Science.gov

Sample records for chromiumv doping agents

  1. Progress in the chemistry of chromium(V) doping agents used in polarized target materials

    SciTech Connect

    Krumpolc, M. ); Hill, D. ); Struhrmann, H.B. , Hamburg . Hamburger Synchrotronstrahlungslabor)

    1990-01-01

    We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined.

  2. Lanthanide-doped hollow nanomaterials as theranostic agents.

    PubMed

    Kang, Xiaojiao; Li, Chunxia; Cheng, Ziyong; Ma, Ping'an; Hou, Zhiyao; Lin, Jun

    2014-01-01

    The field of theranostics has sprung up to achieve personalized medicine. The theranostics fuses diagnostic and therapeutic functions, empowering early diagnosis, targeted drug delivery, and real-time monitoring of treatment effect into one step. One particularly attractive class of nanomaterials for theranostic application is lanthanide-doped hollow nanomaterials (LDHNs). Because of the existence of lanthanide ions, LDHNs show outstanding fluorescent and paramagnetic properties, enabling them to be used as multimodal bioimaging agents. Synchronously, the huge interior cavities of LDHNs are able to be applied as efficacious tools for storage and delivery of therapeutic agents. The LDHNs can be divided into two types based on difference of component: single-phase lanthanide-doped hollow nanomaterials and lanthanide-doped hollow nanocomposites. We describe the synthesis of first kind of nanomaterials by use of hard template, soft template, template-free, and self-sacrificing template method. For lanthanide-doped hollow nanocomposites, we divide the preparation strategies into three kinds (one-step, two-step, and multistep method) according to the synthetic procedures. Furthermore, we also illustrate the potential bioapplications of these LDHNs, including biodetection, imaging (fluorescent imaging and magnetic resonance imaging), drug/gene delivery, and other therapeutic applications. PMID:24227795

  3. Polarization behavior of paints doped with silicone light diffusion agent

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xie, Wei; Guo, Honggui; Wu, Jianye

    2016-02-01

    We report on the polarization behavior of painted samples doped with a silicone light diffusion agent and illuminated by linearly polarized laser light centered at 532 and 650 nm. Reflection spectra of the painted samples with dopant concentration of 0 and 12.2 wt.% were examined. The degree of depolarization increases from 0.35 to 0.8 under laser illumination at 650 nm and from 0.5 to 0.94 under laser illumination at 532 nm with an increasing concentration of light diffusion agent. The polarization behavior of painted samples was described, taking into account contribution of both surface scattering and volume scattering.

  4. Molecular effects of supraphysiological doses of doping agents on health.

    PubMed

    Imperlini, Esther; Mancini, Annamaria; Alfieri, Andreina; Martone, Domenico; Caterino, Marianna; Orrù, Stefania; Buono, Pasqualina

    2015-06-01

    Performance-enhancing drugs (PEDs) gained wide popularity not only among sportsmen but also among specific subsets of population, such as adolescents. Apart from their claimed effects on athletic performance, they are very appealing due to the body shaping effect exerted on fat mass and fat-free mass. Besides the "underestimated" massive misuse of PEDs, the short- as well as long-term consequences of such habits remain largely unrecognized. They have been strictly associated with serious adverse effects, but molecular mechanisms are yet to be elucidated. Here, we analyze the current understanding of the molecular effects of supraphysiological doses of doping agents in healthy biological systems, at genomic and proteomic levels, in order to define the molecular sensors of organ/tissue impairment, determined by their misuse. The focus is put on the anabolic androgenic steroids (AASs), specifically testosterone (T) and its most potent derivative dihydrotestosterone (DHT), and on the peptide hormones, specifically the growth hormone (GH) and the insulin-like growth factor-1 (IGF-1). A map of molecular targets is defined and the risk incidence for human health is taken into account. PMID:25787095

  5. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  6. Oxidative damage of DNA by chromium(V) complexes: relative importance of base versus sugar oxidation.

    PubMed Central

    Bose, R N; Moghaddas, S; Mazzer, P A; Dudones, L P; Joudah, L; Stroup, D

    1999-01-01

    Chromium(V)-mediated oxidative damage of deoxy-ribonucleic acids was investigated at neutral pH in aqueous solution by utilizing bis(2-ethyl-2-hydroxy-butanato)oxochromate(V) (I) and bis(hydroxyethyl)-amino-tris(hydroxymethyl)methane)oxochromate(V) (II). Single-stranded and double-stranded (ds) calf thymus and human placenta DNA, as well as two oligomers, 5'-GATCTAGTAGGAGGACAAATAGTGTTTG-3' and 5'-GATCCAAGCAAACACTATTTGTCCTCCTACTA-3', were reacted with the chromium(V) complexes. Most products were separated and characterized by chroma-tographic and spectroscopic methods. Polyacrylamide gel electrophoresis experiments reveal more damage at G sites in comparison to other bases. Three primary oxidation products, 5-methylene-2-furanone (5-MF), furfural and 8-oxo-2'-deoxyguanosine, were characterized. A minor product, which appears to be thymine propenal, was also observed. The dsDNA produces more furfural than furanone. The formation of these two products resulted from hydrogen ion or hydride transfer from C1' and C5' positions of the ribose to the oxo-chromium(V) center. Since no enhancements of these products (except propenal) were observed in the presence of oxygen, mechanisms pertaining to the participation of activated oxygen species may be ruled out. The oxidation of the G base is most likely associated with an oxygen atom transfer from the oxo-metallates to the double bond between C8 and N7 of the purine ring. The formation of the propenal may be associated with an oxygen-activated species, since a marginal enhancement of this product was observed in the presence of oxygen. The formation of furfural in higher abundance over 5-MF for dsDNA was attributed to the ease of hydrogen ion (or hydride transfer) from the C5' compared to C1' position of the ribose within a Cr(V)-DNA intermediate in which the metal center is bound to the phosphate diester moiety. PMID:10219096

  7. Oxidative damage of DNA by chromium(V) complexes: relative importance of base versus sugar oxidation.

    PubMed

    Bose, R N; Moghaddas, S; Mazzer, P A; Dudones, L P; Joudah, L; Stroup, D

    1999-05-15

    Chromium(V)-mediated oxidative damage of deoxy-ribonucleic acids was investigated at neutral pH in aqueous solution by utilizing bis(2-ethyl-2-hydroxy-butanato)oxochromate(V) (I) and bis(hydroxyethyl)-amino-tris(hydroxymethyl)methane)oxochromate(V) (II). Single-stranded and double-stranded (ds) calf thymus and human placenta DNA, as well as two oligomers, 5'-GATCTAGTAGGAGGACAAATAGTGTTTG-3' and 5'-GATCCAAGCAAACACTATTTGTCCTCCTACTA-3', were reacted with the chromium(V) complexes. Most products were separated and characterized by chroma-tographic and spectroscopic methods. Polyacrylamide gel electrophoresis experiments reveal more damage at G sites in comparison to other bases. Three primary oxidation products, 5-methylene-2-furanone (5-MF), furfural and 8-oxo-2'-deoxyguanosine, were characterized. A minor product, which appears to be thymine propenal, was also observed. The dsDNA produces more furfural than furanone. The formation of these two products resulted from hydrogen ion or hydride transfer from C1' and C5' positions of the ribose to the oxo-chromium(V) center. Since no enhancements of these products (except propenal) were observed in the presence of oxygen, mechanisms pertaining to the participation of activated oxygen species may be ruled out. The oxidation of the G base is most likely associated with an oxygen atom transfer from the oxo-metallates to the double bond between C8 and N7 of the purine ring. The formation of the propenal may be associated with an oxygen-activated species, since a marginal enhancement of this product was observed in the presence of oxygen. The formation of furfural in higher abundance over 5-MF for dsDNA was attributed to the ease of hydrogen ion (or hydride transfer) from the C5' compared to C1' position of the ribose within a Cr(V)-DNA intermediate in which the metal center is bound to the phosphate diester moiety. PMID:10219096

  8. Anabolic agents: recent strategies for their detection and protection from inadvertent doping

    PubMed Central

    Geyer, Hans; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    According to the World Anti-Doping Agency (WADA) Prohibited List, anabolic agents consist of exogenous anabolic androgenic steroids (AAS), endogenous AAS and other anabolic agents such as clenbuterol and selective androgen receptor modulators (SARMs). Currently employed strategies for their improved detection include the prolongation of the detection windows for exogenous AAS, non-targeted and indirect analytical approaches for the detection of modified steroids (designer steroids), the athlete’s biological passport and isotope ratio mass spectrometry for the detection of the misuse of endogenous AAS, as well as preventive doping research for the detection of SARMs. The recent use of these strategies led to 4–80-fold increases of adverse analytical findings for exogenous AAS, to the detection of the misuse of new designer steroids, to adverse analytical findings of different endogenous AAS and to the first adverse analytical findings of SARMs. The strategies of the antidoping research are not only focused on the development of methods to catch the cheating athlete but also to protect the clean athlete from inadvertent doping. Within the past few years several sources of inadvertent doping with anabolic agents have been identified. Among these are nutritional supplements adulterated with AAS, meat products contaminated with clenbuterol, mycotoxin (zearalenone) contamination leading to zeranol findings, and natural products containing endogenous AAS. The protection strategy consists of further investigations in case of reasonable suspicion of inadvertent doping, publication of the results, education of athletes and development of methods to differentiate between intentional and unintentional doping. PMID:24632537

  9. Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Lytvyn, O. S.; Karachevtsev, V. A.

    2014-06-01

    The influence of biopolymer wrapped around nanotube on the enhancement of the semiconducting single-walled carbon nanotube (SWNT) photoluminescence (PL) in aqueous suspension which increases due to the reducing agent dithiothreitol (DTT) doping effect was revealed. The greatest enhancement of PL was observed for SWNTs covered with double- or single stranded DNA (above 170%) and DTT weak influence was revealed for SWNTs:polyC suspension (∼45%). The magnitude of the PL enhancement depends also on nanotube chirality and sample aging. The behavior of PL from SWNTs covered with various polymers is explained by the different biopolymers ordering on the nanotube surface. The ordered polymer conformation on the nanotube weakens the reducing agent doping effect. The method of reducing agent doping of nanotube:biopolymer aqueous suspension can serve as a sensitive luminescent probe of the biopolymer ordering on the carbon nanotube and can be used to increase the sensitivity of luminescent biosensors.

  10. Basic analytical methods for identification of erythropoiesis-stimulating agents in doping control

    NASA Astrophysics Data System (ADS)

    Postnikov, P. V.; Krotov, G. I.; Efimova, Yu A.; Rodchenkov, G. M.

    2016-02-01

    The design of new erythropoiesis-stimulating agents for clinical use necessitates constant development of methods for detecting the abuse of these substances, which are prohibited under the World Anti-Doping Code and are included in the World Anti-Doping Agency (WADA) prohibited list. This review integrates and describes systematically the published data on the key methods currently used by WADA-accredited anti-doping laboratories around the world to detect the abuse of erythropoiesis-stimulating agents, including direct methods (various polyacrylamide gel electrophoresis techniques, enzyme-linked immunosorbent assay, membrane enzyme immunoassay and mass spectrometry) and indirect methods (athlete biological passport). Particular attention is given to promising approaches and investigations that can be used to control prohibited erythropoietins in the near future. The bibliography includes 122 references.

  11. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    SciTech Connect

    Stengl, Vaclav; Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika; Oplustil, Frantisek; Nemec, Tomas

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  12. Volume holographic recording in nanoparticle-polymer composites doped with multifunctional chain transfer agents

    NASA Astrophysics Data System (ADS)

    Guo, Jinxin; Fujii, Ryuta; Tomita, Yasuo

    2015-10-01

    We report on an experimental investigation of the properties of volume holographic recording in photopolymerizable nanoparticle-polymer composites (NPCs) doped with chain transferring multifunctional di- and tri-thiols as chain transfer agents. It is shown that the incorporation of the multifunctional thiols into NPCs more strongly influences on volume holographic recording than that doped with mono-thiol since more chemical reactions involve in the polymer network formation. It is found that, as similar to the case of mono-thiol doping, there exist optimum concentrations of di- and tri-thiols for maximizing the saturated refractive index modulation. It is also seen that recording sensitivity monotonically decreases with an increase in multifunctional thiol concentration due to the partial inhibition of the photopolymerization event by excessive thiols.

  13. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  14. BDPA-Doped Polystyrene Beads as Polarization Agents for DNP-NMR.

    PubMed

    Zhang, Yunzhi; Baker, Phillip J; Casabianca, Leah B

    2016-01-14

    The aromatic free radical BDPA (α,γ-bisdiphenylene-β-phenylallyl), which has been widely used as a polarizing agent for Dynamic Nuclear Polarization (DNP) of hydrophobic analytes, has been incorporated into nanometer-scale polystyrene latex beads. We have shown that the resulting BDPA-doped beads can be used to hyperpolarize (13)C and (7)Li nuclei in aqueous environments, without the need for a glassing cosolvent. DNP enhancement factors of between 20 and 100 were achieved with overall BDPA concentrations of 2 mM or less. These Highly-Effective Polymer/Radical Beads (HYPR-beads) have potential use as an inexpensive polarizing agent for water-soluble analytes, and also have applications as model nanoparticles in DNP studies. PMID:26717243

  15. Use of alternative specimens: drugs of abuse in saliva and doping agents in hair.

    PubMed

    Kintz, Pascal; Samyn, Nele

    2002-04-01

    It is generally accepted that chemical testing of biologic fluids is the most objective means of diagnosis of drug use. The presence of a drug analyte in a biologic specimen can be used to document exposure. The standard for drug testing in toxicology is an immunoassay screen conducted on a urine sample, followed by confirmation by gas chromatography with mass spectrometric detection. In recent years, remarkable advances in sensitive analytic techniques have enabled the analysis of drugs in unconventional biologic specimens such as saliva or hair. The aim of this review is to document the current status of drugs of abuse testing in saliva and some doping agents in hair. The influence on drug concentration of the procedure of saliva sampling is described. Screening procedures along with specific methods are reviewed for the determination of amphetamines, cannabis, cocaine, and opiates in saliva. Before an extensive review on the detection of anabolics, corticosteroids, and beta-adrenergic stimulants in hair, the place of this specimen in doping control is discussed, with a focus on the potential problems of this new technology. PMID:11897970

  16. Synthesis, effect of capping agents and optical properties of manganese-doped zinc sulphide nanoparticles.

    PubMed

    Murugadoss, G; Ramasamy, V

    2013-01-01

    Mn(2+)-doped ZnS nanoparticles have been successfully synthesized by a chemical precipitation method, using non-ionic surfactants such as PMMA and PEG. The particles were prepared in an air atmosphere at 80 °C. X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible and photoluminescence (PL) studies were used to investigate the effect of the capping agent on the size, morphology and optical properties of the ZnS-Mn(2+) nanoparticles. Enhanced PL was observed from the surfactant-capped ZnS-Mn(2+) nanoparticles. The PL spectra showed a broad blue emission band in the range 460-445 nm and a Mn(2+)-related yellow-orange emission band in the range 581-583 nm. PMID:22730304

  17. The study of N-isopropylacrylamide gel dosimeter doped iodinated contrast agents

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Hsieh, B. T.

    2013-06-01

    Low toxicity of N-isopropylacrylamide (NIPAM) dosimeter was doped with clinical iodinated contrast medium agents(Iobitridol (Xenetix® 350) and organically bound iodine (Conray® 60) as radiation sensitizers; The suitable gel dosimeter preparation formula in this research was 5 w/w% gelatin, 5 w/w% N-isopropylacrylamide, 3 w/w% N,N-methylene-bis-acrylamide, and 5 mM Tetrakis phosphonium chloride. The spiral CT was irradiator, and 120 kVp was the operating tube voltage. The maximum radiation dose was 0.6 Gy, and optical CT was the gel measurement device used. The results showed SERs with the addition of radiosensitizers were 10.70 (Xenetix® 350) and 9.67 (Conray® 60), respectively. Thus, the polymerized gel dosimeter could be used in the efficacy evaluation of low-energy and low-radiation dose.

  18. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia.

    PubMed

    Casula, Maria F; Conca, Erika; Bakaimi, Ioanna; Sathya, Ayyappan; Materia, Maria Elena; Casu, Alberto; Falqui, Andrea; Sogne, Elisa; Pellegrino, Teresa; Kanaras, Antonios G

    2016-06-22

    A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine. PMID:27282828

  19. The punishment of gene doping - The relation between WADA prohibited lists, German Medicinal Products Act, German Doping Agents Amounts Ordinance, and Basic Law of the Federal Republic of Germany.

    PubMed

    Parzeller, Markus

    2011-10-01

    The genetic constitution of athletes influences efficiency. Knowledge of genetic influences provides an opportunity for medical diagnostic and therapeutic attempts. Beside risks and therapeutic aspects, however, the possibilities of abuse for gene doping purposes in sports also exist. Genetic screening or gene therapy may have an advantage for athletes who use these methods. In juridical comments, it is pointed out that gene doping so far plays no role in sports, but that the legislator must consider a development in this area. Preventing abuse requires legal regulations. These regulations can include sanctions. This paper deals with the gene doping prohibition of the World Anti-Doping Agency (WADA) as confirmed and accepted by the monitoring group according to Articles 10 and 11 of the European Anti-Doping Convention by the Council of Europe, the prohibition of (gene) doping in sports of the German Medicinal Products Act (Arzneimittelgesetz - AMG) and the German Doping Agents Amounts Ordinance (Dopingmittel-Mengen-Verordnung-DmMV) of the German Federal Ministry of Health (BMG). The comprehensibility of the doping ban on the norm addressee was tested with a questionnaire. In connection with legal regulations of the German constitution, gene doping is discussed and problems which may arise by a state doping prohibition are pointed out. PMID:22031505

  20. Effect of Co doping, capping agent and optical-structural studies of ZnO:Co2+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Taheri Otaqsara, S. M.

    2011-08-01

    Co2+ doped ZnO nanoparticles (NPs) using PEG as a capping agent were prepared by colloidal wet-chemical method. The structure, morphology and characteristics of as-prepared samples were investigated. X-ray diffraction patterns studies revealed wurtzite crystal phase. STM-TEM micrographs show a spherical shape and nearly well distribution with an average particle size of ~15-20 nm. UV-VIS spectra show the presence of exciton peak at 349 nm which can be effectively tuned versus cobalt doping and PEG concentration. PL studies were done under the excitation of 347 nm, which exhibited a UV (~386 nm) and visible (blue-orange) emission peak because of free-exciton recombination and oxygen vacancy.

  1. A simple and rapid ESI-LC-MS/MS method for simultaneous screening of doping agents in urine samples

    PubMed Central

    Reddy, I. Madhusudhana; Beotra, Alka; Jain, S.; Ahi, S.

    2009-01-01

    Objective: The use of performance enhancing substances is banned in sports by the World Anti-Doping Agency (WADA). Though most prohibited substances can be detected by GC/MS, inclusion of corticosteroids and designer drugs has made it essential to detect these critical doping agents on LC/MS/MS due to their better separation and detection. Materials and Methods: A common extraction procedure for the isolation of acidic, basic and neutral drugs from urine samples was developed. A total of 28 doping drugs were analyzed on API 3200 Triple quadrupole mass spectrometer using C18 column in atmospheric pressure electrospray ionization. The mobile phase composition was a mixture of 1% formic acid and acetonitrile with gradient time period. Results: The method developed was very sensitive for detection of 28 doping agents. The linearity was performed for each drug and the total recovery percentage ranged from 57 to 114. Limit of detection is found to be 0.5 ng/ml for carboxy finasteride and 1-5 ng/ml for other drugs. The method was successfully used to detect positive urine samples of 3-OH-stanozolol, methyl phenidate, mesocarb, clomiphene metabolite and carboxy finasteride. Conclusion: The method developed based on controlled pH extraction method and HPLC-mass spectrometry analysis allowed better identification and confirmation of glucocorticosteroids and a few other drugs in different categories. The validated method has been used successfully for testing of 1000 In-competition samples. The method helped in detection of chemically and pharmacologically different banned drugs in urine in a single short run at a minimum required performance limit set by WADA. PMID:20336223

  2. Luminescence Enhanced Eu(3+)/Gd(3+) Co-Doped Hydroxyapatite Nanocrystals as Imaging Agents In Vitro and In Vivo.

    PubMed

    Xie, Yunfei; He, Wangmei; Li, Fang; Perera, Thalagalage Shalika Harshani; Gan, Lin; Han, Yingchao; Wang, Xinyu; Li, Shipu; Dai, Honglian

    2016-04-27

    Biocompatible, biodegradable, and luminescent nano material can be used as an alternative bioimaging agent for early cancer diagnosis, which is crucial to achieve successful treatment. Hydroxyapatite (HAP) nanocyrstals have good biocompatibility and biodegradability, and can be used as an excellent host for luminescent rare earth elements. In this study, based on the energy transfer from Gd(3+) to Eu(3+), the luminescence enhanced imaging agent of Eu/Gd codoping HAP (HAP:Eu/Gd) nanocrystals are obtained via coprecipitation with plate-like shape and no change in crystal phase composition. The luminescence can be much elevated (up to about 120%) with a nonlinear increase versus Gd doping content, which is due to the energy transfer ((6)PJ of Gd(3+) → (5)HJ of Eu(3+)) under 273 nm and the possible combination effect of the cooperative upconversion and the successive energy transfer under 394 nm, respectively. Results demonstrate that the biocompatible HAP:Eu/Gd nanocrystals can successfully perform cell labeling and in vivo imaging. The intracellular HAP:Eu/Gd nanocrystals display good biodegradability with a cumulative degradation of about 65% after 72 h. This biocompatible, biodegradable, and luminescence enhanced HAP:Eu/Gd nanocrystal has the potential to act as a fluorescent imaging agent in vitro and in vivo. PMID:27043792

  3. LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent

    NASA Astrophysics Data System (ADS)

    Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra

    2016-01-01

    Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.

  4. Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. I: Investigation of mobile phase and MS conditions.

    PubMed

    Nováková, Lucie; Grand-Guillaume Perrenoud, Alexandre; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2015-01-01

    The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS. PMID:25467513

  5. Analysis of sulfate metabolites of the doping agents oxandrolone and danazol using high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Rzeppa, S; Viet, L

    2016-09-01

    The direct detection of sulfate conjugates of anabolic androgenic steroids (AAS) can be a powerful tool in doping control analysis. By skipping the solvolysis step analysis time can be reduced, and due to long term sulfate metabolites the detection time can be significantly extended as demonstrated for some AAS. This study presents the successful identification of sulfate metabolites of the doping agents oxandrolone and danazol in excretion urines by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The sulfate conjugate of 17β-hydroxymethyl-17α-methyl-18-nor-2-oxa-5α-androsta-13-en-3-one could be identified as a new metabolite of oxandrolone. Sulfate conjugates of the danazol metabolites ethisterone and 2α-hydroxymethylethisterone were identified in an excretion urine for the first time. In addition, these sulfate conjugates were synthesized successfully. For a confirmation analysis, the number of analytes can be increased by additional sulfate conjugates of danazol metabolites (2-hydroxymethyl-1,2-dehydroethisterone and 6β-hydroxy-2-hydroxymethylethisterone), which were also identified for the first time. The presented validation data underline the suitability of the identified sulfate conjugates for doping analysis with regard to the criteria given by the technical documents of the World Anti-Doping Agency (WADA). PMID:27394004

  6. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    SciTech Connect

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-21

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  7. Fast and sensitive supercritical fluid chromatography - tandem mass spectrometry multi-class screening method for the determination of doping agents in urine.

    PubMed

    Nováková, Lucie; Desfontaine, Vincent; Ponzetto, Federico; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2016-04-01

    This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites. PMID:26995645

  8. Determination of designer doping agent--2-ethylamino-1-phenylbutane--in dietary supplements and excretion study following single oral supplement dose.

    PubMed

    Wójtowicz, Marzena; Jarek, Anna; Chajewska, Katarzyna; Turek-Lepa, Ewa; Kwiatkowska, Dorota

    2015-11-10

    The quantitative analysis of a new designer doping agent, 2-ethylamino-1-phenylbutane (EAPB) and its metabolite, 2-amino-1-phenylbutane (APB) in urine samples, and the determination of EAPB in dietary supplement samples, have been presented. The main purpose of the present study was to develop simple and reliable gas chromatography-mass spectrometry method (GC-MS) for excretion study following a single oral administration of dietary supplements containing EAPB. Three analytical methods for the determination of EAPB in urine and supplement samples, and APB in urine samples using the GC-MS system, have been validated. The method of the determination of EAPB in supplement samples was applied to analyze seventeen dietary supplements, CRAZE and DETONATE. Two other methods were used to determine the urinary excretion profile of EAPB and APB in the case of three healthy volunteers and, on further investigation, it was applied to the anti-doping control in sport. Quantification was obtained on the basis of the ions at m/z 86, 58 and 169, monitored for EAPB, APB and diphenylamine (used as an internal standard), respectively. The limits of detection and quantification were 2.4 and 7.3μg/g for EAPB in the case of supplement analysis, 2.9 and 8.8ng/mL for EAPB in the case of urine analysis, and 3.2 and 9.7ng/mL for APB. The other validation parameters as linearity, precision and trueness have been also investigated with the acceptable results. The extraction yield of all presented methods was above 69%. EAPB was detected in fourteen analyzed supplements (not included EAPB in their labels) and its content varied between 1.8 and 16.1mg/g. Following oral administration of three supplements with EAPB to one male and two female volunteers, the parent compound of EAPB and its metabolite were monitored and the excretion parameters as the maximum concentration of the analyte in urine (2.2-4.2μg/mL for EAPB; 1.1-5.1μg/mL for APB) and the time for the maximum height of the excretion

  9. Rare-Earth Doped Particles as Dual-Modality Contrast Agent for Minimally-Invasive Luminescence and Dual-Wavelength Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Sheng, Yang; Liao, Lun-De; Thakor, Nitish; Tan, Mei Chee

    2014-10-01

    Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975 nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities.

  10. Rare-Earth Doped Particles as Dual-Modality Contrast Agent for Minimally-Invasive Luminescence and Dual-Wavelength Photoacoustic Imaging

    PubMed Central

    Sheng, Yang; Liao, Lun-De; Thakor, Nitish; Tan, Mei Chee

    2014-01-01

    Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975 nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities. PMID:25297843

  11. Examples of doping control analysis by liquid chromatography-tandem mass spectrometry: ephedrines, beta-receptor blocking agents, diuretics, sympathomimetics, and cross-linked hemoglobins.

    PubMed

    Thevis, Mario; Schänzer, Wilhelm

    2005-01-01

    The application of modern and powerful analytical instruments consisting of liquid chromatographs (LCs), sophisticated atmospheric pressure ion sources, and sensitive mass analyzers has improved quality as well as speed of doping control analyses markedly during the last 5 years. Numerous compounds such as beta-receptor blocking agents or diuretics require derivatization prior to gas chromatographic (GC) and mass spectrometric (MS) measurement, which is the reason for extended sample preparation periods. In addition, several substances demonstrate poor GC-MS properties even after chemical modification, and peptide hormones such as cross-linked hemoglobins cannot be analyzed at all by means of GC-MS. With the availability of electrospray ionization and robust tandem MSs (e.g., triple-stage quadrupole or ion trap instruments) many new or complementary screening and confirmation assays have been developed, providing detailed qualitative and quantitative information on prohibited drugs. With selected categories of compounds (ephedrines, beta-blockers, b2-agonists, diuretics, and bovine hemoglobin-based oxygen therapeutics) that are banned according to the rules of the World Anti-Doping Agency and International Olympic Committee, the advantages of LC-MS-MS procedures over conventional GC-MS assays are demonstrated, such as enhanced separation of analytes, shorter sample pretreatment, and identification of substances that are not identified by GC-MS. PMID:15808003

  12. Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. II: Analysis of biological samples.

    PubMed

    Nováková, Lucie; Rentsch, Marco; Grand-Guillaume Perrenoud, Alexandre; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2015-01-01

    The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7 min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations. PMID:25467514

  13. A hollow tetrahedral cage of hexadecagold dianion provides a robust backbone for a tuneable sub-nanometer oxidation and reduction agent via endohedral doping.

    PubMed

    Walter, Michael; Häkkinen, Hannu

    2006-12-14

    We show, via density functional theory calculations, that dianionic Au16(2-) cluster has a stable, hollow, Td symmetric cage structure, stabilized by 18 delocalized valence electrons. The cage maintains its robust geometry, with a minor Jahn-Teller deformation, over several charge states (q = -1,0,+1), forming spin doublet, triplet and quadruplet states according to the Hund's rules. Endohedral doping of the Au16 cage by Al or Si yields a geometrically robust, tuneable oxidation and reduction agent. Si@Au16 is a magic species with 20 delocalized electrons. We calculate a significant binding energy for the anionic Si@Au16/O2- complex and show that the adsorbed O2 is activated to a superoxo-species, a result which is at variance with the experimentally well-documented inertness of Au16- anion towards oxygen uptake. PMID:17119647

  14. Nd{sup 3+} doped LaF{sub 3} nanoparticles as self-monitored photo-thermal agents

    SciTech Connect

    Rocha, Uéslen; Upendra Kumar, K.; Jacinto, Carlos; Ramiro, Julio; Caamaño, Antonio J.; García Solé, José; Jaque, Daniel

    2014-02-03

    In this work, we demonstrate how LaF{sub 3} nanoparticles activated with large concentrations (up to 25%) of Nd{sup 3+} ions can simultaneously operate as biologically compatible efficient nanoheaters and fluorescent nanothermometers under single beam (808 nm) infrared laser excitation. Nd{sup 3+}:LaF{sub 3} nanoparticles emerge as unique multifunctional agents that could constitute the first step towards the future development of advanced platforms capable of simultaneous deep tissue fluorescence bio-imaging and controlled photo-thermal therapies.

  15. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes

    NASA Astrophysics Data System (ADS)

    Lei, Cheng; Han, Fei; Li, Duo; Li, Wen-Cui; Sun, Qiang; Zhang, Xiang-Qian; Lu, An-Hui

    2013-01-01

    Dopamine is an excellent and flexible agent for surface coating of inorganic nanoparticles and contains unusually high concentrations of amine groups. In this study, we demonstrate that through a controlled coating of a thin layer of polydopamine on the surface of α-Fe2O3 in the dopamine aqueous solution, followed by subsequent carbonization, N-doped carbon-encapsulated magnetite has been synthesized and shows excellent electrochemical performance as anode material for lithium-ion batteries. Due to the strong binding affinity to iron oxide and excellent coating capability of this new carbon precursor, the conformal polydopamine derived carbon is continuous and uniform, and its thickness can be tailored. Moreover, due to the high percentage of nitrogen content in the precursor, the resulting carbon layer contains a moderate amount of N species, which can substantially improve the electrochemical performance. The composites synthesized by this facile method exhibit superior electrochemical performance, including remarkably high specific capacity (>800 mA h g-1 at a current of 500 mA g-1), high rate capability (595 and 396 mA h g-1 at a current of 1000 and 2000 mA g-1, respectively) and excellent cycle performance (200 cycles with 99% capacity retention), which adds to the potential as promising anodes for the application in lithium-ion batteries.Dopamine is an excellent and flexible agent for surface coating of inorganic nanoparticles and contains unusually high concentrations of amine groups. In this study, we demonstrate that through a controlled coating of a thin layer of polydopamine on the surface of α-Fe2O3 in the dopamine aqueous solution, followed by subsequent carbonization, N-doped carbon-encapsulated magnetite has been synthesized and shows excellent electrochemical performance as anode material for lithium-ion batteries. Due to the strong binding affinity to iron oxide and excellent coating capability of this new carbon precursor, the conformal

  16. Detection by LC-MS/MS of HIF stabilizer FG-4592 used as a new doping agent: Investigation on a positive case.

    PubMed

    Buisson, C; Marchand, A; Bailloux, I; Lahaussois, A; Martin, L; Molina, A

    2016-03-20

    Stabilizing the labile factor HIF (hypoxia inducible factor) for therapeutic use has led to the development of various molecules by pharmaceutical companies. These HIF stabilizers show promising erythropoiesis stimulating capacities and are of great interest for patients with chronical kidney disease and anemia. Amongst them FG-4592 from FibroGen is now under phase 3 of clinical studies. While this drug is still under investigation, a parallel market already allows to buy this product, which could be tempting for some athletes willing to increase their performances. To avoid such a use for doping purpose, WADA has listed HIF stabilizers and FG-4592 in particular as prohibited substances since 2011 and some anti-doping laboratories have developed a technique of identification of FG-4592 in urine. Here, we described the first case ever identified by an anti-doping laboratory of an athlete using FG-4592. Detection and confirmation in urinary samples was performed by LC-MS/MS. In addition, potential indirect markers erythropoietin (EPO) and hematological parameters followed in the Athlete Biological Passport (ABP) were analyzed during and after the period of use but showed no profound alterations. Only ABPS (abnormal blood profile score) reached (but did not exceed) the upper limit proposed by the ABP adaptive model just after the period of use of FG-4592. Altogether this case sends a warning for anti-doping laboratories which now must strengthen surveillance on HIF stabilizers and develop sensitive methods of detection for this new class of drugs. PMID:26808067

  17. [Xenon: From rare gaz to doping product].

    PubMed

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection. PMID:26922993

  18. [Doping in sports].

    PubMed

    Jeschke, J; Nekola, J; Chlumský, J

    1999-05-10

    The first organized doping controls were carried out in the 1970s. In 1993, the Czech Antidoping Charter was signed and the Antidoping Committee was established. The medical commission of International Olympic Committee decides, which substances and methods are prohibited. The current classification is as follows: I. prohibited classes of substances--stimulants, narcotics, anabolic agents, diuretics and some hormones. II. prohibited methods--blood doping and pharmaceutical, chemical or physical manipulation. III. classes of drugs subject to certain restrictions--alcohol, marijuana, local anesthetics, corticosteroids and beta blockers. All substances are characterized from the ergogenic viewpoint and health risks are particularly emphasized. In practice, doping control starts by drawing the athletes and ends by urine sample analysis in a special laboratory. In case of positive results, the sportsman is banned from sports activity for 3 months, 2 years or for the rest of his life. In 24 worldwide laboratories in 1995 93,938 urine samples were analyzed. 1516 (1.61%) proved to be positive, including 986 anabolic steroid use. In 1997, the Czech laboratory carried out 843 checks, of which 15 (1.7%) were positive. The largest positive doping group were body builders. Doping poses a major risk among junior sportsmen. Prevalence worldwide is estimated at 2-10% of the male population. In the future a severe antidoping attitude, as well as antidoping enlightenment, are certain to continue. By these standards the activity of the Czech Antidoping Committee is on a very high level. PMID:10422337

  19. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  20. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... millions of gallons of Agent Orange and other herbicides on trees and vegetation during the Vietnam War. ...

  1. Doping and thrombosis in sports.

    PubMed

    Lippi, Giuseppe; Banfi, Giuseppe

    2011-11-01

    Historically, humans have long sought to enhance their "athletic" performance to increase body weight, aggressiveness, mental concentration and physical strength, contextually reducing fatigue, pain, and improving recovery. Although regular training is the mainstay for achieving these targets, the ancillary use of ergogenic aids has become commonplace in all sports. The demarcation between ergogenic aids and doping substances or practices is continuously challenging and mostly based on perceptions regarding the corruption of the fairness of competition and the potential side effects or adverse events arising from the use of otherwise unnecessary ergogenic substances. A kaleidoscope of side effects has been associated with the use of doping agents, including behavioral, skeletal, endocrinologic, metabolic, hemodynamic, and cardiovascular imbalances. Among the various doping substances, the most striking association with thrombotic complications has been reported for androgenic anabolic steroids (i.e., cardiomyopathy, fatal and nonfatal arrhythmias, myocardial infarction [MI], intracardiac thrombosis, stroke, venous thromboembolism [VTE], limb arterial thrombosis, branch retinal vein occlusion, cerebral venous sinus thrombosis) and blood boosting (i.e., VTE and MI, especially for epoetin and analogs). The potential thrombotic complication arising from misuse of other doping agents such as the administration of cortisol, growth hormone, prolactin, cocaine, and platelet-derived preparations is instead speculative or anecdotal at best. The present article provides an overview on the epidemiological association as well as the underlying biochemical and biological mechanisms linking the practice of doping in sports with the development of thrombosis. PMID:22198857

  2. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  3. [Doping, sport and addiction--any links?].

    PubMed

    Foucart, J; Verbanck, P; Lebrun, P

    2015-01-01

    Sport is widely encouraged as it is beneficial for health. However, high-performance sport is more and more associated to rather suspicious practices; doping is one of the best example. From a physician point of view, the use of doping agents is obviously a major concern because taking such products often induce serious adverse effects on health. The present manuscript aims to inform physicians about the most frequent doping practices. It also points out that intensive sport can generate an "addictive" behavior sharing with "common"addictions a loss of practice control, a lack of interest in other activities and even a sport's practice detrimental to athlete's health. Analysis of the doping issue needs to take this reality into account as some doping products display an established " addictive" effect. PMID:26837112

  4. Doping in sport: effects, harm and misconceptions.

    PubMed

    Birzniece, V

    2015-03-01

    Doping in sport is a widespread problem not just among elite athletes, but even more so in recreational sports. In scientific literature, major emphasis is placed on doping detection, whereas detrimental effects of doping agents on athletes' health are seldom discussed. Androgenic anabolic steroids are well known for their positive effects on muscle mass and strength. Human growth hormone also increases muscle mass, although the majority of that is an increase in extracellular fluid and not the functional muscle mass. In recreational athletes, growth hormone does not have major effect on muscle strength, power or aerobic capacity, but stimulates anaerobic exercise capacity. Erythropoietin administration increases oxygen-carrying capacity of blood improving endurance measures, whereas systemic administration of beta-adrenergic agonists may have positive effect on sprint capacity, and beta-adrenergic antagonists reduce muscle tremor. Thus, there are certain drugs that can improve selective aspects of physical performance. However, most of the doping agents exert serious side-effects, especially when used in combination, at high doses and for a long duration. The extent of long-term health consequences is difficult to predict, but likely to be substantial, especially when gene doping is considered. This review summarises the main groups of doping agents used by athletes, with the main focus on their effects on athletic performance and adverse effects. PMID:25369881

  5. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  6. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  7. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  8. Alternative medicine and doping in sports.

    PubMed

    Koh, Benjamin; Freeman, Lynne; Zaslawski, Christopher

    2012-01-01

    Athletes are high achievers who may seek creative or unconventional methods to improve performance. The literature indicates that athletes are among the heaviest users of complementary and alternative medicine (CAM) and thus may pioneer population trends in CAM use. Unlike non-athletes, athletes may use CAM not just for prevention, treatment or rehabilitation from illness or injuries, but also for performance enhancement. Assuming that athletes' creative use of anything unconventional is aimed at "legally" improving performance, CAM may be used because it is perceived as more "natural" and erroneously assumed as not potentially doping. This failure to recognise CAMs as pharmacological agents puts athletes at risk of inadvertent doping.The general position of the World Anti-Doping Authority (WADA) is one of strict liability, an application of the legal proposition that ignorance is no excuse and the ultimate responsibility is on the athlete to ensure at all times whatever is swallowed, injected or applied to the athlete is both safe and legal for use. This means that a violation occurs whether or not the athlete intentionally or unintentionally, knowingly or unknowingly, used a prohibited substance/method or was negligent or otherwise at fault. Athletes are therefore expected to understand not only what is prohibited, but also what might potentially cause an inadvertent doping violation. Yet, as will be discussed, athlete knowledge on doping is deficient and WADA itself sometimes changes its position on prohibited methods or substances. The situation is further confounded by the conflicting stance of anti-doping experts in the media. These highly publicised disagreements may further portray inconsistencies in anti-doping guidelines and suggest to athletes that what is considered doping is dependent on the dominant political zeitgeist. Taken together, athletes may believe that unless a specific and explicit ruling is made, guidelines are open to interpretation

  9. Doping in sport and exercise: anabolic, ergogenic, health and clinical issues.

    PubMed

    Bird, Stephen R; Goebel, Catrin; Burke, Louise M; Greaves, Ronda F

    2016-03-01

    The use of doping agents is evident within competitive sport in senior and junior age groups, where they are taken by non-elite as well as elite participants. They are also taken in non-sporting contexts by individuals seeking to 'improve' their physique through an increase in muscle and/or decrease in fat mass. While attaining accurate data on the prevalence of their use has limitations, studies suggest the illicit use of doping agents by athletes and non-athletes may be 1-5% in the population and greater than 50% in some groups; with the prevalence being higher in males. There is conclusive evidence that some doping agents are anabolic and ergogenic. There is also evidence that the use of doping agents such as anabolic androgenic steroids, growth hormone and other anabolic agents, erythropoietin and stimulants conveys considerable health risks that include, but are not limited to: cardiovascular disease, diabetes, cancer, mental health issues, virilisation in females and the suppression of naturally produced androgens in males. This review will outline the anabolic, ergogenic and health impacts of selected doping agents and methods that may be used in both the sporting and physique development contexts. It also provides a brief tabulated overview of the history of doping and how doping agents may impact upon the analyses of clinical samples. PMID:26384361

  10. Antiparasitic agents.

    PubMed

    Rosenblatt, J E

    1999-11-01

    Several important developments have occurred in recent years in the chemotherapy for and prophylaxis of parasitic infections. Although mefloquine is clearly the most effective agent for prevention of chloroquine-resistant falciparum malaria, its use has been compromised by side effects, both real and imagined. Well-designed studies have shown that side effects occur no more frequently with low-dose mefloquine than with chloroquine. Use of mefloquine in pregnant women has not been associated with birth defects, but the incidence of stillbirths may be increased. Malarone is a new agent that combines atovaquone and proguanil, and it may be as effective as mefloquine; however, it is not yet available in the United States. Several newer agents have appeared in response to the development of multidrug resistant Plasmodium falciparum, especially in Southeast Asia. Halofantrine is available for the treatment of mild to moderate malaria due to P. falciparum and for P. vivax infections. Because of severe toxic effects, use of halofantrine should be restricted to only those unusual and rare situations in which other agents cannot be used. Artemisinin (an extract of the Chinese herbal remedy qinghaosu) and two derivatives, artesunate and artemether, are active against multidrug resistant P. falciparum and are widely used in Asia in oral, parenteral, and rectal forms. The antibacterial azithromycin in combination with atovaquone or quinine has now been reported to treat babesiosis effectively in experimental animals and in a few patients. Azithromycin in combination with paromomycin has also shown promise in the treatment of cryptosporidiosis (and toxoplasmosis when combined with pyrimethamine) in patients with the acquired immunodeficiency syndrome (AIDS). Albendazole is currently the only systemic agent available for treatment of microsporidiosis, an infection primarily of patients with AIDS. In addition, albendazole and ivermectin have emerged as effective broad

  11. Antifungal agents.

    PubMed

    Ryder, N S

    1999-12-01

    At this year's ICAAC Meeting, new data on approximately 20 different antifungal agents were presented, while no new agents were disclosed. Drugs in late development include the triazoles, voriconazole (Pfizer Ltd) and Sch-56592 (Schering-Plough Corp), and the echinocandins, caspofungin (Merck & Co Inc) and FK-463 (Fujisawa Pharmaceutical Co Ltd). In contrast to previous years, presentations on these and earlier developmental compounds were relatively modest in scope, with few significant new data. Little new information appeared on the most recent novel class of agents, the sordarins (Glaxo Wellcome plc). Early clinical results were presented for FK-463, showing acceptable tolerability and dose-dependent efficacy in AIDS-associated esophageal candidiasis. A new liposomal formulation of nystatin (Nyotran; Aronex Pharmaceuticals Inc) was shown to be equivalent to conventional amphotericin B in empiric therapy of presumed fungal infection in neutropenic patients, but with reduced toxicity. Intravenous itraconazole (Janssen Pharmaceutica NV) was an effective prophylactic therapy in invasive pulmonary aspergillosis, while oral itraconazole was discussed as a treatment for fungal infection in heart and liver transplant patients. The allylamine compound, terbinafine (Novartis AG), showed good clinical efficacy against fungal mycetoma, a serious tropical infection. A major highlight was the first presentation of inhibitors of fungal efflux pumps as a strategy for overcoming resistance. MC-510027 (milbemycin alpha-9; Microcide Pharmaceuticals Inc) and its derivatives, potentiated the antifungal activity of triazoles and terbinafine in a number of Candida spp. Another pump inhibitor, MC-005172 (Microcide Pharmaceuticals Inc) showed in vivo potentiation of fluconazole in a mouse kidney infection model. Microcide Pharmaceuticals Inc also presented inhibitors of bacterial efflux pumps. PMID:16113946

  12. "Dilute-and-inject" multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing.

