Science.gov

Sample records for chromosome-linked dystrophin abnormalities

  1. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy.

    PubMed Central

    Beggs, A H; Neumann, P E; Arahata, K; Arikawa, E; Nonaka, I; Anderson, M S; Kunkel, L M

    1992-01-01

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, we propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1. Images PMID:1731332

  2. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    SciTech Connect

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. ); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya )

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  3. Abnormalities of dystrophin, the sarcoglycans, and laminin alpha2 in the muscular dystrophies.

    PubMed Central

    Jones, K J; Kim, S S; North, K N

    1998-01-01

    Abnormalities of dystrophin, the sarcoglycans, and laminin alpha2 are responsible for a subset of the muscular dystrophies. In this study we aim to characterise the nature and frequency of abnormalities of these proteins in an Australian population and to formulate an investigative algorithm to aid in approaching the diagnosis of the muscular dystrophies. To reduce ascertainment bias, biopsies with dystrophic (n=131) and non-dystrophic myopathic (n=71) changes were studied with antibodies to dystrophin, alpha, beta, and gamma sarcoglycan, beta dystroglycan, and laminin alpha2, and results were correlated with clinical phenotype. Abnormalities of dystrophin, the sarcoglycans, or laminin alpha2 were present in 61/131 (47%) dystrophic biopsies and in 0/71 myopathic biopsies, suggesting that immunocytochemical study of dystrophin, the sarcoglycans, and laminin alpha2 may, in general, be restricted to patients with dystrophic biopsies. Two patients with mutations identified in gamma sarcoglycan had abnormal dystrophin (by immunocytochemistry and immunoblot), showing that abnormalities of dystrophin may be a secondary phenomenon. Therefore, biopsies should not be excluded from sarcoglycan analysis on the basis of abnormal dystrophin alone. The diagnostic yield was highest in those with severe, rapidly progressive limb-girdle weakness (92%). Laminin alpha2 deficiency was identified in 5/131 (4%) patients; 215 patients presented after infancy, indicating that abnormalities of laminin alpha2 are not limited to the congenital muscular dystrophy phenotype. Overall patterns of immunocytochemistry and immunoblotting provided a guide to mutation analysis and, on the basis of this study, we have formulated a diagnostic algorithm to guide the investigation of patients with muscular dystrophy. Images PMID:9610800

  4. Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy.

    PubMed Central

    Dowling, Paul; Doran, Philip; Ohlendieck, Kay

    2004-01-01

    Although the primary abnormality in dystrophin is the underlying cause for mdx (X-chromosome-linked muscular dystrophy), abnormal Ca2+ handling after sarcolemmal microrupturing appears to be the pathophysiological mechanism leading to muscle weakness. To develop novel pharmacological strategies for eliminating Ca2+-dependent proteolysis, it is crucial to determine the fate of Ca2+-handling proteins in dystrophin-deficient fibres. In the present study, we show that a key luminal Ca2+-binding protein SAR (sarcalumenin) is affected in mdx skeletal-muscle fibres. One- and two-dimensional immunoblot analyses revealed the relative expression of the 160 kDa SR (sarcoplasmic reticulum) protein to be approx. 70% lower in mdx fibres when compared with normal skeletal muscles. This drastic reduction in SAR was confirmed by immunofluorescence microscopy. Patchy internal labelling of SAR in dystrophic fibres suggests an abnormal formation of SAR domains. Differential co-immunoprecipitation experiments and chemical cross-linking demonstrated a tight linkage between SAR and the SERCA1 (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase 1) isoform of the SR Ca2+-ATPase. However, the relative expression of the fast Ca2+ pump was not decreased in dystrophic membrane preparations. This implies that the reduction in SAR and calsequestrin-like proteins plays a central role in the previously reported impairment of Ca2+ buffering in the dystrophic SR [Culligan, Banville, Dowling and Ohlendieck (2002) J. Appl. Physiol. 92, 435-445]. Impaired Ca2+ shuttling between the Ca2+-uptake SERCA units and calsequestrin clusters via SAR, as well as an overall decreased luminal ion-binding capacity, might indirectly amplify the Ca2+-leak-channel-induced increase in cytosolic Ca2+ levels. This confirms the idea that abnormal Ca2+ cycling is involved in Ca2+-induced myonecrosis. Hence, manipulating disturbed Ca2+ handling might represent new modes of abolishing proteolytic degradation in muscular dystrophy

  5. Dystrophin quantification

    PubMed Central

    Anthony, Karen; Arechavala-Gomeza, Virginia; Taylor, Laura E.; Vulin, Adeline; Kaminoh, Yuuki; Torelli, Silvia; Feng, Lucy; Janghra, Narinder; Bonne, Gisèle; Beuvin, Maud; Barresi, Rita; Henderson, Matt; Laval, Steven; Lourbakos, Afrodite; Campion, Giles; Straub, Volker; Voit, Thomas; Sewry, Caroline A.; Morgan, Jennifer E.; Flanigan, Kevin M.

    2014-01-01

    Objective: We formed a multi-institution collaboration in order to compare dystrophin quantification methods, reach a consensus on the most reliable method, and report its biological significance in the context of clinical trials. Methods: Five laboratories with expertise in dystrophin quantification performed a data-driven comparative analysis of a single reference set of normal and dystrophinopathy muscle biopsies using quantitative immunohistochemistry and Western blotting. We developed standardized protocols and assessed inter- and intralaboratory variability over a wide range of dystrophin expression levels. Results: Results from the different laboratories were highly concordant with minimal inter- and intralaboratory variability, particularly with quantitative immunohistochemistry. There was a good level of agreement between data generated by immunohistochemistry and Western blotting, although immunohistochemistry was more sensitive. Furthermore, mean dystrophin levels determined by alternative quantitative immunohistochemistry methods were highly comparable. Conclusions: Considering the biological function of dystrophin at the sarcolemma, our data indicate that the combined use of quantitative immunohistochemistry and Western blotting are reliable biochemical outcome measures for Duchenne muscular dystrophy clinical trials, and that standardized protocols can be comparable between competent laboratories. The methodology validated in our study will facilitate the development of experimental therapies focused on dystrophin production and their regulatory approval. PMID:25355828

  6. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities.

    PubMed

    Galbiati, F; Engelman, J A; Volonte, D; Zhang, X L; Minetti, C; Li, M; Hou, H; Kneitz, B; Edelmann, W; Lisanti, M P

    2001-06-15

    Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cells. Recently, we identified a novel autosomal dominant form of limb-girdle muscular dystrophy (LGMD-1C) in humans that is due to mutations within the coding sequence of the human caveolin-3 gene (3p25). These LGMD-1C mutations lead to an approximately 95% reduction in caveolin-3 protein expression, i.e. a caveolin-3 deficiency. Here, we created a caveolin-3 null (CAV3 -/-) mouse model, using standard homologous recombination techniques, to mimic a caveolin-3 deficiency. We show that these mice lack caveolin-3 protein expression and sarcolemmal caveolae membranes. In addition, analysis of skeletal muscle tissue from these caveolin-3 null mice reveals: (i) mild myopathic changes; (ii) an exclusion of the dystrophin-glycoprotein complex from lipid raft domains; and (iii) abnormalities in the organization of the T-tubule system, with dilated and longitudinally oriented T-tubules. These results have clear mechanistic implications for understanding the pathogenesis of LGMD-1C at a molecular level. PMID:11259414

  7. A quantitative ELISA for dystrophin.

    PubMed

    Morris, G E; Ellis, J M; Nguyen, T M

    1993-05-01

    A novel approach to the quantitation of the muscular dystrophy protein, dystrophin, in muscle extracts is described. The two-site ELISA uses two monoclonal antibodies against dystrophin epitopes which lie close together in the rod domain of the dystrophin molecule in order to minimize the effects of dystrophin degradation. Dystrophin is assayed in its native form by extracting with non-ionic detergents and avoiding the use of SDS. PMID:8486926

  8. Dystrophin: The dead calm of a dogma.

    PubMed

    Górecki, Dariusz C

    2016-01-01

    Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease leading to severe disability and death of young men. Current interventions are palliative as no treatment improves the long-term outcome. Therefore, new therapeutic modalities with translational potential are urgently needed and abnormalities downstream from the absence of dystrophin are realistic targets. It has been shown that DMD mutations alter extracellular ATP (eATP) signaling via P2RX7 purinoceptor upregulation, which leads to autophagic death of dystrophic muscle cells. Furthermore, the eATP-P2RX7 axis contributes to DMD pathology by stimulating harmful inflammatory responses. We demonstrated recently that genetic ablation or pharmacological inhibition of P2RX7 in the mdx mouse model of DMD produced functional attenuation of both muscle and non-muscle symptoms, establishing this receptor as an attractive therapeutic target. Central to the argument presented here, this purinergic phenotype affects dystrophic myoblasts. Muscle cells were believed not to be affected at this stage of differentiation, as they do not produce detectable dystrophin protein. Our findings contradict the central hypothesis stating that aberrant dystrophin expression is inconsequential in myoblasts and the DMD pathology results from effects such as sarcolemma fragility, due to the absence of dystrophin, in differentiated myofibres. However, we discuss here the evidence that, already in myogenic cells, DMD mutations produce a plethora of abnormalities, including in cell proliferation, differentiation, energy metabolism, Ca(2+) homeostasis and death, leading to impaired muscle regeneration. We hope that this discussion may bring to light further results that will help re-evaluating the established belief. Clearly, understanding how DMD mutations alter such a range of functions in myogenic cells is vital for developing effective therapies. PMID:27141413

  9. Dystrophin: The dead calm of a dogma

    PubMed Central

    Górecki, Dariusz C.

    2016-01-01

    ABSTRACT Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease leading to severe disability and death of young men. Current interventions are palliative as no treatment improves the long-term outcome. Therefore, new therapeutic modalities with translational potential are urgently needed and abnormalities downstream from the absence of dystrophin are realistic targets. It has been shown that DMD mutations alter extracellular ATP (eATP) signaling via P2RX7 purinoceptor upregulation, which leads to autophagic death of dystrophic muscle cells. Furthermore, the eATP-P2RX7 axis contributes to DMD pathology by stimulating harmful inflammatory responses. We demonstrated recently that genetic ablation or pharmacological inhibition of P2RX7 in the mdx mouse model of DMD produced functional attenuation of both muscle and non-muscle symptoms, establishing this receptor as an attractive therapeutic target. Central to the argument presented here, this purinergic phenotype affects dystrophic myoblasts. Muscle cells were believed not to be affected at this stage of differentiation, as they do not produce detectable dystrophin protein. Our findings contradict the central hypothesis stating that aberrant dystrophin expression is inconsequential in myoblasts and the DMD pathology results from effects such as sarcolemma fragility, due to the absence of dystrophin, in differentiated myofibres. However, we discuss here the evidence that, already in myogenic cells, DMD mutations produce a plethora of abnormalities, including in cell proliferation, differentiation, energy metabolism, Ca2+ homeostasis and death, leading to impaired muscle regeneration. We hope that this discussion may bring to light further results that will help re-evaluating the established belief. Clearly, understanding how DMD mutations alter such a range of functions in myogenic cells is vital for developing effective therapies. PMID:27141413

  10. Identification and characterization of a novel retinal isoform of dystrophin

    SciTech Connect

    D`Souza, V.N.; Sigesmund, D.A.; Man, N.

    1994-09-01

    We have shown that dystrophin is required for normal function of the retina as measured by electroretinography (ERG). In these studies a genotype/phenotype correlation was found in which DMD/BMD patients with deletions in the central to distal region of the gene had abnormal ERGs, while patients with deletions in the 5{prime} end of the gene had a mild or normal retinal phenotype. A similar correlation was also observed in the mouse in which the mdx mouse having a mutation in exon 23 had a normal retinal phenotype, whereas the mdx{sup Cv3} mouse (mutation in intron 65) had an abnormal phenotype. Molecular analysis of both human and mouse retina indicated that at least two isoforms of dystrophin are expressed in the retina and localize to the outer plexiform layer, the synaptic junction between the photoreceptors, the bipolar cells, and the horizontal cells. Using a panel of monoclonal dystrophin antisera to analyze mdx mouse retina which does not contain full length dystrophin antisera, we showed that a shorter dystrophin isoform (approximately 260 kDa) was present and contained part of the rod, the cysteine-rich and C-terminal domains. The 5{prime} end of the transcript giving rise to this isoform was characterized and cloned using 5{prime}RACE. Sequence analysis indicated that this transcript contained a novel exon 1 consisting of 240 nucleotides and coded for a unique N-terminus of 13 amino acids. This isoform is distinct from the DP116 dystrophin isoform identified in peripheral nerve. From the functional analysis of DMD patients and dystrophic mice we conclude that this 260 kDa dystrophin isoform is required for normal retinal electrophysiology.

  11. Alterations of dystrophin-associated glycoproteins in the heart lacking dystrophin or dystrophin and utrophin.

    PubMed

    Sharpe, Katharine M; Premsukh, Monica D; Townsend, DeWayne

    2013-12-01

    Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD). Patients with DMD lack the protein dystrophin, which is widely expressed in striated muscle. In skeletal muscle, the loss of dystrophin results in dramatically decreased expression of the dystrophin associated glycoprotein complex (DGC). Interestingly, in the heart the DGC is normally expressed without dystrophin; this has been attributed to presence of the dystrophin homologue utrophin. We demonstrate here that neither utrophin nor dystrophin are required for the expression of the cardiac DGC. However, alpha-dystroglycan (α-DG), a major component of the DGC, is differentially glycosylated in dystrophin-(mdx) and dystrophin-/utrophin-(dko) deficient mouse hearts. In both models the altered α-DG retains laminin binding activity, but has an altered localization at the sarcolemma. In hearts lacking both dystrophin and utrophin, the alterations in α-DG glycosylation are even more dramatic with changes in gel migration equivalent to 24 ± 3 kDa. These data show that the absence of dystrophin and utrophin alters the processing of α-DG; however it is not clear if these alterations are a consequence of the loss of a direct interaction with dystrophin/utrophin or results from an indirect response to the presence of severe pathology. Recently there have been great advances in our understanding of the glycosylation of α-DG regarding its role as a laminin receptor. Here we present data that alterations in glycosylation occur in the hearts of animal models of DMD, but these changes do not affect laminin binding. The physiological consequences of these alterations remain unknown, but may have significant implications for the development of therapies for DMD. PMID:24096570

  12. Immobility reduces muscle fiber necrosis in dystrophin deficient muscular dystrophy.

    PubMed

    Kimura, S; Ikezawa, M; Nomura, K; Ito, K; Ozasa, S; Ueno, H; Yoshioka, K; Yano, S; Yamashita, T; Matuskura, M; Miike, T

    2006-08-01

    Duchenne/Becker muscular dystrophy is a progressive muscle disease, which is caused by the abnormality of dystrophin. Spina bifida is characterized by paralysis of the feet, with most of the upper extremities not being affected. We report here on the first case of Becker muscular dystrophy coinciding with spina bifida. The muscle biopsy specimens of the patient showed dystrophic changes in upper extremities, but clearly less in lower extremities. The results show that the restriction of excessive exercise is important for dystrophin deficiency disease. PMID:16516424

  13. Alterations of dystrophin associated glycoproteins in the heart lacking dystrophin or dystrophin and utrophin

    PubMed Central

    Sharpe, Katharine M.; Premsukh, Monica D.; Townsend, DeWayne

    2013-01-01

    Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD). Patients with DMD lack the protein dystrophin, which is widely expressed in striated muscle. In skeletal muscle, the loss of dystrophin results in dramatically decreased expression of the dystrophin associated glycoprotein complex (DGC). Interestingly, in the heart the DGC is normally expressed without dystrophin; this has been attributed to presence of the dystrophin homologue utrophin. We demonstrate here that neither utrophin nor dystrophin are required for the expression of the cardiac DGC. However, alpha-dystroglycan (α-DG), a major component of the DGC, is differentially glycosylated in dystrophin-(mdx) and dystrophin−/utrophin− (dko) deficient mouse hearts. In both models the altered α-DG retains laminin binding activity, but has an altered localization at the sarcolemma. In hearts lacking both dystrophin and utrophin, the alterations in α-DG glycosylation are even more dramatic with changes in gel migration equivalent to 24 ± 3 kDa. These data show that the absence of dystrophin and utrophin alters the processing of α-DG; however it is not clear if these alterations are a consequence of the loss of a direct interaction with dystrophin/utrophin, or results from an indirect response to the presence of severe pathology. Recently there have been great advances in our understanding of the glycosylation of α-DG regarding its role as a laminin receptor. Here we present data that alterations in glycosylation occurs in the hearts of animal models of DMD, but these changes do not affect laminin binding. The physiological consequences of these alterations remain to be determined, but may have significant implications for the development of therapies for DMD. PMID:24096570

  14. Restoration of dystrophin-associated proteins in skeletal muscle of mdx mice transgenic for dystrophin gene.

    PubMed

    Matsumura, K; Lee, C C; Caskey, C T; Campbell, K P

    1993-04-12

    Duchenne muscular dystrophy (DMD) patients and mdx mice are characterized by the absence of dystrophin, a membrane cytoskeletal protein. Dystrophin is associated with a large oligomeric complex of sarcolemmal glycoproteins, including dystroglycan which provides a linkage to the extracellular matrix component, laminin. The finding that all of the dystrophin-associated proteins (DAPs) are drastically reduced in DMD and mdx skeletal muscle supports the primary function of dystrophin as an anchor of the sarcolemmal glycoprotein complex to the subsarcolemmal cytoskeleton. These findings indicate that the efficacy of dystrophin gene therapy will depend not only on replacing dystrophin but also on restoring all of the DAPs in the sarcolemma. Here we have investigated the status of the DAPs in the skeletal muscle of mdx mice transgenic for the dystrophin gene. Our results demonstrate that transfer of dystrophin gene restores all of the DAPs together with dystrophin, suggesting that dystrophin gene therapy should be effective in restoring the entire dystrophin-glycoprotein complex. PMID:8462697

  15. Dystrophin-Deficient Cardiomyopathy.

    PubMed

    Kamdar, Forum; Garry, Daniel J

    2016-05-31

    Dystrophinopathies are a group of distinct neuromuscular diseases that result from mutations in the structural cytoskeletal Dystrophin gene. Dystrophinopathies include Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), X-linked dilated cardiomyopathy, as well as DMD and BMD female carriers. The primary presenting symptom in most dystrophinopathies is skeletal muscle weakness. However, cardiac muscle is also a subtype of striated muscle and is similarly affected in many of the muscular dystrophies. Cardiomyopathies associated with dystrophinopathies are an increasingly recognized manifestation of these neuromuscular disorders and contribute significantly to their morbidity and mortality. Recent studies suggest that these patient populations would benefit from cardiovascular therapies, annual cardiovascular imaging studies, and close follow-up with cardiovascular specialists. Moreover, patients with DMD and BMD who develop end-stage heart failure may benefit from the use of advanced therapies. This review focuses on the pathophysiology, cardiac involvement, and treatment of cardiomyopathy in the dystrophic patient. PMID:27230049

  16. Dystrophin analysis using a panel of anti-dystrophin antibodies in Duchenne and Becker muscular dystrophy.

    PubMed

    Muntoni, F; Mateddu, A; Cianchetti, C; Marrosu, M G; Clerk, A; Cau, M; Congiu, R; Cao, A; Melis, M A

    1993-01-01

    Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, was studied in 19 patients with Xp21 disorders and in 25 individuals with non-Xp21 muscular dystrophy. Antibodies raised to seven different regions spanning most of the protein were used for immunocytochemistry. In all patients specific dystrophin staining anomalies were detected and correlated with clinical severity and also gene deletion. In patients with Becker muscular dystrophy (BMD) the anomalies detected ranged from inter- and intra-fibre variation in labelling intensity with the same antibody or several antibodies to general reduction in staining and discontinuous staining. In vitro evidence of abnormal dystrophin breakdown was observed reanalysing the muscle of patients, with BMD and not that of non-Xp21 dystrophies, after it has been stored for several months. A number of patients with DMD showed some staining but this did not represent a diagnostic problem. Based on the data presented, it was concluded that immunocytochemistry is a powerful technique in the prognostic diagnosis of Xp21 muscular dystrophies. PMID:8429320

  17. Monoclonal antibodies against the muscle-specific N-terminus of dystrophin: Characterization of dystrophin in a muscular dystrophy patient with a frameshift deletion of Exons 3-7

    SciTech Connect

    Thanh, L. T.; Man, N. thi; Morris, G.E. ); Love, D.R.; Davies, K.E. ); Helliwell, T.R. )

    1993-07-01

    The first three exons of the human muscle dystrophin gene were expressed as a [beta]-galactosidase fusion protein. 1-his protein was then used to prepare two monoclonal antibodies (mAbs) which react with native dystrophin on frozen muscle sections and with denatured dystrophin on western blots but which do not cross-react with the distrophin-related protein, utrophin. Both mAbs recognized dystrophin in muscular dystrophy (MD) patients with deletions of exon 3, and further mapping with 11 overlapping synthetic peptides showed that they both recognize an epitope encoded by the muscle-specific exon 1. Neither mAb recognizes the brain dystrophin isoform, confirming the prediction from mRNA data that this has a different N-terminus. One Becker MD patient with a frameshift deletion of exons 3-7 is shown to produce dystrophin which reacts with the N-terminal mAbs, as well as with mAbs which bind on the C-terminal side of the deletion. The data suggest that transcription begins at the normal muscle dystrophin promoter and that the normal reading frame is restored after the deletion. A number of mechanisms have been proposed for restoration of the reading frame after deletion of exons 3-7, but those which predict dystrophin with an abnormal N-terminus do not appear to be major mechanisms in this patient. 27 refs., 6 figs.

  18. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder.

    PubMed

    Hudson, L D; Puckett, C; Berndt, J; Chan, J; Gencic, S

    1989-10-01

    Myelin is a highly specialized membrane unique to the nervous system that ensheaths axons to permit the rapid saltatory conduction of impulses. The elaboration of a compact myelin sheath is disrupted in a diverse spectrum of human disorders, many of which are of unknown etiology. The X chromosome-linked human disorder Pelizaeus-Merzbacher disease is a clinically and pathologically heterogeneous group of disorders that demonstrate a striking failure of oligodendrocyte differentiation. This disease appears pathologically and genetically to be similar to the disorder seen in the dysmyelinating mouse mutant jimpy, which has a point mutation in the gene encoding an abundant myelin protein, proteolipid protein (PLP). We report that the molecular defect in one Pelizaeus-Merzbacher family is likewise a point mutation in the PLP gene. A single T----C transition results in the substitution of a charged amino acid residue, arginine, for tryptophan in one of the four extremely hydrophobic domains of the PLP protein. The identification of a mutation in this Pelizaeus-Merzbacher family should facilitate the molecular classification and diagnosis of these X chromosome-linked human dysmyelinating disorders. PMID:2479017

  19. HEK293 cells express dystrophin Dp71 with nucleus-specific localization of Dp71ab.

    PubMed

    Nishida, Atsushi; Yasuno, Sato; Takeuchi, Atsuko; Awano, Hiroyuki; Lee, Tomoko; Niba, Emma Tabe Eko; Fujimoto, Takahiro; Itoh, Kyoko; Takeshima, Yasuhiro; Nishio, Hisahide; Matsuo, Masafumi

    2016-09-01

    The dystrophin gene consists of 79 exons and encodes tissue-specific isoforms. Mutations in the dystrophin gene cause Duchenne muscular dystrophy, of which a substantial proportion of cases are complicated by non-progressive mental retardation. Abnormalities of Dp71, an isoform transcribed from a promoter in intron 62, are a suspected cause of mental retardation. However, the roles of Dp71 in human brain have not been fully elucidated. Here, we characterized dystrophin in human HEK293 cells with the neuronal lineage. Reverse transcription-PCR amplification of the full-length dystrophin transcript revealed the absence of fragments covering the 5' part of the dystrophin cDNA. In contrast, fragments covering exons 64-79 were present. The Dp71 promoter-specific exon G1 was shown spliced to exon 63. We demonstrated that the Dp71 transcript comprised two subisoforms: one lacking exon 78 (Dp71b) and the other lacking both exons 71 and 78 (Dp71ab). Western blotting of cell lysates using an antibody against the dystrophin C-terminal region revealed two bands, corresponding to Dp71b and Dp71ab. Immunohistochemical examination with the dystrophin antibody revealed scattered punctate signals in the cytoplasm and the nucleus. Western blotting revealed one band corresponding to Dp71b in the cytoplasm and two bands corresponding to Dp71b and Dp71ab in the nucleus, with Dp71b being predominant. These results indicated that Dp71ab is a nucleus-specific subisoform. We concluded that Dp71, comprising Dp71b and Dp71ab, was expressed exclusively in HEK293 cells and that Dp71ab was specifically localized to the nucleus. Our findings suggest that Dp71ab in the nucleus contributes to the diverse functions of HEK293 cells. PMID:27109495

  20. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division

    PubMed Central

    Dumont, Nicolas A.; Wang, Yu Xin; von Maltzahn, Julia; Pasut, Alessandra; Bentzinger, C. Florian; Brun, Caroline E.; Rudnicki, Michael A.

    2016-01-01

    Dystrophin is expressed in differentiated myofibers where it is required for sarcolemmal integrity, and loss-of-function mutations in its gene result in Duchenne Muscular Dystrophy (DMD), a disease characterized by progressive and severe skeletal muscle degeneration. Here we found that dystrophin is also highly expressed in activated muscle stem cells (also known as satellite cells) where it associates with the Ser/Thr kinase Mark2 (also known as Par1b), an important regulator of cell polarity. In the absence of dystrophin, expression of Mark2 protein is downregulated, resulting in the inability to polarize Pard3 to the opposite side of the cell. Consequently, the number of asymmetric divisions is strikingly reduced in dystrophin-deficient satellite cells, while also displaying a loss of polarity, abnormal division patterns including centrosome amplification, impaired mitotic spindle orientation, and prolonged cell divisions. Altogether, these intrinsic defects strongly reduce the generation of myogenic progenitors needed for proper muscle regeneration. Therefore, we conclude that dystrophin has an essential role in the regulation of satellite cell polarity and asymmetric division. Our findings indicate that muscle wasting in DMD is not only caused by myofiber fragility, but is also exacerbated by impaired regeneration due to intrinsic satellite cell dysfunction. PMID:26569381

  1. DNA linkage analysis of X chromosome-linked chronic granulomatous disease.

    PubMed Central

    Baehner, R L; Kunkel, L M; Monaco, A P; Haines, J L; Conneally, P M; Palmer, C; Heerema, N; Orkin, S H

    1986-01-01

    Chronic granulomatous disease (CGD) is a disorder of phagocytes that is usually inherited as an X chromosome-linked trait. Previous family studies suggested that the CGD locus resides on the distal short arm (Xp22-Xpter). Using cloned, polymorphic DNA probes we have performed a linkage analysis within CGD families that suggests a more proximal location (Xp21). In addition, the CGD locus is proximal to the Duchenne muscular dystrophy locus and lies within a broad region of Xp in which recombination appears to be greater than anticipated on the basis of physical distance between markers. Regional localization of the X chromosome CGD locus should facilitate molecular cloning of the CGD gene and molecular dissection of the phagocyte oxidase system. Images PMID:3010296

  2. Detection of New Paternal Dystrophin Gene Mutations in Isolated Cases of Dystrophinopathy in Females

    PubMed Central

    Pegoraro, Elena; Schimke, R. Neil; Arahata, Kiichi; Hayashi, Yukiko; Stern, Harvey; Marks, Harold; Glasberg, Mark R.; Carroll, James E.; Taber, Joseph W.; Wessel, Henry B.; Bauserman, Steven C.; Marks, Warren A.; Toriello, Helga V.; Higgins, James V.; Appleton, Staci; Schwartz, Lisa; Garcia, Carlos A.; Hoffman, Eric P.

    1994-01-01

    Duchenne muscular dystrophy is one of the most common lethal monogenic disorders and is caused by dystrophin deficiency. The disease is transmitted as an X-linked recessive trait; however, recent biochemical and clinical studies have shown that many girls and women with a primary myopathy have an underlying dystrophinopathy, despite a negative family history for Duchenne dystrophy. These isolated female dystrophinopathy patients carried ambiguous diagnoses with presumed autosomal recessive inheritance (limbgirdle muscular dystrophy) prior to biochemical detection of dystrophin abnormalities in their muscle biopsy. It has been assumed that these female dystrophinopathy patients are heterozygous carriers who show preferential inactivation of the X chromosome harboring the normal dystrophin gene, although this has been shown for only a few X:autosome translocations and for two cases of discordant monozygotic twin female carriers. Here we study X-inactivation patterns of 13 female dystrophinopathy patients—10 isolated cases and 3 cases with a positive family history for Duchenne dystrophy in males. We show that all cases have skewed X-inactivation patterns in peripheral blood DNA. Of the nine isolated cases informative in our assay, eight showed inheritance of the dystrophin gene mutation from the paternal germ line. Only a single case showed maternal inheritance. The 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus, our results suggest some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. Our results provide both empirical risk data and a molecular diagnostic test method, which permit genetic counseling and prenatal diagnosis of this new category of patients. ImagesFigure 1 PMID:8198142

  3. Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females

    SciTech Connect

    Pegoraro, E.; Wessel, H.B.; Schwartz, L.; Hoffman, E.P. ); Schimke, R.N. ); Arahata, Kiichi; Hayashi, Yukiko ); Stern, H. ); Marks, H. ); Glasberg, M.R. )

    1994-06-01

    Duchenne muscular dystrophy is one of the most common lethal monogenic disorders and is caused by dystrophin deficiency. The disease is transmitted as an X-linked recessive trait; however, recent biochemical and clinical studies have shown that many girls and women with a primary myopathy have an underlying dystrophinopathy, despite a negative family history for Duchenne dystrophy. These isolated female dystrophinopathy patients carried ambiguous diagnoses with presumed autosomal recessive inheritance (limb-girdle muscular dystrophy) prior to biochemical detection of dystrophin abnormalities in their muscle biopsy. It has been assumed that these female dystrophinopathy patients are heterozygous carries who show preferential inactivation of the X chromosome harboring the normal dystrophin gene, although this has been shown for only a few X:autosome translocations and for two cases of discordant monozygotic twin female carriers. Here the authors study X-inactivation patterns of 13 female dystrophinopathy patients - 10 isolated cases and 3 cases with a positive family history for Duchenne dystrophy in males. They show that all cases have skewed X-inactivation patterns in peripheral blood DNA. Of the nine isolated cases informative in the assay, eight showed inheritance of the dystrophin gene mutation from the paternal germ line. Only a single case showed maternal inheritance. The 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus, the results suggest some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. The results provide both empirical risk data and a molecular diagnostic test method, which permit genetic counseling and prenatal diagnosis of this new category of patients. 58 refs., 7 figs., 2 tabs.

  4. Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests

    SciTech Connect

    Ott, J.; Terwilliger, J.D. ); Bhattacharya, S. ); Chen, J.D.; Denton, J.; Donald, J. ); Dubay, C.; Litt, M.; Weleber, R.G. ); Farrar, G.J.; Humphries, P. ); Fishman, G.A.; Wong, F. ); Frey, D.; Maechler, M. )

    1990-01-01

    Multilocus linkage analysis of 62 family pedigrees with X chromosome-linked retinitis pigmentosa (XLRP) was undertaken to determine the presence of possible multiple disease loci and to reliability estimate their map location. Multilocus homogeneity tests furnish convincing evidence for the presence of two XLRP loci, the likelihood ratio being 6.4 {times} 10{sup 9}:1 in a favor of two versus a single XLRP locus and gave accurate estimates for their map location. In 60-75% of the families, location of an XLRP gene was estimated at 1 centimorgan distal to OTC, and in 25-40% of the families, an XLRP locus was located halfway between DXS14 (p58-1) and DXZ1 (Xcen), with an estimated recombination fraction of 25% between the two XLRP loci. There is also good evidence for third XLRP locus, midway between DXS28 (C7) and DXS164 (pERT87), supported by a likelihood ratio of 293:1 for three versus two XLRP loci.

  5. Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry.

