. It remains unclear whether the regulation of CTPsyn filaments by Cbl is through direct ubiquitination of CTPsyn. In the absence of Cbl or with knockdown of CTPsyn, the progression of the endocycle-associated S phase was impaired. Furthermore, overexpression of wild-type, but not enzymatically inactive CTPsyn, rescued the endocycle defect in Cbl mutant cells. Together, these results suggest that Cbl influences the nucleotide pool balance and controls CTPsyn filament formation in endocycles. This study links Cbl-mediated ubiquitination to the polymerization of a metabolic enzyme and reveals a role for Cbl in endocycles during Drosophila development. Copyright © 2015 by the Genetics Society of America.

  1. Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases

    PubMed Central

    Keeling, Christopher I.; Chiu, Christine C.; Aw, Tidiane; Li, Maria; Henderson, Hannah; Tittiger, Claus; Weng, Hong-Biao; Blomquist, Gary J.; Bohlmann, Joerg

    2013-01-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive pest of western North American pine forests. Adult males produce frontalin, an eight-carbon antiaggregation pheromone, via the mevalonate pathway, as part of several pheromones that initiate and modulate the mass attack of host trees. Frontalin acts as a pheromone, attractant, or kairomone in most Dendroctonus species, other insects, and even elephants. 6-Methylhept-6-en-2-one, a frontalin precursor, is hypothesized to originate from 10-carbon geranyl diphosphate (GPP), 15-carbon farnesyl diphosphate (FPP), or 20-carbon geranylgeranyl diphosphate (GGPP) via a dioxygenase- or cytochrome P450-mediated carbon–carbon bond cleavage. To investigate the role of isoprenyl diphosphate synthases in pheromone biosynthesis, we characterized a bifunctional GPP/FPP synthase and a GGPP synthase in the mountain pine beetle. The ratio of GPP to FPP produced by the GPP/FPP synthase was highly dependent on the ratio of the substrates isopentenyl diphosphate and dimethylallyl diphosphate used in the assay. Transcript levels in various tissues and life stages suggested that GGPP rather than GPP or FPP is used as a precursor to frontalin. Reduction of transcript levels by RNA interference of the isoprenyl diphosphate synthases identified GGPP synthase as having the largest effect on frontalin production, suggesting that frontalin is derived from a 20-carbon isoprenoid precursor rather than from the 10- or 15-carbon precursors. PMID:24167290

  2. Constitutive expression of thymidylate synthase from LCDV-C induces a transformed phenotype in fish cells.

    PubMed

    Zhao, Zhe; Shi, Yan; Ke, Fei; Wei, Sun; Gui, Jianfang; Zhang, Qiya

    2008-03-01

    Thymidylate synthase (TS), an essential enzyme in DNA synthesis and repair, plays a key role in the events of cell cycle regulation and tumor formation. Here, an investigation was presented about subcellular location and biological function of viral TS from lymphocystis disease virus from China (LCDV-C) in fish cells. Fluorescence microscopy revealed that LCDV-C TS was predominantly localized in the cytoplasm in fish cells. Cell cycle analysis demonstrated that LCDV-C TS promoted cell cycle progression into S and G2/M phase in the constitutive expressed cells. As a result, the cells have a faster growth rate compared with the control cells as revealed by cell growth curves. For foci assay, the TS-expressed cells gave rise to foci 4-5 weeks after incubation. Microscopic examination of the TS-induced foci revealed multilayered growth and crisscross morphology characteristic of transformed cells. Moreover, LCDV-C TS predisposed the transfected cells to acquire an anchorage-independent phenotype and could grow in 0.3% soft agar. So the data reveal LCDV-C TS is sufficient to induce a transformed phenotype in fish cells in vitro and exhibits its potential ability in cell transformation. To our knowledge, it is the first report on viral TS sequences associated with transforming activity.

  3. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment.

    PubMed

    Ma, Zhan; Cao, Manlin; Liu, Yiwen; He, Yiqing; Wang, Yingzhi; Yang, Cuixia; Wang, Wenjuan; Du, Yan; Zhou, Muqing; Gao, Feng

    2010-08-01

    F1Fo-ATP synthase was originally thought to exclusively locate in the inner membrane of the mitochondria. However, recent studies prove the existence of ectopic F1Fo-ATP synthase on the outside of the cell membrane. Ectopic ATP synthase was proposed as a marker for tumor target therapy. Nevertheless, the protein transport mechanism of the ectopic ATP synthase is still unclear. The specificity of the ectopic ATP synthase, with regard to tumors, is questioned because of its widespread expression. In the current study, we constructed green fluorescent protein-ATP5B fusion protein and introduced it into HepG2 cells to study the localization of the ATP synthase. The expression of ATP5B was analyzed in six cell lines with different 'malignancies'. These cells were cultured in both normal and tumor-like acidic and hypoxic conditions. The results suggested that the ectopic expression of ATP synthase is a consequence of translocation from the mitochondria. The expression and catalytic activity of ectopic ATP synthase were similar on the surface of malignant cells as on the surface of less malignant cells. Interestingly, the expression of ectopic ATP synthase was not up-regulated in tumor-like acidic and hypoxic microenvironments. However, the catalytic activity of ectopic ATP synthase was up-regulated in tumor-like microenvironments. Therefore, the specificity of ectopic ATP synthase for tumor target therapy relies on the high level of catalytic activity that is observed in acidic and hypoxic microenvironments in tumor tissues.

  4. Umchs5, a gene coding for a class IV chitin synthase in Ustilago maydis.

    PubMed

    Xoconostle-Cázares, B; Specht, C A; Robbins, P W; Liu, Y; León, C; Ruiz-Herrera, J

    1997-12-01

    A fragment corresponding to a conserved region of a fifth gene coding for chitin synthase in the plant pathogenic fungus Ustilago maydis was amplified by means of the polymerase chain reaction (PCR). The amplified fragment was utilized as a probe for the identification of the whole gene in a genomic library of the fungus. The predicted gene product of Umchs5 has highest similarity with class IV chitin synthases encoded by the CHS3 genes from Saccharomyces cerevisiae and Candida albicans, chs-4 from Neurospora crassa, and chsE from Aspergillus nidulans. Umchs5 null mutants were constructed by substitution of most of the coding sequence with the hygromycin B resistance cassette. Mutants displayed significant reduction in growth rate, chitin content, and chitin synthase activity, specially in the mycelial form. Virulence to corn plantules was also reduced in the mutants. PCR was also used to obtain a fragment of a sixth chitin synthase, Umchs6. It is suggested that multigenic control of chitin synthesis in U. maydis operates as a protection mechanism for fungal viability in which the loss of one activity is partially compensated by the remaining enzymes. Copyright 1997 Academic Press.

  5. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex

    PubMed Central

    Gay, Darren C.; Wagner, Drew T.; Meinke, Jessica L.; Zogzas, Charles E.; Gay, Glen R.; Keatinge-Clay, Adrian T.

    2016-01-01

    Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line. PMID:26724270

  6. Intrathecal oxotremorine affects formalin-induced behavior and spinal nitric oxide synthase immunoreactivity in rats.

    PubMed

    Przewlocka, B; Mika, J; Capone, F; Machelska, H; Pavone, F

    1999-03-01

    The present research was undertaken to investigate, by behavioral and immunohistochemical methods, the effects of intrathecal (i.th.) injection of the muscarinic agonist oxotremorine on the response to the long-lasting nociceptive stimulus induced by injection of formalin into the rat hind paw. Formalin injection induced a biphasic, pain-induced behavioral response (paw jerks), as well as an increase in the number of nitric oxide (NO) synthase-labeled neurons in laminae I-III, IV, and X, but not in laminae V-VI. Oxotremorine (0.1-10 ng, i.th.) inhibited paw-jerk frequency in both phases of formalin-induced behavior. The immunohistochemical results showed that i.th.-injected oxotremorine differently affected the level of NO synthase in lumbar part of the spinal cord: no change or increase after the dose of 1 ng, and a significant reduction of nitric oxide synthase neurons after the higher dose (10 ng). These results evidenced a role of cholinergic system in the modulation of tonic pain and in nitric oxide synthase expression at the spinal cord level, which further suggests that these two systems could be involved in phenomena induced by long-lasting nociceptive stimulation.

  7. Structure of the ent -Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterialmore » origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.« less

  8. Macromolecular organization of ATP synthase and complex I in whole mitochondria

    PubMed Central

    Davies, Karen M.; Strauss, Mike; Daum, Bertram; Kief, Jan H.; Osiewacz, Heinz D.; Rycovska, Adriana; Zickermann, Volker; Kühlbrandt, Werner

    2011-01-01

    We used electron cryotomography to study the molecular arrangement of large respiratory chain complexes in mitochondria from bovine heart, potato, and three types of fungi. Long rows of ATP synthase dimers were observed in intact mitochondria and cristae membrane fragments of all species that were examined. The dimer rows were found exclusively on tightly curved cristae edges. The distance between dimers along the rows varied, but within the dimer the distance between F1 heads was constant. The angle between monomers in the dimer was 70° or above. Complex I appeared as L-shaped densities in tomograms of reconstituted proteoliposomes. Similar densities were observed in flat membrane regions of mitochondrial membranes from all species except Saccharomyces cerevisiae and identified as complex I by quantum-dot labeling. The arrangement of respiratory chain proton pumps on flat cristae membranes and ATP synthase dimer rows along cristae edges was conserved in all species investigated. We propose that the supramolecular organization of respiratory chain complexes as proton sources and ATP synthase rows as proton sinks in the mitochondrial cristae ensures optimal conditions for efficient ATP synthesis. PMID:21836051

  9. Cellulose synthase stoichiometry in aspen differs from Arabidopsis and Norway spruce.

    PubMed

    Zhang, Xueyang; Dominguez, Pia Guadalupe; Kumar, Manoj; Bygdell, Joakim; Miroshnichenko, Sergey; Sundberg, Bjorn; Wingsle, Gunnar; Niittyla, Totte

    2018-05-14

    Cellulose is synthesised at the plasma membrane by cellulose synthase complexes (CSCs) containing cellulose synthases (CESAs). Genetic analysis and CESA isoform quantification indicate that cellulose in the secondary cell walls of Arabidopsis (Arabidopsis thaliana) is synthesised by isoforms CESA4, CESA7 and CESA8 in equimolar amounts. Here, we used quantitative proteomics to investigate whether the CSC model based on Arabidopsis secondary cell wall CESA stoichiometry can be applied to the angiosperm tree aspen (Populus tremula) and the gymnosperm tree Norway spruce (Picea abies). In the developing xylem of aspen the secondary cell wall CESA stoichiometry was 3:2:1 for PtCESA8a/b : PtCESA4 : PtCESA7a/b, while in Norway spruce the stoichiometry was 1:1:1 as previously observed in Arabidopsis. Furthermore, in aspen tension wood the secondary cell wall CESA stoichiometry changed to 8:3:1 for PtCESA8a/b : PtCESA4 : PtCESA7a/b. PtCESA8b represented 73% of the total secondary cell wall CESA pool, and quantitative PCR analysis of CESA transcripts in cryo-sectioned tension wood revealed increased PtCESA8b expression during formation of the cellulose-enriched gelatinous layer while the transcripts of PtCESA4, PtCESA7a/b and PtCESA8a decreased. A wide-angle X-ray scattering analysis showed that the shift in CESA stoichiometry in tension wood coincided with an increase in crystalline cellulose microfibril diameter suggesting that the CSC CESA composition influences microfibril properties. The aspen CESA stoichiometry results raise the possibility of alternative CSC models, and suggest that homomeric PtCESA8b complexes are responsible for cellulose biosynthesis in the gelatinous layer in tension wood. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  10. Selective loss of glycogen synthase kinase-3α in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation.