    PubMed

    Görgens, Christian; Guddat, Sven; Orlovius, Anne-Katrin; Sigmund, Gerd; Thomas, Andreas; Thevis, Mario; Schänzer, Wilhelm

    2015-07-01

    In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT < 2.0%); linearity (R > 0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20%); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 μg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8-105.5%, glycerol 85.1-98.3% at three concentration levels) and ion suppression/enhancement effects. PMID

  13. KGB agents

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    A short story is reported in which the activity of Communist Party of the USSR and secret KGB agents, which were payed by the State, in view of controlling of the conscience of population. The story reffers to the Physics Department of the Moscow University, Planing Institute of the Gosplan of Moldavian S.S.R. and Chishinau Technical University (actually: Technical University of Moldova), where the author has worked during Soviet times. Almost every 6-th citizen in the USSR was engaged in this activity, while actually the former communists rule in the Republic of Moldova.

  14. Epidemiological analysis of doping offences in the professional tennis circuit

    PubMed Central

    2010-01-01

    Introduction Tennis is a professional sport under a strict anti-doping control. However, since the first violation of the code, the positive cases have not been statistically studied. The objective of this study was to analyze doping offences in the international professional tennis circuit. Methods All offences to the Doping Code committed by tennis players during 2003-2009 were collected from the ITF official webpage, registered and analyzed. Results An average of 1905.7 (±174.5) samples was obtained per year. Fifty-two doping offences were reported and the overall incidence of positive doping samples accounted for 0.38% and 7.4 (±4.1) cases/year. Male players showed higher incidence doping offences than females (p = 0.0004). The incidence in wheelchair players was higher than in non-handicapped subjects (p = 0.0001) Banned substance distribution showed: stimulants 32.69%, cannabis 23.07%; anabolic 11.53%, diuretics and masking agents 11.53, β2-agonists 9.61%; corticosteroids 3.84%, others 3.84%. The overall incidence of 'social drugs' (cocaine, cannabis) was 36.53%. All EPO and blood samples were normal, while the incidence of 'out-of-competition' offences was 0.12%. The lower incidence of doping was found in Grand Slams tournaments. Conclusions The incidence of positive doping samples among professional tennis players is quite low supporting the assumption that there is no evidence of systematic doping in Tennis. "Social drugs" misuse constitutes the main problem of doping in tennis. Male and wheelchair tennis players showed higher risk of infringing the doping code than their females and non-handicapped counterparts. Findings of this study should help to determine the direction of the ongoing strategy in the fight against doping in Tennis. PMID:21159201

  15. Doped Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, Cynthia; Libal, Andras; Reichhardt, Charles

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Unlike magnetic artificial spin ices, colloidal and vortex artificial spin ice realizations allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloids is suppressed near the doping sites. These results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.

  16. Self-doped molecular composite battery electrolytes

    DOEpatents

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  17. Health care agents

    MedlinePlus

    Durable power of attorney for health care; Health care proxy; End-of-life - health care agent; Life support treatment - ... Respirator - health care agent; Ventilator - health care agent; Power of attorney - health care agent; POA - health care ...

  18. Agent Building Software

    NASA Technical Reports Server (NTRS)

    2000-01-01

    AgentBuilder is a software component developed under an SBIR contract between Reticular Systems, Inc., and Goddard Space Flight Center. AgentBuilder allows software developers without experience in intelligent agent technologies to easily build software applications using intelligent agents. Agents are components of software that will perform tasks automatically, with no intervention or command from a user. AgentBuilder reduces the time and cost of developing agent systems and provides a simple mechanism for implementing high-performance agent systems.

  19. The Anti-Doping Movement.

    PubMed

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes. PMID:26972261

  20. Polarization induced doped transistor

    DOEpatents

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  1. [Cardiovascular alterations associated with doping].

    PubMed

    Thieme, D; Büttner, A

    2015-05-01

    Doping -the abuse of anabolic-androgenic steroids in particular- is widespread in amateur and recreational sports and does not solely represent a problem of professional sports. Excessive overdose of anabolic steroids is well documented in bodybuilding or powerlifting leading to significant side effects. Cardiovascular damages are most relevant next to adverse endocrine effects.Clinical cases as well as forensic investigations of fatalities or steroid consumption in connection with trafficking of doping agents provide only anecdotal evidence of correlations between side effects and substance abuse. Analytical verification and self-declarations of steroid users have repeatedly confirmed the presumption of weekly dosages between 300 and 2000 mg, extra to the fact that co-administration of therapeutics to treat side-effects represent a routine procedure. Beside the most frequent use of medications used to treat erectile dysfunction or estrogenic side-effects, a substantial number of antihypertensive drugs of various classes, i.e. beta-blockers, diuretics, angiotensin II receptor antagonists, calcium channel blockers, as well as ACE inhibitors were recently confiscated in relevant doping cases. The presumptive correlation between misuse of anabolic steroids and self-treatment of cardiovascular side effects was explicitly confirmed by detailed user statements.Two representative fatalities of bodybuilders were introduced to outline characteristic, often lethal side effects of excessive steroid abuse. Moreover, illustrative autopsy findings of steroid acne, thrombotic occlusion of Ramus interventricularis anterior and signs of cardiac infarctions are presented.A potential steroid abuse should be carefully considered in cases of medical consultations of patients exhibiting apparent constitutional modifications and corresponding adverse effects. Moreover, common self-medications -as frequently applied by steroid consumers- should be taken into therapeutic considerations

  2. Aero dopes and varnishes

    NASA Technical Reports Server (NTRS)

    Britton, H T S

    1927-01-01

    Before proceeding to discuss the preparation of dope solutions, it will be necessary to consider some of the essential properties which should be possessed of a dope film, deposited in and on the surface of an aero fabric. The first is that it should tighten the material and second it should withstand weathering.

  3. Doped graphene supercapacitors.

    PubMed

    Kumar, Nanjundan Ashok; Baek, Jong-Beom

    2015-12-11

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed. PMID:26574192

  4. Doped graphene supercapacitors

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  5. Current status and recent advantages in derivatization procedures in human doping control.

    PubMed

    Athanasiadou, Ioanna; Kiousi, Polyxeni; Kioukia-Fougia, Nasia; Lyris, Emmanouil; Angelis, Yiannis S

    2015-10-01

    Derivatization is one of the most important steps during sample preparation in doping control analysis. Its main purpose is the enhancement of chromatographic separation and mass spectrometric detection of analytes in the full range of laboratory doping control activities. Its application is shown to broaden the detectable range of compounds, even in LC-MS analysis, where derivatization is not a prerequisite. The impact of derivatization initiates from the stage of the metabolic studies of doping agents up to the discovery of doping markers, by inclusion of the screening and confirmation procedures of prohibited substances in athlete's urine samples. Derivatization renders an unlimited number of opportunities to advanced analyte detection. PMID:26466807

  6. Preparing Change Agents for Change Agent Roles.

    ERIC Educational Resources Information Center

    Sedlacek, James R.

    Seventy-seven Spanish- and Portuguese-speaking agricultural change agents from developing Central and South American countries responded to a questionnaire which sought perceptions of the roles in which the change agents felt they were involved and the roles for which they felt they were being trained. The agents were participating in training…

  7. Remote Agent Demonstration

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Kurien, James; Rajan, Kanna

    1999-01-01

    We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.

  8. Doping semiconductor nanocrystals.

    PubMed

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  9. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  10. Medicolegal aspects of doping in football

    PubMed Central

    Graf‐Baumann, T

    2006-01-01

    This article describes the historical background of the medicolegal aspects of doping in sports and especially in football. The definitions of legal terms are explained and the procedure of individual case management as part of FIFA's approach to doping is presented. Finally, three medicolegal problems awaiting urgent solution are outlined: firstly, the difficulties in decision making arising from the decrease of the T/E ratio from 6 to 4; secondly, the therapeutic application of α‐reductase inhibitors for male pattern baldness in the face of the classification of finasteride as a forbidden masking agent; and lastly, the increasing use of recreational drugs and its social and legal implications in positive cases. PMID:16799105

  11. Methods for Doping Detection.

    PubMed

    Ponzetto, Federico; Giraud, Sylvain; Leuenberger, Nicolas; Boccard, Julien; Nicoli, Raul; Baume, Norbert; Rudaz, Serge; Saugy, Martial

    2016-01-01

    Over the past few years, the World Anti-Doping Agency (WADA) has focused its efforts on detecting not only small prohibited molecules, but also larger endogenous molecules such as hormones, in the view of implementing an endocrinological module in the Athlete Biological Passport (ABP). In this chapter, the detection of two major types of hormones used for doping, growth hormone (GH) and endogenous anabolic androgenic steroids (EAASs), will be discussed: a brief historical background followed by a description of state-of-the-art methods applied by accredited anti-doping laboratories will be provided and then current research trends outlined. In addition, microRNAs (miRNAs) will also be presented as a new class of biomarkers for doping detection. PMID:27348309

  12. Spacecraft sanitation agent development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an effective sanitizing agent that is compatible with the spacecraft environment and the human occupant is discussed. Experimental results show that two sanitation agents must be used to satisfy mission requirements: one agent for personal hygiene and one for equipment maintenance. It was also recommended that a water rinse be used with the agents for best results, and that consideration be given to using the agents pressure packed or in aerosol formulations.

  13. Androgens and doping tests: genetic variation and pit-falls

    PubMed Central

    Rane, Anders; Ekström, Lena

    2012-01-01

    The large variation in disposition known for most drugs is also true for anabolic androgenic steroids. Genetic factors are probably the single most important cause of this variation. Further, there are reasons to believe that there is a corresponding variation in efficacy of doping agents. Doped individuals employ a large variety of doping strategies in respect of choice of substance, dose, dose interval, duration of treatment and use of other drugs for enforcement of effects or correction of side effects. Metabolic steps up-stream and down-stream of testosterone are genetically variable and contribute substantially to the variation in disposition of testosterone, the most common doping agent in sports and in society. Large inter- and intra-ethnic variation in testosterone glucuronidation and excretion is described as well as the pit-falls in evaluation of testosterone doping test results. The hydrolysis and bioactivation of testosterone enanthate is also genetically variable yielding a 2–3 fold variation in excretion rate and serum concentration, thereby implicating a substantial variation in ‘efficacy’ of testosterone. Given this situation it is logical to adopt the new findings in the doping control programme. The population based cut-off level for the testosterone : epitestosterone ratio should be replaced by a Bayesian interpretation of consecutive tests in the same individual. When combined with the above genetic information the sensitivity of the test is considerably improved. The combination of the three approaches should reduce the rate of falsely negative or positive results and the number of expensive follow-up tests, stipulated by the World Anti-Doping Agency. PMID:22506612

  14. Indirect androgen doping by oestrogen blockade in sports

    PubMed Central

    Handelsman, D J

    2008-01-01

    Androgens can increase muscular mass and strength and remain the most frequently abused and widely available drugs used in sports doping. Banning the administration of natural or synthetic androgens has led to a variety of strategies to circumvent the ban of the most effective ergogenic agents for power sports. Among these, a variety of indirect androgen doping strategies aiming to produce a sustained rise in endogenous testosterone have been utilized. These include oestrogen blockade by drugs that act as oestrogen receptor antagonists (antioestrogen) or aromatase inhibitors. The physiological and pharmacological basis for the effects of oestrogen blockade in men, but not women, are reviewed. PMID:18500381

  15. Nanoparticle doping for improved Er-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Baker, Colin C.; Friebele, E. Joseph; Askins, Charles G.; Hunt, Michael P.; Marcheschi, Barbara A.; Fontana, Jake; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder; Zhang, Jun; Pattnaik, Radha K.; Merkle, Larry D.; Dubinskii, Mark; Chen, Youming; Dajani, Iyad A.; Mart, Cody

    2016-03-01

    A nanoparticle (NP) doping technique was used for making erbium-doped fibers (EDFs) for high energy lasers. The nanoparticles were doped into the silica soot of preforms, which were drawn into fibers. The Er luminescence lifetimes of the NP-doped cores are longer than those of corresponding solution-doped silica, and substantially less Al is incorporated into the NP-doped cores. Optical-to-optical slope efficiencies of greater than 71% have been measured. Initial investigations of stimulated Brillouin scattering (SBS) have indicated that SBS suppression is achieved by NP doping, where we observed a low intrinsic Brillouin gain coefficient, of ~1× 10-11 m/W and the Brillouin bandwidth was increased by 2.5x compared to fused silica.

  16. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    PubMed Central

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  17. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  18. Mobile Agents Applications.

    ERIC Educational Resources Information Center

    Martins, Rosane Maria; Chaves, Magali Ribeiro; Pirmez, Luci; Rust da Costa Carmo, Luiz Fernando

    2001-01-01

    Discussion of the need to filter and retrieval relevant information from the Internet focuses on the use of mobile agents, specific software components which are based on distributed artificial intelligence and integrated systems. Surveys agent technology and discusses the agent building package used to develop two applications using IBM's Aglet…

  19. Standard Agent Framework 1

    SciTech Connect

    Goldsmith, Steven Y.

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4) Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.

  20. Doped colloidal artificial spin ice

    NASA Astrophysics Data System (ADS)

    Libál, A.; Olson Reichhardt, C. J.; Reichhardt, C.

    2015-10-01

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Unlike magnetic artificial spin ices, colloidal and vortex artificial spin ice realizations allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloids is suppressed near the doping sites. These results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.

  1. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  2. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  3. Dope, Fiends, and Myths.

    ERIC Educational Resources Information Center

    Reasons, Charles E.

    Since the social reality of the drug problem has largely emanated from the diffuse conceptions of the drug user, an analysis of the history of the "dope fiend" mythology is presented in this paper in an attempt to assess the manner in which certain publics are informed about the problem. A content analysis of drug-related imagery was made from…

  4. Synthesis of sulfur-doped graphene by using Near-infrared chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Choi, Hyonkwang; Jo, Hyung-Ho; Hwang, Sookhyun; Jeon, Minhyon; Kim, Jong-Ho

    2016-06-01

    We here introduced a simple, but efficient, sulfur-doping method applying delta-function-like doping profiles by using near-infrared chemical-vapor deposition. The thermally decomposed sulfur was found to play the role of the n-type dopant, and hydrogen in hydrosulfide gas acted as the reducing agent corresponding to the oxygen functional groups during the growth of the graphene sheet. The doping mechanism by sulfur atoms as a substitutional impurity requires further study due to the increase in the number of unintentional defects in the crystalline graphene.

  5. Blood doping: the flip side of transfusion and transfusion alternatives.

    PubMed

    Cacic, Daniel Limi; Hervig, Tor; Seghatchian, Jerard

    2013-08-01

    Blood doping in sports has been a hot topic of present. Longitudinal follow up of hematological parameters in different endurance sports, during the 1990s and early 2000s, has provided considerable suspicions about extensive blood manipulation, with performance enhancing effects. Recent doping revelations in the media also prove that blood doping is not an anticipated myth but it is, in fact, real. Erythropoiesis stimulating agents and autologous blood transfusions are used in synergy with substantial effect on the maximum oxygen uptake and delivery to muscles. Whilst both methods of blood manipulation represent a potential health hazard, in the context of an elevated hematocrit, nevertheless despite a number of suspicious deaths amongst athletes, this has not yet been fully documented. A reliable test for detection of recombinant human erythropoietin was implemented in 2000, but this is probably circumvented by microdose regimens. The Athlete's Biological Passport represents the progeny of the idea of an indirect approach based on long term monitoring of hematological parameters, thus making it possible to detect autologous blood doping and erythropoietin use after the substance is excreted. Nevertheless with advances in anti-doping measures it is possible that the levels of excretion of substances used can be masked. Clearly more sensitive and specific diagnostic tools and research/development in these areas of major concern are warranted, which, combined with changes in the athlete's attitude, will help in reaching the vision of fair play. PMID:23791798

  6. Agent Architectures for Compliance

    NASA Astrophysics Data System (ADS)

    Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua

    A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.

  7. Chemical crowd control agents.

    PubMed

    Menezes, Ritesh G; Hussain, Syed Ather; Rameez, Mansoor Ali Merchant; Kharoshah, Magdy A; Madadin, Mohammed; Anwar, Naureen; Senthilkumaran, Subramanian

    2016-03-01

    Chemical crowd control agents are also referred to as riot control agents and are mainly used by civil authorities and government agencies to curtail civil disobedience gatherings or processions by large crowds. Common riot control agents used to disperse large numbers of individuals into smaller, less destructive, and more easily controllable numbers include chloroacetophenone, chlorobenzylidenemalononitrile, dibenzoxazepine, diphenylaminearsine, and oleoresin capsicum. In this paper, we discuss the emergency medical care needed by sufferers of acute chemical agent contamination and raise important issues concerning toxicology, safety and health. PMID:26658556

  8. Doped semiconductor nanocrystal junctions

    NASA Astrophysics Data System (ADS)

    Borowik, Ł.; Nguyen-Tran, T.; Roca i Cabarrocas, P.; Mélin, T.

    2013-11-01

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (ND≈1020-1021cm-3) silicon nanocrystals (NCs) in the 2-50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as ND-1/3, and depleted charge linearly increasing with the NC diameter and varying as ND1/3. We thus establish a "nanocrystal counterpart" of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  9. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah; Stevens, Raymond C.

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  10. [Doping in sports].

    PubMed

    Seĭfulla, R D; Rozhkova, E A; Rodchenkov, G M; Appolonova, S A; Kulikova, E V

    2006-01-01

    Drugs used by athletes for the improvement of results are described and classified with respect to chemical structure and pharmacological action. The main groups of drugs treated as doping are considered and the WADA requirements to prohibited preparations are formulated. The main effects produced by drugs on the athletes and animals (race horses, fight dogs, etc ) are described and the measures of therapy against side effects are outlined. PMID:17209468

  11. Room temperature synthesis of Mn2+ doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    NASA Astrophysics Data System (ADS)

    Kole, A. K.; Tiwary, C. S.; Kumbhakar, P.

    2013-03-01

    Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be ˜1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity.

  12. Change Agent Survival Guide

    ERIC Educational Resources Information Center

    Dunbar, Folwell L.

    2011-01-01

    Consulting is a rough racket. Only a tarantula hair above IRS agents, meter maids and used car sales people, the profession is a prickly burr for slings and arrows. Throw in education, focus on dysfunctional schools and call oneself a "change agent," and this bad rap all but disappears. Unfortunately, though, consulting/coaching/mentoring in…

  13. Travel Agent Course Outline.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    Written for college entry-level travel agent training courses, this course outline can also be used for inservice training programs offered by travel agencies. The outline provides information on the work of a travel agent and gives clear statements on what learners must be able to do by the end of their training. Material is divided into eight…

  14. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, Raimond; Aldissi, Mahmoud

    1988-01-01

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  15. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, R.; Aldissi, M.

    1984-07-27

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  16. Pediatric Antifungal Agents

    PubMed Central

    Cohen-Wolkowiez, Michael; Moran, Cassandra; Benjamin, Daniel K.; Smith, P Brian

    2009-01-01

    Purpose of review In immunocompromised hosts, invasive fungal infections are common and fatal. In the past decade, the antifungal armamentarium against invasive mycoses has expanded greatly. The purpose of this report is to review the most recent literature addressing the use of antifungal agents in children. Recent findings Most studies evaluating the safety and efficacy of antifungal agents are limited to adults. However, important progress has been made in describing the pharmacokinetics and safety of newer antifungal agents in children, including the echinocandins. Summary Dosage guidelines for newer antifungal agents are currently based on adult and limited pediatric data. Because important developmental pharmacology changes occur throughout childhood impacting the pharmacokinetics of these agents, antifungal studies specifically designed for children are necessary. PMID:19741525

  17. How do agents represent?

    NASA Astrophysics Data System (ADS)

    Ryan, Alex

    Representation is inherent to the concept of an agent, but its importance in complex systems has not yet been widely recognised. In this paper I introduce Peirce's theory of signs, which facilitates a definition of representation in general. In summary, representation means that for some agent, a model is used to stand in for another entity in a way that shapes the behaviour of the agent with respect to that entity. Representation in general is then related to the theories of representation that have developed within different disciplines. I compare theories of representation from metaphysics, military theory and systems theory. Additional complications arise in explaining the special case of mental representations, which is the focus of cognitive science. I consider the dominant theory of cognition — that the brain is a representational device — as well as the sceptical anti-representational response. Finally, I argue that representation distinguishes agents from non-representational objects: agents are objects capable of representation.

  18. Standard Agent Framework 1

    Energy Science and Technology Software Center (ESTSC)

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4)more » Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.« less

  19. Strontium doping of bone graft extender

    PubMed Central

    2011-01-01

    Background and purpose Allografts are often used during revision hip replacement surgery for stabilization of the implant. Resorption of the allograft may exceed new bone formation, and instability of the prosthesis can develop. We investigated whether strontium could regulate the imbalance of fast resorption of allograft and slower formation of new bone, because it is both an anabolic and an anticatabolic agent. Method Strontium was added to the implant interface environment by doping a hydroxyapatite bone graft extender. 10 dogs each received 2 experimental titanium implants. The implants were inserted within a 2.7-mm concentric gap in cancellous bone. The gap was filled with 50% (v/v) allograft mixed with 50% bone graft extender. The extender either had 5% strontium doping (SrHA) or was undoped (HA). After 4 weeks, osseointegration and mechanical fixation were evaluated by histomorphometry and by push-out test. Results SrHA bone graft extender induced a 1.2-fold increase in volume of new bone, a 1.2-fold increase in allograft remaining in the gap, and a 1.4-fold increase in surface area of the bone graft extender material in contact with new bone compared to HA bone graft extender. All these increases were statistically significant. SrHA bone graft extender did not significantly improve ongrowth of bone onto the implants or improve any of the mechanical push-out parameters compared to HA bone graft extender. Interpretation Doping of the HA bone graft extender with 5% strontium increased gap healing, preserved more of the allograft in the gap, and increased the ongrowth of bone onto the bone graft extender material, but did not improve mechanical fixation. PMID:21895497

  20. Biological warfare agents

    PubMed Central

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan

    2010-01-01

    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies. PMID:21829313

  1. Neutron transmutation doped Ge bolometers

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  2. Dioxin, agent orange

    SciTech Connect

    Gough, M.

    1986-01-01

    This book presents information on the following topics: dioxin, a prevalent problem; nobody wanted dioxin; agent organe and Vietnam; what we know about and may learn about agent orange and Veterans' health; agent organe and birth defects; dioxin in Missouri; 2, 4, 5-T: the U.S.' disappearing herbicide; Seveso: high-level environmental exposure; the nitro explosion; industrial exposures to dioxin; company behavior in the face of dioxin exposures; dioxin and specific cancers; animal tests of dioxin toxicity; dioxin decions; the present and the future.

  3. Antimony-doped graphene nanoplatelets

    PubMed Central

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-01-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts. PMID:25997811

  4. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  5. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  6. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  7. Radioactive diagnostic agent

    SciTech Connect

    Shigematsu, A.; Aihara, M.; Matsuda, M.; Suzuki, A.; Tsuya, A.

    1984-02-07

    A radioactive diagnostic agent for renal cortex, adrenal cortex, myocardium, brain stem, spinal nerve, etc., which comprises as an essential component monoiodoacetic acid wherein the iodine atom is radioactive.

  8. Riot Control Agents

    MedlinePlus

    ... your clothing, rapidly wash your entire body with soap and water, and get medical care as quickly ... agent from your skin with large amounts of soap and water. Washing with soap and water will ...

  9. Sulphur mustard degradation on zirconium doped Ti-Fe oxides.

    PubMed

    Štengla, Václav; Grygar, Tomáš Matys; Opluštil, František; Němec, Tomáš

    2011-09-15

    Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr(4+) dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr(4+) to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr(4+) doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites. PMID:21775058

  10. Rare earth doped upconverting particles for different photonic applications

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Gangadharan, Ajith Kumar; Sardar, Dhiraj Kumar

    2013-03-01

    Trivalent rare earth ions especially erbium (Er3+) and ytterbium (Yb3+) co-doped in various host nanoparticles are known for their extraordinary spectroscopic properties. A thorough optical characterization including the absolute upconversion quantum yield (QY) measurement is of critical importance in evaluating their potential for various photonic applications. In this paper, we will be presenting a measured absolute upconversion QYs for Yb3+ and Er3+ doped in La2O2S under 980 and 1550 nm excitation at various power densities. Comparison of absolute QYs for different concentrations of Yb3+ and Er3+ doped in La2O2S will be made for all the upconversion emissions with respect to reported most efficient upconverting phosphor NaYF4 doped with 20% Yb3+ and 2% Er3+. Furthermore, applications of these phosphors in different areas such as bio-imaging, solar cell, security, etc. will be explored depending on the measured absolute upconversion quantum yields. In addition, preliminary results on in vitro imaging using upconverting nanoparticles as a contrast agent will be reported. This work was supported by the National Science Foundation Partnerships for Research and Education in Materials (PREM) Grant No. DMR-0934218.

  11. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders.

    PubMed

    Aswani, T; Babu, B; Manjari, V Pushpa; Stella, R Joyce; Rao, G Thirumala; Krishna, Ch Rama; Ravikumar, R V S S N

    2014-01-01

    Trivalent transition metal ions (Cr(3+), Fe(3+)) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr(3+) and Fe(3+) ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr(3+) doped CdO nanopowders as Dq=1540, B=619 and C=3327 cm(-1) and for Fe(3+) doped CdO nanopowders Dq=920, B=690, C=2750 cm(-1). EPR spectra of the Cr(3+) and Fe(3+) doped CdO nanopowders exhibited resonances at g=1.973 and g=2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr(3+) doped CdO, ultraviolet and blue emissions for Fe(3+) doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice. PMID:24291431

  12. Agent amplified communication

    SciTech Connect

    Kautz, H.; Selman, B.; Milewski, A.

    1996-12-31

    We propose an agent-based framework for assisting and simplifying person-to-person communication for information gathering tasks. As an example, we focus on locating experts for any specified topic. In our approach, the informal person-to-person networks that exist within an organization are used to {open_quotes}referral chain{close_quotes} requests for expertise. User-agents help automate this process. The agents generate referrals by analyzing records of e-mail communication patterns. Simulation results show that the higher responsiveness of an agent-based system can be effectively traded for the higher accuracy of a completely manual approach. Furthermore, preliminary experience with a group of users on a prototype system has shown that useful automatic referrals can be found in practice. Our experience with actual users has also shown that privacy concerns are central to the successful deployment of personal agents: an advanced agent-based system will therefore need to reason about issues involving trust and authority.

  13. Development of spacecraft toxic gas removal agents

    NASA Technical Reports Server (NTRS)

    Moore, R. S.

    1974-01-01

    The development of agents suitable for removal of CO, NH3, NO2 SO2, and other spacecraft contaminants was approached. An extensive technology review was conducted, yielding a large number of potentially useful materials and/or concepts. Because the two toxic gases of greatest interest, CO and NH3, suggested the use of catalysis principles emphasis was placed on the intestigation of transition metals on various supports. Forty-three materials were prepared or obtained and 25 were tested. Gas chromatographic techniques were used to find seven candidates that effectively managed various combinations of the four toxic gases: none managed all. These candidates included six transition metal-containing preparations and a supported LiOH material. Three commercial charcoals showed some efficiency for the toxic gases and may constitute candidates for enhancement by doping with transition metals.

  14. Study of structural and optical properties of Al doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallika, A. N.; Ramachandra Reddy, A.

    2014-03-01

    This paper reports on the structural and optical properties of Al doped ZnO nanoparticles prepared through sol-gel method using poly vinyl alcohol as chelating agent. Al was effectively doped in ZnO with concentrations up to 6 atomic percent concentrations (at. %). X-ray diffraction (XRD) results revealed that all the samples do not have impurity phase indicating hexagonal wurtzite structure of ZnO formed, the average crystallite sizes were decreased with increasing Al concentrations. A compressive strain was induced with Al doping and was calculated with W-H plot analysis. The morphology of all the samples was studied from Field Emission Scanning Electron Microscope (FE-SEM). The energy band gap of the Al doped samples was estimated from UV-Vis spectrum showed an overall increase. The presence of functional groups and chemical bonding of ZnO with Al doping was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectra, and in addition to this, the photoluminescence (PL) properties of Al doped ZnO nanoparticles were studied. This paper reports on the structural and optical properties of Al doped ZnO nanoparticles prepared through sol-gel method using poly vinyl alcohol as chelating agent. Al was effectively doped in ZnO with concentrations up to 6 atomic percent concentrations (at. %). X-ray diffraction (XRD) results revealed that all the samples do not have impurity phase indicating hexagonal wurtzite structure of ZnO formed, the average crystallite sizes were decreased with increasing Al concentrations. A compressive strain was induced with Al doping and was calculated with W-H plot analysis. The morphology of all the samples was studied from Field Emission Scanning Electron Microscope (FE-SEM). The energy band gap of the Al doped samples was estimated from UV-Vis spectrum showed an overall increase. The presence of functional groups and chemical bonding of ZnO with Al doping was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectra, and in

  15. Doped semiconductor nanocrystal junctions

    SciTech Connect

    Borowik, Ł.; Mélin, T.; Nguyen-Tran, T.; Roca i Cabarrocas, P.

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  16. Synthesis of polyaniline-based inks for inkjet printed devices: electrical characterization highlighting the effect of primary and secondary doping

    NASA Astrophysics Data System (ADS)

    Chiolerio, Alessandro; Bocchini, Sergio; Scaravaggi, Francesco; Porro, Samuele; Perrone, Denis; Beretta, Davide; Caironi, Mario; Fabrizio Pirri, Candido

    2015-10-01

    Engineering applications for printed electronics demand solution processable electrically conductive materials, in the form of inks, to realize interconnections, piezoresistive pressure sensors, thermoresistive temperature sensors, and many other devices. Polyaniline is an intrinsically conductive polymer with modest electrical properties but clear advantages in terms of solubility and stability with temperature and in time. A comprehensive study, starting from its synthesis, primary doping, inkjet printing and secondary doping is presented, with the aim of elucidating the doping agent effects on its morphology, printability and electronic performance.

  17. Doping in athletes--an update.

    PubMed

    De Rose, Eduardo H

    2008-01-01

    The use of doping is as old as humanity. This article explores the history of doping in sports by athletes in the past and in the present and the potential forms of use in the future. The international fight against doping of the World Anti-Doping Agency is discussed, as well as the action of the different International Federations and National Agencies of Doping Control. PMID:18206571

  18. Luminescence properties of Cr-doped silica sol gel glasses

    NASA Astrophysics Data System (ADS)

    Strek, Wieslaw; Lukowiak, Edward; Deren, Przemyslaw J.; Maruszewski, K.; Trabjerg, Ib; Koepke, Czeslaw; Malashkevich, G. E.; Gaishun, Vladimir E.

    1997-11-01

    The emission of Cr-doped silica glass obtained by the sol- gel method is characterized by an orange broad band with a maximum at 610 nm. Its nature is examined by the absorption, excited state absorption, emission, excitation and lifetime measurements over a wide range of temperature and for different concentration of Cr ions. Our measurement show that in spite of fact that the absorption properties of Cr- doped silica sol-gel glass are predominantly associated with Cr4+ centers, the observed in visible range emission can be assigned neither to Cr3+ nor to Cr4+ ions. The discussion of the nature of observed emission was carried out for all possible valencies of the Cr ions. In conclusion is suggested that it may be ascribed to the transitions on the monovalent Cr1+ ion. The reducing agents occurring during the sol-gel process and leading to lowering the Cr valency are discussed.

  19. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  20. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  1. Engineered doped and codoped polyaniline gas sensors synthesized in N,N,dimethylformamide media

    NASA Astrophysics Data System (ADS)

    Arenas, M. C.; Sánchez, Gabriela; Nicho, M. E.; Elizalde-Torres, Josefina; Castaño, V. M.

    2012-03-01

    Conducting Polyaniline films (Pani) on Corning glass substrates, produced using either an in-situ doping process or a co-doping process, were prepared by the oxidative polymerization of aniline in N,N,dimethylformamide. Bicyclic aliphatic camphorsulfonic acid (CSA), aromatic toluenesulfonic acid (TSA) and carboxylic trifluoroacetic acid (TFA) were employed as doping agents, and CSA mixed with TSA and CSA mixed with TFA were employed as the co-doping materials. The topography of the Pani films was analyzed by atomic-force microscopy (AFM), and their doping and oxidizing states were characterized by Fourier-transform infrared (FT-IR) spectroscopy and optical (UV-Vis) spectroscopy. Flower-like clusters, microfibers, and nanofibers were obtained by doping with CSA, TSA, and the mix of both (CSATSA), respectively. The flower-like morphology limits the conductivity of the film while the microfiber morphology leads to a highly conductive film. The conductivity of the films increases with the doping level, coil-like conformation of the chain and the protonation of the imine in quinoid units. The codoped process reduces the roughness of the CSA-doped films by 50%, but the conductivity depends on the acid type used for this process (TSA or TFA). The optical gas sensor response of the films is related to both the morphology and the degree of protonation. In this study, Pani with a microfiber morphology obtained from TSA-doping is the most sensitive to ammonia gas sensing, and Pani with flower-like morphology is the least sensitive.

  2. MpcAgent

    SciTech Connect

    Nutaro, James

    2013-11-29

    MpcAgent software is a module for the VolltronLite platform from PNNL that regulates the operation of rooftop air conditioning units in small to medium commercial buildings for the purpose of reducing peak power consumption. The MpcAgent accomplishes this by restricting the number of units that may operate simultaneously and using a model predictive control strategy to select which units to operate in each control period. The outcome of this control is effective control of the building air temperature at the user specified set point while avoiding expensive peak demand charges that result from running all HVAC units simultaneously.

  3. MpcAgent

    Energy Science and Technology Software Center (ESTSC)

    2013-11-29

    MpcAgent software is a module for the VolltronLite platform from PNNL that regulates the operation of rooftop air conditioning units in small to medium commercial buildings for the purpose of reducing peak power consumption. The MpcAgent accomplishes this by restricting the number of units that may operate simultaneously and using a model predictive control strategy to select which units to operate in each control period. The outcome of this control is effective control of themore » building air temperature at the user specified set point while avoiding expensive peak demand charges that result from running all HVAC units simultaneously.« less

  4. Gadofullerene MRI contrast agents.

    PubMed

    Bolskar, Robert D

    2008-04-01

    A promising new class of MRI contrast-enhancing agents with high relaxivities is based on gadolinium-containing metallofullerenes, which are also termed gadofullerenes. Detailed study of the water-proton relaxivity properties and intermolecular nanoclustering behavior of gadofullerene derivatives has revealed valuable information about their relaxivity mechanisms and given a deeper understanding of this new class of paramagnetic contrast agent. Here, the latest findings on water-solubilized gadofullerene materials and how these findings relate to their future applications in MRI are reviewed and discussed. PMID:18373426

  5. Agent Persuasion Mechanism of Acquaintance

    NASA Astrophysics Data System (ADS)

    Jinghua, Wu; Wenguang, Lu; Hailiang, Meng

    Agent persuasion can improve negotiation efficiency in dynamic environment based on its initiative and autonomy, and etc., which is being affected much more by acquaintance. Classification of acquaintance on agent persuasion is illustrated, and the agent persuasion model of acquaintance is also illustrated. Then the concept of agent persuasion degree of acquaintance is given. Finally, relative interactive mechanism is elaborated.

  6. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent. 107.1620 Section 107.1620 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance...

  7. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent. 108.1620 Section 108.1620 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA...

  8. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.

    PubMed

    Chen, Feng; Huang, Peng; Zhu, Ying-Jie; Wu, Jin; Zhang, Chun-Lei; Cui, Da-Xiang

    2011-12-01

    The design and synthesis of multifunctional systems with high biocompatibility are very significant for the future of clinical applications. Herein, we report a microwave-assisted rapid synthesis of multifunctional Eu(3+)/Gd(3+) dual-doped hydroxyapatite (HAp) nanorods, and the photoluminescence (PL), drug delivery and in vivo imaging of as-prepared Eu(3+)/Gd(3+) doped HAp nanorods. The photoluminescent and magnetic multifunctions of HAp nanorods are realized by the dual-doping with Eu(3+) and Gd(3+). The PL intensity of doped HAp nanorods can be adjusted by varying Eu(3+) and Gd(3+) concentrations. The magnetization of doped HAp nanorods increases with the concentration of doped Gd(3+). The as-prepared Eu(3+)/Gd(3+)-doped HAp nanorods exhibit inappreciable toxicity to the cells in vitro. More importantly, the Eu(3+)/Gd(3+)-doped HAp nanorods show a high drug adsorption capacity and sustained drug release using ibuprofen as a model drug, and the drug release is governed by a diffusion process. Furthermore, the noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu(3+)/Gd(3+)-doped HAp nanorods with the photoluminescent function are suitable for in vivo imaging. In vitro and in vivo imaging tests indicate that Eu(3+)/Gd(3+)-doped HAp nanorods have a potential in applications such as a multiple-model imaging agent for magnetic resonance (MR) imaging, photoluminescence imaging and computed tomography (CT) imaging. The Eu(3+)/Gd(3+) dual-doped HAp nanorods are promising for applications in the biomedical fields such as multifunctional drug delivery systems with imaging guidance. PMID:21875748

  9. Ecdysteroids: A novel class of anabolic agents?

    PubMed

    Parr, M K; Botrè, F; Naß, A; Hengevoss, J; Diel, P; Wolber, G

    2015-06-01

    Increasing numbers of dietary supplements with ecdysteroids are marketed as "natural anabolic agents". Results of recent studies suggested that their anabolic effect is mediated by estrogen receptor (ER) binding. Within this study the anabolic potency of ecdysterone was compared to well characterized anabolic substances. Effects on the fiber sizes of the soleus muscle in rats as well the diameter of C2C12 derived myotubes were used as biological readouts. Ecdysterone exhibited a strong hypertrophic effect on the fiber size of rat soleus muscle that was found even stronger compared to the test compounds metandienone (dianabol), estradienedione (trenbolox), and SARM S 1, all administered in the same dose (5 mg/kg body weight, for 21 days). In C2C12 myotubes ecdysterone (1 µM) induced a significant increase of the diameter comparable to dihydrotestosterone (1 µM) and IGF 1 (1.3 nM). Molecular docking experiments supported the ERβ mediated action of ecdysterone. To clarify its status in sports, ecdysterone should be considered to be included in the class "S1.2 Other Anabolic Agents" of the list of prohibited substances of the World Anti-Doping Agency. PMID:26060342

  10. Can Subscription Agents Survive?

    ERIC Educational Resources Information Center

    Tuttle, Marcia

    1985-01-01

    With the saturation of traditional markets for their services, subscription agents have evolved from orders and invoices to serving customers by communicating with librarians and publishers and making automated and paper products available. Magazine fulfillment centers, publisher discounts, and electronic publishing will influence the subscription…

  11. Remote Agent Experiment

    NASA Technical Reports Server (NTRS)

    Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna; Norvig, Peter (Technical Monitor)

    2000-01-01

    Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.

  12. E-Learning Agents

    ERIC Educational Resources Information Center

    Gregg, Dawn G.

    2007-01-01

    Purpose: The purpose of this paper is to illustrate the advantages of using intelligent agents to facilitate the location and customization of appropriate e-learning resources and to foster collaboration in e-learning environments. Design/methodology/approach: This paper proposes an e-learning environment that can be used to provide customized…

  13. Battlefield agent collaboration

    NASA Astrophysics Data System (ADS)

    Budulas, Peter P.; Young, Stuart H.; Emmerman, Philip J.

    2001-09-01

    Small air and ground physical agents (robots) will be ubiquitous on the battlefield of the 21st century, principally to lower the exposure to harm of our ground forces in urban and open terrain scenarios. Teams of small collaborating physical agents conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA), intelligence, chemical and biological agent detection, logistics, decoy, sentry; and communications relay will have advanced sensors, communications, and mobility characteristics. It is anticipated that there will be many levels of individual and team collaboration between the soldier and robot, robot to robot, and robot to mother ship. This paper presents applications and infrastructure components that illustrate each of these levels. As an example, consider the application where a team of twenty small robots must rapidly explore and define a building complex. Local interactions and decisions require peer to peer collaboration. Global direction and information fusion warrant a central team control provided by a mother ship. The mother ship must effectively deliver/retrieve, service, and control these robots as well as fuse the information gathered by these highly mobile robot teams. Any level of collaboration requires robust communications, specifically a mobile ad hoc network. The application of fixed ground sensors and mobile robots is also included in this paper. This paper discusses on going research at the U.S. Army Research Laboratory that supports the development of multi-robot collaboration. This research includes battlefield visualization, intelligent software agents, adaptive communications, sensor and information fusion, and multi-modal human computer interaction.

  14. Mobility control agent

    SciTech Connect

    Argabright, P.A.; Phillips, B.L.; Rhudy, J.S.

    1983-05-17

    Polymer mobility control agents useful in supplemental oil recovery processes, which give improved reciprocal relative mobilities, are prepared by initiating the polymerization of a monomer containing a vinyl group with a catalyst comprising a persulfate and ferrous ammonium sulfate. The vinyl monomer is an acrylyl, a vinyl cyanide, a styryl and water soluble salts thereof.

  15. Fabrication of ion doped WO3 photocatalysts through bulk and surface doping.

    PubMed

    Wang, Xiaoying; Pang, Laixue; Hu, Xiuying; Han, Nianfeng

    2015-09-01

    Na(+) doped WO3 nanowire photocatalysts were prepared by using post-treatment (surface doping) and in situ (bulk doping) doping methods. Photocatalytic degradation of Methyl Blue was tested under visible light irradiation, the results showed that 1wt.% Na(+) bulk-doped WO3 performed better, with higher photoactivity than surface-doped WO3. Photoelectrochemical characterization revealed the differences in the photocatalytic process for surface doping and bulk doping. Uniform bulk doping could generate more electron-hole pairs, while minimizing the chance of electron-hole recombination. Some bulk properties such as the bandgap, Fermi level and band position could also be adjusted by bulk doping, but not by surface doping. PMID:26354695

  16. Rare Earth doped nanoparticles in imaging and PDT

    PubMed Central

    Yust, Brian G.; Sardar, Dhiraj K.; Mimun, Lawrence C.; Gangadharan, Ajith K.; Tsin, Andrew T.

    2014-01-01

    Nanoparticles doped with rare earth ions for biomedical imaging and infrared photodynamic therapy (IRPDT) have been synthesized, characterized, and compared. Specifically, these nanoparticles utilize two primary modalities: near infrared excitation and emission for imaging, and near infrared upconversion for photodynamic therapy. These nanoparticles are optimized for both their infrared emission and upconversion energy transfer to a photoactive agent conjugated to the surface. Finally, these nanoparticles are tested for toxicity, imaged in cells using the near infrared emission pathway, and used for selective killing of cells through the upconversion driven IRPDT. PMID:25429335

  17. Molecularly doped metals.

    PubMed

    Avnir, David

    2014-02-18

    The many millions of organic, inorganic, and bioorganic molecules represent a very rich library of chemical, biological, and physical properties that do not show up among the approximately 100 metals. The ability to imbue metals with any of these molecular properties would open up tremendous potential for the development of new materials. In addition to their traditional features and their traditional applications, metals would have new traits, which would merge their classical virtues such as conductivity and catalytic activity with the diverse properties of these molecules. In this Account, we describe a new materials methodology, which enables, for the first time, the incorporation and entrapment of small organic molecules, polymers, and biomolecules within metals. These new materials are denoted dopant@metal. The creation of dopant@metal yields new properties that are more than or different from the sum of the individual properties of the two components. So far we have developed methods for the doping of silver, copper, gold, iron, palladium, platinum, and some of their alloys, as well as Hg-Ag amalgams. We have successfully altered classical metal properties (such as conductivity), induced unorthodox properties (such as rendering a metal acidic or basic), used metals as heterogeneous matrices for homogeneous catalysts, and formed new metallic catalysts such as metals doped with organometallic complexes. In addition, we have created materials that straddle the border between polymers and metals, we have entrapped enzymes to form bioactive metals, we have induced chirality within metals, we have made corrosion-resistant iron, we formed efficient biocidal materials, and we demonstrated a new concept for batteries. We have developed a variety of methods for synthesizing dopant@metals including aqueous homogeneous and heterogeneous reductions of the metal cations, reductions in DMF, electrochemical entrapments, thermal decompositions of zerovalent metal carbonyls

  18. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Ramu, S.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-08-01

    Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV-vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  19. Electrical and optical properties of Co-doped and undoped MoS2

    NASA Astrophysics Data System (ADS)

    Ko, Tsung-Shine; Huang, Cheng-Ching; Lin, Der-Yuh; Ruan, Yan-Jia; Huang, Ying Sheng

    2016-04-01

    Co-doped and undoped layered MoS2 crystals were grown by the chemical vapor transport method using iodine as the transport agent. Both reflectance and piezoreflectance measurements reveal two exciton transitions of the direct band edge around 1.86 and 2.06 eV for undoped MoS2 and 1.84 and 2.03 eV for Co-doped MoS2. Hall effect measurements show that the Co-doped MoS2 sample has a lower carrier concentration and mobility than the undoped sample. These differences between undoped and Co-doped MoS2 were attributed to the effect of cobalt atoms causing a small lattice distortion, lattice imperfections and/or impurity states that form trap states between the conduction band and valence band. Furthermore, photoconductivity (PC) and persistent PC results show that Co-doped MoS2 has a longer time constant and better responsivity than undoped MoS2. This work discusses the advantages of Co-doped MoS2 for photodetector applications.