    PubMed

    Drummond-Borg, M; Deeb, S S; Motulsky, A G

    1989-02-01

    We used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of red or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes [Nathans, J., Piantanida, T.P., Eddy, R.L., Shows, T.B., Jr., & Hogness, D.S. (1986) Science 232, 203-210]. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly (mild defect in green color perception), 2 (1.5%) had patterns characteristic of deuteranopia (severe defect in green color perception), and 6 (4.5%) had protan patterns (the red perception defects protanomaly and protanopia cannot be differentiated by current molecular methods). Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Only 2 of these patterns were considered as deuteranomalous. Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests. Some color vision gene arrays associated with hybrid genes are likely to mediate normal color vision. PMID:2915991

  6. X-chromosome-linked inheritance of the variant thyroxine-binding globulin in Australian aborigines.

    PubMed

    Refetoff, S; Murata, Y

    1985-02-01

    The inheritance of quantitative changes in serum T4-binding globulin (TBG; reduced or elevated serum levels) and electrophoretic variants of TBG have been shown to be X-chromosome linked. However, it recently was suggested that another TBG variant, widely distributed in the Australian Aborigine population, may be inherited as an autosomal dominant trait. This communication deals with studies directed to the elucidation of the mode of inheritance of the Aboriginal variant TBG. By measuring the rate of denaturation of TBG at 56 C, we identified three distinct types of TBG in Australian Aborigines. One was a relatively heat-stable TBG (mean t1/2, 58.0 min; range, 68-53 min; group A), indistinguishable from TBG in caucasians (mean t1/2, 55.1; range, 67-43); another was a heat-labile TBG (mean t1/2, 20.8 min; range, 23.7-18.4 min; group C); and a third had intermediate values (mean t1/2, 35.7 min; range, 39.5-30.6 min; group B). Serum samples from the latter group belonged exclusively to women. Assuming that individuals from group A were homozygous for the caucasian type TBG (TBGCC), those from group C were homozygous for the Aboriginal variant of TBG (TBGAA), and individuals from group B were heterozygous (TBGCA), gene frequencies were calculated for the product of TBGC and TBGA, and the incidence of expected genotypes was compared to that observed. The results are compatible with X-chromosome, but not autosomal, inheritance, with a gene frequency of TBGC of 0.4118 and of TBGA of 0.5882. The ability to identify individuals who are heterozygous for the Aboriginal variant TBG confirmed that the structural gene of TBG in man is located on the X-chromosome. PMID:3917459

  7. Peptide Nucleic Acid Promotes Systemic Dystrophin Expression and Functional Rescue in Dystrophin-deficient mdx Mice

    PubMed Central

    Gao, Xianjun; Shen, Xiaoyong; Dong, Xue; Ran, Ning; Han, Gang; Cao, Limin; Gu, Ben; Yin, HaiFang

    2015-01-01

    Antisense oligonucleotide (AO)-mediated exon-skipping therapeutics shows great promise for Duchenne muscular dystrophy (DMD) patients. However, recent failure with drisapersen, an AO candidate drug in phase 3 trial, highlights the importance of exploring other effective AO chemistries for DMD. Previously, we demonstrated the appreciable biological activity of peptide nucleic acid (PNA) AOs in restoring dystrophin expression in dystrophin-deficient mdx mice intramuscularly. Here, we further explore the systemic potential and feasibility of PNA AOs in mediating exon skipping in mdx mice as a comprehensive systemic evaluation remains lacking. Systemic delivery of PNA AOs resulted in therapeutic level of dystrophin expression in body-wide peripheral muscles and improved dystrophic pathology in mdx mice without any detectable toxicity. Up to 40% of dystrophin restoration was achieved in gastrocnemius, to a less extent with other skeletal muscles, with no dystrophin in heart. Notably, comparable systemic activity was obtained between PNA AOs and phosphorodiamidate morpholino oligomer, a DMD AO chemistry in phase 3 clinical trial, under an identical dosing regimen. Overall, our data demonstrate that PNA is viable for DMD exon-skipping therapeutics with 20 mer showing the best combination of activity, solubility, and safety and further modifications to increase PNA aqueous solubility can enable longer, more effective therapeutics without the associated toxicity. PMID:26440599

  8. Peptide Nucleic Acid Promotes Systemic Dystrophin Expression and Functional Rescue in Dystrophin-deficient mdx Mice.

    PubMed

    Gao, Xianjun; Shen, Xiaoyong; Dong, Xue; Ran, Ning; Han, Gang; Cao, Limin; Gu, Ben; Yin, HaiFang

    2015-01-01

    Antisense oligonucleotide (AO)-mediated exon-skipping therapeutics shows great promise for Duchenne muscular dystrophy (DMD) patients. However, recent failure with drisapersen, an AO candidate drug in phase 3 trial, highlights the importance of exploring other effective AO chemistries for DMD. Previously, we demonstrated the appreciable biological activity of peptide nucleic acid (PNA) AOs in restoring dystrophin expression in dystrophin-deficient mdx mice intramuscularly. Here, we further explore the systemic potential and feasibility of PNA AOs in mediating exon skipping in mdx mice as a comprehensive systemic evaluation remains lacking. Systemic delivery of PNA AOs resulted in therapeutic level of dystrophin expression in body-wide peripheral muscles and improved dystrophic pathology in mdx mice without any detectable toxicity. Up to 40% of dystrophin restoration was achieved in gastrocnemius, to a less extent with other skeletal muscles, with no dystrophin in heart. Notably, comparable systemic activity was obtained between PNA AOs and phosphorodiamidate morpholino oligomer, a DMD AO chemistry in phase 3 clinical trial, under an identical dosing regimen. Overall, our data demonstrate that PNA is viable for DMD exon-skipping therapeutics with 20 mer showing the best combination of activity, solubility, and safety and further modifications to increase PNA aqueous solubility can enable longer, more effective therapeutics without the associated toxicity. PMID:26440599

  9. A family with a dystrophin gene mutation specifically affecting dystrophin expression in the heart

    SciTech Connect

    Muntoni, F.; Davies, K.; Dubowitz, V.

    1994-09-01

    We recently described a family with X-linked dilated cardiomyopathy where a large deletion in the muscle promoter region of the dystrophin gene was associated with a severe dilated cardiomyopathy in absence of clinical skeletal muscle involvement. The deletion removed the entire muscle promoter region, the first muscle exon and part of intron 1. The brain and Purkinje cell promoters were not affected by the deletion. Despite the lack of both the muscle promoter and the first muscle exon, dystrophin was detected immunocytochemically in relative high levels in the skeletal muscle of the affected males. We have now found that both the brain and Purkinje cell promoters were transcribed at high levels in the skeletal muscle of these individuals. This phenomenon, that does not occur in normal skeletal muscle, indicates that these two isoforms, physiologically expressed mainly in the central nervous system, can be transcribed and be functionally active in skeletal muscle under specific circumstances. Contrary to what is observed in skeletal muscle, dystrophin was not detected in the heart of one affected male using immunocytochemistry and an entire panel of anti-dystrophin antibodies. This was most likely the cause for the pronounced cardiac fibrosis observed and eventually responsible for the severe cardiac involvement invariably seen in seven affected males. In conclusion, the mutation of the muscle promoter, first muscle exon and part of intron 1 specifically affected expression of dystrophin in the heart. We believe that this deletion removes sequences involved in regulation of dystrophin expression in the heart and are at the moment characterizing other families with X-linked cardiomyopathy secondary to a dystrophinopathy.

  10. Dystrophin delivery in dystrophin-deficient DMDmdx skeletal muscle by isogenic muscle-derived stem cell transplantation.

    PubMed

    Ikezawa, Makoto; Cao, Baohong; Qu, Zhuqing; Peng, Hairong; Xiao, Xiao; Pruchnic, Ryan; Kimura, Shigemi; Miike, Teruhisa; Huard, Johnny

    2003-11-01

    Duchenne's muscular dystrophy (DMD) is a lethal muscle disease caused by a lack of dystrophin expression at the sarcolemma of muscle fibers. We investigated retroviral vector delivery of dystrophin in dystrophin-deficient DMD(mdx) (hereafter referred to as mdx) mice via an ex vivo approach using mdx muscle-derived stem cells (MDSCs). We generated a retrovirus carrying a functional human mini-dystrophin (RetroDys3999) and used it to stably transduce mdx MDSCs obtained by the preplate technique (MD3999). These MD3999 cells expressed dystrophin and continued to express stem cell markers, including CD34 and Sca-1. MD3999 cells injected into mdx mouse skeletal muscle were able to deliver dystrophin. Though a relatively low number of dystrophin-positive myofibers was generated within the gastrocnemius muscle, these fibers persisted for up to 24 weeks postinjection. The injection of cells from additional MDSC/Dys3999 clones into mdx skeletal muscle resulted in varying numbers of dystrophin-positive myofibers, suggesting a differential regenerating capacity among the clones. At 2 and 4 weeks postinjection, the infiltration of CD4- and CD8-positive lymphocytes and a variety of cytokines was detected within the injected site. These data suggest that the transplantation of retrovirally transduced mdx MDSCs can enable persistent dystrophin restoration in mdx skeletal muscle; however, the differential regenerating capacity observed among the MDSC/Dys3999 clones and the postinjection immune response are potential challenges facing this technology. PMID:14577915

  11. Laryngeal Muscles Are Spared in the Dystrophin Deficient "mdx" Mouse

    ERIC Educational Resources Information Center

    Thomas, Lisa B.; Joseph, Gayle L.; Adkins, Tracey D.; Andrade, Francisco H.; Stemple, Joseph C.

    2008-01-01

    Purpose: "Duchenne muscular dystrophy (DMD)" is caused by the loss of the cytoskeletal protein, dystrophin. The disease leads to severe and progressive skeletal muscle wasting. Interestingly, the disease spares some muscles. The purpose of the study was to determine the effects of dystrophin deficiency on 2 intrinsic laryngeal muscles, the…

  12. Disease-proportional proteasomal degradation of missense dystrophins

    PubMed Central

    Talsness, Dana M.; Belanto, Joseph J.; Ervasti, James M.

    2015-01-01

    The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop codon read-through drugs, whereas out-of-frame deletions and insertions are targeted by exon-skipping therapies. Both treatment strategies are currently in clinical trials. Dystrophin missense mutations, however, cause a wide range of phenotypic severity in patients. The molecular and cellular consequences of such mutations are not well understood, and there are no therapies specifically targeting this genotype. Here, we have modeled two representative missense mutations, L54R and L172H, causing DMD and BMD, respectively, in full-length dystrophin. In vitro, the mutation associated with the mild phenotype (L172H) caused a minor decrease in tertiary stability, whereas the L54R mutation associated with a severe phenotype had a more dramatic effect. When stably expressed in mammalian muscle cells, the mutations caused steady-state decreases in dystrophin protein levels inversely proportional to the tertiary stability and directly caused by proteasomal degradation. Both proteasome inhibitors and heat shock activators were able to increase mutant dystrophin to WT levels, establishing the new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin. PMID:26392559

  13. Disease-proportional proteasomal degradation of missense dystrophins.

    PubMed

    Talsness, Dana M; Belanto, Joseph J; Ervasti, James M

    2015-10-01

    The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop codon read-through drugs, whereas out-of-frame deletions and insertions are targeted by exon-skipping therapies. Both treatment strategies are currently in clinical trials. Dystrophin missense mutations, however, cause a wide range of phenotypic severity in patients. The molecular and cellular consequences of such mutations are not well understood, and there are no therapies specifically targeting this genotype. Here, we have modeled two representative missense mutations, L54R and L172H, causing DMD and BMD, respectively, in full-length dystrophin. In vitro, the mutation associated with the mild phenotype (L172H) caused a minor decrease in tertiary stability, whereas the L54R mutation associated with a severe phenotype had a more dramatic effect. When stably expressed in mammalian muscle cells, the mutations caused steady-state decreases in dystrophin protein levels inversely proportional to the tertiary stability and directly caused by proteasomal degradation. Both proteasome inhibitors and heat shock activators were able to increase mutant dystrophin to WT levels, establishing the new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin. PMID:26392559

  14. Rescue of a dystrophin-like protein by exon skipping normalizes synaptic plasticity in the hippocampus of the mdx mouse.

    PubMed

    Dallérac, Glenn; Perronnet, Caroline; Chagneau, Carine; Leblanc-Veyrac, Pascale; Samson-Desvignes, Nathalie; Peltekian, Elise; Danos, Olivier; Garcia, Luis; Laroche, Serge; Billard, Jean-Marie; Vaillend, Cyrille

    2011-09-01

    Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin, a protein that fulfills important functions in both muscle and brain. The mdx mouse model of DMD, which also lacks dystrophin, shows a marked reduction in γ-aminobutyric acid type A (GABA(A))-receptor clustering in central inhibitory synapses and enhanced long-term potentiation (LTP) at CA3-CA1 synapses of the hippocampus. We have recently shown that U7 small nuclear RNAs modified to encode antisense sequences and expressed from recombinant adeno-associated viral (rAAV) vectors are able to induce skipping of the mutated exon 23 and to rescue expression of a functional dystrophin-like product both in the muscle and nervous tissue in vivo. In the brain, this rescue was accompanied by restoration of both the size and number of hippocampal GABA(A)-receptor clustering. Here, we report that 25.2±8% of re-expression two months after intrahippocampal injection of rAAV reverses the abnormally enhanced LTP phenotype at CA3-CA1 synapses of mdx mice. These results suggests that dystrophin expression indirectly influences synaptic plasticity through modulation of GABA(A)-receptor clustering and that re-expression of the otherwise deficient protein in the adult can significantly alleviate alteration of neural functions in DMD. PMID:21624465

  15. Dystrophin insufficiency causes selective muscle histopathology and loss of dystrophin-glycoprotein complex assembly in pig skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker muscular dystrophy (BMD) is caused by a dystrophin insufficiency or expression of a partially functional protein product. Both of these dystrophinopathies are most commonly studied using the mdx mouse and a golden r...

  16. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    SciTech Connect

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H.

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  17. X chromosome-linked and mitochondrial gene control of Leber hereditary optic neuropathy: evidence from segregation analysis for dependence on X chromosome inactivation.

    PubMed Central

    Bu, X D; Rotter, J I

    1991-01-01

    Leber hereditary optic neuropathy (LHON) has been shown to involve mutation(s) of mitochondrial DNA, yet there remain several confusing aspects of its inheritance not explained by mitochondrial inheritance alone, including male predominance, reduced penetrance, and a later age of onset in females. By extending segregation analysis methods to disorders that involve both a mitochondrial and a nuclear gene locus, we show that the available pedigree data for LHON are most consistent with a two-locus disorder, with one responsible gene being mitochondrial and the other nuclear and X chromosome-linked. Furthermore, we have been able to extend the two-locus analytic method and demonstrate that a proportion of affected females are likely heterozygous at the X chromosome-linked locus and are affected due to unfortunate X chromosome inactivation, thus providing an explanation for the later age of onset in females. The estimated penetrance for a heterozygous female is 0.11 +/- 0.02. The calculated frequency of the X chromosome-linked gene for LHON is 0.08. Among affected females, 60% are expected to be heterozygous, and the remainder are expected to be homozygous at the responsible X chromosome-linked locus. PMID:1896469

  18. X chromosome-linked and mitochondrial gene control of Leber hereditary optic neuropathy: Evidence from segregation analysis for dependence on X chromosome inactivation

    SciTech Connect

    Xiangdong Bu; Rotter, J.I. Univ. of California, Los Angeles )

    1991-09-15

    Leber hereditary optic neuropathy (LHON) has been shown to involve mutation(s) of mitochondrial DNA, yet there remain several confusing aspects of its inheritance not explained by mitochondrial inheritance alone, including male predominance, reduced penetrance, and a later age of onset in females. By extending segregation analysis methods to disorders that involve both a mitochondrial and a nuclear gene locus, the authors show that the available pedigree data for LHON are most consistent with a two-locus disorder, with one responsible gene being mitochondrial and the other nuclear and X chromosome-linked. Furthermore, they have been able to extend the two-locus analytic method and demonstrate that a proportion of affected females are likely heterozygous at the X chromosome-linked locus and are affected due to unfortunate X chromosome inactivation, thus providing an explanation for the later age of onset in females. The estimated penetrance for a heterozygous female is 0.11{plus minus}0.02. The calculated frequency of the X chromosome-linked gene for LHON is 0.l08. Among affected females, 60% are expected to be heterozygous, and the remainder are expected to be homozygous at the responsible X chromosome-linked locus.

  19. Differential expression of dystrophin, utrophin, and dystrophin-associated proteins in human muscle culture.

    PubMed

    Radojevic, V; Lin, S; Burgunder, J M

    2000-06-01

    The dystrophin-associated protein complex (DAP) plays an important role in sarcolemmal function. Mutations of DAP elements lead to diverse forms of muscular dystrophies, among them Duchenne muscular dystrophy, one of the most severe neuromuscular diseases. Strategies in gene therapy are being assessed to restore DAP stability. However, the relationship between DAP elements and time-course of the DAP formation are still not known in detail. In order to better understand the relationship among DAP proteins, we therefore studied their expression during development in human muscle culture in comparison with developmentally regulated muscle proteins. Desmin immunoreactivity (IR) was detected by 3 days in vitro (DIV3), IR for developmental heavy-chain myosin, vimentin, utrophin, and beta-dystroglycan, as well as alpha-, beta-, and gamma-sarcoglycan, a day later. delta-Sarcoglycan was found by DIV7; dystrophin could be detected only by DIV11. In general, DAP proteins were first located in the perinuclear region, later diffusely in the cytoplasm, and finally exclusively at the membrane. This sequence of events during muscle development gives further support to our suggestion that utrophin could be a precursor of dystrophin during development and regeneration. These data also suggest that utrophin alone is sufficient to anchor the complex, which is important when utrophin replacement strategies are being investigated for the treatment of dystrophinopathies. In this study we demonstrated the establishment of a culture technique that should allow the close study of DAP expression in diseased muscle, including its use after gene modulatory strategies. PMID:10928275

  20. Effects of irradiating adult mdx mice before full-length dystrophin cDNA transfer on host anti-dystrophin immunity.

    PubMed

    Eghtesad, S; Zheng, H; Nakai, H; Epperly, M W; Clemens, P R

    2010-09-01

    Duchenne muscular dystrophy is a fatal, genetic disorder in which dystrophin-deficient muscle progressively degenerates, for which dystrophin gene transfer could provide effective treatment. The host immune response to dystrophin, however, is an obstacle to therapeutic gene expression. Understanding the dystrophin-induced host immune response will facilitate the discovery of strategies to prolong expression of recombinant dystrophin in dystrophic muscle. Using whole-body irradiation of the dystrophic mdx mouse before gene transfer, we temporally removed the immune system; a 600 rad dose removed peripheral immune cells, which were restored by self-reconstitution, and a 900 rad dose removed central and peripheral immune cells, which were restored by adoptive transfer of bone marrow from a syngeneic, dystrophin-normal donor. The anti-dystrophin humoral response was delayed and dystrophin expression was partially preserved in irradiated, vector-treated mice. Nonirradiated, vector-treated control mice lost muscle dystrophin expression completely, had an earlier anti-dystrophin humoral response and demonstrated muscle fibers focally surrounded with T cells. We conclude that dystrophin gene transfer induced anti-dystrophin humoral immunity and cell-mediated responses that were significantly diminished and delayed by temporal removal of the host central or peripheral immune cells. Furthermore, manipulation of central immunity altered the pattern of regulatory T cells in muscle. PMID:20827278

  1. Isolated dystrophin molecules as seen by electron microscopy.

    PubMed

    Pons, F; Augier, N; Heilig, R; Léger, J; Mornet, D; Léger, J J

    1990-10-01

    Dystrophin, the protein product of the Duchenne muscular dystrophy locus [Hoffman, E. P., Brown, R. H., Jr., & Kunkel, L. M. (1987) Cell 51, 919-928], is expressed in striated and smooth muscles as well as in non-muscle tissues. Examination of its primary structure has revealed that the molecule is composed of four domains, three of which share many features with the membrane cytoskeletal proteins spectrin and actinin. Dystrophin has thus been predicted to adopt a rod shape [Koenig, M., Monaco, A. P. & Kunkel, L. M. (1988) Cell 53, 219-228]. In the present study, we describe its isolation from the chicken gizzard smooth muscle and present electron microscopic images of the molecule. Polyclonal antibodies were first prepared from a dystrophin fragment derived from the chicken skeletal muscle gene (residues 1173-1728). A dystrophin-enriched membrane preparation from chicken gizzard muscle was then purified by passing it through an affinity chromatography column made with the anti-dystrophin antibodies. Electron microscopy of isolated and rotatory-shadowed dystrophin molecules revealed that the lengths measured for the dystrophin monomers (175 +/- 15 nm) are compatible with a structural arrangement of the repeat sequence segments in triple-barrel alpha-helices connected by short-turn regions, as was earlier postulated for the repeat domains of spectrin and actinin. Electron microscopic images indicate that in addition the dystrophin molecules could present the same capacity of self-association in oligomeric structures as these cytoskeletal proteins and may thus be a part of a complex molecular meshwork essential to muscle cell function. PMID:2236001

  2. Neural integrity is maintained by dystrophin in C. elegans

    PubMed Central

    Zhou, Shan

    2011-01-01

    The dystrophin protein complex (DPC), composed of dystrophin and associated proteins, is essential for maintaining muscle membrane integrity. The link between mutations in dystrophin and the devastating muscle failure of Duchenne’s muscular dystrophy (DMD) has been well established. Less well appreciated are the accompanying cognitive impairment and neuropsychiatric disorders also presented in many DMD patients, which suggest a wider role for dystrophin in membrane–cytoskeleton function. This study provides genetic evidence of a novel role for DYS-1/dystrophin in maintaining neural organization in Caenorhabditis elegans. This neuronal function is distinct from the established role of DYS-1/dystrophin in maintaining muscle integrity and regulating locomotion. SAX-7, an L1 cell adhesion molecule (CAM) homologue, and STN-2/γ-syntrophin also function to maintain neural integrity in C. elegans. This study provides biochemical data that show that SAX-7 associates with DYS-1 in an STN-2/γ-syntrophin–dependent manner. These results reveal a recruitment of L1CAMs to the DPC to ensure neural integrity is maintained. PMID:21242290

  3. Nonrandon X chromosome inactivation in B cells from carriers of X chromosome-linked severe combined immunodeficiency

    SciTech Connect

    Conley, M.E.; Lavoie, A.; Briggs, C.; Brown, P.; Guerra, C.; Puck, J.M.

    1988-05-01

    X chromosome-linked sever combined immunodeficiency (XSCID) is characterized by markedly reduced numbers of T cells, the absence of proliferative responses to mitogens, and hypogammaglobulinemia but normal or elevated number of B cells. To determine if the failure of the B cells to produce immunoglobulin might be due to expression of the XSCID gene defect in B-lineage cells as well as T cells, the authors analyzed patterns of X chromosome inactivation in B cells from nine obligate carriers of this disorder. A series of somatic cell hybrids that selectively retained the active X chromosome was produced from Epstein-Barr virus-stimulated B cells from each woman. To distinguish between the two X chromosome, the hybrids from each woman were analyzed using an X-linked restriction fragment length polymorphism for which the woman in question was heterozygous. In all obligate carriers of XSCID, the B-cell hybrids demonstrated preferential use of a single X chromosome, the nonmutant X, as the active X. To determine if the small number of B-cell hybrids that contained the mutant X were derived from an immature subset of B cells, lymphocytes from three carriers were separated into surface IgM positive and surface IgM negative B cells prior to exposure to Epstein-Barr virus and production of B-cell hybrids. The results demonstrated normal random X chromosome inactivation in B-cell hybrids derived from the less mature surface IgM positive B cells. These results suggest that the XSCID gene product has a direct effect on B cells as well as T cells and is required during B-cell maturation.

  4. Characterization of Dystrophin Deficient Rats: A New Model for Duchenne Muscular Dystrophy

    PubMed Central

    Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD. PMID:25310701

  5. Dystrophin insufficiency causes a Becker muscular dystrophy-like phenotype in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker MD is caused by a dystrophin insufficiency or expression of a partially functional dystrophin protein. Deficiencies in existing mouse and dog models necessitate the development of a novel large animal model. Our pu...

  6. Metabolic and Signaling Alterations in Dystrophin-Deficient Hearts Precede Overt Cardiomyopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cytoskeletal protein dystrophin has been implicated in hereditary and acquired forms of cardiomyopathy. However, much remains to be learned about the role of dystrophin in the heart. We hypothesized that the dystrophin-deficient heart displays early alterations in energy metabolism that precede ...

  7. How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse.

    PubMed

    Godfrey, Caroline; Muses, Sofia; McClorey, Graham; Wells, Kim E; Coursindel, Thibault; Terry, Rebecca L; Betts, Corinne; Hammond, Suzan; O'Donovan, Liz; Hildyard, John; El Andaloussi, Samir; Gait, Michael J; Wood, Matthew J; Wells, Dominic J

    2015-08-01

    Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model. PMID:25935000

  8. Dystrophin is a tumor suppressor in human cancers with myogenic programs.

    PubMed

    Wang, Yuexiang; Marino-Enriquez, Adrian; Bennett, Richard R; Zhu, Meijun; Shen, Yiping; Eilers, Grant; Lee, Jen-Chieh; Henze, Joern; Fletcher, Benjamin S; Gu, Zhizhan; Fox, Edward A; Antonescu, Cristina R; Fletcher, Christopher D M; Guo, Xiangqian; Raut, Chandrajit P; Demetri, George D; van de Rijn, Matt; Ordog, Tamas; Kunkel, Louis M; Fletcher, Jonathan A

    2014-06-01

    Many common human mesenchymal tumors, including gastrointestinal stromal tumor (GIST), rhabdomyosarcoma (RMS) and leiomyosarcoma (LMS), feature myogenic differentiation. Here we report that intragenic deletion of the dystrophin-encoding and muscular dystrophy-associated DMD gene is a frequent mechanism by which myogenic tumors progress to high-grade, lethal sarcomas. Dystrophin is expressed in the non-neoplastic and benign counterparts of GIST, RMS and LMS tumors, and DMD deletions inactivate larger dystrophin isoforms, including 427-kDa dystrophin, while preserving the expression of an essential 71-kDa isoform. Dystrophin inhibits myogenic sarcoma cell migration, invasion, anchorage independence and invadopodia formation, and dystrophin inactivation was found in 96%, 100% and 62% of metastatic GIST, embryonal RMS and LMS samples, respectively. These findings validate dystrophin as a tumor suppressor and likely anti-metastatic factor, suggesting that therapies in development for muscular dystrophies may also have relevance in the treatment of cancer. PMID:24793134

  9. Dystrophin, utrophin and {beta}-dystroglycan expression in skeletal muscle from patients with Becker muscular dystrophy

    SciTech Connect

    Kawajiri, Masakazu; Mitsui, Takao; Kawai, Hisaomi

    1996-08-01

    The precise localization and semiquantitative correlation of dystrophin, utrophin and {beta}-dystroglycan expression on the sarcolemma of skeletal muscle cells obtained from patients with Becker muscular dystrophy (BMD) was studied using three types of double immunofluorescence. Staining intensity was measured using a confocal laser microscope. Each of these proteins was identified at the same locus on the sarcolemma. The staining intensities of dystrophin and utrophin were approximately reciprocal at sarcolemmal sites where dystrophin expression was obviously observed. The staining intensity of {beta}-dystroglycan was strong in areas where dystrophin staining was also strong and utrophin expression was weak. Quantitative analysis revealed that the staining intensity of {beta}-dystroglycan minus that of dystrophin approximated the staining intensity of utrophin, indicating that the sum of dystrophin and utrophin expression corresponds to that of {beta}-dystroglycan. These results suggest that utrophin may compensate for dystrophin deficiency found in BMD by binding to {beta}-dystroglycan. 35 refs., 3 figs., 1 tab.

  10. Ocular and neurodevelopmental features of Duchenne muscular dystrophy: a signature of dystrophin function in the central nervous system.

    PubMed

    Ricotti, Valeria; Jägle, Herbert; Theodorou, Maria; Moore, Anthony T; Muntoni, Francesco; Thompson, Dorothy A

    2016-04-01

    Multiple isoforms of dystrophin (Dp427, Dp260, Dp140, Dp71) are expressed differentially in the central nervous system (CNS) including the retinal layers. Disruption of these protein products is responsible for cognitive dysfunction, electroretinogram (ERG) abnormalities and behavioural disorders in Duchenne muscular dystrophy (DMD). We studied the ocular characteristics and neuropsychiatric profile of 16 DMD boys. The ISCEV standard, full-field flash ERGs were assessed. Intellectual ability and behavioural disturbances were measured. All genotypes were associated with mildly abnormal photopic ERG a:b-wave amplitude ratios. In addition, we identified the following genotype/phenotype correlations: boys with mutations upstream of exon 30 (ie, isolated Dp427 altered expression) showed normal scotopic a:b ratios, abnormal photopic oscillatory potential OP2 and normal scotopic OP2. Conversely, all boys with DMD mutations downstream of exon 30 showed profoundly 'negative' scotopic ERGs (a:b ratios >1). In these patients, the involvement of Dp260 isoform resulted in the absence of slow rod pathway signalling in15 Hz scotopic flicker ERGs. These boys had abnormal scotopic OP2 and normal photopic OP2. Finally, children with mutations also affecting Dp71 were associated with more pronounced electronegative ERGs. When correlating ERGs to neurodevelopmental outcome, we found a positive correlation between negative scotopic ERGs and neurodevelopmental disturbances, and the most severe findings were in boys with Dp71 disruption. These findings suggest a strong association between DMD mutations affecting different DMD isoforms with characteristically abnormal scotopic ERGs and severe neurodevelopmental problems. The role of the ERG as a potential biomarker for dystrophin function in the CNS and response to novel genetic therapies warrants further exploration. PMID:26081639

  11. Dystrophin Distribution and Expression in Human and Experimental Temporal Lobe Epilepsy

    PubMed Central

    Hendriksen, Ruben G. F.; Schipper, Sandra; Hoogland, Govert; Schijns, Olaf E. M. G.; Dings, Jim T. A.; Aalbers, Marlien W.; Vles, Johan S. H.

    2016-01-01

    Objective: Dystrophin is part of a protein complex that connects the cytoskeleton to the extracellular matrix. In addition to its role in muscle tissue, it functions as an anchoring protein within the central nervous system such as in hippocampus and cerebellum. Its presence in the latter regions is illustrated by the cognitive problems seen in Duchenne Muscular Dystrophy (DMD). Since epilepsy is also supposed to constitute a comorbidity of DMD, it is hypothesized that dystrophin plays a role in neuronal excitability. Here, we aimed to study brain dystrophin distribution and expression in both, human and experimental temporal lobe epilepsy (TLE). Method: Regional and cellular dystrophin distribution was evaluated in both human and rat hippocampi and in rat cerebellar tissue by immunofluorescent colocalization with neuronal (NeuN and calbindin) and glial (GFAP) markers. In addition, hippocampal dystrophin levels were estimated by Western blot analysis in biopsies from TLE patients, post-mortem controls, amygdala kindled (AK)-, and control rats. Results: Dystrophin was expressed in all hippocampal pyramidal subfields and in the molecular-, Purkinje-, and granular cell layer of the cerebellum. In these regions it colocalized with GFAP, suggesting expression in astrocytes such as Bergmann glia (BG) and velate protoplasmic astrocytes. In rat hippocampus and cerebellum there were neither differences in dystrophin positive cell types, nor in the regional dystrophin distribution between AK and control animals. Quantitatively, hippocampal full-length dystrophin (Dp427) levels were about 60% higher in human TLE patients than in post-mortem controls (p < 0.05), whereas the level of the shorter Dp71 isoform did not differ. In contrast, AK animals showed similar dystrophin levels as controls. Conclusion: Dystrophin is ubiquitously expressed by astrocytes in the human and rat hippocampus and in the rat cerebellum. Hippocampal full-length dystrophin (Dp427) levels are upregulated

  12. Monoclonal antibody evidence for structural similarities between the central rod regions of actinin and dystrophin.

    PubMed

    Nguyen, T M; Ellis, J M; Ginjaar, I B; van Paassen, M M; van Ommen, G J; Moorman, A F; Cartwright, A J; Morris, G E

    1990-10-15

    A monoclonal antibody, MANDYS141, binds to both dystrophin and actinin on Western blots (SDS-denatured), but only to actinin in frozen sections of human muscle (native conformation). It differs from a polyclonal cross-reacting antiserum in that it binds to several muscle isoforms of actinin (smooth, fast and slow) from man, mouse and chicken and recognises a quite different part of the proposed triple-helical region of dystrophin (amino acids 1750-2248). The results suggest that structural homologies between actinin and dystrophin occur more than once in their central helical regions and provide experimental support for an actinin-like central rod model for dystrophin. PMID:1699800

  13. Evolutionary study of vertebrate and invertebrate members of the dystrophin and utrophin gene family

    SciTech Connect

    Roberts, R.G.; Nicholson, L.; Bobrow, M.

    1994-09-01

    Vertebrates express two members of the dystrophin gene family. The prototype, dystrophin, is expressed in muscle and neural tissue, and is defective in the human disorders Duchenne and Becker muscular dystrophy (DMD, BMD). The dystrophin homologue utrophin is more generally expressed but has not yet been associated with a genetic disorder. The function of neither protein is clear. A comparison of human utrophin with the known dystrophins (human, mouse, chicken, Torpedo) suggests that dystrophin and utrophin diverged before the vertebrate radiation. We have used reverse-transcript PCR (RT-PCR) directed by degenerate primers to characterize dystrophin and utrophin transcripts from a range of vertebrate and invertebrate animals. Our results suggest that the duplication leading to distinct dystrophin and utrophin genes occurred close to the point of divergence of urochordates from the cephalochordate-vertebrate lineage. This divergence may have occurred to fulfill a novel role which arose at this point, or may reflect a need for separate regulation of the neuromuscular and other functions of the ancient dystrophin. Our data include sequences of the first non-human utrophins to be characterized, and show these to be substantially more divergent than their cognate dystrophins. In addition, our results provide a large body of information regarding the tolerance of amino acid positions in the cysteine-rich and C-terminal domains to substitution. This will aid the interpretations of DMD and BMD missense mutations in these regions.