    PubMed

    Alon, Lina Tsaadon; Pietrokovski, Shmuel; Barkan, Shay; Avrahami, Limor; Kaidanovich-Beilin, Oksana; Woodgett, James R; Barnea, Anat; Eldar-Finkelman, Hagit

    2011-04-20

    Mammalian glycogen synthase kinase-3 (GSK-3), a critical regulator in neuronal signaling, cognition, and behavior, exists as two isozymes GSK-3α and GSK-3β. Their distinct biological functions remains largely unknown. Here, we examined the evolutionary significance of each of these isozymes. Surprisingly, we found that unlike other vertebrates that harbor both GSK-3 genes, the GSK-3α gene is missing in birds. GSK-3-mediated tau phosphorylation was significantly lower in adult bird brains than in mouse brains, a phenomenon that was reproduced in GSK-3α knockout mouse brains. Tau phosphorylation was detected in brains from bird embryos suggesting that GSK-3 isozymes play distinct roles in tau phosphorylation during development. Birds are natural GSK-3α knockout organisms and may serve as a novel model to study the distinct functions of GSK-3 isozymes. Copyright © 2011 Federation of European Biochemical Societies. All rights reserved.

  11. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA) enzyme...

  12. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA) enzyme...

  13. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    PubMed

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  14. Contribution of extracellular ATP on the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation.

    PubMed

    Kita, Toshiyuki; Arakaki, Naokatu

    2015-01-01

    Cell-surface F1F0-ATP synthase was involved in the cell signaling mediating various biological functions. Recently, we found that cell-surface F1F0-ATP synthase plays a role on intracellular triacylglycerol accumulation in adipocytes, and yet, the underlying mechanisms remained largely unknown. In this study, we investigated the role of extracellular ATP on the intracellular triacylglycerol accumulation. We demonstrated that significant amounts of ATP were produced extracellularly by cultured 3T3-L1 adipocytes and that the antibodies against α and β subunits of F1F0-ATP synthase inhibited the extracellular ATP production. Piceatannol, a F1F0-ATP synthase inhibitor, and apyrase, an enzyme which degrades extracellular ATP, suppressed triacylglycerol accumulation. The selective P2Y1 receptor antagonist MRS2500 significantly inhibited triacylglycerol accumulation, whereas the selective P2X receptor antagonist NF279 has less effect. The present results indicate that cell-surface F1F0-ATP synthase on adipocytes is functional in extracellular ATP production and that the extracellular ATP produced contributes, at least in part, to the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation in adipocytes through P2Y1 receptor.

  15. Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets.

    PubMed

    Ghiraldi-Lopes, Luciana D; Campanerut-Sá, Paula Az; Meneguello, Jean E; Seixas, Flávio Av; Lopes-Ortiz, Mariana A; Scodro, Regiane Bl; Pires, Claudia Ta; da Silva, Rosi Z; Siqueira, Vera Ld; Nakamura, Celso V; Cardoso, Rosilene F

    2017-08-01

    We investigated a proteome profile, protein-protein interaction and morphological changes of Mycobacterium tuberculosis after different times of eupomatenoid-5 (EUP-5) induction to evaluate the cellular response to the drug-induced damages. The bacillus was induced to sub-minimal inhibitory concentration of EUP-5 at 12 h, 24 h and 48 h. The proteins were separated by 2D gel electrophoresis, identified by LC/MS-MS. Scanning electron microscopy and Search Tool for the Retrieval of Interacting Genes/Proteins analyses were performed. EUP-5 impacts mainly in M. tuberculosis proteins of intermediary metabolism and interactome suggests a multisite disturbance that contributes to bacilli death. Scanning electron microscopy revealed the loss of bacillary form. Some of the differentially expressed proteins have the potential to be drug targets such as citrate synthase (Rv0896), phosphoglycerate kinase (Rv1437), ketol-acid reductoisomerase (Rv3001c) and ATP synthase alpha chain (Rv1308).

  16. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica.

    PubMed

    Brendolise, Cyril; Yauk, Yar-Khing; Eberhard, Ellen D; Wang, Mindy; Chagne, David; Andre, Christelle; Greenwood, David R; Beuning, Lesley L

    2011-07-01

    The pentacyclic triterpenes, in particular ursolic acid and oleanolic acid and their derivatives, exist abundantly in the plant kingdom, where they are well known for their anti-inflammatory, antitumour and antimicrobial properties. α-Amyrin and β-amyrin are the precursors of ursolic and oleanolic acids, respectively, formed by concerted cyclization of squalene epoxide by a complex synthase reaction. We identified three full-length expressed sequence tag sequences in cDNA libraries constructed from apple (Malus × domestica 'Royal Gala') that were likely to encode triterpene synthases. Two of these expressed sequence tag sequences were essentially identical (> 99% amino acid similarity; MdOSC1 and MdOSC3). MdOSC1 and MdOSC2 were expressed by transient expression in Nicotiana benthamiana leaves and by expression in the yeast Pichia methanolica. The resulting products were analysed by GC and GC-MS. MdOSC1 was shown to be a mixed amyrin synthase (a 5 : 1 ratio of α-amyrin to β-amyrin). MdOSC1 is the only triterpene synthase so far identified in which the level of α-amyrin produced is > 80% of the total product and is, therefore, primarily an α-amyrin synthase. No product was evident for MdOSC2 when expressed either transiently or in yeast, suggesting that this putative triterpene synthase is either encoded by a pseudogene or does not express well in these systems. Transcript expression analysis in Royal Gala indicated that the genes are mostly expressed in apple peel, and that the MdOSC2 expression level was much lower than that of MdOSC1 and MdOSC3 in all the tissues tested. Amyrin content analysis was undertaken by LC-MS, and demonstrated that levels and ratios differ between tissues, but that the true consequence of synthase activity is reflected in the ursolic/oleanolic acid content and in further triterpenoids derived from them. Phylogenetic analysis placed the three triterpene synthase sequences with other triterpene synthases that encoded either

  17. Adaptive responses of GLUT-4 and citrate synthase in fast-twitch muscle of voluntary running rats

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Halseth, A. E.

    1995-01-01

    Glucose transporter (GLUT-4) protein, hexokinase, and citrate synthase (proteins involved in oxidative energy production from blood glucose catabolism) increase in response to chronically elevated neuromuscular activity. It is currently unclear whether these proteins increase in a coordinated manner in response to this stimulus. Therefore, voluntary wheel running (WR) was used to chronically overload the fast-twitch rat plantaris muscle and the myocardium, and the early time courses of adaptative responses of GLUT-4 protein and the activities of hexokinase and citrate synthase were characterized and compared. Plantaris hexokinase activity increased 51% after just 1 wk of WR, whereas GLUT-4 and citrate synthase were increased by 51 and 40%, respectively, only after 2 wk of WR. All three variables remained comparably elevated (+50-64%) through 4 wk of WR. Despite the overload of the myocardium with this protocol, no substantial elevations in these variables were observed. These findings are consistent with a coordinated upregulation of GLUT-4 and citrate synthase in the fast-twitch plantaris, but not in the myocardium, in response to this increased neuromuscular activity. Regulation of hexokinase in fast-twitch muscle appears to be uncoupled from regulation of GLUT-4 and citrate synthase, as increases in the former are detectable well before increases in the latter.

  18. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes.

    PubMed

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T; Galway, Moira E; Mansfield, Shawn D; Hocart, Charles H; Wasteneys, Geoffrey O

    2013-05-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.

  19. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance.

    PubMed

    Lü, Jianguo; Sui, Xiaolei; Ma, Si; Li, Xin; Liu, Huan; Zhang, Zhenxian

    2017-09-01

    Stachyose is the main transporting sugar in phloem of Raffinose family oligosaccharides-transporting species. Stachyose synthase (STS) is a key enzyme for stachyose biosynthesis, but the gene encoding STS is poorly characterized in cucumber (Cucumis sativus L.), which is a model plant for studying stachyose metabolism and phloem function. In this research, stachyose synthase gene (CsSTS) from cucumber was isolated and its physiological functions were analyzed. CsSTS expressed mainly in the phloem of the minor veins in mature leaves and localized to companion cells. Reverse genetics with CsSTS RNAi lines revealed obviously reductions in STS activity and stachyose content along with a small amount of starch accumulation in leaves, suggesting that CsSTS is involved in phloem loading of cucumber leaves. After 6 °C low temperature stress, malondialdehyde content and electrical conductivity increased, especially in CsSTS-RNAi plants. But CsSTS expression was up-regulated, STS activity and stachyose level increased, the activities of reactive-oxygen-scavenging enzyme in cucumber seedlings improved significantly and starch accumulation reduced, especially in CsSTS-OE lines. These results demonstrate clearly that CsSTS is involved in phloem loading, carbohydrate distribution and tolerance of cucumber seedlings to low temperature stress.

  20. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria×ananassa)

    PubMed Central

    Hanhineva, Kati; Kokko, Harri; Siljanen, Henri; Rogachev, Ilana; Aharoni, Asaph; Kärenlampi, Sirpa O.

    2009-01-01

    The gene encoding stilbene synthase is frequently used to modify plant secondary metabolism with the aim of producing the self-defence phytoalexin resveratrol. In this study, strawberry (Fragaria×ananassa) was transformed with the NS-Vitis3 gene encoding stilbene synthase from frost grape (Vitis riparia) under the control of the cauliflower mosaic virus 35S and the floral filament-specific fil1 promoters. Changes in leaf metabolites were investigated with UPLC-qTOF-MS (ultra performance liquid chromatography-quadrupole time of flight mass spectrometry) profiling, and increased accumulation of cinnamate, coumarate, and ferulate derivatives concomitantly with a decrease in the levels of flavonols was observed, while the anticipated resveratrol or its derivatives were not detected. The changed metabolite profile suggested that chalcone synthase was down-regulated by the genetic modification; this was verified by decreased chalcone synthase transcript levels. Changes in the levels of phenolic compounds led to increased susceptibility of the transgenic strawberry to grey mould fungus. PMID:19443619

  1. Molecular cloning and functional characterization of three terpene synthases from unripe fruit of black pepper (Piper nigrum).