  20. Superconductivity in doped fullerenes

    SciTech Connect

    Hebard, A.F. )

    1992-11-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C[sub 60], further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I[sub h], its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C[sub 60] (and the higher fullerenes, such as C[sub 70] and C[sub 84]) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs.

  1. Distributed Agents for Autonomy

    NASA Astrophysics Data System (ADS)

    Blake, Rick; Amigoni, Francesco; Brambilla, Andrea; de la Rosa Steinz, Sonia; Lavagna, Michele; le Duc, Ian; Page, Jonathan; Page, Oliver; Steel, Robin; Wijnands, Quirien

    2010-08-01

    The Distributed Agents for Autonomy (DAFA) Study has been performed for ESA by SciSys UK Ltd, Vega GmbH and Politecnico di Milano. An analysis of past, present and future space missions has been conducted, structured around a set of three pre-defined mission scenarios: Formation Flying, Earth Observation and Planetary Exploration. This analysis led to the definition of a framework of use cases where the application of distributed autonomy seems necessary or appropriate, and a set of metrics that may be used to assess such deployments. Agent technology and architectures were extensively surveyed and the results used to elaborate each of the mission scenarios to the point where a software prototype could be constructed. Such a prototype was developed for a scenario based on the ExoMars mission and this has been used to highlight the advantages of a DAFA approach to the mission architecture.

  2. Activation of a photosensitive pharmaceutical agent by a triboluminescent material

    NASA Astrophysics Data System (ADS)

    Yuen, Stacey; Schreyer, Magdalena; Finlay, W. H.; Löbenberg, R.; Moussa, W.

    2006-03-01

    Given the recent emphasis on applications of triboluminescent materials, we investigate the ability of a triboluminescent material to activate a photosensitive pharmaceutical agent. Using compressed sucrose doped with wintergreen, which luminesces when fractured, we demonstrate the activation of riboflavin (vitamin B2), a photosensitizer. A product of activation is the highly reactive singlet oxygen. We add ascorbic acid (vitamin C), an antioxidant, and measure the amount of ascorbic acid oxidation to correlate with the amount of riboflavin activation. Up to 17% ascorbic acid oxidation is observed, indicating triboluminescence is worth exploring as a mechanism for activation of photosensitizers in photodynamic therapy.

  3. Activation of a photosensitive pharmaceutical agent by a triboluminescent material

    SciTech Connect

    Yuen, Stacey; Schreyer, Magdalena; Finlay, W.H.; Loebenberg, R.; Moussa, W.

    2006-03-20

    Given the recent emphasis on applications of triboluminescent materials, we investigate the ability of a triboluminescent material to activate a photosensitive pharmaceutical agent. Using compressed sucrose doped with wintergreen, which luminesces when fractured, we demonstrate the activation of riboflavin (vitamin B2), a photosensitizer. A product of activation is the highly reactive singlet oxygen. We add ascorbic acid (vitamin C), an antioxidant, and measure the amount of ascorbic acid oxidation to correlate with the amount of riboflavin activation. Up to 17% ascorbic acid oxidation is observed, indicating triboluminescence is worth exploring as a mechanism for activation of photosensitizers in photodynamic therapy.

  4. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  5. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  6. Surface polymerization agents

    SciTech Connect

    Taylor, C.; Wilkerson, C.

    1996-12-01

    This is the final report of a 1-year, Laboratory-Directed R&D project at LANL. A joint technical demonstration was proposed between US Army Missile Command (Redstone Arsenal) and LANL. Objective was to demonstrate that an unmanned vehicle or missile could be used as a platform to deliver a surface polymerization agent in such a manner as to obstruct the filters of an air-breathing mechanism, resulting in operational failure.

  7. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  8. Perioperative allergy: uncommon agents.

    PubMed

    Caimmi, S; Caimmi, D; Cardinale, F; Indinnimeo, L; Crisafulli, G; Peroni, D G; Marseglia, G L

    2011-01-01

    Anesthesia may often be considered as a high-risk procedure and anaphylaxis remains a major cause of concern for anesthetists who routinely administer many potentially allergenic agents. Neuromuscular blocking agents, latex and antibiotics are the substances involved in most of the reported reactions. Besides these three agents, a wide variety of substances may cause an anaphylactic reaction during anesthesia. Basically all the administered drugs or substances may be potential causes of anaphylaxis. Among them, those reported the most in literature include hypnotics, opioids, local anesthetics, colloids, dye, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), Iodinated Contrast Media (ICM), antiseptics, aprotinin, ethylene oxyde and formaldehyde, and protamine and heparins. No premedication can effectively prevent an allergic reaction and a systematic preoperative screening is not justified for all patients; nevertheless, an allergy specialist should evaluate those patients with a history of anesthesia-related allergy. Patients must be fully informed of investigation results, and advised to provide a detailed report prior to future anesthesia. PMID:22014927

  9. The Antibacterial Activity of Ta-doped ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guo, Bing-Lei; Han, Ping; Guo, Li-Chuan; Cao, Yan-Qiang; Li, Ai-Dong; Kong, Ji-Zhou; Zhai, Hai-Fa; Wu, Di

    2015-08-01

    A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis ( B. subtilis) and Staphylococcus aureus ( S. aureus) and Gram-negative Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta5+ ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta5+ ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.

  10. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    SciTech Connect

    Rice, Katherine P.; Russek, Stephen E. Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Geiss, Roy H.; Arenholz, Elke; Idzerda, Yves U.

    2015-02-09

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  11. Boron doping a semiconductor particle

    SciTech Connect

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  12. Boron doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  13. Humidity sensing with doped polyaniline

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa; Chakane, Sanjay D. S.; Bhoraskar, S. V.; Samui, A. B.; Krishnamurthy, V. N.

    2001-03-01

    Polyaniline (PANI) was doped with different dopants like camphosulphoric acid (CSA), diphenyl phosphate (DPPH), Sulphonic acid (S) and Maleic acid (MAC) by chemical method. The samples were prepared in the form of pellets as well as films. Polyaniline doped with Maleic acid was found to be mechanically and chemically stable as compared to other dopants and therefore the effect of humidity on conductivity was further investigated. Films prepared out of styrene buryl acrylate copolymer with different concentrations of PANI Maleic acid were used for sensing humidity ranging between 20% to 90% relative humidity. A maximum change in the conductivity of three to four orders of magnitude was obtained for the Maleic acid doped polyaniline pellet while two orders of magnitude change was obtained for the film samples over the range of humidity measured.

  14. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  15. Room temperature synthesis of Mn{sup 2+} doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    SciTech Connect

    Kole, A. K.; Kumbhakar, P.; Tiwary, C. S.

    2013-03-21

    Mn{sup 2+} doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn{sup 2+} doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be {approx}1.10 (at. %) corresponding to 40.0 (molar %) of Mn{sup 2+} doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn{sup 2+} doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn{sup 2+} doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn{sup 2+} doped sample shows an enhancement of 33% in PL emission intensity.

  16. Sulphur-doped silica fibres

    SciTech Connect

    Gerasimova, V I; Rybaltovskii, A O; Chernov, P V; Mashinsky, V M; Sazhin, O D; Medvedkov, O I; Rybaltovsky, A A; Khrapko, R R

    2003-01-31

    An optical fibre with low optical losses is manufactured from a sulphur-doped quartz glass. Optical absorption spectra are measured for various parts of the fibre core. Most of the bands of these spectra are assigned to oxygen-deficient centres and colour centres containing sulphur atoms. The photosensitivity of glasses exposed to laser radiation at wavelengths of 193 and 244 nm is investigated to estimate the possibility of their application for producing photorefracting devices. A Bragg grating of the refractive index with {Delta}n = 7.8 x 10{sup -4} is written in a sulphur-doped silica fibre. (fibre optics)

  17. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  18. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    SciTech Connect

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  19. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  20. Chemical warfare agents.

    PubMed

    Ganesan, K; Raza, S K; Vijayaraghavan, R

    2010-07-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312

  1. Pharmacologic agents targeting autophagy

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Xia, Hong-guang; Yuan, Junying

    2015-01-01

    Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies. PMID:25654545

  2. Chemical warfare agents

    PubMed Central

    Ganesan, K.; Raza, S. K.; Vijayaraghavan, R.

    2010-01-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312

  3. Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye.

    PubMed

    Jahan, Shanaz; Mansoor, Farrukh; Naz, Shagufta; Lei, Jianping; Kanwal, Shamsa

    2013-11-01

    Current research efforts have demonstrated the facile hydrothermal oxidative synthetic route to develop highly fluorescent boron/nitrogen co-doped carbon nanodots (CNDs). During this process, N-(4-hydroxyphenyl)glycine served as a source of N doping and a carbon precursor as well, while boric acid H3BO3 is used as an oxidizing agent in the N2 environment. Surface passivation through ultrasonic treatment of CNDs was performed to induce modifications by using various surface passivating agents. Polyethyleneimine (PEI) remarkably enhanced the fluorescence performance and monodispersity of polymerized carbon nanodots (P-CNDs) in aqueous phase with an enhanced quantum yield of 23.71%, along with an increase in size from ~3 nm to ~200 nm. For characterization of CNDs and P-CNDs, UV, infrared, photoluminescence, transmission electron microscopy, x-ray photoelectron spectra, and atomic force microscopy techniques were utilized. Application potentials of synthesized P-CNDs were developed via introduction of protoporphyrin (PPD, a photosensitizer) which has great doping affinity with polymer PEI to switch-off the fluorescence of P-CNDs, leading to the production of dye-doped nanoprobes. Fluorescence resonance energy transfer (FRET) was also observed during dye-doping, and PPD was detected with a limit of detection (LOD, 3σ) of 15 pM. The fluorescence recovery of this switched-off nanoprobe was made possible by using Sudan red III (carcinogenic dye), which was oxidized by PPD doped in P-CNDs. Sudan red III was detected in the concentration range of 9.9 pM-0.37 nM. Meanwhile, it was also confirmed that the dye-doped nanoprobe is highly selective and exceptionally sensitive to detect this carcinogenic agent in commercial products with a LOD (3σ) of 90 fM. PMID:24083490

  4. Study of structural and optical properties of Fe doped CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Rani, Poonam; Gupta, Ankita; Kaur, Sarabjeet; Singh, Vishal; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Iron doped Copper oxide nanoparticles were synthesized by the co-precipitation method at different concentration (3%, 6%, 9%) at 300-400° C with Copper Acetate and Ferric Chloride as precursors in presence of Polyethylene Glycol and Sodium Hydroxide as stabilizing agent. Effect of doping on the structural and optical properties is studied. The obtained nanoparticles were characterized by X-Ray Diffraction and UV-Visible Spectroscopy for examining the size and the band gap respectively. The X-Ray Diffraction plots confirmed the monoclinic structure of Copper oxide suggesting the Cu atoms replaced by Fe atoms and no secondary phase was detected. The indirect band gap of Fe doped CuO nanoparticles is 2.4eV and increases to 3.4eV as the concentration of dopant increases. The majority of particle size is in range 8 nm to 35.55 nm investigated by X-ray diffractometer.

  5. Proscribed drugs at the Olympic Games: permitted use and misuse (doping) by athletes.

    PubMed

    Fitch, Ken

    2012-06-01

    Athletes have always sought to outperform their competitors and regrettably some have resorted to misuse of drugs or doping to achieve this. Stimulants were taken by the first Olympic athletes to be disqualified in 1972. Although undetectable until 1975, from the 1950s androgenic anabolic steroids were administered for increased strength and power followed in the 1990s by erythropoietin for enhanced endurance. Both are highly effective doping agents. As analytical science validated improved techniques to identify these drugs, Olympic athletes, including many medallists were caught and disqualified. When the International Olympic Committee (IOC) prohibited beta blockers (beneficial in shooting), diuretics (assist weight classified athletes) and glucocorticosteroids, some athletes with genuine medical conditions were denied legitimate medical therapy. To overcome this, in 1992 the IOC introduced a system known now as Therapeutic Use Exemption (TUE). This paper discusses Olympic athletes who have been known to dope at past Games and some medical indications and pitfalls in the TUE process. PMID:22783779

  6. Electronic Structure of Halogen Doped CuCr2Se4

    SciTech Connect

    Arenholz, Elke; Liberati, M.; Neulinger, J. R.; Chopdekar, R.V.; Bettinger, J.S.; Arenholz, E.; Butler, W.; Stacy, A.M.; Idzerda, Y.I.; Suzuki, Y.

    2008-09-13

    We have employed element and chemically sensitive X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) in order to address a long standing controversy regarding the electronic and magnetic state of CuCr{sub 2}Se{sub 4} via halogen doping of the Se anion site in CuCr{sub 2}Se{sub 4-x}Y{sub x} (Y=Cl and Br). Long range magnetic order is observed above room temperature for all samples. The Cr L{sub 2,3} XAS spectra show a prevalent 3+ valence for the Cr ions independent of doping concentration and doping agent. The Cu L{sub 2,3} XAS spectra show a combination of 1+ and 2+ valence states for all samples. XMCD spectra indicate the presence of a magnetic moment associated with the Cu ions that is aligned antiparallel to the Cr moment.

  7. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging

    PubMed Central

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis. PMID:26609232

  8. Prevalence of legal and illegal stimulating agents in sports.

    PubMed

    Deventer, K; Roels, K; Delbeke, F T; Van Eenoo, P

    2011-08-01

    This paper reviews the prevalence of legal and illegal stimulants in relation to doping-control analysis. Stimulants are among the oldest classes of doping agents, having been used since ancient times. Despite the ease with which they can be detected and the availability of sensitive detection methods, stimulants are still popular among athletes. Indeed, they remain one of the top three most popular classes of prohibited substances. Because the list of legal and illegal stimulants is extensive only a selection is discussed in detail. The compounds selected are caffeine, ephedrines, amphetamine and related compounds, methylphenidate, cocaine, strychnine, modafinil, adrafinil, 4-methyl-2-hexaneamine, and sibutramine. These compounds are mainly prevalent in sport or are of therapeutic importance. Because stimulants are the oldest doping class the first detection methods were for this group. Several early detection techniques including GC-NPD, GC-ECD, and TLC are highlighted. The more novel detection techniques GC-MS and LC-MS are also discussed in detail. In particular, the last technique has been shown to enable successful detection of stimulants difficult to detect by GC-MS or for stimulants previously undetectable. Because stimulants are also regularly detected in nutritional (food) supplements a section on this topic is also included. PMID:21479548

  9. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states

    NASA Astrophysics Data System (ADS)

    Xu, Minghan; He, Guili; Li, Zhaohui; He, Fengjiao; Gao, Feng; Su, Yanjie; Zhang, Liying; Yang, Zhi; Zhang, Yafei

    2014-08-01

    Compared with traditional semiconductor quantum dots (QDs) and organic dyes, photoluminescent carbon dots (CDs) are superior because of their high aqueous solubility, robust chemical inertness, facile functionalization, high resistance to photobleaching, low toxicity and good biocompatibility. Herein, a green, large-scale and high-output heterogeneous synthesis of N-doped CDs was developed by reacting calcium citrate and urea under microwave irradiation without the use of any capping agents. The obtained N-doped CDs with a uniform size distribution exhibit good aqueous solubility and yellowish-green fluorescence in the solid and aqueous states. These unique luminescence properties of N-doped CDs inspire new thoughts for applications as fluorescent powders, fluorescent inks, the growth of fluorescent bean sprouts, and fingerprint detection tools.Compared with traditional semiconductor quantum dots (QDs) and organic dyes, photoluminescent carbon dots (CDs) are superior because of their high aqueous solubility, robust chemical inertness, facile functionalization, high resistance to photobleaching, low toxicity and good biocompatibility. Herein, a green, large-scale and high-output heterogeneous synthesis of N-doped CDs was developed by reacting calcium citrate and urea under microwave irradiation without the use of any capping agents. The obtained N-doped CDs with a uniform size distribution exhibit good aqueous solubility and yellowish-green fluorescence in the solid and aqueous states. These unique luminescence properties of N-doped CDs inspire new thoughts for applications as fluorescent powders, fluorescent inks, the growth of fluorescent bean sprouts, and fingerprint detection tools. Electronic supplementary information (ESI) available: The photos of different precursors under daylight and 365 nm UV beam; 1H-NMR and Raman spectrum of N-doped CDs; toxicity study of bean sprouts; the correlation between length of bean sprouts and the concentration of N-doped CDs

  10. Cleaning agents and asthma.

    PubMed

    Quirce, S; Barranco, P

    2010-01-01

    Although cleaners represent a significant part of the working population worldwide, they remain a relatively understudied occupational group. Epidemiological studies have shown an association between cleaning work and asthma, but the risk factors are uncertain. Cleaning workers are exposed to a large variety of cleaning products containing both irritants and sensitizers, as well as to common indoor allergens and pollutants. Thus, the onset or aggravation of asthma in this group could be related to an irritant-induced mechanism or to specific sensitization. The main sensitizers contained in cleaning products are disinfectants, quaternary ammonium compounds (such as benzalkonium chloride), amine compounds, and fragrances.The strongest airway irritants in cleaning products are bleach (sodium hypochlorite), hydrochloric acid, and alkaline agents (ammonia and sodium hydroxide), which are commonly mixed together. Exposure to the ingredients of cleaning products may give rise to both new-onset asthma, with or without a latency period, and work-exacerbated asthma. High-level exposure to irritants may induce reactive airways dysfunction syndrome. Cleaning workers may also have a greater relative risk of developing asthma due to prolonged low-to-moderate exposure to respiratory irritants. In addition, asthma-like symptoms without confirmed asthma are also common after exposure to cleaning agents. In many cleaners, airway symptoms induced by chemicals and odors cannot be explained by allergic or asthmatic reactions. These patients may have increased sensitivity to inhaled capsaicin, which is known to reflect sensory reactivity, and this condition is termed airway sensory hyperreactivity. PMID:21313993

  11. [New agents for hypercholesterolemia].

    PubMed

    Pintó, Xavier; García Gómez, María Carmen

    2016-02-19

    An elevated proportion of high cardiovascular risk patients do not achieve the therapeutic c-LDL goals. This owes to physicians' inappropriate or insufficient use of cholesterol lowering medications or to patients' bad tolerance or therapeutic compliance. Another cause is an insufficient efficacy of current cholesterol lowering drugs including statins and ezetimibe. In addition, proprotein convertase subtilisin kexin type 9 inhibitors are a new cholesterol lowering medications showing safety and high efficacy to reduce c-LDL in numerous already performed or underway clinical trials, potentially allowing an optimal control of hypercholesterolemia in most patients. Agents inhibiting apolipoprotein B synthesis and microsomal transfer protein are also providing a new potential to decrease cholesterol in patients with severe hypercholesterolemia and in particular in homozygote familial hypercholesterolemia. Last, cholesteryl ester transfer protein inhibitors have shown powerful effects on c-HDL and c-LDL, although their efficacy in cardiovascular prevention and safety has not been demonstrated yet. We provide in this article an overview of the main characteristics of therapeutic agents for hypercholesterolemia, which have been recently approved or in an advanced research stage. PMID:25817449

  12. Holograms as Teaching Agents

    NASA Astrophysics Data System (ADS)

    Walker, Robin A.

    2013-02-01

    Hungarian physicist Dennis Gabor won the Pulitzer Prize for his 1947 introduction of basic holographic principles, but it was not until the invention of the laser in 1960 that research scientists, physicians, technologists and the general public began to seriously consider the interdisciplinary potentiality of holography. Questions around whether and when Three-Dimensional (3-D) images and systems would impact American entertainment and the arts would be answered before educators, instructional designers and students would discover how much Three-Dimensional Hologram Technology (3DHT) would affect teaching practices and learning environments. In the following International Symposium on Display Holograms (ISDH) poster presentation, the author features a traditional board game as well as a reflection hologram to illustrate conventional and evolving Three-Dimensional representations and technology for education. Using elements from the American children's toy Operation® (Hasbro, 2005) as well as a reflection hologram of a human brain (Ko, 1998), this poster design highlights the pedagogical effects of 3-D images, games and systems on learning science. As teaching agents, holograms can be considered substitutes for real objects, (human beings, organs, and animated characters) as well as agents (pedagogical, avatars, reflective) in various learning environments using many systems (direct, emergent, augmented reality) and electronic tools (cellphones, computers, tablets, television). In order to understand the particular importance of utilizing holography in school, clinical and public settings, the author identifies advantages and benefits of using 3-D images and technology as instructional tools.

  13. A systemic model of doping behavior.

    PubMed

    Johnson, Michael B

    2011-01-01

    Human behavior occurs within a system, and as such, so do behaviors in performance-related domains (e.g., athletics, academics). Doping is a performance enhancement behavior that can be problematic because of the negative physical and psychological effects associated with the use of some substances and the common argument that doping is unfair. However, doping continues and may be increasing. Because a firm theoretical or empirical understanding of doping does not exist, this article proposes a conceptual, comprehensive, and innovative systemic model of doping behavior. The model is built from relevant empiricism supporting the idea that contemporary doping behavior is a function of systemic transactions between historical doping practices, the present environment, current antidoping interventions, one's genetic makeup, developmental milestones, social factors, and epigenetics. PMID:21834401

  14. Learning models of intelligent agents

    SciTech Connect

    Carmel, D.; Markovitch, S.

    1996-12-31

    Agents that operate in a multi-agent system need an efficient strategy to handle their encounters with other agents involved. Searching for an optimal interactive strategy is a hard problem because it depends mostly on the behavior of the others. In this work, interaction among agents is represented as a repeated two-player game, where the agents` objective is to look for a strategy that maximizes their expected sum of rewards in the game. We assume that agents` strategies can be modeled as finite automata. A model-based approach is presented as a possible method for learning an effective interactive strategy. First, we describe how an agent should find an optimal strategy against a given model. Second, we present an unsupervised algorithm that infers a model of the opponent`s automaton from its input/output behavior. A set of experiments that show the potential merit of the algorithm is reported as well.

  15. Flexible, secure agent development framework

    DOEpatents

    Goldsmith; Steven Y.

    2009-04-07

    While an agent generator is generating an intelligent agent, it can also evaluate the data processing platform on which it is executing, in order to assess a risk factor associated with operation of the agent generator on the data processing platform. The agent generator can retrieve from a location external to the data processing platform an open site that is configurable by the user, and load the open site into an agent substrate, thereby creating a development agent with code development capabilities. While an intelligent agent is executing a functional program on a data processing platform, it can also evaluate the data processing platform to assess a risk factor associated with performing the data processing function on the data processing platform.

  16. (Magnetic properties of doped semiconductors)

    SciTech Connect

    Not Available

    1990-01-01

    Research continued on the transport behavior of doped semiconductors on both sides of the metal-insulator transition, and the approach to the transition from both the insulating and the metallic side. Work is described on magneto resistance of a series of metallic Si:B samples and CdSe. (CBS)

  17. GENES IN SPORT AND DOPING

    PubMed Central

    Kaliszewski, P.; Majorczyk, E.; Zembroń-Łacny, A.

    2013-01-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques. PMID:24744482

  18. Method of doping organic semiconductors

    DOEpatents

    Kloc, Christian Leo; Ramirez, Arthur Penn; So, Woo-Young

    2012-02-28

    A method includes the steps of forming a contiguous semiconducting region and heating the region. The semiconducting region includes polyaromatic molecules. The heating raises the semiconducting region to a temperature above room temperature. The heating is performed in the presence of a dopant gas and the absence of light to form a doped organic semiconducting region.

  19. Metal-doped organic foam

    DOEpatents

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  20. Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhu, Hong

    2012-10-01

    A thin layer of nano-scaled Fe-doped TiO2 particles prepared by hydrothermal method is immobilized on the surface of polyamide 6 (PA6) fiber using tetrabutyl titanate as the precursor, ferric trichloride as the doping agent and chitosan as the dispersant agent. The morphology, crystal structure, thermal behavior, composition and chemical structure of PA6 fabric before and after treatments are characterized by means of scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry and thermal gravimetric analysis techniques. The properties of diffuse reflectance spectrum, tensile, air permeability, whiteness, yellowness and photocatalytic activity are also analyzed. It is found that the anatase phase Fe-doped TiO2 nanoparticles with crystal size of 12 nm or so are synthesized, and simultaneously grafted onto the fiber surface during the processing. Compared with the TiO2-coated fabric, the thermal stability of the Fe-doped TiO2-coated fabric changes a little. The absorption ability to ultraviolet (UV) rays and visible light is greatly improved. The breaking force and breaking elongation increase to some extent because of the shrinkage of fabric. The air permeability decreases distinctly. The color of PA6 fabric changes from white to light brownish because of the introduction of ferric trichloride. The photocatalytic activity of methylene blue decolorization is enhanced under sunlight and UV irradiation.

  1. Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy.

    PubMed

    Lin, Min; Wang, Dandan; Li, Shuyao; Tang, Qi; Liu, Shuwei; Ge, Rui; Liu, Yi; Zhang, Daqi; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2016-10-01

    Nanodevices for multimodal tumor theranostics have shown great potentials for noninvasive tumor diagnosis and therapy, but the libraries of multimodal theranostic building blocks should be further stretched. In this work, Cu(II) ions are doped into polyaniline (Pani) nanoshuttles (NSs) to produce Cu-doped Pani (CuPani) NSs, which are demonstrated as new multimodal building blocks to perform tumor theranostics. The CuPani NSs are capable of shortening the longitudinal relaxation (T1) of protons under magnetic fields and can help light up tumors in T1-weighted magnetic resonance imaging. In addition, the released Cu(II) ions from CuPani NSs lead to cytotoxicity, showing the behavior of chemotherapeutic agent. The good photothermal performance of CuPani NSs also makes them as photothermal agents to perform thermochemotherapy. By combining near-infrared laser irradiation, a complete tumor ablation is achieved and no tumor recurrence is observed. PMID:27467417

  2. New antifungal agents.

    PubMed

    Gupta, Aditya K; Tomas, Elizabeth

    2003-07-01

    Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates, and drug resistance. New formulations are being prepared to improve absorption and efficacy of some of these standard therapies. Various new antifungals have demonstrated therapeutic potential. These new agents may provide additional options for the treatment of superficial fungal infections and they may help to overcome the limitations of current treatments. Liposomal formulations of AmB have a broad spectrum of activity against invasive fungi, such as Candida spp., C. neoformans, and Aspergillus spp., but not dermatophyte fungi. The liposomal AmB is associated with significantly less toxicity and good rates of efficacy, which compare or exceed that of standard AmB. These factors may provide enough of an advantage to patients to overcome the increased costs of these formulations. Three new azole drugs have been developed, and may be of use in both systemic and superficial fungal infections. Voriconazole, ravuconazole, and posaconazole are triazoles, with broad-spectrum activity. Voriconazole has a high bioavailability, and has been used with success in immunocompromised patients with invasive fungal infections. Ravuconazole has shown efficacy in candidiasis in immunocompromised patients, and onychomycosis in healthy patients. Preliminary in vivo studies with posaconazole indicated potential use in a variety of invasive fungal infections including oropharyngeal candidiasis. Echinocandins and pneumocandins are a new class of antifungals, which act as fungal cell wall beta-(1,3)-D-glucan synthase enzyme complex inhibitors. Caspofungin (MK-0991) is the first of the echinocandins to receive Food and Drug Administration approval for patients with invasive aspergillosis not responding or intolerant to other antifungal therapies, and has been effective in patients with oropharyngeal and esophageal candidiasis. Standardization of MIC value determination has improved the

  3. Fluoroquinolone antimicrobial agents.

    PubMed Central

    Wolfson, J S; Hooper, D C

    1989-01-01

    The fluoroquinolones, a new class of potent orally absorbed antimicrobial agents, are reviewed, considering structure, mechanisms of action and resistance, spectrum, variables affecting activity in vitro, pharmacokinetic properties, clinical efficacy, emergence of resistance, and tolerability. The primary bacterial target is the enzyme deoxyribonucleic acid gyrase. Bacterial resistance occurs by chromosomal mutations altering deoxyribonucleic acid gyrase and decreasing drug permeation. The drugs are bactericidal and potent in vitro against members of the family Enterobacteriaceae, Haemophilus spp., and Neisseria spp., have good activity against Pseudomonas aeruginosa and staphylococci, and (with several exceptions) are less potent against streptococci and have fair to poor activity against anaerobic species. Potency in vitro decreases in the presence of low pH, magnesium ions, or urine but is little affected by different media, increased inoculum, or serum. The effects of the drugs in combination with a beta-lactam or aminoglycoside are often additive, occasionally synergistic, and rarely antagonistic. The agents are orally absorbed, require at most twice-daily dosing, and achieve high concentrations in urine, feces, and kidney and good concentrations in lung, bone, prostate, and other tissues. The drugs are efficacious in treatment of a variety of bacterial infections, including uncomplicated and complicated urinary tract infections, bacterial gastroenteritis, and gonorrhea, and show promise for therapy of prostatitis, respiratory tract infections, osteomyelitis, and cutaneous infections, particularly when caused by aerobic gram-negative bacilli. Fluoroquinolones have also proved to be efficacious for prophylaxis against travelers' diarrhea and infection with gram-negative bacilli in neutropenic patients. The drugs are effective in eliminating carriage of Neisseria meningitidis. Patient tolerability appears acceptable, with gastrointestinal or central nervous

  4. Hepatocytes as Immunological Agents.

    PubMed

    Crispe, Ian N

    2016-01-01

    Hepatocytes are targeted for infection by a number of major human pathogens, including hepatitis B virus, hepatitis C virus, and malaria. However, hepatocytes are also immunological agents in their own right. In systemic immunity, they are central in the acute-phase response, which floods the circulation with defensive proteins during diverse stresses, including ischemia, physical trauma, and sepsis. Hepatocytes express a variety of innate immune receptors and, when challenged with pathogen- or damage-associated molecular patterns, can deliver cell-autonomous innate immune responses that may result in host defense or in immunopathology. Important human pathogens have evolved mechanisms to subvert these responses. Finally, hepatocytes talk directly to T cells, resulting in a bias toward immune tolerance. PMID:26685314

  5. Synthesis and characterization of β-napthalene sulphonic acid doped poly(o-anisidine)

    NASA Astrophysics Data System (ADS)

    Sangamithirai, D.; Narayanan, V.; Stephen, A.

    2014-04-01

    Poly(o-anisidine) doped with β-napthalene sulphonic acid (β-NSA) was synthesized using ammonium persulphate as an oxidizing agent. The polymer was characterized by using FTIR, XRD and conductivity measurements. The FTIR spectra reveal the presence of functional groups that account for the formation of polymer. The structure was characterized by XRD. The conductivity of the poly(o-anisidine) salt was found to be 2.25 × 10-6 S/m.

  6. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals.

    PubMed

    Yang, L W; Zhang, Y Y; Li, J J; Li, Y; Zhong, J X; Chu, Paul K

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X=0.352, CIE-Y=0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4 nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4 nanocrystals. The multifunctional Ln3+ doped KGdF4 nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging. PMID:20877853

  7. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Patel, Kamakshi; Gujarati, Vivek P.; Chaki, S. H.

    2016-05-01

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn2+ an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  8. Fe Doped CdTeS Magnetic Quantum Dots for Bioimaging†

    PubMed Central

    Saha, Ajoy K.; Sharma, Parvesh; Sohn, Han-Byul; Ghosh, Siddhartha; Das, Ritesh. K.; Hebard, Arthur F.; Zeng, Huadong; Baligand, Celine; Walter, Glenn A.

    2013-01-01

    A facile synthesis of 3-6 nm, water dispersible, near-infrared (NIR) emitting, quantum dots (QDs) magnetically doped with Fe is presented. Doping of alloyed CdTeS nanocrystals with Fe was achieved in situ using a simple hydrothermal method. The magnetic quantum dots (MQDs) were capped with NAcetyl-Cysteine (NAC) ligands, containing thiol and carboxylic acid functional groups to provide stable aqueous dispersion. The optical and magnetic properties of the Fe doped MQDs were characterized using several techniques. The synthesized MQDs are tuned to emit in the Vis-NIR (530-738 nm) wavelength regime and have high quantum yields (67.5-10%). NIR emitting (738 nm) MQDs having 5.6 atomic% Fe content exhibited saturation magnetization of 85 emu/gm[Fe] at room temperature. Proton transverse relaxivity of the Fe doped MQDs (738 nm) at 4.7 T was determined to be 3.6 mM−1s−1. The functional evaluation of NIR MQDs has been demonstrated using phantom and in vitro studies. These water dispersible, NIR emitting and MR contrast producing Fe doped CdTeS MQDs, in unagglomerated form, have the potential to act as multimodal contrast agents for tracking live cells. PMID:24634776

  9. Agent Assignment for Process Management: Pattern Based Agent Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Jablonski, Stefan; Talib, Ramzan

    In almost all workflow management system the role concept is determined once at the introduction of workflow application and is not reevaluated to observe how successfully certain processes are performed by the authorized agents. This paper describes an approach which evaluates how agents are working successfully and feed this information back for future agent assignment to achieve maximum business benefit for the enterprise. The approach is called Pattern based Agent Performance Evaluation (PAPE) and is based on machine learning technique combined with post processing technique. We report on the result of our experiments and discuss issues and improvement of our approach.

  10. Charge transfer and electronic doping in nitrogen-doped graphene

    PubMed Central

    Joucken, Frédéric; Tison, Yann; Le Fèvre, Patrick; Tejeda, Antonio; Taleb-Ibrahimi, Amina; Conrad, Edward; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Ghijsen, Jacques; Sporken, Robert; Amara, Hakim; Ducastelle, François; Lagoute, Jérôme

    2015-01-01

    Understanding the modification of the graphene’s electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy (XPS). The comparison between tunneling and angle-resolved photoelectron spectra reveals the spatial inhomogeneity of the Dirac energy shift and that a phonon correction has to be applied to the tunneling measurements. XPS data demonstrate the dependence of the N 1s binding energy of graphitic nitrogen on the nitrogen concentration. The measure of the Dirac energy for different nitrogen concentrations reveals that the ratio usually computed between the excess charge brought by the dopants and the dopants’ concentration depends on the latter. This is supported by a tight-binding model considering different values for the potentials on the nitrogen site and on its first neighbors. PMID:26411651

  11. Attitudes towards doping and related experience in Spanish national cycling teams according to different Olympic disciplines.

    PubMed

    Morente-Sánchez, Jaime; Mateo-March, Manuel; Zabala, Mikel

    2013-01-01

    Attitudes towards doping are considered an influence of doping intentions. The aims of the present study were 1) to discover and compare the attitudes towards doping among Spanish national team cyclists from different Olympic disciplines, as well as 2) to get some complementary information that could better explain the context. The sample was comprised of seventy-two cyclists: mean age 19.67±4.72 years; 70.8% males (n = 51); from the different Olympic disciplines of Mountain bike -MTB- (n = 18), Bicycle Moto Cross -BMX- (n = 12), Track -TRA- (n = 9) and Road -ROA- (n = 33). Descriptive design was carried out using a validated scale (PEAS). To complement this, a qualitative open-ended questionnaire was used. Overall mean score (17-102) was 36.12±9.39. For different groups, the data were: MTB: 30.28±6.92; BMX: 42.46±10.74; TRA: 43.22±12.00; ROA: 34.91±6.62, respectively. In relation to overall score, significant differences were observed between MTB and BMX (p = 0.002) and between MTB and TRA (p = 0.003). For the open-ended qualitative questionnaire, the most mentioned word associated with "doping" was "cheating" (48.83% of total sample), with "responsible agents of doping" the word "doctor" (52,77%), and with the "main reason for the initiation in doping" the words "sport achievement" (45.83%). The major proposed solution was "doing more doping controls" (43.05%). Moreover, 48.67% stated that there was "a different treatment between cycling and other sports". This study shows that Spanish national team cyclists from Olympic cycling disciplines, in general, are not tolerant in relation to doping. BMX and Track riders are a little more permissive towards the use of banned substances than MTB and Road. Results from the qualitative open-ended questionnaire showed interesting data in specific questions. These results empower the idea that, apart from maintaining doping controls and making them more efficient, anti-doping education

  12. Agent-based enterprise integration

    SciTech Connect

    N. M. Berry; C. M. Pancerella

    1998-12-01

    The authors are developing and deploying software agents in an enterprise information architecture such that the agents manage enterprise resources and facilitate user interaction with these resources. The enterprise agents are built on top of a robust software architecture for data exchange and tool integration across heterogeneous hardware and software. The resulting distributed multi-agent system serves as a method of enhancing enterprises in the following ways: providing users with knowledge about enterprise resources and applications; accessing the dynamically changing enterprise; locating enterprise applications and services; and improving search capabilities for applications and data. Furthermore, agents can access non-agents (i.e., databases and tools) through the enterprise framework. The ultimate target of the effort is the user; they are attempting to increase user productivity in the enterprise. This paper describes their design and early implementation and discusses the planned future work.

  13. Collaborating Fuzzy Reinforcement Learning Agents

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    Earlier, we introduced GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Relearning and at the local level, each agent learns and operates based on ANTARCTIC, a technique for fuzzy reinforcement learning. In this paper, we show that it is possible for these agents to compete in order to affect the selected control policy but at the same time, they can collaborate while investigating the state space. In this model, the evaluator or the critic learns by observing all the agents behaviors but the control policy changes only based on the behavior of the winning agent also known as the super agent.

  14. New agents for prostate cancer.

    PubMed

    Agarwal, N; Di Lorenzo, G; Sonpavde, G; Bellmunt, J

    2014-09-01

    The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has been revolutionized by the arrival of multiple novel agents in the past 2 years. Immunotherapy in the form of sipuleucel-T, androgen axis inhibitors, including abiraterone acetate and enzalutamide, a chemotherapeutic agent, cabazitaxel, and a radiopharmaceutical, radium-223, have all yielded incremental extensions of survival and have been recently approved. A number of other agents appear promising in early studies, suggesting that the armamentarium against castrate-resistant prostate cancer is likely to continue to expand. Emerging androgen pathway inhibitors include androgen synthesis inhibitors (TAK700), androgen receptor inhibitors (ARN-509, ODM-201), AR DNA binding domain inhibitors (EPI-001), selective AR downregulators or SARDs (AZD-3514), and agents that inhibit both androgen synthesis and receptor binding (TOK-001/galeterone). Promising immunotherapeutic agents include poxvirus vaccines and CTLA-4 inhibitor (ipilimumab). Biologic agents targeting the molecular drivers of disease are also being investigated as single agents, including cabozantinib (Met and VEGFR2 inhibitor) and tasquinimod (angiogenesis and immune modulatory agent). Despite the disappointing results seen from studies evaluating docetaxel in combination with other agents, including GVAX, anti-angiogentic agents (bevacizumab, aflibercept, lenalinomide), a SRC kinase inhibitor (dasatinib), endothelin receptor antagonists (atrasentan, zibotentan), and high-dose calcitriol (DN-101), the results from the trial evaluating docetaxel in combination with the clusterin antagonist, custirsen, are eagerly awaited. New therapeutic hurdles consist of discovering new targets, understanding resistance mechanisms, the optimal sequencing and combinations of available agents, as well as biomarkers predictive for benefit. Novel agents targeting bone metastases are being developed following the success of zoledronic acid

  15. Broad-spectrum antiviral agents

    PubMed Central

    Zhu, Jun-Da; Meng, Wen; Wang, Xiao-Jia; Wang, Hwa-Chain R.

    2015-01-01

    Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents. PMID:26052325

  16. The Agent of Change: The Agent of Conflict.

    ERIC Educational Resources Information Center

    Hatfield, C. R., Jr.

    This speech examines the role of change agents in third world societies and indicates that the change agent must, to some extent, manipulate the social situation, even if his view of society is a more optimistic one than he finds in reality. If he considers strains and stresses to be the lubricants of change, then his focus on conflict as a…

  17. Incorporating BDI Agents into Human-Agent Decision Making Research

    NASA Astrophysics Data System (ADS)

    Kamphorst, Bart; van Wissen, Arlette; Dignum, Virginia

    Artificial agents, people, institutes and societies all have the ability to make decisions. Decision making as a research area therefore involves a broad spectrum of sciences, ranging from Artificial Intelligence to economics to psychology. The Colored Trails (CT) framework is designed to aid researchers in all fields in examining decision making processes. It is developed both to study interaction between multiple actors (humans or software agents) in a dynamic environment, and to study and model the decision making of these actors. However, agents in the current implementation of CT lack the explanatory power to help understand the reasoning processes involved in decision making. The BDI paradigm that has been proposed in the agent research area to describe rational agents, enables the specification of agents that reason in abstract concepts such as beliefs, goals, plans and events. In this paper, we present CTAPL: an extension to CT that allows BDI software agents that are written in the practical agent programming language 2APL to reason about and interact with a CT environment.

  18. Freestanding doped silicon nanocrystals synthesized by plasma

    NASA Astrophysics Data System (ADS)

    Ni, Zhenyi; Pi, Xiaodong; Ali, Muhammad; Zhou, Shu; Nozaki, Tomohiro; Yang, Deren

    2015-08-01

    Freestanding silicon nanocrystals (Si NCs) have recently gained great popularity largely due to their easily accessible surface and flexible incorporation into device structures. In the past decade plasmas have been increasingly employed to synthesize freestanding Si NCs. As freestanding Si NCs move closer to applications in a variety of fields such as electronics, thermoelectrics and lithium-ion batteries, doping becomes more imperative. Such a context explains the current great interest in plasma-synthesized doped freestanding Si NCs. In this work we review the synthesis of freestanding doped Si NCs by plasma. Doping-induced structural, electronic, optical and oxidation properties of Si NCs are discussed. We also review the applications of plasma-synthesized doped freestanding Si NCs that have been demonstrated so far. The development of freestanding doped Si NCs synthesized by plasma in the future is envisioned.

  19. DFT study of Al doped armchair SWCNTs

    NASA Astrophysics Data System (ADS)

    Dhiman, Shobhna; Rani, Anita; Kumar, Ranjan; Dharamvir, Keya

    2016-05-01

    Electronic properties of endohedrally doped armchair single-walled carbon nanotubes (SWCNTs) with a chain of six Al atoms have been studied using ab-initio density functional theory. We investigate the binding energy/atom, ionization potential, electron Affinity and Homo-Lumo gap of doped armchair SWNTs from (4,4) to (6,6) with two ends open. BE/dopant atom and ionization potential is maximum for (6, 6) doped armchair carbon nanotube; suggest that it is more stable than (4, 4) and (5, 5) doped tubes. HOMO - LUMO gap of Al doped arm chair carbon nanotubes decreases linearly with the increase in diameter of the tube. This shows that confinement induce a strong effect on electronic properties of doped tubes. These combined systems can be used for future nano electronics. The ab-initio calculations were performed with SIESTA code using generalized gradient approximation (GGA).

  20. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  1. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  2. Phosphorous doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  3. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  4. TACtic- A Multi Behavioral Agent for Trading Agent Competition

    NASA Astrophysics Data System (ADS)

    Khosravi, Hassan; Shiri, Mohammad E.; Khosravi, Hamid; Iranmanesh, Ehsan; Davoodi, Alireza

    Software agents are increasingly being used to represent humans in online auctions. Such agents have the advantages of being able to systematically monitor a wide variety of auctions and then make rapid decisions about what bids to place in what auctions. They can do this continuously and repetitively without losing concentration. To provide a means of evaluating and comparing (benchmarking) research methods in this area the trading agent competition (TAC) was established. This paper describes the design, of TACtic. Our agent uses multi behavioral techniques at the heart of its decision making to make bidding decisions in the face of uncertainty, to make predictions about the likely outcomes of auctions, and to alter the agent's bidding strategy in response to the prevailing market conditions.