  14. Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy

    PubMed Central

    Meng, Jinhong; Counsell, John R.; Reza, Mojgan; Laval, Steven H.; Danos, Olivier; Thrasher, Adrian; Lochmüller, Hanns; Muntoni, Francesco; Morgan, Jennifer E.

    2016-01-01

    Autologous stem cells that have been genetically modified to express dystrophin are a possible means of treating Duchenne Muscular Dystrophy (DMD). To maximize the therapeutic effect, dystrophin construct needs to contain as many functional motifs as possible, within the packaging capacity of the viral vector. Existing dystrophin constructs used for transduction of muscle stem cells do not contain the nNOS binding site, an important functional motif within the dystrophin gene. In this proof-of-concept study, using stem cells derived from skeletal muscle of a DMD patient (mdcs) transplanted into an immunodeficient mouse model of DMD, we report that two novel dystrophin constructs, C1 (ΔR3-R13) and C2 (ΔH2-R23), can be lentivirally transduced into mdcs and produce dystrophin. These dystrophin proteins were functional in vivo, as members of the dystrophin glycoprotein complex were restored in muscle fibres containing donor-derived dystrophin. In muscle fibres derived from cells that had been transduced with construct C1, the largest dystrophin construct packaged into a lentiviral system, nNOS was restored. The combination of autologous stem cells and a lentivirus expressing a novel dystrophin construct which optimally restores proteins of the dystrophin glycoprotein complex may have therapeutic application for all DMD patients, regardless of their dystrophin mutation. PMID:26813695

  15. Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy.

    PubMed

    Meng, Jinhong; Counsell, John R; Reza, Mojgan; Laval, Steven H; Danos, Olivier; Thrasher, Adrian; Lochmüller, Hanns; Muntoni, Francesco; Morgan, Jennifer E

    2016-01-01

    Autologous stem cells that have been genetically modified to express dystrophin are a possible means of treating Duchenne Muscular Dystrophy (DMD). To maximize the therapeutic effect, dystrophin construct needs to contain as many functional motifs as possible, within the packaging capacity of the viral vector. Existing dystrophin constructs used for transduction of muscle stem cells do not contain the nNOS binding site, an important functional motif within the dystrophin gene. In this proof-of-concept study, using stem cells derived from skeletal muscle of a DMD patient (mdcs) transplanted into an immunodeficient mouse model of DMD, we report that two novel dystrophin constructs, C1 (ΔR3-R13) and C2 (ΔH2-R23), can be lentivirally transduced into mdcs and produce dystrophin. These dystrophin proteins were functional in vivo, as members of the dystrophin glycoprotein complex were restored in muscle fibres containing donor-derived dystrophin. In muscle fibres derived from cells that had been transduced with construct C1, the largest dystrophin construct packaged into a lentiviral system, nNOS was restored. The combination of autologous stem cells and a lentivirus expressing a novel dystrophin construct which optimally restores proteins of the dystrophin glycoprotein complex may have therapeutic application for all DMD patients, regardless of their dystrophin mutation. PMID:26813695

  16. Spectrum of small mutations in the dystrophin coding region

    SciTech Connect

    Prior, T.W.; Bartolo, C.; Pearl, D.K.

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3` of exon 55. The extent of protein truncation caused by the 3` mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. 71 refs., 2 figs., 2 tabs.

  17. Dystrophin in frameshift deletion patients with Becker Muscular Dystrophy

    SciTech Connect

    Gangopadhyay, S.B.; Ray, P.N.; Worton, R.G.; Sherratt, T.G.; Heckmatt, J.Z.; Dubowitz, V.; Strong, P.N.; Miller, G. ); Shokeir, M. )

    1992-09-01

    In a previous study the authors identified 14 cases with Duchenne muscular dystrophy (DMD) or its milder variant, Becker muscular dystrophy (BMD), with a deletion of exons 3-7, a deletion that would be expected to shift the translational reading frame of the mRNA and give a severe phenotype. They have examined dystrophin and its mRNA from muscle biopsies of seven cases with either mild or intermediate phenotypes. In all cases they detected slightly lower-molecular-weight dystrophin in 12%-15% abundance relative to the normal. By sequencing amplified mRNA they have found that exon 2 is spliced to exon 8, a splice that produces a frameshifted mRNA, and have found no evidence for alternate splicing that might be involved in restoration of dystrophin mRNA reading frame in the patients with a mild phenotype. Other transcriptional and posttranscriptional mechanisms such as cryptic promoter, ribosomal frameshifting, and reinitiation are suggested that might play some role in restoring the reading frame. 34 refs., 5 figs. 1 tab.

  18. In Vivo Fusion of Circulating Fluorescent Cells with Dystrophin-Deficient Myofibers Results in Extensive Sarcoplasmic Fluorescence Expression but Limited Dystrophin Sarcolemmal Expression

    PubMed Central

    Chretien, Fabrice; Dreyfus, Patrick A.; Christov, Christo; Caramelle, Philippe; Lagrange, Jean-Léon; Chazaud, Bénédicte; Gherardi, Romain K.

    2005-01-01

    To investigate the therapeutic potential of bone marrow transplantation in Duchenne muscular dystrophy, green fluorescent protein-positive (GFP+) bone marrow cells were transplanted into irradiated wild-type and dystrophin-deficient mdx mice. Tibialis anterior muscles showed fivefold to sixfold more GFP+ mononucleated cells and threefold to fourfold more GFP+ myofibers in mdx than in wild-type mice. In contrast, dystrophin expression in mdx mice remained within the level of nontransplanted mdx mice, and co-expression with GFP was rare. Longitudinal sections of 5000 myofibers showed 160 GFP+ fibers, including 9 that co-expressed dystrophin. GFP was always visualized as full-length sarcoplasmic fluorescence that exceeded the span of sample length (up to 1500 μm), whereas dystrophin expression was restricted to 11 to 28% of this length. Dystrophin expression span was much shorter in GFP+ fibers (116 ± 46 μm) than in revertant fibers (654 ± 409 μm). These data suggest that soluble GFP diffuses far from the fusion site with a pre-existing dystrophin− myofiber whereas dystrophin remains mainly expressed close to the site of fusion. Because restoration of dystrophin in whole muscle fiber length is required to expect functional improvement and clinical benefits for Duchenne muscular dystrophy, future applications of cell therapies to neuromuscular disorders could be more appropriately envisaged for replacement of defective soluble sarcoplasmic proteins. PMID:15920159

  19. A potentially critical Hpa II site of the X chromosome-linked PGK1 gene is unmethylated prior to the onset of meiosis of human oogenic cells

    SciTech Connect

    Singer-Sam, J.; Dai, A.; Riggs, A.D. ); Goldstein, L.; Gartler, S.M. )

    1992-02-15

    Hpa II site H8 is in the CpG-rich 5{prime} untranslated region of the human X chromosome-linked gene for phosphoglycerate kinase 1 (PGK1). It is the only Hpa II site in the CpG island' whose methylation pattern is perfectly correlated with transcriptional silence of this gene. The authors measured DNA methylation at site H8 in fetal oogonia and oocytes and found, using a quantitative assay based on the polymerase chain reaction, that purified germ cells isolated by micromanipulation were unmethylated in 47-day to 110-day fetuses, whereas ovaries depleted of germ cells and non-ovary tissues were methylated. They conclude that site H8 is the unmethylated in germ cells prior to the onset of meiosis and reactivation of the X chromosome.

  20. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    PubMed Central

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  1. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy.

    PubMed

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  2. Mini-dystrophin Expression Down-regulates IP3-mediated Calcium Release Events in Resting Dystrophin-deficient Muscle Cells

    PubMed Central

    Balghi, Haouaria; Sebille, Stéphane; Mondin, Ludivine; Cantereau, Anne; Constantin, Bruno; Raymond, Guy; Cognard, Christian

    2006-01-01

    We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)–mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(−) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(−) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363–379) cannot explain alone higher RSD. The exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(−) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(−) as compared to SolD(+) myotubes during a high K+ stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171–182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling. PMID:16847098

  3. Expression of recombinant dystrophin and its localization to the cell membrane.

    PubMed

    Lee, C C; Pearlman, J A; Chamberlain, J S; Caskey, C T

    1991-01-24

    Duchenne's muscular dystrophy (DMD) is an X-linked progressive myopathy caused by a defect in the DMD gene locus. The gene corresponding to the DMD locus produces a 14-kilobase (kb) messenger RNA that codes for a large cytoskeletal membrane protein, dystrophin. DMD and Becker's muscular dystrophy are the consequences of dystrophin mutations. The exact biological function of dystrophin remains unknown but it has been demonstrated that it is localized to the cytoplasmic face of the cell membrane and has direct interaction with several other membrane proteins. We report here the synthesis of a 14-kb full-length complementary DNA for the mouse muscle dystrophin mRNA and the expression of this cDNA in COS cells. The recombinant dystrophin is indistinguishable from mouse muscle dystrophin by western blot analysis with anti-dystrophin antibodies and was shown by an immunofluorescent technique to be localized in the cell membrane. Our successful construction of a functional full-length cDNA opens opportunities for the study of structure and function of dystrophin and provides an opportunity to initiate gene therapy studies. PMID:1824797

  4. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis

    PubMed Central

    Bajanca, Fernanda; Gonzalez-Perez, Vinicio; Gillespie, Sean J; Beley, Cyriaque; Garcia, Luis; Theveneau, Eric; Sear, Richard P; Hughes, Simon M

    2015-01-01

    Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmdta222a/ta222a zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)ct90a that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics. DOI: http://dx.doi.org/10.7554/eLife.06541.001 PMID:26459831

  5. Role of Dystrophin in Airway Smooth Muscle Phenotype, Contraction and Lung Function

    PubMed Central

    Sharma, Pawan; Basu, Sujata; Mitchell, Richard W.; Stelmack, Gerald L.; Anderson, Judy E.; Halayko, Andrew J.

    2014-01-01

    Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD) and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC) and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh) when compared to genetic control BL10ScSnJ mice (wild-type). In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM. PMID:25054970

  6. Structural Basis of Neuronal Nitric-oxide Synthase Interaction with Dystrophin Repeats 16 and 17.

    PubMed

    Molza, Anne-Elisabeth; Mangat, Khushdeep; Le Rumeur, Elisabeth; Hubert, Jean-François; Menhart, Nick; Delalande, Olivier

    2015-12-01

    Duchenne muscular dystrophy is a lethal genetic defect that is associated with the absence of dystrophin protein. Lack of dystrophin protein completely abolishes muscular nitric-oxide synthase (NOS) function as a regulator of blood flow during muscle contraction. In normal muscles, nNOS function is ensured by its localization at the sarcolemma through an interaction of its PDZ domain with dystrophin spectrin-like repeats R16 and R17. Early studies suggested that repeat R17 is the primary site of interaction but ignored the involved nNOS residues, and the R17 binding site has not been described at an atomic level. In this study, we characterized the specific amino acids involved in the binding site of nNOS-PDZ with dystrophin R16-17 using combined experimental biochemical and structural in silico approaches. First, 32 alanine-scanning mutagenesis variants of dystrophin R16-17 indicated the regions where mutagenesis modified the affinity of the dystrophin interaction with the nNOS-PDZ. Second, using small angle x-ray scattering-based models of dystrophin R16-17 and molecular docking methods, we generated atomic models of the dystrophin R16-17·nNOS-PDZ complex that correlated well with the alanine scanning identified regions of dystrophin. The structural regions constituting the dystrophin interaction surface involve the A/B loop and the N-terminal end of helix B of repeat R16 and the N-terminal end of helix A' and a small fraction of helix B' and a large part of the helix C' of repeat R17. The interaction surface of nNOS-PDZ involves its main β-sheet and its specific C-terminal β-finger. PMID:26378238

  7. Milder course in Duchenne patients with nonsense mutations and no muscle dystrophin.

    PubMed

    Zatz, M; Pavanello, R C M; Lazar, M; Yamamoto, G L; Lourenço, N C V; Cerqueira, A; Nogueira, L; Vainzof, M

    2014-11-01

    Duchenne muscular dystrophy (DMD), a severe and lethal condition, is caused by the absence of muscle dystrophin. Therapeutic trials aiming at the amelioration of muscle function have been targeting the production of muscle dystrophin in affected Duchenne patients. However, how much dystrophin is required to rescue the DMD phenotype remains an open question. We have previously identified two exceptional golden retriever muscular dystrophy (GRMD) dogs with a milder course despite the total absence of muscle dystrophin. Here we report two unusual patients carrying nonsense mutations in the DMD gene and dystrophin deficiency but with an unexpectedly mild phenotype. Three reported polymorphisms, respectively in genes LTBP4, SPP1 and ACTN3 were excluded as possible DMD genetic modifiers in our patients. Finding the mechanisms that protect some rare patients and dogs from the deleterious effect of absent muscle dystrophin is of utmost importance and may lead to new avenues for treatment. Importantly, these observations indicate that it is possible to have a functional large muscle even without dystrophin. PMID:25047667

  8. Exon skipping and translation in patients with frameshift deletions in the dystrophin gene

    SciTech Connect

    Sherratt, T.G.; Dubowitz, V.; Sewry, C.A.; Strong, P.N. ); Vulliamy, T. )

    1993-11-01

    Although many Duchenne muscular dystrophy patients have a deletion in the dystrophin gene which disrupts the translational reading frame, they express dystrophin in a small proportion of skeletal muscle fibers ([open quotes]revertant fibers[close quotes]). Antibody studies have shown, indirectly, that dystrophin synthesis in revertant fibers is facilitated by a frame-restoring mechanism; in the present study, the feasibility of mRNA splicing was investigated. Dystrophin transcripts were analyzed in skeletal muscle from individuals possessing revertant fibers and a frameshift deletion in the dystrophin gene. In each case a minor in-frame transcript was detected, in which exons adjacent to those deleted from the genome had been skipped. There appeared to be some correlation between the levels of in-frame transcripts and the predicted translation products. Low levels of alternatively spliced transcripts were also present in normal muscle. The results provide further evidence of exon skipping in the dystrophin gene and indicate that this may be involved in the synthesis of dystrophin by revertant fibers. 44 refs., 12 figs.

  9. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  10. Expression of human dystrophin following the transplantation of genetically modified mdx myoblasts.

    PubMed

    Moisset, P A; Gagnon, Y; Karpati, G; Tremblay, J P

    1998-10-01

    Transplantation of genetically modified autologous myoblasts has been proposed as a possible solution to avoid long-term use of immunosuppressive drugs. To determine the conditions to be used in this kind of approach for possible treatment of dystrophin deficiency, mdx myoblasts were infected at different multiplicities of infection (MOI or 0.01-1000) with an adenoviral vector containing a CMV promoter/enhancer driven 6.3 kb human dystrophin cDNA (minigene) and tested in vitro for transgene expression. In these cultures, dystrophin mRNA was found to be proportionate with increasing MOI. Primary myoblast cultures derived from transgenic mdx mice expressing beta-Gal under a muscle-specific promoter and showing high expression of the human mini-dystrophin transgene introduced by the adenoviral vector were grafted into anterior tibialis muscles of SCID mice. Ten and 24 days after transplantation, numerous muscle fibers expressing both human dystrophin and beta-Gal were detected throughout the mouse muscles by immunohistochemistry using an antibody specific for human dystrophin. The presence of the human mini-dystrophin mRNA was also detected by RT-PCR. These results demonstrate that three essential conditions in autologous myoblast transplantation can be achieved: (1) in vivo survival of at least some of the transduced myoblasts; (2) efficient fusion of these cells with the host muscle fibers; and (3) the high expression of the dystrophin transgene in situ. Furthermore, this article provides a novel RT-PCR-based technique to quantify the human dystrophin minigene expression in vitro and in vivo. PMID:9930339

  11. Organization of the human CD40L gene: Implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis

    SciTech Connect

    Villa, A.; Macchi, P.P.; Strina, D.; Frattini, A.; Lucchini, F.; Patrosso, C.M.; Vezzoni, P.; Notarangelo, L.D.; Giliani, S.; Mantuano, E.

    1994-03-15

    Recently, CD40L has been identified as the gene responsible for X chromosome-linked hyper-IgM syndrome (HIGM1). CD40L on activated T cells from HIGM1 patients fails to bind B-cell CD40 molecules, and subsequent analysis of CD40L transcripts by reverse transcription PCR demonstrated coding region mutations in these patients. This approach, however, is of limited use for prenatal diagnosis of HIGM1 in the early-gestation fetus. In this report, the authors have defined the genomic structure of the CD40L gene, which is composed of five exons and four intervening introns. With this information, the authors have defined at the genomic level the CD40L coding region. These different deletions arose from three distinct mechanisms, including (i) a splice donor mutation with exon skipping, (ii) a splice acceptor mutation with utilization of a cryptic splice site, and (iii) a deletion/insertion event with the creation of a new splice acceptor site. In addition, they have performed prenatal evaluation of an 11-week-old fetus at risk for HIGM1. CD40L genomic clones provide a starting point for further studies of the genetic elements that control CD40L expression. Knowledge of the CD40L gene structure will prove useful for the identification of additional mutations in HIGM1 and for performing genetic counseling about this disease. 54 refs., 4 figs., 1 tab.

  12. Close linkage of the locus for X chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-q13

    SciTech Connect

    de Saint Basile, G.; Arveiler, B.; Oberle, I.; Malcolm, S.; Levinsky, R.J.; Lau, Y.L.; Hofker, M.; Debre, M.; Fischer, A.; Griscelli, C.; Mandel, J.L.

    1987-11-01

    The gene for X chromosome-linked severe combined immunodeficiency (SCID), a disease characterized by a block in early T-cell differentiation, has been mapped to the region Xq11-q13 by linkage analysis with restriction fragment length polymorphisms. High logarithm of odds (lod) scores were obtained with the marker 19.2 (DXS3) and with the marker cpX73 (DXS159) that showed complete cosegregation with the disease locus in the informative families analyzed. Other significant linkages were obtained with several markers from Xq11 to q22. With the help of a recently developed genetic map of the region, it was possible to perform multipoint linkage analysis, and the most likely genetic order is DXS1-(SCID, DXS159)-DXYS1-DXYS12-DXS3, with a maximum multipoint logarithm of odds score of 11.0. The results demonstrate that the SCID locus (gene symbol IMD4) is not closely linked to the locus of Bruton's agammaglobulinemia (a defect in B-cell maturation). They also provide a way for a better estimation of risk for carrier and antenatal diagnosis.

  13. Overexpression of X chromosome-linked inhibitor of apoptosis by inhibiting microRNA-24 protects periodontal ligament cells against hydrogen peroxide-induced cell apoptosis.

    PubMed

    Liu, C; Chen, Z; Wang, J; Hu, H

    2016-01-01

    Hydrogen peroxide (H2O2), a common oral clinical drug for the tooth bleaching, induces severe cell apoptosis of periodontal ligament cells (PDLCs). The excessive cell apoptosis of PDLCs impairs periodontal tissue damage and repair. However, the underlying mechanism is incompletely understood. Here, we showed that microRNA-24 (miR-24) played an important role in regulating H2O2-induced cell apoptosis of PDLCs. We found that miR-24 expression was increased in PDLCs in response to H2O2 treatment. Down-regulation of miR-24 obviously rescued H2O2-induced cell apoptosis in PDLCs. By bioinformatic analysis, X chromosome-linked inhibitor of apoptosis (XIAP) was identified as a candidate target gene of miR-24, which was further verified by the dual-luciferase reporter assay. Furthermore, the protein expression level of phosphatase and tensin homolog deleted on chromosome ten was significantly decreased by miR-24 silencing, whereas the phosphorylation of Akt was remarkably increased by miR-24 silencing. In addition, the gene silencing of XIAP significantly reduced Akt activity and blocked the protective effect of the miR-24 inhibitor against H2O2-induced cell apoptosis. Overall, our findings suggest that miR-24 plays an important role in regulating the cell survival of PDLCs through targeting XIAP. PMID:27188727

  14. Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne muscular dystrophy.

    PubMed

    Griffin, J L; Sang, E; Evens, T; Davies, K; Clarke, K

    2002-10-23

    Metabolic profiles from (1)H nuclear magnetic resonance spectroscopy have been used to describe both one and two protein systems in four mouse models related to Duchenne muscular dystrophy using the pattern recognition technique partial least squares. Robust statistical models were built for extracts and intact cardiac tissue, distinguishing mice according to expression of dystrophin. Using metabolic profiles of diaphragm, models were built describing dystrophin and utrophin, a dystrophin related protein, expression. Increased utrophin expression counteracted some of the deficits associated with dystrophic tissue. This suggests the method may be ideal for following treatment regimes such as gene therapy. PMID:12387876

  15. Congenital Abnormalities

    MedlinePlus

    ... serious health problems (e.g. Down syndrome ). Single-Gene Abnormalities Sometimes the chromosomes are normal in number, ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase ...

  16. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  17. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  18. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  19. Nail abnormalities

    MedlinePlus

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  20. Lack of Dystrophin Affects Bronchial Epithelium in mdx Mice.

    PubMed

    Morici, Giuseppe; Rappa, Francesca; Cappello, Francesco; Pace, Elisabetta; Pace, Andrea; Mudò, Giuseppa; Crescimanno, Grazia; Belluardo, Natale; Bonsignore, Maria R

    2016-10-01

    Mild exercise training may positively affect the course of Duchenne Muscular Dystrophy (DMD). Training causes mild bronchial epithelial injury in both humans and mice, but no study assessed the effects of exercise in mdx mice, a well known model of DMD. The airway epithelium was examined in mdx (C57BL/10ScSn-Dmdmdx) mice, and in wild type (WT, C57BL/10ScSc) mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days of training (5 d/wk for 6 weeks), epithelial morphology and markers of regeneration, apoptosis, and cellular stress were assessed. The number of goblet cells in bronchial epithelium was much lower in mdx than in WT mice under all conditions. At 30 days, epithelial regeneration (PCNA positive cells) was higher in EX than SD animals in both groups; however, at 45 days, epithelial regeneration decreased in mdx mice irrespective of training, and the percentage of apoptotic (TUNEL positive) cells was higher in mdx-EX than in WT-EX mice. Epithelial expression of HSP60 (marker of stress) progressively decreased, and inversely correlated with epithelial apoptosis (r = -0.66, P = 0.01) only in mdx mice. Lack of dystrophin in mdx mice appears associated with defective epithelial differentiation, and transient epithelial regeneration during mild exercise training. Hence, lack of dystrophin might impair repair in bronchial epithelium, with potential clinical consequences in DMD patients. J. Cell. Physiol. 231: 2218-2223, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868633

  1. The ZZ domain of dystrophin in DMD: making sense of missense mutations.

    PubMed

    Vulin, Adeline; Wein, Nicolas; Strandjord, Dana M; Johnson, Eric K; Findlay, Andrew R; Maiti, Baijayanta; Howard, Michael T; Kaminoh, Yuuki J; Taylor, Laura E; Simmons, Tabatha R; Ray, Will C; Montanaro, Federica; Ervasti, Jim M; Flanigan, Kevin M

    2014-02-01

    Duchenne muscular dystrophy (DMD) is associated with the loss of dystrophin, which plays an important role in myofiber integrity via interactions with β-dystroglycan and other members of the transmembrane dystrophin-associated protein complex. The ZZ domain, a cysteine-rich zinc-finger domain near the dystrophin C-terminus, is implicated in forming a stable interaction between dystrophin and β-dystroglycan, but the mechanism of pathogenesis of ZZ missense mutations has remained unclear because not all such mutations have been shown to alter β-dystroglycan binding in previous experimental systems. We engineered three ZZ mutations (p.Cys3313Phe, p.Asp3335His, and p.Cys3340Tyr) into a short construct similar to the Dp71 dystrophin isoform for in vitro and in vivo studies and delineated their effect on protein expression, folding properties, and binding partners. Our results demonstrate two distinct pathogenic mechanisms for ZZ missense mutations. The cysteine mutations result in diminished or absent subsarcolemmal expression because of protein instability, likely due to misfolding. In contrast, the aspartic acid mutation disrupts binding with β-dystroglycan despite an almost normal expression at the membrane, confirming a role for the ZZ domain in β-dystroglycan binding but surprisingly demonstrating that such binding is not required for subsarcolemmal localization of dystrophin, even in the absence of actin binding domains. PMID:24302611

  2. Cognitive flexibility deficits in a mouse model for the absence of full-length dystrophin.

    PubMed

    Remmelink, E; Aartsma-Rus, A; Smit, A B; Verhage, M; Loos, M; van Putten, M

    2016-07-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder, caused by mutations in the DMD gene and the resulting lack of dystrophin. The DMD gene has seven promoters, giving rise to multiple full-length and shorter isoforms. Besides the expression of dystrophin in muscles, the majority of dystrophin isoforms is expressed in brain and dystrophinopathy can lead to cognitive deficits, including intellectual impairments and deficits in executive function. In contrast to the muscle pathology, the impact of the lack of dystrophin on the brain is not very well studied. Here, we study the behavioral consequences of a lack of full-length dystrophin isoforms in mdx mice, particularly with regard to domains of executive functions and anxiety. We observed a deficit in cognitive flexibility in mdx mice in the absence of motor dysfunction or general learning impairments using two independent behavioral tests. In addition, increased anxiety was observed, but its expression depended on the context. Overall, these results suggest that the absence of full-length dystrophin in mice has specific behavioral effects that compare well to deficits observed in DMD patients. PMID:27220066

  3. Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm

    PubMed Central

    Doran, Philip; Wilton, Steve D.; Fletcher, Sue; Ohlendieck, Kay

    2009-01-01

    The disintegration of the dystrophin-glycoprotein complex represents the initial pathobiochemical insult in Duchenne muscular dystrophy. However, secondary changes in signalling, energy metabolism and ion homeostasis are probably the main factors that eventually cause progressive muscle wasting. Thus, for the proper evaluation of novel therapeutic approaches, it is essential to analyse the reversal of both primary and secondary abnormalities in treated muscles. Antisense oligomer-mediated exon skipping promises functional restoration of the primary deficiency in dystrophin. In this study, an established phosphorodiamidate morpholino oligomer coupled to a cell-penetrating peptide was employed for the specific removal of exon 23 in the mutated mouse dystrophin gene transcript. Using DIGE analysis, we could show the reversal of secondary pathobiochemical abnormalities in the dystrophic diaphragm following exon-23 skipping. In analogy to the restoration of dystrophin, β-dystroglycan and neuronal nitric oxide synthase, the muscular dystrophy-associated differential expression of calsequestrin, adenylate kinase, aldolase, mitochondrial creatine kinase and cvHsp was reversed in treated muscle fibres. Hence, the re-establishment of Dp427 coded by the transcript missing exon 23 has counter-acted dystrophic alterations in Ca2+-handling, nucleotide metabolism, bioenergetic pathways and cellular stress response. This clearly establishes the exon-skipping approach as a realistic treatment strategy for diminishing diverse downstream alterations in dystrophinopathy. PMID:19132684

  4. Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting.

    PubMed

    Swiderski, Kristy; Shaffer, Scott A; Gallis, Byron; Odom, Guy L; Arnett, Andrea L; Scott Edgar, J; Baum, Dale M; Chee, Annabel; Naim, Timur; Gregorevic, Paul; Murphy, Kate T; Moody, James; Goodlett, David R; Lynch, Gordon S; Chamberlain, Jeffrey S

    2014-12-20

    Mutations in dystrophin lead to Duchenne muscular dystrophy, which is among the most common human genetic disorders. Dystrophin nucleates assembly of the dystrophin-glycoprotein complex (DGC), and a defective DGC disrupts an essential link between the intracellular cytoskeleton and the basal lamina, leading to progressive muscle wasting. In vitro studies have suggested that dystrophin phosphorylation may affect interactions with actin or syntrophin, yet whether this occurs in vivo or affects protein function remains unknown. Utilizing nanoflow liquid chromatography mass spectrometry, we identified 18 phosphorylated residues within endogenous dystrophin. Mutagenesis revealed that phosphorylation at S3059 enhances the dystrophin-dystroglycan interaction and 3D modeling utilizing the Rosetta software program provided a structural model for how phosphorylation enhances this interaction. These findings demonstrate that phosphorylation is a key mechanism regulating the interaction between dystrophin and the DGC and reveal that posttranslational modification of a single amino acid directly modulates the function of dystrophin. PMID:25082828

  5. Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy.

    PubMed

    Nik-Ahd, Farnoosh; Bertoni, Carmen

    2014-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease caused by mutations in the dystrophin gene, which result in the complete absence of dystrophin protein throughout the body. Gene correction strategies hold promise to treating DMD. Our laboratory has previously demonstrated the ability of peptide nucleic acid single-stranded oligodeoxynucleotides (PNA-ssODNs) to permanently correct single-point mutations at the genomic level. In this study, we show that PNA-ssODNs can target and correct muscle satellite cells (SCs), a population of stem cells capable of self-renewing and differentiating into muscle fibers. When transplanted into skeletal muscles, SCs transfected with correcting PNA-ssODNs were able to engraft and to restore dystrophin expression. The number of dystrophin-positive fibers was shown to significantly increase over time. Expression was confirmed to be the result of the activation of a subpopulation of SCs that had undergone repair as demonstrated by immunofluorescence analyses of engrafted muscles using antibodies specific to full-length dystrophin transcripts and by genomic DNA analysis of dystrophin-positive fibers. Furthermore, the increase in dystrophin expression detected over time resulted in a significant improvement in muscle morphology. The ability of transplanted cells to return into quiescence and to activate upon demand was confirmed in all engrafted muscles following injury. These results demonstrate the feasibility of using gene editing strategies to target and correct SCs and further establish the therapeutic potential of this approach to permanently restore dystrophin expression into muscle of DMD patients. PMID:24753122

  6. The biochemical and mass spectrometric profiling of the dystrophin complexome from skeletal muscle

    PubMed Central

    Murphy, Sandra; Ohlendieck, Kay

    2015-01-01

    The development of advanced mass spectrometric methodology has decisively enhanced the analytical capabilities for studies into the composition and dynamics of multi-subunit protein complexes and their associated components. Large-scale complexome profiling is an approach that combines the systematic isolation and enrichment of protein assemblies with sophisticated mass spectrometry-based identification methods. In skeletal muscles, the membrane cytoskeletal protein dystrophin of 427 kDa forms tight interactions with a variety of sarcolemmal, cytosolic and extracellular proteins, which in turn associate with key components of the extracellular matrix and the intracellular cytoskeleton. A major function of this enormous assembly of proteins, including dystroglycans, sarcoglycans, syntrophins, dystrobrevins, sarcospan, laminin and cortical actin, is postulated to stabilize muscle fibres during the physical tensions of continuous excitation-contraction-relaxation cycles. This article reviews the evidence from recent proteomic studies that have focused on the characterization of the dystrophin-glycoprotein complex and its central role in the establishment of the cytoskeleton-sarcolemma-matrisome axis. Proteomic findings suggest a close linkage of the core dystrophin complex with a variety of protein species, including tubulin, vimentin, desmin, annexin, proteoglycans and collagens. Since the almost complete absence of dystrophin is the underlying cause for X-linked muscular dystrophy, a more detailed understanding of the composition, structure and plasticity of the dystrophin complexome may have considerable biomedical implications. PMID:26793286

  7. Genomic organization of the mouse dystrobrevin gene: Comparative analysis with the dystrophin gene

    SciTech Connect

    Ambrose, H.J.; Blake, D.J.; Nawrotzki, R.A.; Davies, K.E.

    1997-02-01

    Dystrobrevin, the mammalian orthologue of the Torpedo 87-kDa postsynaptic protein, is a member of the dystrophin gene family with homology to the cysteine-rich carboxy-terminal domain of dystrophin. Torpedo dystrobrevin copurifies with the acetylcholine receptors and is thought to form a complex with dystrophin and syntrophin. This complex is also found at the sarcolemma in vertebrates and defines the cytoplasmic component of the dystrophin-associated protein complex. Previously we have cloned several dystrobrevin isoforms from mouse brain and muscle. Here we show that these transcripts are the products of a single gene located on proximal mouse chromosome 18. To investigate the diversity of dystrobrevin transcripts we have determined that the mouse dystrobrevin gene is organized into 24 coding exons that span between 130 and 170 kb at the genomic level. The gene encodes at least three distinct protein isoforms that are expressed in a tissue-specific manner. Interestingly, although there is only 27% amino acid identity between the homologous regions of dystrobrevin and dystrophin, the positions of 8 of the 15 exon-intron junctions are identical. 47 refs., 4 figs., 2 tabs.

  8. Parental source effect of inherited mutations in the dystrophin gene of mice and men

    SciTech Connect

    Kress, W.; Grimm, T.; Mueller, C.R.; Bittner, R.