    PubMed

    Jin, Zhehao; Kwon, Moonhyuk; Lee, Ah-Reum; Ro, Dae-Kyun; Wungsintaweekul, Juraithip; Kim, Soo-Un

    2018-01-15

    To identify terpene synthases (TPS) responsible for the biosynthesis of the sesquiterpenes that contribute to the characteristic flavors of black pepper (Piper nigrum), unripe peppercorn was subjected to the Illumina transcriptome sequencing. The BLAST analysis using amorpha-4,11-diene synthase as a query identified 19 sesquiterpene synthases (sesqui-TPSs), of which three full-length cDNAs (PnTPS1 through 3) were cloned. These sesqui-TPS cDNAs were expressed in E. coli to produce recombinant enzymes for in vitro assays, and also expressed in the engineered yeast strain to assess their catalytic activities in vivo. PnTPS1 produced β-caryophyllene as a main product and humulene as a minor compound, and thus was named caryophyllene synthase (PnCPS). Likewise, PnTPS2 and PnTPS3 were, respectively, named cadinol/cadinene synthase (PnCO/CDS) and germacrene D synthase (PnGDS). PnGDS expression in yeast yielded β-cadinene and α-copaene, the rearrangement products of germacrene D. Their k cat /K m values (20-37.7 s -1  mM -1 ) were comparable to those of other sesqui-TPSs. Among three PnTPSs, the transcript level of PnCPS was the highest, correlating with the predominant β-caryophyllene biosynthesis in the peppercorn. The products and rearranged products of three PnTPSs could account for about a half of the sesquiterpenes in number found in unripe peppercorn. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Riboflavin accumulation and characterization of cDNAs encoding lumazine synthase and riboflavin synthase in bitter melon (Momordica charantia).

    PubMed

    Tuan, Pham Anh; Kim, Jae Kwang; Lee, Sanghyun; Chae, Soo Cheon; Park, Sang Un

    2012-12-05

    Riboflavin (vitamin B2) is the universal precursor of the coenzymes flavin mononucleotide and flavin adenine dinucleotide--cofactors that are essential for the activity of a wide variety of metabolic enzymes in animals, plants, and microbes. Using the RACE PCR approach, cDNAs encoding lumazine synthase (McLS) and riboflavin synthase (McRS), which catalyze the last two steps in the riboflavin biosynthetic pathway, were cloned from bitter melon (Momordica charantia), a popular vegetable crop in Asia. Amino acid sequence alignments indicated that McLS and McRS share high sequence identity with other orthologous genes and carry an N-terminal extension, which is reported to be a plastid-targeting sequence. Organ expression analysis using quantitative real-time RT PCR showed that McLS and McRS were constitutively expressed in M. charantia, with the strongest expression levels observed during the last stage of fruit ripening (stage 6). This correlated with the highest level of riboflavin content, which was detected during ripening stage 6 by HPLC analysis. McLS and McRS were highly expressed in the young leaves and flowers, whereas roots exhibited the highest accumulation of riboflavin. The cloning and characterization of McLS and McRS from M. charantia may aid the metabolic engineering of vitamin B2 in crops.

  3. Dynamics of meso and thermo citrate synthases with implicit solvation

    NASA Astrophysics Data System (ADS)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  4. Inverted stereocontrol of iridoid synthase in snapdragon.

    PubMed

    Kries, Hajo; Kellner, Franziska; Kamileen, Mohamed Omar; O'Connor, Sarah E

    2017-09-01

    The natural product class of iridoids, found in various species of flowering plants, harbors astonishing chemical complexity. The discovery of iridoid biosynthetic genes in the medicinal plant Catharanthus roseus has provided insight into the biosynthetic origins of this class of natural product. However, not all iridoids share the exact five- to six-bicyclic ring scaffold of the Catharanthus iridoids. For instance, iridoids in the ornamental flower snapdragon ( Antirrhinum majus , Plantaginaceae family) are derived from the C7 epimer of this scaffold. Here we have cloned and characterized the iridoid synthase enzyme from A. majus (AmISY), the enzyme that is responsible for converting 8-oxogeranial into the bicyclic iridoid scaffold in a two-step reduction-cyclization sequence. Chiral analysis of the reaction products reveals that AmISY reduces C7 to generate the opposite stereoconfiguration in comparison with the Catharanthus homologue CrISY. The catalytic activity of AmISY thus explains the biosynthesis of 7-epi-iridoids in Antirrhinum and related genera. However, although the stereoselectivity of the reduction step catalyzed by AmISY is clear, in both AmISY and CrISY, the cyclization step produces a diastereomeric mixture. Although the reduction of 8-oxogeranial is clearly enzymatically catalyzed, the cyclization step appears to be subject to less stringent enzyme control. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Structural insights into a key carotenogenesis related enzyme phytoene synthase of P. falciparum: a novel drug target for malaria.

    PubMed

    Agarwal, Shalini; Sharma, Vijeta; Phulera, Swastik; Abdin, M Z; Ayana, R; Singh, Shailja

    2015-12-01

    Carotenoids represent a diverse group of pigments derived from the common isoprenoid precursors and fulfill a variety of critical functions in plants and animals. Phytoene synthase (PSY), a transferase enzyme that catalyzes the first specific step in carotenoid biosynthesis plays a central role in the regulation of a number of essential functions mediated via carotenoids. PSYs have been deeply investigated in plants, bacteria and algae however in apicomplexans it is poorly studied. In an effort to characterize PSY in apicomplexans especially the malaria parasite Plasmodium falciparum (P. falciparum), a detailed bioinformatics analysis is undertaken. We have analysed the Phylogenetic relationship of PSY also referred to as octaprenyl pyrophosphate synthase (OPPS) in P. falciparum with other taxonomic groups. Further, we in silico characterized the secondary and tertiary structures of P. falciparum PSY/OPPS and compared the tertiary structures with crystal structure of Thermotoga maritima (T. maritima) OPPS. Our results evidenced the resemblance of P. falciparum PSY with the active site of T. maritima OPPS. Interestingly, the comparative structural analysis revealed an unconserved unique loop in P. falciparum OPPS/PSY. Such structural insights might contribute novel accessory functions to the protein thus, offering potential drug targets.

  6. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of CYCLOIDEA and ANTHOCYANIDIN SYNTHASE.

    PubMed

    Berger, Brent A; Ricigliano, Vincent A; Savriama, Yoland; Lim, Aedric; Thompson, Veronica; Howarth, Dianella G

    2017-11-17

    While floral symmetry has traditionally been assessed qualitatively, recent advances in geometric morphometrics have opened up new avenues to specifically quantify flower shape and size using robust multivariate statistical methods. In this study, we examine, for the first time, the ability of geometric morphometrics to detect morphological differences in floral dorsoventral asymmetry following virus-induced gene silencing (VIGS). Using Fedia graciliflora Fisch. & Meyer (Valerianaceae) as a model, corolla shape of untreated flowers was compared using canonical variate analysis to knockdown phenotypes of CYCLOIDEA2A (FgCYC2A), ANTHOCYANIDIN SYNTHASE (FgANS), and empty vector controls. Untreated flowers and all VIGS treatments were morphologically distinct from each other, suggesting that VIGS may cause subtle shifts in floral shape. Knockdowns of FgCYC2A were the most dramatic, affecting the position of dorsal petals in relation to lateral petals, thereby resulting in more actinomorphic-like flowers. Additionally, FgANS knockdowns developed larger flowers with wider corolla tube openings. These results provide a method to quantify the role that specific genes play in the developmental pathway affecting the dorsoventral axis of symmetry in zygomorphic flowers. Additionally, they suggest that ANS may have an unintended effect on floral size and shape.

  7. Structure and mechanism of the ATP synthase membrane motor inferred from quantitative integrative modeling.

    PubMed

    Leone, Vanessa; Faraldo-Gómez, José D

    2016-12-01

    Two subunits within the transmembrane domain of the ATP synthase-the c-ring and subunit a-energize the production of 90% of cellular ATP by transducing an electrochemical gradient of H + or Na + into rotational motion. The nature of this turbine-like energy conversion mechanism has been elusive for decades, owing to the lack of definitive structural information on subunit a or its c-ring interface. In a recent breakthrough, several structures of this complex were resolved by cryo-electron microscopy (cryo-EM), but the modest resolution of the data has led to divergent interpretations. Moreover, the unexpected architecture of the complex has cast doubts on a wealth of earlier biochemical analyses conducted to probe this structure. Here, we use quantitative molecular-modeling methods to derive a structure of the a-c complex that is not only objectively consistent with the cryo-EM data, but also with correlated mutation analyses of both subunits and with prior cross-linking and cysteine accessibility measurements. This systematic, integrative approach reveals unambiguously the topology of subunit a and its relationship with the c-ring. Mapping of known Cd 2+ block sites and conserved protonatable residues onto the structure delineates two noncontiguous pathways across the complex, connecting two adjacent proton-binding sites in the c-ring to the space on either side of the membrane. The location of these binding sites and of a strictly conserved arginine on subunit a, which serves to prevent protons from hopping between them, explains the directionality of the rotary mechanism and its strict coupling to the proton-motive force. Additionally, mapping of mutations conferring resistance to oligomycin unexpectedly reveals that this prototypical inhibitor may bind to two distinct sites at the a-c interface, explaining its ability to block the mechanism of the enzyme irrespective of the direction of rotation of the c-ring. In summary, this study is a stepping stone toward

  8. Incorporation of phosphate into glycogen by glycogen synthase.

    PubMed

    Contreras, Christopher J; Segvich, Dyann M; Mahalingan, Krishna; Chikwana, Vimbai M; Kirley, Terence L; Hurley, Thomas D; DePaoli-Roach, Anna A; Roach, Peter J

    2016-05-01

    The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [β-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. INCORPORATION OF PHOSPHATE INTO GLYCOGEN BY GLYCOGEN SYNTHASE

    PubMed Central

    Contreras, Christopher J.; Segvich, Dyann M.; Mahalingan, Krishna; Chikwana, Vimbai M.; Kirley, Terence L.; Hurley, Thomas D.; DePaoli-Roach, Anna A.; Roach, Peter J.