  5. Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite

    PubMed Central

    Xing, Mingyang; Li, Xiao; Zhang, Jinlong

    2014-01-01

    TiO2/graphene (TiO2-x/GR) composites, which are Ti3+ self-doped TiO2 nanorods decorated on boron doped graphene sheets, were synthesized via a simple one-step hydrothermal method using low-cost NaBH4 as both a reducing agent and a boron dopant on graphene. The resulting TiO2 nanorods were about 200 nm in length with exposed (100) and (010) facets. The samples were characterized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, X-band electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), transmission electron microscope (TEM), Raman, and Fourier-transform infrared spectroscopy (FTIR). The XRD results suggest that the prepared samples have an anatase crystalline structure. All of the composites tested exhibited improved photocatalytic activities as measured by the degradation of methylene blue and phenol under visible light irradiation. This improvement was attributed to the synergistic effect of Ti3+ self-doping on TiO2 nanorods and boron doping on graphene. PMID:24974890

  6. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    SciTech Connect

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui Zhuo, Shuping

    2015-10-15

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g{sup −1} at 0.2 A g{sup −1}, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb{sup 2+}, Cu{sup 2+} and Cd{sup 2+}. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents. - Graphical abstract: Three-dimensional nitrogen-doped graphene aerogels were prepared by using melamine as reducing and functionalizing agent in an aqueous medium with ammonia, which showed multifunctional applications in supercapacitors and adsorption. - Highlights: • Three-dimensional nitrogen-doped graphene aerogels (NGAs) were prepared. • Melamine was used as reducing and functionalizing agent. • NGAs exhibited relatively good electrochemical properties in supercapacitor. • NGAs exhibited high adsorption performance toward several metal ions. • CNGAs showed outstanding adsorption capacities for various oils and solvents.

  7. [Legal aspects of medicine and sports doping].

    PubMed

    Misson, L; Botteman, C

    2001-04-01

    Classically, doping is envisaged in terms of the penal or disciplinary consequences it can entail for the sportsman or his (her) sport physician. In our Community, the sportsman who uses doping will in the future not be prosecuted. Another question remains: is a sportsman who was given doping substances by his physician and suffered from this treatment entitled to bring an action against the physician? PMID:11421167

  8. Thallium-doped lead selenide

    SciTech Connect

    Surin, V.Yu.; Tamm, M.E.; Zlomanov, V.P.

    1988-04-01

    Measurements have been made on the properties of thallium-doped lead selenide as a function of mixture composition for crystals grown from the vapor by the vapor-liquid-crystal mechanism. Tl is an acceptor dope, and p-type conductivity is obtained from a mixture of composition Pb/sub x/Tl/sub y/Se/sub z/ with z = 0.413 and y greater than or equal to 0.018 or with y = 0.01 and x less than or equal to 0.52. The (p/sub Pb/-p/sub Tl/)/sub 973K/ partial-pressure diagram has been calculated for the Pb-Tl-Se system. The dependence on thallium vapor pressure has been determined for the composition of thallium-doped lead selenide made by diffusion annealing at p/sub Pb/ = const. With p/sub Pb/ = 1.3332 Pa and p/sub Tl/ greater than or equal to 1.87 /times/ 10/sup /minus/3/ Pa, one obtains p-type conductivity.

  9. Chemical approaches for doping nanodevice architectures.

    PubMed

    O'Connell, John; Biswas, Subhajit; Duffy, Ray; Holmes, Justin D

    2016-08-26

    Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions. PMID:27418239

  10. Al-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kadam, Pratibha; Agashe, Chitra; Mahamuni, Shailaja

    2008-11-01

    Al3+-doped ZnO nanocrystals were differently obtained by wet chemical and an electrochemical route. An increase in forbidden gap due to change in crystal size and also due to Al3+ doping in ZnO is critically analyzed. The Moss-Burstein type shift in Al3+-doped ZnO nanocrystals provides an evidence of successful Al3+ doping in ZnO nanocrystals. The possibility of varying the carrier concentration in ZnO nanocrystals is the indirect implication of the present investigations.

  11. Quasiparticle excitations of adsorbates on doped graphene

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Wickenburg, Sebastian; Wong, Dillon; Karrasch, Christoph; Wang, Yang; Lu, Jiong; Omrani, Arash A.; Brar, Victor; Tsai, Hsin-Zon; Wu, Qiong; Corsetti, Fabiano; Mostofi, Arash; Kawakami, Roland K.; Moore, Joel; Zettl, Alex; Louie, Steven G.; Crommie, Mike

    Adsorbed atoms and molecules can modify the electronic structure of graphene, but in turn it is also possible to control the properties of adsorbates via the graphene substrate. In my talk, I will discuss the electronic structure of F4-TCNQ molecules on doped graphene and present a first-principles based theory of quasiparticle excitations that captures the interplay of doping-dependent image charge interactions between substrate and adsorbate and electron-electron interaction effects on the molecule. The resulting doping-dependent quasiparticle energies will be compared to experimental scanning tunnelling spectra. Finally, I will also discuss the effects of charged adsorbates on the electronic structure of doped graphene.

  12. Chemical approaches for doping nanodevice architectures

    NASA Astrophysics Data System (ADS)

    O’Connell, John; Biswas, Subhajit; Duffy, Ray; Holmes, Justin D.

    2016-08-01

    Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III–V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III–V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.

  13. Gelled Anti-icing Agents

    NASA Technical Reports Server (NTRS)

    Markles, O. F.; Sperber, H. H.

    1983-01-01

    Pectin added to antifreeze/water mixture. Formulations include water with dimethyl sulfoxide (DMSO) as deicer and pectin as gel former. Without gelling agent, deicer runs off vertical surfaces. Without pectin solution will completely evaporate in far less time. Agents developed have wide potential for ice prevention on runways, highways, bridges and sidewalks.

  14. Agent-Based Literacy Theory

    ERIC Educational Resources Information Center

    McEneaney, John E.

    2006-01-01

    The purpose of this theoretical essay is to explore the limits of traditional conceptualizations of reader and text and to propose a more general theory based on the concept of a literacy agent. The proposed theoretical perspective subsumes concepts from traditional theory and aims to account for literacy online. The agent-based literacy theory…

  15. Hypersensitivity to antineoplastic agents.

    PubMed

    Castells, M C

    2008-01-01

    The need to offer first line therapy for primary and recurrent cancers has spurred the clinical development of rapid desensitizations for chemotherapy and monoclonal antibodies. Rapid desensitizations allow patients to be treated with medications to which they have presented with hypersensitivity reactions (HSRs), including anaphylaxis. Rapid desensitization achieves temporary tolerization to full therapeutic doses by slow administration of incremental doses of the drug inducing the HSR. Protocols are available for most chemotherapy agents, including taxanes, platins, doxorubicin, monoclonal antibodies, and others. Candidate patients include those who present with type I HSRs, mast cell/IgE dependent, including anaphylaxis, and non-IgE mediated HSRs, during the chemotherapy infusion or shortly after. Idiosyncratic reactions, erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis are not amenable to rapid desensitization. The recommendation for rapid desensitization can only be made by allergy and immunology specialists and can only be performed in settings with one-to-one nurse-patient care and where resuscitation personnel and resources are readily available. Repeated desensitizations can be safely performed in outpatient settings with similar conditions, which allow cancer patients to remain in clinical studies. We have generated a universal 12-step protocol that was applied to 413 cases of intravenous and intraperitoneal rapid desensitizations using taxanes, platins, liposomal doxorubicin, doxorubicin, rituximab, and other chemotherapy drugs. Under this protocol all patients were able to complete their target dose, and 94% of the patients had limited or no reactions. No deaths or codes were reported, indicating that the procedure was safe and effective in delivering first line chemotherapy drugs. PMID:18991707

  16. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  17. Activating Nonreducible Oxides via Doping.

    PubMed

    Nilius, Niklas; Freund, Hans-Joachim

    2015-05-19

    Nonreducible oxides are characterized by large band gaps and are therefore unable to exchange electrons or to form bonds with surface species, explaining their chemical inertness. The insertion of aliovalent dopants alters this situation, as new electronic states become available in the gap that may be involved in charge-transfer processes. Consequently, the adsorption and reactivity pattern of doped oxides changes with respect to their nondoped counterparts. This Account describes scanning tunneling microscopy (STM) and photoelectron spectroscopy (XPS) experiments that demonstrate the impact of dopants on the physical and chemical properties of well-defined crystalline oxide films. For this purpose, MgO and CaO as archetypical rocksalt oxides have been loaded either with high-valence (Mo, Cr) or low-valence dopants (Li). While the former generate filled states in the oxide band gap and serve as electron donors, the latter produce valence-band holes and give rise to an acceptor response. The dopant-related electronic states and their polarization effect on the surrounding host material are explored with XPS and STM spectroscopy on nonlocal and local scales. Moreover, charge-compensating defects were found to develop in the oxide lattice, such as Ca and O vacancies in Mo- and Li-doped CaO films, respectively. These native defects are able to trap the excess charges of the impurities and therefore diminish the desired doping effect. If noncompensated dopants reside in the host lattice, electron exchange with surface species is observed. Mo ions in CaO, for example, were found to donate electrons to surface Au atoms. The anionic Au strongly binds to the CaO surface and nucleates in the form of monolayer islands, in contrast to the 3D growth prevailing on pristine oxides. Charge transfer is also revealed for surface O2 that traps one Mo electron by forming a superoxo-species. The activated oxygen is characterized by a reinforced binding to the surface, an elongated O

  18. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  19. Markov Tracking for Agent Coordination

    NASA Technical Reports Server (NTRS)

    Washington, Richard; Lau, Sonie (Technical Monitor)

    1998-01-01

    Partially observable Markov decision processes (POMDPs) axe an attractive representation for representing agent behavior, since they capture uncertainty in both the agent's state and its actions. However, finding an optimal policy for POMDPs in general is computationally difficult. In this paper we present Markov Tracking, a restricted problem of coordinating actions with an agent or process represented as a POMDP Because the actions coordinate with the agent rather than influence its behavior, the optimal solution to this problem can be computed locally and quickly. We also demonstrate the use of the technique on sequential POMDPs, which can be used to model a behavior that follows a linear, acyclic trajectory through a series of states. By imposing a "windowing" restriction that restricts the number of possible alternatives considered at any moment to a fixed size, a coordinating action can be calculated in constant time, making this amenable to coordination with complex agents.

  20. Preparation and application of L-cysteine-doped Keggin polyoxometalate microtubes

    SciTech Connect

    Shen Yan; Peng Jun; Zhang Huanqiu; Meng Cuili; Zhang Fang

    2012-01-15

    L-cysteine-doped tungstosilicate (Lcys-SiW{sub 12}) microtubes are prepared, and the amount of L-cysteine doped in the microtubes can be tuned to some extent. The as-prepared Lcys-SiW{sub 12} microtubes are sensitive to ammonia gas exhibited through the distinct color change of the microtubes from light purple to dark blue after exposing to ammonia gas. A possible mechanism of the coloration is that the adsorbed ammonia molecules increase the basicity of the Lcys-SiW{sub 12} microtubes and promote the redox reaction between L-cysteine and polyoxometalate. This is a pH-dependent solid-solid redox reaction, which is triggered by proton capture agent. The Lcys-SiW{sub 12} microtubes show application in chemical sensors for alkaline gases. - Graphical abstract: The Lcys-SiW{sub 12} microtubes were formed during transformation of the monolacunary Keggin-type [{alpha}-SiW{sub 11}O{sub 39}]{sup 8-} to the saturated Keggin-type [{alpha}-SiW{sub 12}O{sub 40}]{sup 4-}, meanwhile L-cysteine molecules were doped during the growth of the microtubes. Highlights: Black-Right-Pointing-Pointer L-cysteine-doped polyoxometalate microtubes are prepared. Black-Right-Pointing-Pointer Amount of L-cysteine doped in the microtubes can be tuned to some extent. Black-Right-Pointing-Pointer Lcys-SiW{sub 12} microtubes can be applied as a sensor for detecting alkaline gases. Black-Right-Pointing-Pointer This is a proton capture agent-triggered solid-solid redox reaction.

  1. Knowledge focus via software agents

    NASA Astrophysics Data System (ADS)

    Henager, Donald E.

    2001-09-01

    The essence of military Command and Control (C2) is making knowledge intensive decisions in a limited amount of time using uncertain, incorrect, or outdated information. It is essential to provide tools to decision-makers that provide: * Management of friendly forces by treating the "friendly resources as a system". * Rapid assessment of effects of military actions againt the "enemy as a system". * Assessment of how an enemy should, can, and could react to friendly military activities. Software agents in the form of mission agents, target agents, maintenance agents, and logistics agents can meet this information challenge. The role of each agent is to know all the details about its assigned mission, target, maintenance, or logistics entity. The Mission Agent would fight for mission resources based on the mission priority and analyze the effect that a proposed mission's results would have on the enemy. The Target Agent (TA) communicates with other targets to determine its role in the system of targets. A system of TAs would be able to inform a planner or analyst of the status of a system of targets, the effect of that status, adn the effect of attacks on that system. The system of TAs would also be able to analyze possible enemy reactions to attack by determining ways to minimize the effect of attack, such as rerouting traffic or using deception. The Maintenance Agent would scheudle maintenance events and notify the maintenance unit. The Logistics Agent would manage shipment and delivery of supplies to maintain appropriate levels of weapons, fuel and spare parts. The central idea underlying this case of software agents is knowledge focus. Software agents are createad automatically to focus their attention on individual real-world entities (e.g., missions, targets) and view the world from that entities perspective. The agent autonomously monitors the entity, identifies problems/opportunities, formulates solutions, and informs the decision-maker. The agent must be

  2. Ferromagnetism in doped or undoped spintronics nanomaterials

    NASA Astrophysics Data System (ADS)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  3. Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Tan, Jing; Zou, Rui; Zhang, Jie; Li, Wang; Zhang, Liqun; Yue, Dongmei

    2016-02-01

    An easy, large-scale synthesis of N-doped carbon quantum dots (CQDs) was developed by using isophorone diisocyanate (IPDI) as a single carbon source under microwave irradiation. The yield of raw N-doped CQDs was about 83%, which is suitable for industrial-scale production. A detailed formation mechanism for N-doped CQDs involving self-polymerization and condensation of IPDI was demonstrated. Moreover, the obtained N-doped CQDs can be homogeneously dispersed in various organic monomers and do not need toxic organic solvents as dispersing agents. This advantage expands the range of applications of CQDs in composites. The N-doped CQDs dispersed in polyurethane (PU) matrixes emit not only fluorescence but also phosphorescence and delayed fluorescence at room temperature upon excitation with ultraviolet (UV) light. Furthermore, the phosphorescence of CQD/PU composites is sensitive to oxygen and therefore, the obtained-CQDs could be exploited in the development of novel oxygen sensors.An easy, large-scale synthesis of N-doped carbon quantum dots (CQDs) was developed by using isophorone diisocyanate (IPDI) as a single carbon source under microwave irradiation. The yield of raw N-doped CQDs was about 83%, which is suitable for industrial-scale production. A detailed formation mechanism for N-doped CQDs involving self-polymerization and condensation of IPDI was demonstrated. Moreover, the obtained N-doped CQDs can be homogeneously dispersed in various organic monomers and do not need toxic organic solvents as dispersing agents. This advantage expands the range of applications of CQDs in composites. The N-doped CQDs dispersed in polyurethane (PU) matrixes emit not only fluorescence but also phosphorescence and delayed fluorescence at room temperature upon excitation with ultraviolet (UV) light. Furthermore, the phosphorescence of CQD/PU composites is sensitive to oxygen and therefore, the obtained-CQDs could be exploited in the development of novel oxygen sensors. Electronic

  4. Agent Communications using Distributed Metaobjects

    SciTech Connect

    Goldsmith, Steven Y.; Spires, Shannon V.

    1999-06-10

    There are currently two proposed standards for agent communication languages, namely, KQML (Finin, Lobrou, and Mayfield 1994) and the FIPA ACL. Neither standard has yet achieved primacy, and neither has been evaluated extensively in an open environment such as the Internet. It seems prudent therefore to design a general-purpose agent communications facility for new agent architectures that is flexible yet provides an architecture that accepts many different specializations. In this paper we exhibit the salient features of an agent communications architecture based on distributed metaobjects. This architecture captures design commitments at a metaobject level, leaving the base-level design and implementation up to the agent developer. The scope of the metamodel is broad enough to accommodate many different communication protocols, interaction protocols, and knowledge sharing regimes through extensions to the metaobject framework. We conclude that with a powerful distributed object substrate that supports metaobject communications, a general framework can be developed that will effectively enable different approaches to agent communications in the same agent system. We have implemented a KQML-based communications protocol and have several special-purpose interaction protocols under development.

  5. Facile preparation and bifunctional imaging of Eu-doped GdPO4 nanorods with MRI and cellular luminescence.

    PubMed

    Du, Qijun; Huang, Zhongbing; Wu, Zhi; Meng, Xianwei; Yin, Guangfu; Gao, Fabao; Wang, Lei

    2015-03-01

    The biocompatibility of multifunctional nanomaterials is very important for their clinical applications. Herein, the hexagonal crystal Eu-doped GdPO4 nanorods (NRs) in the template of silk fibroin (SF) peptides are successfully synthesized via a mineralization process. The sizes of the Eu-doped GdPO4 NRs with SF peptides (SF-NRs) are ∼150 nm in length and ∼10 nm in diameter. The Eu-doped SF-NRs have strong pink luminescence and a mass magnetic susceptibility value of 1.27 emu g(-1) in 20,000 G of magnetic field due to Eu ion doping. The cell test indicates that the Eu-doped SF-NRs obviously promote the viability of cells at an NR concentration of 25-200 μg mL(-1). A growth mechanism of Eu-doped GdPO4 SF-NRs is proposed to explain their strong cellular luminescence, magnetic resonance (MR) imaging and good cyto-compatibility. Compared to NRs without SF, the Eu-doped SF-NRs not only exhibit a higher effective positive signal-enhancement ability (the longitudinal relaxivity r1 value is 1.38 (Gd mM s)(-1)) and in vivo T1 weighted MR imaging enhancement under a 7.0 T MRI system, but also show the better luminescence imaging of living cells under the fluorescence microscope. This indicates that the Eu-doped SF-NRs have potential as T1 MRI contrast agents and optical imaging probes. PMID:25630852

  6. Chemical agent detection by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.; Morrisey, Kevin; Christesen, Steven D.

    2004-03-01

    In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.

  7. Synthesis of mesoporous sulfur-doped Ta2O5 nanocomposites and their photocatalytic activities.

    PubMed

    Ismail, Adel A; Faisal, M; Harraz, Farid A; Al-Hajry, A; Al-Sehemi, A G

    2016-06-01

    Mesoporous sulfur (S)-doped Ta2O5 nanocomposites have been synthesized for the first time through the sol-gel reaction of tantalum chloride and thiourea in the presence of a F127 triblock copolymer as structure directing agent. The as-formed mesophase S-doped Ta2O5 hybrid gels were calcined at 700°C for 4h to obtain mesoporous S-Ta2O5 nanocomposites. The experimental results indicated that the surface area of the S-doped Ta2O5 was up to 50m(2)g(-1) and the pore diameter was controllable in the range of 3-7.7nm. The S-doped Ta2O5 nanocomposites behave as superior visible light-sensitive photocatalysts and the 1.5at.% S-doped Ta2O5 (S1.5) photocatalyst exhibited excellent photocatalytic activity of ∼92% for the photodegradation of methylene blue, identical to 80% TOC removal after three hours illumination under visible light. The photodegradation rate of S1.5 photocatalyst showed 3.4 times higher than the undoped Ta2O5 due to their narrow bandgap, large surface area, mesostructure and well crystalline state. The S1.5 photocatalyst could be recycled at least five times without an apparent decrease in its photocatalytic efficiency, indicating its high stability for practical applications. To the best of our knowledge, this is the first report that demonstrates one-step synthesis of mesoporous S-doped Ta2O5 nanocomposites as an efficient photocatalysts under visible light illumination. PMID:27017474

  8. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  9. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  10. Li diffusion through doped and defected graphene.

    PubMed

    Das, Deya; Kim, Seungchul; Lee, Kwang-Ryeol; Singh, Abhishek K

    2013-09-28

    We investigate the effect of nitrogen and boron doping on Li diffusion through defected graphene using first principles based density functional theory. While a high energy barrier rules out the possibility of Li- diffusion through the pristine graphene, the barrier reduces with the incorporation of defects. Among the most common defects in pristine graphene, Li diffusion through the divacancy encounters the lowest energy barrier of 1.34 eV. The effect of nitrogen and boron doping on the Li diffusion through doped defected-graphene sheets has been studied. N-doping in graphene with a monovacancy reduces the energy barrier significantly. The barrier reduces with the increasing number of N atoms. On the other hand, for N doped graphene with a divacancy, Li binds in the plane of the sheet, with an enhanced binding energy. The B doping in graphene with a monovacancy leads to the enhancement of the barrier. However, in the case of B-doped graphene with a divacancy, the barrier reduces to 1.54 eV, which could lead to good kinetics. The barriers do not change significantly with B concentration. Therefore, divacancy, B and N doped defected graphene has emerged as a better alternative to pristine graphene as an anode material for Li ion battery. PMID:23925460

  11. Cobalt-doped cadmium selenide colloidal nanowires.

    PubMed

    Li, Zhen; Du, Ai Jun; Sun, Qiao; Aljada, Muhsen; Cheng, Li Na; Riley, Mark J; Zhu, Zhong Hua; Cheng, Zhen Xiang; Wang, Xiao Lin; Hall, Jeremy; Krausz, Elmars; Qiao, Shi Zhang; Smith, Sean C; Lu, Gao Qing Max

    2011-11-21

    Co(2+)-doped CdSe colloidal nanowires with tunable size and dopant concentration have been prepared by a solution-liquid-solid (SLS) approach for the first time. These doped nanowires exhibit anomalous photoluminescence temperature dependence in comparison with undoped nanowires. PMID:21975534

  12. Doping silicon nanocrystals and quantum dots.

    PubMed

    Oliva-Chatelain, Brittany L; Ticich, Thomas M; Barron, Andrew R

    2016-01-28

    The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level. Methods that have been applied to the characterization of doped NCs and QDs are summarized with regard to the information that is obtained, in particular to provide researchers with a guide to the suitable techniques for determining dopant concentration and location, as well as electronic and photonic effectiveness of the dopant. PMID:26727507

  13. Doping silicon nanocrystals and quantum dots

    NASA Astrophysics Data System (ADS)

    Oliva-Chatelain, Brittany L.; Ticich, Thomas M.; Barron, Andrew R.

    2016-01-01

    The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level. Methods that have been applied to the characterization of doped NCs and QDs are summarized with regard to the information that is obtained, in particular to provide researchers with a guide to the suitable techniques for determining dopant concentration and location, as well as electronic and photonic effectiveness of the dopant.

  14. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  15. Doping explosive materials for neutron radiographic enhancement.

    NASA Technical Reports Server (NTRS)

    Golliher, K. G.

    1971-01-01

    Discussion of studies relating to the selection of doping materials of high neutron absorption usable for enhancing the neutron radiographic imaging of explosive mixtures, without interfering with the proper chemical reaction of the explosives. The results of the studies show that gadolinium oxide is an excellent material for doping explosive mixtures to enhance the neutron radiographic image.

  16. Marijuana as doping in sports.

    PubMed

    Campos, Daniel R; Yonamine, Mauricio; de Moraes Moreau, Regina L

    2003-01-01

    A high incidence of positive cases for cannabinoids, in analyses for doping control in sports, has been observed since the International Olympic Committee (IOC) included them in the 1989 list of prohibited drugs under the title of classes of prohibited substances in certain circumstances. Where the rules of sports federations so provide, tests are conducted for marijuana, hashish or any other cannabis product exposure by means of urinalysis of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid (carboxy-THC) the main metabolite of delta-9-tetrahydrocannabinol (THC). Concentrations >15 ng/mL (cut-off value) in confirmatory analytical procedures are considered doping. Cannabis is an illicit drug in several countries and has received much attention in the media for its potential therapeutic uses and the efforts to legalise its use. Studies have demonstrated that the use of cannabinoids can reduce anxiety, but it does not have ergogenic potential in sports activities. An increase in heart rate and blood pressure, decline of cardiac output and reduced psychomotor activity are some of the pharmacological effects of THC that will determine a decrease in athletic performance. An ergolytic activity of cannabis products has been observed in athletes of several different sport categories. In Brazil, analyses for doping control in sports, performed in our laboratories, have detected positive cases for carboxy-THC in urine samples of soccer, volleyball, cycling and other athletes. It is our intention to discuss in this article some points that may discourage individuals from using cannabis products during sports activities, even in the so-called permitted circumstances defined by the IOC and some sports federations. PMID:12744713

  17. Blue emission of Eu2+-doped translucent alumina

    DOE PAGESBeta

    Yang, Yan; Zhang, Lihua; Kisslinger, Kim; Wei, Hua; Melcher, Charles L.; Wu, Yiquan

    2015-08-21

    Inorganic scintillators are very important in medical and industrial measuring systems in the detection and measurement of ionizing radiation. In addition to Ce3+, a widely used dopant ion in oxide scintillators, divalent Europium (Eu2+) has shown promise as a high-luminescence, fast-response luminescence center useful in the detection of ionizing radiation. In this research, aluminum oxide (Al2O3) was studied as a host material for the divalent europium ion. Polycrystalline samples of Eu2+-doped translucent Al2O3 were fabricated, and room temperature luminescence behavior was observed. Al2O3 ceramics doped with 0.1 at% Eu2+ were fabricated with a relative density of 99.75% theoretical density andmore » in-line transmittance of 22% at a wavelength of 800 nm. The ceramics were processed by a gel-casting method, followed by sintering under high vacuum. The gelling agent, a copolymer of isobutylene and maleic anhydride, is marketed under the commercial name ISOBAM, and has the advantage of simultaneously acting as both a gelling agent and as a dispersant. The microstructure and composition of the vacuum-sintered Eu2+:Al2O3 were characterized by Scanning Electric Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy-dispersive X-ray spectroscopy (EDS). The phase composition was determined by X-ray diffraction measurements (XRD) combined with Rietveld analysis. The photoluminescence behavior of the Eu2+:Al2O3 was characterized using UV light as the excitation source, which emitted blue emission at 440 nm. The radio-luminescence of Eu2+:Al2O3 was investigated by illumination with X-ray radiation, showing three emission bands at 376 nm, 575 nm and 698 nm. Furthermore, multiple level traps at different depths were detected in the Eu2+:Al2O3 by employing thermoluminescence measurements.« less

  18. Dual vortex theory of doped Mott insulators

    SciTech Connect

    Balents, Leon; Sachdev, Subir

    2007-11-15

    We present a general framework for describing the quantum phases obtained by doping paramagnetic Mott insulators on the square lattice. The undoped insulators are efficiently characterized by the projective transformations of various fields under the square lattice space group (the PSG). We show that the PSG also imposes powerful constraints on the doped system, and on the effective action for the vortex and Bogoliubov quasiparticle excitations of superconducting states. This action can also be extended across transitions to supersolid or insulating states at non-zero doping. For the case of a valence bond solid (VBS) insulator, we show that the doped system has the same PSG as that of elementary bosons with density equal to the density of electron Cooper pairs. We also discuss aspects of the action for a d-wave superconductor obtained by doping a 'staggered-flux' spin liquid state.

  19. Bismuth-ring-doped fibres

    SciTech Connect

    Zlenko, Aleksandr S; Dvoirin, Vladislav V; Bogatyrev, Vladimir A; Firstov, Sergei V; Akhmetshin, Ural G

    2009-11-30

    A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO{sub 2} content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications. (optical fibres and fibreoptic sensors)

  20. Introducing Infectious Agents and Cancer

    PubMed Central

    Buonaguro, Franco M; Lewis, George K; Pelicci, PierGiuseppe

    2006-01-01

    Infectious Agents and Cancer is a new open access, peer-reviewed, online journal, which encompasses all aspects of basic, clinical and translational research that provide an insight into the association between chronic infections and cancer. PMID:23509916

  1. Diamine curing agents for polyurethanes

    NASA Technical Reports Server (NTRS)

    Bell, V. L.; St. Clair, T. L.

    1975-01-01

    Three aromatic diamines have properties that make them promising candidates as curing agents for converting isocyanates to polyurethanes with higher adhesive strengths, higher softening temperatures, better toughness, and improved abrasion resistance.

  2. Triggered pore-forming agents

    DOEpatents

    Bayley, Hagan; Walker, Barbara J.; Chang, Chung-yu; Niblack, Brett; Panchal, Rekha

    1998-01-01

    An inactive pore-forming agent which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell.

  3. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  4. AL Amyloidosis and Agent Orange

    MedlinePlus

    ... for survivors' benefits . Research on AL amyloidosis and herbicides The Health and Medicine Division (formally known as ... to the compounds of interest found in the herbicide Agent Orange and AL amyloidosis." VA made a ...

  5. Agent-based forward analysis

    SciTech Connect

    Kerekes, Ryan A.; Jiao, Yu; Shankar, Mallikarjun; Potok, Thomas E.; Lusk, Rick M.

    2008-01-01

    We propose software agent-based "forward analysis" for efficient information retrieval in a network of sensing devices. In our approach, processing is pushed to the data at the edge of the network via intelligent software agents rather than pulling data to a central facility for processing. The agents are deployed with a specific query and perform varying levels of analysis of the data, communicating with each other and sending only relevant information back across the network. We demonstrate our concept in the context of face recognition using a wireless test bed comprised of PDA cell phones and laptops. We show that agent-based forward analysis can provide a significant increase in retrieval speed while decreasing bandwidth usage and information overload at the central facility. n

  6. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  7. What makes virtual agents believable?

    NASA Astrophysics Data System (ADS)

    Bogdanovych, Anton; Trescak, Tomas; Simoff, Simeon

    2016-01-01

    In this paper we investigate the concept of believability and make an attempt to isolate individual characteristics (features) that contribute to making virtual characters believable. As the result of this investigation we have produced a formalisation of believability and based on this formalisation built a computational framework focused on simulation of believable virtual agents that possess the identified features. In order to test whether the identified features are, in fact, responsible for agents being perceived as more believable, we have conducted a user study. In this study we tested user reactions towards the virtual characters that were created for a simulation of aboriginal inhabitants of a particular area of Sydney, Australia in 1770 A.D. The participants of our user study were exposed to short simulated scenes, in which virtual agents performed some behaviour in two different ways (while possessing a certain aspect of believability vs. not possessing it). The results of the study indicate that virtual agents that appear resource bounded, are aware of their environment, own interaction capabilities and their state in the world, agents that can adapt to changes in the environment and exist in correct social context are those that are being perceived as more believable. Further in the paper we discuss these and other believability features and provide a quantitative analysis of the level of contribution for each such feature to the overall perceived believability of a virtual agent.

  8. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    PubMed

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect. PMID:26454373

  9. Encapsulated boron as an osteoinductive agent for bone scaffolds.

    PubMed

    Gümüşderelioğlu, Menemşe; Tunçay, Ekin Ö; Kaynak, Gökçe; Demirtaş, Tolga T; Aydın, Seda Tığlı; Hakkı, Sema S

    2015-01-01

    The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells. PMID:26004902

  10. From Impurity Doping to Metallic Growth in Diffusion Doping: Properties and Structure of Silver-Doped InAs Nanocrystals.

    PubMed

    Amit, Yorai; Li, Yuanyuan; Frenkel, Anatoly I; Banin, Uri

    2015-11-24

    Tuning of the electronic properties of presynthesized colloidal semiconductor nanocrystals (NCs) by doping plays a key role in the prospect of implementing them in printed electronics devices such as transistors and photodetectors. While such impurity doping reactions have already been introduced, the understanding of the doping process, the nature of interaction between the impurity and host atoms, and the conditions affecting the solubility limit of impurities in nanocrystals are still unclear. Here, we used a postsynthesis diffusion-based doping reaction to introduce Ag impurities into InAs NCs. Optical absorption spectroscopy and analytical inductively coupled plasma mass spectroscopy (ICP-MS) were used to present a two-stage doping model consisting of a "doping region" and a "growth region", depending on the impurity to NC ratio in the reaction vessel. X-ray absorption fine-structure (XAFS) spectroscopy was employed to determine the impurity location and correlate between the structural and electronic properties for different sizes of InAs NCs and dopant concentrations. The resulting structural model describes a heterogeneous system where the impurities initially dope the NC, by substituting for In atoms near the surface of the NC, until the "solubility limit" is reached, after which the rapid growth and formation of metallic structures are identified. PMID:26390173

  11. Effect of Er doping on the structural and magnetic properties of cobalt-ferrite

    SciTech Connect

    Prathapani, Sateesh; Vinitha, M.; Das, D.; Jayaraman, T. V.

    2014-05-07

    Nanocrystalline particulates of Er doped cobalt-ferrites CoFe{sub (2−x)}Er{sub x}O{sub 4} (0 ≤ x ≤ 0.04), were synthesized, using sol-gel assisted autocombustion method. Co-, Fe-, and Er- nitrates were the oxidizers, and malic acid served as a fuel and chelating agent. Calcination (400–600 °C for 4 h) of the precursor powders was followed by sintering (1000 °C for 4 h) and structural and magnetic characterization. X-ray diffraction confirmed the formation of single phase of spinel for the compositions x = 0, 0.01, and 0.02; and for higher compositions an additional orthoferrite phase formed along with the spinel phase. Lattice parameter of the doped cobalt-ferrites was higher than that of pure cobalt-ferrite. The observed red shift in the doped cobalt-ferrites indicates the presence of induced strain in the cobalt-ferrite matrix due to large size of the Er{sup +3} compared to Fe{sup +3}. Greater than two-fold increase in coercivity (∼66 kA/m for x = 0.02) was observed in doped cobalt-ferrites compared to CoFe{sub 2}O{sub 4} (∼29 kA/m)

  12. Structural and photoluminescence properties of terbium-doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ningthoujam Surajkumar, Singh; Shougaijam Dorendrajit, Singh; Sanoujam Dhiren, Meetei

    2014-05-01

    We present in this paper a study of the structural and photoluminescence (PL) properties of terbium (Tb) doped zinc oxide (ZnO) nanoparticles synthesized by a simple low temperature chemical precipitation method, using zinc acetate and terbium nitrate in an isopropanol medium with diethanolamine (DEA) as the capping agent at 60 °C. The as-prepared samples were heat treated and the PL of the annealed samples were studied. The prepared nanoparticles were characterized with X-ray diffraction (XRD). The XRD patterns show the pattern of typical ZnO nanoparticles and correspond with the standard XRD pattern given by JCPDS card No. 36-1451, showing the hexagonal phase structure. The PL intensity was enhanced due to Tb3+ doping, and it decreased at higher concentrations of Tb3+ doping after reaching a certain optimum concentration. The PL spectra of Tb3+ doped samples exhibited blue, bluish green, and green emissions at 460 nm (5D3 - 7F3), 484 nm (5D4 - 7F6), and 530 nm (5D4 - 7F5), respectively, which were more intense than the emissions for the undoped ZnO sample. Based on the results, an energy level schematic diagram was proposed to explain the possible electron transition processes.

  13. Room Temperature Ferromagnetism in Cr-doped ZnS Nanoparticles

    NASA Astrophysics Data System (ADS)

    Reddy, D. Amaranatha; Murali, G.; Vijayalakshmi, R. P.; Reddy, B. K.

    2011-10-01

    Cr-doped ZnS nanoparticles with Cr concentration of 2 atm.% were successfully synthesized by the chemical co-precipitation method using 2-mercapto ethanol as the capping agent. The structural, optical characteristics and magnetic properties of the prepared samples were studied. Energy Dispersive spectroscopy (EDS) measurements showed the existence of Cr ion in the Cr doped ZnS. No mixed phase was observed from X-ray diffraction (XRD) studies and all the peaks were indexed to the cubic phase of ZnS. The diameter is in the range of 5-10 nm, it was confirmed by TEM studies. The photoluminescence spectra of all the samples exhibited a broad emission band located around 435 nm. The luminescence intensity decreased by doping Cr. The magnetic behavior of the nanoparticles for Cr doped ZnS was investigated using a vibrating sample magnetometer (VSM). We determined the magnetic parameters such as saturation magnetization (MS), coercivity (HC) and retentivity (MR) with Cr concentration from M-H loop.

  14. Detection of β-methylphenethylamine, a novel doping substance, by means of UPLC/MS/MS.

    PubMed

    Chołbiński, Piotr; Wicka, Mariola; Kowalczyk, Katarzyna; Jarek, Anna; Kaliszewski, Paweł; Pokrywka, Andrzej; Bulska, Ewa; Kwiatkowska, Dorota

    2014-06-01

    Novel substances of expected doping activity are constantly introduced to the market. β-Methylphenethylamine (BMPEA) is classified as a doping agent by the World Anti-Doping Agency as it is a positional isomer of amphetamine. In this work, the development and application of a simple and rapid analytical procedure that enables discrimination between both isomers is described. The analytes of interest were extracted from urine by a two-step liquid-liquid extraction and then analyzed by UPLC/MS/MS under isocratic conditions. The entire analytical procedure was validated by evaluating its selectivity, discrimination capabilities, carry-over, sensitivity, and influence of matrix effects on its performance. Application of the method resulted in detection of BMPEA in eight anti-doping samples, including the first report of adverse analytical finding regarding its use. Further analysis showed that BMPEA may be eliminated unchanged along with its phase II conjugates, the hydrolysis of which may considerably improve detection capabilities of the method. Omission of the hydrolysis step may therefore, produce false-negative results. Testing laboratories should also carefully examine their LC/MS/MS-based amphetamine and BMPEA findings as both isomers fragment yielding comparable collision-induced dissociation spectra and their insufficient chromatographic separation may result in misidentification. This is of great importance in case of forensic analyses as BMPEA is not controlled by the public law, and its manufacturing, distribution, and use are legal. PMID:24633566

  15. Preparation and Characterization of Fe-Doped TiO2 Films Covered on Silicagel

    NASA Astrophysics Data System (ADS)

    Nghia, Nguyen Manh; Hue, Nguyen Thi; Thu, Ma Thi Anh; Len, Phung Thi; Thu, Vu Thi; Lam, Tran Dai

    2016-07-01

    This study describes sol-gel preparation of (TiO2:Fe x )/SiO2 ( x = 0-0.8%) on silicagel grains using titanium tetraisopropoxide and iron (III) chloride as titanium precursor and doping agent, respectively. The structural properties, morphology, and chemical composition of the samples were thoroughly studied using x-ray diffraction, field emission scanning electron microscopy, and energy-dispersive x-ray spectroscopy, respectively. The results demonstrated the formation of highly pure anatase TiO2:Fe x crystals with diameters of several tens of nanometers. With increasing doping level, no significant change in porosity of TiO2 material was observed, whereas the decrease in crystalline size was easily recorded. In addition, the bandgap (observed by UV-Vis) was dramatically shifted from 2.9 eV to 1.7 eV as doping with TiO2 with Fe at doping content as low as 0.8%. The use of silicagel as a solid support to carry photocatalytic crystals enables recycling of the material. These findings represent a simple pathway to design reusable catalyst for highly effective water detoxification under visible illumination.

  16. Preparation and Characterization of Fe-Doped TiO2 Films Covered on Silicagel

    NASA Astrophysics Data System (ADS)

    Nghia, Nguyen Manh; Hue, Nguyen Thi; Thu, Ma Thi Anh; Len, Phung Thi; Thu, Vu Thi; Lam, Tran Dai

    2016-04-01

    This study describes sol-gel preparation of (TiO2:Fe x )/SiO2 (x = 0-0.8%) on silicagel grains using titanium tetraisopropoxide and iron (III) chloride as titanium precursor and doping agent, respectively. The structural properties, morphology, and chemical composition of the samples were thoroughly studied using x-ray diffraction, field emission scanning electron microscopy, and energy-dispersive x-ray spectroscopy, respectively. The results demonstrated the formation of highly pure anatase TiO2:Fe x crystals with diameters of several tens of nanometers. With increasing doping level, no significant change in porosity of TiO2 material was observed, whereas the decrease in crystalline size was easily recorded. In addition, the bandgap (observed by UV-Vis) was dramatically shifted from 2.9 eV to 1.7 eV as doping with TiO2 with Fe at doping content as low as 0.8%. The use of silicagel as a solid support to carry photocatalytic crystals enables recycling of the material. These findings represent a simple pathway to design reusable catalyst for highly effective water detoxification under visible illumination.

  17. Effects of glycerol and creatine hyperhydration on doping-relevant blood parameters.

    PubMed

    Polyviou, Thelma P; Easton, Chris; Beis, Lukas; Malkova, Dalia; Takas, Pantazis; Hambly, Catherine; Speakman, John R; Koehler, Karsten; Pitsiladis, Yannis P

    2012-09-01

    Glycerol is prohibited as an ergogenic aid by the World Anti-Doping Agency (WADA) due to the potential for its plasma expansion properties to have masking effects. However, the scientific basis of the inclusion of Gly as a "masking agent" remains inconclusive. The purpose of this study was to determine the effects of a hyperhydrating supplement containing Gly on doping-relevant blood parameters. Nine trained males ingested a hyperhydrating mixture twice per day for 7 days containing 1.0 g·kg(-1) body mass (BM) of Gly, 10.0 g of creatine and 75.0 g of glucose. Blood samples were collected and total hemoglobin (Hb) mass determined using the optimized carbon monoxide (CO) rebreathing method pre- and post-supplementation. BM and total body water (TBW) increased significantly following supplementation by 1.1 ± 1.2 and 1.0 ± 1.2 L (BM, P < 0.01; TBW, P <0.01), respectively. This hyperhydration did not significantly alter plasma volume or any of the doping-relevant blood parameters (e.g., hematocrit, Hb, reticulocytes and total Hb-mass) even when Gly was clearly detectable in urine samples. In conclusion, this study shows that supplementation with hyperhydrating solution containing Gly for 7 days does not significantly alter doping-relevant blood parameters. PMID:23112907

  18. Bottom-Up Synthesis of Metal-Ion-Doped WS₂ Nanoflakes for Cancer Theranostics.

    PubMed

    Cheng, Liang; Yuan, Chao; Shen, Sida; Yi, Xuan; Gong, Hua; Yang, Kai; Liu, Zhuang

    2015-11-24

    Recently, two-dimensional transition metal dichalcogenides (TMDCs) have received tremendous attention in many fields including biomedicine. Herein, we develop a general method to dope different types of metal ions into WS2 nanoflakes, a typical class of TMDCs, and choose Gd(3+)-doped WS2 (WS2:Gd(3+)) with polyethylene glycol (PEG) modification as a multifunctional agent for imaging-guided combination cancer treatment. While WS2 with strong near-infrared (NIR) absorbance and X-ray attenuation ability enables contrasts in photoacoustic (PA) imaging and computed tomography (CT), Gd(3+) doping offers the nanostructure a paramagnetic property for magnetic resonance (MR) imaging. As revealed by trimodal PA/CT/MR imaging, WS2:Gd(3+)-PEG nanoflakes showed efficient tumor homing after intravenous injection. In vivo cancer treatment study further uncovered that WS2:Gd(3+)-PEG could not only convert NIR light into heat for photothermal therapy (PTT) but also enhance the ionizing irradiation-induced tumor damage to boost radiation therapy (RT). Owing to the improved tumor oxygenation after the mild PTT, the combination of PTT and RT induced by WS2:Gd(3+)-PEG resulted in a remarkable synergistic effect to destroy cancer. Our work highlights the promise of utilizing inherent physical properties of TMDC-based nanostructures, whose functions could be further enriched by elementary doping, for applications in multimodal bioimaging and synergistic cancer therapy. PMID:26445029

  19. Sensitized broadband near-infrared luminescence from bismuth-doped silicon-rich silica films.

    PubMed

    Miwa, Yuji; Sun, Hong-Tao; Imakita, Kenji; Fujii, Minoru; Teng, Yu; Qiu, Jianrong; Sakka, Yoshio; Hayashi, Shinji

    2011-11-01

    Developing Si compatible optical sources has attracted a great deal of attention owing to the potential for forming inexpensive, monolithic Si-based integrated devices. In this Letter, we show that ultra broadband near-IR (NIR) luminescence in the optical telecommunication window of silica optical fibers was obtained for Bi-doped silicon-rich silica films prepared by a co-sputtering method. Without excess Si, i.e., Bi-doped pure silica films, no luminescence was observed in the NIR range. A broad Bi-related NIR photoluminescence appears when excess Si was doped in the Bi-doped silica. The luminescence properties depended strongly on the amount of excess Si and the annealing temperature. Photoluminescence results suggest that excess Si acts as an agent to activate Bi NIR luminescence centers and also as an energy donor to transfer excitation energy to the centers. It is believed that this peculiar structure might find some important applications in Si photonics. PMID:22048371

  20. Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity

    NASA Astrophysics Data System (ADS)

    Siuzdak, Katarzyna; Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Karczewski, Jakub; Ryl, Jacek

    2015-12-01

    This paper reports a novel method of boron doped titania nanotube arrays preparation by electrochemical anodization in electrolyte containing boron precursor - boron trifluoride diethyl etherate (BF3 C4H10O), simultaneously acting as an anodizing agent. A pure, ordered TiO2 nanotubes array, as a reference sample, was also prepared in solution containing a standard etching compound: ammonium fluoride. The doped and pure titania were characterized by scanning electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, photoluminescence emission spectroscopy and by means of electrochemical methods. The B-doping decidedly shifts the absorption edge of TiO2 nanotubes towards the visible light region and significantly inhibits the radiative recombination processes. Despite the fact that the doped sample is characterized by 4.6 lower real surface area when compared to pure titania, it leads to the decomposition of methylene blue in 93%, that is over 2.3 times higher than the degradation efficiency exhibited by the undoped material. The formation rate of hydroxyl radicals (rad OH) upon illumination significantly favours boron doped titania as a photocatalytic material. Moreover, the simple doping of TiO2 nanotubes array results in the enhancement of generated photocurrent from 120 μA/cm2 to 350 μA/cm2 registered for undoped and doped electrode, respectively.