    1994-09-01

    Skewed X-inactivation has been suspected the genetic cause for some manifesting female carriers of BMD and DMD. To test whether a parental source effect on the protein expression of the dystrophin gene exists, we have set up backcrosses of mdx mice to wild type strains, enabling us to study the effect of the well-defined origin of the mutation on the dystrophin expression. In skeletal muscle sections the immunohistological staining patterns of dystrophin antibodies were showing a significant difference in the proportion of dystrophin positive versus negative fibers, suggesting a lower expression of paternally inherited mdx mutations. These data are in concordance with the pyruvate kinase (PK) levels in the serum: PK levels were much higher when the mutation was of maternal origin as compared to PK levels in paternally derived mutations. In order to test this {open_quotes}paternal source effect{close_quotes} in humans, we checked obligatory carriers of Becker muscular dystrophy (BMD) for the origin of their mutations. Creatin kinase (CK) levels in 21 carriers with maternally derived mutations were compared to CK values from 8 heterozygotes with mutations of paternal origin: CK (mat) = 140.3 IU/1 versus CK (pat) = 48.6 IU/I. The difference is statistically significant at the 5% level. These observations suggest either a differential X-inactivation or an imprinting of the dystrophin gene in mice and men.

  9. Our trails and trials in the subsarcolemmal cytoskeleton network and muscular dystrophy researches in the dystrophin era.

    PubMed

    Ozawa, Eijiro

    2010-01-01

    In 1987, about 150 years after the discovery of Duchenne muscular dystrophy (DMD), its responsible gene, the dystrophin gene, was cloned by Kunkel. This was a new substance. During these 20 odd years after the cloning, our understanding on dystrophin as a component of the subsarcolemmal cytoskeleton networks and on the pathomechanisms of and experimental therapeutics for DMD has been greatly enhanced. During this paradigm change, I was fortunately able to work as an active researcher on its frontiers for 12 years. After we discovered that dystrophin is located on the cell membrane in 1988, we studied the architecture of dystrophin and dystrophin-associated proteins (DAPs) complex in order to investigate the function of dystrophin and pathomechanism of DMD. During the conduct of these studies, we came to consider that the dystrophin-DAP complex serves to transmembranously connect the subsarcolemmal cytoskeleton networks and basal lamina to protect the lipid bilayer. It then became our working hypothesis that injury of the lipid bilayer upon muscle contraction is the cause of DMD. During this process, we predicted that subunits of the sarcoglycan (SG) complex are responsible for respective types of DMD-like muscular dystrophy with autosomal recessive inheritance. Our prediction was confirmed to be true by many researchers including ourselves. In this review, I will try to explain what we observed and how we considered concerning the architecture and function of the dystrophin-DAP complex, and the pathomechanisms of DMD and related muscular dystrophies. PMID:20948175

  10. Physiological Characterization of Muscle Strength With Variable Levels of Dystrophin Restoration in mdx Mice Following Local Antisense Therapy

    PubMed Central

    Sharp, Paul S; Bye-a-Jee, Hema; Wells, Dominic J

    2011-01-01

    Antisense-induced exon skipping can restore the open reading frame, and thus correct the dystrophin deficiency that causes Duchenne muscular dystrophy (DMD), a lethal muscle wasting condition. Successful proof-of-principle in preclinical models has led to human clinical trials. However, it is still not known what percentage of dystrophin-positive fibers and what level of expression is necessary for functional improvement. This study directly address these key questions in the mdx mouse model of DMD. To achieve a significant variation in dystrophin expression, we locally administered into tibialis anterior muscles various doses of a phosphorodiamidate morpholino oligomer (PMO) designed to skip the mutated exon 23 from the mRNA of murine dystrophin. We found a highly significant correlation between the number of dystrophin-positive fibers and resistance to contraction-induced injury, with a minimum of 20% of dystrophin-positive fibers required for meaningful improvement. Furthermore, our results also indicate that a relatively low level of dystrophin expression in muscle fibers may have significant clinical benefits. In contrast, improvements in muscle force were not correlated with either the number of positive fibers or total dystrophin levels, which highlight the need to conduct appropriate functional assessments in preclinical testing using the mdx mouse. PMID:20924363

  11. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    PubMed

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies. PMID:26159373

  12. Effective Dystrophin Restoration by a Novel Muscle-Homing Peptide–Morpholino Conjugate in Dystrophin-Deficient mdx Mice

    PubMed Central

    Gao, Xianjun; Zhao, Jingwen; Han, Gang; Zhang, Yajie; Dong, Xue; Cao, Limin; Wang, Qingsong; Moulton, Hong M; Yin, HaiFang

    2014-01-01

    Antisense oligonucleotide (AO)–mediated splice correction therapy for Duchenne muscular dystrophy has shown huge promise from recent phase 2b clinical trials, however high doses and costs are required and targeted delivery can lower both of these. We have previously demonstrated the feasibility of targeted delivery of AOs by conjugating a chimeric peptide, consisting of a muscle-specific peptide and a cell-penetrating peptide, to AOs in mdx mice. Although increased uptake in muscle was observed, the majority of peptide–AO conjugate was found in the liver. To search for more effective muscle-homing peptides, we carried out in vitro biopanning in myoblasts and identified a novel 12-mer peptide (M12) showing preferential binding to skeletal muscle compared to the liver. When conjugated to phosphorodiamidate morpholino oligomers, ~25% of normal level of dystrophin expression was achieved in body-wide skeletal muscles in mdx mice with significant recovery in grip strength, whereas <2% in corresponding tissues treated with either muscle-specific peptide–phosphorodiamidate morpholino oligomer or unmodified phosphorodiamidate morpholino oligomer under identical conditions. Our data provide evidences for the first time that a muscle-homing peptide alone can enhance AO delivery to muscle without appreciable toxicity at 75 mg/kg, suggesting M12-phosphorodiamidate morpholino oligomer can be an alternative option to current AOs. PMID:24732757

  13. The sarcoglycan-sarcospan complex localization in mouse retina is independent from dystrophins

    PubMed Central

    Fort, Patrice; Estrada, Francisco-Javier; Bordais, Agnès; Mornet, Dominique; Sahel, José-Alain; Picaud, Serge; Vargas, Haydeé Rosas; Coral-Vázquez, Ramón M.; Rendon, Alvaro

    2005-01-01

    The sarcoglycan–sarcospan (SG–SSPN) complex is part of the dystrophin-glycoprotein complex that has been extensively characterized in muscle. To establish the framework for functional studies of sarcoglycans in retina here, we quantified sarcoglycans mRNA levels with real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and performed immunohistochemistry to determine their cellular and subcellular distribution. We showed that the β-, δ-, γ-, ε-sarcoglycans and sarcospan are expressed in mouse retina. They are localized predominantly in the outer and the inner limiting membranes, probably in the Müller cells and also in the ganglion cells axons where the expression of dystrophins have never been reported. We also investigated the status of the sarcoglycans in the retina of mdx3cv mutant mice for all Duchene Muscular Dystrophy (DMD) gene products. The absence of dystrophin did not produce any change in the sarcoglycan–sarcospan components expression and distribution. PMID:15993965

  14. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy.

    PubMed

    Long, Chengzu; Amoasii, Leonela; Mireault, Alex A; McAnally, John R; Li, Hui; Sanchez-Ortiz, Efrain; Bhattacharyya, Samadrita; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-22

    CRISPR/Cas9-mediated genome editing holds clinical potential for treating genetic diseases, such as Duchenne muscular dystrophy (DMD), which is caused by mutations in the dystrophin gene. To correct DMD by skipping mutant dystrophin exons in postnatal muscle tissue in vivo, we used adeno-associated virus-9 (AAV9) to deliver gene-editing components to postnatal mdx mice, a model of DMD. Different modes of AAV9 delivery were systematically tested, including intraperitoneal at postnatal day 1 (P1), intramuscular at P12, and retro-orbital at P18. Each of these methods restored dystrophin protein expression in cardiac and skeletal muscle to varying degrees, and expression increased from 3 to 12 weeks after injection. Postnatal gene editing also enhanced skeletal muscle function, as measured by grip strength tests 4 weeks after injection. This method provides a potential means of correcting mutations responsible for DMD and other monogenic disorders after birth. PMID:26721683

  15. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  16. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy.

    PubMed Central

    Nguyen, T M; Morris, G E

    1993-01-01

    The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random "libraries" of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25-60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1-41, and we now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes. Images Figure 4 Figure 1 PMID:7684887

  17. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy

    SciTech Connect

    Nguyen thi Man; Morris, G.E. )

    1993-06-01

    The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random [open quotes]libraries[close quotes] of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25--60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1--41, and the authors now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes. 38 refs., 2 figs., 4 tabs.

  18. The dystrophin gene and cognitive function in the general population

    PubMed Central

    Vojinovic, Dina; Adams, Hieab HH; van der Lee, Sven J; Ibrahim-Verbaas, Carla A; Brouwer, Rutger; van den Hout, Mirjam CGN; Oole, Edwin; van Rooij, Jeroen; Uitterlinden, Andre; Hofman, Albert; van IJcken, Wilfred FJ; Aartsma-Rus, Annemieke; van Ommen, GertJan B; Ikram, M Arfan; van Duijn, Cornelia M; Amin, Najaf

    2015-01-01

    The aim of our study is to investigate whether single-nucleotide dystrophin gene (DMD) variants associate with variability in cognitive functions in healthy populations. The study included 1240 participants from the Erasmus Rucphen family (ERF) study and 1464 individuals from the Rotterdam Study (RS). The participants whose exomes were sequenced and who were assessed for various cognitive traits were included in the analysis. To determine the association between DMD variants and cognitive ability, linear (mixed) modeling with adjustment for age, sex and education was used. Moreover, Sequence Kernel Association Test (SKAT) was used to test the overall association of the rare genetic variants present in the DMD with cognitive traits. Although no DMD variant surpassed the prespecified significance threshold (P<1 × 10−4), rs147546024:A>G showed strong association (β=1.786, P-value=2.56 × 10−4) with block-design test in the ERF study, while another variant rs1800273:G>A showed suggestive association (β=−0.465, P-value=0.002) with Mini-Mental State Examination test in the RS. Both variants are highly conserved, although rs147546024:A>G is an intronic variant, whereas rs1800273:G>A is a missense variant in the DMD which has a predicted damaging effect on the protein. Further gene-based analysis of DMD revealed suggestive association (P-values=0.087 and 0.074) with general cognitive ability in both cohorts. In conclusion, both single variant and gene-based analyses suggest the existence of variants in the DMD which may affect cognitive functioning in the general populations. PMID:25227141

  19. An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed.

    PubMed

    Smith, Bruce F; Yue, Yongping; Woods, Philip R; Kornegay, Joe N; Shin, Jin-Hong; Williams, Regina R; Duan, Dongsheng

    2011-02-01

    Duchenne muscular dystrophy (DMD) is a dystrophin-deficient lethal muscle disease. To date, the catastrophic muscle wasting phenotype has only been seen in dystrophin-deficient humans and dogs. Although Duchenne-like symptoms have been observed in more than a dozen dog breeds, the mutation is often not known and research colonies are rarely established. Here, we report an independent canine DMD model originally derived from the Pembroke Welsh corgi breed. The affected dogs presented clinical signs of muscular dystrophy. Immunostaining revealed the absence of dystrophin and upregulation of utrophin. Histopathologic examination showed variable fiber size, central nucleation, calcification, fibrosis, neutrophil and macrophage infiltration and cardiac focal vacuolar degeneration. Carrier dogs also displayed mild myopathy. The mutation was identified as a long interspersed repetitive element-1 (LINE-1) insertion in intron 13, which introduced a new exon containing an in-frame stop codon. Similar mutations have been seen in human patients. A colony was generated by crossing carrier females with normal males. Affected puppies had a normal birth weight but they experienced a striking growth delay in the first 5 days. In summary, the new corgi DMD model offers an excellent opportunity to study DMD pathogenesis and to develop novel therapies. PMID:20714321

  20. Dystrophin and Dysferlin Double Mutant Mice: A Novel Model For Rhabdomyosarcoma

    PubMed Central

    Hosur, Vishnu; Kavirayani, Anoop; Riefler, Jennifer; Carney, Lisa M.B.; Lyons, Bonnie; Gott, Bruce; Cox, Gregory A.; Shultz, Leonard D.

    2012-01-01

    While researchers are yet to establish a link a between muscular dystrophy (MD) and sarcomas in human patients, literature suggests that MD genes dystrophin and dysferlin act as tumor suppressor genes in mouse models of MD. For instance, dystrophin deficient mdx and dysferlin deficient A/J mice, models of human Duchenne Muscular Dystrophy and Limb Girdle Muscular Dystrophy type 2B, respectively, develop mixed sarcomas with variable penetrance and latency. To further establish the correlation between MD and sarcoma development, and to test whether a combined deletion of dystrophin and dysferlin exacerbates MD and augments the incidence of sarcomas, we generated dystrophin and dysferlin double mutant mice (STOCK-Dysfprmd Dmdmdx-5Cv). Not surprisingly, the double mutant mice develop severe MD symptoms and moreover develop rhabdomyosarcoma at an average age of 12 months, with an incidence of > 90%. Histological and immunohistochemical analyses, using a panel of antibodies against skeletal muscle cell proteins, electron microscopy, cytogenetics, and molecular analysis reveal that the double mutant mice develop rhabdomyosarcoma. The present finding bolsters the correlation between MD and sarcomas, and provides a model not only to examine the cellular origins but also to identify mechanisms and signal transduction pathways triggering development of RMS. PMID:22682622

  1. Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies

    PubMed Central

    Rumeur, Elisabeth Le

    2015-01-01

    Mutations of the dystrophin DMD gene, essentially deletions of one or several exons, are the cause of two devastating and to date incurable diseases, Duchenne (DMD) and Becker (BMD) muscular dystrophies. Depending upon the preservation or not of the reading frame, dystrophin is completely absent in DMD, or present in either a mutated or a truncated form in BMD. DMD is a severe disease which leads to a premature death of the patients. Therapy approaches are evolving with the aim to transform the severe DMD in the BMD form of the disease by restoring the expression of a mutated or truncated dystrophin. These therapies are based on the assumption that BMD is a mild disease. However, this is not completely true as BMD patients are more or less severely affected and no molecular basis of this heterogeneity of the BMD form of the disease is yet understood. The aim of this review is to report for the correlation between dystrophin structures in BMD deletions in view of this heterogeneity and to emphasize that examining BMD patients in details is highly relevant to anticipate for DMD therapy effects. PMID:26295289

  2. Sustained Dystrophin Expression Induced by Peptide-conjugated Morpholino Oligomers in the Muscles of mdx Mice

    PubMed Central

    Jearawiriyapaisarn, Natee; Moulton, Hong M; Buckley, Brian; Roberts, Jennifer; Sazani, Peter; Fucharoen, Suthat; Iversen, Patrick L; Kole, Ryszard

    2009-01-01

    Cell-penetrating peptides (CPPs), containing arginine (R), 6-aminohexanoic acid (X), and/or β-alanine (B) conjugated to phosphorodiamidate morpholino oligomers (PMOs), enhance their delivery in cell culture. In this study, the potency, functional biodistribution, and toxicity of these conjugates were evaluated in vivo, in EGFP-654 transgenic mice that ubiquitously express the aberrantly spliced EGFP-654 pre-mRNA reporter. Correct splicing and enhanced green fluorescence protein (EGFP) upregulation serve as a positive readout for peptide-PMO (PPMO) entry into cells and access to EGFP-654 pre-mRNA in the nucleus. Intraperitoneal injections of a series of PPMOs, A-N (12 mg/kg), administered once a day for four successive days resulted in splicing correction in numerous tissues. PPMO-B was highly potent in the heart, diaphragm, and quadriceps, which are key muscles in the treatment of Duchenne muscular dystrophy. We therefore investigated PPMO M23D-B, designed to force skipping of stop-codon containing dystrophin exon 23, in an mdx mouse model of the disease. Systemic delivery of M23D-B yielded persistent exon 23 skipping, yielding high and sustained dystrophin protein expression in body-wide muscles, including cardiac muscle, without detectable toxicity. The rescued dystrophin reduced serum creatinine kinase to near-wild-type levels, indicating improvement in muscle integrity. This is the first report of oligonucleotide-mediated exon skipping and dystrophin protein induction in the heart of treated animals. PMID:18545222

  3. Absence of Glial α-Dystrobrevin Causes Abnormalities of the Blood-Brain Barrier and Progressive Brain Edema*

    PubMed Central

    Lien, Chun Fu; Mohanta, Sarajo Kumar; Frontczak-Baniewicz, Malgorzata; Swinny, Jerome D.; Zablocka, Barbara; Górecki, Dariusz C.

    2012-01-01

    The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction. PMID:23043099

  4. Study about locomotory ability of dystrophin-defected C.elegans after spaceflight

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Sun, Yeqing; Lei, Huang; Xu, Dan

    2012-07-01

    Space microgravity could induce a variety of biological changes such as muscular atrophy. Recent studies show that gravisensing is a key point in muscular atrophy process, but the molecular mechanism is still unknown. Dystrophin, a muscle-related protein, plays an important role in muscle development. It is reported that mutation of human dystrophin gene could cause muscular atrophy. In this study, we focus on whether dystrophin gene acts as a gravisensing factor and observe locomotory ability of dystrophin-defected Caenorhabditis elegans (C.elegans) after spaceflight. We used wild-type (WT) and dystrophin-defected (dys-1) mutant of C.elegans, which were cultured to dauer stage and sent to space by Shenzhou 8 spacecraft (from Nov 1st to 17th, 2011). These worms were divided into three groups: space group (space radiation and microgravity conditions), space control group (space radiation and chmetcnvTCSC0NumberType1NegativeFalseHasSpaceFalseSourceValue1UnitNameg1g centrifuge force conditions) and ground control group.We already observed the progeny (generation F1 and F2) of worms which were sent to space, the movement of C. elegans is restricted to a two-dimensional sinusoidal pattern, and evaluated locomotory ability by the ratio (length/width) in crawl trace wave of C. elegans. The increased value of ratio indicates the decrease in locomotory ability of C. elegans. Our results from generation F1 showed that WT worms in space group(7.7±1.8) demonstrated the significant decrease in locomotory ability about 15%, compared with those in space control group(6.7±1.2). This finding indicates that locomotory ability of C. elegans progeny could be affected by microgravity in space environment. In comparison to the obvious difference in ratio between space group and space control group for WT worms, there is no significant difference between two space groups of generation F2 .For dys-1 mutant of C.elegans (generation F1 and F2), the results show that dystrophin deficiency

  5. Frameshift deletions of exons 3-7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production.

    PubMed Central

    Winnard, A V; Mendell, J R; Prior, T W; Florence, J; Burghes, A H

    1995-01-01

    Duchenne muscular dystrophy (DMD) patients with mutations that disrupt the translational reading frame produce little or no dystrophin. Two exceptions are the deletion of exons 3-7 and the occurrence of rare dystrophin-positive fibers (revertant fibers) in muscle of DMD patients. Antibodies directed against the amino-terminus and the 5' end of exon 8 did not detect dystrophin in muscle from patients who have a deletion of exons 3-7. However, in all cases, dystrophin was detected with an antibody directed against the 3' end of exon 8. The most likely method of dystrophin production in these cases is initiation at a new start codon in exon 8. We also studied two patients who have revertant fibers: one had an inherited duplication of exons 5-7, which, on immunostaining, showed two types of revertant fibers; and the second patient had a 2-bp nonsense mutation in exon 51, which creates a cryptic splice site. An in-frame mRNA that uses this splice site in exon 51 was detected. Immunostaining demonstrated the presence of the 3' end of exon 51, which is in agreement with the use of this mRNA in revertant fibers. The most likely method of dystrophin production in these fibers is a second mutation that restores the reading frame. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7825572

  6. Our trails and trials in the subsarcolemmal cytoskeleton network and muscular dystrophy researches in the dystrophin era

    PubMed Central

    OZAWA, Eijiro

    2010-01-01

    In 1987, about 150 years after the discovery of Duchenne muscular dystrophy (DMD), its responsible gene, the dystrophin gene, was cloned by Kunkel. This was a new substance. During these 20 odd years after the cloning, our understanding on dystrophin as a component of the subsarcolemmal cytoskeleton networks and on the pathomechanisms of and experimental therapeutics for DMD has been greatly enhanced. During this paradigm change, I was fortunately able to work as an active researcher on its frontiers for 12 years. After we discovered that dystrophin is located on the cell membrane in 1988, we studied the architecture of dystrophin and dystrophin-associated proteins (DAPs) complex in order to investigate the function of dystrophin and pathomechanism of DMD. During the conduct of these studies, we came to consider that the dystrophin–DAP complex serves to transmembranously connect the subsarcolemmal cytoskeleton networks and basal lamina to protect the lipid bilayer. It then became our working hypothesis that injury of the lipid bilayer upon muscle contraction is the cause of DMD. During this process, we predicted that subunits of the sarcoglycan (SG) complex are responsible for respective types of DMD-like muscular dystrophy with autosomal recessive inheritance. Our prediction was confirmed to be true by many researchers including ourselves. In this review, I will try to explain what we observed and how we considered concerning the architecture and function of the dystrophin–DAP complex, and the pathomechanisms of DMD and related muscular dystrophies. PMID:20948175

  7. Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting

    PubMed Central

    Swiderski, Kristy; Shaffer, Scott A.; Gallis, Byron; Odom, Guy L.; Arnett, Andrea L.; Scott Edgar, J.; Baum, Dale M.; Chee, Annabel; Naim, Timur; Gregorevic, Paul; Murphy, Kate T.; Moody, James; Goodlett, David R.; Lynch, Gordon S.; Chamberlain, Jeffrey S.

    2014-01-01

    Mutations in dystrophin lead to Duchenne muscular dystrophy, which is among the most common human genetic disorders. Dystrophin nucleates assembly of the dystrophin–glycoprotein complex (DGC), and a defective DGC disrupts an essential link between the intracellular cytoskeleton and the basal lamina, leading to progressive muscle wasting. In vitro studies have suggested that dystrophin phosphorylation may affect interactions with actin or syntrophin, yet whether this occurs in vivo or affects protein function remains unknown. Utilizing nanoflow liquid chromatography mass spectrometry, we identified 18 phosphorylated residues within endogenous dystrophin. Mutagenesis revealed that phosphorylation at S3059 enhances the dystrophin–dystroglycan interaction and 3D modeling utilizing the Rosetta software program provided a structural model for how phosphorylation enhances this interaction. These findings demonstrate that phosphorylation is a key mechanism regulating the interaction between dystrophin and the DGC and reveal that posttranslational modification of a single amino acid directly modulates the function of dystrophin. PMID:25082828

  8. Correction of Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients Through Genomic Excision of Exon 51 by Zinc Finger Nucleases

    PubMed Central

    Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons. PMID:25492562

  9. Relatively low proportion of dystrophin gene deletions in Israeli Duchenne and Becker muscular dystrophy patients.

    PubMed

    Shomrat, R; Gluck, E; Legum, C; Shiloh, Y

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these to exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. PMID:8160727

  10. Finding the sweet spot: Assembly and Glycosylation of the Dystrophin-Associated Glycoprotein Complex

    PubMed Central

    Townsend, DeWayne

    2014-01-01

    The dystrophin-associated glycoprotein complex (DGC) is a collection of glycoproteins that are essential for the normal function of striated muscle and many other tissues. Recent genetic studies have implicated the components of this complex in over a dozen forms of muscular dystrophy. Furthermore, disruption of the DGC has been implicated in many forms of acquired disease. This review aims to summarize the current state of knowledge regarding the processing and assembly of dystrophin associated proteins with a focus primarily on the dystroglycan heterodimer and the sarcoglycan complex. These proteins form the transmembrane portion of the DGC and undergo a complex multi-step processing with proteolytic cleavage, differential assembly, and both N- and O-glycosylation. The enzymes responsible for this processing and a model describing the sequence and subcellular localization of these events are discussed. PMID:25125182

  11. Dystrophin Gene Replacement and Gene Repair Therapy for Duchenne Muscular Dystrophy in 2016: An Interview.

    PubMed

    Duan, Dongsheng

    2016-03-01

    After years of relentless efforts, gene therapy has now begun to deliver its therapeutic promise in several diseases. A number of gene therapy products have received regulatory approval in Europe and Asia. Duchenne muscular dystrophy (DMD) is an X-linked inherited lethal muscle disease. It is caused by mutations in the dystrophin gene. Replacing and/or repairing the mutated dystrophin gene holds great promises to treated DMD at the genetic level. Last several years have evidenced significant developments in preclinical experimentations in murine and canine models of DMD. There has been a strong interest in moving these promising findings to clinical trials. In light of rapid progress in this field, the Parent Project Muscular Dystrophy (PPMD) recently interviewed me on the current status of DMD gene therapy and readiness for clinical trials. Here I summarized the interview with PPMD. PMID:27003751

  12. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    SciTech Connect

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y.

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  13. Restoration of half the normal dystrophin sequence in a double-deletion Duchenne muscular dystrophy family

    SciTech Connect

    Hoop, R.C.; Schwartz, L.S.; Hoffman, E.P.; Russo, L.S.; Riconda, D.L.

    1994-02-01

    Two male cousins with Duchenne muscular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions-one in the 5{prime}, proximal deletional hotspot region, and the other in the 3{prime}, more distal deletional hotspot region. The second propositus showed only the 5{prime} deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, the authors show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier`s dystrophin genes, giving rise to a son with a partially {open_quotes}repaired{close_quotes} gene retaining only the 5{prime} deletion. 20 refs., 4 figs.

  14. Orphan drug development in muscular dystrophy: update on two large clinical trials of dystrophin rescue therapies.

    PubMed

    Hoffman, Eric P; Connor, Edward M

    2013-11-01

    Duchenne muscular dystrophy is a relatively common 'rare disorder,' with an incidence of about 1/5,000 males worldwide. The responsible gene and deficient protein (dystrophin) were identified in 1987, an early success of human molecular genetics and emerging genome projects. A rational approach to therapeutics is to replace dystrophin in patient muscle, thus addressing the primary biochemical defect. Fast forward 25 years, and two phase 2b/3 trials have been carried out with agents designed to induce de novo dystrophin production in DMD patient's muscle; ataluren (stop codon read through) with 174 patients, and drisapersen (exon skipping) with 186 patients. Both used a six minute walk test as the primary outcome measure. Neither drisapersen nor high dose ataluren showed any significant improvement in this outcome, whereas low dose ataluren is reported to show some possible improvement. Experience with ataluren and drisapersen has been disappointing and this is a good time to ask: What can we learn from these programs and how can this inform further drug development in DMD? At the times these two trials were started, there was a lack of existing data and infrastructure regarding both clinical and biochemical outcome measures. The recent publications of more extensive natural history data in multiple DMD cohorts, and ongoing efforts to define reliable and sensitive dystrophin assays are important. If the drisapersen and ataluren programs were instead begun today, new progress in biochemical and clinical endpoints may have triggered a re-design, with better de-risking in phase 2 studies prior to resource-intensive phase 3 trials. PMID:24229740

  15. Ex Vivo Stretch Reveals Altered Mechanical Properties of Isolated Dystrophin-Deficient Hearts

    PubMed Central

    Barnabei, Matthew S.; Metzger, Joseph M.

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV) compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α2 mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD. PMID:22427904

  16. Intellectual Ability in the Duchenne Muscular Dystrophy and Dystrophin Gene Mutation Location

    PubMed Central

    Milic Rasic, V; Vojinovic, D; Pesovic, J; Mijalkovic, G; Lukic, V; Mladenovic, J; Kosac, A; Novakovic, I; Maksimovic, N; Romac, S; Todorovic, S; Savic Pavicevic, D

    2014-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy during childhood. Mutations in dystrophin (DMD) gene are also recognized as a cause of cognitive impairment. We aimed to determine the association between intelligence level and mutation location in DMD genes in Serbian patients with DMD. Forty-one male patients with DMD, aged 3 to 16 years, were recruited at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade, Serbia. All patients had defined DMD gene deletions or duplications [multiplex ligation-dependent probe amplification (MLPA), polymerase chain reaction (PCR)] and cognitive status assessment (Wechsler Intelligence Scale for Children, Brunet-Lezine scale, Vineland-Doll scale). In 37 patients with an estimated full scale intelligence quotient (FSIQ), six (16.22%) had borderline intelligence (70dystrophin isoforms and when mutations in the 5′-untranslated region (5′UTR) of Dp140 (exons 45–50) were assigned to affect only Dp427 and Dp260. Mutations affecting Dp140 and Dp71/Dp40 have been associated with more frequent and more severe cognitive impairment. Finally, the same classification of mutations explained the greater proportion of FSIQ variability associated with cumulative loss of dystrophin isoforms. In conclusion, cumulative loss of dystrophin isoforms increases the risk of intellectual impairment in DMD and characterizing the genotype can define necessity of early cognitive interventions in DMD patients. PMID:25937795

  17. Intellectual ability in the duchenne muscular dystrophy and dystrophin gene mutation location.

    PubMed

    Milic Rasic, V; Vojinovic, D; Pesovic, J; Mijalkovic, G; Lukic, V; Mladenovic, J; Kosac, A; Novakovic, I; Maksimovic, N; Romac, S; Todorovic, S; Savic Pavicevic, D

    2014-12-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy during childhood. Mutations in dystrophin (DMD) gene are also recognized as a cause of cognitive impairment. We aimed to determine the association between intelligence level and mutation location in DMD genes in Serbian patients with DMD. Forty-one male patients with DMD, aged 3 to 16 years, were recruited at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade, Serbia. All patients had defined DMD gene deletions or duplications [multiplex ligation-dependent probe amplification (MLPA), polymerase chain reaction (PCR)] and cognitive status assessment (Wechsler Intelligence Scale for Children, Brunet-Lezine scale, Vineland-Doll scale). In 37 patients with an estimated full scale intelligence quotient (FSIQ), six (16.22%) had borderline intelligence (70dystrophin isoforms and when mutations in the 5'-untranslated region (5'UTR) of Dp140 (exons 45-50) were assigned to affect only Dp427 and Dp260. Mutations affecting Dp140 and Dp71/Dp40 have been associated with more frequent and more severe cognitive impairment. Finally, the same classification of mutations explained the greater proportion of FSIQ variability associated with cumulative loss of dystrophin isoforms. In conclusion, cumulative loss of dystrophin isoforms increases the risk of intellectual impairment in DMD and characterizing the genotype can define necessity of early cognitive interventions in DMD patients. PMID:25937795

  18. CRISPR-mediated Genome Editing Restores Dystrophin Expression and Function in mdx Mice.

    PubMed

    Xu, Li; Park, Ki Ho; Zhao, Lixia; Xu, Jing; El Refaey, Mona; Gao, Yandi; Zhu, Hua; Ma, Jianjie; Han, Renzhi

    2016-03-01

    Duchenne muscular dystrophy (DMD) is a degenerative muscle disease caused by genetic mutations that lead to the disruption of dystrophin in muscle fibers. There is no curative treatment for this devastating disease. Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) has emerged as a powerful tool for genetic manipulation and potential therapy. Here we demonstrate that CRIPSR-mediated genome editing efficiently excised a 23-kb genomic region on the X-chromosome covering the mutant exon 23 in a mouse model of DMD, and restored dystrophin expression and the dystrophin-glycoprotein complex at the sarcolemma of skeletal muscles in live mdx mice. Electroporation-mediated transfection of the Cas9/gRNA constructs in the skeletal muscles of mdx mice normalized the calcium sparks in response to osmotic shock. Adenovirus-mediated transduction of Cas9/gRNA greatly reduced the Evans blue dye uptake of skeletal muscles at rest and after downhill treadmill running. This study provides proof evidence for permanent gene correction in DMD. PMID:26449883

  19. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy

    PubMed Central

    Risson, Valérie; Mazelin, Laetitia; Roceri, Mila; Sanchez, Hervé; Moncollin, Vincent; Corneloup, Claudine; Richard-Bulteau, Hélène; Vignaud, Alban; Baas, Dominique; Defour, Aurélia; Freyssenet, Damien; Tanti, Jean-François; Le-Marchand-Brustel, Yannick; Ferrier, Bernard; Conjard-Duplany, Agnès; Romanino, Klaas; Bauché, Stéphanie; Hantaï, Daniel; Mueller, Matthias; Kozma, Sara C.; Thomas, George; Rüegg, Markus A.; Ferry, Arnaud; Pende, Mario; Bigard, Xavier; Koulmann, Nathalie

    2009-01-01

    Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent. PMID:20008564

  20. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy.