    2016-01-01

    The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab 13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab 17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of 32P from [β-32P]UDP-glucose to glycogen by glycogen synthase. The 32P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The 32P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-32P]UDP generated in the reaction. Furthermore, [32P]UDP did not bind non-covalently to glycogen. The 32P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, perhaps C3, phosphorylation. PMID:27036853

  10. Identification of novel isoprene synthases through genome mining and expression in Escherichia coli.

    PubMed

    Ilmén, Marja; Oja, Merja; Huuskonen, Anne; Lee, Sangmin; Ruohonen, Laura; Jung, Simon

    2015-09-01

    Isoprene is a naturally produced hydrocarbon emitted into the atmosphere by green plants. It is also a constituent of synthetic rubber and a potential biofuel. Microbial production of isoprene can become a sustainable alternative to the prevailing chemical production of isoprene from petroleum. In this work, sequence homology searches were conducted to find novel isoprene synthases. Candidate sequences were functionally expressed in Escherichia coli and the desired enzymes were identified based on an isoprene production assay. The activity of three enzymes was shown for the first time: expression of the candidate genes from Ipomoea batatas, Mangifera indica, and Elaeocarpus photiniifolius resulted in isoprene formation. The Ipomoea batatas isoprene synthase produced the highest amounts of isoprene in all experiments, exceeding the isoprene levels obtained by the previously known Populus alba and Pueraria montana isoprene synthases that were studied in parallel as controls. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Glucose induces the translocation and the aggregation of glycogen synthase in rat hepatocytes.

    PubMed Central

    Fernández-Novell, J M; Ariño, J; Vilaró, S; Guinovart, J J

    1992-01-01

    Incubation of rat hepatocytes with glucose results in a decrease in the amount of glycogen synthase activity found in supernatants obtained after centrifugation of cell homogenates at 9200 g. The enzymic activity was quantitatively recovered in the sediments. This effect of translocation was dose- and time-dependent and correlated with the amount of immunoreactive enzyme determined by immunoblotting in both fractions. Hydrolysis by alpha-amylase of glycogen accumulated upon incubation with the sugar did not affect the translocation pattern. Translocation was also observed when cells were incubated with 2-deoxyglucose, which did not result in accumulation of glycogen. Immunocytochemical evidence indicates that glucose induces the aggregation of glycogen synthase molecules into clusters which are recovered in the sediments. These results indicate that glucose, in addition to activating glycogen synthase, may trigger changes in the localization of the enzyme in the cell. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:1736893

  12. Molecular biological effects of selective neuronal nitric oxide synthase inhibition in ovine lung injury

    PubMed Central

    Westphal, Martin; Enkhbaatar, Perenlei; Wang, Jianpu; Pazdrak, Konrad; Nakano, Yoshimitsu; Hamahata, Atsumori; Jonkam, Collette C.; Lange, Matthias; Connelly, Rhykka L.; Kulp, Gabriela A.; Cox, Robert A.; Hawkins, Hal K.; Schmalstieg, Frank C.; Horvath, Eszter; Szabo, Csaba; Traber, Lillian D.; Whorton, Elbert; Herndon, David N.; Traber, Daniel L.

    2010-01-01

    Neuronal nitric oxide synthase is critically involved in the pathogenesis of acute lung injury resulting from combined burn and smoke inhalation injury. We hypothesized that 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, blocks central molecular mechanisms involved in the pathophysiology of this double-hit insult. Twenty-five adult ewes were surgically prepared and randomly allocated to 1) an uninjured, untreated sham group (n = 7), 2) an injured control group with no treatment (n = 7), 3) an injury group treated with 7-nitroindazole from 1-h postinjury to the remainder of the 24-h study period (n = 7), or 4) a sham-operated group subjected only to 7-nitroindazole to judge the effects in health. The combination injury was associated with twofold increased activity of neuronal nitric oxide synthase and oxidative/nitrosative stress, as indicated by significant increases in plasma nitrate/nitrite concentrations, 3-nitrotyrosine (an indicator of peroxynitrite formation), and malondialdehyde lung tissue content. The presence of systemic inflammation was evidenced by twofold, sixfold, and threefold increases in poly(ADP-ribose) polymerase, IL-8, and myeloperoxidase lung tissue concentrations, respectively (each P < 0.05 vs. sham). These molecular changes were linked to tissue damage, airway obstruction, and pulmonary shunting with deteriorated gas exchange. 7-Nitroindazole blocked, or at least attenuated, all these pathological changes. Our findings suggest 1) that nitric oxide formation derived from increased neuronal nitric oxide synthase activity represents a pivotal reactive agent in the patho-physiology of combined burn and smoke inhalation injury and 2) that selective neuronal nitric oxide synthase inhibition represents a goal-directed approach to attenuate the degree of injury. PMID:19965980

  13. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit.

    PubMed

    Schimpl, Flávia Camila; Kiyota, Eduardo; Mayer, Juliana Lischka Sampaio; Gonçalves, José Francisco de Carvalho; da Silva, José Ferreira; Mazzafera, Paulo

    2014-09-01

    Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of Combined Stress on Morphological Changes and Expression of NO Synthases in Rat Ventral Hippocampus.

    PubMed

    Smirnov, A V; Tyurenkov, I N; Shmidt, M V; Ekova, M R; Mednikov, D S; Borodin, D D

    2015-11-01

    Adult rats were subjected to 7-day combined stress with stochastic changes of stressors of different modalities (noise, vibration, pulsating bright light) along with mobility restriction and elevated temperature in the chamber during stress exposures (daily 30-min sessions). Circulatory disorders, inhibition of endothelial NO-synthase expression in endothelial cells of the microcirculatory bed, perivascular edema, pronounced degenerative changes, and enhanced expression of inducible NO synthase in CA3 pyramidal neurons in the ventral hippocampus of stressed 12-month-old rats were observed. These findings can attest to the involvement NOdependent mechanisms and different contribution of NO synthase isoforms into the formation of hippocampal neuronal damage.

  15. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex.

    PubMed

    Gay, Darren C; Wagner, Drew T; Meinke, Jessica L; Zogzas, Charles E; Gay, Glen R; Keatinge-Clay, Adrian T

    2016-03-01

    Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease.

    PubMed

    Lovelock, David A; Šola, Ivana; Marschollek, Sabine; Donald, Caroline E; Rusak, Gordana; van Pée, Karl-Heinz; Ludwig-Müller, Jutta; Cahill, David M

    2016-10-01

    Salicylic acid (SA) biosynthesis, the expression of SA-related genes and the effect of SA on the Arabidopsis-Plasmodiophora brassicae interaction were examined. Biochemical analyses revealed that, in P. brassicae-infected Arabidopsis, the majority of SA is synthesized from chorismate. Real-time monitored expression of a gene for isochorismate synthase was induced on infection. SA can be modified after accumulation, either by methylation, improving its mobility, or by glycosylation, as one possible reaction for inactivation. Quantitative reverse transcription-polymerase chain reaction (qPCR) confirmed the induction of an SA methyltransferase gene, whereas SA glucosyltransferase expression was not changed after infection. Col-0 wild-type (wt) did not provide a visible phenotypic resistance response, whereas the Arabidopsis mutant dnd1, which constitutively activates the immune system, showed reduced gall scores. As dnd1 showed control of the pathogen, exogenous SA was applied to Arabidopsis in order to test whether it could suppress clubroot. In wt, sid2 (SA biosynthesis), NahG (SA-deficient) and npr1 (SA signalling-impaired) mutants, SA treatment did not alter the gall score, but positively affected the shoot weight. This suggests that SA alone is not sufficient for Arabidopsis resistance against P. brassicae. Semi-quantitative PCR revealed that wt, cpr1, dnd1 and sid2 showed elevated PR-1 expression on P. brassicae and SA + P. brassicae inoculation at 2 and 3 weeks post-inoculation (wpi), whereas NahG and npr1 showed no expression. This work contributes to the understanding of SA involvement in the Arabidopsis-P. brassicae interaction. © 2015 BSPP and John Wiley & Sons Ltd.

  17. Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production*

    PubMed Central

    Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg

    2012-01-01

    The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889

  18. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification ofmore » several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.« less

  19. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity.

    PubMed

    Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

    2012-03-08

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain.

  20. Allostery and the dynamic oligomerization of porphobilinogen synthase

    PubMed Central

    Jaffe, Eileen K.; Lawrence, Sarah H.

    2011-01-01

    The structural basis for allosteric regulation of porphobilinogen synthase (PBGS) is modulation of a quaternary structure equilibrium between octamer and hexamer (via dimers), which is represented schematically as 8mer ⇔ 2mer ⇔ 2mer* ⇔ 6mer*. The “*” represents a reorientation between two domains of each subunit that occurs in the dissociated state because it is sterically forbidden in the larger multimers. Allosteric effectors of PBGS are both intrinsic and extrinsic and are phylogenetically variable. In some species this equilibrium is modulated intrinsically by magnesium which binds at a site specific to the 8mer. In other species this equilibrium is modulated intrinsically by pH; the guanidinium group of an arginine being spatially equivalent to the allosteric magnesium ion. In humans, disease associated variants all shift the equilibrium toward the 6mer* relative to wild type. The 6mer* has a surface cavity that is not present in the 8mer and is proposed as a small molecule allosteric binding site. In silico and in vitro approaches have revealed species-specific allosteric PBGS inhibitors that stabilize the 6mer*. Some of these inhibitors are drugs in clinical use leading to the hypothesis that extrinsic allosteric inhibition of human PBGS could be a mechanism for drug side effects. PMID:22037356

  1. The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita. Purification, properties, expression in Escherichia coli, and primary structure determination by DNA sequence analysis.

    PubMed

    Sato, T; Oeller, P W; Theologis, A

    1991-02-25

    The key regulatory enzyme in the biosynthetic pathway of the plant hormone ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (EC 4.4.1.14). We have partially purified ACC synthase 6,000-fold from Cucurbita fruit tissue treated with indoleacetic acid + benzyladenine + aminooxyacetic acid + LiCl. The enzyme has a specific activity of 35,000 nmol/h/mg protein, a pH optimum of 9.5, an isoelectric point of 5.0, a Km of 17 microM with respect to S-adenosylmethionine, and is a dimer of two identical subunits of approximately 46,000 Da each. The subunit exists in vivo as a 55,000-Da species similar in size to the primary in vitro translation product. DNA sequence analysis of the cDNA clone pACC1 revealed that the coding region of the ACC synthase mRNA spans 493 amino acids corresponding to a 55,779-Da polypeptide; and expression of the coding sequence (pACC1) in Escherichia coli as a COOH terminus hybrid of beta-galactosidase or as a nonhybrid polypeptide catalyzed the conversion of S-adenosylmethionine to ACC (Sato, T., and Theologis, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6621-6625). Immunoblotting experiments herein show that the molecular mass of the beta-galactosidase hybrid polypeptide is 170,000 Da, and the size of the largest nonhybrid polypeptide is 53,000 Da. The data suggest that the enzyme is post-translationally processed during protein purification.

  2. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    PubMed

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  3. Differentiation of Cannabis subspecies by THCA synthase gene analysis using RFLP.