  1. GaAs MESFET with lateral non-uniform doping

    NASA Technical Reports Server (NTRS)

    Wang, Y. C.; Bahrami, M.

    1983-01-01

    An analytical model of the GaAs MESFET with arbitrary non-uniform doping is presented. Numerical results for linear lateral doping profile are given as a special case. Theoretical considerations predict that better device linearity and improved F(T) can be obtained by using linear lateral doping when doping density increases from source to drain.

  2. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  3. Does water dope carbon nanotubes?

    SciTech Connect

    Bell, Robert A.; Payne, Michael C.; Mostofi, Arash A.

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup −4} e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  4. 46 CFR Sec. 2 - General Agents' authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RESPONSIBILITY OF GENERAL AGENTS TO UNDERTAKE EMERGENCY REPAIRS IN FOREIGN PORTS Sec. 2 General Agents' authority. The General Agents are hereby delegated authority to undertake for the account of the...

  5. Role of paramagnetic chromium in chromium(VI)-induced damage in cultured mammalian cells.

    PubMed

    Sugiyama, M

    1994-09-01

    Chromium(VI) compounds are known to be potent toxic and carcinogenic agents. Because chromium(VI) is easily taken up by cells and is subsequently reduced to chromium(III), the formation of paramagnetic chromium such as chromium(V) and chromium(III) is believed to play a role in the adverse biological effects of chromium(VI) compounds. The present report, uses electron spin resonance (ESR) spectroscopy; the importance of the role of paramagnetic chromium in chromium(VI)-induced damage in intact cultured cells is discussed, based upon our studies with antioxidants including vitamin E (alpha-tocopherol), B2 (riboflavin), C (ascorbic acid), and so on. These studies appear to confirm the participation of paramagnetic Cr such as chromium(V) and Chromium(III) in chromium(VI)-induced cellular damage. PMID:7843124

  6. Small animal imaging platform for quantitative assessment of short-wave infrared-emitting contrast agents

    NASA Astrophysics Data System (ADS)

    Hu, Philip; Mingozzi, Marco; Higgins, Laura M.; Ganapathy, Vidya; Zevon, Margot; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-03-01

    We report the design, calibration, and testing of a pre-clinical small animal imaging platform for use with short-wave infrared (SWIR) emitting contrast agents. Unlike materials emitting at visible or near-infrared wavelengths, SWIR-emitting agents require detection systems with sensitivity in the 1-2 μm wavelength region, beyond the range of commercially available small animal imagers. We used a collimated 980 nm laser beam to excite rare-earth-doped NaYF4:Er,Yb nanocomposites, as an example of a SWIR emitting material under development for biomedical imaging applications. This beam was raster scanned across the animal, with fluorescence in the 1550 nm wavelength region detected by an InGaAs area camera. Background adjustment and intensity non-uniformity corrections were applied in software. The final SWIR fluorescence image was overlaid onto a standard white-light image for registration of contrast agent uptake with respect to anatomical features.

  7. A amphoteric copolymer profile modification agent

    SciTech Connect

    Wang HongGuan; Yu LianCheng; Tian HongKun

    1995-11-01

    This report provides a new gel profile modification agent prepared by an amphoteric copolymer (FT-213) and a novel crosslinking agent (BY), and introduces the preparations of the amphoteric polymer, the crosslinking agent and the profile modification agent, the action mechanism, the test conditions and the evaluations of the performance of the agent. The 45 well treatments in oilfields demonstrate that the agent can be prepared conveniently, the agent has better compatibility and application performances, and the treatment life is longer with the use of the agent. 80,000 tons incremental oil and 60,000 m{sup 3} decreasing water production have been achieved.

  8. FIFA's approach to doping in football

    PubMed Central

    Dvorak, J; Graf‐Baumann, T; D'Hooghe, M; Kirkendall, D; Taennler, H; Saugy, M

    2006-01-01

    Background and objectives FIFA's anti‐doping strategy relies on education and prevention. A worldwide network of physicians guarantees doping control procedures that are straightforward and leave no place for cheating. FIFA actively acknowledges its responsibility to protect players from harm and ensure equal chances for all competitors by stringent doping control regulations, data collection of positive samples, support of research, and collaboration with other organisations. This article aims to outline FIFA's approach to doping in football. Method Description of FIFA's doping control regulations and procedures, statistical analysis of FIFA database on doping control, and comparison with data obtained by WADA accredited laboratories as for 2004. Results Data on positive doping samples per substance and confederation/nation documented at the FIFA medical office from 1994 to 2005 are provided. According to the FIFA database, the incidence of positive cases over the past 11 years was 0.12%, with about 0.42% in 2004 (based on the assumption of 20 750 samples per year) and 0.37% in 2005. Especially important in this regard is the extremely low incidence of the true performance enhancing drugs such as anabolic steroids and stimulants. However, there is a need for more consistent data collection and cross checks among international anti‐doping agencies as well as for further studies on specific substances, methods, and procedures. With regard to general health impairments in players, FIFA suggests that principles of occupational medicine should be considered and treatment with banned substances for purely medical reasons should be permitted to enable players to carry out their profession. At the same time, a firm stand has to be taken against suppression of symptoms by medication with the aim of meeting the ever increasing demands on football players. Conclusion Incidence of doping in football seems to be low, but much closer collaboration and further

  9. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  10. Excimer laser activation of ultra-shallow junctions in doped Si: Modeling, experiments and real time process monitoring

    NASA Astrophysics Data System (ADS)

    Semmar, Nadjib; Darif, Mohamed; Millon, Eric; Petit, Agnès; Etienne, Hasnaa; Delaporte, Philippe

    2012-07-01

    This work concerns the ALDIP (Laser Activation of Doping agents Implanted by Plasma immersion) project that was a successful collaboration with Ion Beam Services (IBS) corporation, the "Lasers, Plasmas and Photonic Processes" (LP3) laboratory and the GREMI laboratory. The aim of this work is to control the melted thickness (i.e. junction thickness in the range 10-100 nm) by the Real Time Reflectivity (TRR) monitoring during the Laser Thermal Processing (LTP). The LTP is achieved by using a KrF laser beam (248 nm, 27 ns) with a homogeneous 'Top-Hat' space distribution to induce a selective melting and the resolidification of the doped Si:B samples on few nanometers. This recrystallization is conducted here after the pre-amorphisation process resulting from the ionic implantation of Si (PIII IBS implanter). Thus, all the studied samples are partially amorphized and boron doped. TRR method allows the accurate evaluation of the melting threshold, the duration of the melting phase, and the maximum melted thickness. Obtained results versus laser fluence are shown in the new case of under vacuum treatment. In order to calibrate the TRR method (to determine the intensity and the profile of the TRR signal versus the melting depth), we have used the secondary ion mass spectrometry (TOF-SIMS) analysis. This technique gives the doping agents profile versus the depth before and after LTP and confirms also the melting kinetics from TRR results.

  11. A multi-agent architecture for geosimulation of moving agents

    NASA Astrophysics Data System (ADS)

    Vahidnia, Mohammad H.; Alesheikh, Ali A.; Alavipanah, Seyed Kazem

    2015-10-01

    In this paper, a novel architecture is proposed in which an axiomatic derivation system in the form of first-order logic facilitates declarative explanation and spatial reasoning. Simulation of environmental perception and interaction between autonomous agents is designed with a geographic belief-desire-intention and a request-inform-query model. The architecture has a complementary quantitative component that supports collaborative planning based on the concept of equilibrium and game theory. This new architecture presents a departure from current best practices geographic agent-based modelling. Implementation tasks are discussed in some detail, as well as scenarios for fleet management and disaster management.

  12. Next Generation Remote Agent Planner

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Muscettola, Nicola; Morris, Paul H.; Rajan, Kanna

    1999-01-01

    In May 1999, as part of a unique technology validation experiment onboard the Deep Space One spacecraft, the Remote Agent became the first complete autonomous spacecraft control architecture to run as flight software onboard an active spacecraft. As one of the three components of the architecture, the Remote Agent Planner had the task of laying out the course of action to be taken, which included activities such as turning, thrusting, data gathering, and communicating. Building on the successful approach developed for the Remote Agent Planner, the Next Generation Remote Agent Planner is a completely redesigned and reimplemented version of the planner. The new system provides all the key capabilities of the original planner, while adding functionality, improving performance and providing a modular and extendible implementation. The goal of this ongoing project is to develop a system that provides both a basis for future applications and a framework for further research in the area of autonomous planning for spacecraft. In this article, we present an introductory overview of the Next Generation Remote Agent Planner. We present a new and simplified definition of the planning problem, describe the basics of the planning process, lay out the new system design and examine the functionality of the core reasoning module.

  13. Optical recognition of biological agents

    NASA Astrophysics Data System (ADS)

    Baumgart, Chris W.; Linder, Kim Dalton; Trujillo, Josh J.

    2008-04-01

    Differentiation between particulate biological agents and non-biological agents is typically performed via a time-consuming "wet chemistry" process or through the use of fluorescent and spectroscopic analysis. However, while these methods can provide definitive recognition of biological agents, many of them have to be performed in a laboratory environment, or are difficult to implement in the field. Optical recognition techniques offer an additional recognition approach that can provide rapid analysis of a material in-situ to identify those materials that may be biological in nature. One possible application is to use these techniques to "screen" suspicious materials and to identify those that are potentially biological in nature. Suspicious materials identified by this screening process can then be analyzed in greater detail using the other, more definitive (but time consuming) analysis techniques. This presentation will describe the results of a feasibility study to determine whether optical pattern recognition techniques can be used to differentiate biological related materials from non-biological materials. As part of this study, feature extraction algorithms were developed utilizing multiple contrast and texture based features to characterize the macroscopic properties of different materials. In addition, several pattern recognition approaches using these features were tested including cluster analysis and neural networks. Test materials included biological agent simulants, biological agent related materials, and non-biological materials (suspicious white powders). Results of a series of feasibility tests will be presented along with a discussion of the potential field applications for these techniques.

  14. Inhalational exposure to nerve agents.

    PubMed

    Niven, Alexander S; Roop, Stuart A

    2004-03-01

    The respiratory system plays a major role in the pathogenesis of nerve agent toxicity. It is the major route of entry and absorption of nerve agent vapor, and respiratory failure is the most common cause of death follow-ing exposure. Respiratory symptoms are mediated by chemical irritation,muscarinic and nicotinic receptor overstimulation, and central nervous system effects. Recent attacks have demonstrated that most patients with an isolated vapor exposure developed respiratory symptoms almost immediately. Most patients had only mild and transient respiratory effects, and those that did develop significant respiratory compromise did so rapidly. These observations have significant ramifications on triage of patients in a mass-casualty situation, because patients with mild-to-moderate exposure to nerve agent vapor alone do not require decontamination and are less likely to develop progressive symptoms following initial antidote therapy. Limited data do not demonstrate significant long-term respiratory effects following nerve agent exposure and treatment. Provisions for effective respiratory protection against nerve agents is a vital consideration in any emergency preparedness or health care response plan against a chemical attack. PMID:15062227

  15. Investigational antimicrobial agents of 2013.

    PubMed

    Pucci, Michael J; Bush, Karen

    2013-10-01

    New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  16. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  17. Doped biocompatible layers prepared by laser

    NASA Astrophysics Data System (ADS)

    Jelínek, M.; Weiserová, M.; Kocourek, T.; Jurek, K.; Strnad, J.

    2010-03-01

    The contribution deals with KrF laser synthesis and study of doped biocompatible materials with focus on diamond-like carbon (DLC) and hydroxyapatite (HA). Overview of materials used for dopation is given. Experimental results of study of HA layers doped with silver are presented. Films properties were characterized using profilometer, SEM, WDX, XRD and optical transmission. Content of silver in layers moved from 0.06 to 13.7 at %. The antibacterial properties of HA, silver and doped HA layers were studied in vivo using Escherichia coli cells.

  18. Ultraviolet Lasers Realized via Electrostatic Doping Method

    PubMed Central

    Liu, X. Y.; Shan, C. X.; Zhu, H.; Li, B. H.; Jiang, M. M.; Yu, S. F.; Shen, D. Z.

    2015-01-01

    P-type doping of wide-bandgap semiconductors has long been a challenging issue for the relatively large activation energy and strong compensation of acceptor states in these materials, which hinders their applications in ultraviolet (UV) optoelectronic devices drastically. Here we show that by employing electrostatic doping method, hole-dominant region can be formed in wide bandgap semiconductors, and UV lasing has been achieved through the external injection of electrons into the hole-dominant region, confirming the applicability of the p-type wide bandgap semiconductors realized via the electrostatic doping method in optoelectronic devices. PMID:26324054

  19. Transmutation doping of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  20. Ferromagnetism studies of Cu-doped and (Cu, Al) co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Yang, H. L.; Xu, X. G.; Miao, J.; Jiang, Y.

    2011-01-01

    We have studied the room temperature ferromagnetism (FM) in Cu-doped and (Cu, Al) co-doped ZnO thin films which were grown on quartz substrates by chemical method based on a sol-gel process combining with spin-coating technology. X-ray diffraction (XRD) patterns demonstrate that both the Cu-doped and (Cu, Al) co-doped ZnO films have the hexagonal wurtzite structure with c-axis orientation. Alternating Gradient Magnetometer (AGM) measurements confirm that all the doped ZnO samples are ferromagnetic at room temperature. When the doped Cu content is 1 %, the Cu-doped ZnO film has the strongest FM. The FM significantly decreases in the (Cu, Al) co-doped ZnO films. The doping of Al ions suppresses the FM induced by the doped Cu ions.

  1. Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core.

    PubMed

    Sáez-Rodríguez, D; Nielsen, K; Rasmussen, H K; Bang, O; Webb, D J

    2013-10-01

    In this Letter, we report the fabrication of a highly photosensitive, microstructured polymer optical fiber using benzyl dimethyl ketal as a dopant, as well as the inscription of a fiber Bragg grating in the fiber. A refractive index change in the core of at least 3.2×10(-4) has been achieved, providing a grating with a strong transmission rejection of -23 dB with an inscription time of only 13 min. The fabrication method has a big advantage compared to doping step index fiber since it enables doping of the fiber without using extra dopants to compensate for the index reduction in the core introduced by the photosensitive agent. PMID:24081048

  2. Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G.

    2015-06-01

    Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PL studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.

  3. Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles

    SciTech Connect

    Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G.

    2015-06-24

    Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PL studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.

  4. Method of making highly porous, stable aluminum oxides doped with silicon

    DOEpatents

    Khosravi-Mardkhe, Maryam; Woodfield, Brian F.; Bartholomew, Calvin H.; Huang, Baiyu

    2016-03-22

    The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.

  5. Environmentally responsive MRI contrast agents

    PubMed Central

    Davies, Gemma-Louise; Kramberger, Iris; Davis, Jason J.

    2015-01-01

    Biomedical imaging techniques can provide a vast amount of anatomical information, enabling diagnosis and the monitoring of disease and treatment profile. MRI uniquely offers convenient, non-invasive, high resolution tomographic imaging. A considerable amount of effort has been invested, across several decades, in the design of non toxic paramagnetic contrast agents capable of enhancing positive MRI signal contrast. Recently, focus has shifted towards the development of agents capable of specifically reporting on their local biochemical environment, where a switch in image contrast is triggered by a specific stimulus/biochemical variable. Such an ability would not only strengthen diagnosis but also provide unique disease-specific biochemical insight. This feature article focuses on recent progress in the development of MRI contrast switching with molecular, macromolecular and nanoparticle-based agents. PMID:24040650

  6. Polycatechol Nanoparticle MRI Contrast Agents.

    PubMed

    Li, Yiwen; Huang, Yuran; Wang, Zhao; Carniato, Fabio; Xie, Yijun; Patterson, Joseph P; Thompson, Matthew P; Andolina, Christopher M; Ditri, Treffly B; Millstone, Jill E; Figueroa, Joshua S; Rinehart, Jeffrey D; Scadeng, Miriam; Botta, Mauro; Gianneschi, Nathan C

    2016-02-01

    Amphiphilic triblock copolymers containing Fe(III) -catecholate complexes formulated as spherical- or cylindrical-shaped micellar nanoparticles (SMN and CMN, respectively) are described as new T1-weighted agents with high relaxivity, low cytotoxicity, and long-term stability in biological fluids. Relaxivities of both SMN and CMN exceed those of established gadolinium chelates across a wide range of magnetic field strengths. Interestingly, shape-dependent behavior is observed in terms of the particles' interactions with HeLa cells, with CMN exhibiting enhanced uptake and contrast via magnetic resonance imaging (MRI) compared with SMN. These results suggest that control over soft nanoparticle shape will provide an avenue for optimization of particle-based contrast agents as biodiagnostics. The polycatechol nanoparticles are proposed as suitable for preclinical investigations into their viability as gadolinium-free, safe, and effective imaging agents for MRI contrast enhancement. PMID:26681255

  7. Chemical warfare. Nerve agent poisoning.

    PubMed

    Holstege, C P; Kirk, M; Sidell, F R

    1997-10-01

    The threat of civilian and military casualties from nerve agent exposure has become a greater concern over the past decade. After rapidly assessing that a nerve agent attack has occurred, emphasis must be placed on decontamination and protection of both rescuers and medical personnel from exposure. The medical system can become rapidly overwhelmed and strong emotional reactions can confuse the clinical picture. Initially, care should first be focused on supportive care, with emphasis toward aggressive airway maintenance and decontamination. Atropine should be titrated, with the goal of therapy being drying of secretions and the resolution of bronchoconstriction and bradycardia. Early administration of pralidoxime chloride maximizes antidotal efficacy. Benzodiazepines, in addition to atropine, should be administered if seizures develop. Early, aggressive medical therapy is the key to prevention of the morbidity and mortality associated with nerve agent poisoning. PMID:9330846

  8. Agent review phase one report.

    SciTech Connect

    Zubelewicz, Alex Tadeusz; Davis, Christopher Edward; Bauer, Travis LaDell

    2009-12-01

    This report summarizes the findings for phase one of the agent review and discusses the review methods and results. The phase one review identified a short list of agent systems that would prove most useful in the service architecture of an information management, analysis, and retrieval system. Reviewers evaluated open-source and commercial multi-agent systems and scored them based upon viability, uniqueness, ease of development, ease of deployment, and ease of integration with other products. Based on these criteria, reviewers identified the ten most appropriate systems. The report also mentions several systems that reviewers deemed noteworthy for the ideas they implement, even if those systems are not the best choices for information management purposes.

  9. Haloprogin: a Topical Antifungal Agent

    PubMed Central

    Harrison, E. F.; Zwadyk, P.; Bequette, R. J.; Hamlow, E. E.; Tavormina, P. A.; Zygmunt, W. A.

    1970-01-01

    Haloprogin was shown to be a highly effective agent for the treatment of experimentally induced topical mycotic infections in guinea pigs. Its in vitro spectrum of activity also includes yeasts, yeastlike fungi (Candida species), and certain gram-positive bacteria. The in vitro and in vivo antifungal activity of haloprogin against dermatophytes was equal to that observed with tolnaftate. The striking differences between the two agents were the marked antimonilial and selective antibacterial activities shown by haloprogin, contrasted with the negligible activities found with tolnaftate. Addition of serum decreased the in vitro antifungal activity of haloprogin to a greater extent than that of tolnaftate; however, diminished antifungal activity was not observed when haloprogin was applied topically to experimental dermatophytic infections. Based on its broad spectrum of antimicrobial activity, haloprogin may prove to be a superior topical agent in the treatment of dermatophytic and monilial infections in man. PMID:5422306

  10. Flowerlike C-doped BiOCl nanostructures: Facile wet chemical fabrication and enhanced UV photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Yu, Jiahui; Wei, Bo; Zhu, Lin; Gao, Hong; Sun, Wenjun; Xu, Lingling

    2013-11-01

    3D-flowerlike C-doped bismuth oxychloride (BiOCl) hierarchical structures have been synthesized through a facile, low temperature wet-chemical method using polyacrylamide (PAM) as both chelating and doping agents. The flowerlike products are composed of nanosheets, as verified by the scanning electron microscopy (SEM). The crystal structure and compositional characteristics were investigated by X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of C-doped BiOCl samples with different amounts of PAM adding were investigated by the degradation of methyl orange (MO) dye and colorless phonel contaminant under ultra-violet light irradiation. The as-prepared C-doped BiOCl exhibited much higher photocatalytic activity than the pure one. Moreover, the best performance of the photo-degradation was observed on the sample synthesized by 0.4 g PAM adding. The results show that C-doped BiOCl can be used as a promising candidate for water-purification.

  11. N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lv, Jun; Sheng, Tong; Su, Lili; Xu, Guangqing; Wang, Dongmei; Zheng, Zhixiang; Wu, Yucheng

    2013-11-01

    Using TiCl4 as the titanium source, urea as the precipitating agent, nano-TiO2/fly ash beads composite materials were prepared by hydrolysis-precipitation method. Using (NH2)2CO and (NH2)2SC as the N and S source respectively, N and S co-doped TiO2/fly ash beads composite materials were prepared by grinding them together according to a certain proportion and calcined at 500 °C for 2 h. The composite materials were characterized by SEM, EDS, XPS, and UV-vis spectrophotometer methods. The UV-vis absorption spectra results show that the absorption edge of un-doped composites is 390 nm while that of doped composites red-shifts to 500 nm. The photocatalytic activity of composite materials was evaluated by degradation of methyl orange under visible light irradiation (halogen lamp, 250 W). The results showed that after irradiation for 1 h, degradation rate of N, S co-doped-TiO2/fly ash beads composite material can reach 65%, while the degradation rate of un-doped sample and P25 were just 10% and 6%, respectively. The composite material also showed excellent recycling properties.

  12. First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries

    SciTech Connect

    Wang, Zhiguo; Niu, Xinyue; Xiao, Jie; Wang, Chong M.; Liu, Jun; Gao, Fei

    2013-07-16

    The insulating nature of sulfur and the solubility of the polysulfide in organic electrolyte are two main factors that limit the application of lithium sulfur (Li-S) battery systems. Enhancement of Li conductivity, identification of a strong adsorption agent of polysulfides and the improvement of the whole sulfur-based electrode are of great technological importance. The diffusion of Li atoms on the outer-wall, inner-wall and inter-wall spaces in nitrogen-doped double-walled carbon nanotubes (CNTs) and penetrations of Li and S atoms through the walls are studied using density functional theory. We find that N-doping does not alternate the diffusion behaviors of Li atoms throughout the CNTs, but the energy barrier for Li atoms to penetrate the wall is greatly decreased by N-doping (from ~9.0 eV to ~ 1.0 eV). On the other hand, the energy barrier for S atoms to penetrate the wall remains very high, which is caused by the formation of the chemical bonds between the S and nearby N atoms. The results indicate that Li atoms are able to diffuse freely, whereas S atoms can be encapsulated inside the N-doped CNTs, suggesting that the N-doped CNTs can be potentially used in high performance Li-S batteries.

  13. Design, synthesis, and characterization of materials for controlled line deposition, environmental remediation, and doping of porous manganese oxide material

    NASA Astrophysics Data System (ADS)

    Calvert, Craig A.

    This thesis covers three topics: (1) coatings formed from sol-gel phases, (2) environmental remediation, and (3) doping of a porous manganese oxide. Synthesis, characterization, and application were investigated for each topic. Line-formations were formed spontaneously by self-assembly from vanadium sol-gels and other metal containing solutions on glass substrates. The solutions were prepared by the dissolution of metal oxide or salt in water. A more straightforward method is proposed than used in previous work. Analyses using optical microscopy, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and infrared spectroscopy showed discreet lines whose deposition could be controlled by varying the concentration. A mechanism was developed from the observed results. Microwave heating, the addition of graphite rods, and oxidants, can enhance HCB remediation from soil. To achieve remediation, a TeflonRTM vessel open to the atmosphere along with an oxidant, potassium persulfate (PerS) or potassium hydroxide, along with uncoated or aluminum oxide coated, graphite rods were heated in a research grade microwave oven. Microwave heating was used to decrease the heating time, and graphite rods were used to increase the absorption of the microwave energy by providing thermal centers. The results showed that the percent HCB removed was increased by adding graphite rods and oxidants. Tungsten, silver, and sulfur were investigated as doping agents for K--OMS-2. The synthesis of these materials was carried out with a reflux method. The doping of K--OMS-2 led to changes in the properties of a tungsten doped K--OMS-2 had an increased resistivity, the silver doped material showed improved epoxidation of trans-stilbene, and the addition of sulfur produced a paper-like material. Rietveld refinement of the tungsten doped K--OMS-2 showed that the tungsten was doped into the framework.

  14. Thyroid dysfunction from antineoplastic agents.

    PubMed

    Hamnvik, Ole-Petter Riksfjord; Larsen, P Reed; Marqusee, Ellen

    2011-11-01

    Unlike cytotoxic agents that indiscriminately affect rapidly dividing cells, newer antineoplastic agents such as targeted therapies and immunotherapies are associated with thyroid dysfunction. These include tyrosine kinase inhibitors, bexarotene, radioiodine-based cancer therapies, denileukin diftitox, alemtuzumab, interferon-α, interleukin-2, ipilimumab, tremelimumab, thalidomide, and lenalidomide. Primary hypothyroidism is the most common side effect, although thyrotoxicosis and effects on thyroid-stimulating hormone secretion and thyroid hormone metabolism have also been described. Most agents cause thyroid dysfunction in 20%-50% of patients, although some have even higher rates. Despite this, physicians may overlook drug-induced thyroid dysfunction because of the complexity of the clinical picture in the cancer patient. Symptoms of hypothyroidism, such as fatigue, weakness, depression, memory loss, cold intolerance, and cardiovascular effects, may be incorrectly attributed to the primary disease or to the antineoplastic agent. Underdiagnosis of thyroid dysfunction can have important consequences for cancer patient management. At a minimum, the symptoms will adversely affect the patient's quality of life. Alternatively, such symptoms can lead to dose reductions of potentially life-saving therapies. Hypothyroidism can also alter the kinetics and clearance of medications, which may lead to undesirable side effects. Thyrotoxicosis can be mistaken for sepsis or a nonendocrinologic drug side effect. In some patients, thyroid disease may indicate a higher likelihood of tumor response to the agent. Both hypothyroidism and thyrotoxicosis are easily diagnosed with inexpensive and specific tests. In many patients, particularly those with hypothyroidism, the treatment is straightforward. We therefore recommend routine testing for thyroid abnormalities in patients receiving these antineoplastic agents. PMID:22010182

  15. Erythropoietic agents and the elderly.

    PubMed

    Agarwal, Neeraj; Prchal, Josef T

    2008-10-01

    Erythropoietin (Epo) is a peptide hormone that stimulates erythropoiesis. There are several agents in clinical use and in development that either act as ligands for the cell surface receptors of Epo or promote Epo production, which stimulates erythropoiesis. These are known as erythropoietic agents. The agents already in use include epoetin alfa, epoetin beta, and darbepoetin alfa. Newer agents under active investigation include continuous erythropoietin receptor activator (CERA) or proline hydroxylase inhibitors that increase hypoxia-inducible factor-1 (HIF-1), thereby stimulating Epo production and iron availability and supply. Erythropoietic agents have been shown to promote neuronal regeneration and to decrease post-stroke infarct size in mouse models. They have also been reported to shorten survival when used to treat anemia in many cancer patients and to increase thromboembolism. In contrast, rapid decrease of Epo levels as observed in astronauts and high-altitude dwellers upon rapid descent to sea level leads to the decrease of erythroid mass, a phenomenon known as "neocytolysis." The relative decrease in the serum Epo level is known to occur in some subjects with otherwise unexplained anemia of aging. Anemia by itself is a predictor of poor physical function in the elderly and is a significant economic burden on society. One out of every five persons in the United States will be elderly by 2050. Erythropoietic agents, by preventing and treating otherwise unexplained anemias of the elderly and anemia associated with other disease conditions of the elderly, have the potential to improve the functional capacity and to decrease the morbidity and mortality in the elderly, thereby alleviating the overall burden of medical care in society. PMID:18809098

  16. Erythropoietic Agents and the Elderly

    PubMed Central

    Agarwal, Neeraj; Prchal, Josef T.

    2008-01-01

    Erythropoietin is a peptide hormone that stimulates erythropoiesis. There are several agents in clinical use and in development, which either act as ligands for the cell surface receptors of erythropoietin or promote erythropoietin production that stimulates erythropoiesis. These are known as erythropoietic agents. The agents already in use include epoetin alfa, epoetin beta, and darbepoetin alfa. Newer agents stimulating erythropoiesis (such as continuous erythropoietin receptor activator (CERA) or proline hydroxylase inhibitors that increase HIF-1 thereby stimulating erythropoietin production and iron availability and supply) are under active investigation. Erythropoietic agents have been shown to promote neuronal regeneration and to decrease post-stroke infarct size in mouse models. They have also been reported to shorten survival when used to treat anemia in many cancer patients and to increase thromboembolism. In contrast, rapid decrease of erythropoietin levels as observed in astronauts and high-altitude dwellers upon rapid descent to sea level leads to the decrease of erythroid mass, a phenomenon known as neocytolysis. The relative decrease in the serum erythropoietin level is known to occur in some subjects with otherwise unexplained anemia of aging. Anemia by itself is a predictor of poor physical function in the elderly and is a significant economic burden on society. One out of every five persons in the United States will be elderly by 2050. Erythropoietic agents, by preventing and treating otherwise unexplained anemias of the elderly and anemia associated with other disease conditions of the elderly, have the potential to improve the functional capacity and to decrease the morbidity and mortality in the elderly, thereby alleviating the overall burden of medical care in society. PMID:18809098

  17. Screening dynamics in doped titanates

    SciTech Connect

    Rubensson, J.E.; Luening, J.; Eisebitt, S.

    1997-04-01

    The time scale for carrier relaxation in semiconductors is on the same order of magnitude as the life time of shallow core hole states (a few femtoseconds). Resonant Inelastic soft X-ray scattering (RIXS) which involves (virtual) excitations of core levels consequently contains information about the time development of the electronic structure on this time scale. In many cases one can treat the scattering in an absorption (SXA) followed-by-emission (SXE) picture, where simply the rates for various processes can be compared with the intermediate core hole state decay rate as an internal {open_quotes}clock{close_quotes}. By variation of x (0 < x < 1) in La{sub x}Sr{sub 1{minus}x}TiO{sub 3}, the amount of Ti d electrons in the system can be controlled. SrTiO{sub 3} (x=0) is an insulator with an empty Ti d band. With increasing x, electrons are doped into the Ti d-band, and LaTiO{sub 3} (x=1) is a Mott Hubbard insulator with a Ti 3d{sup 1} configuration. In this work the authors demonstrate that the rate for Ti 2p core hole screening in La{sub x}Sr{sub 1{minus}x}TiO{sub 3} is doping dependent. The screening rate increases with the availability of Ti 3d electrons, and they estimate it to be 3.8 x 10{sup 13}/sec in La{sub 0.05}Sr{sub 0.95}TiO{sub 3}.

  18. Autonomous sensor manager agents (ASMA)

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  19. An overview of inotropic agents.

    PubMed

    Vroom, Margreeth B

    2006-09-01

    The use of inotropic agents has been surrounded by many controversies. Recent guidelines for the treatment of patients with chronic and acute heart failure have elucidated some of the issues, but many remain. As a result, a substantial variability in the use of agents between institutions and caregivers remains, which mainly results from the lack of uniform data in the literature. Prospective randomized trials with a long-term follow-up and sufficient power are clearly needed, and a number of trials are currently in progress. PMID:16959760

  20. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine.

    PubMed

    Chen, Xianlan; Zhang, Guowei; Shi, Ling; Pan, Shanqing; Liu, Wei; Pan, Hiabo

    2016-08-01

    The formation of nitrogen-doped (N-doped) graphene uses hydrothermal method with urea as reducing agent and nitrogen source. The surface elemental composition of the catalyst was analyzed through XPS, which showed a high content of a total N species (7.12at.%), indicative of the effective N-doping, present in the form of pyridinic N, pyrrolic N and graphitic N groups. Moreover, Au nanoparticles deposited on ZnO nanocrystals surface, forming Au/ZnO hybrid nanocatalysts, undergo a super-hydrophobic to super-hydrophilic conversion. Herein, we present Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene sheets through sonication technique of the Au/ZnO/N-doped graphene hybrid nanostructures. The as-prepared Au/ZnO/N-doped graphene hybrid nanostructure modified glassy carbon electrode (Au/ZnO/N-doped graphene/GCE) was first employed for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and acetaminophen (AC). The oxidation over-potentials of AA, DA and AC decreased dramatically, and their oxidation peak currents increased significantly at Au/ZnO/N-doped graphene/GCE compared to those obtained at the N-doped graphene/GCE and bare CCE. The peak separations between AA and DA, DA and AC, and AC and AA are large up to 195, 198 and 393mV, respectively. The calibration curves for AA, DA and AC were obtained in the range of 30.00-13.00×10(3), 2.00-0.18×10(3) and 5.00-3.10×10(3)μM, respectively. The detection limits (S/N=3) were 5.00, 0.40 and 0.80μM for AA, DA and AC, respectively. PMID:27157730

  1. Doping Scheme of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Saini, Subhash (Technical Monitor)

    1998-01-01

    Atomic chains, precise structures of atomic scale created on an atomically regulated substrate surface, are candidates for future electronics. A doping scheme for intrinsic semiconducting Mg chains is considered. In order to suppress the unwanted Anderson localization and minimize the deformation of the original band shape, atomic modulation doping is considered, which is to place dopant atoms beside the chain periodically. Group I atoms are donors, and group VI or VII atoms are acceptors. As long as the lattice constant is long so that the s-p band crossing has not occurred, whether dopant atoms behave as donors or acceptors is closely related to the energy level alignment of isolated atomic levels. Band structures are calculated for Br-doped (p-type) and Cs-doped (n-type) Mg chains using the tight-binding theory with universal parameters, and it is shown that the band deformation is minimized and only the Fermi energy position is modified.

  2. Controlled doping of graphene using ultraviolet irradiation

    SciTech Connect

    Luo Zhengtang; Pinto, Nicholas J.; Davila, Yarely; Charlie Johnson, A. T.

    2012-06-18

    The electronic properties of graphene are tunable via doping, making it attractive in low dimensional organic electronics. Common methods of doping graphene, however, adversely affect charge mobility and degrade device performance. We demonstrate a facile shadow mask technique of defining electrodes on graphene grown by chemical vapor deposition (CVD) thereby eliminating the use of detrimental chemicals needed in the corresponding lithographic process. Further, we report on the controlled, effective, and reversible doping of graphene via ultraviolet (UV) irradiation with minimal impact on charge mobility. The change in charge concentration saturates at {approx}2 Multiplication-Sign 10{sup 12} cm{sup -2} and the quantum yield is {approx}10{sup -5} e/photon upon initial UV exposure. This simple and controlled strategy opens the possibility of doping wafer-size CVD graphene for diverse applications.

  3. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-01

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families. PMID:23031119

  4. Stabilization of boron carbide via silicon doping

    NASA Astrophysics Data System (ADS)

    Proctor, J. E.; Bhakhri, V.; Hao, R.; Prior, T. J.; Scheler, T.; Gregoryanz, E.; Chhowalla, M.; Giulani, F.

    2015-01-01

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  5. Erbium-doped aluminophosphosilicate optical fibres

    SciTech Connect

    Likhachev, M E; Bubnov, M M; Zotov, K V; Medvedkov, O I; Lipatov, D S; Yashkov, M V; Gur'yanov, Aleksei N

    2010-09-10

    We have studied the active properties of erbium-doped aluminophosphosilicate (APS) core fibres in wide ranges of erbia, alumina and phosphorus pentoxide concentrations. The absorption and luminescence spectra of the P{sub 2}O{sub 5}- or Al{sub 2}O{sub 3}-enriched erbium-doped APS fibres are shown to be similar to those of the erbium-doped fibres singly doped with phosphorus pentoxide or alumina, respectively. The formation of AlPO{sub 4} in APS fibres leads not only to a reduction in the refractive index of the glass but also to a marked increase in Er{sub 2}O{sub 3} solubility in silica. (optical fibres)

  6. 7 CFR 58.629 - Flavoring agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Material § 58.629 Flavoring agents. Flavoring agents either natural or artificial shall be wholesome and... 7 Agriculture 3 2013-01-01 2013-01-01 false Flavoring agents. 58.629 Section 58.629 Agriculture.... Flavoring agents shall be one or more of those approved in § 58.605....

  7. 7 CFR 58.629 - Flavoring agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Material § 58.629 Flavoring agents. Flavoring agents either natural or artificial shall be wholesome and... 7 Agriculture 3 2012-01-01 2012-01-01 false Flavoring agents. 58.629 Section 58.629 Agriculture.... Flavoring agents shall be one or more of those approved in § 58.605....

  8. 7 CFR 58.629 - Flavoring agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Material § 58.629 Flavoring agents. Flavoring agents either natural or artificial shall be wholesome and... 7 Agriculture 3 2014-01-01 2014-01-01 false Flavoring agents. 58.629 Section 58.629 Agriculture.... Flavoring agents shall be one or more of those approved in § 58.605....

  9. Doping with artificial oxygen carriers: an update.

    PubMed

    Schumacher, Yorck Olaf; Ashenden, Michael

    2004-01-01

    traumatic blood loss, oxygen therapeutic applications in radiography (oxygenation of tumour cells is beneficial to the effect of certain chemotherapeutic agents), other medical applications such as organ preservation, and finally to meet the requirements of patients who cannot receive donor blood because of religious beliefs. Given the elite athlete's historical propensity to experiment with novel doping strategies, it is likely that the burgeoning field of artificial oxygen carriers has already attracted their attention. Scientific data concerning the performance benefits associated with blood substitutes are virtually nonexistent; however, international sporting federations have been commendably proactive in adding this category to their banned substance lists. The current situation is vulnerable to exploitation by immoral athletes since there is still no accepted methodology to test for the presence of artificial oxygen carriers. PMID:14987124

  10. Porous allograft bone scaffolds: doping with strontium.

    PubMed

    Zhao, Yantao; Guo, Dagang; Hou, Shuxun; Zhong, Hongbin; Yan, Jun; Zhang, Chunli; Zhou, Ying

    2013-01-01

    Strontium (Sr) can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS) were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF) assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca)] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05). Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes. PMID:23922703

  11. Enhanced Casimir effect for doped graphene

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Fialkovskiy, I.; Vassilevich, D.

    2016-02-01

    We analyze the Casimir interaction of doped graphene. To this end we derive a simple expression for the finite-temperature polarization tensor with a chemical potential. It is found that doping leads to a strong enhancement of the Casimir force, reaching almost 60 % in quite realistic situations. This result should be important for planning and interpreting Casimir measurements, especially taking into account that the Casimir interaction of undoped graphene is rather weak.

  12. Charge injection in doped organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hosseini, A. R.; Wong, Man Hoi; Shen, Yulong; Malliaras, George G.

    2005-01-01

    The influence of doping on the process of charge injection from a metal electrode into a model organic semiconductor is investigated. The contact resistance, which is the relevant figure-of-merit, is found to decrease dramatically upon doping beyond what is expected from theory and seen in crystalline semiconductors. This phenomenon is understood in terms of broadening of the transport manifold in the organic semiconductor, induced by the dopants.

  13. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  14. Neodymium-doped glasses for waveguide lasers

    NASA Astrophysics Data System (ADS)

    Church, Kenneth H.; Zanoni, Raymond; Sapak, David L.; Hayden, Joseph S.

    1994-10-01

    We report recent results from our work on the fabrication of neodymium waveguide lasers. Several neodymium doped glasses. APG-1, LG-680, BK 7 and S 3 made by Schott Glass Technologies, Inc. were studied as candidates for use as waveguide lasers. It was found that S 3, a standard ophthalmic glass, had the best ion-exchange properties of any of the glasses studied. A waveguide laser was successfully made using the neodymium doped S 3 glass.

  15. Porous Allograft Bone Scaffolds: Doping with Strontium

    PubMed Central

    Zhao, Yantao; Guo, Dagang; Hou, Shuxun; Zhong, Hongbin; Yan, Jun; Zhang, Chunli; Zhou, Ying

    2013-01-01

    Strontium (Sr) can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS) were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF) assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca)] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28±0.23 µm/day vs. 2.60±0.20 µm/day; p<0.05). Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes. PMID:23922703

  16. Preparation of nitrogen-doped carbon tubes

    SciTech Connect

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  17. Numerical Studies of Doped Iron Pnictides

    NASA Astrophysics Data System (ADS)

    Bishop, Christopher; Liang, Shuhua; Moreo, Adriana; Dagotto, Elbio

    The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic disorder strength and dilution via numerical studies of a three-orbital spin-fermion model with lattice degrees of freedom. Doping introduces disorder but in theoretical studies the effect of the randomly located dopants is difficult to address. Numerically the effects of electronic doping, regulated by a chemical potential, and impurity disorder at randomly selected sites can be independently controlled. It was found that the reduction with doping of the Neel and the structural transition temperatures, and the stabilization of a nematic state, is mainly controlled by the magnetic dilution due to the disorder. Fermi surface changes due to doping affect only slightly both critical temperatures. Our findings are compatible with neutron scattering and STM results, unveiling a patchy network of locally magnetically ordered anisotropic clusters, despite the isotropic disorder. The fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 pnictides. National Science Foundation Grant No. DMR-1404375.

  18. Drug-drug interaction and doping, part 1: an in vitro study on the effect of non-prohibited drugs on the phase I metabolic profile of toremifene.

    PubMed

    Mazzarino, Monica; de la Torre, Xavier; Fiacco, Ilaria; Palermo, Amelia; Botrè, Francesco

    2014-05-01

    The present study was designed to provide preliminary information on the potential impact of metabolic drug-drug interaction on the effectiveness of doping control strategies currently followed by the anti-doping laboratories to detect the intake of banned agents. In vitro assays based on the use of human liver microsomes and recombinant CYP isoforms were designed and performed to characterize the phase I metabolic profile of the prohibited agent toremifene, selected as a prototype drug of the class of selective oestrogen receptor modulators, both in the absence and in the presence of medicaments (fluconazole, ketoconazole, itraconazole, miconazole, cimetidine, ranitidine, fluoxetine, paroxetine, nefazodone) not included in the World Anti-Doping Agency list of prohibited substances and methods and frequently administered to athletes. The results show that the in vitro model developed in this study was adequate to simulate the in vivo metabolism of toremifene, confirming the results obtained in previous studies. Furthermore, our data also show that ketoconazole, itraconazole, miconazole and nefazodone cause a marked modification in the production of the metabolic products (i.e. hydroxylated and carboxylated metabolites) normally selected by the anti-doping laboratories as target analytes to detect toremifene intake; moderate variations were registered in the presence of fluconazole, paroxetine and fluoxetine; while no significant modifications were measured in the presence of ranitidine and cimetidine. This evidence imposes that the potential effect of drug-drug interactions is duly taken into account in anti-doping analysis, also for a broader significance of the analytical results. PMID:24431005

  19. Drug-drug interaction and doping, part 2: an in vitro study on the effect of non-prohibited drugs on the phase I metabolic profile of stanozolol.