    PubMed

    Robinson-Hamm, Jacqueline N; Gersbach, Charles A

    2016-09-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development. PMID:27542949

  1. Gamma1- and gamma2-syntrophins, two novel dystrophin-binding proteins localized in neuronal cells.

    PubMed

    Piluso, G; Mirabella, M; Ricci, E; Belsito, A; Abbondanza, C; Servidei, S; Puca, A A; Tonali, P; Puca, G A; Nigro, V

    2000-05-26

    Dystrophin is the scaffold of a protein complex, disrupted in inherited muscular dystrophies. At the last 3' terminus of the gene, a protein domain is encoded, where syntrophins are tightly bound. These are a family of cytoplasmic peripheral membrane proteins. Three genes have been described encoding one acidic (alpha1) and two basic (beta1 and beta2) proteins of approximately 57-60 kDa. Here, we describe the characterization of two novel putative members of the syntrophin family, named gamma1- and gamma2-syntrophins. The human gamma1-syntrophin gene is composed of 19 exons and encodes a brain-specific protein of 517 amino acids. The human gamma2-syntrophin gene is composed of at least 17 exons, and its transcript is expressed in brain and, to a lesser degree, in other tissues. We mapped the gamma1-syntrophin gene to human chromosome 8q11 and the gamma2-syntrophin gene to chromosome 2p25. Yeast two-hybrid experiments and pull-down studies showed that both proteins can bind the C-terminal region of dystrophin and related proteins. We raised antibodies against these proteins and recognized expression in both rat and human central neurons, coincident with RNA in situ hybridization of adjacent sections. Our present findings suggest a differentiated role of a modified dystrophin-associated complex in the central nervous system. PMID:10747910

  2. Fate of the human Y chromosome linked genes and loci in prostate cancer cell lines DU145 and LNCaP

    PubMed Central

    2013-01-01

    Background Prostate cancer is a known cause of mortality in men worldwide although the risk factor varies among different ethnic groups. Loss of the Y chromosome is a common chromosomal abnormality observed in the human prostate cancer. Results We screened 51 standard sequence tagged sites (STSs) corresponding to a male-specific region of the Y chromosome (MSY), sequenced the coding region of the SRY gene and assessed the status of the DYZ1 arrays in the human prostate cancer cell lines DU145 and LNCaP. The MSY was found to be intact and coding region of SRY showed no sequence variation in both the cell lines. However, DYZ1 arrays showed sequence and copy number variations. DU145 and LNCaP cells were found to carry 742 and 1945 copies of the DYZ1, respectively per 3.3 pg of genomic DNA. The DYZ1 copies detected in these cell lines are much below the average of that reported in normal human males. Similarly, the number of “TTCCA” repeat and its derivatives within the DYZ1 arrays showed variation compared to those of the normal males. Conclusions Clearly, the DYZ1 is maximally affected in both the cell lines. Work on additional cell lines and biopsied samples would augment our understanding about the susceptibility of this region. Based on the present work, we construe that copy number status of the DYZ1 may be exploited as a supplementary prognostic tool to monitor the occurrence of prostate cancer using biopsied samples. PMID:23663454

  3. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    PubMed Central

    Cação-Benedini, L.O.; Ribeiro, P.G.; Prado, C.M.; Chesca, D.L.; Mattiello-Sverzut, A.C.

    2014-01-01

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres. PMID:24820070

  4. Exon skipping restores dystrophin expression, but fails to prevent disease progression in later stage dystrophic dko mice

    PubMed Central

    Wu, B; Cloer, C; Lu, P; Milazi, S; Shaban, M; Shah, SN; Marston-Poe, L; Moulton, HM; Lu, QL

    2014-01-01

    Antisense therapy with both chemistries of phosphorodiamidate morpholino oligomers (PMOs) and 2′-O-methyl phosphorothioate has demonstrated the capability to induce dystrophin expression in Duchenne muscular dystrophy (DMD) patients in phase II–III clinical trials with benefit in muscle functions. However, potential of the therapy for DMD at different stages of the disease progression is not understood. In this study, we examined the effect of peptide-conjugated PMO (PPMO)-mediated exon skipping on disease progression of utrophin-dystrophin-deficient mice (dko) of four age groups (21–29, 30–39, 40–49 and 50+ days), representing diseases from early stage to advanced stage with severe kyphosis. Biweekly intravenous (i.v.) administration of the PPMO restored the dystrophin expression in nearly 100% skeletal muscle fibers in all age groups. This was associated with the restoration of dystrophin-associated proteins including functional glycosylated dystroglycan and neuronal nitric synthase. However, therapeutic outcomes clearly depended on severity of the disease at the time the treatment started. The PPMO treatment alleviated the disease pathology and significantly prolonged the life span of the mice receiving treatment at younger age with mild phenotype. However, restoration of high levels of dystrophin expression failed to prevent disease progression to the mice receiving treatment when disease was already at advanced stage. The results could be critical for design of clinical trials with antisense therapy to DMD. PMID:24942628

  5. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes.

    PubMed

    Chaussenot, Rémi; Edeline, Jean-Marc; Le Bec, Benoit; El Massioui, Nicole; Laroche, Serge; Vaillend, Cyrille

    2015-10-01

    Duchenne muscular dystrophy (DMD) is associated with language disabilities and deficits in learning and memory, leading to intellectual disability in a patient subpopulation. Recent studies suggest the presence of broader deficits affecting information processing, short-term memory and executive functions. While the absence of the full-length dystrophin (Dp427) is a common feature in all patients, variable mutation profiles may additionally alter distinct dystrophin-gene products encoded by separate promoters. However, the nature of the cognitive dysfunctions specifically associated with the loss of distinct brain dystrophins is unclear. Here we show that the loss of the full-length brain dystrophin in mdx mice does not modify the perception and sensorimotor gating of auditory inputs, as assessed using auditory brainstem recordings and prepulse inhibition of startle reflex. In contrast, both acquisition and long-term retention of cued and trace fear memories were impaired in mdx mice, suggesting alteration in a functional circuit including the amygdala. Spatial learning in the water maze revealed reduced path efficiency, suggesting qualitative alteration in mdx mice learning strategy. However, spatial working memory performance and cognitive flexibility challenged in various behavioral paradigms in water and radial-arm mazes were unimpaired. The full-length brain dystrophin therefore appears to play a role during acquisition of associative learning as well as in general processes involved in memory consolidation, but no overt involvement in working memory and/or executive functions could be demonstrated in spatial learning tasks. PMID:26190833

  6. Systemic administration of micro-dystrophin restores cardiac geometry and prevents dobutamine-induced cardiac pump failure.

    PubMed

    Townsend, DeWayne; Blankinship, Michael J; Allen, James M; Gregorevic, Paul; Chamberlain, Jeffrey S; Metzger, Joseph M

    2007-06-01

    Duchenne muscular dystrophy (DMD) is a fatal disease of striated muscle deterioration resulting from the loss of the cytoskeletal protein dystrophin. Most patients develop significant cardiomyopathy, with heart failure being the second leading cause of death in DMD. Compared with the extensive studies on skeletal muscle defects and potential therapy in DMD, very little attention has been directed at the increasing incidence of heart failure in DMD. Here we show that a single systemic injection of recombinant adeno-associated virus (rAAV2/6) harboring micro-dystrophin leads to extensive cardiac transduction, with micro-dystrophin correctly localized at the periphery of the cardiac myocytes and functionally associated with the sarcolemmal membrane. Significantly, micro-dystrophin gene transfer corrected the baseline end-diastolic volume defect in the mdx mouse heart and prevented cardiac pump failure induced by dobutamine stress testing in vivo, although several parameters of systolic function were not corrected. These results demonstrate that systemic gene delivery of micro-dystrophin can restore ventricular distensibility and protect the mdx myocardium from pump dysfunction during adrenergic stimulation in vivo. PMID:17440445

  7. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy.

    PubMed

    Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A

    2015-01-01

    The CRISPR/Cas9 genome-editing platform is a promising technology to correct the genetic basis of hereditary diseases. The versatility, efficiency and multiplexing capabilities of the CRISPR/Cas9 system enable a variety of otherwise challenging gene correction strategies. Here, we use the CRISPR/Cas9 system to restore the expression of the dystrophin gene in cells carrying dystrophin mutations that cause Duchenne muscular dystrophy (DMD). We design single or multiplexed sgRNAs to restore the dystrophin reading frame by targeting the mutational hotspot at exons 45-55 and introducing shifts within exons or deleting one or more exons. Following gene editing in DMD patient myoblasts, dystrophin expression is restored in vitro. Human dystrophin is also detected in vivo after transplantation of genetically corrected patient cells into immunodeficient mice. Importantly, the unique multiplex gene-editing capabilities of the CRISPR/Cas9 system facilitate the generation of a single large deletion that can correct up to 62% of DMD mutations. PMID:25692716

  8. Multiplex CRISPR/Cas9-Based Genome Editing for Correction of Dystrophin Mutations that Cause Duchenne Muscular Dystrophy

    PubMed Central

    Ousterout, David G.; Kabadi, Ami M.; Thakore, Pratiksha I.; Majoros, William H.; Reddy, Timothy E.; Gersbach, Charles A.

    2015-01-01

    The CRISPR/Cas9 genome editing platform is a promising technology to correct the genetic basis of hereditary diseases. The versatility, efficiency, and multiplexing capabilities of the CRISPR/Cas9 system enable a variety of otherwise challenging gene correction strategies. Here we use the CRISPR/Cas9 system to restore the expression of the dystrophin gene in cells carrying dystrophin mutations that cause Duchenne muscular dystrophy (DMD). We design single or multiplexed sgRNAs to restore the dystrophin reading frame by targeting the mutational hotspot at exons 45–55 and introducing shifts within exons or deleting one or more exons. Following gene editing in DMD patient myoblasts, dystrophin expression is restored in vitro. Human dystrophin is also detected in vivo after transplantation of genetically corrected patient cells into immunodeficient mice. Importantly, the unique multiplex gene editing capabilities of the CRISPR/Cas9 system facilitate the generation of a single large deletion that can correct up to 62% of DMD mutations. PMID:25692716

  9. Characterization of genetic deletions in Becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin

    SciTech Connect

    Thanh, L.T.; Man, Nguyen Thi; Morris, G.E.

    1995-08-28

    We have produced a new panel of 20 monoclonal antibodies (mAbs) against a region of the dystrophin protein corresponding to a deletion-prone region of the Duchenne muscular dystrophy gene (exons 45-50). We show that immunohistochemistry or Western blotting with these {open_quotes}exon-specific{close_quotes} mAbs can provide a valuable addition to Southern blotting or PCR methods for the accurate identification of genetic deletions in Becker muscular dystrophy patients. The antibodies were mapped to the following exons: exon 45 (2 mAbs), exon 46 (6), exon 47 (1), exons 47/48 (4), exons 48-50 (6), and exon 50 (1). PCR amplification of single exons or groups of exons was used both to produce specific dystrophin immunogens and to map the mAbs obtained. PCR-mediated mutagenesis was also used to identify regions of dystrophin important for mAb binding. Because the mAbs can be used to characterize the dystrophin produced by individual muscle fibres, they will also be useful for studying {open_quotes}revertant{close_quotes} fibres in Duchenne muscle and for monitoring the results of myoblast therapy trials in MD patients with deletions in this region of the dystrophin gene. 27 refs., 7 figs., 3 tabs.

  10. Becker Muscular Dystrophy (BMD) caused by duplication of exons 3-6 of the dystrophin gene presenting as dilated cardiomyopathy

    SciTech Connect

    Tsai, A.C.; Allingham-Hawkins, D.J.; Becker, L.

    1994-09-01

    X-linked dilated cardiomyopathy (XLCM) is a progressive myocardial disease presenting with congestive heart failure in teenage males without clinical signs of skeletal myopathy. Tight linkage of XLCM to the DMD locus has been demonstrated; it has been suggested that, at least in some families, XLCM is a {open_quotes}dystrophinopathy.{close_quotes} We report a 14-year-old boy who presented with acute heart failure due to dilated cardiomyopathy. He had no history of muscle weakness, but physical examination revealed pseudohypertrophy of the calf muscles. He subsequently received a heart transplantation. Family history was negative. Serum CK level at the time of diagnosis was 10,416. Myocardial biopsy showed no evidence of carditis. Dystrophin staining of cardiac and skeletal muscle with anti-sera to COOH and NH{sub 2}termini showed a patchy distribution of positivity suggestive of Becker muscular dystrophy. Analysis of 18 of the 79 dystrophin exons detected a duplication that included exons 3-6. The proband`s mother has an elevated serum CK and was confirmed to be a carrier of the same duplication. A mutation in the muscle promotor region of the dystrophin gene has been implicated in the etiology of SLCM. However, Towbin et al. (1991) argued that other 5{prime} mutations in the dystrophin gene could cause selective cardiomyopathy. The findings in our patient support the latter hypothesis. This suggests that there are multiple regions in the dystrophin gene which, when disrupted, can cause isolated dilated cardiomyopathy.

  11. Myofibrillar myopathy with abnormal foci of desmin positivity. II. Immunocytochemical analysis reveals accumulation of multiple other proteins.

    PubMed

    De Bleecker, J L; Engel, A G; Ertl, B B

    1996-05-01

    The two major types of lesions in myofibrillar myopathy consist of hyaline spheroidal structures composed of compacted myofibrillar residues, and nonhyaline lesions that comprise foci of myofibrillar destruction. We employed immunocytochemical analysis to further characterize these abnormalities. The nonhyaline lesions are depleted of actin, alpha-actinin, myosin, and, less consistently, of titin and nebulin. Thus, each major component of the myofibrils is lost or decreased. These lesions also react strongly for both NCAM and desmin. By contrast, the hyaline structures are highly enriched in actin, are immunoreactive for fast and slow myosin, and show increased expression of titin, nebulin, and alpha-actinin. They fail to react for NCAM and react variably for desmin. Both types of lesion react, but with differing intensities, for gelsolin, dystrophin, beta-amyloid precursor protein (beta APP) epitopes amino-terminal to the alpha-secretase site, alpha 1-antichymotrypsin, and ubiquitin, and both can be congophilic. The increased expressions of desmin, dystrophin and gelsolin in muscle are also confirmed by immunoblot studies. The results, in harmony with the ultrastructural findings described in the companion paper, suggest that myofibrillar myopathy is conditioned by abnormal activation of a degradative process that primarily affects the myofibrils. A structural abnormality of desmin alone may not be sufficient to disrupt the myofibrillar architecture, but abnormal activation of a phosphorylating process could account for dissolution of the myofibrils. The cause and significance of the ectopic overexpression of desmin, dystrophin, NCAM, and beta APP components, and the chemical basis of the congophilia remain unknown. PMID:8627347

  12. Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology.

    PubMed

    Timpani, Cara A; Hayes, Alan; Rybalka, Emma

    2015-12-01

    Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency. PMID:26365249

  13. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5' CpG island.

    PubMed Central

    Hansen, R S; Gartler, S M

    1990-01-01

    Hamster-human cell hybrids containing an inactive human X chromosome were treated with 5-azacytidine and derived clones were examined for phosphoglycerate kinase activity and cytosine methylation in the human PGK1 (X chromosome-linked phosphoglycerate kinase) gene. Comparisons between expressing and nonexpressing clones indicated that demethylation of several methylation-sensitive restriction sites outside of the 5' CpG island were unnecessary for expression. High-resolution polyacrylamide gel analysis of 25 Hpa II, Hha I, and Tha I sites revealed that all clones expressing PGK1 were unmethylated in a large region of the CpG island that includes the transcription start site and 400 base pairs upstream. Many nonexpressing clones had discontinuous patterns of demethylation. Remethylation was often observed in subclones of nonexpressing hybrids. These data suggest that a specific zone of methylation-free DNA within the PGK1 promoter is required for transcription. In addition, the presence of neighboring methylcytosines appears to decrease the heritable stability of unmethylated CpGs in this region. Images PMID:1693431

  14. Dystrophin expression following the transplantation of normal muscle precursor cells protects mdx muscle from contraction-induced damage.

    PubMed

    Rousseau, Joel; Dumont, Nicolas; Lebel, Carl; Quenneville, Simon P; Côté, Claude H; Frenette, Jérome; Tremblay, Jacques P

    2010-01-01

    Duchenne muscular dystrophy (DMD) is the most frequent muscular dystrophy. Currently, there is no cure for the disease. The transplantation of muscle precursor cells (MPCs) is one of the possible treatments, because it can restore the expression of dystrophin in DMD muscles. In this study, we investigated the effects of myoblasts injected with cardiotoxin on the contractile properties and resistance to eccentric contractions of transplanted and nontransplanted muscles. We used the extensor digitorum longus (EDL) as a model for our study. We conclude that the sole presence of dystrophin in a high percentage of muscle fibers is not sufficient by itself to increase the absolute or the specific force in the EDL of transplanted mdx muscle. This lack of strength increase may be due to the extensive damage that was produced by the cardiotoxin, which was coinjected with the myoblasts. However, the dystrophin presence is sufficient to protect muscle from eccentric damage as indicated by the force drop results. PMID:20650035

  15. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  16. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  17. Mini- and full-length dystrophin gene transfer induces the recovery of nitric oxide synthase at the sarcolemma of mdx4cv skeletal muscle fibers.

    PubMed

    Decrouy, A; Renaud, J M; Lunde, J A; Dickson, G; Jasmin, B J

    1998-01-01

    In normal skeletal muscle fibers, dystrophin accumulates at the cytoplasmic face of the sarcolemma where it associates with dystrophin-associated proteins (DAPs). Several studies have recently shown that the neuronal isoform of nitric oxide synthase (nNOS) is also located at the sarcolemma, and that this membrane localization is mediated through interactions of nNOS with one of the DAPs, namely alpha 1-syntrophin. Since the lack of dystrophin in muscle fibers from Duchenne muscular dystrophy patients and mdx mice is accompanied by an absence of sarcolemmal nNOS, we examined in the present study, whether dystrophin gene replacement would lead to the restoration of nNOS at its appropriate subcellular location. To this end, tibialis anterior muscles from mdx4cv mice were directly injected with plasmid DNA encoding either full-length (pRSV-dys) or mini-(pRSV-dyB; lacking exons 17-48) dystrophin. For these experiments, we chose to study 10-week-old mdx4cv mice since at this developmental stage, muscles from these mice have already undergone several cycles of degeneration-regeneration. Immunofluorescence experiments performed on serial cross-sections revealed that approximately 50% of the dystrophin-positive fibers also exhibited significant levels of nNOS at their sarcolemma 2 weeks following gene transfer with pRSV-dys. Similar results were obtained with pRSV-dyB indicating that exons 17-48 of the dystrophin gene are not essential for the correct localization of nNOS in skeletal muscle fibers. Taken together with the recent demonstration that dystrophin gene transfer leads to significant physiological benefits our results suggest that dystrophin gene therapy using full-length or truncated dystrophin, also induces a rapid recovery of biochemical functions. PMID:9536265

  18. A Sensitive, Reproducible and Objective Immunofluorescence Analysis Method of Dystrophin in Individual Fibers in Samples from Patients with Duchenne Muscular Dystrophy

    PubMed Central

    Beekman, Chantal; Sipkens, Jessica A.; Testerink, Janwillem; Giannakopoulos, Stavros; Kreuger, Dyonne; van Deutekom, Judith C.; Campion, Giles V.; de Kimpe, Sjef J.; Lourbakos, Afrodite

    2014-01-01

    Duchenne muscular dystrophy (DMD) is characterized by the absence or reduced levels of dystrophin expression on the inner surface of the sarcolemmal membrane of muscle fibers. Clinical development of therapeutic approaches aiming to increase dystrophin levels requires sensitive and reproducible measurement of differences in dystrophin expression in muscle biopsies of treated patients with DMD. This, however, poses a technical challenge due to intra- and inter-donor variance in the occurrence of revertant fibers and low trace dystrophin expression throughout the biopsies. We have developed an immunofluorescence and semi-automated image analysis method that measures the sarcolemmal dystrophin intensity per individual fiber for the entire fiber population in a muscle biopsy. Cross-sections of muscle co-stained for dystrophin and spectrin have been imaged by confocal microscopy, and image analysis was performed using Definiens software. Dystrophin intensity has been measured in the sarcolemmal mask of spectrin for each individual muscle fiber and multiple membrane intensity parameters (mean, maximum, quantiles per fiber) were calculated. A histogram can depict the distribution of dystrophin intensities for the fiber population in the biopsy. This method was tested by measuring dystrophin in DMD, Becker muscular dystrophy, and healthy muscle samples. Analysis of duplicate or quadruplicate sections of DMD biopsies on the same or multiple days, by different operators, or using different antibodies, was shown to be objective and reproducible (inter-assay precision, CV 2–17% and intra-assay precision, CV 2–10%). Moreover, the method was sufficiently sensitive to detect consistently small differences in dystrophin between two biopsies from a patient with DMD before and after treatment with an investigational compound. PMID:25244123

  19. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies

    PubMed Central

    Toh, Zhi Yon Charles; Thandar Aung-Htut, May; Pinniger, Gavin; Adams, Abbie M.; Krishnaswarmy, Sudarsan; Wong, Brenda L.; Fletcher, Sue; Wilton, Steve D.

    2016-01-01

    Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes. PMID:26745801

  20. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies.

    PubMed

    Toh, Zhi Yon Charles; Thandar Aung-Htut, May; Pinniger, Gavin; Adams, Abbie M; Krishnaswarmy, Sudarsan; Wong, Brenda L; Fletcher, Sue; Wilton, Steve D

    2016-01-01

    Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes. PMID:26745801

  1. Screening of point mutations by multiple SSCP analysis in the dystrophin gene

    SciTech Connect

    Lasa, A.; Baiget, M.; Gallano, P.

    1994-09-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder. The population frequency of DMD is one in approximately 3500 boys, of which one third is thought to be a new mutant. The DMD gene is the largest known to date, spanning over 2,3 Mb in band Xp21.2; 79 exons are transcribed into a 14 Kb mRNA coding for a protein of 427 kD which has been named dystrophin. It has been shown that about 65% of affected boys have a gene deletion with a wide variation in localization and size. The remaining affected individuals who have no detectable deletions or duplications would probably carry more subtle mutations that are difficult to detect. These mutations occur in several different exons and seem to be unique to single patients. Their identification represents a formidable goal because of the large size and complexity of the dystrophin gene. SSCP is a very efficient method for the detection of point mutations if the parameters that affect the separation of the strands are optimized for a particular DNA fragment. The multiple SSCP allows the simultaneous study of several exons, and implies the use of different conditions because no single set of conditions will be optimal for all fragments. Seventy-eight DMD patients with no deletion or duplication in the dystrophin gene were selected for the multiple SSCP analysis. Genomic DNA from these patients was amplified using the primers described for the diagnosis procedure (muscle promoter and exons 3, 8, 12, 16, 17, 19, 32, 45, 48 and 51). We have observed different mobility shifts in bands corresponding to exons 8, 12, 43 and 51. In exons 17 and 45, altered electrophoretic patterns were found in different samples identifying polymorphisms already described.

  2. Abnormal coagulation factor VIII transcript in a Tennessee Walking Horse colt with hemophilia A.

    PubMed

    Norton, Elaine M; Wooldridge, Anne A; Stewart, Allison J; Cusimano, Layla; Schwartz, Dean D; Johnson, Calvin M; Boudreaux, Mary K; Christopherson, Pete W

    2016-03-01

    Hemophilia A is an X-chromosome-linked disorder caused by a deficiency in factor VIII (FVIII). Although foals have been diagnosed with hemophilia A based on deficiency in FVIII activity, causative gene mutations have not been identified. The genomic DNA and cDNA encoding FVIII of a Tennesee Walking Horse colt affected with hemophilia A and the genomic DNA of his dam and a normal unrelated horse were analyzed with no splice site or coding sequence abnormalities identified in any of the horses. Polymerase chain reactions (PCR) were then performed on hepatic cDNA from the affected colt and an unrelated normal horse, and no product was obtained for the sequence between and including exon 1 and exon 2 in the affected colt. Based on these results, suspected mutations were identified in the noncoding region of FVIII (intron 1), and genomic sequencing of intron 1 in the dam and the affected colt suggested maternal inheritance. PMID:26765501

  3. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    PubMed

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  4. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

    PubMed Central

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S.; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  5. Cardiac expression of a mini-dystrophin that normalizes skeletal muscle force only partially restores heart function in aged Mdx mice.

    PubMed

    Bostick, Brian; Yue, Yongping; Long, Chun; Marschalk, Nate; Fine, Deborah M; Chen, Jing; Duan, Dongsheng

    2009-02-01

    Duchenne muscular dystrophy (DMD) affects both skeletal and cardiac muscle. It is currently unclear whether the strategies developed for skeletal muscle can ameliorate cardiomyopathy. Synthetic mini-/micro-dystrophin genes have yielded impressive skeletal muscle protection in animal models. The 6-kb DeltaH2-R19 minigene is particularly promising because it completely restores skeletal muscle force to wild-type levels. Here, we examined whether expressing this minigene in the heart, but not skeletal muscle, could normalize cardiac function in the mdx model of DMD cardiomyopathy. Transgenic mdx mice were generated to express the DeltaH2-R19 minigene under the control of the alpha-myosin heavy-chain promoter. Heart structure and function were examined in adult and very old mice. The DeltaH2-R19 minigene enhanced cardiomyocyte sarcolemmal strength and prevented myocardial fibrosis. It also restored the dobutamine response and enhanced treadmill performance. Surprisingly, heart-restricted DeltaH2-R19 minigene expression did not completely normalize electrocardiogram and hemodynamic abnormalities. Overall, systolic function and ejection fraction were restored to normal levels but stroke volume and cardiac output remained suboptimal. Our results demonstrate that the skeletal muscle-proven DeltaH2-R19 minigene can correct cardiac histopathology but cannot fully normalize heart function. Novel strategies must be developed to completely restore heart function in DMD. PMID:19066599

  6. Complex genomic rearrangements in the dystrophin gene due to replication-based mechanisms

    PubMed Central

    Baskin, Berivan; Stavropoulos, Dimitri J; Rebeiro, Paige A; Orr, Jennifer; Li, Martin; Steele, Leslie; Marshall, Christian R; Lemire, Edmond G; Boycott, Kym M; Gibson, William; Ray, Peter N

    2014-01-01

    Genomic rearrangements such as intragenic deletions and duplications are the most prevalent type of mutations in the dystrophin gene resulting in Duchenne and Becker muscular dystrophy (D/BMD). These copy number variations (CNVs) are nonrecurrent and can result from either nonhomologous end joining (NHEJ) or microhomology-mediated replication-dependent recombination (MMRDR). We characterized five DMD patients with complex genomic rearrangements using a combination of MLPA/mRNA transcript analysis/custom array comparative hybridization arrays (CGH) and breakpoint sequence analysis to investigate the mechanisms for these rearrangements. Two patients had complex rearrangements that involved microhomologies at breakpoints. One patient had a noncontiguous insertion of 89.7 kb chromosome 4 into intron 43 of DMD involving three breakpoints with 2–5 bp microhomology at the junctions. A second patient had an inversion of exon 44 flanked by intronic deletions with two breakpoint junctions each showing 2 bp microhomology. The third patient was a female with an inherited deletion of exon 47 in DMD on the maternal allele and a de novo noncontiguous duplication of exons 45–49 in DMD and MID1 on the paternal allele. The other two patients harbored complex noncontiguous duplications within the dystrophin gene. We propose a replication-based mechanisms for all five complex DMD rearrangements. This study identifies additional underlying mechanisms in DMD, and provides insight into the molecular bases of these genomic rearrangements. PMID:25614876

  7. Dystrophin-deficient large animal models: translational research and exon skipping

    PubMed Central

    Yu, Xinran; Bao, Bo; Echigoya, Yusuke; Yokota, Toshifumi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder caused by mutations in the dystrophin gene. Affecting approximately 1 in 3,600-9337 boys, DMD patients exhibit progressive muscle degeneration leading to fatality as a result of heart or respiratory failure. Despite the severity and prevalence of the disease, there is no cure available. While murine models have been successfully used in illustrating the mechanisms of DMD, their utility in DMD research is limited due to their mild disease phenotypes such as lack of severe skeletal muscle and cardiac symptoms. To address the discrepancy between the severity of disease displayed by murine models and human DMD patients, dystrophin-deficient dog models with a splice site mutation in intron 6 were established. Examples of these are Golden Retriever muscular dystrophy and beagle-based Canine X-linked muscular dystrophy. These large animal models are widely employed in therapeutic DMD research due to their close resemblance to the severity of human patient symptoms. Recently, genetically tailored porcine models of DMD with deleted exon 52 were developed by our group and others, and can potentially act as a new large animal model. While therapeutic outcomes derived from these large animal models can be more reliably extrapolated to DMD patients, a comprehensive understanding of these models is still needed. This paper will discuss recent progress and future directions of DMD studies with large animal models such as canine and porcine models. PMID:26396664

  8. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts

    PubMed Central

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  9. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains

    PubMed Central

    Nichols, Bailey; Takeda, Shin’ichi; Yokota, Toshifumi

    2015-01-01

    Dystrophin-glycoprotein complex (DGC) is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin) of a muscle fiber to the extracellular matrix (ECM). Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies), and limb-girdle muscular dystrophies (sarcoglycanopathies), are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS), which is localized at the muscle membrane by DGC members (dystrophin and syntrophins), plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ) and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain. PMID:26230713

  10. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts.

    PubMed

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K

    2016-01-29

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  11. Losartan decreases cardiac muscle fibrosis and improves cardiac function in dystrophin-deficient mdx mice.

    PubMed

    Spurney, Christopher F; Sali, Arpana; Guerron, Alfredo D; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P; Nagaraju, Kanneboyina

    2011-03-01

    Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmd(mdx)/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057

  12. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    PubMed

    Sakai, Hiroshi; Sato, Takahiko; Sakurai, Hidetoshi; Yamamoto, Takuya; Hanaoka, Kazunori; Montarras, Didier; Sehara-Fujisawa, Atsuko

    2013-01-01

    Muscle satellite cells (SCs) are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs) isolated from Pax3(GFP/+) embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+) mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease. PMID:23671652

  13. Fetal Skeletal Muscle Progenitors Have Regenerative Capacity after Intramuscular Engraftment in Dystrophin Deficient Mice

    PubMed Central

    Sakai, Hiroshi; Sato, Takahiko; Sakurai, Hidetoshi; Yamamoto, Takuya; Hanaoka, Kazunori; Montarras, Didier; Sehara-Fujisawa, Atsuko

    2013-01-01

    Muscle satellite cells (SCs) are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs) isolated from Pax3GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease. PMID:23671652

  14. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle.

    PubMed

    Brolin, Camilla; Shiraishi, Takehiko; Hojman, Pernille; Krag, Thomas O; Nielsen, Peter E; Gehl, Julie

    2015-01-01

    Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m.) PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA) muscle of normal NMRI and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA), electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find that electroporation can enhance PNA antisense effects in muscle tissue. PMID:26623939

  15. mRNA and microRNA transcriptomics analyses in a murine model of dystrophin loss and therapeutic restoration

    PubMed Central

    Roberts, Thomas C.; Blomberg, K. Emelie M.; Smith, C.I. Edvard; EL Andaloussi, Samir; Wood, Matthew J.A.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a pediatric, X-linked, progressive muscle-wasting disorder caused by loss of function mutations affecting the gene encoding the dystrophin protein. While the primary genetic insult in DMD is well described, many details of the molecular and cellular pathologies that follow dystrophin loss are incompletely understood. To investigate gene expression in dystrophic muscle we have applied mRNA and microRNA (miRNA) microarray technology to the mdx mouse model of DMD. This study was designed to generate a complete description of gene expression changes associated with dystrophic pathology and the response to an experimental therapy which restores dystrophin protein function. These datasets have enabled (1) the determination of gene expression changes associated with dystrophic pathology, (2) identification of differentially expressed genes that are restored towards wild-type levels after therapeutic dystrophin rescue, (3) investigation of the correlation between mRNA and protein expression (determined by parallel mass spectrometry proteomics analysis), and (4) prediction of pathology associated miRNA-target interactions. Here we describe in detail how the data were generated including the basic analysis as contained in the manuscript published in Human Molecular Genetics with PMID 26385637. The data have been deposited in the Gene Expression Omnibus (GEO) with the accession number GSE64420. PMID:26981371

  16. mRNA and microRNA transcriptomics analyses in a murine model of dystrophin loss and therapeutic restoration.

    PubMed

    Roberts, Thomas C; Blomberg, K Emelie M; Smith, C I Edvard; El Andaloussi, Samir; Wood, Matthew J A

    2016-03-01

    Duchenne muscular dystrophy (DMD) is a pediatric, X-linked, progressive muscle-wasting disorder caused by loss of function mutations affecting the gene encoding the dystrophin protein. While the primary genetic insult in DMD is well described, many details of the molecular and cellular pathologies that follow dystrophin loss are incompletely understood. To investigate gene expression in dystrophic muscle we have applied mRNA and microRNA (miRNA) microarray technology to the mdx mouse model of DMD. This study was designed to generate a complete description of gene expression changes associated with dystrophic pathology and the response to an experimental therapy which restores dystrophin protein function. These datasets have enabled (1) the determination of gene expression changes associated with dystrophic pathology, (2) identification of differentially expressed genes that are restored towards wild-type levels after therapeutic dystrophin rescue, (3) investigation of the correlation between mRNA and protein expression (determined by parallel mass spectrometry proteomics analysis), and (4) prediction of pathology associated miRNA-target interactions. Here we describe in detail how the data were generated including the basic analysis as contained in the manuscript published in Human Molecular Genetics with PMID 26385637. The data have been deposited in the Gene Expression Omnibus (GEO) with the accession number GSE64420. PMID:26981371

  17. Adhalin, the 50 kD dystrophin associated protein, is not the locus for severe childhood autosomal recessive dystrophy (SCARMD)

    SciTech Connect

    McNally, E.M.; Selig, S.; Kunkel, L.M.