    PubMed

    Cirovic, Natasa; Kecmanovic, Miljana; Keckarevic, Dusan; Keckarevic Markovic, Milica

    2017-10-01

    Cannabis sativa subspecies, known as industrial hemp (C. sativa sativa) and marijuana (C. sativa indica) show no evident morphological distinctions, but they contain different levels of psychoactive Δ-9-tetrahidrocanabinol (THC), with considerably higher concentration in marijuana than in hemp. C. sativa subspecies differ in sequence of tetrahydrocannabinolic acid (THCA) synthase gene, responsible for THC production, and only one active copy of the gene, distinctive for marijuana, is capable of producing THC in concentration more then 0,3% in dried plants, usually punishable by the law. Twenty different samples of marijuana that contain THC in concentration more then 0,3% and three varieties of industrial hemp were analyzed for presence of an active copy of THCA synthase gene using in-house developed restriction fragment length polymorphism (RFLP) method All twenty samples of marijuana were positive for the active copy of THCA synthase gene, 16 of them heterozygous. All three varieties of industrial hemp were homozygous for inactive copy. An algorithm for the fast and accurate forensic analysis of samples suspected to be marijuana was constructed, answering the question if an analyzed sample is capable of producing THC in concentrations higher than 0.3%. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Analysis of GD2/GM2 synthase mRNA as a biomarker for small cell lung cancer.

    PubMed

    Chen, Lin-Chi; Brown, Andrew B; Cheung, Irene Y; Cheung, Nai-Kong V; Kris, Mark G; Krug, Lee M

    2010-02-01

    GD2/GM2 synthase is a key enzyme in the synthesis of GD2 and GM2 gangliosides found on the surface of neuroblastoma and small cell lung carcinoma (SCLC) cells. In neuroblastoma, persistent levels of GD2/GM2 synthase RNA in bone marrow (BM) following therapy portend poorer progression-free and overall survival. We conducted this study to determine if GD2/GM2 synthase RNA could be detected in SCLC cell lines and human tissues, and whether mRNA transcript levels corresponded with disease status. Initially, a pilot study enrolled patients with SCLC to determine the rate of GD2 expression at various points in the patients' disease course. Peripheral blood (PB), bone marrow and tumor tissues were used to measure GD2/GM2 synthase levels. In addition, SCLC cell lines were analyzed for GD2/GM2 synthase expression. Based on data from that initial analysis, a prospective trial was developed enrolling patients with newly diagnosed SCLC and following them serially. GD2/GM2 synthase transcript was determined by a sensitive quantitative reverse transcription-PCR (qRT-PCR) assay and normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Six SCLC cell lines were assayed for expression of GD2/GM2 synthase, and high expression was detected in all. GD2/GM2 synthase transcript levels were obtained from tumor tissue, BM, or PB of 29 patients in the pilot study. 6/10 (60%) tumor tissues or BM samples were positive (median 332.7 units; range 13-2323 units); 8/19 (42%) untreated patients were GD2/GM2 synthase positive in their PB prior to beginning therapy (median 10.2; range 5.1-32.2); 3/4 (75%) patients who were first tested when they developed recurrent disease were positive in their PB (median 16.1; range 8.5-19.9). The fourth patient had an initial value of 2.0 (negative), which increased to 8.4 (positive) within 1 month without treatment. Seven of 12 patients with baseline positive GD2/GM2 synthase values had post-treatment levels measured, all of which were

  5. Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products.

    PubMed

    Wang, Xiuna; Zhang, Xiaoling; Liu, Ling; Xiang, Meichun; Wang, Wenzhao; Sun, Xiang; Che, Yongsheng; Guo, Liangdong; Liu, Gang; Guo, Liyun; Wang, Chengshu; Yin, Wen-Bing; Stadler, Marc; Zhang, Xinyu; Liu, Xingzhong

    2015-01-27

    In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics. Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion. The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.

  6. SIRT3 Deacetylates ATP Synthase F1 Complex Proteins in Response to Nutrient- and Exercise-Induced Stress

    PubMed Central

    Vassilopoulos, Athanassios; Pennington, J. Daniel; Andresson, Thorkell; Rees, David M.; Bosley, Allen D.; Fearnley, Ian M.; Ham, Amy; Flynn, Charles Robb; Hill, Salisha; Rose, Kristie Lindsey; Kim, Hyun-Seok; Walker, John E.

    2014-01-01

    Abstract Aims: Adenosine triphosphate (ATP) synthase uses chemiosmotic energy across the inner mitochondrial membrane to convert adenosine diphosphate and orthophosphate into ATP, whereas genetic deletion of Sirt3 decreases mitochondrial ATP levels. Here, we investigate the mechanistic connection between SIRT3 and energy homeostasis. Results: By using both in vitro and in vivo experiments, we demonstrate that ATP synthase F1 proteins alpha, beta, gamma, and Oligomycin sensitivity-conferring protein (OSCP) contain SIRT3-specific reversible acetyl-lysines that are evolutionarily conserved and bind to SIRT3. OSCP was further investigated and lysine 139 is a nutrient-sensitive SIRT3-dependent deacetylation target. Site directed mutants demonstrate that OSCPK139 directs, at least in part, mitochondrial ATP production and mice lacking Sirt3 exhibit decreased ATP muscle levels, increased ATP synthase protein acetylation, and an exercise-induced stress-deficient phenotype. Innovation: This work connects the aging and nutrient response, via SIRT3 direction of the mitochondrial acetylome, to the regulation of mitochondrial energy homeostasis under nutrient-stress conditions by deacetylating ATP synthase proteins. Conclusion: Our data suggest that acetylome signaling contributes to mitochondrial energy homeostasis by SIRT3-mediated deacetylation of ATP synthase proteins. Antioxid. Redox Signal. 21, 551–564. PMID:24252090

  7. Stachyose synthesis in seeds of adzuki bean (Vigna angularis): molecular cloning and functional expression of stachyose synthase.

    PubMed

    Peterbauer, T; Mucha, J; Mayer, U; Popp, M; Glössl, J; Richter, A

    1999-12-01

    Stachyose is the major soluble carbohydrate in seeds of a number of important crop species. It is synthesized from raffinose and galactinol by the action of stachyose synthase (EC 2.4.1.67). We report here on the identification of a cDNA encoding stachyose synthase from seeds of adzuki bean (Vigna angularis Ohwi et Ohashi). Based on internal amino acid sequences of the enzyme purified from adzuki bean, oligonucleotides were designed and used to amplify corresponding sequences from adzuki bean cDNA by RT-PCR, followed by rapid amplification of cDNA ends (RACE-PCR). The complete cDNA sequence comprised 3046 nucleotides and included an open reading frame which encoded a polypeptide of 857 amino acid residues. The entire coding region was amplified by PCR, engineered into the baculovirus expression vector pVL1393 and introduced into Spodoptera frugiperda (Sf21) insect cells for heterologous expression. The recombinant protein was immunologically reactive with polyclonal antibodies raised against stachyose synthase purified from adzuki bean and was shown to be a functional stachyose synthase with the same catalytic properties as its native counterpart. High levels of stachyose synthase mRNA were transiently accumulated midway through seed development, and the enzyme was also present in mature seeds and during germination.

  8. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    PubMed

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221. Copyright © 2017. Published by Elsevier Ltd.

  9. [Role of NO-synthase in stimulation of opiate receptors and kidney oxidative stress resistance].

    PubMed

    Orlova, E A; Komarevtseva, I A

    2004-01-01

    It was established that dalarginum injection before ARI (acute renal insufficiency) formation prevented an increases of proteolysis, decrease of SOD (superoxide dismutase), increase of NO2-/NO3- content in kidney tissue. Antioxidant effect of opiate receptor agonist was completely abolished by preliminary injection of OR antagonist--naloxone. Aminoguanidine nitrate (inducible NO-synthase inhibitor) injection removed positive effect of OR stimulation too. Thus OR stimulation increases kidney oxidative stress resistance due to NO-synthase and SOD activation.

  10. Efficient Production of Active Polyhydroxyalkanoate Synthase in Escherichia coli by Coexpression of Molecular Chaperones

    PubMed Central

    Thomson, Nicholas M.; Saika, Azusa; Ushimaru, Kazunori; Sangiambut, Smith; Tsuge, Takeharu; Summers, David K.

    2013-01-01

    The type I polyhydroxyalkanoate synthase from Cupriavidus necator was heterologously expressed in Escherichia coli with simultaneous overexpression of chaperone proteins. Compared to expression of synthase alone (14.55 mg liter−1), coexpression with chaperones resulted in the production of larger total quantities of enzyme, including a larger proportion in the soluble fraction. The largest increase was seen when the GroEL/GroES system was coexpressed, resulting in approximately 6-fold-greater enzyme yields (82.37 mg liter−1) than in the absence of coexpressed chaperones. The specific activity of the purified enzyme was unaffected by coexpression with chaperones. Therefore, the increase in yield was attributed to an enhanced soluble fraction of synthase. Chaperones were also coexpressed with a polyhydroxyalkanoate production operon, resulting in the production of polymers with generally reduced molecular weights. This suggests a potential use for chaperones to control the physical properties of the polymer. PMID:23335776

  11. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity

    PubMed Central

    2012-01-01

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure–activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, Ki = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

  12. Chitin synthases are required for survival, fecundity and egg-hatch in the red flour beetle, Tribolium castaneum

    USDA-ARS?s Scientific Manuscript database

    The synthesis of chitin, the Beta-1,4-linked polymer of N-acetylglucosamine, is catalyzed by chitin synthase (CHS). Chitin is essential for the structural integrity of the exoskeletal cuticle and midgut peritrophic membrane (PM) of insects. To study the functions of the two chitin synthase genes, ...

  13. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    PubMed

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  14. Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases1

    PubMed Central

    Pandith, Shahzad A.; Dhar, Niha; Bhat, Wajid Waheed; Kushwaha, Manoj; Gupta, Ajai P.; Shah, Manzoor A.; Vishwakarma, Ram

    2016-01-01

    Plants effectively defend themselves against biotic and abiotic stresses by synthesizing diverse secondary metabolites, including health-protective flavonoids. These display incredible chemical diversity and ubiquitous occurrence and confer impeccable biological and agricultural applications. Chalcone synthase (CHS), a type III plant polyketide synthase, is critical for flavonoid biosynthesis. It catalyzes acyl-coenzyme A thioesters to synthesize naringenin chalcone through a polyketidic intermediate. The functional divergence among the evolutionarily generated members of a gene family is pivotal in driving the chemical diversity. Against this backdrop, this study was aimed to functionally characterize members of the CHS gene family from Rheum emodi, an endangered and endemic high-altitude medicinal herb of northwestern Himalayas. Two full-length cDNAs (1,179 bp each), ReCHS1 and ReCHS2, encoding unique paralogs were isolated and characterized. Heterologous expression and purification in Escherichia coli, bottom-up proteomic characterization, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, and enzyme kinetic studies using five different substrates confirmed their catalytic potential. Phylogenetic analysis revealed the existence of higher synonymous mutations in the intronless divergents of ReCHS. ReCHS2 displayed significant enzymatic efficiency (Vmax/Km) with different substrates. There were significant spatial and altitudinal variations in messenger RNA transcript levels of ReCHSs correlating positively with metabolite accumulation. Furthermore, the elicitations in the form of methyl jasmonate, salicylic acid, ultraviolet B light, and wounding, chosen on the basis of identified cis-regulatory promoter elements, presented considerable differences in the transcript profiles of ReCHSs. Taken together, our results demonstrate differential propensities of CHS paralogs in terms of the accumulation of flavonoids and