    PubMed

    Mazzarino, Monica; de la Torre, Xavier; Fiacco, Ilaria; Botrè, Francesco

    2014-10-01

    The present study was designed to provide preliminary information on the potential impact of metabolic drug-drug interaction on the effectiveness of doping control strategies currently followed by the anti-doping laboratories to detect the intake of prohibited agents. In vitro assays based on the use of human liver microsomes and recombinant cytochrome P450 isoforms were developed and applied to characterize the phase I metabolic profile of the prohibited agent stanozolol, both in the absence and in the presence of substances (ketoconazole, itraconazole, miconazole, cimetidine, ranitidine, and nefazodone) not included in the World Anti-Doping Agency (WADA) list of prohibited substances and methods and frequently administered to athletes. The results show that the in vitro model utilized in this study is adequate to simulate the in vivo metabolism of stanozolol. Furthermore, our data showed that ketoconazole, itraconazole, miconazole, and nefazodone caused a marked modification in the production of the metabolic products (3'-hydroxy-stanozolol, 4β-hydroxy-stanozolol and 16β-hydroxy-stanozolol) normally selected by the anti-doping laboratories as target analytes to detect stanozolol intake. On the contrary, moderate variations were registered in the presence of cimetidine and no significant modifications were measured in the presence of ranitidine. This evidence confirms that the potential effect of drug-drug interactions is duly taken into account also in anti-doping analysis. PMID:24535830

  20. Why Do Extension Agents Resign?

    ERIC Educational Resources Information Center

    Manton, Linda Nunes; van Es, J. C.

    1985-01-01

    Past and current Illinois extension agents were surveyed via mail questionnaires as to reasons for staying or leaving extension programs. Reasons for leaving included family changes, family moves, opportunity to advance, better salary/benefits, dissatisfaction with administration, and too much time away from family. (CT)

  1. Foodborne illness and microbial agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illnesses result from the consumption of food containing microbial agents such as bacteria, viruses, parasites or food contaminated by poisonous chemicals or bio-toxins. Pathogen proliferation is due to nutrient composition of foods, which are capable of supporting the growth of microorgan...

  2. Superintendents: The Key Influence Agents.

    ERIC Educational Resources Information Center

    Powell, Randy

    1990-01-01

    By the nature of their positions in schools, administrators are either influence agents or targets. Based on personal interviews with 140 Oregon administrators and a survey of 319 administrators around the state, this article highlights administrators' comments about their administrative influence and about constraints on their influence.…

  3. Triggered pore-forming agents

    DOEpatents

    Bayley, H.; Walker, B.J.; Chang, C.Y.; Niblack, B.; Panchal, R.

    1998-07-07

    An inactive pore-forming agent is revealed which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell. 30 figs.

  4. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  5. SEM: A Cultural Change Agent

    ERIC Educational Resources Information Center

    Barnes, Bradley; Bourke, Brian

    2015-01-01

    The authors advance the concept that institutional culture is a purposeful framework by which to view SEM's utility, particularly as a cultural change agent. Through the connection of seemingly independent functions of performance and behavior, implications emerge that deepen the understanding of the influence of culture on performance outcomes…

  6. Direct Vasodilators and Sympatholytic Agents.

    PubMed

    McComb, Meghan N; Chao, James Y; Ng, Tien M H

    2016-01-01

    Direct vasodilators and sympatholytic agents were some of the first antihypertensive medications discovered and utilized in the past century. However, side effect profiles and the advent of newer antihypertensive drug classes have reduced the use of these agents in recent decades. Outcome data and large randomized trials supporting the efficacy of these medications are limited; however, in general the blood pressure-lowering effect of these agents has repeatedly been shown to be comparable to other more contemporary drug classes. Nevertheless, a landmark hypertension trial found a negative outcome with a doxazosin-based regimen compared to a chlorthalidone-based regimen, leading to the removal of α-1 adrenergic receptor blockers as first-line monotherapy from the hypertension guidelines. In contemporary practice, direct vasodilators and sympatholytic agents, particularly hydralazine and clonidine, are often utilized in refractory hypertension. Hydralazine and minoxidil may also be useful alternatives for patients with renal dysfunction, and both hydralazine and methyldopa are considered first line for the treatment of hypertension in pregnancy. Hydralazine has also found widespread use for the treatment of systolic heart failure in combination with isosorbide dinitrate (ISDN). The data to support use of this combination in African Americans with heart failure are particularly robust. Hydralazine with ISDN may also serve as an alternative for patients with an intolerance to angiotensin antagonists. Given these niche indications, vasodilators and sympatholytics are still useful in clinical practice; therefore, it is prudent to understand the existing data regarding efficacy and the safe use of these medications. PMID:26033778

  7. Improving agents using reliable communication

    NASA Astrophysics Data System (ADS)

    Zheng, Jinbin

    2013-10-01

    Recent advances in introspective modalities and linear time symmetries do not necessarily obviate the need for web browsers [1]. In our research, we disprove the exploration of agents, which embodies the appropriate principles of electrical engineering. Here we demonstrate that even though semaphores and XML [1] are mostly incompatible, randomized algorithms and write-back caches are mostly incompatible.

  8. Echographic studies of osmotic agents.

    PubMed

    Vucicevic, Z M; Tark, E; Ahmad, S

    1979-09-01

    The effectiveness of osmotic agents, acetazolamide (Diamox), urea, glycerol, and mannitol, and massages (5 and 10 minutes) for inducing hypotony in rabbit eyes was evaluated by ultrasonography. Mannitol was found to have the greatest hypotonic effect followed closely by urea and glycerol, then acetazolamide. The difference between the 5 and 10 minute massages was negligible. PMID:122221

  9. An Autonomous Spacecraft Agent Prototype

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Bernard, Douglas E.; Chien, Steve A.; Gat, Erann; Muscettola, Nicola; Nayak, P. Pandurang; Wagner, Michael D.; Williams, Brian C.

    1997-01-01

    This paper describes the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. This architecture integrates traditional real-time monitoring and control with constraint-based planning and scheduling, robust multi-threaded execution, and model-based diagnosis and reconfiguration.

  10. Limonene and tetrahydrofurfurly alcohol cleaning agent

    SciTech Connect

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  11. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  12. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  13. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  14. Halide test agent replacement study

    SciTech Connect

    Banks, E.M.; Freeman, W.P.; Kovach, B.J.

    1995-02-01

    The intended phaseout of the chlorofluorocarbons (CFCs) from commercial use required the evaluation of substitute materials for the testing for leak paths through both individual adsorbers and installed adsorbent banks. The American Society of Mechanical Engineers (ASME) Committee on Nuclear Air and Gas Treatment (CONAGT) is in charge of maintaining the standards and codes specifying adsorbent leak test methods for the nuclear safety related air cleaning systems. The currently published standards and codes cite the use of R-11, R-12 and R-112 for leak path test agents. All of these compounds are CFCs. There are other agencies and organizations (USDOE, USDOD and USNRC) also specifying testing for leak paths or in some cases for special life tests using the above compounds. The CONAGT has recently developed criteria for the suitability evaluation of substitute test agents. On the basis of these criteria, several compounds were evaluated for their acceptability as adsorbent bed leak and life test agents. The ASME CONAGT Test Agent Qualification Criteria. The test agent qualification is based on the following parameters: (1) Similar retention times on activated carbons at the same concentration levels as one of the following: R-11, R-12, R-112 or R-112a. (2) Similar lower detection limit sensitivity and precision in the concentration range of use as R-11, R-12, R-112 and R-112a. (3) Gives the same in-place leak test results as R-11, R-12, R-112, or R-112a. (4) Chemical and radiological stability under the use conditions. (5) Causes no degradation of the carbon and its impregnant or of the other NATS components under the use conditions. (6) Is listed in the USEPA Toxic Substances Control Act (TSCA) inventory for commercial use.

  15. Biologic agents in juvenile spondyloarthropathies.

    PubMed

    Katsicas, María Martha; Russo, Ricardo

    2016-01-01

    The juvenile spondyloarthropathies (JSpA) are a group of related rheumatic diseases characterized by involvement of peripheral large joints, axial joints, and entheses (enthesitis) that begin in the early years of life (prior to 16(th) birthday).The nomenclature and concept of spondyloarthropathies has changed during the last few decades. Although there is not any specific classification of JSpA, diseases under the spondyloarthropathy nomenclature umbrella in the younger patients include: the seronegative enthesitis and arthropathy (SEA) syndrome, juvenile ankylosing spondylitis, reactive arthritis, and inflammatory bowel disease-associated arthritis. Moreover, the ILAR criteria for Juvenile Idiopathic Arthritis includes two categories closely related to spondyloarthritis: Enthesitis-related arthritis and psoriatic arthritis.We review the pathophysiology and the use of biological agents in JSpA. JSpA are idiopathic inflammatory diseases driven by an altered balance in the proinflammatory cytokines. There is ample evidence on the role of tumor necrosis factor (TNF) and interleukin-17 in the physiopathology of these entities. Several non-biologic and biologic agents have been used with conflicting results in the treatment of these complex diseases. The efficacy and safety of anti-TNF agents, such as etanercept, infliximab and adalimumab, have been analysed in controlled and uncontrolled trials, usually showing satisfactory outcomes. Other biologic agents, such as abatacept, tocilizumab and rituximab, have been insufficiently studied and their role in the therapy of SpA is uncertain. Interleukin-17-blocking agents are promising alternatives for the treatment of JSpA patients in the near future. Recommendations for the treatment of patients with JSpA have recently been proposed and are discussed in the present review. PMID:26968522

  16. Reporting doping in sport: national level athletes' perceptions of their role in doping prevention.

    PubMed

    Whitaker, L; Backhouse, S H; Long, J

    2014-12-01

    This paper qualitatively explores national level athletes' willingness to report doping in sport. Following ethical approval, semi-structured interviews were conducted with nine national level athletes from rugby league (n = 5) and track and field athletics (n = 4). Thematic analysis established the main themes within the data. Contextual differences existed around the role that athletes perceived they would play if they became aware of doping. Specifically, track and field athletes would adopt the role of a whistle-blower and report individuals who were doping in their sport. In comparison, the rugby league players highlighted a moral dilemma. Despite disagreeing with their teammates' actions, the players would adhere to a code of silence and refrain from reporting doping. Taking these findings into account, prevention programs might focus on changing broader group and community norms around doping. In doing so, community members' receptivity to prevention messages may increase. Moreover, developing skills to intervene (e.g., speaking out against social norms that support doping behavior) or increasing awareness of reporting lines could enhance community responsibility for doping prevention. In sum, the findings highlight the need to consider the context of sport and emphasize that a one-size-fits-all approach to anti-doping is problematic. PMID:24673128

  17. Laser interrogation of surface agents (LISA) for chemical agent reconnaissance

    NASA Astrophysics Data System (ADS)

    Higdon, N. S.; Chyba, Thomas H.; Richter, Dale A.; Ponsardin, Patrick L.; Armstrong, Wayne T.; Lobb, C. T.; Kelly, Brian T.; Babnick, Robert D.; Sedlacek, Arthur J., III

    2002-06-01

    Laser Interrogation of Surface Agents (LISA) is a new technique which exploits Raman scattering to provide standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division is developing the LISA technology under a cost-sharing arrangement with the US Army Soldier and Biological Chemical Command for incorporation on the Army's future reconnaissance vehicles. A field-engineered prototype LISA-Recon system is being designed to demonstrate on-the- move measurements of chemical contaminants. In this article, we will describe the LISA technique, data form proof-of- concept measurements, the LISA-Recon design, and some of the future realizations envisioned for military sensing applications.

  18. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  19. Electrochemical lithium doping of a pentacene molecule semiconductor

    NASA Astrophysics Data System (ADS)

    Fang, Baizeng; Zhou, Haoshen; Honma, Itaru

    2005-06-01

    Li-doped pentacene has been developed by using an electrochemical approach; that is, constant-potential electrolysis. Li-doped pentacene was characterized by Raman spectrometry and x-ray diffraction measurements. Lithium doping introduces a modification of the C-H vibrational modes located at the end of pentacene molecules. A low doping level has been observed for electrochemical synthesis of Li-doped pentacene, and lithium species are supposed to be intercalated between the two-dimensional pentacene layers. The lithium-doped pentacene exhibits a conductivity of ˜6×10-3Scm-1.

  20. Dielectric properties of Rhodamine-B and metal doped hydrogels

    NASA Astrophysics Data System (ADS)

    Okutan, M.; Coşkun, R.; Öztürk, M.; Yalçın, O.

    2015-01-01

    The electric and dielectric properties of Rhodamine-B (RB) and metal ions (Ag+, Co2+, Cr3+, Mn2+ and Ni2+) doped hydrogels have been analyzed in an extended frequency range by impedance spectroscopy. The RB doped hydrogels has been found to be sensitive to ionic conduction and electrode polarization according to the metal doped hydrogels. We have shown that the ionic conductive of RB doped hydrogels is originated from the free ions motion within the doped hydrogels at high frequency. We have also taken into account the Cl- and N+ ions in the structure of RB provide additional ionic contribution to RB doped hydrogels.

  1. Attitudes towards Doping and Related Experience in Spanish National Cycling Teams According to Different Olympic Disciplines

    PubMed Central

    Morente-Sánchez, Jaime; Mateo-March, Manuel; Zabala, Mikel

    2013-01-01

    Attitudes towards doping are considered an influence of doping intentions. The aims of the present study were 1) to discover and compare the attitudes towards doping among Spanish national team cyclists from different Olympic disciplines, as well as 2) to get some complementary information that could better explain the context. The sample was comprised of seventy-two cyclists: mean age 19.67±4.72 years; 70.8% males (n = 51); from the different Olympic disciplines of Mountain bike -MTB- (n = 18), Bicycle Moto Cross -BMX- (n = 12), Track -TRA- (n = 9) and Road -ROA- (n = 33). Descriptive design was carried out using a validated scale (PEAS). To complement this, a qualitative open-ended questionnaire was used. Overall mean score (17–102) was 36.12±9.39. For different groups, the data were: MTB: 30.28±6.92; BMX: 42.46±10.74; TRA: 43.22±12.00; ROA: 34.91±6.62, respectively. In relation to overall score, significant differences were observed between MTB and BMX (p = 0.002) and between MTB and TRA (p = 0.003). For the open-ended qualitative questionnaire, the most mentioned word associated with “doping” was “cheating” (48.83% of total sample), with “responsible agents of doping” the word “doctor” (52,77%), and with the “main reason for the initiation in doping” the words “sport achievement” (45.83%). The major proposed solution was “doing more doping controls” (43.05%). Moreover, 48.67% stated that there was “a different treatment between cycling and other sports”. This study shows that Spanish national team cyclists from Olympic cycling disciplines, in general, are not tolerant in relation to doping. BMX and Track riders are a little more permissive towards the use of banned substances than MTB and Road. Results from the qualitative open-ended questionnaire showed interesting data in specific questions. These results empower the idea that, apart from maintaining doping controls and making them more

  2. The New Agent: A Qualitative Study to Strategically Adapt New Agent Professional Development

    ERIC Educational Resources Information Center

    Baker, Lauri M.; Hadley, Gregg

    2014-01-01

    The qualitative study reported here assessed the needs of agents related to new agent professional development to improve the current model. Agents who participated in new agent professional development within the last 5 years were selected to participate in focus groups to determine concerns and continued needs. Agents enjoyed networking and…

  3. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites

    NASA Astrophysics Data System (ADS)

    Liu, Wenjiang; Deng, Xiaoqing; Cai, Shaohong

    2016-07-01

    The First-principles calculation is used to investigate the transport properties of a carbon chain connected with N-and/or B-doped caped carbon nanotube acting as electrodes. The I-V curves of the carbon chain are affected by the N/B doping sites, and rectifying behavior can be obtained distinctly when the carbon chain is just connected onto two doping atom sites (N- chain-B), and a weak rectification occurs when N (B) doping at other sites. Interestingly, the spin-filtering effects exist in the junction when it is doped at other sites, undoped system, or N-terminal carbon chains. However, no this behavior is found in N-chain-B and B-chain-B systems. The analysis on the transmission spectra, PDOS, LDOS, spin density, and the electron transmission pathways give an insight into the observed results for the system.

  4. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens.

    PubMed

    Krishnaraj, Chandran; Ji, Byoung-Jun; Harper, Stacey L; Yun, Soon-Il

    2016-05-01

    Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO₂NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO₂NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15-70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP-MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO₂NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO₂NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO₂NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria. PMID:26857369

  5. Hierarchical assembly of Ti(IV)/Sn(II) co-doped SnO₂ nanosheets along sacrificial titanate nanowires: synthesis, characterization and electrochemical properties.

    PubMed

    Wang, Hongkang; Xi, Liujiang; Tucek, Jiri; Zhan, Yawen; Hung, Tak Fu; Kershaw, Stephen V; Zboril, Radek; Chung, C Y; Rogach, Andrey L

    2013-10-01

    Hierarchical assembly of Ti(IV)/Sn(II)-doped SnO₂ nanosheets along titanate nanowires serving as both sacrificial templates and a Ti(IV) source is demonstrated, using SnCl2 as a tin precursor and Sn(II) dopants and NaF as the morphology controlling agent. Excess fluoride inhibits the hydrolysis of SnCl2, promoting heterogeneous nucleation of Sn(II)-doped SnO₂ on the titanate nanowires due to the insufficient oxidization of Sn(II) to Sn(IV). Simultaneously, titanate nanowires are dissolved forming Ti(4+) species under the etching effect of in situ generated HF resulting in spontaneous Ti(4+) ion doping of SnO₂ nanosheets formed under hydrothermal conditions. Compositional analysis indicates that Ti(4+) ions are incorporated by substitution of Sn sites at a high level (16-18 at.%), with uniform distribution and no phase separation. Mössbauer spectroscopy quantified the relative content of Sn(II) and Sn(IV) in both Sn(II)-doped and Ti(IV)/Sn(II) co-doped SnO₂ samples. Electrochemical properties were investigated as an anode material in lithium ion batteries, demonstrating that Ti-doped SnO₂ nanosheets show improved cycle performance, which is attributed to the alleviation of inherent volume expansion of the SnO₂-based anode materials by substituting part of Sn sites with Ti dopants. PMID:23904051

  6. Neuroprotective "agents" in surgery. Secret "agent" man, or common "agent" machine?

    NASA Technical Reports Server (NTRS)

    Andrews, R. J.

    1999-01-01

    The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved

  7. CATS-based Agents That Err

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes preliminary research on intelligent agents that make errors. Such agents are crucial to the development of novel agent-based techniques for assessing system safety. The agents extend an agent architecture derived from the Crew Activity Tracking System that has been used as the basis for air traffic controller agents. The report first reviews several error taxonomies. Next, it presents an overview of the air traffic controller agents, then details several mechanisms for causing the agents to err in realistic ways. The report presents a performance assessment of the error-generating agents, and identifies directions for further research. The research was supported by the System-Wide Accident Prevention element of the FAA/NASA Aviation Safety Program.

  8. Software agents in molecular computational biology.

    PubMed

    Keele, John W; Wray, James E

    2005-12-01

    Progress made in applying agent systems to molecular computational biology is reviewed and strategies by which to exploit agent technology to greater advantage are investigated. Communities of software agents could play an important role in helping genome scientists design reagents for future research. The advent of genome sequencing in cattle and swine increases the complexity of data analysis required to conduct research in livestock genomics. Databases are always expanding and semantic differences among data are common. Agent platforms have been developed to deal with generic issues such as agent communication, life cycle management and advertisement of services (white and yellow pages). This frees computational biologists from the drudgery of having to re-invent the wheel on these common chores, giving them more time to focus on biology and bioinformatics. Agent platforms that comply with the Foundation for Intelligent Physical Agents (FIPA) standards are able to interoperate. In other words, agents developed on different platforms can communicate and cooperate with one another if domain-specific higher-level communication protocol details are agreed upon between different agent developers. Many software agent platforms are peer-to-peer, which means that even if some of the agents and data repositories are temporarily unavailable, a subset of the goals of the system can still be met. Past use of software agents in bioinformatics indicates that an agent approach should prove fruitful. Examination of current problems in bioinformatics indicates that existing agent platforms should be adaptable to novel situations. PMID:16420735

  9. [Alternative agents used in ADHD].

    PubMed

    Hässler, Frank; Dück, Alexander; Reis, Olaf; Buchmann, Johannes

    2009-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is, with a prevalence of 2% to 6%, one of the most common neurobehavioral disorder affecting children and adolescents, persisting into adulthood. Comorbidity and psychosocial circumstances enter into the choice of intervention strategies. Several agents have been demonstrated effective in treating individuals with ADHD. Direct or indirect attenuation of dopamine and norepinephrine neurotransmission appears closely related to both the stimulant and nonstimulant medications efficacious in ADHD. However, important differences concerning efficacy and side effects exist both between and with the specific classes of agents like neuroleptics, antidepressants, antiepileptics, alpha-agonists, beta-blockers, buspiron, l-dopa, melatonin, pycnogenol, zinc, magnesium, polyunsaturated fatty acids, and homeopathy. Elucidating the various mechanisms of action of ADHD medications may lead to better choices in matching potential responses to the characteristics of individuals. We review the purported mechanism of action and available evidence for selected complementary and alternative medicine therapies for ADHD in childhood and adolescence. PMID:19105161

  10. [Infectious agents and autoimmune diseases].

    PubMed

    Riebeling-Navarro, C; Madrid-Marina, V; Camarena-Medellín, B E; Peralta-Zaragoza, O; Barrera, R

    1992-01-01

    In this paper the molecular aspects of the relationships between infectious agents and autoimmune diseases, the mechanisms of immune response to infectious agents, and the more recent hypotheses regarding the cause of autoimmune diseases are discussed. The antigens are processed and selected by their immunogenicity, and presented by HLA molecules to the T cell receptor. These events initiate the immune response with the activation and proliferation of T-lymphocytes. Although there are several hypotheses regarding the cause of autoimmune diseases and too many findings against and in favor of them, there is still no conclusive data. All these hypothesis and findings are discussed in the context of the more recent advances. PMID:1615352

  11. Oral agents in multiple sclerosis.

    PubMed

    Lorefice, L; Fenu, G; Frau, J; Coghe, G C; Marrosu, M G; Cocco, E

    2015-01-01

    Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system. Disease-modifying drugs licensed for MS treatment have been developed to reduce relapse rates and halt disease progression. The majority of current MS drugs involve regular, parenteral administration, affecting long-term adherence and thus reducing treatment efficacy. Over the last two decades great progress has been made towards developing new MS therapies with different modes of action and biologic effects. In particular, oral drugs have generated much interest because of their convenience and positive impact on medication adherence. Fingolimod was the first launched oral treatment for relapsing-remitting MS; recently, Teriflunomide and Dimethyl fumarate have also been approved as oral disease-modifying agents. In this review, we summarize and discuss the history, pharmacodynamics, efficacy, and safety of oral agents that have been approved or are under development for the selective treatment of MS. PMID:25924620

  12. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  13. Injectable agents affecting subcutaneous fats.

    PubMed

    Chen, David Lk; Cohen, Joel L; Green, Jeremy B

    2015-09-01

    Mesotherapy is an intradermal or subcutaneous injection of therapeutic agents to induce local effects, and was pioneered in Europe during the 1950s. For the past 2 decades, there has been significant interest in the use of mesotherapy for minimally invasive local fat contouring. Based on the theorized lipolytic effects of the agent phosphatidylcholine, initial attempts involved its injection into subcutaneous tissue. With further studies, however, it became apparent that the activity attributed to phosphatidylcholine mesotherapy was due to the adipolytic effects of deoxycholate, a detergent used to solubilize phosphatidylcholine. Since then, clinical trials have surfaced that demonstrate the efficacy of a proprietary formulation of deoxycholate for local fat contouring. Current trials on mesotherapy with salmeterol, a b-adrenergic agonist and lipolysis stimulator, are underway-with promising preliminary results as well. PMID:26566569

  14. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  15. Nanofabrication of Doped, Complex Oxides

    SciTech Connect

    Stein, A.; Waller, G.H.; Abiade, J.T.

    2012-01-01

    Complex oxides have many promising attributes, including wide band gaps for high temperature semiconductors, ion conducting electrolytes in fuel cells, ferroelectricity and ferromagnetism. Bulk and thin film oxides can be readily manufactured and tested however these physically hard and chemically inert materials cannot be nanofabricated by direct application of conventional methods. In order to study these materials at the nanoscale there must first be a simple and effective means to achieve the desired structures. Here we discuss the use of pulsed laser deposition at room temperature onto electron beam lithography defined templates of poly methyl methacrylate photoresist. Following a resist liftoff in organic solvents, a heat treatment was used to crystallize the nanostructures. The morphology of these structures was studied using scanning electron microscopy and atomic force microscopy. Crystallinity and composition as determined by x ray diffraction and photo-electron spectroscopy respectively is reported for thin film analogues of the nanostructured oxide. The oxide studied in this report is Nb doped SrTiO{sub 3}, which has been investigated for use as a high temperature thermoelectric material; however the approach used is not materials-dependent.

  16. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  17. Doping graphene with BSO clusters

    NASA Astrophysics Data System (ADS)

    Magaña, Fernando; Vazquez, Gerardo Jorge; Lopez, Julio

    2014-03-01

    Sillenite crystals (Bi12MO20, M = Ge, Si and Ti) present a number of interesting properties, such as photorefractive, piezoelectric, electro-optical, photoinduced absorption, optical activity and photoconductivity. Employing them at the nanoscale in electronic and optoelectronic devices may result in new applications. For example the electronic properties of inherently two-dimensional (2D) materials such as graphene may be change by doping it with Bi12SiO20 (BSO) clusters. BSO is the fastest photorefractive crystal to date. By means of a calculation of first principles using the DFT, the density the levels of energy of molecules of BSO was investigated. The evolution was observed from the levels when going adding more molecules from BSO to the system, obtaining a behavior of the levels that looks like the levels in the bulk. In this work also was studied the effect on electronic properties of graphene when BSO clusters was added to it. We want to thank computing facilities to Supercomputo, UNAM.

  18. Integration of metal oxide nanobelts with microsystems for nerve agent detection

    NASA Astrophysics Data System (ADS)

    Yu, Choongho; Hao, Qing; Saha, Sanjoy; Shi, Li; Kong, Xiangyang; Wang, Z. L.

    2005-02-01

    We have assembled tin dioxide nanobelts with low-power microheaters for detecting dimethyl methylphosphonate (DMMP), a nerve agent simulant. The electrical conductance of a heated nanobelt increased for 5% upon exposure to 78 parts per billion DMMP in air. The nanobelt conductance recovered fully quickly after the DMMP was shut off, suggesting that the single-crystal nanobelt was not subject to poisoning often observed in polycrystalline metal oxide sensors. While the sensitivity can be improved via doping nanobelts with catalytic additives, directed assembly or growth of nanobelts on microsystems will potentially allow for the large-scale fabrication of nanosensor arrays.

  19. Development and optimization of near-IR contrast agents for immune cell tracking

    PubMed Central

    Joshi, Pratixa P.; Yoon, Soon Joon; Chen, Yun-Sheng; Emelianov, Stanislav; Sokolov, Konstantin V.

    2013-01-01

    Gold nanorods (NRs) are attractive for in vivo imaging due to their high optical cross-sections and tunable absorbance. However, the feasibility of using NRs for cell tracking has not been fully explored. Here, we synthesized dye doped silica-coated NRs as multimodal contrast agents for imaging of macrophages – immune cells which play an important role in cancer and cardiovascular diseases. We showed the importance of silica coating in imaging of NR-labeled cells. Photoacoustic (PA) imaging of NRs labeled macrophages showed high sensitivity. Therefore, these results provide foundation for applications of silica-coated NRs and PA imaging in tracking of immune cells. PMID:24298419

  20. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  1. New therapeutic agents for acromegaly.

    PubMed

    Melmed, Shlomo

    2016-02-01

    The currently available somatostatin receptor ligands (SRLs) and growth hormone (GH) antagonists are used to control levels of GH and insulin-like growth factor 1 (IGF-1) in patients with acromegaly. However, these therapies are limited by wide variations in efficacy, associated adverse effects and the need for frequent injections. A phase III trial of oral octreotide capsules demonstrated that this treatment can safely sustain suppressed levels of GH and IGF-1 and reduce the severity of symptoms in patients with acromegaly previously controlled by injectable SRL therapy, with the added benefit of no injection-site reactions. Phase I and phase II trials of the pan-selective SRL DG3173, the liquid crystal octreotide depot CAM2029 and an antisense oligonucleotide directed against the GH receptor have shown that these agents can be used to achieve biochemical suppression in acromegaly and have favourable safety profiles. This Review outlines the need for new therapeutic agents for patients with acromegaly, reviews clinical trial data of investigational agents and considers how these therapies might best be integrated into clinical practice. PMID:26610414

  2. Chemotherapy and Dietary Phytochemical Agents

    PubMed Central

    Sak, Katrin

    2012-01-01

    Chemotherapy has been used for cancer treatment already for almost 70 years by targeting the proliferation potential and metastasising ability of tumour cells. Despite the progress made in the development of potent chemotherapy drugs, their toxicity to normal tissues and adverse side effects in multiple organ systems as well as drug resistance have remained the major obstacles for the successful clinical use. Cytotoxic agents decrease considerably the quality of life of cancer patients manifesting as acute complaints and impacting the life of survivors also for years after the treatment. Toxicity often limits the usefulness of anticancer agents being also the reason why many patients discontinue the treatment. The nutritional approach may be the means of helping to raise cancer therapy to a new level of success as supplementing or supporting the body with natural phytochemicals cannot only reduce adverse side effects but improve also the effectiveness of chemotherapeutics. Various plant-derived compounds improve the efficiency of cytotoxic agents, decrease their resistance, lower and alleviate toxic side effects, reduce the risk of tumour lysis syndrome, and detoxify the body of chemotherapeutics. The personalised approach using various phytochemicals provides thus a new dimension to the standard cancer therapy for improving its outcome in a complex and complementary way. PMID:23320169

  3. Pharmacologic Agents for Chronic Diarrhea

    PubMed Central

    2015-01-01

    Chronic diarrhea is usually associated with a number of non-infectious causes. When definitive treatment is unavailable, symptomatic drug therapy is indicated. Pharmacologic agents for chronic diarrhea include loperamide, 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists, diosmectite, cholestyramine, probiotics, antispasmodics, rifaximin, and anti-inflammatory agents. Loperamide, a synthetic opiate agonist, decreases peristaltic activity and inhibits secretion, resulting in the reduction of fluid and electrolyte loss and an increase in stool consistency. Cholestyramine is a bile acid sequestrant that is generally considered as the first-line treatment for bile acid diarrhea. 5-HT3 receptor antagonists have significant benefits in patients with irritable bowel syndrome (IBS) with diarrhea. Ramosetron improves stool consistency as well as global IBS symptoms. Probiotics may have a role in the prevention of antibiotic-associated diarrhea. However, data on the role of probiotics in the treatment of chronic diarrhea are lacking. Diosmectite, an absorbent, can be used for the treatment of chronic functional diarrhea, radiation-induced diarrhea, and chemotherapy-induced diarrhea. Antispasmodics including alverine citrate, mebeverine, otilonium bromide, and pinaverium bromide are used for relieving diarrheal symptoms and abdominal pain. Rifaximin can be effective for chronic diarrhea associated with IBS and small intestinal bacterial overgrowth. Budesonide is effective in both lymphocytic colitis and collagenous colitis. The efficacy of mesalazine in microscopic colitis is weak or remains uncertain. Considering their mechanisms of action, these agents should be prescribed properly. PMID:26576135

  4. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  5. Pharmacologic Agents for Chronic Diarrhea.

    PubMed

    Lee, Kwang Jae

    2015-10-01

    Chronic diarrhea is usually associated with a number of non-infectious causes. When definitive treatment is unavailable, symptomatic drug therapy is indicated. Pharmacologic agents for chronic diarrhea include loperamide, 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists, diosmectite, cholestyramine, probiotics, antispasmodics, rifaximin, and anti-inflammatory agents. Loperamide, a synthetic opiate agonist, decreases peristaltic activity and inhibits secretion, resulting in the reduction of fluid and electrolyte loss and an increase in stool consistency. Cholestyramine is a bile acid sequestrant that is generally considered as the first-line treatment for bile acid diarrhea. 5-HT3 receptor antagonists have significant benefits in patients with irritable bowel syndrome (IBS) with diarrhea. Ramosetron improves stool consistency as well as global IBS symptoms. Probiotics may have a role in the prevention of antibiotic-associated diarrhea. However, data on the role of probiotics in the treatment of chronic diarrhea are lacking. Diosmectite, an absorbent, can be used for the treatment of chronic functional diarrhea, radiation-induced diarrhea, and chemotherapy-induced diarrhea. Antispasmodics including alverine citrate, mebeverine, otilonium bromide, and pinaverium bromide are used for relieving diarrheal symptoms and abdominal pain. Rifaximin can be effective for chronic diarrhea associated with IBS and small intestinal bacterial overgrowth. Budesonide is effective in both lymphocytic colitis and collagenous colitis. The efficacy of mesalazine in microscopic colitis is weak or remains uncertain. Considering their mechanisms of action, these agents should be prescribed properly. PMID:26576135

  6. Chelating agents and cadmium intoxication

    SciTech Connect

    Shinobu, L.A.

    1985-01-01

    A wide range of conventional chelating agents have been screened for (a) antidotal activity in acute cadmium poisoning and (b) ability to reduce aged liver and kidney deposits of cadmium. Chelating agents belonging to the dithiocarbamate class have been synthesized and tested in both the acute and chronic modes of cadmium intoxication. Several dithiocarbamates, not only provide antidotal rescue, but also substantially decrease the intracellular deposits of cadmium associated with chronic cadmium intoxication. Fractionating the cytosol from the livers and kidneys of control and treated animals by Sephadex G-25 gel filtration clearly demonstrates that the dithiocarbamates are reducing the level of metallothionein-bound cadmium. However, the results of cell culture (Ehrlich ascites) studies designed to investigate the removal of cadmium from metallothionein and subsequent transport of the resultant cadmium complex across the cell membrane were inconclusive. In other in vitro investigations, the interaction between isolated native Cd, Zn-metallothionein and several chelating agents was explored. Ultracentrifugation, equilibrium dialysis, and Sephadex G-25 gel filtration studies have been carried out in an attempt to determine the rate of removal of cadmium from metallothionein by these small molecules. Chemical shifts for the relevant cadmium-dithiocarbamate complexes have been determined using natural abundance Cd-NMR.

  7. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Kashyap, Jyoti; Gupta, Shubhra; Natasha, Kapoor, A.

    2016-05-01

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Y doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.

  8. Electrospark doping of steel with tungsten

    NASA Astrophysics Data System (ADS)

    Denisova, Yulia; Shugurov, Vladimir; Petrikova, Elizaveta; Seksenalina, Malika; Ivanova, Olga; Ikonnikova, Irina; Kunitsyna, Tatyana; Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-01

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  9. Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy.

    PubMed

    Wang, Meng; Chen, Zhuo; Zheng, Wei; Zhu, Haomiao; Lu, Shan; Ma, En; Tu, Datao; Zhou, Shanyong; Huang, Mingdong; Chen, Xueyuan

    2014-07-21

    Lanthanide-doped upconversion nanoparticles (UCNPs) have recently shown great promise in photodynamic therapy (PDT). Herein, we report a facile strategy to fabricate an efficient NIR-triggered PDT system based on LiYF4:Yb/Er UCNPs coupled with a photosensitizer of a β-carboxyphthalocyanine zinc (ZnPc-COOH) molecule via direct electrostatic interaction. Due to the close proximity between UCNPs and ZnPc-COOH, we achieved a high energy transfer efficiency of 96.3% from UCNPs to ZnPc-COOH, which facilitates a large production of cytotoxic singlet oxygen and thus an enhanced PDT efficacy. Furthermore, we demonstrate the high efficacy of such a NIR-triggered PDT agent for the inhibition of tumor growth both in vitro and in vivo, thereby revealing the great potential of the UCNP-based PDT systems as noninvasive NIR-triggered PDT agents for deep cancer therapy. PMID:24933297

  10. Recovering hidden quanta of Cu2+-doped ZnS quantum dots in reductive environment

    NASA Astrophysics Data System (ADS)

    Begum, Raihana; Sahoo, Amaresh Kumar; Ghosh, Siddhartha Sankar; Chattopadhyay, Arun

    2013-12-01

    We report that photoluminescence of doped quantum dots (Qdots)--which was otherwise lost in the oxidized form of the dopant--could be recovered in chemical or cellular reducing environment. For example, as-synthesized Cu2+-doped zinc sulfide (ZnS) Qdots in water medium showed weak emission with a peak at 420 nm, following excitation with UV light (320 nm). However, addition of reducing agent led to the appearance of green emission with a peak at 540 nm and with quantum yield as high as 10%, in addition to the weak peak now appearing as a shoulder. The emission disappeared in the presence of an oxidizing agent or with time under ambient conditions. X-Ray photoelectron spectroscopic (XPS) and electron spin resonance (ESR) measurements suggested the presence of Cu2+ in the as-synthesized Qdots, while formation of its reduced form was indicated (by ESR results) following treatment with a reducing agent. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies confirmed the formation of ZnS nanocrystals, the size and shape of which did not undergo any change in the presence of a reducing or oxidizing agent. Nanoparticulate forms of the Qdots and chitosan (a biopolymer) composite exhibited similar emission characteristics. Interestingly, when mammalian cancer cells or non-cancerous cells were treated with the composite nanoparticles (NPs), characteristic green fluorescence was observed. Further, the intensity of the fluorescence diminished when the cells were treated later with pyrogallol--a known reactive oxygen species generator. Overall, the results indicated a new way of probing the reducing nature of mammalian cells using the emission properties of the Qdot based on the redox state of its dopant.We report that photoluminescence of doped quantum dots (Qdots)--which was otherwise lost in the oxidized form of the dopant--could be recovered in chemical or cellular reducing environment. For example, as-synthesized Cu2+-doped zinc sulfide (ZnS) Qdots in

  11. Is there a place for hair analysis in doping controls?

    PubMed

    Rivier, L

    2000-01-10

    The actual antidoping control rules applied in sports (as established by the International Olympic Committee and the International Sport Federations) state that a positive case is chemically established by the unequivocal detection of a forbidden parent molecule and/or any of its metabolite(s) in urine, no matter the amounts which were administered and when the drug was taken. Screening is accomplished most of the time by using GC-MS procedures. These have been optimized to detect most if not all of the forbidden compounds which are put on a list. Recently, attempts have been made on scalp hair to demonstrate the value of this matrix as a possible means for differentiating between therapeutic use and doping abuse. In particular, GC-mass selective detector and GC-high resolution MS were successfully applied to treated animals and body-builders for anabolic agents (steroids and beta-2-agonists) at high sensitivity detection (low ng/g level). Naturally occurring molecules, like testosterone and its metabolites, could also be differentiated from their synthetic counterparts. Positive cases are more often challenged in courts and retrospectivity in time of the drug(s) intake is becoming an important issue for evaluating the responsibility of the person. This is can be based on hair analyses if the drugs have been taken at regular intervals. Stimulants and narcotics are often used in sports like drug of abuse in the ordinary social contexts. On the other hand, anabolic agents, when taken to improve the physical performances, follow complex regimens with the mixing of various formulas and dosages. Scalp hair references ranges for these as well as for endogenous substances still wait to be established statistically for competing, well-trained athletes. The incorporation rate into blond or gray hair is poorer than that of dark colored hair raising the question of individuals equality against the controls, a very important matter of concern for the sport's governing bodies

  12. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  13. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  14. Doping To Reduce Base Resistances Of Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1991-01-01

    Modified doping profile proposed to reduce base resistance of bipolar transistors. A p/p+ base-doping profile reduces base resistance without reducing current gain. Proposed low/high base-doping profile realized by such low-temperature deposition techniques as molecular-beam epitaxy, ultra-high-vacuum chemical-vapor deposition, and limited-reaction epitaxy. Produces desired doping profiles without excessive diffusion of dopant.

  15. Effect of Al Doping Concentration on Microstructure, Photoelectric Properties and Doped Mechanism of Azo Films

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Cai, Yanqing; Hou, Linyan; Ma, Penghua

    2014-05-01

    Al doped ZnO (AZO) thin films were deposited on a glass substrate by atmospheric pressure chemical vapor deposition (APCVD) method. Effect of Al doping concentration on microstructure, photoelectric properties and doped mechanism of AZO thin films were investigated. The analysis results revealed that the structural properties of the films possessed crystalline structure with a preferred (002) orientation. The best crystallization quality and minimum electrical resistivity was obtained at 5 at.% Al doped films and the minimum resistivity was 6.6 × 10-4 Ω ṡ cm. Uniform granular grains were observed on the surface of AZO films, and the average optical transmittance was above 80% in the visible range. The doped mechanism of AZO films was analyzed as follows. With Al doping in ZnO films, AlZn substitute and Ali interstice were produced, which decreased the resistivity of films. While after the limit value and with the continuing increase of Al doping concentration, free electrons were consumed and the resistivity of films increased.

  16. Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties

    NASA Astrophysics Data System (ADS)

    Wang, Xinjuan; Zhang, Qinglin; Zou, Bingsuo; Lei, Aihua; Ren, Pinyun

    2011-10-01

    Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn 2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.

  17. Carbohydrazide-dependent reductant for preparing nitrogen-doped graphene hydrogels as electrode materials in supercapacitor

    NASA Astrophysics Data System (ADS)

    Jiang, Man; Xing, Ling-Bao; Zhang, Jing-Li; Hou, Shu-Fen; Zhou, Jin; Si, Weijiang; Cui, Hongyou; Zhuo, Shuping

    2016-04-01

    Three-dimensional (3D) nitrogen-doped graphene hydrogels (NGHs) are designed and synthesized in an efficient and fast way by using a strong reductant of carbohydrazide as reducing and doping agent in an aqueous solution of graphene oxide (GO). The transformation of GO suspension to the hydrogels can be completed in 1 h, which can be confirmed by X-ray powder diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). With adding different amounts of carbohydrazide, the obtained NGHs behave different doping of N and unlike performances in supercapacitors, which can be demonstrated by elemental analysis and X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), N2 sorption experiments, and electrochemical measurements, respectively. According to the network architectures, the NGHs all exhibited high specific capacitance, NGHs-1, NGHs-2, NGHs-5 and NGHs-10 showed specific capacitance at 167.7, 156.8, 140.4 and 119.3 F g-1 at 1 A g-1 in KOH electrolyte. The specific capacitance can still be maintained for 80.5, 79.5, 80.3 and 78.6% with an increase of the discharging current density of 10 A g-1, respectively. More interestingly, the NGHs-1 based supercapacitor also exhibited good electrochemical stability and high degree of reversibility in the long-term cycling test (81.5% retention after 4000 cycles).

  18. Clean Photothermal Heating and Controlled Release from Near-Infrared Dye Doped Nanoparticles without Oxygen Photosensitization.

    PubMed

    Guha, Samit; Shaw, Scott K; Spence, Graeme T; Roland, Felicia M; Smith, Bradley D

    2015-07-21

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of (1)O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive (1)O2, leading to bleaching of the dye and also decomposition of coencapsulated payload such as the drug doxorubicin. Croc dye was especially useful as a photothermal agent for laser-controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water-soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326

  19. Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells

    SciTech Connect

    Heitsch, Andrew T.; Smith, Danielle K.; Patel, Reken N.; Ress, David; Korgel, Brian A.

    2008-07-15

    Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stoeber type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags-exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported. - Graphical abstract: Colloidal gold nanorods and iron platinum and iron oxide nanocrystals were encapsulated with fluorescent dye-doped silica shells using a generic coating strategy. These heterostructures are promising contrast agents for dual-mode medical imaging. Their optical and magnetic properties were studied and are reported here.