    1994-09-01

    Mutations in the carboxyl-terminus in dystrophin are normally sufficient to produce severely dystrophic muscle. This portion of dystrophin binds a complex of dystrophin-associated glycoproteins (DAGs). The genes encoding these DAGs are candidate genes for causing neuromuscular disease. Immunoreactivity for adhalin, the 50 kD DAG, is absent in muscle biopsies from patients with SCARMD, a form of dystrophy clinically similar Duchenne muscular dystrophy. Prior linkage analysis in SCARMD families revealed that the disease gene segregates with markers on chromosome 13. To determine the molecular role that adhalin may play in SCARMD, human cDNA and genomic sequences were isolated. Primers were designed based on predicted areas of conservation in rabbit adhalin and used in RT-PCR with human skeletal and cardiac muscle. RT-PCR products were confirmed by sequence as human adhalin and then used as probes for screening human cDNA and genomic libraries. Human and rabbit adhalin are 90% identical, and among the cDNAs, a novel splice form of adhalin was seen which may encode part of the 35 kD component of the dystrophin-glycoprotein complex. To our surprise, only human/rodent hybrids containing human chromosome 17 amplified adhalin sequences in a PCR analysis. FISH analysis with three overlapping genomic sequences confirmed the chromosome 17 location and further delineated the map position to 17q21. Therefore, adhalin is excluded as the gene causing SCARMD.

  18. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice.

    PubMed

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-08-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD. PMID:25959011

  19. Combination antisense treatment for destructive exon skipping of myostatin and open reading frame rescue of dystrophin in neonatal mdx mice

    PubMed Central

    Lu-Nguyen, Ngoc B.; Jarmin, Susan A.; Saleh, Amer F.; Popplewell, Linda; Gait, Michael J.; Dickson, George

    2015-01-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD. PMID:25959011

  20. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  1. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... from many different conditions. Specific diseases can affect tooth shape, tooth color, time of appearance, or absence ...

  2. Bortezomib (PS-341) Treatment Decreases Inflammation and Partially Rescues the Expression of the Dystrophin-Glycoprotein Complex in GRMD Dogs

    PubMed Central

    Araujo, Karla P. C.; Bonuccelli, Gloria; Duarte, Caio N.; Gaiad, Thais P.; Moreira, Dayson F.; Feder, David; Belizario, José E.; Miglino, Maria A.; Lisanti, Michael P.; Ambrosio, Carlos E.

    2013-01-01

    Golden retriever muscular dystrophy (GRMD) is a genetic myopathy corresponding to Duchenne muscular dystrophy (DMD) in humans. Muscle atrophy is known to be associated with degradation of the dystrophin-glycoprotein complex (DGC) via the ubiquitin-proteasome pathway. In the present study, we investigated the effect of bortezomib treatment on the muscle fibers of GRMD dogs. Five GRMD dogs were examined; two were treated (TD- Treated dogs) with the proteasome inhibitor bortezomib, and three were control dogs (CD). Dogs were treated with bortezomib using the same treatment regimen used for multiple myeloma. Pharmacodynamics were evaluated by measuring the inhibition of 20S proteasome activity in whole blood after treatment and comparing it to that in CD. We performed immunohistochemical studies on muscle biopsy specimens to evaluate the rescue of dystrophin and dystrophin-associated proteins in the muscles of GRMD dogs treated with bortezomib. Skeletal tissue from TD had lower levels of connective tissue deposition and inflammatory cell infiltration than CD as determined by histology, collagen morphometry and ultrastructural analysis. The CD showed higher expression of phospho-NFκB and TGF-β1, suggesting a more pronounced activation of anti-apoptotic factors and inflammatory molecules and greater connective tissue deposition, respectively. Immunohistochemical analysis demonstrated that dystrophin was not present in the sarcoplasmic membrane of either group. However, bortezomib-TD showed higher expression of α- and β-dystroglycan, indicating an improved disease histopathology phenotype. Significant inhibition of 20S proteasome activity was observed 1 hour after bortezomib administration in the last cycle when the dose was higher. Proteasome inhibitors may thus improve the appearance of GRMD muscle fibers, lessen connective tissue deposition and reduce the infiltration of inflammatory cells. In addition, proteasome inhibitors may rescue some dystrophin

  3. Phase 2a Study of Ataluren-Mediated Dystrophin Production in Patients with Nonsense Mutation Duchenne Muscular Dystrophy

    PubMed Central

    Finkel, Richard S.; Flanigan, Kevin M.; Wong, Brenda; Bönnemann, Carsten; Sampson, Jacinda; Sweeney, H. Lee; Reha, Allen; Northcutt, Valerie J.; Elfring, Gary; Barth, Jay; Peltz, Stuart W.

    2013-01-01

    Background Approximately 13% of boys with Duchenne muscular dystrophy (DMD) have a nonsense mutation in the dystrophin gene, resulting in a premature stop codon in the corresponding mRNA and failure to generate a functional protein. Ataluren (PTC124) enables ribosomal readthrough of premature stop codons, leading to production of full-length, functional proteins. Methods This Phase 2a open-label, sequential dose-ranging trial recruited 38 boys with nonsense mutation DMD. The first cohort (n = 6) received ataluren three times per day at morning, midday, and evening doses of 4, 4, and 8 mg/kg; the second cohort (n = 20) was dosed at 10, 10, 20 mg/kg; and the third cohort (n = 12) was dosed at 20, 20, 40 mg/kg. Treatment duration was 28 days. Change in full-length dystrophin expression, as assessed by immunostaining in pre- and post-treatment muscle biopsy specimens, was the primary endpoint. Findings Twenty three of 38 (61%) subjects demonstrated increases in post-treatment dystrophin expression in a quantitative analysis assessing the ratio of dystrophin/spectrin. A qualitative analysis also showed positive changes in dystrophin expression. Expression was not associated with nonsense mutation type or exon location. Ataluren trough plasma concentrations active in the mdx mouse model were consistently achieved at the mid- and high- dose levels in participants. Ataluren was generally well tolerated. Interpretation Ataluren showed activity and safety in this short-term study, supporting evaluation of ataluren 10, 10, 20 mg/kg and 20, 20, 40 mg/kg in a Phase 2b, double-blind, long-term study in nonsense mutation DMD. Trial Registration ClinicalTrials.gov NCT00264888 PMID:24349052

  4. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  5. Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix

    SciTech Connect

    Rodriguez-Munoz, Rafael; Villarreal-Silva, Marcela; Gonzalez-Ramirez, Ricardo; Garcia-Sierra, Francisco; Mondragon, Monica; Mondragon, Ricardo; Cerna, Joel; Cisneros, Bulmaro

    2008-10-24

    The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrix observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.

  6. [Dystrophin gene expression in patients with Duchenne muscular dystrophy after myoblast transplantation].

    PubMed

    Shishkin, S S; Terekhov, S M; Krokhina, T B; Shakhovskaia, N I; Podobedova, A N; Linnaia, G F; Tarasov, V I; Ovchinnikov, V I; Krakhmaleva, I N; Zakharov, S F; Ershova, E S; Limborskaia, S A; Pogoda, T V; Zotikov, E A; Kut'ina, R M; Tarksh, M A; Sukhorukov, V S; Gerasimova, N L

    2001-08-01

    Based on originally designed technique of myoblast cultivation and in accordance with the approved by the Russian Ministry of Health "one muscle treatment" protocol of myoblast transplantation to the Duchenne muscular dystrophy patients, the first in Russia clinical trial of this gene correction method was carried out. Immonologically related myoblast cultures (30 to 90 million cells per patient) were injected after all preliminary procedures into tibialis anterior muscles of four boys selected from a group of volunteer recipients (Duchenne muscular dystrophy patients) based on the analysis of a number of surface antigens in donor-recipient pairs. The condition of the patients remained satisfactory during the whole period of post-transplantation follow-up (from 6 months to 1.5 years). Six months after myoblast transplantation the presence of donor DNA or dystrophin synthesis was demonstrated in muscle biopsies of three out of four patients. This result confirms efficacy and safety of the procedure used. PMID:11642111

  7. Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice.

    PubMed

    Han, Gang; Gu, Ben; Cao, Limin; Gao, Xianjun; Wang, Qingsong; Seow, Yiqi; Zhang, Ning; Wood, Matthew J A; Yin, HaiFang

    2016-01-01

    Carbohydrate-based infusion solutions are widely used in the clinic. Here we show that co-administration of phosphorodiamidate morpholino oligomers (PMOs) with glucose enhances exon-skipping activity in Duchenne muscular dystrophy (DMD) mdx mice. We identify a glucose-fructose (GF) formulation that potentiates PMO activity, completely corrects aberrant Dmd transcripts, restores dystrophin levels in skeletal muscles and achieves functional rescue without detectable toxicity. This activity is attributed to enhancement of GF-mediated PMO uptake in the muscle. We demonstrate that PMO cellular uptake is energy dependent, and that ATP from GF metabolism contributes to enhanced cellular uptake of PMO in the muscle. Collectively, we show that GF potentiates PMO activity by replenishing cellular energy stores under energy-deficient conditions in mdx mice. Our findings provide mechanistic insight into hexose-mediated oligonucleotide delivery and have important implications for the development of DMD exon-skipping therapy. PMID:26964641

  8. Restriction Factors Against Recombinant Adeno-associated Virus Vectormediated Gene Transfer in Dystrophin-deficient Muscles.

    PubMed

    Dupont, Jean-Baptiste

    2016-01-01

    Despite the unprecedented beneficial effects of rAAV gene therapy in animal models of Duchenne muscular dystrophy (DMD), the need to inject large amounts of vector in vivo to improve phenotype raises obvious biosafety concerns. While rAAV vectors generally exhibit a good safety profile, specific pathological phenotypes such as those observed in dystrophin-deficient muscles may promote immunotoxic/genotoxic effects. Increasing the therapeutic index of rAAV in DMD muscles by reducing the effective dose could be a pivotal means of ensuring efficient clinical translation. This requires a comprehensive understanding of the rAAV transduction process, which is almost always studied in non-pathological tissues or in vitro. In this review, we focus on the molecular fate of rAAV after injection, and how the individual stages of transduction could be affected in the context of DMD. PMID:27121109

  9. Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice

    PubMed Central

    Han, Gang; Gu, Ben; Cao, Limin; Gao, Xianjun; Wang, Qingsong; Seow, Yiqi; Zhang, Ning; Wood, Matthew J. A.; Yin, HaiFang

    2016-01-01

    Carbohydrate-based infusion solutions are widely used in the clinic. Here we show that co-administration of phosphorodiamidate morpholino oligomers (PMOs) with glucose enhances exon-skipping activity in Duchenne muscular dystrophy (DMD) mdx mice. We identify a glucose–fructose (GF) formulation that potentiates PMO activity, completely corrects aberrant Dmd transcripts, restores dystrophin levels in skeletal muscles and achieves functional rescue without detectable toxicity. This activity is attributed to enhancement of GF-mediated PMO uptake in the muscle. We demonstrate that PMO cellular uptake is energy dependent, and that ATP from GF metabolism contributes to enhanced cellular uptake of PMO in the muscle. Collectively, we show that GF potentiates PMO activity by replenishing cellular energy stores under energy-deficient conditions in mdx mice. Our findings provide mechanistic insight into hexose-mediated oligonucleotide delivery and have important implications for the development of DMD exon-skipping therapy. PMID:26964641

  10. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    SciTech Connect

    Fujimoto, Takahiro; Itoh, Kyoko Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  11. Pathways of abnormal stress-induced Ca2+ influx into dystrophic mdx cardiomyocytes

    PubMed Central

    Fanchaouy, M.; Polakova, E.; Jung, C.; Ogrodnik, J.; Shirokova, N.; Niggli, E.

    2009-01-01

    In Duchenne muscular dystrophy, deficiency of the cytoskeletal protein dystrophin leads to well-described defects in skeletal muscle, but also to dilated cardiomyopathy, accounting for about 20% of the mortality. Mechanisms leading to cardiomyocyte cell death and cardiomyopathy are not well understood. One hypothesis suggests that the lack of dystrophin leads to membrane instability during mechanical stress and to activation of Ca2+ entry pathways. Using cardiomyocytes isolated from dystrophic mdx mice we dissected the contribution of various putative Ca2+ influx pathways with pharmacological tools. Cytosolic Ca2+ and Na+ signals as well as uptake of membrane impermeant compounds were monitored with fluorescent indicators using confocal microscopy and photometry. Membrane stress was applied as moderate osmotic challenges while membrane current was quantified using the whole-cell patch-clamp technique. Our findings suggest a major contribution of two primary Ca2+ influx pathways, stretch-activated membrane channels and short-lived microruptures. Furthermore, we found evidence for a secondary Ca2+ influx pathway, the Na+-Ca2+ exchange (NCX), which in cardiac muscle has a large transport capacity. After stress it contributes to Ca2+ entry in exchange for Na+ which had previously entered via primary stress-induced pathways, representing a previously not recognized mechanism contributing to subsequent cellular damage. This complexity needs to be considered when targeting abnormal Ca2+ influx as a treatment option for dystrophy. PMID:19604578

  12. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  13. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  14. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  15. Chromosomal Abnormalities and Schizophrenia

    PubMed Central

    BASSETT, ANNE S.; CHOW, EVA W.C.; WEKSBERG, ROSANNA

    2011-01-01

    Schizophrenia is a common and serious psychiatric illness with strong evidence for genetic causation, but no specific loci yet identified. Chromosomal abnormalities associated with schizophrenia may help to understand the genetic complexity of the illness. This paper reviews the evidence for associations between chromosomal abnormalities and schizophrenia and related disorders. The results indicate that 22q11.2 microdeletions detected by fluorescence in-situ hybridization (FISH) are significantly associated with schizophrenia. Sex chromosome abnormalities seem to be increased in schizophrenia but insufficient data are available to indicate whether schizophrenia or related disorders are increased in patients with sex chromosome aneuploidies. Other reports of chromosomal abnormalities associated with schizophrenia have the potential to be important adjuncts to linkage studies in gene localization. Advances in molecular cytogenetic techniques (i.e., FISH) have produced significant increases in rates of identified abnormalities in schizophrenia, particularly in patients with very early age at onset, learning difficulties or mental retardation, or dysmorphic features. The results emphasize the importance of considering behavioral phenotypes, including adult onset psychiatric illnesses, in genetic syndromes and the need for clinicians to actively consider identifying chromosomal abnormalities and genetic syndromes in selected psychiatric patients. PMID:10813803

  16. A PCR-based assay for the wild-type dystrophin gene transferred into the mdx mouse.

    PubMed

    Shrager, J B; Naji, A; Kelly, A M; Stedman, H H

    1992-10-01

    Myoblast transfer has emerged as a promising treatment for inherited myopathies such as Duchenne muscular dystrophy (DMD). Further development of the technique's therapeutic potential requires an experimental system in which issues of graft rejection can be clearly discriminated from those related to myoblast biology. Here we report the development and initial application of a quantitative assay for myogenic cells bearing a wild-type dystrophin gene following transfer into the mdx mouse. The technique relies upon the ability of a mutagenizing polymerase chain reaction (PCR) primer to create a new restriction site in the amplification production of the wild-type, but not the mdx dystrophin gene. The ratio of host to donor cells can be determined from muscle biopsies as small as 1 mg, regardless of donor H-2 background. This simple technique should allow a number of basic questions related to myoblast and direct gene transfer to be addressed using the mdx mouse model. PMID:1357549

  17. Tissue distribution of the dystrophin-related gene product and expression in the mdx and dy mouse

    SciTech Connect

    Love, D.R.; Marsden, R.F.; Bloomfield, J.F.; Davies, K.E. ); Morris, G.E.; Ellis, J.M. ); Fairbrother, U.; Edwards, Y.H. ); Slater, C.P. ); Parry, D.J. )

    1991-04-15

    The authors have previously reported a dystrophin-related locus (DMDL for Duchenne muscular dystrophy-like) on human chromosome 6 that maps close to the dy mutation on mouse chromosome 10. Here they show that this gene is expressed in a wide range of tissues at varying levels. The transcript is particularly abundant in several human fetal tissues, including heart, placenta, and intestine. Studies with antisera raised against a DMDL fusion protein identify a 400,000 M{sub r} protein in all mouse tissues tested, including those of mdx and dy mice. Unlike the dystrophin gene, the DMDL gene transcript is not differentially spliced at the 3{prime} end in either fetal muscle or brain.

  18. Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs.

    PubMed

    Yokota, Toshifumi; Nakamura, Akinori; Nagata, Tetsuya; Saito, Takashi; Kobayashi, Masanori; Aoki, Yoshitsugu; Echigoya, Yusuke; Partridge, Terence; Hoffman, Eric P; Takeda, Shin'ichi

    2012-10-01

    Duchenne muscular dystrophy (DMD) is a severe and the most prevalent form of muscular dystrophy, characterized by rapid progression of muscle degeneration. Antisense-mediated exon skipping is currently one of the most promising therapeutic options for DMD. However, unmodified antisense oligos such as morpholinos require frequent (weekly or bi-weekly) injections. Recently, new generation morpholinos such as vivo-morpholinos are reported to lead to extensive and prolonged dystrophin expression in the dystrophic mdx mouse, an animal model of DMD. The vivo-morpholino contains a cell-penetrating moiety, octa-guanidine dendrimer. Here, we sought to test the efficacy of multiple exon skipping of exons 6-8 with vivo-morpholinos in the canine X-linked muscular dystrophy, which harbors a splice site mutation at the boundary of intron 6 and exon 7. We designed and optimized novel antisense cocktail sequences and combinations for exon 8 skipping and demonstrated effective exon skipping in dystrophic dogs in vivo. Intramuscular injections with newly designed cocktail oligos led to high levels of dystrophin expression, with some samples similar to wild-type levels. This is the first report of successful rescue of dystrophin expression with morpholino conjugates in dystrophic dogs. Our results show the potential of phosphorodiamidate morpholino oligomer conjugates as therapeutic agents for DMD. PMID:22888777

  19. Dystrophin expression in muscle following gene transfer with a fully deleted ("gutted") adenovirus is markedly improved by trans-acting adenoviral gene products.

    PubMed

    Gilbert, R; Nalbantoglu, J; Howell, J M; Davies, L; Fletcher, S; Amalfitano, A; Petrof, B J; Kamen, A; Massie, B; Karpati, G

    2001-09-20

    Helper-dependent adenoviruses (HDAd) are Ad vectors lacking all or most viral genes. They hold great promise for gene therapy of diseases such as Duchenne muscular dystrophy (DMD), because they are less immunogenic than E1/E3-deleted Ad (first-generation Ad or FGAd) and can carry the full-length (Fl) dystrophin (dys) cDNA (12 kb). We have compared the transgene expression of a HDAd (HDAdCMVDysFl) and a FGAd (FGAdCMV-dys) in cell culture (HeLa, C2C12 myotubes) and in the muscle of mdx mice (the mouse model for DMD). Both vectors encoded dystrophin regulated by the same cytomegalovirus (CMV) promoter. We demonstrate that the amount of dystrophin expressed was significantly higher after gene transfer with FGAdCMV-dys compared to HDAdCMVDysFl both in vitro and in vivo. However, gene transfer with HDAdCMVDysFl in the presence of a FGAd resulted in a significant increase of dystrophin expression indicating that gene products synthesized by the FGAd increase, in trans, the amount of dystrophin produced. This enhancement occurred in cell culture and after gene transfer in the muscle of mdx mice and dystrophic golden retriever (GRMD) dogs, another animal model for DMD. The E4 region of Ad is required for the enhancement, because no increase of dystrophin expression from HDAdCMVDysFl was observed in the presence of an E1/E4-deleted Ad in vitro and in vivo. The characterization of these enhancing gene products followed by their inclusion into an HDAd may be required to produce sufficient dystrophin to mitigate the pathology of DMD by HDAd-mediated gene transfer. PMID:11560768

  20. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy

    PubMed Central

    Kayali, Refik; Ku, Jin-Mo; Khitrov, Gregory; Jung, Michael E.; Prikhodko, Olga; Bertoni, Carmen

    2012-01-01

    Molecules that induce ribosomal read-through of nonsense mutations in mRNA and allow production of a full-length functional protein hold great therapeutic potential for the treatment of many genetic disorders. Two such read-through compounds, RTC13 and RTC14, were recently identified by a luciferase-independent high-throughput screening assay and were shown to have potential therapeutic functions in the treatment of nonsense mutations in the ATM and the dystrophin genes. We have now tested the ability of RTC13 and RTC14 to restore dystrophin expression into skeletal muscles of the mdx mouse model for Duchenne muscular dystrophy (DMD). Direct intramuscular injection of compound RTC14 did not result in significant read-through activity in vivo and demonstrated the levels of dystrophin protein similar to those detected using gentamicin. In contrast, significant higher amounts of dystrophin were detected after intramuscular injection of RTC13. When administered systemically, RTC13 was shown to partially restore dystrophin protein in different muscle groups, including diaphragm and heart, and improved muscle function. An increase in muscle strength was detected in all treated animals and was accompanied by a significant decrease in creatine kinase levels. These studies establish the therapeutic potential of RTC13 in vivo and advance this newly identified compound into preclinical application for DMD. PMID:22692682

  1. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy.

    PubMed

    Kayali, Refik; Ku, Jin-Mo; Khitrov, Gregory; Jung, Michael E; Prikhodko, Olga; Bertoni, Carmen

    2012-09-15

    Molecules that induce ribosomal read-through of nonsense mutations in mRNA and allow production of a full-length functional protein hold great therapeutic potential for the treatment of many genetic disorders. Two such read-through compounds, RTC13 and RTC14, were recently identified by a luciferase-independent high-throughput screening assay and were shown to have potential therapeutic functions in the treatment of nonsense mutations in the ATM and the dystrophin genes. We have now tested the ability of RTC13 and RTC14 to restore dystrophin expression into skeletal muscles of the mdx mouse model for Duchenne muscular dystrophy (DMD). Direct intramuscular injection of compound RTC14 did not result in significant read-through activity in vivo and demonstrated the levels of dystrophin protein similar to those detected using gentamicin. In contrast, significant higher amounts of dystrophin were detected after intramuscular injection of RTC13. When administered systemically, RTC13 was shown to partially restore dystrophin protein in different muscle groups, including diaphragm and heart, and improved muscle function. An increase in muscle strength was detected in all treated animals and was accompanied by a significant decrease in creatine kinase levels. These studies establish the therapeutic potential of RTC13 in vivo and advance this newly identified compound into preclinical application for DMD. PMID:22692682

  2. MLC1 is associated with the Dystrophin-Glycoprotein Complex at astrocytic endfeet

    PubMed Central

    Boor, Ilja; Nagtegaal, Machiel; Kamphorst, Wouter; van der Valk, Paul; Pronk, Jan C.; van Horssen, Jack; Dinopoulos, Argirios; Bove, Kevin E.; Pascual-Castroviejo, Ignacio; Muntoni, Francesco; Estévez, Raúl; Scheper, Gert C.

    2007-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a progressive cerebral white matter disease with onset in childhood, caused by mutations in the MLC1 gene. MLC1 is a protein with unknown function that is mainly expressed in the brain in astrocytic endfeet at the blood–brain and cerebrospinal fluid–brain barriers. It shares its localization at astrocytic endfeet with the dystrophin-associated glycoprotein complex (DGC). The objective of the present study was to investigate the possible association of MLC1 with the DGC. To test this hypothesis, (co)-localization of DGC-proteins and MLC1 was analyzed by immunohistochemical stainings in gliotic brain tissue from a patient with multiple sclerosis, in glioblastoma tissue and in brain tissue from an MLC patient. In control tissue, a direct protein interaction was tested by immunoprecipitation. Results revealed that MLC1 is co-localized with DGC-proteins in gliotic brain tissue. We demonstrated that both MLC1 and aquaporin-4, a member of the DGC, were redistributed in glioblastoma cells. In MLC brain tissue, we showed absence of MLC1 and altered expression of several DGC-proteins. We demonstrated a direct protein interaction between MLC1 and Kir4.1. From these results we conclude that MLC1 is associated with the DGC at astrocytic endfeet. PMID:17628813

  3. Structural and Functional Alterations of Skeletal Muscle Microvasculature in Dystrophin-Deficient mdx Mice.

    PubMed

    Latroche, Claire; Matot, Béatrice; Martins-Bach, Aurea; Briand, David; Chazaud, Bénédicte; Wary, Claire; Carlier, Pierre G; Chrétien, Fabrice; Jouvion, Grégory

    2015-09-01

    Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease, caused by an absence of dystrophin, inevitably leading to death. Although muscle lesions are well characterized, blood vessel alterations that may have a major impact on muscle regeneration remain poorly understood. Our aim was to elucidate alterations of the vascular network organization, taking advantage of Flk1(GFP/+) crossed with mdx mice (model for human DMD where all blood vessels express green fluorescent protein) and functional repercussions using in vivo nuclear magnetic resonance, combining arterial spin-labeling imaging of perfusion, and (31)P-spectroscopy of phosphocreatine kinetics. For the first time, our study focused on old (12-month-old) mdx mice, displaying marked chronic muscle lesions, similar to the lesions observed in human DMD, in comparison to young-adult (3-month-old) mdx mice displaying only mild muscle lesions with no fibrosis. By using an original approach combining a specific animal model, state-of-the-art histology/morphometry techniques, and functional nuclear magnetic resonance, we demonstrated that the microvascular system is almost normal in young-adult in contrast to old mdx mice, displaying marked microvessel alterations, and the functional repercussions on muscle perfusion and bioenergetics after a hypoxic stress vary depending on stage of pathology. This original approach clarifies disease evolution and paves the way for setting up new diagnostic markers or therapeutic strategies. PMID:26193666

  4. Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration

    PubMed Central

    Roberts, Thomas C.; Johansson, Henrik J.; McClorey, Graham; Godfrey, Caroline; Blomberg, K. Emelie M.; Coursindel, Thibault; Gait, Michael J.; Smith, C.I. Edvard; Lehtiö, Janne; EL Andaloussi, Samir; Wood, Matthew J.A.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a classical monogenic disorder, a model disease for genomic studies and a priority candidate for regenerative medicine and gene therapy. Although the genetic cause of DMD is well known, the molecular pathogenesis of disease and the response to therapy are incompletely understood. Here, we describe analyses of protein, mRNA and microRNA expression in the tibialis anterior of the mdx mouse model of DMD. Notably, 3272 proteins were quantifiable and 525 identified as differentially expressed in mdx muscle (P < 0.01). Therapeutic restoration of dystrophin by exon skipping induced widespread shifts in protein and mRNA expression towards wild-type expression levels, whereas the miRNome was largely unaffected. Comparison analyses between datasets showed that protein and mRNA ratios were only weakly correlated (r = 0.405), and identified a multitude of differentially affected cellular pathways, upstream regulators and predicted miRNA–target interactions. This study provides fundamental new insights into gene expression and regulation in dystrophic muscle. PMID:26385637

  5. Effective detection of corrected dystrophin loci in mdx mouse myogenic precursors.

    PubMed

    Todaro, Marian; Quigley, Anita; Kita, Magdalena; Chin, Judy; Lowes, Kym; Kornberg, Andrew J; Cook, Mark J; Kapsa, Robert

    2007-08-01

    Targeted corrective gene conversion (TCGC) holds much promise as a future therapy for many hereditary diseases in humans. Mutation correction frequencies varying between 0.0001% and 40% have been reported using chimeraplasty, oligoplasty, triplex-forming oligonucleotides, and small corrective PCR amplicons (CPA). However, PCR technologies used to detect correction events risk either falsely indicating or greatly exaggerating the presence of corrected loci. This is a problem that is considerably exacerbated by attempted improvement of the TCGC system using high corrective nucleic acid (CNA) to nuclear ratios. Small fragment homologous replacement (SFHR)-mediated correction of the exon 23 dystrophin (DMD) gene mutation in the mdx mouse model of DMD has been used in this study to evaluate the effect of increasing CPA amounts. In these experiments, we detected extremely high levels of apparently corrected loci and determined that at higher CNA to nuclear ratios the extent of locus correction was highly exaggerated by residual CNA species in the nucleic acids extracted from the treated cells. This study describes a generic locus-specific detection protocol designed to eradicate residual CNA species and avoid the artifactual or exaggerated detection of gene correction. PMID:17394239

  6. Delayed Cardiomyopathy in Dystrophin Deficient mdx Mice Relies on Intrinsic Glutathione Resource

    PubMed Central

    Khouzami, Lara; Bourin, Marie-Claude; Christov, Christo; Damy, Thibaud; Escoubet, Brigitte; Caramelle, Philippe; Perier, Magali; Wahbi, Karim; Meune, Christophe; Pavoine, Catherine; Pecker, Françoise

    2010-01-01

    Oxidative stress contributes to the pathogenesis of Duchenne muscular dystrophy (DMD). Although they have been a model for DMD, mdx mice exhibit slowly developing cardiomyopathy. We hypothesized that disease process was delayed owing to the development of an adaptive mechanism against oxidative stress, involving glutathione synthesis. At 15 to 20 weeks of age, mdx mice displayed a 33% increase in blood glutathione levels compared with age-matched C57BL/6 mice. In contrast, cardiac glutathione content was similar in mdx and C57BL/6 mice as a result of the balanced increased expression of glutamate cysteine ligase catalytic and regulatory subunits ensuring glutathione synthesis in the mdx mouse heart, as well as increased glutathione peroxidase-1 using glutathione. Oral administration from 10 weeks of age of the glutamate cysteine ligase inhibitor, l-buthionine(S,R)-sulfoximine (BSO, 5 mmol/L), led to a 33% and 50% drop in blood and cardiac glutathione, respectively, in 15- to 20-week-old mdx mice. Moreover, 20-week-old BSO-treated mdx mice displayed left ventricular hypertrophy associated with diastolic dysfunction, discontinuities in β-dystroglycan expression, micronecrosis and microangiopathic injuries. Examination of the glutathione status in four DMD patients showed that three displayed systemic glutathione deficiency as well. In conclusion, low glutathione resource hastens the onset of cardiomyopathy linked to a defect in dystrophin in mdx mice. This is relevant to the glutathione deficiency that DMD patients may suffer. PMID:20696779

  7. Accurate quantification of dystrophin mRNA and exon skipping levels in duchenne muscular dystrophy.

    PubMed

    Spitali, Pietro; Heemskerk, Hans; Vossen, Rolf H A M; Ferlini, Alessandra; den Dunnen, Johan T; 't Hoen, Peter A C; Aartsma-Rus, Annemieke

    2010-09-01

    Antisense oligonucleotide (AON)-mediated exon skipping aimed at restoring the reading frame is a promising therapeutic approach for Duchenne muscular dystrophy that is currently tested in clinical trials. Numerous AONs have been tested in (patient-derived) cultured muscle cells and the mdx mouse model. The main outcome to measure AON efficiency is usually the exon-skipping percentage, though different groups use different methods to assess these percentages. Here, we compare a series of techniques to quantify exon skipping levels in AON-treated mdx mouse muscle. We compared densitometry of RT-PCR products on ethidium bromide-stained agarose gels, primary and nested RT-PCR followed by bioanalyzer analysis and melting curve analysis. The digital array system (Fluidigm) allows absolute quantification of skipped vs non-skipped transcripts and was used as a reference. Digital array results show that 1 ng of mdx gastrocnemius muscle-derived mRNA contains approximately 1100 dystrophin transcripts and that 665 transcripts are sufficient to determine exon-skipping levels. Quantification using bioanalyzer or densitometric analysis of primary PCR products resulted in values close to those obtained with digital array. The use of the same technique allows comparison between different groups working on exon skipping in the mdx mouse model. PMID:20458276

  8. RT-PCR analysis of dystrophin mRNA in DND/BMD patients

    SciTech Connect

    Ciafaloni, E.; Silva, H.A.R. de; Roses, A.D.

    1994-09-01

    Duchenne and Becker muscular dystrophies (DMD, BMD) are X-linked recessive disorders caused by mutations in the dystrophin (dys) gene. The majority of these mutations are intragenic deletions of duplications routinely detected by Southern biots and multiplex PCR. The remainder are very likely, smaller mutations, mostly point-mutations. Detection of these mutations is very difficult due to the size and complexity of the dys gene. We applied RT-PCR to analyse the entire dys mRNA of three DMD patients with no detectable genomic defect. In two unrelated patients, a duplication of the 62 bp exon 2 was identified. This causes a frameshift sufficient to explain the DMD phenotype. In the third patient, who had congenital DMD and severe mental retardation, a complex pattern of aberrant splicing at the 3-prime exons 67-79 was observed. Sural nerve biopsy in this patient showed the complete absence of Dp116. PCR-SSCP studies are presently in progress to identify the mutations responsible for the aberrant splicing patterns.