  15. Thermodynamic and NMR analyses of NADPH binding to lipocalin-type prostaglandin D synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Shubin; Shimamoto, Shigeru; Maruno, Takahiro

    2015-12-04

    Lipocalin-type prostaglandin D synthase (L-PGDS) is one of the most abundant proteins in human cerebrospinal fluid (CSF) with dual functions as a prostaglandin D{sub 2} (PGD{sub 2}) synthase and a transporter of lipophilic ligands. Recent studies revealed that L-PGDS plays important roles in protecting against various neuronal diseases induced by reactive oxygen species (ROS). However, the molecular mechanisms of such protective actions of L-PGDS remain unknown. In this study, we conducted thermodynamic and nuclear magnetic resonance (NMR) analyses, and demonstrated that L-PGDS binds to nicotinamide coenzymes, including NADPH, NADP{sup +}, and NADH. Although a hydrophilic ligand is not common formore » L-PGDS, these ligands, especially NADPH showed specific interaction with L-PGDS at the upper pocket of its ligand-binding cavity with an unusually bifurcated shape. The binding affinity of L-PGDS for NADPH was comparable to that previously reported for NADPH oxidases and NADPH in vitro. These results suggested that L-PGDS potentially attenuates the activities of NADPH oxidases through interaction with NADPH. Given that NADPH is the substrate for NADPH oxidases that play key roles in neuronal cell death by generating excessive ROS, these results imply a novel linkage between L-PGDS and ROS. - Highlights: • Interactions of L-PGDS with nicotinamide coenzymes were studied by ITC and NMR. • The binding affinity of L-PGDS was strongest to NADPH among nicotinamide coenzymes. • NADPH binds to the upper part of L-PGDS ligand-binding cavity. • L-PGDS binds to both lipophilic and hydrophilic ligands. • This study implies a novel linkage between L-PGDS and reactive oxygen species.« less

  16. Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons.

    PubMed

    Rószer, Tamás; Kiss-Tóth, Eva; Rózsa, Dávid; Józsa, Tamás; Szentmiklósi, A József; Bánfalvi, Gáspár

    2010-11-01

    Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.

  17. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    PubMed

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. [PREPARATION OF HUMAN TISSUE PROTEIN EXTRACTS ENRICHED WITH THE SPHINGOMYELIN SYNTHASE 1].

    PubMed

    Sudarkina, O Yu; Dergunova, L V

    2015-01-01

    Sphingomyelin synthase 1 (SMS 1) catalyzes sphingomyelin biosynthesis in eukaryotic cells. We previously studied the structure of the human SGMS1 gene, which encodes the enzyme and its numerous transcripts. The tissue-specific expression of the transcripts was also described. Analysis of the SMS1 protein expression in human tissues using immunoblotting of tissue extracts prepared in the RIPA (Radio Immuno-Precipitation Assay) buffer revealed a weak signal in renal cortex, testis, lung, and no signal in placenta and lymphatic node. In this work, a new method of preparation of the tissue protein extracts enriched with SMS1 was suggested. The method based on the consecutive extraction with a buffer containing 0.05 and 1 mg/ml of the Quillaja saponaria saponin allowed SMS1 to be detected in all tissues tested. The SMS1 content in the saponin extract of kidney cortex is about 12-fold higher compared to the RIPA extraction procedure.

  19. ATP Synthase and the Actions of Inhibitors Utilized To Study Its Roles in Human Health, Disease, and Other Scientific Areas

    PubMed Central

    Hong, Sangjin; Pedersen, Peter L.

    2008-01-01

    Summary: ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and Pi, the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology. PMID:19052322

  20. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells.

    PubMed

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-03-12

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics.

  1. Bacterial Diterpene Synthases: New Opportunities for Mechanistic Enzymology and Engineered Biosynthesis

    PubMed Central

    Smanski, Michael J.; Peterson, Ryan M.; Huang, Sheng-Xiong; Shen, Ben

    2012-01-01

    Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering. PMID:22445175

  2. Modulation of inherent dynamical tendencies of the bisabolyl cation via preorganization in epi-isozizaene synthase.

    PubMed

    Pemberton, Ryan P; Ho, Krystina C; Tantillo, Dean J

    2015-04-01

    The relative importance of preorganization, selective transition state stabilization and inherent reactivity are assessed through quantum chemical and docking calculations for a sesquiterpene synthase ( epi -isozizaene synthase, EIZS). Inherent reactivity of the bisabolyl cation, both static and dynamic, appears to determine the pathway to product, although preorganization and selective binding of the final transition state structure in the multi-step carbocation cascade that forms epi -isozizaene appear to play important roles.

  3. Tomato Cutin Deficient 1 (CD1) and Putative Orthologs Comprise an Ancient Family of Cutin Synthase-like (CUS) Proteins that are Conserved among Land Plants

    PubMed Central

    Yeats, Trevor H.; Huang, Wenlin; Chatterjee, Subhasish; Viart, Hélène M-F.; Clausen, Mads H.; Stark, Ruth E.; Rose, Jocelyn K.C.

    2014-01-01

    Summary The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids. However, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL-motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL super-family. We demonstrate that members of this ancient and conserved family of cutin synthase-like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution-state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross-linking, may require additional, as yet unknown, factors. PMID:24372802

  4. Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants.

    PubMed

    Yeats, Trevor H; Huang, Wenlin; Chatterjee, Subhasish; Viart, Hélène M-F; Clausen, Mads H; Stark, Ruth E; Rose, Jocelyn K C

    2014-03-01

    The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids; however, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL-motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here, we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL superfamily. We demonstrate that members of this ancient and conserved family of cutin synthase-like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution-state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross-linking, may require additional, as yet unknown, factors. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. ATP synthase--a marvellous rotary engine of the cell.

    PubMed

    Yoshida, M; Muneyuki, E; Hisabori, T

    2001-09-01

    ATP synthase can be thought of as a complex of two motors--the ATP-driven F1 motor and the proton-driven Fo motor--that rotate in opposite directions. The mechanisms by which rotation and catalysis are coupled in the working enzyme are now being unravelled on a molecular scale.

  6. Sensitivity of Aspergillus nidulans to the Cellulose Synthase Inhibitor Dichlobenil: Insights from Wall-Related Genes’ Expression and Ultrastructural Hyphal Morphologies

    PubMed Central

    Obersriebnig, Michael; Salerno, Marco; Pum, Dietmar; Strauss, Joseph

    2013-01-01

    The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis. PMID:24312197

  7. Regulation of Aerobic Energy Metabolism in Podospora anserina by Two Paralogous Genes Encoding Structurally Different c-Subunits of ATP Synthase.

    PubMed

    Sellem, Carole H; di Rago, Jean-Paul; Lasserre, Jean-Paul; Ackerman, Sharon H; Sainsard-Chanet, Annie

    2016-07-01

    Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8-15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before.

  8. Rational Discovery of (+) (S) Abscisic Acid as a Potential Antifungal Agent: a Repurposing Approach.

    PubMed

    Khedr, Mohammed A; Massarotti, Alberto; Mohamed, Maged E

    2018-06-04

    Fungal infections are spreading widely worldwide, and the types of treatment are limited due to the lack of diverse therapeutic agents and their associated side effects and toxicity. The discovery of new antifungal classes is vital and critical. We discovered the antifungal activity of abscisic acid through a rational drug design methodology that included the building of homology models for fungal chorismate mutases and a pharmacophore model derived from a transition state inhibitor. Ligand-based virtual screening resulted in some hits that were filtered using molecular docking and molecular dynamic simulations studies. Both in silico methods and in vitro antifungal assays were used as tools to select and validate the abscisic acid repurposing. Abscisic acid inhibition assays confirmed the inhibitory effect of abscisic acid on chorismate mutase through the inhibition of phenylpyruvate production. The repositioning of abscisic acid, the well-known and naturally occurring plant growth regulator, as a potential antifungal agent because of its suggested action as an inhibitor to several fungal chorismate mutases was the main result of this work.

  9. Lipocalin-type prostaglandin D synthase scavenges biliverdin in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage

    PubMed Central

    Inui, Takashi; Mase, Mitsuhito; Shirota, Ryoko; Nagashima, Mariko; Okada, Tetsuya; Urade, Yoshihiro

    2014-01-01

    Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is the second major protein in human cerebrospinal fluid (CSF) and belongs to the lipocalin superfamily composed of various secretory lipophilic ligand transporter proteins. However, the endogenous ligand of L-PGDS has not yet been elucidated. In this study, we purified L-PGDS from the CSF of aneurysmal subarachnoid hemorrhage (SAH) patients. Lipocalin-type PG D synthase showed absorbance spectra with major peaks at 280 and 392 nm and a minor peak at around 660 nm. The absorbance at 392 nm of L-PGDS increased from 1 to 9 days and almost disappeared at 2 months after SAH, whereas the L-PGDS activity decreased from 1 to 7 days and recovered to normal at 2 months after SAH. These results indicate that some chromophore had accumulated in the CSF after SAH and bound to L-PGDS, thus inactivating it. Matrix assisted laser desorption ionization time-of-flight mass spectrometry of L-PGDS after digestion of it with endoproteinase Lys-C revealed that L-PGDS had covalently bound biliverdin, a by-product of heme breakdown. These results suggest that L-PGDS acted as a scavenger of biliverdin, which is a molecule not found in normal CSF. This is the first report of identification of a pathophysiologically important endogenous ligand for this lipocalin superfamily protein in humans. PMID:25005874

  10. Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p

    PubMed Central

    Hellmuth, Klaus; Grosjean, Henri; Motorin, Yuri; Deinert, Karina; Hurt, Ed; Simos, George

    2000-01-01

    Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S.cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export. PMID:11095668

  11. Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p.

    PubMed

    Hellmuth, K; Grosjean, H; Motorin, Y; Deinert, K; Hurt, E; Simos, G

    2000-12-01

    Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S. cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export.

  12. Enzymological Basis for Growth Inhibition by l-Phenylalanine in the Cyanobacterium Synechocystis sp. 29108

    PubMed Central

    Hall, Geraldine C.; Jensen, Roy A.