  20. Doping against the native propensity of MoS₂: Degenerate hole doping by cation substitution

    SciTech Connect

    Suh, Joonki; Park, Tae-Eon; Lin, Der-Yuh; Fu, Deyi; Park, Joonsuk; Jung, Hee Joon; Chen, Yabin; Ko, Changhyun; Jang, Chaun; Sun, Yinghui; Sinclair, Robert; Chang, Joonyeon; Tongay, Sefaattin; Wu, Junqiao

    2014-12-10

    Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, molybdenum disulfide (MoS₂) is natively an n-type presumably due to omnipresent electron-donating sulfur vacancies, and stable/controllable p-type doping has not been achieved. The lack of p-type doping hampers the development of charge-splitting p–n junctions of MoS₂, as well as limits carrier conduction to spin-degenerate conduction bands instead of the more interesting, spin-polarized valence bands. Traditionally, extrinsic p-type doping in TMDs has been approached with surface adsorption or intercalation of electron-accepting molecules. However, practically stable doping requires substitution of host atoms with dopants where the doping is secured by covalent bonding. In this work, we demonstrate stable p-type conduction in MoS₂ by substitutional niobium (Nb) doping, leading to a degenerate hole density of ~3 × 10¹⁹ cm⁻³. Structural and X-ray techniques reveal that the Nb atoms are indeed substitutionally incorporated into MoS₂ by replacing the Mo cations in the host lattice. van der Waals p–n homojunctions based on vertically stacked MoS₂ layers are fabricated, which enable gate-tunable current rectification. A wide range of microelectronic, optoelectronic, and spintronic devices can be envisioned from the demonstrated substitutional bipolar doping of MoS₂. From the miscibility of dopants with the host, it is also expected that the synthesis technique demonstrated here can be generally extended to other TMDs for doping against their native unipolar propensity.

  1. Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Chen, Zhuo; Zheng, Wei; Zhu, Haomiao; Lu, Shan; Ma, En; Tu, Datao; Zhou, Shanyong; Huang, Mingdong; Chen, Xueyuan

    2014-06-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have recently shown great promise in photodynamic therapy (PDT). Herein, we report a facile strategy to fabricate an efficient NIR-triggered PDT system based on LiYF4:Yb/Er UCNPs coupled with a photosensitizer of a β-carboxyphthalocyanine zinc (ZnPc-COOH) molecule via direct electrostatic interaction. Due to the close proximity between UCNPs and ZnPc-COOH, we achieved a high energy transfer efficiency of 96.3% from UCNPs to ZnPc-COOH, which facilitates a large production of cytotoxic singlet oxygen and thus an enhanced PDT efficacy. Furthermore, we demonstrate the high efficacy of such a NIR-triggered PDT agent for the inhibition of tumor growth both in vitro and in vivo, thereby revealing the great potential of the UCNP-based PDT systems as noninvasive NIR-triggered PDT agents for deep cancer therapy.Lanthanide-doped upconversion nanoparticles (UCNPs) have recently shown great promise in photodynamic therapy (PDT). Herein, we report a facile strategy to fabricate an efficient NIR-triggered PDT system based on LiYF4:Yb/Er UCNPs coupled with a photosensitizer of a β-carboxyphthalocyanine zinc (ZnPc-COOH) molecule via direct electrostatic interaction. Due to the close proximity between UCNPs and ZnPc-COOH, we achieved a high energy transfer efficiency of 96.3% from UCNPs to ZnPc-COOH, which facilitates a large production of cytotoxic singlet oxygen and thus an enhanced PDT efficacy. Furthermore, we demonstrate the high efficacy of such a NIR-triggered PDT agent for the inhibition of tumor growth both in vitro and in vivo, thereby revealing the great potential of the UCNP-based PDT systems as noninvasive NIR-triggered PDT agents for deep cancer therapy. Electronic supplementary information (ESI) available: Tables S1 and S2 and Fig. S1-S13. See DOI: 10.1039/c4nr01826e

  2. Chemopreventive Agent Development | Division of Cancer Prevention

    Cancer.gov

    This group promotes and supports research on early chemopreventive agent development, from preclinical studies to phas | Research on early chemopreventive agent development, from preclinical studies to phase I clinical trials.

  3. 7 CFR 58.628 - Sweetening agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.628 Sweetening agents. Sweetening agents shall be clean and wholesome and consist of one...

  4. 7 CFR 58.629 - Flavoring agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.629 Flavoring agents. Flavoring agents either natural or artificial shall be wholesome...

  5. 7 CFR 58.720 - Acidifying agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.720 Acidifying agents. Acidifying agents if used shall be those permitted by the Food...

  6. 7 CFR 58.629 - Flavoring agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.629 Flavoring agents. Flavoring agents either natural or artificial shall be wholesome...

  7. 7 CFR 58.628 - Sweetening agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.628 Sweetening agents. Sweetening agents shall be clean and wholesome and consist of one...

  8. 7 CFR 58.720 - Acidifying agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.720 Acidifying agents. Acidifying agents if used shall be those permitted by the Food...

  9. Intelligent Agent Architectures: Reactive Planning Testbed

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kahn, Philip

    1993-01-01

    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected.

  10. Security Measures to Protect Mobile Agents

    NASA Astrophysics Data System (ADS)

    Dadhich, Piyanka; Govil, M. C.; Dutta, Kamlesh

    2010-11-01

    The security issues of mobile agent systems have embarrassed its widespread implementation. Mobile agents that move around the network are not safe because the remote hosts that accommodate the agents initiates all kinds of attacks. These hosts try to analyze the agent's decision logic and their accumulated data. So, mobile agent security is the most challenging unsolved problems. The paper analyzes various security measures deeply. Security especially the attacks performed by hosts to the visiting mobile agent (the malicious hosts problem) is a major obstacle that prevents mobile agent technology from being widely adopted. Being the running environment for mobile agent, the host has full control over them and could easily perform many kinds of attacks against them.

  11. Intelligent Agents as Cognitive Tools for Education.

    ERIC Educational Resources Information Center

    Baylor, Amy

    1999-01-01

    Examines the educational potential for intelligent agents as cognitive tools. Discusses the role of intelligent agents: managing large amounts of information (information overload), serving as a pedagogical expert, and creating programming environments for the learner. (AEF)

  12. Learning other agents` preferences in multiagent negotiation

    SciTech Connect

    Bui, H.H.; Kieronska, D.; Venkatesh, S.

    1996-12-31

    In multiagent systems, an agent does not usually have complete information about the preferences and decision making processes of other agents. This might prevent the agents from making coordinated choices, purely due to their ignorance of what others want. This paper describes the integration of a learning module into a communication-intensive negotiating agent architecture. The learning module gives the agents the ability to learn about other agents` preferences via past interactions. Over time, the agents can incrementally update their models of other agents` preferences and use them to make better coordinated decisions. Combining both communication and learning, as two complement knowledge acquisition methods, helps to reduce the amount of communication needed on average, and is justified in situations where communication is computationally costly or simply not desirable (e.g. to preserve the individual privacy).

  13. Doped luminescent materials and particle discrimination using same

    DOEpatents

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  14. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  15. Spectroscopic investigation of nitrogen doped graphene

    SciTech Connect

    Podila, R.; Spear, J. T.; Chacon-Torres, J.; Pichler, T.; Ayala, P.; Rao, A. M.

    2012-09-17

    Current research efforts are aimed at controlling the electronic properties via doping graphene. Previously, dopant-induced changes in the Fermi velocity were observed to result in an effectively downshifted Raman peak below the G Prime -band for n-doped carbon nanotubes. However, in the case of N-doped graphene, we find that several Raman features vary depending upon both dopant concentration and its bonding environment. For instance, only pyridinic/pyrrolic dopants were observed to result in intense D/D Prime -bands with a concomitant downshift in the G Prime -band. Here, we correlate x-ray photoelectron measurements with Raman spectra to elucidate effects of dopant bonding configuration on vibrational properties of graphene.

  16. Structure of lithium-doped polyacetylene

    NASA Astrophysics Data System (ADS)

    Murthy, N. S.; Shacklette, L. W.; Baughman, R. H.

    1989-12-01

    A trigonal structure with three polymer chains per lithium column is proposed for lithium-doped polyacetylene. A calculation of the x-ray diffraction profile, using the unit-cell dimension and the lithium concentration as the only variables, is in good agreement with the observed data. The proposed structure optimizes the electrostatic interactions by maximizing both the Li+-Li+ separations and the coordination of negatively charged carbons and positively charged lithiums. Unlike the tetragonal lattice found in polyacetylene complexed with larger alkali-metal ions (K+, Rb+, and Cs+), the trigonal structure permits the undoped and the doped phases to coexist without any significant lattice mismatch at the boundary between the two phases. While the chain axis expands by ~1% upon doping with lithium, the projected area per chain remains essentially unchanged.

  17. Spectroscopic investigation of nitrogen doped graphene

    NASA Astrophysics Data System (ADS)

    Podila, R.; Chacón-Torres, J.; Spear, J. T.; Pichler, T.; Ayala, P.; Rao, A. M.

    2012-09-01

    Current research efforts are aimed at controlling the electronic properties via doping graphene. Previously, dopant-induced changes in the Fermi velocity were observed to result in an effectively downshifted Raman peak below the G'-band for n-doped carbon nanotubes. However, in the case of N-doped graphene, we find that several Raman features vary depending upon both dopant concentration and its bonding environment. For instance, only pyridinic/pyrrolic dopants were observed to result in intense D/D'-bands with a concomitant downshift in the G'-band. Here, we correlate x-ray photoelectron measurements with Raman spectra to elucidate effects of dopant bonding configuration on vibrational properties of graphene.

  18. The Development of Doped Radiosensitive Glass

    SciTech Connect

    Bradley, D. A.; Okoya, O. O.; Hugtenburg, R. P.; Hashim, Suhairul; Ramli, A. T.; Wagiran, H.; Yusoff, A. L.; Hassan, A. Aziz Mat

    2007-05-09

    For a range of industrial and medical situations there exists need for sensitive, robust high spatial resolution systems for radiation measurements. Our overall focus is on the development of doped silica-glass thermoluminescent dosimeters (TLD) with a view towards improving upon the thermoluminescence (TL) yield of commercially produced optical fibers. In baseline studies of the latter, as detailed herein, measurements have been conducted using Ge-doped communication fibers, employing sources of irradiation including bremsstrahlung x-rays (produced by a nominal accelerating potential of 50 kVp), alpha particles from an 241Am source (predominant emission 5.486 MeV) and protons of energy 2.5 MeV provided by an ion beam source. Present studies, also including elemental analysis via the PIXE and RBS techniques, permit comparison with higher TL yield doped glasses previously made by this group via the sol-gel technique and characterized in part using a range of synchrotron techniques.

  19. Transport Measurements on Sb doped Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Zare, Marzieh; Sapkota, Gopal; Gali, Pradeep; Philipose, Usha

    2011-03-01

    Semiconductor nanowires (NWs) present an alternative approach for device scaling. N-type Si NWs are generally grown with silane as source with phosphine and arsenic as dopants, all of which are toxic in nature. We present a safe, cost-effective approach for synthesis of n- doped Si NWs using Sb. Structural and compositional characterization using electron microscopy and X-ray spectroscopy will be presented for crystallographic information on the quality and morphology. Ohmic contacts established to a single and on an array of doped and undoped NWs in an FET type of device configuration will provide information on several parameters such as type of majority carriers, mobility and concentration. We will highlight the promise of Sb doped Si NWs for electronic applications such as nano-scale field effect transistors and sensors.

  20. Photorefractive properties of doped cadmium telluride

    NASA Astrophysics Data System (ADS)

    Bylsma, R. B.; Bridenbaugh, P. M.; Olson, D. H.; Glass, A. M.

    1987-09-01

    The first study of the photorefractive properties of doped CdTe has demonstrated high sensitivity for optical processing applications. Of the binary II-VI and III-V semiconductors, CdTe has the highest electro-optic coefficient r41 in the infrared, some three times larger than that of GaAs and InP. Deep levels introduced into CdTe exhibit appropriate absorption and photoconductivity at 1.06 μm by doping with V and Ti impurities. Photorefractive beam coupling experiments in CdTe:V gave small signal gains of 0.7 cm-1, and diffraction efficiencies with no applied electrical field of 0.7%. Thus, CdTe appears to be superior to previously studied III-V semiconductors, in the near-infrared spectrum. Optimization of doping and trap densities is expected to result in gain which exceeds the absorption loss, thereby allowing phase conjugation with infrared injection lasers.

  1. Nitrogen doping study in ingot niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao; Makita, Junki

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  2. Polarization doping of graphene on silicon carbide

    NASA Astrophysics Data System (ADS)

    Mammadov, Samir; Ristein, Jürgen; Koch, Roland J.; Ostler, Markus; Raidel, Christian; Wanke, Martina; Vasiliauskas, Remigijus; Yakimova, Rositza; Seyller, Thomas

    2014-12-01

    The doping of quasi-freestanding graphene (QFG) on H-terminated, Si-face 6H-, 4H-, and 3C-SiC is studied by angle-resolved photoelectron spectroscopy close to the Dirac point. Using semi-insulating as well as n-type doped substrates we shed light on the contributions to the charge carrier density in QFG caused by (i) the spontaneous polarization of the substrate, and (ii) the band alignment between the substrate and the graphene layer. In this way we provide quantitative support for the previously suggested model of polarization doping of graphene on SiC (Ristein et al 2012 Phys. Rev. Lett. 108 246104).

  3. Ho Doped BixSby Nanopolycrystalline Alloys

    NASA Astrophysics Data System (ADS)

    Lukas, K. C.; Joshi, G.; Wang, Dezhi; Ren, Z. F.; Opeil, C. P.

    2011-03-01

    Department of Physics, Boston College, Chestnut Hill, Massachusetts, 02467. Bismuth-Antimony alloys have been shown to have high ZT values below room temperature, especially for single crystals. For polycrystalline samples, impurity doping and magnetic field have proven to be powerful tools in the search for understanding and improving thermoelectric performance. Nanopolycrystalline BixSby doped with 1 and 3 % Ho were prepared by ball milling and dc hot pressing technique. Electrical resistivity, Seebeck coefficient, thermal conductivity, carrier concentration, mobility, and magnetization are measured in a temperature range of 5-350 K and in magnetic fields up to 9 Tesla. The effects of Ho doping on the thermoelectric properties of BixSby in magnetic field will be discussed. D.O.E. Energy Frontier Research Center Grant (S3TEC), at Massachusetts Institute of Technology.

  4. Heteroatom doped graphene in photocatalysis: A review

    NASA Astrophysics Data System (ADS)

    Putri, Lutfi Kurnianditia; Ong, Wee-Jun; Chang, Wei Sea; Chai, Siang-Piao

    2015-12-01

    Photocatalysis has been a focus of great attention due to its useful environmental applications such as eliminating hazardous pollutants and generating sustainable energy. Coincidentally, graphene, a 2D allotrope of carbon, has also infiltrated many research fields due to its outstanding properties - photocatalysis being no exception. As of recent, there has been growing research focus on heteroatom (O, N, B, P and S) doping of graphene and its emergent application opportunities. In this study, rather than the familiar graphene as the electron transfer medium that is normally integrated in a photocatalyst system, we contrarily explore the implication of heteroatom doped graphene and the underlying mechanism behind their advantageous uses in photocatalysis. This review surveys the literature and highlights recent progress and challenges in the development of chemically doped graphene in the photocatalysis scene. It is desired that this review will promote awareness and encourage further investigations for the development in this budding research area.

  5. Extinguishing agent for combustible metal fires

    DOEpatents

    Riley, John F.; Stauffer, Edgar Eugene

    1976-10-12

    A low chloride extinguishing agent for combustible metal fires comprising from substantially 75 to substantially 94 weight percent of sodium carbonate as the basic fire extinguishing material, from substantially 1 to substantially 5 weight percent of a water-repellent agent such as a metal stearate, from substantially 2 to substantially 10 weight percent of a flow promoting agent such as attapulgus clay, and from substantially 3 to substantially 15 weight percent of a polyamide resin as a crusting agent.

  6. Lanthanide and actinide doped glasses as reference standards for dye doped systems

    SciTech Connect

    Pope, E.J.A.; Hentschel, A.

    1996-12-31

    Organic dye molecules are well known to be subject to chemical and optical bleaching damage, temperature instability, and other forms of optical degradation. Currently recognized methods of referencing rely upon fluorescent salt solutions, such as quinine sulfate. In this paper, optically-active lanthanide and actinide doped gel-glasses are compared as reference standards for dye doped polymers. Samples are subjected to continuous illumination by 254 nm UV radiation. While dye-doped polymers exhibited approximately 65 percent decline in fluorescence intensity after 96 hours of irradiation, glass samples and glass powder in resin showed no decline in fluorescence intensities.

  7. Chemistry of destroying chemical warfare agents in flame. Technical project report, April 1994-May 1995

    SciTech Connect

    Korobeinichev, O.P.; Chernov, A.A.; Shvartsberg, V.M.; Il`in, S.B.; Mokrushin, V.V.

    1995-05-01

    The goal of the research is to increase our understanding of flame chemistry of organophosphorus compounds (OPC). This class of chemicals includes chemical warfare agents. (CWAs) such as the nerve agents GB GD and VX, stockpiles of which in the United States and Former Soviet Union are scheduled for destruction by incineration or other technologies. Although high CWA destruction efficiency has been demonstrated in incinerator tests in the U.S. it is necessary to improve technology for achievement higher efficiency and lower level of pollutants. The knowledge of detailed destruction chemistry of the CWA and simulants can be obtained by studying the structure of flames, doped with simulants and CWA and by the development of the combustion model which will include the chemical mechanism of destroying CWA in flame. Alkyl phosphates and alkyl phosphonates are typical organophosphorus compounds, that are simulants of sarin.

  8. 14 CFR 221.11 - Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Agent. 221.11 Section 221.11 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Who is Authorized To Issue and File Tariffs § 221.11 Agent. An agent may issue and...

  9. STUDIES OF WATERBORNE AGENTS OF VIRAL GASTROENTERITIS

    EPA Science Inventory

    The etiologic agent of a large outbreak of waterborne viral gastroenteritis was detected employing immune electron microscopy (IEM) and a newly developed solid phase radioimmunoassay (RIA). This agent, referred to as the Snow Mountain Agent (SMA), is 27-32 nm. in diameter, has cu...

  10. Agent-based modeling of complex infrastructures

    SciTech Connect

    North, M. J.

    2001-06-01

    Complex Adaptive Systems (CAS) can be applied to investigate complex infrastructures and infrastructure interdependencies. The CAS model agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) allow investigation of the electric power infrastructure, the natural gas infrastructure and their interdependencies.

  11. 24 CFR 232.1011 - Management agents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Management agents. 232.1011 Section... Management agents. (a) An operator or borrower may, with the prior written approval of HUD, execute a management agent agreement setting forth the duties and procedures for matters related to the management...

  12. 24 CFR 232.1011 - Management agents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Management agents. 232.1011 Section... Management agents. (a) An operator or borrower may, with the prior written approval of HUD, execute a management agent agreement setting forth the duties and procedures for matters related to the management...

  13. 46 CFR 153.1106 - Cleaning agents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cleaning agents. 153.1106 Section 153.1106 Shipping... Handling of Categories A, B, C, and D Cargo and Nls Residue § 153.1106 Cleaning agents. No tank cleaning agent other than water or steam may be used to clean an NLS residue from a cargo tank except...

  14. Online Deception Detection Using BDI Agents

    ERIC Educational Resources Information Center

    Merritts, Richard A.

    2013-01-01

    This research has two facets within separate research areas. The research area of Belief, Desire and Intention (BDI) agent capability development was extended. Deception detection research has been advanced with the development of automation using BDI agents. BDI agents performed tasks automatically and autonomously. This study used these…

  15. The Ontogenesis of Agent: Linguistic Expression.

    ERIC Educational Resources Information Center

    Olswang, Lesley Barrett; Carpenter, Robert L.

    1982-01-01

    Some of the findings of a longitudinal study of three infants between their 11th and 22nd months to document development of linguistic expression of the agent concept indicated that first vocalizations were inconsistently associated with nonverbal agentive behaviors and later mature utterances coded agent-action-recipient events. (MC)

  16. Infants Attribute to Agents Goals and Dispositions

    ERIC Educational Resources Information Center

    Luo, Yuyan; Choi, You-jung

    2012-01-01

    This commentary article is to be published alongside: Hernik, M., & Southgate, V. (2012). What do infants know about agents' goals? The authors see this issue consisting of two closely related questions. First, what is an agent to infants? Second, how do infants attribute goals to agents? Hernik and Southgage (H&S) focused on the second question.…

  17. Construction and Evaluation of Animated Teachable Agents

    ERIC Educational Resources Information Center

    Bodenheimer, Bobby; Williams, Betsy; Kramer, Mattie Ruth; Viswanath, Karun; Balachandran, Ramya; Belynne, Kadira; Biswas, Gautam

    2009-01-01

    This article describes the design decisions, technical approach, and evaluation of the animation and interface components for an agent-based system that allows learners to learn by teaching. Students learn by teaching an animated agent using a visual representation. The agent can answer questions about what she has been taught and take quizzes.…

  18. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  19. Honey - A Novel Antidiabetic Agent

    PubMed Central

    Erejuwa, Omotayo O.; Sulaiman, Siti A.; Wahab, Mohd S. Ab

    2012-01-01

    Diabetes mellitus remains a burden worldwide in spite of the availability of numerous antidiabetic drugs. Honey is a natural substance produced by bees from nectar. Several evidence-based health benefits have been ascribed to honey in the recent years. In this review article, we highlight findings which demonstrate the beneficial or potential effects of honey in the gastrointestinal tract (GIT), on the gut microbiota, in the liver, in the pancreas and how these effects could improve glycemic control and metabolic derangements. In healthy subjects or patients with impaired glucose tolerance or diabetes mellitus, various studies revealed that honey reduced blood glucose or was more tolerable than most common sugars or sweeteners. Pre-clinical studies provided more convincing evidence in support of honey as a potential antidiabetic agent than clinical studies did. The not-too-impressive clinical data could mainly be attributed to poor study designs or due to the fact that the clinical studies were preliminary. Based on the key constituents of honey, the possible mechanisms of action of antidiabetic effect of honey are proposed. The paper also highlights the potential impacts and future perspectives on the use of honey as an antidiabetic agent. It makes recommendations for further clinical studies on the potential antidiabetic effect of honey. This review provides insight on the potential use of honey, especially as a complementary agent, in the management of diabetes mellitus. Hence, it is very important to have well-designed, randomized controlled clinical trials that investigate the reproducibility (or otherwise) of these experimental data in diabetic human subjects. PMID:22811614

  20. Copper complexes as anticancer agents.

    PubMed

    Marzano, Cristina; Pellei, Maura; Tisato, Francesco; Santini, Carlo

    2009-02-01

    Metal-based antitumor drugs play a relevant role in antiblastic chemotherapy. Cisplatin is regarded as one of the most effective drugs, even if severe toxicities and drug resistance phenomena limit its clinical use. Therefore, in recent years there has been a rapid expansion in research and development of novel metal-based anticancer drugs to improve clinical effectiveness, to reduce general toxicity and to broaden the spectrum of activity. The variety of metal ion functions in biology has stimulated the development of new metallodrugs other than Pt drugs with the aim to obtain compounds acting via alternative mechanisms of action. Among non-Pt compounds, copper complexes are potentially attractive as anticancer agents. Actually, since many years a lot of researches have actively investigated copper compounds based on the assumption proposal that endogenous metals may be less toxic. It has been established that the properties of copper-coordinated compounds are largely determined by the nature of ligands and donor atoms bound to the metal ion. In this review, the most remarkable achievements in the design and development of copper(I, II) complexes as antitumor agents are discussed. Special emphasis has been focused on the identification of structure-activity relationships for the different classes of copper(I,II) complexes. This work was motivated by the observation that no comprehensive surveys of copper complexes as anticancer agents were available in the literature. Moreover, up to now, despite the enormous efforts in synthesizing different classes of copper complexes, very few data concerning the molecular basis of the mechanisms underlying their antitumor activity are available. This overview, collecting the most significant strategies adopted in the last ten years to design promising anticancer copper(I,II) compounds, would be a help to the researchers working in this field. PMID:19199864

  1. Pathogenic agents in freshwater resources

    NASA Astrophysics Data System (ADS)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  2. Optical and thermal properties of doped semiconductor

    NASA Astrophysics Data System (ADS)

    Abroug, S.; Saadallah, F.; Yacoubi, N.

    2008-01-01

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of optoelectronic compounds. The purpose of this work is to investigate theses effects by mirage effect technique and spectroscopic ellipsometry SE. The absorption spectra measured for differently doped Si and GaAs bulk samples, show that absorption in the near IR increases with dopant density and also the band gap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density throw a semi-empirical model.

  3. Optical cooling of Nd-doped solids

    NASA Astrophysics Data System (ADS)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Al Saleh, Mohammed; Garcia-Revilla, Sara; Sola, Daniel; Fernández, Joaquín

    2012-03-01

    In this work we present a comprehensive review of recent work carried out by our group in the field of optical refrigeration of Nd-doped solids. Several infrared thermography measurements in Nd-doped KPb2Cl5 crystals and micro-powders both above and below the barycentre of the 4F3/2 are presented. These include some of our most recent ones obtained by employing a novel technique that allows one to perform differential temperature measurements. The role of both the direct anti-Stokes absorption processes and those assisted by either excited state absorption or energy transfer upconversion in the cooling process is discussed.

  4. High resolution three-dimensional doping profiler

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    1999-01-01

    A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.

  5. Nanozeolites doped photopolymer layers with reduced shrinkage.

    PubMed

    Moothanchery, Mohesh; Naydenova, Izabela; Mintova, Svetlana; Toal, Vincent

    2011-12-01

    An acrylamide based photopolymer doped with pure silica MFI-type zeolite (silicalite-1) nanoparticles has been characterized for holographic recording purposes. The concentrations of the silicalite-1 nanoparticles in the photopolymer layers were 1, 2.5, 5 and 7.5 wt. %. The inclusion of silicalite-1 nanoparticle in the photopolymer has resulted in an increase of the diffraction efficiency by up to 40%, and decrease of the shrinkage from 1.32% to 0.57%. The best results were obtained in layers doped with 5 wt. % silicalite-1 nanoparticles. PMID:22273971

  6. Retardation of nanoparticles growth by doping

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Rudko, Galyna; Fediv, Volodymyr; Savchuk, Andrij; Gule, Evgenij; Vorona, Igor

    2014-12-01

    The process of doping of CdS nanoparticles with Mn during colloidal synthesis is analyzed by EPR and optical studies. Analysis of EPR results demonstrated that Mn2+ ions are successfully incorporated into the nanoparticles and occupy the crystal sites both in the bulk of a NP and near the surface of a NP. Optical absorption measurements revealed the retardation of absorption edge shift during the growth for Mn-doped CdS NPs as compared to the undoped CdS NPs. It was concluded that the presence of Mn in the solution leads to the inhibition of NPs growth.

  7. Ion-implantation doping of silicon carbide

    SciTech Connect

    Gardner, J.; Edwards, A.; Rao, M.V.; Papanicolaou, N.; Kelner, G.; Holland, O.W.

    1997-10-01

    Because of their commercial availability in bulk single crystal form, the 6H- and 4H- polytypes of SiC are gaining importance for high-power, high-temperature, and high-frequency device applications. Selective area doping is a crucial processing step in integrated circuit manufacturing. In Si technology, selective area doping is accomplished by thermal diffusion or ion-implantation. Because of the low diffusion coefficients of most impurities in SiC, ion implantation is indispensable in SiC device manufacturing. In this paper the authors present their results on donor, acceptor, and compensation implants in 6H-SiC.

  8. Anticancer agents from marine sponges.

    PubMed

    Ye, Jianjun; Zhou, Feng; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine sponges are currently one of the richest sources of anticancer active compounds found in the marine ecosystems. More than 5300 different known metabolites are from sponges and their associated microorganisms. To survive in the complicated marine environment, most of the sponge species have evolved chemical means to defend against predation. Such chemical adaptation produces many biologically active secondary metabolites including anticancer agents. This review highlights novel secondary metabolites in sponges which inhibited diverse cancer species in the recent 5 years. These natural products of marine sponges are categorized based on various chemical characteristics. PMID:25402340

  9. Fluorescent whitening agents in detergents.

    PubMed

    Eckhardt, C; von Rütte, R

    1975-01-01

    Washing is a form of textile care which is characterized by its repetitive nature. Washing methods vary enormously in different parts of the world. The main types of detergents and fluorescent whitening agents (FWAs) are described. Washing slows down the deterioration in use of white goods, and yellowing is counteracted by FWAs. FWAs also enhance the freshness and brightness of most pale shades. Cost calculations show clearly the economic advantages of using FWAs in washing: the useful life of textiles can be prolonged considerably for a very small additional cost. PMID:1064549

  10. Method For Detecting Biological Agents

    DOEpatents

    Chen, Liaohai; McBranch, Duncan W.; Wang, Hsing-Lin; Whitten, David G.

    2005-12-27

    A sensor is provided including a polymer capable of having an alterable measurable property from the group of luminescence and electrical conductivity, the polymer having an intermediate combination of a recognition element, a tethering element and a property-altering element bound thereto and capable of altering the measurable property, the intermediate combination adapted for subsequent separation from the polymer upon exposure to an agent having an affinity for binding to the recognition element whereupon the separation of the intermediate combination from the polymer results in a detectable change in the alterable measurable property, and, detecting said detectable change in the alterable measurable property.

  11. Influence Al doped ZnO nanostructure on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-04-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  12. Mobile agent location in distributed environments

    NASA Astrophysics Data System (ADS)

    Fountoukis, S. G.; Argyropoulos, I. P.

    2012-12-01

    An agent is a small program acting on behalf of a user or an application which plays the role of a user. Artificial intelligence can be encapsulated in agents so that they can be capable of both behaving autonomously and showing an elementary decision ability regarding movement and some specific actions. Therefore they are often called autonomous mobile agents. In a distributed system, they can move themselves from one processing node to another through the interconnecting network infrastructure. Their purpose is to collect useful information and to carry it back to their user. Also, agents are used to start, monitor and stop processes running on the individual interconnected processing nodes of computer cluster systems. An agent has a unique id to discriminate itself from other agents and a current position. The position can be expressed as the address of the processing node which currently hosts the agent. Very often, it is necessary for a user, a processing node or another agent to know the current position of an agent in a distributed system. Several procedures and algorithms have been proposed for the purpose of position location of mobile agents. The most basic of all employs a fixed computing node, which acts as agent position repository, receiving messages from all the moving agents and keeping records of their current positions. The fixed node, responds to position queries and informs users, other nodes and other agents about the position of an agent. Herein, a model is proposed that considers pairs and triples of agents instead of single ones. A location method, which is investigated in this paper, attempts to exploit this model.

  13. Optical properties of undoped and Mg doped CuCrO{sub 2} powders synthesized by sol-gel route

    SciTech Connect

    Srinivasan, Radhakrishnan; Bolloju, Satish

    2014-01-28

    In this work, CuCrO{sub 2} was synthesized by sol-gel method using citric acid as a gelling agent. The different parameters like ratio of citric acid to metal ions, calcination temperature, and duration were studied. A green colored powder with particle size around 300 nm was formed at the calcination temperature of 800 °C for four hours duration. The increase in temperature has a profound impact on crystallite size and in turn effected the optical properties. Band gap of the obtained CuCrO{sub 2} has varied from 2.3 to 1.7 eV by increasing the temperature from 800 °C to 900 °C. Doping studies were performed by introducing Mg{sup 2+} ion to substitute Cr{sup 3+} in CuCrO{sub 2}. X-ray powder diffraction and SEM studies on 2% Mg doped samples indicated a clear formation of side phases. According to the X-ray powder patterns, the reflections from side phases were increasing with the increase in doping concentrations of Mg from 2 to 5%. The side phases were found to be MgCr{sub 2}O{sub 4} spinel and CuO. The band gap has decreased for doped samples in comparison to undoped one. In this paper, sol-gel synthesis and characterization by Xray powder diffraction, SEM studies and UV-Vis-Diffuse Reflectance spectra are presented.

  14. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.

    PubMed

    Fantechi, Elvira; Innocenti, Claudia; Zanardelli, Matteo; Fittipaldi, Maria; Falvo, Elisabetta; Carbo, Miriam; Shullani, Valbona; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Ferretti, Anna Maria; Ponti, Alessandro; Sangregorio, Claudio; Ceci, Pierpaolo

    2014-05-27

    Magnetic nanoparticles, MNPs, mineralized within a human ferritin protein cage, HFt, can represent an appealing platform to realize smart therapeutic agents for cancer treatment by drug delivery and magnetic fluid hyperthermia, MFH. However, the constraint imposed by the inner diameter of the protein shell (ca. 8 nm) prevents its use as heat mediator in MFH when the MNPs comprise pure iron oxide. In this contribution, we demonstrate how this limitation can be overcome through the controlled doping of the core with small amount of Co(II). Highly monodisperse doped iron oxide NPs with average size of 7 nm are mineralized inside a genetically modified variant of HFt, carrying several copies of α-melanocyte-stimulating hormone peptide, which has already been demonstrated to have excellent targeting properties toward melanoma cells. HFt is also conjugated to poly(ethylene glycol) molecules to increase its in vivo stability. The investigation of hyperthermic properties of HFt-NPs shows that a Co doping of 5% is enough to strongly enhance the magnetic anisotropy and thus the hyperthermic efficiency with respect to the undoped sample. In vitro tests performed on B16 melanoma cell line demonstrate a strong reduction of the cell viability after treatment with Co doped HFt-NPs and exposure to the alternating magnetic field. Clear indications of an advanced stage of apoptotic process is also observed from immunocytochemistry analysis. The obtained data suggest this system represents a promising candidate for the development of a protein-based theranostic nanoplatform. PMID:24689973

  15. Novel Fe doped mesoporous TiO 2 microspheres: Ultrasonic-hydrothermal synthesis, characterization, and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Haibin; Liu, Guocong; Chen, Shuguang; Liu, Qicheng

    2010-04-01

    Novel Fe doped mesoporous TiO 2 microspheres were fabricated by an ultrasonic-hydrothermal method when tetrabutyl titanate was used as a precursor and octadecylamine was used as a structure-directing agent. The mesoporous materials were characterized by XRD, SEM, TEM, N 2 adsorption-desorption measurements, XPS, FL, and UV-vis. The results suggest that both ultrasonic treatment and hydrothermal procedure are critical for the fabrication of Fe doped mesoporous TiO 2 microspheres with a combination of regular morphology, large specific surface area, high crystallinity, and high thermal stability. Low-angle XRD and TEM images indicate that the disordered wormhole-like mesostructure of Fe doped TiO 2 microspheres with diameters of about 300-400 nm is actually formed by the agglomerization of nanoparticles with an average size of about 10 nm. The photocatalytic activity of Fe doped mesoporous TiO 2 microspheres was evaluated by the photodegradation of methyl orange. A small amount of Fe 3+ can obviously enhance their photocatalytic activity. The optimal atomic ratio of Fe to Ti for photocatalytic activity is about 0.5 at%.

  16. PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters.

    PubMed

    Hu, Hao; Huang, Peng; Weiss, Orit Jacobson; Yan, Xuefeng; Yue, Xuyi; Zhang, Molly Gu; Tang, Yuxia; Nie, Liming; Ma, Ying; Niu, Gang; Wu, Kaichun; Chen, Xiaoyuan

    2014-12-01

    Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster ((64)Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide (64)Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. (64)Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, (64)Cu-doped AuNCs showed high tumor uptake (14.9 %ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging. PMID:25224367

  17. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  18. Ferroic ordering and charge-spin-lattice order coupling in Gd doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Abdelhamid, Ehab; Palihawadana Arachchige, Maheshika; Dixit, Ambesh; Lawes, Gavin; Naik, Vaman; Naik, Ratna

    Rare earth doped spinels have been extensively studied for their potential applications in magneto-optical recording and as MRI contrast agents. In the present study, we have investigated the effect of gadolinium doping (1-5 at.%) on the magnetic and dielectric properties of Fe3O4nanoparticles synthesized by the chemical co-precipitation method. The structure and morphology of the as-synthesized gadolinium doped Fe3O4(Gd-Fe3O4) nanoparticles were characterized by XRD, SEM and TEM, and the magnetic properties were measured by a Quantum Design physical property measurement system. We find that the penetration of excess Gd3+ ions into Fe3O4 spinel matrix significantly influences the average crystallite size and saturation magnetization in Gd-Fe3O4. The average crystallite size, estimated from XRD using Scherrer equation, increases with increasing Gd doping percentage and the saturation magnetization drops monotonically with excess Gd3+ ions. Interestingly, Gd- Fe3O4develops enhanced ferroelectric ordering at low temperatures. The details of the temperature dependent dielectric, ferroelectric and magnetocapacitance measurements to understand the onset of charge-spin-lattice coupling in Gd-Fe3O4 system will be presented.

  19. Piezoresistance and hole transport in beryllium-doped silicon.

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Robertson, J. B.

    1972-01-01

    The resistivity and piezoresistance of p-type silicon doped with beryllium have been studied as a function of temperature, crystal orientation, and beryllium doping concentration. It is shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gauge factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, while the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  20. Current anti-doping policy: a critical appraisal

    PubMed Central

    Kayser, Bengt; Mauron, Alexandre; Miah, Andy

    2007-01-01

    Background Current anti-doping in competitive sports is advocated for reasons of fair-play and concern for the athlete's health. With the inception of the World Anti Doping Agency (WADA), anti-doping effort has been considerably intensified. Resources invested in anti-doping are rising steeply and increasingly involve public funding. Most of the effort concerns elite athletes with much less impact on amateur sports and the general public. Discussion We review this recent development of increasingly severe anti-doping control measures and find them based on questionable ethical grounds. The ethical foundation of the war on doping consists of largely unsubstantiated assumptions about fairness in sports and the concept of a "level playing field". Moreover, it relies on dubious claims about the protection of an athlete's health and the value of the essentialist view that sports achievements reflect natural capacities. In addition, costly antidoping efforts in elite competitive sports concern only a small fraction of the population. From a public health perspective this is problematic since the high prevalence of uncontrolled, medically unsupervised doping practiced in amateur sports and doping-like behaviour in the general population (substance use for performance enhancement outside sport) exposes greater numbers of people to potential harm. In addition, anti-doping has pushed doping and doping-like behaviour underground, thus fostering dangerous practices such as sharing needles for injection. Finally, we argue that the involvement of the medical profession in doping and anti-doping challenges the principles of non-maleficience and of privacy protection. As such, current anti-doping measures potentially introduce problems of greater impact than are solved, and place physicians working with athletes or in anti-doping settings in an ethically difficult position. In response, we argue on behalf of enhancement practices in sports within a framework of medical supervision

  1. Strong adsorption of Al-doped carbon nanotubes toward cisplatin

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Guo-Qing; Lu, Xiao-Min; Ma, Juan-Juan; Zeng, Peng-Yu; He, Qin-Yu; Wang, Yin-Zhen

    2016-08-01

    The adsorption of cisplatin molecule on Al-doped CNTs is investigated using density functional theory. The obtained results indicate that Al-doped carbon nanotubes can strongly absorb cisplatin. After absorbing cisplatin, the symmetry of CNTs has some changes. We innovatively defined a parameter of symmetry variation which relates to the adsorption. By analyzing the electronic structure, it can be concluded that under the circumstance that cisplatin was absorbed by Al-doped CNTs through aluminum atom of Al-doped CNTs. In conclusion, Al-doped CNTs is a kind of potential delivery carrier with high quality for anticancer drug cisplatin.

  2. Triazole: A Promising Antitubercular Agent.

    PubMed

    Keri, Rangappa S; Patil, Siddappa A; Budagumpi, Srinivasa; Nagaraja, Bhari Mallanna

    2015-10-01

    Tuberculosis is a contagious disease with comparatively high mortality worldwide. The statistics shows that around three million people throughout the world die annually from tuberculosis and there are around eight million new cases each year, of which developing countries showed major share. Therefore, the discovery and development of effective antituberculosis drugs with novel mechanism of action have become an insistent task for infectious diseases research programs. The literature reveals that, heterocyclic moieties have drawn attention of the chemists, pharmacologists, microbiologists, and other researchers owing to its indomitable biological potential as anti-infective agents. Among heterocyclic compounds, triazole (1,2,3-triazole/1,2,4-triazole) nucleus is one of the most important and well-known heterocycles, which is a common and integral feature of a variety of natural products and medicinal agents. Triazole core is considered as a privileged structure in medicinal chemistry and is widely used as 'parental' compounds to synthesize molecules with medical benefits, especially with infection-related activities. In the present review, we have collated published reports on this versatile core to provide an insight so that its complete therapeutic potential can be utilized for the treatment of tuberculosis. This review also explores triazole as a potential targeted core moiety against tuberculosis and various research ongoing worldwide. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic triazole-based antituberculosis drugs. PMID:25643871

  3. Chemopreventive agents targeting tumor microenvironment.

    PubMed

    Sharma, Sharada H; Thulasingam, Senthilkumar; Nagarajan, Sangeetha

    2016-01-15

    Recent studies have shown that tumor development and progression depend not only on the perturbed genes that govern cell proliferation, but is also highly determined by the non-tumor cells of the stromal compartment surrounding the tumor called tumor microenvironment (TME). These findings highlight the importance of targeting the microenvironment in combination with therapies aimed at tumor cells as a valuable approach. The innate and adaptive immune cells in the TME interact among themselves and also with the endothelial cells, pericytes and mast cells of the stromal compartment through various autocrine and paracrine manner to regulate abnormal cell proliferation. Direct cytotoxic killing of cancer cells and/or reversion of the immunosuppressive TME are to be considered as better strategies for chemoprevention and chemotherapy. With a growing emphasis on a "hallmark targeting" strategy for cancer therapy, the TME now appears as a promising target for cancer prevention using natural products. Clarification on the nontumor stromal cells, the mediators involved, interactions with immune response cells, and immune-evasive mechanisms are needed in order to manipulate the characteristics of the TME by natural pharmacological agents to design effective therapies. This review will provide a glimpse on the roles played by various non-tumor cells in tumor progression and their intervention by pharmacological agents. PMID:26679106

  4. A Review of Luting Agents

    PubMed Central

    Pameijer, Cornelis H.

    2012-01-01

    Due to the availability of a large number of luting agents (dental cements) proper selection can be a daunting task and is usually based on a practitioner's reliance on experience and preference and less on in depth knowledge of materials that are used for the restoration and luting agent properties. This review aims at presenting an overview of current cements and discusses physical properties, biocompatibility and other properties that make a particular cement the preferred choice depending on the clinical indication. Tables are provided that outline the different properties of the generic classification of cements. It should be noted that no recommendations are made to use a particular commercial cement for a hypothetical clinical situation. The choice is solely the responsibility of the practitioner. The appendix is intended as a guide for the practitioner towards a recommended choice under commonly encountered clinical scenarios. Again, no commercial brands are recommended although the author recognizes that some have better properties than others. Please note that this flowchart strictly presents the author's opinion and is based on research, clinical experience and the literature. PMID:22505909

  5. Nanoparticle-based theranostic agents

    PubMed Central

    Xie, Jin; Lee, Seulki; Chen, Xiaoyuan

    2010-01-01

    Theranostic nanomedicine is emerging as a promising therapeutic paradigm. It takes advantage of the high capacity of nanoplatforms to ferry cargo and loads onto them both imaging and therapeutic functions. The resulting nanosystems, capable of diagnosis, drug delivery and monitoring of therapeutic response, are expected to play a significant role in the dawning era of personalized medicine, and much research effort has been devoted toward that goal. A convenience in constructing such function-integrated agents is that many nanoplatforms are already, themselves, imaging agents. Their well developed surface chemistry makes it easy to load them with pharmaceutics and promote them to be theranostic nanosystems. Iron oxide nanoparticles, quantum dots, carbon nanotubes, gold nanoparticles and silica nanoparticles, have been previously well investigated in the imaging setting and are candidate nanoplatforms for building up nanoparticle-based theranostics. In the current article, we will outline the progress along this line, organized by the category of the core materials. We will focus on construction strategies and will discuss the challenges and opportunities associated with this emerging technology. PMID:20691229

  6. Innovative Agents in Multiple Myeloma

    PubMed Central

    Faiman, Beth; Richards, Tiffany

    2014-01-01

    Multiple myeloma (MM) remains an incurable cancer of the bone marrow plasma cells. However, the overall survival of patients with MM has increased dramatically within the past decade. This is due, in part, to newer agents such as immunomodulatory drugs (lenalidomide, thalidomide, and pomalidomide) and proteasome inhibitors (bortezomib, carfilzomib, MLN9708). These and several other new classes of drugs have arisen from an improved understanding of the complex environment in which genetic changes occur. Improved understanding of genetic events will enable clinicians to better stratify risk before and during therapy, tailor treatment, and test the value of personalized interventions. The ultimate goal in this incurable disease setting is to reduce the impact of cancer- or chemotherapy-related side effects. Nurses and advanced practitioners are integral to the treatment team. Thus, each should be aware of changes to the current drug landscape. Targeted drugs with sophisticated mechanisms of action are currently under investigation. Patients gain access to newer drugs within the context of clinical trials. Awareness of such trials will help accrual and determine if therapeutic benefit exists. In this article, we will describe new agents with unique and targeted mechanisms of action that have activity in patients with relapsed and/or refractory multiple myeloma. PMID:25089218

  7. Surfactants as blackbird stressing agents

    USGS Publications Warehouse

    Lefebvre, P.W.; Seubert, J.L.