  9. Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration.

    PubMed

    Roberts, Thomas C; Johansson, Henrik J; McClorey, Graham; Godfrey, Caroline; Blomberg, K Emelie M; Coursindel, Thibault; Gait, Michael J; Smith, C I Edvard; Lehtiö, Janne; El Andaloussi, Samir; Wood, Matthew J A

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a classical monogenic disorder, a model disease for genomic studies and a priority candidate for regenerative medicine and gene therapy. Although the genetic cause of DMD is well known, the molecular pathogenesis of disease and the response to therapy are incompletely understood. Here, we describe analyses of protein, mRNA and microRNA expression in the tibialis anterior of the mdx mouse model of DMD. Notably, 3272 proteins were quantifiable and 525 identified as differentially expressed in mdx muscle (P < 0.01). Therapeutic restoration of dystrophin by exon skipping induced widespread shifts in protein and mRNA expression towards wild-type expression levels, whereas the miRNome was largely unaffected. Comparison analyses between datasets showed that protein and mRNA ratios were only weakly correlated (r = 0.405), and identified a multitude of differentially affected cellular pathways, upstream regulators and predicted miRNA-target interactions. This study provides fundamental new insights into gene expression and regulation in dystrophic muscle. PMID:26385637

  10. Defective T-lymphocyte migration to muscles in dystrophin-deficient mice.

    PubMed

    Cascabulho, Cynthia M; Bani Corrêa, Cristiane; Cotta-de-Almeida, Vinícius; Henriques-Pons, Andrea

    2012-08-01

    Duchenne muscular dystrophy (DMD), an X-linked recessive disorder affecting 1 in 3500 males, is caused by mutations in the dystrophin gene. DMD leads to degeneration of skeletal and cardiac muscles and to chronic inflammation. The mdx/mdx mouse has been widely used to study DMD; this model mimics most characteristics of the disease, including low numbers of T cells in damaged muscles. In this study, we aimed to assess migration of T cells to the heart and to identify any alterations in adhesion molecules that could possibly modulate this process. In 6-week-old mdx/mdx mice, blood leukocytes, including T cells, were CD62L(+), but by 12 weeks of age down-modulation was evident, with only approximately 40% of T cells retaining this molecule. Our in vitro and in vivo results point to a P2X7-dependent shedding of CD62L (with high levels in the serum), which in 12-week-old mdx/mdx mice reduces blood T cell competence to adhere to cardiac vessels in vitro and to reach cardiac tissue in vivo, even after Trypanosoma cruzi infection, a known inducer of lymphoid myocarditis. In mdx/mdx mice treated with Brilliant Blue G, a P2X7 blocker, these blood lymphocytes retained CD62L and were capable of migrating to the heart. These results provide new insights into the mechanisms of inflammatory infiltration and immune regulation in DMD. PMID:22733008

  11. Sequence characterisation of deletion breakpoints in the dystrophin gene by PCR

    SciTech Connect

    Abbs, S.; Sandhu, S.; Bobrow, M.

    1994-09-01

    Partial deletions of the dystrophin gene account for 65% of cases of Duchenne muscular dystrophy. A high proportion of these structural changes are generated by new mutational events, and lie predominantly within two `hotspot` regions, yet the underlying reasons for this are not known. We are characterizing and sequencing the regions surrounding deletion breakpoints in order to: (i) investigate the mechanisms of deletion mutation, and (ii) enable the design of PCR assays to specifically amplify mutant and normal sequences, allowing us to search for the presence of somatic mosaicism in appropriate family members. Using this approach we have been able to demonstrate the presence of somatic mosaicism in a maternal grandfather of a DMD-affected male, deleted for exons 49-50. Three deletions, namely of exons 48-49, 49-50, and 50, have been characterized using a PCR approach that avoids any cloning procedures. Breakpoints were initially localized to within regions of a few kilobases using Southern blot restriction analyses with exon-specific probes and PCR amplification of exonic and intronic loci. Sequencing was performed directly on PCR products: (i) mutant sequences were obtained from long-range or inverse-PCR across the deletion junction fragments, and (ii) normal sequences were obtained from the products of standard PCR, vectorette PCR, or inverse-PCR performed on YACs. Further characterization of intronic sequences will allow us to amplify and sequence across other deletion breakpoints and increase our knowledge of the mechanisms of mutation in the dystophin gene.

  12. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    PubMed

    Zhao, Chunli; Farruggio, Alfonso P; Bjornson, Christopher R R; Chavez, Christopher L; Geisinger, Jonathan M; Neal, Tawny L; Karow, Marisa; Calos, Michele P

    2014-01-01

    A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies. PMID:24781921

  13. Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma.

    PubMed

    Chamberlain, Jeffrey S; Metzger, Joseph; Reyes, Morayma; Townsend, DeWayne; Faulkner, John A

    2007-07-01

    Duchenne muscular dystrophy (DMD) is the most common, lethal genetic disorder of children. A number of animal models of muscular dystrophy exist, but the most effective model for characterizing the structural and functional properties of dystrophin and therapeutic interventions has been the mdx mouse. Despite the approximately 20 years of investigations of the mdx mouse, the impact of the disease on the life span of mdx mice and the cause of death remain unresolved. Consequently, a life span study of the mdx mouse was designed that included cohorts of male and female mdx and wild-type C57BL/10 mice housed under specific pathogen-free conditions with deaths restricted to natural causes and with examination of the carcasses for pathology. Compared with wild-type mice, both mdx male and female mice had reduced life spans and displayed a progressively dystrophic muscle histopathology. Surprisingly, old mdx mice were prone to develop muscle tumors that resembled the human form of alveolar rhabdomyosarcoma, a cancer associated with poor prognosis. Rhabdomyosarcomas have not been observed previously in nontransgenic mice. The results substantiate the mdx mouse as an important model system for studies of the pathogenesis of and potential remedies for DMD. PMID:17360850

  14. Haplotypes in the Dystrophin DNA Segment Point to a Mosaic Origin of Modern Human Diversity

    PubMed Central

    Ziętkiewicz, Ewa; Yotova, Vania; Gehl, Dominik; Wambach, Tina; Arrieta, Isabel; Batzer, Mark; Cole, David E. C.; Hechtman, Peter; Kaplan, Feige; Modiano, David; Moisan, Jean-Paul; Michalski, Roman; Labuda, Damian

    2003-01-01

    Although Africa has played a central role in human evolutionary history, certain studies have suggested that not all contemporary human genetic diversity is of recent African origin. We investigated 35 simple polymorphic sites and one Tn microsatellite in an 8-kb segment of the dystrophin gene. We found 86 haplotypes in 1,343 chromosomes from around the world. Although a classical out-of-Africa topology was observed in trees based on the variant frequencies, the tree of haplotype sequences reveals three lineages accounting for present-day diversity. The proportion of new recombinants and the diversity of the Tn microsatellite were used to estimate the age of haplotype lineages and the time of colonization events. The lineage that underwent the great expansion originated in Africa prior to the Upper Paleolithic (27,000–56,000 years ago). A second group, of structurally distinct haplotypes that occupy a central position on the tree, has never left Africa. The third lineage is represented by the haplotype that lies closest to the root, is virtually absent in Africa, and appears older than the recent out-of-Africa expansion. We propose that this lineage could have left Africa before the expansion (as early as 160,000 years ago) and admixed, outside of Africa, with the expanding lineage. Contemporary human diversity, although dominated by the recently expanded African lineage, thus represents a mosaic of different contributions. PMID:14513410

  15. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons.

    PubMed

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions. PMID:25152393

  16. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed. PMID:25903257

  17. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  18. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  19. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  20. Preservation of Muscle Force in Mdx3cv Mice Correlates with Low-Level Expression of a Near Full-Length Dystrophin Protein

    PubMed Central

    Li, Dejia; Yue, Yongping; Duan, Dongsheng

    2008-01-01

    The complete absence of dystrophin causes Duchenne muscular dystrophy. Its restoration by greater than 20% is needed to reduce muscle pathology and improve muscle force. Dystrophin levels lower than 20% are considered therapeutically irrelevant but are associated with a less severe phenotype in certain Becker muscular dystrophy patients. To understand the role of low-level dystrophin expression, we compared muscle force and pathology in mdx3cv and mdx4cv mice. Dystrophin was eliminated in mdx4cv mouse muscle but was expressed in mdx3cv mice as a near full-length protein at ∼5% of normal levels. Consistent with previous reports, we found dystrophic muscle pathology in both mouse strains. Surprisingly, mdx3cv extensor digitorium longus muscle showed significantly higher tetanic force and was also more resistant to eccentric contraction-induced injury than mdx4cv extensor digitorium longus muscle. Furthermore, mdx3cv mice had stronger forelimb grip strength than mdx4cv mice. Immunostaining revealed utrophin up-regulation in both mouse strains. The dystrophin-associated glycoprotein complex was also restored in the sarcolemma in both strains although at levels lower than those in normal mice. Our results suggest that subtherapeutic expression levels of near full-length, membrane-bound dystrophin, possibly in conjunction with up-regulated utrophin levels, may help maintain minimal muscle force but not arrest muscle degeneration or necrosis. Our findings provide valuable insight toward understanding delayed clinical onset and/or slow disease progression in certain Becker muscular dystrophy patients. PMID:18385524

  1. Distribution of dystrophin- and utrophin-associated protein complexes (DAPC/UAPC) in human hematopoietic stem/progenitor cells.

    PubMed

    Teniente-De Alba, Carmen; Martínez-Vieyra, Ivette; Vivanco-Calixto, Raúl; Galván, Iván J; Cisneros, Bulmaro; Cerecedo, Doris

    2011-10-01

    Hematopoietic stem cells (HSC) are defined by their cardinal properties, such as sustained proliferation, multilineage differentiation, and self-renewal, which give rise to a hierarchy of progenitor populations with more restricted potential lineage, ultimately leading to the production of all types of mature blood cells. HSC are anchored by cell adhesion molecules to their specific microenvironment, thus regulating their cell cycle, while cell migration is essentially required for seeding the HSC of the fetal bone marrow (BM) during development as well as in adult BM homeostasis. The dystrophin-associated protein complex (DAPC) is a large group of membrane-associated proteins linking the cytoskeleton to the extracellular matrix and exhibiting scaffolding, adhesion, and signaling roles in muscle and non-muscle cells including mature blood cells. Because adhesion and migration are mechanisms that influence the fate of the HSC, we explored the presence and the feasible role of DAPC. In this study, we characterized the pattern expression by immunoblot technique and, by confocal microscopy analysis, the cellular distribution of dystrophin and utrophin gene products, and the dystrophin-associated proteins (α-, β-dystroglycan, α-syntrophin, α-dystrobrevin) in relation to actin filaments in freshly isolated CD34+ cells from umbilical cord blood. Immunoprecipitation assays demonstrated the presence of Dp71d/Dp71Δ110m ∼DAPC and Up400/Up140∼DAPC. The subcellular distribution of the two DAPC in actin-based structures suggests their dynamic participation in adhesion and cell migration. In addition, the particular protein pattern expression found in hematopoietic stem/progenitor cells might be indicative of their feasible participation during differentiation. PMID:21623922

  2. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  3. Screening the dystrophin gene suggests a high rate of polymorphism in general but no exonic deletions in schizophrenics

    SciTech Connect

    Lindor, N.M.; Sobell, J.L.; Thibodeau, S.N.

    1994-03-15

    The dystrophin gene, located at chromosome Xp21, was evaluated as a candidate gene in chronic schizophrenia in response to the report of a large family in which schizophrenia cosegregated with Becker muscular dystrophy. Genomic DNA from 94 men with chronic schizophrenia was evaluated by Southern blot analysis using cDNA probes that span exons 1-59. No exonic deletions were identified. An unexpectedly high rate of polymorphism was calculated in this study and two novel polymorphisms were found, demonstrating the usefulness of the candidate gene approach even when results of the original study are negative. 41 refs., 1 fig., 4 tabs.

  4. Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice.

    PubMed

    Giocanti-Auregan, Audrey; Vacca, Ophélie; Bénard, Romain; Cao, Sijia; Siqueiros, Lourdes; Montañez, Cecilia; Paques, Michel; Sahel, José-Alain; Sennlaub, Florian; Guillonneau, Xavier; Rendon, Alvaro; Tadayoni, Ramin

    2016-05-01

    Understanding retinal vascular development is crucial because many retinal vascular diseases such as diabetic retinopathy (in adults) or retinopathy of prematurity (in children) are among the leading causes of blindness. Given the localization of the protein Dp71 around the retinal vessels in adult mice and its role in maintaining retinal homeostasis, the aim of this study was to determine if Dp71 was involved in astrocyte and vascular development regulation. An experimental study in mouse retinas was conducted. Using a dual immunolabeling with antibodies to Dp71 and anti-GFAP for astrocytes on retinal sections and isolated astrocytes, it was found that Dp71 was expressed in wild-type (WT) mouse astrocytes from early developmental stages to adult stage. In Dp71-null mice, a reduction in GFAP-immunopositive astrocytes was observed as early as postnatal day 6 (P6) compared with WT mice. Using real-time PCR, it was showed that Dp71 mRNA was stable between P1 and P6, in parallel with post-natal vascular development. Regarding morphology in Dp71-null and WT mice, a significant decrease in overall astrocyte process number in Dp71-null retinas at P6 to adult age was found. Using fluorescence-conjugated isolectin Griffonia simplicifolia on whole mount retinas, subsequent delay of developing vascular network at the same age in Dp71-null mice was found. An evidence that the Dystrophin Dp71, a membrane-associated cytoskeletal protein and one of the smaller Duchenne muscular dystrophy gene products, regulates astrocyte morphology and density and is associated with subsequent normal blood vessel development was provided. GLIA 2016;64:716-729. PMID:26711882

  5. Effects of Dantrolene Therapy on Disease Phenotype in Dystrophin Deficient mdx Mice.

    PubMed

    Quinn, James L; Huynh, Tony; Uaesoontrachoon, Kitipong; Tatem, Kathleen; Phadke, Aditi; Van der Meulen, Jack H; Yu, Qing; Nagaraju, Kannaboyina

    2013-01-01

    Dystrophin deficiency causes contraction-induced injury and damage to the muscle fiber, resulting in sustained increase in intracellular calcium levels, activation of calcium-dependent proteases and cell death. It is known that the Ryanodine receptor (RyR1) on the sarcoplasmic reticular (SR) membrane controls calcium release. Dantrolene, an FDA approved skeletal muscle relaxant, inhibits the release of calcium from the SR during excitation-contraction and suppresses uncontrolled calcium release by directly acting on the RyR complex to limit its activation. This study examines whether Dantrolene can reduce the disease phenotype in the mdx mouse model of muscular dystrophy. We treated mdx mice (4 weeks old) with daily intraperitoneal injections of 40mg/kg of Dantrolene for 6 weeks and measured functional (grip strength, in vitro force contractions), behavioral (open field digiscan), imagining (optical imaging for inflammation), histological (H&E), and molecular (protein and RNA) endpoints in a blinded fashion. We found that treatment with Dantrolene resulted in decreased grip strength and open field behavioral activity in mdx mice. There was no significant difference in inflammation either by optical imaging analysis of cathepsin activity or histological (H&E) analysis. In vitro force contraction measures showed no changes in EDL muscle-specific force, lengthening-contraction force deficit, or fatigue resistance. We found Dantrolene treatment significantly reduces serum CK levels. Further, Dantrolene-treated mice showed decreased SERCA1 but not RyR1 expression in skeletal muscle. These results suggest that Dantrolene treatment alone has no significant beneficial effects at the tested doses in young mdx mice. PMID:24270550

  6. Effects of Dantrolene Therapy on Disease Phenotype in Dystrophin Deficient mdx Mice

    PubMed Central

    Quinn, James L; Huynh, Tony; Uaesoontrachoon, Kitipong; Tatem, Kathleen; Phadke, Aditi; Van der Meulen, Jack H; Yu, Qing; Nagaraju, Kannaboyina

    2013-01-01

    Dystrophin deficiency causes contraction-induced injury and damage to the muscle fiber, resulting in sustained increase in intracellular calcium levels, activation of calcium-dependent proteases and cell death. It is known that the Ryanodine receptor (RyR1) on the sarcoplasmic reticular (SR) membrane controls calcium release. Dantrolene, an FDA approved skeletal muscle relaxant, inhibits the release of calcium from the SR during excitation-contraction and suppresses uncontrolled calcium release by directly acting on the RyR complex to limit its activation. This study examines whether Dantrolene can reduce the disease phenotype in the mdx mouse model of muscular dystrophy. We treated mdx mice (4 weeks old) with daily intraperitoneal injections of 40mg/kg of Dantrolene for 6 weeks and measured functional (grip strength, in vitro force contractions), behavioral (open field digiscan), imagining (optical imaging for inflammation), histological (H&E), and molecular (protein and RNA) endpoints in a blinded fashion. We found that treatment with Dantrolene resulted in decreased grip strength and open field behavioral activity in mdx mice. There was no significant difference in inflammation either by optical imaging analysis of cathepsin activity or histological (H&E) analysis. In vitro force contraction measures showed no changes in EDL muscle-specific force, lengthening-contraction force deficit, or fatigue resistance. We found Dantrolene treatment significantly reduces serum CK levels. Further, Dantrolene-treated mice showed decreased SERCA1 but not RyR1 expression in skeletal muscle. These results suggest that Dantrolene treatment alone has no significant beneficial effects at the tested doses in young mdx mice. PMID:24270550

  7. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice

    PubMed Central

    Hernández-Ochoa, Erick O; Pratt, Stephen J P; Garcia-Pelagio, Karla P; Schneider, Martin F; Lovering, Richard M

    2015-01-01

    Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca2+ transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles. PMID:25907787

  8. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  9. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  10. C-Terminal-Truncated Microdystrophin Recruits Dystrobrevin and Syntrophin to the Dystrophin-Associated Glycoprotein Complex and Reduces Muscular Dystrophy in Symptomatic Utrophin/Dystrophin Double-Knockout Mice

    PubMed Central

    Yue, Yongping; Liu, Mingju; Duan, Dongsheng

    2007-01-01

    C-terminal-truncated (ΔC) microdystrophin is being developed for Duchenne muscular dystrophy gene therapy. Encouraging results have been achieved in the mdx mouse model. Unfortunately, mdx mice do not display the same phenotype as human patients. Evaluating ΔC microdystrophin in a symptomatic model will be of significant relevance to human trials. Utrophin/dystrophin double-knockout (u-dko) mice were developed to model severe dystrophic changes in human patients. In this study we evaluated the therapeutic effect of the ΔR4-R23/ΔC microdystrophin gene (ΔR4/ΔC) after serotype-6 adeno-associated virus-mediated gene transfer in neonatal u-dko muscle. At 2 months after gene transfer, the percentage of centrally nucleated myofiber was reduced from 89.2 to 3.4% and muscle weight was normalized. Furthermore, we have demonstrated for the first time that ΔC microdystrophin can eliminate interstitial fibrosis and macrophage infiltration and restore dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex. Interestingly neuronal nitric oxide synthase was not restored. The most impressive results were achieved in muscle force measurement. Neonatal gene therapy increased twitch- and tetanic-specific force. It also brought the response to eccentric contraction-induced injury to the normal range. In summary, our results suggest that the ΔR4/ΔC microgene holds great promise in preventing muscular dystrophy. PMID:16563874

  11. Spirometric abnormalities among welders

    SciTech Connect

    Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )

    1991-10-01

    A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.

  12. Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins

    PubMed Central

    Lewis, Caroline; Jockusch, Harald; Ohlendieck, Kay

    2010-01-01

    Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins. PMID:20508850

  13. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    PubMed

    Li, Mei; Arner, Anders

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively. PMID:26536238

  14. Three-Dimensional Regulation of Radial Glial Functions by Lis1-Nde1 and Dystrophin Glycoprotein Complexes

    PubMed Central

    Pawlisz, Ashley S.; Feng, Yuanyi

    2011-01-01

    Radial glial cells (RGCs) are distinctive neural stem cells with an extraordinary slender bipolar morphology and dual functions as precursors and migration scaffolds for cortical neurons. Here we show a novel mechanism by which the Lis1-Nde1 complex maintains RGC functions through stabilizing the dystrophin/dystroglycan glycoprotein complex (DGC). A direct interaction between Nde1 and utrophin/dystrophin allows for the assembly of a multi-protein complex that links the cytoskeleton to the extracellular matrix of RGCs to stabilize their lateral membrane, cell-cell adhesion, and radial morphology. Lis1-Nde1 mutations destabilized the DGC and resulted in deformed, disjointed RGCs and disrupted basal lamina. Besides impaired RGC self-renewal and neuronal migration arrests, Lis1-Nde1 deficiencies also led to neuronal over-migration. Additional to phenotypic resemblances of Lis1-Nde1 with DGC, strong synergistic interactions were found between Nde1 and dystroglycan in RGCs. As functional insufficiencies of LIS1, NDE1, and dystroglycan all cause lissencephaly syndromes, our data demonstrated that a three-dimensional regulation of RGC's cytoarchitecture by the Lis1-Nde1-DGC complex determines the number and spatial organization of cortical neurons as well as the size and shape of the cerebral cortex. PMID:22028625

  15. Cholesterol favors the anchorage of human dystrophin repeats 16 to 21 in membrane at physiological surface pressure.

    PubMed

    Ameziane-Le Hir, Sarah; Raguénès-Nicol, Céline; Paboeuf, Gilles; Nicolas, Aurélie; Le Rumeur, Elisabeth; Vié, Véronique

    2014-05-01

    Dystrophin (DYS) is a filamentous protein that connects the cytoskeleton and the extracellular matrix via the sarcolemma, conferring resistance to muscular cells. In this study, interactions between the DYS R16-21 fragment and lipids were examined using Langmuir films made of anionic and zwitterionic lipids. The film fluidity was modified by the addition of 15% cholesterol. Whatever the lipid mixture examined, at low surface pressure (20 mN/m) few differences appeared on the protein insertion and the presence of cholesterol did not affect the protein/lipid interactions. At high surface pressure (30 mN/m), the protein insertion was very low and occurred only in zwitterionic films in the liquid-expanded phase. In anionic films, electrostatic interactions prevented the protein insertion outright, and caused accumulation of the protein on the hydrophilic part of the monolayer. Addition of cholesterol to both lipid mixtures drastically modified the protein-lipid interactions: the DYS R16-21 insertion increased and its organization in the monolayer appeared to be more homogeneous. The presence of accessible cholesterol recognition amino-acid consensus sequences in this fragment may enhance the protein/membrane binding at physiological lateral pressure. These results suggest that the anchorage of dystrophin to the membrane in vivo may be stabilized by cholesterol-rich nano-domains in the inner leaflet of sarcolemma. PMID:24440661

  16. In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans

    PubMed Central

    Zhan, Hong; Stanciauskas, Ramunas; Stigloher, Christian; Dizon, Kevin K.; Jospin, Maelle; Bessereau, Jean-Louis; Pinaud, Fabien

    2014-01-01

    Single-molecule (SM) fluorescence microscopy allows the imaging of biomolecules in cultured cells with a precision of a few nanometres but has yet to be implemented in living adult animals. Here we used split-GFP (green fluorescent protein) fusions and complementation-activated light microscopy (CALM) for subresolution imaging of individual membrane proteins in live Caenorhabditis elegans (C. elegans). In vivo tissue-specific SM tracking of transmembrane CD4 and voltage-dependent Ca2+ channels (VDCC) was achieved with a precision of 30 nm within neuromuscular synapses and at the surface of muscle cells in normal and dystrophin-mutant worms. Through diffusion analyses, we reveal that dystrophin is involved in modulating the confinement of VDCC within sarcolemmal membrane nanodomains in response to varying tonus of C. elegans body-wall muscles. CALM expands the applications of SM imaging techniques beyond the petri dish and opens the possibility to explore the molecular basis of homeostatic and pathological cellular processes with subresolution precision, directly in live animals. PMID:25232639

  17. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy

    PubMed Central

    Li, Mei; Arner, Anders

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively. PMID:26536238

  18. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    NASA Technical Reports Server (NTRS)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  19. Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method.

    PubMed

    Iyombe-Engembe, Jean-Paul; Ouellet, Dominique L; Barbeau, Xavier; Rousseau, Joël; Chapdelaine, Pierre; Lagüe, Patrick; Tremblay, Jacques P

    2016-01-01

    The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides. PMID:26812655

  20. In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans.

    PubMed

    Zhan, Hong; Stanciauskas, Ramunas; Stigloher, Christian; Dizon, Kevin K; Jospin, Maelle; Bessereau, Jean-Louis; Pinaud, Fabien

    2014-01-01

    Single-molecule (SM) fluorescence microscopy allows the imaging of biomolecules in cultured cells with a precision of a few nanometres but has yet to be implemented in living adult animals. Here we used split-GFP (green fluorescent protein) fusions and complementation-activated light microscopy (CALM) for subresolution imaging of individual membrane proteins in live Caenorhabditis elegans (C. elegans). In vivo tissue-specific SM tracking of transmembrane CD4 and voltage-dependent Ca(2+) channels (VDCC) was achieved with a precision of 30 nm within neuromuscular synapses and at the surface of muscle cells in normal and dystrophin-mutant worms. Through diffusion analyses, we reveal that dystrophin is involved in modulating the confinement of VDCC within sarcolemmal membrane nanodomains in response to varying tonus of C. elegans body-wall muscles. CALM expands the applications of SM imaging techniques beyond the petri dish and opens the possibility to explore the molecular basis of homeostatic and pathological cellular processes with subresolution precision, directly in live animals. PMID:25232639

  1. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem. PMID:22377853

  2. Disassembly of the cholinergic postsynaptic apparatus induced by axotomy in mouse sympathetic neurons: the loss of dystrophin and beta-dystroglycan immunoreactivity precedes that of the acetylcholine receptor.

    PubMed

    Zaccaria, M L; De Stefano, M E; Properzi, F; Gotti, C; Petrucci, T C; Paggi, P

    1998-08-01

    In mouse sympathetic superior cervical ganglion (SCG), cortical cytoskeletal proteins such as dystrophin (Dys) and beta1sigma2 spectrin colocalize with beta-dystroglycan (beta-DG), a transmembrane dystrophin-associated protein, and the acetylcholine receptor (AChR) at the postsynaptic specialization. The function of the dystrophin-dystroglycan complex in the organization of the neuronal cholinergic postsynaptic apparatus was studied following changes in the immunoreactivity of these proteins during the disassembly and subsequent reassembly of the postsynaptic specializations induced by axotomy of the ganglionic neurons. After axotomy, a decrease in the number of intraganglionic synapses was observed (t1/2 8 h 45'), preceded by a rapid decline of postsynaptic specializations immunopositive for beta-DG, Dys, and alpha3 AChR subunit (alpha3AChR) (t1/2 3 h 45', 4 h 30' and 6 h, respectively). In contrast, the percentage of postsynaptic densities immunopositive for beta1sigma2 spectrin remained unaltered. When the axotomized neurons began to regenerate their axons, the number of intraganglionic synapses increased, as did that of postsynaptic specializations immunopositive for beta-DG, Dys, and alpha3AChR. The latter number increased more slowly than that of Dys and beta-DG. These observations suggest that in SCG neurons, the dystrophin-dystroglycan complex might play a role in the assembly-disassembly of the postsynaptic apparatus, and is probably involved in the stabilization of AChR clusters. PMID:9720492

  3. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy.

    PubMed

    Allen, David G; Whitehead, Nicholas P; Froehner, Stanley C

    2016-01-01

    Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease. PMID:26676145

  4. More deletions in the 5{prime} region than in the central region of the dystrophin gene were identified among Filipino Duchenne and Becker muscular dystrophy patients

    SciTech Connect

    1995-11-06

    This report describes mutations in the dystrophin gene and the frequency of these mutations in Filipino pedigrees with Duchenne and Becker muscular dystrophy (DMD/BMD). The findings suggest the presence of genetic variability among DMD/BMD patients in different populations. 13 refs., 1 tab.

  5. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter

    SciTech Connect

    Yanagawa, H.; Nishio, H.; Takeshima, Y.

    1994-09-01

    The dystrophin gene, which is muted in patients with Duchenne and Becker muscular dystrophies, is the largest known human gene. Five alternative promoters have been characterized until now. Here we show that a novel dystrophin isoform with a different first exon can be produced through transcription initiation at a previously-unidentified alternative promoter. The case study presented is that of patient with Duchenne muscular dystrophy who had a deletion extending from 5{prime} end of the dystrophin gene to exon 2, including all promoters previously mapped in the 5{prime} part of the gene. Transcripts from lymphoblastoid cells were found to contain sequences corresponding to exon 3, indicating the presence of new promoter upstream of this exon. The nucleotide sequence of amplified cDNA corresponding to the 5{prime} end of the new transcript indicated that the 5{prime} end of exon 3 was extended by 9 codons, only the last (most 3{prime}) of which codes for methionine. The genomic nucleotide sequence upstream from the new exon, as determined using inverse polymerase chain reaction, revealed the presence of sequences similar to a TATA box, an octamer motif and an MEF-2 element. The identified promoter/exon did not map to intron 2, as might have been expected, but to a position more than 500 kb upstream of the most 5{prime} of the previously-identified promoters, thereby adding 500 kb to the dystrophin gene. The sequence of part of the new promoter region is very similar to that of certain medium reiteration frequency repetitive sequences. These findings may help us understand the molecular evolution of the dystrophin gene.

  6. Ictal Cardiac Ryhthym Abnormalities

    PubMed Central

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  7. Abnormal uterine bleeding.

    PubMed

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  8. Electrocardiograph abnormalities revealed during laparoscopy

    PubMed Central

    Nijjer, Sukhjinder; Dubrey, Simon William

    2010-01-01

    This brief case presents a well patient in whom an electrocardiograph abnormality consistent with an accessory pathway was found during a routine procedure. We present the electrocardiographs, explain the underlying condition, and consider why the abnormality was revealed in this manner. PMID:22419949

  9. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  10. Haem degradation in abnormal haemoglobins.

    PubMed Central

    Brown, S B; Docherty, J C

    1978-01-01

    The coupled oxidation of certain abnormal haemoglobins leads to different bile-pigment isomer distributions from that of normal haemoglobin. The isomer pattern may be correlated with the structure of the abnormal haemoglobin in the neighbourhood of the haem pocket. This is support for haem degradation by an intramolecular reaction. PMID:708385

  11. Cell-lineage regulated myogenesis for dystrophin replacement: a novel therapeutic approach for treatment of muscular dystrophy.

    PubMed

    Kimura, En; Han, Jay J; Li, Sheng; Fall, Brent; Ra, Jennifer; Haraguchi, Miki; Tapscott, Stephen J; Chamberlain, Jeffrey S

    2008-08-15

    Duchenne muscular dystrophy (DMD) is characterized in skeletal muscle by cycles of myofiber necrosis and regeneration leading to loss of muscle fibers and replacement with fibrotic connective and adipose tissue. The ongoing activation and recruitment of muscle satellite cells for myofiber regeneration results in loss of regenerative capacity in part due to proliferative senescence. We explored a method whereby new myoblasts could be generated in dystrophic muscles by transplantation of primary fibroblasts engineered to express a micro-dystrophin/enhanced green fluorescent protein (muDys/eGFP) fusion gene together with a tamoxifen-inducible form of the myogenic regulator MyoD [MyoD-ER(T)]. Fibroblasts isolated from mdx(4cv) mice, a mouse model for DMD, were efficiently transduced with lentiviral vectors expressing muDys/eGFP and MyoD-ER(T) and underwent myogenic conversion when exposed to tamoxifen. These cells could also be induced to differentiate into muDys/eGFP-expressing myocytes and myotubes. Transplantation of transduced mdx(4cv) fibroblasts into mdx(4cv) muscles enabled tamoxifen-dependent regeneration of myofibers that express muDys. This lineage control method therefore allows replenishment of myogenic stem cells using autologous fibroblasts carrying an exogenous dystrophin gene. This strategy carries several potential advantages over conventional myoblast transplantation methods including: (i) the relative simplicity of culturing fibroblasts compared with myoblasts, (ii) a readily available cell source and ease of expansion and (iii) the ability to induce MyoD gene expression in vivo via administration of a medication. Our study provides a proof of concept for a novel gene/stem cell therapy technique and opens another potential therapeutic approach for degenerative muscle disorders. PMID:18511457

  12. Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging

    PubMed Central

    Li, Wei; Liu, Wei; Zhong, Jia; Yu, Xin

    2009-01-01

    Background Duchenne muscular dystrophy (DMD) is caused by the absence of the cytoskeletal protein, dystrophin. In DMD patients, dilated cardiomyopathy leading to heart failure may occur during adolescence. However, early cardiac dysfunction is frequently undetected due to physical inactivity and generalized debilitation. The objective of this study is to determine the time course of cardiac functional alterations in mdx mouse, a mouse model of DMD, by evaluating regional ventricular function with CMR tagging. Methods In vivo myocardial function was evaluated by 3D CMR tagging in mdx mice at early (2 months), middle (7 months) and late (10 months) stages of disease development. Global cardiac function, regional myocardial wall strains, and ventricular torsion were quantified. Myocardial lesions were assessed with Masson's trichrome staining. Results Global contractile indexes were similar between mdx and C57BL/6 mice in each age group. Histology analysis showed that young mdx mice were free of myocardial lesions. Interstitial fibrosis was present in 7 month mdx mice, with further development into patches or transmural lesions at 10 months of age. As a result, 10 month mdx mice showed significantly reduced regional strain and torsion. However, young mdx mice showed an unexpected increase in regional strain and torsion, while 7 month mdx mice displayed similar regional ventricular function as the controls. Conclusion Despite normal global ventricular function, CMR tagging detected a biphasic change in myocardial wall strain and torsion, with an initial increase at young age followed by progressive decrease at older ages. These results suggest that CMR tagging can provide more sensitive measures of functional alterations than global functional indexes in dystrophin-related cardiomyopathies. PMID:19849858

  13. Dystrophin Hot-Spot Mutants Leading to Becker Muscular Dystrophy Insert More Deeply into Membrane Models than the Native Protein.