    1980-01-01

    loss in allosteric sensitivity of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase was accompanied by a threefold increase in specific activity. This could suggest that existence of a modest degree of repression control (autogenous) over 3-deoxy-d-arabinoheptulosonate synthase, although other explanations are possible. Specific activities of chorismate mutase, prephenate dehydratase, shikimate/nicotinamide adenine dinucleotide phosphate dehydrogenase, and arogenate/nicotinamide adenine dinucleotide phosphate dehydrogenase in mutant Phe r19 were identical with those of the wild type. PMID:6108316

  13. Cardioprotective Effect of Danshensu against Ischemic/Reperfusion Injury via c-Subunit of ATP Synthase Inhibition

    PubMed Central

    Zhao, JingYi; Fan, Zixuan; Bao, Jiadi; Sun, Dawei; Sun, Chun

    2017-01-01

    Mitochondrial permeability transition pore (MPTP) opening is the main culprit of ischemic/reperfusion (IR) injury. It is reported that c-subunit of ATP synthase is the core component of MPTP. Danshensu (DSS), a monomer isolated from the traditional Chinese herb Danshen, has showed cardioprotective effect against IR injury through unknown mechanism. In this study, rat hearts were suspended in Langendorff instrument and perfused with Krebs-Henseleit (KH) buffer containing DSS for 60 minutes, followed by 30 minutes of global ischemia. Parameters including heart rate, left ventricular developed pressure, and the rate of left ventricle diastolic pressure change were recorded to assess their cardiac function. All these indexes were improved in DSS group. The rate of cardiomyocytes apoptosis and MPTP opening were both inhibited in DSS group. In addition, DSS administration leads to downregulation of c-subunit of ATP synthase in both mRNA and protein levels. Consistently, when c-subunit of ATP synthase was overexpressed in H9C2 cells through pcDNA3/5G1 plasmid transfection, MPTP opening was enhanced when the cardioprotective effect of DSS also tapers. In conclusion, DSS could alleviate cardiac IR injury via inhibiting c-subunit of ATP synthase expression. PMID:29250127

  14. The First Prokaryotic Trehalose Synthase Complex Identified in the Hyperthermophilic Crenarchaeon Thermoproteus tenax

    PubMed Central

    Bräsen, Christopher; Hensel, Reinhard; Lupas, Andrei N.; Brinkmann, Henner; Siebers, Bettina

    2013-01-01

    The role of the disaccharide trehalose, its biosynthesis pathways and their regulation in Archaea are still ambiguous. In Thermoproteus tenax a fused trehalose-6-phosphate synthase/phosphatase (TPSP), consisting of an N-terminal trehalose-6-phosphate synthase (TPS) and a C-terminal trehalose-6-phosphate phosphatase (TPP) domain, was identified. The tpsp gene is organized in an operon with a putative glycosyltransferase (GT) and a putative mechanosensitive channel (MSC). The T. tenax TPSP exhibits high phosphatase activity, but requires activation by the co-expressed GT for bifunctional synthase-phosphatase activity. The GT mediated activation of TPS activity relies on the fusion of both, TPS and TPP domain, in the TPSP enzyme. Activation is mediated by complex-formation in vivo as indicated by yeast two-hybrid and crude extract analysis. In combination with first evidence for MSC activity the results suggest a sophisticated stress response involving TPSP, GT and MSC in T. tenax and probably in other Thermoproteales species. The monophyletic prokaryotic TPSP proteins likely originated via a single fusion event in the Bacteroidetes with subsequent horizontal gene transfers to other Bacteria and Archaea. Furthermore, evidence for the origin of eukaryotic TPSP fusions via HGT from prokaryotes and therefore a monophyletic origin of eukaryotic and prokaryotic fused TPSPs is presented. This is the first report of a prokaryotic, archaeal trehalose synthase complex exhibiting a much more simple composition than the eukaryotic complex described in yeast. Thus, complex formation and a complex-associated regulatory potential might represent a more general feature of trehalose synthesizing proteins. PMID:23626675

  15. chs-4, a class IV chitin synthase gene from Neurospora crassa.

    PubMed

    Din, A B; Specht, C A; Robbins, P W; Yarden, O

    1996-02-05

    In Saccharomyces cerevisiae, most of the cellular chitin is produced by chitin synthase III, which requires the product encoded by the CSD2/CAL1/DIT101/KT12 gene. We have identified, isolated and structurally characterized as CSD2/CAL1/DIT101/KT12 homologue in the filamentous ascomycete Neurospora crassa and have used a "reverse genetics" approach to determine its role in vivo. The yeast gene was used as a heterologous probe for the isolation of a N. crassa gene(designated chs-4) encoding a polypeptide belonging to a class of chitin synthases which we have designated class IV. The predicted polypeptide encoded by this gene is highly similar to those of S. cerevisiae and Candida albicans. N. crassa strains in which chs-4 had been inactivated by the Repeat-Induced point mutation (RIP) process grew and developed in a normal manner under standard growth conditions. However, when grown in the presence of sorbose (a carbon source which induces morphological changes accompanied by elevated chitin content), chitin levels in the chs-4RIP strain were significantly lower than those observed in the wild type. We suggest that CHS4 may serve as an auxiliary enzyme in N. crassa and that, in contrast to yeasts, it is possible that filamentous fungi may have more than one class IV chitin synthase.

  16. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.

    PubMed

    Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T

    1997-10-10

    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.

  17. Isolation and bacterial expression of a sesquiterpene synthase CDNA clone from peppermint(mentha .chi. piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Crock, John E.

    1999-01-01

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-farnesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-farnesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  18. Three 1-Aminocyclopropane-1-Carboxylate Synthase Genes Regulated by Primary and Secondary Pollination Signals in Orchid Flowers1

    PubMed Central

    Bui, Anhthu Q.; Neill, Sharman D. O'

    1998-01-01

    The temporal and spatial expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes were investigated in pollinated orchid (Phalaenopsis spp.) flowers. Pollination signals initiate a cascade of development events in multiple floral organs, including the induction of ethylene biosynthesis, which coordinates several postpollination developmental responses. The initiation and propagation of ethylene biosynthesis is regulated by the coordinated expression of three distinct ACC synthase genes in orchid flowers. One ACC synthase gene (Phal-ACS1) is regulated by ethylene and participates in amplification and interorgan transmission of the pollination signal, as we have previously described in a related orchid genus. Two additional ACC synthase genes (Phal-ACS2 and Phal-ACS3) are expressed primarily in the stigma and ovary of pollinated orchid flowers. Phal-ACS2 mRNA accumulated in the stigma within 1 h after pollination, whereas Phal-ACS1 mRNA was not detected until 6 h after pollination. Similar to the expression of Phal-ACS2, the Phal-ACS3 gene was expressed within 2 h after pollination in the ovary. Exogenous application of auxin, but not ACC, mimicked pollination by stimulating a rapid increase in ACC synthase activity in the stigma and ovary and inducing Phal-ACS2 and Phal-ACS3 mRNA accumulation in the stigma and ovary, respectively. These results provide the basis for an expanded model of interorgan regulation of three ACC synthase genes that respond to both primary (Phal-ACS2 and Phal-ACS3) and secondary (Phal-ACS1) pollination signals. PMID:9449850

  19. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells

    PubMed Central

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-01-01

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics. PMID:25762467

  20. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction

    PubMed Central

    2012-01-01

    Background Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. Method We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. Results In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Conclusion Hypercapnia with and without acidosis increased HPV during

  1. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction.

    PubMed

    Ketabchi, Farzaneh; Ghofrani, Hossein A; Schermuly, Ralph T; Seeger, Werner; Grimminger, Friedrich; Egemnazarov, Bakytbek; Shid-Moosavi, S Mostafa; Dehghani, Gholam A; Weissmann, Norbert; Sommer, Natascha

    2012-01-31

    Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Hypercapnia with and without acidosis increased HPV during conditions of sustained hypoxia. The

  2. UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.

    Prostaglandins belong to a class of cyclic lipid-derived mediators synthesized from arachidonic acid via COX-1, COX-2 and various prostaglandin synthases. Members of this family include prostaglandins such as PGE{sub 2}, PGF{sub 2{alpha}}, PGD{sub 2} and PGI{sub 2} (prostacyclin) as well as thromboxane. In the present studies we analyzed the effects of UVB on prostaglandin production and prostaglandin synthase expression in primary cultures of undifferentiated and calcium-differentiated mouse keratinocytes. Both cell types were found to constitutively synthesize PGE{sub 2}, PGD{sub 2} and the PGD{sub 2} metabolite PGJ{sub 2}. Twenty-four hours after treatment with UVB (25 mJ/cm{sup 2}), production of PGE{sub 2}more » and PGJ{sub 2} increased, while PGD{sub 2} production decreased. This was associated with increased expression of COX-2 mRNA and protein. UVB (2.5-25 mJ/cm{sup 2}) also caused marked increases in mRNA expression for the prostanoid synthases PGDS, mPGES-1, mPGES-2, PGFS and PGIS, as well as expression of receptors for PGE{sub 2} (EP1 and EP2), PGD{sub 2} (DP and CRTH2) and prostacyclin (IP). UVB was more effective in inducing COX-2 and DP in differentiated cells and EP1 and IP in undifferentiated cells. UVB readily activated keratinocyte PI-3-kinase (PI3K)/Akt, JNK and p38 MAP signaling pathways which are known to regulate COX-2 expression. While inhibition of PI3K suppressed UVB-induced mPGES-1 and CRTH2 expression, JNK inhibition suppressed mPGES-1, PGIS, EP2 and CRTH2, and p38 kinase inhibition only suppressed EP1 and EP2. These data indicate that UVB modulates expression of prostaglandin synthases and receptors by distinct mechanisms. Moreover, both the capacity of keratinocytes to generate prostaglandins and their ability to respond to these lipid mediators are stimulated by exposure to UVB.« less

  3. Two Bacterial Diterpene Synthases from Allokutzneria albata for Bonnadiene and for Phomopsene and Allokutznerene.

    PubMed

    Lauterbach, Lukas; Rinkel, Jan; Dickschat, Jeroen Sidney

    2018-05-14

    Two diterpene synthases from Allokutzneria albata were studied for their products, resulting in the identification of the new compound bonnadiene from the first enzyme. Although phylogenetically unrelated to fungal phomopsene synthase, the second enzyme produced a mixture of phomopsene and a biosynthetically linked new compound, allokutznerene, besides spiroviolene. Both enzymes were deeply studied for their mechanisms by isotopic labelling experiments, metal cofactor variation and site-directed mutagenesis. Oxidation products of phomopsene and allokutznerene are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  5. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    PubMed Central

    2009-01-01

    Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated

  6. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.

    PubMed

    Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg

    2009-08-06

    Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The

  7. The anisotropy1 D604N Mutation in the Arabidopsis Cellulose Synthase1 Catalytic Domain Reduces Cell Wall Crystallinity and the Velocity of Cellulose Synthase Complexes1[W][OA

    PubMed Central

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.

    2013-01-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584

  8. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.

    PubMed

    Lohman, Jeremy R; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  9. Muscle-Specific Deletion of Rictor Impairs Insulin-Stimulated Glucose Transport and Enhances Basal Glycogen Synthase Activity▿

    PubMed Central

    Kumar, Anil; Harris, Thurl E.; Keller, Susanna R.; Choi, Kin M.; Magnuson, Mark A.; Lawrence, John C.