    1970-01-01

    Applications of wetting-agent solutions produce mortality in birds. The exact cause of death is undetermined but it is believed that destruction of the insulating qualities of the plumage permits ambient cold temperatures and evaporation to lower the body temperature to a lethal level. The original concept of using these materials as bird-control tools was developed in 1958 at the Patuxent Wildlife Research Center, Bureau of Sport Fisheries and Wildlife Laurel, Maryland. Early field trials by personnel of the Division of Wildlife Services and the Denver Wildlife Research Center indicated that ground-application techniques had promise but limitations of the equipment precluded successful large-scale roost treatments. In 1966, Patuxent Center personnel began using tanker-type aircraft to evaluate high-volume aerial applications of wetting agents. The success of these tests led to the use of small aircraft to make low-volume, high-concentration aerial applications just prior to expected rainfall. Recent trials of the low-volume method show that, with some limitations, it is effective, inexpensive, and safe to the environment. Current research emphasizes the screening of new candidate materials for efficacy, biodegradability, and toxicity to plants and non-target animals, as well as basic investigations of the avian physiological mechanisms involved. Field trials to develop more effective application techniques will continue.

  8. Electric power market agent design

    NASA Astrophysics Data System (ADS)

    Oh, Hyungseon

    The electric power industry in many countries has been restructured in the hope of a more economically efficient system. In the restructured system, traditional operating and planning tools based on true marginal cost do not perform well since information required is strictly confidential. For developing a new tool, it is necessary to understand offer behavior. The main objective of this study is to create a new tool for power system planning. For the purpose, this dissertation develops models for a market and market participants. A new model is developed in this work for explaining a supply-side offer curve, and several variables are introduced to characterize the curve. Demand is estimated using a neural network, and a numerical optimization process is used to determine the values of the variables that maximize the profit of the agent. The amount of data required for the optimization is chosen with the aid of nonlinear dynamics. To suggest an optimal demand-side bidding function, two optimization problems are constructed and solved for maximizing consumer satisfaction based on the properties of two different types of demands: price-based demand and must-be-served demand. Several different simulations are performed to test how an agent reacts in various situations. The offer behavior depends on locational benefit as well as the offer strategies of competitors.

  9. Camouflaging Agents for Vitiligo Patients.

    PubMed

    Hossain, Claudia; Porto, Dennis A; Hamzavi, Iltefat; Lim, Henry W

    2016-04-01

    Vitiligo is an acquired condition resulting in patches of depigmented skin that is cosmetically disfiguring and can subsequently be psychologically disturbing. For patients seeking to mask their vitiligo, camouflage options have historically been limited and been designated as a cosmetic, rather than a medical, concern. As research has indicated that proper concealment of vitiligo lesions can vastly improve quality of life, we believe it is essential that dermatologists become aware of all the options available to their patients and that discussions of camouflage options be broached from the first visit. Methods for concealment include cosmetic tattoos, dihydroxyacetone, general cosmetics, and various topical camouflage agents, including the newest product, Microskin™. We conducted a literature review of all of the available options for vitiligo concealment and evaluated their advantages and disadvantages. Ultimately, temporary methods of concealment are recommended; but the particular agent used can come from discussion with the patient based on the location of the lesions, degree of concealment desired, cost, and availability. PMID:27050692

  10. Doping control analysis of trimetazidine and characterization of major metabolites using mass spectrometric approaches.

    PubMed

    Sigmund, Gerd; Koch, Anja; Orlovius, Anne-Katrin; Guddat, Sven; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    Since January 2014, the anti-anginal drug trimetazidine [1-(2,3,4-trimethoxybenzyl)-piperazine] has been classified as prohibited substance by the World Anti-Doping Agency (WADA), necessitating specific and robust detection methods in sports drug testing laboratories. In the present study, the implementation of the intact therapeutic agent into two different initial testing procedures based on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) is reported, along with the characterization of urinary metabolites by electrospray ionization-high resolution/high accuracy (tandem) mass spectrometry. For GC-MS analyses, urine samples were subjected to liquid-liquid extraction sample preparation, while LC-MS/MS analyses were conducted by established 'dilute-and-inject' approaches. Both screening methods were validated for trimetazidine concerning specificity, limits of detection (0.5-50 ng/mL), intra-day and inter-day imprecision (<20%), and recovery (41%) in case of the GC-MS-based method. In addition, major metabolites such as the desmethylated trimetazidine and the corresponding sulfoconjugate, oxo-trimetazidine, and trimetazidine-N-oxide as identified in doping control samples were used to complement the LC-MS/MS-based assay, although intact trimetazidine was found at highest abundance of the relevant trimetazidine-related analytes in all tested sports drug testing samples. Retrospective data mining regarding doping control analyses conducted between 1999 and 2013 at the Cologne Doping Control Laboratory concerning trimetazidine revealed a considerable prevalence of the drug particularly in endurance and strength sports accounting for up to 39 findings per year. PMID:24913825

  11. Anchor Toolkit - a secure mobile agent system

    SciTech Connect

    Mudumbai, Srilekha S.; Johnston, William; Essiari, Abdelilah

    1999-05-19

    Mobile agent technology facilitates intelligent operation insoftware systems with less human interaction. Major challenge todeployment of mobile agents include secure transmission of agents andpreventing unauthorized access to resources between interacting systems,as either hosts, or agents, or both can act maliciously. The Anchortoolkit, designed by LBNL, handles the transmission and secure managementof mobile agents in a heterogeneous distributed computing environment. Itprovides users with the option of incorporating their security managers.This paper concentrates on the architecture, features, access control anddeployment of Anchor toolkit. Application of this toolkit in a securedistributed CVS environment is discussed as a case study.

  12. SAF1. Standard Agent Framework 1

    SciTech Connect

    Goldsmith, S.Y

    1997-06-01

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4) Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.

  13. Nerve agents: implications for anesthesia providers.

    PubMed

    Hrobak, Paula Kay

    2008-04-01

    Anesthesia providers may be called to treat injuries from chemical weapons or spills, for which prompt treatment is vital. It is therefore important to understand the mechanism of action of nerve agents and the resultant pathophysiology and to be able to quickly recognize the signs and symptoms of nerve agent exposure. This review article addresses the different types of nerve agents that are currently being manufactured as well as the symptomatic and definitive treatment of the patient who presents with acute nerve agent toxicity. This article also reviews the physiology of the neuromuscular junction and the autonomic nervous system receptors that nerve agent toxicity affects. PMID:18478812

  14. Reversal agents in anaesthesia and critical care

    PubMed Central

    Pani, Nibedita; Dongare, Pradeep A; Mishra, Rajeeb Kumar

    2015-01-01

    Despite the advent of short and ultra-short acting drugs, an in-depth knowledge of the reversal agents used is a necessity for any anaesthesiologist. Reversal agents are defined as any drug used to reverse the effects of anaesthetics, narcotics or potentially toxic agents. The controversy on the routine reversal of neuromuscular blockade still exists. The advent of newer reversal agents like sugammadex have made the use of steroidal neuromuscular blockers like rocuronium feasible in rapid sequence induction situations. We made a review of the older reversal agents and those still under investigation for drugs that are regularly used in our anaesthesia practice. PMID:26644615

  15. Ytterbium-doped large-mode-area silica fiber fabricated by using chelate precursor doping technique.

    PubMed

    Shi, Tengfei; Zhou, Zhiguang; Ni, Li; Xiao, Xusheng; Zhan, Huan; Zhang, Aidong; Lin, Aoxiang

    2014-05-20

    We reported on a highly effective chelate precursor doping technique for Yb-doped large-mode-area (LMA) fiber manufacture. By accurately controlling the evaporation temperature and flow rate of carrier gas, the chelate precursor doping technique is capable of making Yb-doped LMA silica fiber with good uniformity free of center dip, low numerical aperture of ~0.056, large preform core size of 4.46 mm, and appropriate cladding absorption of 1.17  dB/m at 976.4 nm. Based on a single-end-pump all-fiber oscillator laser setup, the laser output at 1080 nm reached 700 W with slope efficiency of 54.2%. PMID:24922203

  16. 22 CFR 51.22 - Passport agents and passport acceptance agents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Passport agents and passport acceptance agents. 51.22 Section 51.22 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Application § 51.22 Passport agents and passport acceptance agents. (a) U.S. citizen employees of the Department authorized to serve as passport...

  17. 30 CFR 250.145 - How do I designate an agent or a local agent?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do I designate an agent or a local agent? 250.145 Section 250.145 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... SHELF General Special Types of Approvals § 250.145 How do I designate an agent or a local agent? (a)...

  18. Mother ship and physical agents collaboration

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Budulas, Peter P.; Emmerman, Philip J.

    1999-07-01

    This paper discusses ongoing research at the U.S. Army Research Laboratory that investigates the feasibility of developing a collaboration architecture between small physical agents and a mother ship. This incudes the distribution of planning, perception, mobility, processing and communications requirements between the mother ship and the agents. Small physical agents of the future will be virtually everywhere on the battlefield of the 21st century. A mother ship that is coupled to a team of small collaborating physical agents (conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA); logistics; sentry; and communications relay) will be used to build a completely effective and mission capable intelligent system. The mother ship must have long-range mobility to deploy the small, highly maneuverable agents that will operate in urban environments and more localized areas, and act as a logistics base for the smaller agents. The mother ship also establishes a robust communications network between the agents and is the primary information disseminating and receiving point to the external world. Because of its global knowledge and processing power, the mother ship does the high-level control and planning for the collaborative physical agents. This high level control and interaction between the mother ship and its agents (including inter agent collaboration) will be software agent architecture based. The mother ship incorporates multi-resolution battlefield visualization and analysis technology, which aids in mission planning and sensor fusion.

  19. Intelligent agent support for automated radiology exam

    NASA Astrophysics Data System (ADS)

    Shang, Yi; Popescu, Mihail

    2000-10-01

    A difficult problem in automatic medical image understanding is that for every image type such as x-ray and every body organ such as heart, there exist specific solutions that do not allow for generalization. Just collecting all the specific solutions will not achieve the vision of a computerized physician. To address this problem, we propose an intelligent agent approach that is based on agent-oriented programming is that it combines the benefits of object-oriented programming and expert system. For radiology image understanding, we present a multi- agent system that is composed of two major types of intelligent agents: radiologist agents and patient agents. A patient agent asks for multiple opinions from radiologists agents in interpreting a given set of images and then integrates the opinions. A radiologist agent decomposes the image recognition task into smaller problems that are solved collectively by multiple intelligent sub-agents. Finally, we present a preliminary implementation and running examples of the multi-agent system.

  20. Knowledge Management in Role Based Agents

    NASA Astrophysics Data System (ADS)

    Kır, Hüseyin; Ekinci, Erdem Eser; Dikenelli, Oguz

    In multi-agent system literature, the role concept is getting increasingly researched to provide an abstraction to scope beliefs, norms, goals of agents and to shape relationships of the agents in the organization. In this research, we propose a knowledgebase architecture to increase applicability of roles in MAS domain by drawing inspiration from the self concept in the role theory of sociology. The proposed knowledgebase architecture has granulated structure that is dynamically organized according to the agent's identification in a social environment. Thanks to this dynamic structure, agents are enabled to work on consistent knowledge in spite of inevitable conflicts between roles and the agent. The knowledgebase architecture is also implemented and incorporated into the SEAGENT multi-agent system development framework.

  1. Other potentially useful new injectable anesthetic agents.

    PubMed

    Ilkiw, J E

    1992-03-01

    Ultrashort barbiturates are not ideal injectable anesthetic agents, and new agents continue to be released as investigators pursue the goal of finding a more ideal agent. Of the new injectable agents discussed, propofol seems to be the most promising drug. Propofol should find a place in veterinary practice as an outpatient anesthetic agent because it has a rapid, smooth, and complete recovery even after repeated or continuous administration. Midazolam does not induce anesthesia in healthy, small animals and, as such, can only be used in combination with other injectable agents, such as ketamine or the thiobarbiturates. In our practice, Telazol has found a place in the anesthetic management of feral cats and aggressive dogs, where it is used for heavy sedation or to induce anesthesia. The role of flumazenil, as a reversal agent, in veterinary practice remains to be determined; however, the role in small domestic animals is unlikely to be significant. PMID:1585555

  2. Challenges and perspectives in anti-doping testing.

    PubMed

    Schamasch, Patrick; Rabin, Olivier

    2012-07-01

    In less than 10 years after the implementation of the World Anti-Doping Code and of the International Standard for Laboratories and its related Technical Documents, the analysis of human samples for the purpose of anti-doping testing has undergone a noticeable evolution. The research programs developed by the anti-doping organizations, and in particular the World Anti-Doping Agency (WADA), have created an unprecedented momentum in anti-doping science to strengthen the existing analytical methods, as well as to support the development and implementation of new and more sophisticated methodologies by the WADA-accredited laboratories. The integration of technical novelties into the analytical menus has been stimulated by the never-ending challenges posed by the adoption of more complex doping regimens by some athletes and their entourage. This increased sophistication of doping practices has also been reflected in the addition of new doping substances or methods on the WADA Prohibited Substances and Methods List. The integration of new anti-doping scientific paradigms with the development of the Athlete Biological Passport or the foreseen implementation of genomic- and proteomic-based tests constantly reshapes the environment of anti-doping analysis. This article provides a multiangle perspective on some of the key analytical challenges that anti-doping analytical science will face in 2012 and beyond. PMID:22831484

  3. Electroless Functionalization of Silver Films by Its Molecular Doping.

    PubMed

    Naor, Hadas; Avnir, David

    2015-12-01

    We present a methodology which by far extends the potential applications of thin conductive silver films achieved by an electroless molecular doping process of the metal with any of the endless functional molecules that the large library of organic molecules offer. The resulting metallic films within which the molecule is entrapped--molecule@Ag--carry both the classical chemical and physical properties of silver films, as well as the function of the entrapped molecule. Raman measurements of the organic molecules from within the silver films provide the first spectroscopic observations from within silver, and clearly show that entrapment, a three-dimensional process, and adsorption, a two-dimensional process, on silver films are distinctly different processes. Three organic molecules, the cationic Neutral red, the anionic Congo red, and the antibacterial agent chlorhexidine digluconate (CH), were used to demonstrate the generality of this method for various types of molecules. We studied the sensitivity of the film conductivity to the type of the molecule entrapped within the film, to its concentration, and to temperature. Dual functionality was demonstrated with CH@Ag films, which are both conductive and have prolonged and high antibacterial activity, a combination of properties that has been unknown so far. PMID:26571199

  4. Doped semiconductor nanoparticles synthesized in gas-phase plasmas

    NASA Astrophysics Data System (ADS)

    Pereira, R. N.; Almeida, A. J.

    2015-08-01

    Crystalline nanoparticles (NPs) of semiconductor materials have been attracting huge research interest due to their potential use in future applications like photovoltaics and bioimaging. The important role that intentional impurity doping plays in semiconductor technology has ignited a great deal of research effort aiming at synthesizing semiconductor NPs doped with foreign impurities and at understanding their physical and chemical properties. In this respect, plasma-grown semiconductor NPs doped in situ during synthesis have been key in studies of doped NPs. This article presents a review of the advances in understanding the properties of doped semiconductor NPs synthesized by means of plasma methods and the role played by these NPs for our current understanding of doped NPs and the general behavior of doping in nanoscale materials.

  5. Ceria co-doping: synergistic or average effect?

    PubMed

    Burbano, Mario; Nadin, Sian; Marrocchelli, Dario; Salanne, Mathieu; Watson, Graeme W

    2014-05-14

    Ceria (CeO2) co-doping has been suggested as a means to achieve ionic conductivities that are significantly higher than those in singly doped systems. Rekindled interest in this topic over the last decade has given rise to claims of much improved performance. The present study makes use of computer simulations to investigate the bulk ionic conductivity of rare earth (RE) doped ceria, where RE = Sc, Gd, Sm, Nd and La. The results from the singly doped systems are compared to those from ceria co-doped with Nd/Sm and Sc/La. The pattern that emerges from the conductivity data is consistent with the dominance of local lattice strains from individual defects, rather than the synergistic co-doping effect reported recently, and as a result, no enhancement in the conductivity of co-doped samples is observed. PMID:24658460

  6. Boosting the Boron Dopant Level in Monolayer Doping by Carboranes.

    PubMed

    Ye, Liang; González-Campo, Arántzazu; Núñez, Rosario; de Jong, Michel P; Kudernac, Tibor; van der Wiel, Wilfred G; Huskens, Jurriaan

    2015-12-16

    Monolayer doping (MLD) presents an alternative method to achieve silicon doping without causing crystal damage, and it has the capability of ultrashallow doping and the doping of nonplanar surfaces. MLD utilizes dopant-containing alkene molecules that form a monolayer on the silicon surface using the well-established hydrosilylation process. Here, we demonstrate that MLD can be extended to high doping levels by designing alkenes with a high content of dopant atoms. Concretely, carborane derivatives, which have 10 B atoms per molecule, were functionalized with an alkene group. MLD using a monolayer of such a derivative yielded up to ten times higher doping levels, as measured by X-ray photoelectron spectroscopy and dynamic secondary mass spectroscopy, compared to an alkene with a single B atom. Sheet resistance measurements showed comparably increased conductivities of the Si substrates. Thermal budget analyses indicate that the doping level can be further optimized by changing the annealing conditions. PMID:26595856

  7. Multiple doping of silicon-germanium alloys for thermoelectric applications

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Vining, Cronin B.; Borshchevsky, Alex

    1989-01-01

    It is shown that heavy doping of n-type Si/Ge alloys with phosphorus and arsenic (V-V doping interaction) by diffusion leads to a significant enhancement of their carrier concentration and possible improvement of the thermoelectric figure of merit. High carrier concentrations were achieved by arsenic doping alone, but for a same doping level higher carrier mobilities and lower resistivities are obtained through phosphorus doping. By combining the two dopants with the proper diffusion treatments, it was possible to optimize the different properties, obtaining high carrier concentration, good carrier mobility and low electrical resistivity. Similar experiments, using the III-V doping interaction, were conducted on boron-doped p-type samples and showed the possibility of overcompensating the samples by diffusing arsenic, in order to get n-type behavior.

  8. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGESBeta

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  9. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    NASA Astrophysics Data System (ADS)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  10. Multifunctional electroactive heteroatom-doped carbon aerogels.

    PubMed

    You, Bo; Yin, Peiqun; An, Linna

    2014-11-12

    The design and synthesis of highly active, durable, and cheap nanomaterials for various renewable energy storage and conversion applications is extremely desirable but remains challenging. Here, a green and efficient strategy to produce CoOx nanoparticles and surface N-co-doped carbon aerogels (Co-N-CAs) is reported by multicomponent surface self-assembly of commercially melamine sponge (CMS). In the methodology, the CMS simultaneously function as green N precursor for surface N doping and 3D support. The resulting Co-N-CAs exhibit 3D hierarchical, interconnected macro- and bimodal meso-porosity (6.3 nm and <4 nm), high surface area (1383 m(2) g(-1)), and highly dispersed, semi-exposured CoOx nanoparticles (diameter of 12.5 nm). The surface doping of N, semi-exposured configuration of CoOx nanoparticles and the penetrated complementary pores (<4 nm) in the carbon walls provide highly accessibility between electroactive components and electrolytes to improve reactivity. With their tailored architecture, the Co-N-CAs show superior electrocatalytic oxygen reduction (ORR) activities comparable to the commercially Pt/C catalysts, high specific capacitance (433 F g(-1)), excellent lithium storage (938 mAh g(-1)), and outstanding durability, making them very promising for advanced energy conversion and storage. In addition, the presented strategy can be extended to fabricate other metal oxide- and N-co-doped carbon aerogels for diverse energy-related applications. PMID:25044991

  11. Self-activating and doped tantalate phosphors.

    SciTech Connect

    Nyman, May Devan; Rohwer, Lauren Elizabeth Shea

    2011-01-01

    An ideal red phosphor for blue LEDs is one of the biggest challenges for the solid-state lighting industry. The appropriate phosphor material should have good adsorption and emission properties, good thermal and chemical stability, minimal thermal quenching, high quantum yield, and is preferably inexpensive and easy to fabricate. Tantalates possess many of these criteria, and lithium lanthanum tantalate materials warrant thorough investigation. In this study, we investigated red luminescence of two lithium lanthanum tantalates via three mechanisms: (1) Eu-doping, (2) Mn-doping and (3) self-activation of the tantalum polyhedra. Of these three mechanisms, Mn-doping proved to be the most promising. These materials exhibit two very broad adsorption peaks; one in the UV and one in the blue region of the spectrum; both can be exploited in LED applications. Furthermore, Mn-doping can be accomplished in two ways; ion-exchange and direct solid-state synthesis. One of the two lithium lanthanum tantalate phases investigated proved to be a superior host for Mn-luminescence, suggesting the crystal chemistry of the host lattice is important.

  12. Plasma Deposition of Doped Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1985-01-01

    Pair of reports present further experimental details of investigation of plasma deposition of films of phosphorous-doped amosphous silicon. Probe measurements of electrical resistance of deposited films indicated films not uniform. In general, it appeared that resistance decreased with film thickness.

  13. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity. PMID:23635160

  14. Atomically precise nitrogen-doped graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Sinitskii, Alexander

    There is a considerable interest in graphene nanoribbons (GNRs), few-nm-wide strips of graphene with high aspect ratios, because of their intriguing physical properties. For example, GNRs with zigzag edges are predicted to exhibit low-dimensional magnetism, while GNRs with armchair edges can possess large energy band gaps, making them promising materials for future electronics and photovoltaics. The ability to control structural parameters of GNRs, such as their width, edge structure and termination, with atomic precision is the key for practical realization of these intriguing nanoscale properties. Physical properties of GNRs can also be modified by their doping with heteroatoms, such nitrogen, resulting in nitrogen-doped GNRs or N-GNRs. In this talk I will discuss several types of N-GNRs with different doping levels that have been synthesized and systematically studied by spectroscopic, microscopic and transport methods. Incorporation of nitrogen atoms in graphene lattice is shown to be an effective route to affect GNRs' band gap, doping level as well as aggregation behavior. The support from NSF CHE-1455330 is gratefully acknowledged.

  15. Inhomogeneous Nanoscale Disorder in Doped Magnesium Diboride

    NASA Astrophysics Data System (ADS)

    Voyles, Paul

    2008-03-01

    Using TEM and STEM imaging and microanalysis, we have shown that doped MgB2 has a variety of forms of disorder at a length scale of 5-50 nm. In [0001]-normal, carbon-doped HPCVD thin films, there is a thin, amorphous, C-rich layer which separates domains of lightly carbon-doped MgB2. Carbon also causes significant spread in the local in-plane orientation and c-axis direction of the MgB2. We also observed disorder in the orientation of small MgB2 domains in oxygen-doped thin films grown by MBE. Both of types of films show dramatic enhancement in the upper critical magnetic field compared to pure MgB2, with extrapolated Hc2(0 K) reaching 65-70 T for some samples. The origin of this increase may be in the observed disorder, particularly in confinement of the superconducting MgB2 domains by non-superconducting second phase layers.

  16. Aluminum doping improves silicon solar cells

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Aluminum doped silicon solar cells with resistivities in the 10- to 20-ohm centimeter range have broad spectral response, high efficiency and long lifetimes in nuclear radiation environments. Production advantages include low material rejection and increased production yields, and close tolerance control.

  17. Silicon solar cells improved by lithium doping

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1970-01-01

    Results of conference on characteristics of lithium-doped silicon solar cells and techniques required for fabrication indicate that output of cells has been improved to point where cells exhibit radiation resistance superior to those currently in use, and greater control and reproducibility of cell processing have been achieved.

  18. Couple Conflict and Rope-a-Dope.

    ERIC Educational Resources Information Center

    Downing, Jerry; Harrison, Tom

    1993-01-01

    Draws analogy between Muhammad Ali's boxing technique of "rope-a-dope" and behavioral patterns frequently occurring in couple conflicts. Presents basics of Ali's technique as similar to fighting patterns of many couples. Suggests that this behavior may lead to physical violence. Describes use of analogy in working with couples. Presents strategies…

  19. Structure and functionality of bromine doped graphite

    SciTech Connect

    Hamdan, Rashid; Kemper, A. F.; Cao Chao; Cheng, H. P.

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br{sub 2}). However, with increased compression (decreased layer-layer separation) Br{sub 2} molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br{sub 2} molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  20. JPL lithium doped solar cell development program

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    One of the most significant problems encountered in the use of silicon solar cells in space is the sensitivity of the device to electron and proton radiation exposure. The p-diffused-into-n-base solar cells were replaced with the more radiation tolerant n-diffused-into-p-base solar cells. Another advancement in achieving greater radiation tolerance was the discovery that the addition of lithium to n-base silicon resulted in what appeared to be annealing of radiation-induced defects. This phenomenon is being exploited to develop a high efficiency radiation resistant lithium-doped solar cell. Lithium-doped solar cells fabricated from oxygen-lean and oxygen-rich silicon were obtained with average initial efficiencies of 11.9% at air mass zero and 28 C, as compared to state-of-the-art n-p cells fabricated from 10 ohm cm silicon with average efficiencies of 11.3% under similar conditions. Lithium-doped cells demonstrated the ability to withstand three to five times the fluence of 1-MeV electrons before degrading to a power equivalent to state-of-the-art solar cells. The principal investigations are discussed with respect to fabrication of high efficiency radiation resistant lithium-doped cells, including starting material, p-n junction diffusion, lithium source introduction, and lithium diffusion.

  1. Further characterization of IRAS doped silicon detectors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Measurements made on several doped-silicon detectors are reported. Topics discussed include: Si:Sb detector, the effects of detector bias on dielectric relaxation; characterization of spontaneous noise and gamma-induced spikes and their circumvention; and the time response of two detectors to step changes in the background photon flux density. Several potential system programs are indicated.

  2. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    PubMed

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times. PMID:24096887

  3. Pyrrole-Terminated Ionic Liquid Surfactant: One Molecule with Multiple Functions for Controlled Synthesis of Diverse Multispecies Co-Doped Porous Hollow Carbon Spheres.

    PubMed

    Li, Jian; Zhu, Wei; Ji, Jingwei; Wang, Peng; Lan, Yue; Gao, Ning; Yin, Xianpeng; Wang, Hui; Li, Guangtao

    2016-05-01

    Rationally and efficiently controlling chemical composition, microstructure, and morphology of carbon nanomaterials plays a crucial role in significantly enhancing their functional properties and expending their applications. In this work, a novel strategy for simultaneously controlling these structural parameters was developed on the base of a multifunctional precursor approach, in which the precursor not only serves as carbon source and structure-directing agent, but also contains two heteroatom doping sites. As exemplified by using pyrrole-terminated ionic liquid surfactant as such precursor, in conjunction with sol-gel chemistry this strategy allows for efficiently producing well-defined hollow carbon spheres with controlled microstructure and chemical compositions. Remarkably, the dual-doping sites in confined silica channels provide an exciting opportunity and flexibility to access various doped carbons through simply anion exchange or altering the used oxidative polymerization agent, especially the multispecies codoped materials by combination of the two doping modes. All the results indicate that the described strategy may open up a new avenue for efficiently synthesizing functional carbon materials with highly controllable capability. PMID:27093191

  4. Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA)

    PubMed Central

    Docherty, J R

    2008-01-01

    This review examines the pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA). Stimulants that increase alertness/reduce fatigue or activate the cardiovascular system can include drugs like ephedrine available in many over-the-counter medicines. Others such as amphetamines, cocaine and hallucinogenic drugs, available on prescription or illegally, can modify mood. A total of 62 stimulants (61 chemical entities) are listed in the WADA List, prohibited in competition. Athletes may have stimulants in their body for one of three main reasons: inadvertent consumption in a propriety medicine; deliberate consumption for misuse as a recreational drug and deliberate consumption to enhance performance. The majority of stimulants on the list act on the monoaminergic systems: adrenergic (sympathetic, transmitter noradrenaline), dopaminergic (transmitter dopamine) and serotonergic (transmitter serotonin, 5-HT). Sympathomimetic describes agents, which mimic sympathetic responses, and dopaminomimetic and serotoninomimetic can be used to describe actions on the dopamine and serotonin systems. However, many agents act to mimic more than one of these monoamines, so that a collective term of monoaminomimetic may be useful. Monoaminomimietic actions of stimulants can include blockade of re-uptake of neurotransmitter, indirect release of neurotransmitter, direct activation of monoaminergic receptors. Many of the stimulants are amphetamines or amphetamine derivatives, including agents with abuse potential as recreational drugs. A number of agents are metabolized to amphetamine or metamphetamine. In addition to the monoaminomimetic agents, a small number of agents with different modes of action are on the list. A number of commonly used stimulants are not considered as Prohibited Substances. PMID:18500382

  5. Human growth hormone doping in sport

    PubMed Central

    Saugy, M; Robinson, N; Saudan, C; Baume, N; Avois, L; Mangin, P

    2006-01-01

    Background and objectives Recombinant human growth hormone (rhGH) has been on the list of forbidden substances since availability of its recombinant form improved in the early 1990s. Although its effectiveness in enhancing physical performance is still unproved, the compound is likely used for its potential anabolic effect on the muscle growth, and also in combination with other products (androgens, erythropoietin, etc.). The degree of similarity between the endogenous and the recombinant forms, the pulsatile secretion and marked interindividual variability makes detection of doping difficult. Two approaches proposed to overcome this problem are: the indirect method, which measures a combination of several factors in the biological cascade affected by administration of GH; and the direct method, which measures the difference between the circulating and the recombinant (represented by the unique 22 kD molecule) forms of GH. This article gives an overview of what is presently known about hGH in relation to sport. The available methods of detection are also evaluated. Methods Review of the literature on GH in relation to exercise, and its adverse effects and methods of detection when used for doping. Results and conclusion The main effects of exercise on hGH production and the use and effects of rhGH in athletes are discussed. Difficulties encountered by laboratories to prove misuse of this substance by both indirect and direct analyses are emphasised. The direct method currently seems to have the best reliability, even though the time window of detection is too short. hGH doping is a major challenge in the fight against doping. The effect of exercise on hGH and its short half‐life are still presenting difficulties during doping analysis. To date the most promising method appears to be the direct approach utilising immunoassays. PMID:16799101

  6. Drug therapy reviews: antirheumatic agents.

    PubMed

    Evens, R P

    1979-05-01

    The pathophysiology, symptoms and drug treatment of rheumatic disease are reviewed. Antirheumatic drugs reviewed are salicylates (including aspirin, sodium salicylate, choline salicylate, choline magnesium salicylate, salsalate), phenylpropionic acid derivatives (fenoprofen, ibuprofen, naproxen), indole derivatives (sulindac, tolmetin and indomethacin), pyrazolone derivatives (phenylbutazone, oxyphenbutazone), gold compounds, penicillamine, antimalarials mefenamic acid, corticosteroids and immunosuppressives. Simple analgesic therapy (acetaminophen, aspirin, propoxyphene) is used in the early stage of the disease. As the disease progresses, aspirin remains the drug of choice for antiinflammatory activity but the phenylpropionic acid or indole derivatives may be preferred in patients unable to tolerate salicylates. If such nonsteroidal antiinflammatory agents are not effective, parenteral therapy with gold compounds or oral penicillamine usually is indicated. Indomethacin or phenylbutazone, then antimalarials, are resorted to next. Corticosteroids or immunosuppressives are reserved for patients who are unsuccessfully controlled or who have major side effects with the other drugs. Mefenamic acid occupies a very secondary place in rheumatoid arthritis treatment. PMID:377958

  7. [Anticonvulsant agents in neuralgic pain.].

    PubMed

    Jurna, I; Zenz, M

    1992-06-01

    The anticonvulsants, carbamazepine, clonazepam, phenytoin, and valproic acid are capable of depressing attacks of shooting pain in neuralgia. Shooting pain is perceived in trigeminal, intercostal, and other neuralgias, as a consequence of infectious diseases such as herpes zoster, and in the course of polyneuropathies of various causes. It is due to injury of nociceptive afferents, which generate bursts of activity in response to appropriate environmental changes. The anticonvulsant agents have no analgesic property per se, so that background pain remains unchanged. The depression of shooting pain results from the anticonvulsant action of the compounds. Both carbamazepine and phenytoin block synaptic transmission of neuronal hyperactivity by a direct depressant action that includes reduction of sodium conductance and by activation of inhibitory control. Clonazepam and valproic acid act by enhancing GABA-mediated inhibition of synaptic transmission. Carbamazepine is by far the most widely used compound; phenytoin, clonazepam, and valproic acid are not so popular because of their side effects. PMID:18415623

  8. Biotherapeutic agents and vaginal health.

    PubMed

    Al-Ghazzewi, F H; Tester, R F

    2016-07-01

    Treatment of vaginal infection requires different drugs although the recurrence rate post treatment remains high due to adverse effects on the beneficial microbiota. Thus, there are clear clinical advantages for the use of biotherapeutic agents (prebiotics and/or probiotics) for treating these infections. Pre- and probiotic beneficial effects can be delivered topically or systemically. In general, both approaches have the potential to optimize, maintain and restore the ecology of the vaginal ecosystem. Specific carbohydrates provide a therapeutic approach for controlling infections by stimulating the growth of the indigenous lactobacilli but inhibiting the growth and adhesion of pathogens to the vaginal epithelial cells. Overall, little evidence exists to promote the prevention or treatment of vaginal disease with prebiotic carbohydrates in formulations such as pessaries, creams or douches. However, recent reports have promoted prebiotic applications in ecosystems other than the gut and include the mouth, skin and vagina. This review focuses on the utilization of pre- and probiotics for vaginal health. PMID:26757173

  9. Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals.

    PubMed

    Chen, Hsiang-Yun; Maiti, Sourav; Son, Dong Hee

    2012-01-24

    Dynamics of energy transfer and charge carrier localization in Mn-doped CdS/ZnS core/shell nanocrystals correlated with doping location and concentration are studied via transient absorption measurement of exciton relaxation dynamics. The strong dependence of exciton-Mn energy transfer rate on doping location was directly resolved in the transient bleach recovery and electron intraband absorption data by using layer-by-layer synthesized Mn-doped nanocrystals. With 1.2 nm decrease in doping radius in the ZnS shell, energy transfer rate increases by 6 fold. We identified that hole trapping is the major competing process that inhibits the energy transfer in Mn-doped CdS/ZnS nanocrystals. From the branching ratio of the energy transfer and hole trapping, combined with luminescence quantum yield measurement, we also obtained doping location-dependent radiative relaxation quantum yield of Mn(2+) ions that is as high as 0.95. PMID:22176684

  10. Erythropoiesis-stimulating agents and other methods to enhance oxygen transport.

    PubMed

    Elliott, S

    2008-06-01

    Oxygen is essential for life, and the body has developed an exquisite method to collect oxygen in the lungs and transport it to the tissues. Hb contained within red blood cells (RBCs), is the key oxygen-carrying component in blood, and levels of RBCs are tightly controlled according to demand for oxygen. The availability of oxygen plays a critical role in athletic performance, and agents that enhance oxygen delivery to tissues increase aerobic power. Early methods to increase oxygen delivery included training at altitude, and later, transfusion of packed RBCs. A breakthrough in understanding how RBC formation is controlled included the discovery of erythropoietin (Epo) and cloning of the EPO gene. Cloning of the EPO gene was followed by commercial development of recombinant human Epo (rHuEpo). Legitimate use of this and other agents that affect oxygen delivery is important in the treatment of anaemia (low Hb levels) in patients with chronic kidney disease or in cancer patients with chemotherapy-induced anaemia. However, competitive sports was affected by illicit use of rHuEpo to enhance performance. Testing methods for these agents resulted in a cat-and-mouse game, with testing labs attempting to detect the use of a drug or blood product to improve athletic performance (doping) and certain athletes developing methods to use the agents without being detected. This article examines the current methods to enhance aerobic performance and the methods to detect illicit use. PMID:18362898

  11. Characterization of chemical warfare G-agent hydrolysis products by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank E.; Gift, Alan D.; Maksymiuk, Paul; Farquharson, Stuart

    2004-12-01

    The United States and its allies have been increasingly challenged by terrorism, and since the September 11, 2001 attacks and the war in Afghanistan and Iraq, homeland security has become a national priority. The simplicity in manufacturing chemical warfare agents, the relatively low cost, and previous deployment raises public concern that they may also be used by terrorists or rogue nations. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect extremely low concentrations (e.g. part-per-billion) of chemical agents, as might be found in poisoned water. Since trace quantities of nerve agents can be hydrolyzed in the presence of water, we have expanded our studies to include such degradation products. Our SERS-active medium consists of silver or gold nanoparticles incorporated into a sol-gel matrix, which is immobilized in a glass capillary. The choice of sol-gel precursor allows controlling hydrophobicity, while the porous silica network offers a unique environment for stabilizing the SERS-active metals. Here we present the use of these metal-doped sol-gels to selectively enhance the Raman signal of the hydrolyzed products of the G-series nerve agents.

  12. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    NASA Astrophysics Data System (ADS)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui; Zhuo, Shuping

    2015-10-01

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g-1 at 0.2 A g-1, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb2+, Cu2+ and Cd2+. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents.

  13. Dynamics enhanced by HCl doping triggers full Pauling entropy release at the ice XII–XIV transition

    PubMed Central

    Köster, K. W.; Fuentes-Landete, V.; Raidt, A.; Seidl, M.; Gainaru, C.; Loerting, T.; Böhmer, R.

    2015-01-01

    The pressure–temperature phase diagram of ice displays a perplexing variety of structurally distinct phases. In the century-long history of scientific research on ice, the proton-ordered ice phases numbered XIII through XV were discovered only recently. Despite considerable effort, none of the transitions leading from the low-temperature ordered ices VIII, IX, XI, XIII, XIV and XV to their high-temperature disordered counterparts were experimentally found to display the full Pauling entropy. Here we report calorimetric measurements on suitably high-pressure-treated, hydrogen chloride-doped ice XIV that demonstrate just this at the transition to ice XII. Dielectric spectroscopy on undoped and on variously doped ice XII crystals reveals that addition of hydrogen chloride, the agent triggering complete proton order in ice XIV, enhances the precursor dynamics strongest. These discoveries provide new insights into the puzzling observation that different dopants trigger the formation of different proton-ordered ice phases. PMID:26076946

  14. Studies of ferroelectric and dielectric properties of pure and doped barium titanate prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Bisen, Supriya; Mishra, Ashutosh; Jarabana, Kanaka M.

    2016-05-01

    In this work, Barium Titanate (BaTiO3) powders were synthesized via Sol-Gel auto combustion method using citric acid as a chelating agent. We study the behavior of ferroelectric and dielectric properties of pure and doped BaTiO3 on different concentration. To understand the phase and structure of the powder calcined at 900°C were characterized by X-ray Diffraction shows that tetragonal phase is dominant for pure and doped BTO and data fitted by Rietveld Refinement. Electric and Dielectric properties were characterized by P-E Hysteresis and Dielectric measurement. In P-E measurement ferroelectric loop tracer applied for different voltage. The temperature dependant dielectric constant behavior was observed as a function of frequency recorded on hp-Hewlett Packard 4192A, LF impedance, 5Hz-13Hz analyzer.

  15. Agent Reward Shaping for Alleviating Traffic Congestion

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  16. Mechanically Tunable Hollow Silica Ultrathin Nanoshells for Ultrasound Contrast Agents

    PubMed Central

    Liberman, A.; Wang, J.; Lu, N.; Viveros, R.D.; Allen, C. A.; Mattrey, R.F.; Blair, S.L.; Trogler, W.C.; Kim, M. J.; Kummel, A.C.

    2015-01-01

    Perfluoropentane (PFP) gas filled biodegradable iron-doped silica nanoshells have been demonstrated as long-lived ultrasound contrast agents. Nanoshells are synthesized by a sol-gel process with tetramethyl orthosilicate (TMOS) and iron ethoxide. Substituting a fraction of the TMOS with R-substituted trialkoxysilanes produces ultrathin nanoshells with varying shell thicknesses and morphologies composed of fused nanoflakes. The ultrathin nanoshells had continuous ultrasound Doppler imaging lifetimes exceeding 3 hours, were twice as bright using contrast specific imaging, and had decreased pressure thresholds compared to control nanoshells synthesized with just TMOS. Transmission electron microscopy (TEM) showed that the R-group substituted trialkoxysilanes could reduce the mechanically critical nanoshell layer to 1.4 nm. These ultrathin nanoshells have the mechanical behavior of weakly linked nanoflakes but the chemical stability of silica. The synthesis can be adapted for general fabrication of three-dimensional nanostructures composed of nanoflakes, which have thicknesses from 1.4–3.8 nm and diameters from 2–23 nm. PMID:26955300

  17. One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture.

    PubMed

    Geng, Zhen; Xiao, Qiangfeng; Lv, Hong; Li, Bing; Wu, Haobin; Lu, Yunfeng; Zhang, Cunman

    2016-01-01

    The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-prepared nitrogen-doped active carbons exhibit rich micropores with high surface area and high nitrogen content. Synergetic effects of its high surface area, microporous structure and high nitrogen content, especially rich nitrogen-containing groups for effective CO2 capture (i.e., phenyl amine and pyridine-nitrogen) lead to superior CO2/N2 selectivity up to 82, which is the highest among known nanoporous carbons. In addition, the resulting nitrogen-doped active carbons can be easily regenerated under mild conditions. Considering the outstanding CO2 capture performance, low production cost, simple synthesis procedure and easy scalability, the resulting nitrogen-doped microporous carbon monoliths are promising candidates for selective capture of CO2 in industrial applications. PMID:27488268

  18. One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture

    PubMed Central

    Geng, Zhen; Xiao, Qiangfeng; Lv, Hong; Li, Bing; Wu, Haobin; Lu, Yunfeng; Zhang, Cunman

    2016-01-01

    The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-prepared nitrogen-doped active carbons exhibit rich micropores with high surface area and high nitrogen content. Synergetic effects of its high surface area, microporous structure and high nitrogen content, especially rich nitrogen-containing groups for effective CO2 capture (i.e., phenyl amine and pyridine-nitrogen) lead to superior CO2/N2 selectivity up to 82, which is the highest among known nanoporous carbons. In addition, the resulting nitrogen-doped active carbons can be easily regenerated under mild conditions. Considering the outstanding CO2 capture performance, low production cost, simple synthesis procedure and easy scalability, the resulting nitrogen-doped microporous carbon monoliths are promising candidates for selective capture of CO2 in industrial applications. PMID:27488268

  19. One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture

    NASA Astrophysics Data System (ADS)

    Geng, Zhen; Xiao, Qiangfeng; Lv, Hong; Li, Bing; Wu, Haobin; Lu, Yunfeng; Zhang, Cunman

    2016-08-01

    The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-prepared nitrogen-doped active carbons exhibit rich micropores with high surface area and high nitrogen content. Synergetic effects of its high surface area, microporous structure and high nitrogen content, especially rich nitrogen-containing groups for effective CO2 capture (i.e., phenyl amine and pyridine-nitrogen) lead to superior CO2/N2 selectivity up to 82, which is the highest among known nanoporous carbons. In addition, the resulting nitrogen-doped active carbons can be easily regenerated under mild conditions. Considering the outstanding CO2 capture performance, low production cost, simple synthesis procedure and easy scalability, the resulting nitrogen-doped microporous carbon monoliths are promising candidates for selective capture of CO2 in industrial applications.

  20. Thermal diffusion boron doping of single-crystal natural diamond

    NASA Astrophysics Data System (ADS)

    Seo, Jung-Hun; Wu, Henry; Mikael, Solomon; Mi, Hongyi; Blanchard, James P.; Venkataramanan, Giri; Zhou, Weidong; Gong, Shaoqin; Morgan, Dane; Ma, Zhenqiang

    2016-05-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.