    2008-01-01

    Rictor is an essential component of mTOR (mammalian target of rapamycin) complex 2 (mTORC2), a kinase complex that phosphorylates Akt at Ser473 upon activation of phosphatidylinositol 3-kinase (PI-3 kinase). Since little is known about the role of either rictor or mTORC2 in PI-3 kinase-mediated physiological processes in adult animals, we generated muscle-specific rictor knockout mice. Muscle from male rictor knockout mice exhibited decreased insulin-stimulated glucose uptake, and the mice showed glucose intolerance. In muscle lacking rictor, the phosphorylation of Akt at Ser473 was reduced dramatically in response to insulin. Furthermore, insulin-stimulated phosphorylation of the Akt substrate AS160 at Thr642 was reduced in rictor knockout muscle, indicating a defect in insulin signaling to stimulate glucose transport. However, the phosphorylation of Akt at Thr308 was normal and sufficient to mediate the phosphorylation of glycogen synthase kinase 3 (GSK-3). Basal glycogen synthase activity in muscle lacking rictor was increased to that of insulin-stimulated controls. Consistent with this, we observed a decrease in basal levels of phosphorylated glycogen synthase at a GSK-3/protein phosphatase 1 (PP1)-regulated site in rictor knockout muscle. This change in glycogen synthase phosphorylation was associated with an increase in the catalytic activity of glycogen-associated PP1 but not increased GSK-3 inactivation. Thus, rictor in muscle tissue contributes to glucose homeostasis by positively regulating insulin-stimulated glucose uptake and negatively regulating basal glycogen synthase activity. PMID:17967879

  10. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis.

    PubMed

    Sitthithaworn, W; Kojima, N; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Noji, M; Saito, K; Niwa, Y; Sankawa, U

    2001-02-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene-producing plants, Scoparia dulcis and Croton sublyratus, have been isolated using the homology-based polymerase chain reaction (PCR) method. Both clones contained highly conserved aspartate-rich motifs (DDXX(XX)D) and their N-terminal residues exhibited the characteristics of chloroplast targeting sequence. When expressed in Escherichia coli, both the full-length and truncated proteins in which the putative targeting sequence was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to produce geranylgeranyl diphosphate (GGPP). The structural factors determining the product length in plant GGPPSs were investigated by constructing S. dulcis GGPPS mutants on the basis of sequence comparison with the first aspartate-rich motif (FARM) of plant farnesyl diphosphate synthase. The result indicated that in plant GGPPSs small amino acids, Met and Ser, at the fourth and fifth positions before FARM and Pro and Cys insertion in FARM play essential roles in determination of product length. Further, when a chimeric gene comprised of the putative transit peptide of the S. dulcis GGPPS gene and a green fluorescent protein was introduced into Arabidopsis leaves by particle gun bombardment, the chimeric protein was localized in chloroplasts, indicating that the cloned S. dulcis GGPPS is a chloroplast protein.

  11. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    PubMed

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  12. The role of inducible nitric oxide synthase in vascular hyporeactivity of endotoxin-treated and portal hypertensive rats.

    PubMed

    Heinemann, A; Stauber, R E

    1995-05-04

    The involvement of the inducible nitric oxide (NO) synthase in the vascular hyporeactivity in portal vein-ligated rats was assessed in isolated perfused mesenteric arterial beds. Aminoguanidine, a selective inhibitor of the inducible NO synthase, restored the pressor responses to methoxamine in arteries of endotoxin-treated rats, but was ineffective in hyporeactive portal vein-ligated vessels. NG-Nitro-L-arginine methyl ester enhanced the responsiveness both in portal vein-ligated and sham-operated rats, without changing the difference between the two groups. These results not only indicate that the inducible NO synthase is not involved in the hyporeactivity to methoxamine in mesenteric arteries of portal hypertensive rats, but also suggest a role for factors other than NO.

  13. Polyketide synthases from poison hemlock (Conium maculatum L.).

    PubMed

    Hotti, Hannu; Seppänen-Laakso, Tuulikki; Arvas, Mikko; Teeri, Teemu H; Rischer, Heiko

    2015-11-01

    Coniine is a toxic alkaloid, the biosynthesis of which is not well understood. A possible route, supported by evidence from labelling experiments, involves a polyketide formed by the condensation of one acetyl-CoA and three malonyl-CoAs catalysed by a polyketide synthase (PKS). We isolated PKS genes or their fragments from poison hemlock (Conium maculatum L.) by using random amplification of cDNA ends (RACE) and transcriptome analysis, and characterized three full-length enzymes by feeding different starter-CoAs in vitro. On the basis of our in vitro experiments, two of the three characterized PKS genes in poison hemlock encode chalcone synthases (CPKS1 and CPKS2), and one encodes a novel type of PKS (CPKS5). We show that CPKS5 kinetically favours butyryl-CoA as a starter-CoA in vitro. Our results suggest that CPKS5 is responsible for the initiation of coniine biosynthesis by catalysing the synthesis of the carbon backbone from one butyryl-CoA and two malonyl-CoAs. © 2015 FEBS.

  14. Methionine biosynthesis in higher plants. I. Purification and characterization of cystathionine gamma-synthase from spinach chloroplasts.

    PubMed

    Ravanel, S; Droux, M; Douce, R

    1995-01-10

    Cystathionine gamma-synthase, the first enzyme specific for the methionine biosynthetic pathway, was purified to apparent homogeneity from spinach leaf chloroplasts. A nonradioactive assay based on O-phthaldialdehyde derivatization of L-cystathionine and fluorescence detection was developed to determine the cystathionine gamma-synthase activity. A unique cystathionine gamma-synthase activity was located in the stromal fraction of chloroplasts while cystathionine beta-lyase, the second enzyme of the transsulfuration pathway, was associated with both the chloroplastic and cytosolic compartments (see companion manuscript). The purified enzyme exhibited a specific activity of 13 U mg-1. As estimated by gel filtration and polyacrylamide gel electrophoresis (PAGE) under nondenaturing conditions followed by activity staining, the native enzyme had an apparent M(r) of 215,000. On the basis of sodium dodecyl sulfate-PAGE, purified cystathionine gamma-synthase migrated as two molecular species of M(r) 53,000 and 50,000 that are identical in their N-termini. The absorption spectrum obtained at pH 7.5 exhibited a peak at 425 nm due to pyridoxal 5'-phosphate (PLP). The purified enzyme catalyzed the formation of L-cystathionine or L-homocysteine depending on the sulfur-containing substrate, L-cysteine or sulfide. Maximal cystathionine gamma-synthase activity was found at pH 7.4. The apparent Km values for O-phospho-L-homoserine (the unique homoserine ester synthesized in the chloroplast), L-cysteine, and sulfide were 1.4, 0.18, and 0.6 mM, respectively. Inactivation of cystathionine gamma-synthase by DL-propargylglycine (PAG) showed pseudo-first-order kinetics and data were consistent with the existence of an intermediate reversible enzyme-inhibitor complex (Kappi = 140 microM) preceding the formation of a final enzyme-inhibitor complex (kd = 24 x 10(-3) s-1). The irreversibility of the inhibition and the partial restoration of the activity by pyridoxal-phosphate suggest that

  15. Tailoring lumazine synthase assemblies for bionanotechnology.

    PubMed

    Azuma, Yusuke; Edwardson, Thomas G W; Hilvert, Donald

    2018-05-21

    Nanoscale compartments formed by hierarchical protein self-assembly are valuable platforms for nanotechnology development. The well-defined structure and broad chemical functionality of protein cages, as well as their amenability to genetic and chemical modification, have enabled their repurposing for diverse applications. In this review, we summarize progress in the engineering of the cage-forming enzyme lumazine synthase. This bacterial nanocompartment has proven to be a malleable scaffold. The natural protein has been diversified to afford a family of unique proteinaceous capsules that have been modified, evolved and assembled with other components to produce nanoreactors, artificial organelles, delivery vehicles and virus mimics.

  16. Intracellular formation of "undisruptable" dimers of inducible nitric oxide synthase.

    PubMed

    Kolodziejski, Pawel J; Rashid, Mohammad B; Eissa, N Tony

    2003-11-25

    Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer. Dimerization of iNOS represents a potentially critical target for therapeutic intervention. In this study, we show that intracellular iNOS forms dimers that are "undisruptable" by boiling, denaturants, or reducing agents. Undisruptable (UD) dimers are clearly distinguishable from the easily dissociated dimers formed by iNOS in vitro. UD dimers do not form in Escherichia coli-expressed iNOS and could not be assembled in vitro, which suggests that an in vivo cellular process is required for their formation. iNOS UD dimers are not affected by intracellular depletion of H4B. However, the mutation of Cys-115 (critical for zinc binding) greatly affects the formation of UD dimers. This study reveals insight into the mechanisms of in vivo iNOS dimer formation. UD dimers represent a class of iNOS dimers that had not been suspected. This unanticipated finding revises our understanding of the mechanisms of iNOS dimerization and lays the groundwork for future studies aimed at modulating iNOS activity in vivo.

  17. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis.

    PubMed

    Gurung, Bhusan; Bhardwaj, Pardeep K; Talukdar, Narayan C

    2016-11-01

    In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.

  18. Cloning, characterization, expression and comparative analysis of pig Golgi membrane sphingomyelin synthase 1.

    PubMed

    Guillén, Natalia; Navarro, María A; Surra, Joaquín C; Arnal, Carmen; Fernández-Juan, Marta; Cebrián-Pérez, Jose Alvaro; Osada, Jesús

    2007-02-15

    Pig sphingomyelin synthase 1 (SMS1) cDNA was cloned, characterized and compared to the human ortholog. Porcine protein consists of 413 amino acids and displays a 97% sequence identity with human protein. A phylogenic tree of proteins reveals that porcine SMS1 is more closely related to bovine and rodent proteins than to human. Analysis of protein mass was higher than the theoretical prediction based on amino acid sequence suggesting a kind of posttranslational modification. Quantitative representation of tissue distribution obtained by real-time RT-PCR showed that it was widely expressed although important variations in levels were obtained among organs. Thus, the cardiovascular system, especially the heart, showed the highest value of all the tissues studied. Regional differences of expression were observed in the central nervous system and intestinal tract. Analysis of the hepatic mRNA and protein expressions of SMS1 following turpentine treatment revealed a progressive decrease in the former paralleled by a decrease in the protein concentration. These findings indicate the variation in expression in the different tissues might suggest a different requirement of Golgi sphingomyelin for the specific function in each organ and a regulation of the enzyme in response to turpentine-induced hepatic injury.

  19. Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase.

    PubMed

    Lozovaya, Vera V; Lygin, Anatoliy V; Zernova, Olga V; Ulanov, Alexander V; Li, Shuxian; Hartman, Glen L; Widholm, Jack M

    2007-02-01

    Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen.

  20. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    PubMed Central

    Carlile, Thomas M.; Rojas-Duran, Maria F.; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M.; Gilbert, Wendy V.

    2014-01-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13. PMID:25192136