    PubMed

    Ameziane-Le Hir, Sarah; Paboeuf, Gilles; Tascon, Christophe; Hubert, Jean-François; Le Rumeur, Elisabeth; Vié, Véronique; Raguénès-Nicol, Céline

    2016-07-26

    Dystrophin (DYS) is a membrane skeleton protein whose mutations lead to lethal Duchenne muscular dystrophy or to the milder Becker muscular dystrophy (BMD). One third of BMD "in-frame" exon deletions are located in the region that codes for spectrin-like repeats R16 to R21. We focused on four prevalent mutated proteins deleted in this area (called RΔ45-47, RΔ45-48, RΔ45-49, and RΔ45-51 according to the deleted exon numbers), analyzing protein/membrane interactions. Two of the mutants, RΔ45-48 and RΔ45-51, led to mild pathologies and displayed a similar triple coiled-coil structure as the full-length DYS R16-21, whereas the two others, RΔ45-47 and RΔ45-49, induced more severe pathologies and showed "fractional" structures unrelated to the normal one. To explore lipid packing, small unilamellar liposomes (SUVs) and planar monolayers were used at various initial surface pressures. The dissociation constants determined by microscale thermophoresis (MST) were much higher for the full-length DYS R161-21 than for the mutants; thus the wild type protein has weaker SUV binding. Comparing surface pressures after protein adsorption and analysis of atomic force microscopy images of mixed protein/lipid monolayers revealed that the mutants insert more into the lipid monolayer than the wild type does. In fact, in both models every deletion mutant showed more interactions with membranes than the full-length protein did. This means that mutations in the R16-21 part of dystrophin disturb the protein's molecular behavior as it relates to membranes, regardless of whether the accompanying pathology is mild or severe. PMID:27367833

  14. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  15. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  16. Metabolism of thyroxine-binding globulin in man. Abnormal rate of synthesis in inherited thyroxine-binding globulin deficiency and excess.

    PubMed Central

    Refetoff, S; Fang, V S; Marshall, J S; Robin, N I

    1976-01-01

    It has been previously suggested that inherited thyroxine-binding globulin (TBG) abnormalities in man may be due to mutations at a single X-chromosome-linked locus controlling TBG synthesis. However, abnormalities in TBG degradation have not been excluded. The availability of purified human TBG and its successful labeling with radioiodide allowed us to examine such possibility. Human TBG was purified by affinity chromatography, labeled under sterile conditions with 131I or 125I,, and mixed with [125I]thyroxine (T4) or [131I]T4, respectively, before their intravenous injection. Blood and urine samples were collected over a 10-day period, and the turnover parameters were calculated. In eight normal volunteers mean values +/-SD for TBG and T4 respectively, were as follows: Half time (t1/2) 5.3 +/- 0.4 and 7.0 +/- 0.6 days; distribution space (DS) 7.2 +/- 1.0 and 10.8 +/- 1.2 liters; and total daily degradation (D) 0.211 +/- 0.053 and 0.088 +/- 0.011 mumol/day. In all subjects, t1/2 of TBG was shorter than that of T4; and the DS was smaller. 2.4 mol of TBG was degraded for each mole of T4. In five of six subjects from four families, comprising hemizygous and heterozygous carriers of TBG absence, decrease, and excess, the t1/2 and DS for TBG were within the normal range. The D of TBG was proportional to the serum concentration of the protein. Changes in the T4 kinetics in these patients were compatible with euthyroidism and with the known alterations in the extrathyroidal T4 pool associated with the changes in serum TBG concentration. A striking decrease in the t1/2 of TBG was found only in a patient with acquired diminution in TBG concentration and in patients with thyrotoxicosis or other conditions apparently unrelated to thyroid dysfunction. TBG t1/2 was 2.5 days in a patient with multiple myeloma and 3.6 days in two patients with thyrotoxicosis. Decreased TBG t1/2 was also observed in three of six patients with nonthyroidal pathology and was associated with an

  17. Dystrophin deficient cardiomyopathy in mouse: Expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart

    PubMed Central

    Spurney, Christopher F.; Knoblach, Susan; Pistilli, Emidio E.; Nagaraju, Kanneboyina; Martin, Gerard R.; Hoffman, Eric P.

    2008-01-01

    Duchenne muscular dystrophy (DMD; dystrophin-deficiency) causes dilated cardiomyopathy in the second decade of life in affected males. We studied the dystrophin-deficient mouse heart (mdx) using high frequency echocardiography, histomorphometry, and gene expression profiling. Heart dysfunction was prominent at 9-10 months of age and showed significantly increased LV internal diameter (end systole) and decreased posterior wall thickness. This cardiomyopathy was associated with a 30% decrease in shortening fraction. Histologically, there was a 10-fold increase in connective tissue volume (fibrosis). mRNA profiling with RT-PCR validation showed activation of key pro-fibrotic genes, including Nox4 and Lox. The Nox gene family expression differed in mdx heart and skeletal muscle, where Nox2 was specifically induced in skeletal muscle while Nox4 was specifically induced in heart. This is the first report of an altered profibrotic gene expression profile in cardiac tissue of dystrophic mice showing echocardiographic evidence of cardiomyopathy. PMID:18440230

  18. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    NASA Astrophysics Data System (ADS)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  19. Mice Lacking Dystrophin or α Sarcoglycan Spontaneously Develop Embryonal Rhabdomyosarcoma with Cancer-Associated p53 Mutations and Alternatively Spliced or Mutant Mdm2 Transcripts

    PubMed Central

    Fernandez, Karen; Serinagaoglu, Yelda; Hammond, Sue; Martin, Laura T.; Martin, Paul T.

    2010-01-01

    Altered expression of proteins in the dystrophin-associated glycoprotein complex results in muscular dystrophy and has more recently been implicated in a number of forms of cancer. Here we show that loss of either of two members of this complex, dystrophin in mdx mice or α sarcoglycan in Sgca−/− mice, results in the spontaneous development of muscle-derived embryonal rhabdomyosarcoma (RMS) after 1 year of age. Many mdx and Sgca−/− tumors showed increased expression of insulin-like growth factor 2, retinoblastoma protein, and phosphorylated Akt and decreased expression of phosphatase and tensin homolog gene, much as is found in a human RMS. Further, all mdx and Sgca−/− RMS analyzed had increased expression of p53 and murine double minute (mdm)2 protein and contained missense p53 mutations previously identified in human cancers. The mdx RMS also contained missense mutations in Mdm2 or alternatively spliced Mdm2 transcripts that lacked an exon encoding a portion of the p53-binding domain. No Pax3:Fkhr or Pax7:Fkhr translocation mRNA products were evident in any tumor. Expression of natively glycosylated α dystroglycan and α sarcoglycan was reduced in mdx RMS, whereas dystrophin expression was absent in almost all human RMS, both for embryonal and alveolar RMS subtypes. These studies show that absence of members of the dystrophin-associated glycoprotein complex constitutes a permissive environment for spontaneous development of embryonal RMS associated with mutation of p53 and mutation or altered splicing of Mdm2. PMID:20019182

  20. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies

    PubMed Central

    Janghra, Narinder; Morgan, Jennifer E.; Sewry, Caroline A.; Wilson, Francis X.; Davies, Kay E.; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ –sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  1. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    PubMed

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  2. A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping

    PubMed Central

    Walmsley, Gemma L.; Arechavala-Gomeza, Virginia; Fernandez-Fuente, Marta; Burke, Margaret M.; Nagel, Nicole; Holder, Angela; Stanley, Rachael; Chandler, Kate; Marks, Stanley L.; Muntoni, Francesco; Shelton, G. Diane; Piercy, Richard J.

    2010-01-01

    Background Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion “hot spot” is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD “hot spot”. Methodology/Principal Findings Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 5′ donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. Conclusions/Significance Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD. PMID:20072625

  3. Protein-DNA array-based identification of transcription factor activities differentially regulated in skeletal muscle of normal and dystrophin-deficient mdx mice.

    PubMed

    Dogra, Charu; Srivastava, Daya Shankar; Kumar, Ashok

    2008-05-01

    Inactivation of dystrophin gene is the primary cause of Duchenne muscular dystrophy (DMD) in humans and mdx mice. However, the underpinning mechanisms, which govern the pathogenesis of dystrophin-deficient skeletal muscle, remain poorly understood. We have previously reported activation of mitogen-activated protein kinases (MAPK), nuclear factor-kappa B (NF-kappaB), and phosphatidyl-inositol 3-kinase/Akt (PI3K/Akt) signaling pathways in diaphragm muscle of mdx mice. In this study, using a protein-DNA array-based approach, we have investigated the activation of 345 transcription factors in diaphragm muscle of 6-week old normal and dystrophin-deficient mdx mice. Our data demonstrate increased activation of a number nuclear transcription factors including AP1, HFH-3, PPARalpha, c.myb BP, ETF, Fra-1/JUN, kBF-A, N-rasBP, lactoferrin BP, Myb(2), EBP40_45, EKLF(1), p53(2), TFEB, Myc-Max; c-Rel; E2, ISRE; NF-kB; Stat1 p84/p91, Antioxidant RE, EVI-1, Stat3, AP3, p53, Stat4, AP4, HFH-1, FAST-1, Pax-5, and Beta-RE in the diaphragm muscle of mdx mice compared to corresponding normal mice. The level of activation for p53 was highest among all the transcription factors studied. Furthermore, higher activation of p53 in diaphragm muscle of mdx mice was associated with its increased phosphorylation and nuclear translocation. Collectively, our data suggest that the primary deficiency of dystrophin leads to the aberrant activation of nuclear transcription factors which might further contribute to muscle pathogenesis in mdx mice. PMID:18278580

  4. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    SciTech Connect

    Eom, Young Woo; Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin; Park, Won Jin; Kong, Jee Hyun; Shim, Kwang Yong; Lee, Jong In; Kim, Hyun Soo

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  5. Long-Term Efficacy of Systemic Multiexon Skipping Targeting Dystrophin Exons 45–55 With a Cocktail of Vivo-Morpholinos in Mdx52 Mice

    PubMed Central

    Echigoya, Yusuke; Aoki, Yoshitsugu; Miskew, Bailey; Panesar, Dharminder; Touznik, Aleksander; Nagata, Tetsuya; Tanihata, Jun; Nakamura, Akinori; Nagaraju, Kanneboyina; Yokota, Toshifumi

    2015-01-01

    Antisense-mediated exon skipping, which can restore the reading frame, is a most promising therapeutic approach for Duchenne muscular dystrophy. Remaining challenges include the limited applicability to patients and unclear function of truncated dystrophin proteins. Multiexon skipping targeting exons 45–55 at the mutation hotspot of the dystrophin gene could overcome both of these challenges. Previously, we described the feasibility of exons 45–55 skipping with a cocktail of Vivo-Morpholinos in vivo; however, the long-term efficacy and safety of Vivo-Morpholinos remains to be determined. In this study, we examined the efficacy and toxicity of exons 45–55 skipping by intravenous injections of 6 mg/kg 10-Vivo-Morpholino cocktail (0.6 mg/kg each vPMO) every 2 weeks for 18 weeks to dystrophic exon-52 knockout (mdx52) mice. Systemic skipping of the entire exons 45–55 region was induced, and the Western blot analysis exhibited the restoration of 5–27% of normal levels of dystrophin protein in skeletal muscles, accompanied by improvements in histopathology and muscle strength. No obvious immune response and renal and hepatic toxicity were detected at the end-point of the treatment. We demonstrate our new regimen with the 10-Vivo-Morpholino cocktail is effective and safe for long-term repeated systemic administration in the dystrophic mouse model. PMID:25647512

  6. Use of dystrophin genomic and cDNA probes for solving difficulties in carrier detection and prenatal diagnosis of Duchenne muscular dystrophy.

    PubMed

    Shomrat, R; Driks, N; Legum, C; Shiloh, Y

    1992-02-01

    Duchenne muscular dystrophy (DMD) results from mutations in the X-linked gene coding for the muscular protein dystrophin. The isolation of genomic and cDNA probes for this gene has greatly facilitated the detection of DMD carriers, which previously relied mainly on measurements of serum creatine kinase (CK), and has enabled prenatal diagnosis of this disease. However, the relatively large size of the gene and the high frequency of recombination and mutation events within the dystrophin locus continue to pose difficulties in the genetic counselling and prenatal diagnosis of DMD, and render the conclusions of molecular analysis less clear cut. This communication presents examples of two such difficulties: the distinction between sporadic and inherited cases in families with a single patient and normal CK levels in all females, and the distinction between mutant and normal dystrophin alleles in families in which the patients have died. The combined use of genomic and cDNA probes allows one to make these distinctions. An additional complicating factor, gonadal mosaicism, is demonstrated. PMID:1536162

  7. Human α7 Integrin Gene (ITGA7) Delivered by Adeno-Associated Virus Extends Survival of Severely Affected Dystrophin/Utrophin-Deficient Mice.

    PubMed

    Heller, Kristin N; Montgomery, Chrystal L; Shontz, Kimberly M; Clark, K Reed; Mendell, Jerry R; Rodino-Klapac, Louise R

    2015-10-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. It is the most common, severe childhood form of muscular dystrophy. We investigated an alternative to dystrophin replacement by overexpressing ITGA7 using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin-glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and overexpression does not elicit an immune response to the transgene. We delivered rAAVrh.74.MCK.ITGA7 systemically at 5-7 days of age to the mdx/utrn(-/-) mouse deficient for dystrophin and utrophin, a severe mouse model of DMD. At 8 weeks postinjection, widespread expression of ITGA7 was observed at the sarcolemma of multiple muscle groups following gene transfer. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn(-/-) mouse, including kyphosis. Overexpression of α7 expression protected against loss of force following contraction-induced damage and increased specific force in the diaphragm and EDL muscles 8 weeks after gene transfer. Taken together, these results further support the use of α7 integrin as a potential therapy for DMD. PMID:26076707

  8. Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a cocktail of vivo-morpholinos in mdx52 mice.

    PubMed

    Echigoya, Yusuke; Aoki, Yoshitsugu; Miskew, Bailey; Panesar, Dharminder; Touznik, Aleksander; Nagata, Tetsuya; Tanihata, Jun; Nakamura, Akinori; Nagaraju, Kanneboyina; Yokota, Toshifumi

    2015-01-01

    Antisense-mediated exon skipping, which can restore the reading frame, is a most promising therapeutic approach for Duchenne muscular dystrophy. Remaining challenges include the limited applicability to patients and unclear function of truncated dystrophin proteins. Multiexon skipping targeting exons 45-55 at the mutation hotspot of the dystrophin gene could overcome both of these challenges. Previously, we described the feasibility of exons 45-55 skipping with a cocktail of Vivo-Morpholinos in vivo; however, the long-term efficacy and safety of Vivo-Morpholinos remains to be determined. In this study, we examined the efficacy and toxicity of exons 45-55 skipping by intravenous injections of 6 mg/kg 10-Vivo-Morpholino cocktail (0.6 mg/kg each vPMO) every 2 weeks for 18 weeks to dystrophic exon-52 knockout (mdx52) mice. Systemic skipping of the entire exons 45-55 region was induced, and the Western blot analysis exhibited the restoration of 5-27% of normal levels of dystrophin protein in skeletal muscles, accompanied by improvements in histopathology and muscle strength. No obvious immune response and renal and hepatic toxicity were detected at the end-point of the treatment. We demonstrate our new regimen with the 10-Vivo-Morpholino cocktail is effective and safe for long-term repeated systemic administration in the dystrophic mouse model. PMID:25647512

  9. Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9

    PubMed Central

    Li, Hongmei Lisa; Fujimoto, Naoko; Sasakawa, Noriko; Shirai, Saya; Ohkame, Tokiko; Sakuma, Tetsushi; Tanaka, Michihiro; Amano, Naoki; Watanabe, Akira; Sakurai, Hidetoshi; Yamamoto, Takashi; Yamanaka, Shinya; Hotta, Akitsu

    2014-01-01

    Summary Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases. PMID:25434822

  10. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice

    PubMed Central

    Sohn, Jihee; Lu, Aiping; Tang, Ying; Wang, Bing; Huard, Johnny

    2015-01-01

    Ectopic calcification as well as fatty and fibrotic tissue accumulation occurs in skeletal muscle during the disease progression of Duchenne muscular dystrophy (DMD), a degenerative muscle disorder caused by mutations in the dystrophin gene. The cellular origin and the environmental cues responsible for this ectopic calcification, fatty and fibrotic infiltration during the disease progression, however, remain unknown. Based on a previously published preplate technique, we isolated two distinct populations of muscle-derived cells from skeletal muscle: (i) a rapidly adhering cell population, which is non-myogenic, Pax7− and express the mesenchymal stem cell (MSC) marker platelet-derived growth factor receptor alpha; hence, we termed this population of cells non-myogenic MSCs (nmMSCs); and (ii) a slowly adhering cell population which is Pax7+ and highly myogenic, termed muscle progenitor cells (MPCs). Previously, we demonstrated that the rapid progression of skeletal muscle histopathologies in dystrophin/utrophin knockout (dys−/− utro−/− dKO) mice is closely associated with a rapid depletion of the MPC population pool. In the current study, we showed that in contrast to the MPCs, the nmMSCs become activated during the disease progression in dKO mice, displaying increased proliferation and differentiation potentials (adipogenesis, osteogenesis and fibrogenesis). We also found that after co-culturing the dKO-nmMSCs with dKO-MPCs, the myogenic differentiation potential of the dKO-MPCs was reduced. This effect was found to be potentially mediated by the secretion of secreted frizzled-related protein 1 by the dKO-nmMSCs. We therefore posit that the rapid occurrence of fibrosis, ectopic calcification and fat accumulation, in dKO mice, is not only attributable to the rapid depletion of the MPC pool, but is also the consequence of nmMSC activation. Results from this study suggest that approaches to alleviate muscle weakness and wasting in DMD patients should not

  11. Molecular abnormalities in Ewing's sarcoma.

    PubMed

    Burchill, Susan Ann

    2008-10-01

    Ewing's sarcoma is one of the few solid tumors for which the underlying molecular genetic abnormality has been described: rearrangement of the EWS gene on chromosome 22q12 with an ETS gene family member. These translocations define the Ewing's sarcoma family of tumors (ESFT) and provide a valuable tool for their accurate and unequivocal diagnosis. They also represent ideal targets for the development of tumor-specific therapeutics. Although secondary abnormalities occur in over 80% of primary ESFT the clinical utility of these is currently unclear. However, abnormalities in genes that regulate the G(1)/S checkpoint are frequently described and may be important in predicting outcome and response. Increased understanding of the molecular events that arise in ESFT and their role in the development and maintenance of the malignant phenotype will inform the improved stratification of patients for therapy and identify targets and pathways for the design of more effective cancer therapeutics. PMID:18925858

  12. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  13. [Emotion Disorders and Abnormal Perspiration].

    PubMed

    Umeda, Satoshi

    2016-08-01

    This article reviewed the relationship between emotional disorders and abnormal perspiration. First, I focused on local brain areas related to emotional processing, and summarized the functions of the emotional network involving those local areas. Functional disorders followed by the damage in the amygdala, orbitofrontal cortex, and insular cortex were reviewed, including related abnormal perspiration. I then addressed the mechanisms of how autonomic disorders influence emotional processing. Finally, possible future directions for integrated understanding of the connection between neural activities and bodily reactions were discussed. PMID:27503817

  14. Ultrasonographic assessment of abnormal pregnancy.

    PubMed

    England, G C

    1998-07-01

    Ultrasonographic imaging is widely used in small animal practice for the diagnosis of pregnancy and the determination of fetal number. Ultrasonography can also be used to monitor abnormal pregnancies, for example, conceptuses that are poorly developed for their gestational age (and therefore are likely to fail), and pregnancies in which there is embryonic resorption or fetal abortion. An ultrasound examination may reveal fetal abnormalities and therefore alter the management of the pregnant bitch or queen prior to parturition. There are, however, a number of ultrasonographic features of normal pregnancies that may mimic disease, and these must be recognized. PMID:9698618

  15. A novel point mutation (G-1 to T) in a 5' splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker muscular dystrophy.

    PubMed Central

    Hagiwara, Y.; Nishio, H.; Kitoh, Y.; Takeshima, Y.; Narita, N.; Wada, H.; Yokoyama, M.; Nakamura, H.; Matsuo, M.

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5' splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G-1-to-T mutation at the 5' splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. Images Figure 2 Figure 5 PMID:8279470

  16. A novel point mutation (G-1 to T) in a 5' splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker muscular dystrophy.

    PubMed

    Hagiwara, Y; Nishio, H; Kitoh, Y; Takeshima, Y; Narita, N; Wada, H; Yokoyama, M; Nakamura, H; Matsuo, M

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5' splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G-1-to-T mutation at the 5' splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. PMID:8279470

  17. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    SciTech Connect

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi )

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  18. Transcription factors YY1, Sp1 and Sp3 modulate dystrophin Dp71 gene expression in hepatic cells.

    PubMed

    Peñuelas-Urquides, Katia; Becerril-Esquivel, Carolina; Mendoza-de-León, Laura C; Silva-Ramírez, Beatriz; Dávila-Velderrain, José; Cisneros, Bulmaro; de León, Mario Bermúdez

    2016-07-01

    Dystrophin Dp71, the smallest product encoded by the Duchenne muscular dystrophy gene, is ubiquitously expressed in all non-muscle cells. Although Dp71 is involved in various cellular processes, the mechanisms underlying its expression have been little studied. In hepatic cells, Dp71 expression is down-regulated by the xenobiotic β-naphthoflavone. However, the effectors of this regulation remain unknown. In the present study we aimed at identifying DNA elements and transcription factors involved in Dp71 expression in hepatic cells. Relevant DNA elements on the Dp71 promoter were identified by comparing Dp71 5'-end flanking regions between species. The functionality of these elements was demonstrated by site-directed mutagenesis. Using EMSAs and ChIP, we showed that the Sp1 (specificity protein 1), Sp3 (specificity protein 3) and YY1 (Yin and Yang 1) transcription factors bind to the Dp71 promoter region. Knockdown of Sp1, Sp3 and YY1 in hepatic cells increased endogenous Dp71 expression, but reduced Dp71 promoter activity. In summary, Dp71 expression in hepatic cells is carried out, in part, by YY1-, Sp1- and Sp3-mediated transcription from the Dp71 promoter. PMID:27143785

  19. The evolution of an intron: Analysis of a long, deletion-prone intron in the human dystrophin gene

    SciTech Connect

    McNaughton, J.C.; Hughes, G.; Jones, W.A.

    1997-03-01

    The sequence of a 112-kb region of the human dystrophin (DMD/BMD) gene encompassing the deletion prone intron 7 (110 kb) and the much shorter intron 8 (1.1 kb) has been determined. Recognizable insertion sequences account for approximately 40% of intron 7. LINE-1 and THE-1/LTR sequences occur in intron 7 with significantly higher frequency than would be expected statistically while Alu sequences are underrepresented. Intron 7 also contains numerous mammalian-wide interspersed repeats, a diverse range of medium reiteration repeats of unknown origin, and a sequence derived from a mariner transposon. By contrast, the shorter intron 8 contains no detectable insertion sequences. Dating of the L1 and Alu sequences suggests that intron 7 has approximately doubled in size within the past 130 million years, and comparison with the corresponding intron from the pufferfish (Fugu rubripes) suggests that the intron has expanded some 44-fold over a period of 400 million years. The possible contribution of the insertion elements to the instability of intron 7 is discussed. 66 refs., 2 figs., 2 tabs.

  20. Dystrophin conferral using human endothelium expressing HLA-E in the non-immunosuppressive murine model of Duchenne muscular dystrophy.

    PubMed

    Cui, Chang-Hao; Miyoshi, Shunichiro; Tsuji, Hiroko; Makino, Hatsune; Kanzaki, Seiichi; Kami, Daisuke; Terai, Masanori; Suzuki, Harumi; Umezawa, Akihiro

    2011-01-15

    Human leukocyte antigen (HLA)-E is a non-classical major histocompatibility complex class I (Ib) molecule, which plays an important role in immunosuppression. In this study, we investigated the immunomodulating effect of HLA-E in a xenogeneic system, using human placental artery-derived endothelial (hPAE) cells expressing HLA-E in a mouse model. In vitro cell lysis analysis by primed lymphocytes in combination with siRNA transfection showed that HLA-E is necessary for inhibition of the immune response. Similarly, in vivo cell implantation analysis with siRNA-mediated down-regulation of HLA-E demonstrates that HLA-E is involved in immunosuppression. As hPAE cells efficiently transdifferentiate into myoblasts/myocytes in vitro, we transplanted the cells into mdx mice, a model of Duchenne muscular dystrophy. hPAE cells conferred dystrophin to myocytes of the 'immunocompetent' mdx mice with extremely high efficiency. These findings suggest that HLA-E-expressing cells with a myogenic potential represent a promising source for cell-based therapy of patients with muscular dystrophy. PMID:20947660

  1. The Role of Nanobiotechnology in the Study of Dystrophin and B-Dystroglycan in Membrane Stability of Aging Skeletal Muscles

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    Duchene muscular dystrophy (DMD) is one of nine types of muscular dystrophy, a group of genetic degenerative diseases, primarily affecting voluntary muscles, caused by absence of dystrophin. New experiments on mice with DMD has shown that gene therapy can reverse some symptoms of the disease. The ultimate goal of gene therapy for muscle diseases is improvement of strength and function, which will require treatment in multiple muscles simultaneously. A major limitation to gene therapy until now has been that no one had found a method by which a new gene could be delivered to all the muscles of an adult animal. Recent utilization of nanotechnology to life sciences has shown exciting promises in a wide range of disciplines, showing advances in the ability to manipulate, fabricate and alter tiny subjects at the nanometer scale. In the present investigation, we have employed such techniques to study single motors such as myosin and kinesin, as well elastic proteins viz. titin and nebulin, muscle filaments, cytoskeletal filaments, and receptors in cellular membranes and cellular organelles viz. myofibril, ribosome, and chromatin. Application of AFM to images and measures the elastic properties of single monomeric and oligomeric protein, genetically engineered titin, and nebulin molecules will be presented.

  2. Human ES- and iPS-Derived Myogenic Progenitors Restore Dystrophin and Improve Contractility upon Transplantation in Dystrophic Mice

    PubMed Central

    Darabi, Radbod; Arpke, Robert W.; Irion, Stefan; Dimos, John T.; Grskovic, Marica; Kyba, Michael; Perlingeiro, Rita C. R.

    2012-01-01

    SUMMARY A major obstacle in the application of cell-based therapies for the treatment of neuromuscular disorders is obtaining the appropriate number of stem/progenitor cells to produce effective engraftment. The use of embryonic stem (ES) or induced pluripotent stem (iPS) cells could overcome this hurdle. However to date, derivation of engraftable skeletal muscle precursors that can restore muscle function from human pluripotent cells has not been achieved. Here we applied conditional expression of Pax7 in human ES/iPS cells to successfully derive large quantities of myogenic precursors, which upon transplantation into dystrophic muscle, are able to engraft efficiently, producing abundant human-derived dystrophin-positive myofibers that exhibit superior strength. Importantly, transplanted cells also seed the muscle satellite cell compartment and engraftment is present over 11 months post-transplant. This study provides the proof-of-principle for the derivation of functional skeletal myogenic progenitors from human ES/iPS cells, and highlights their potential for future therapeutic application in muscular dystrophies. PMID:22560081

  3. Extracellular Matrix Abnormalities in Schizophrenia

    PubMed Central

    Berretta, Sabina

    2011-01-01

    Emerging evidence points to the involvement of the brain extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Abnormalities affecting several ECM components, including Reelin and chondroitin sulfate proteoglycans (CSPGs), have been described in subjects with this disease. Solid evidence supports the involvement of Reelin, an ECM glycoprotein involved in corticogenesis, synaptic functions and glutamate NMDA receptor regulation, expressed prevalently in distinct populations of GABAergic neurons, which secrete it into the ECM. Marked changes of Reelin expression in SZ have typically been reported in association with GABA-related abnormalities in subjects with SZ and bipolar disorder. Recent findings from our group point to substantial abnormalities affecting CSPGs, a main ECM component, in the amygdala and entorhinal cortex of subjects with schizophrenia, but not bipolar disorder. Striking increases of glial cells expressing CSPGs were accompanied by reductions of perineuronal nets, CSPG- and Reelin-enriched ECM aggregates enveloping distinct neuronal populations. CSPGs developmental and adult functions, including neuronal migration, axon guidance, synaptic and neurotransmission regulation are highly relevant to the pathophysiology of SZ. Together with reports of anomalies affecting several other ECM components, these findings point to the ECM as a key component of the pathology of SZ. We propose that ECM abnormalities may contribute to several aspects of the pathophysiology of this disease, including disrupted connectivity and neuronal migration, synaptic anomalies and altered GABAergic, glutamatergic and dopaminergic neurotransmission. PMID:21856318

  4. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study

    PubMed Central

    Kinali, Maria; Arechavala-Gomeza, Virginia; Feng, Lucy; Cirak, Sebahattin; Hunt, David; Adkin, Carl; Guglieri, Michela; Ashton, Emma; Abbs, Stephen; Nihoyannopoulos, Petros; Garralda, Maria Elena; Rutherford, Mary; Mcculley, Caroline; Popplewell, Linda; Graham, Ian R; Dickson, George; Wood, Matthew JA; Wells, Dominic J; Wilton, Steve D; Kole, Ryszard; Straub, Volker; Bushby, Kate; Sewry, Caroline; Morgan, Jennifer E; Muntoni, Francesco

    2009-01-01

    Summary Background Mutations that disrupt the open reading frame and prevent full translation of DMD, the gene that encodes dystrophin, underlie the fatal X-linked disease Duchenne muscular dystrophy. Oligonucleotides targeted to splicing elements (splice switching oligonucleotides) in DMD pre-mRNA can lead to exon skipping, restoration of the open reading frame, and the production of functional dystrophin in vitro and in vivo, which could benefit patients with this disorder. Methods We did a single-blind, placebo-controlled, dose-escalation study in patients with DMD recruited nationally, to assess the safety and biochemical efficacy of an intramuscular morpholino splice-switching oligonucleotide (AVI-4658) that skips exon 51 in dystrophin mRNA. Seven patients with Duchenne muscular dystrophy with deletions in the open reading frame of DMD that are responsive to exon 51 skipping were selected on the basis of the preservation of their extensor digitorum brevis (EDB) muscle seen on MRI and the response of cultured fibroblasts from a skin biopsy to AVI-4658. AVI-4658 was injected into the EDB muscle; the contralateral muscle received saline. Muscles were biopsied between 3 and 4 weeks after injection. The primary endpoint was the safety of AVI-4658 and the secondary endpoint was its biochemical efficacy. This trial is registered, number NCT00159250. Findings Two patients received 0·09 mg AVI-4658 in 900 μL (0·9%) saline and five patients received 0·9 mg AVI-4658 in 900 μL saline. No adverse events related to AVI-4658 administration were reported. Intramuscular injection of the higher-dose of AVI-4658 resulted in increased dystrophin expression in all treated EDB muscles, although the results of the immunostaining of EDB-treated muscle for dystrophin were not uniform. In the areas of the immunostained sections that were adjacent to the needle track through which AVI-4658 was given, 44–79% of myofibres had increased expression of dystrophin. In randomly chosen

  5. GLIAL ABNORMALITIES IN MOOD DISORDERS

    PubMed Central

    Öngür, Dost; Bechtholt, Anita J.; Carlezon, William A.; Cohen, Bruce M.

    2015-01-01

    Multiple lines of evidence indicate that mood disorders are associated with abnormalities in the brain's cellular composition, especially in glial cells. Considered inert support cells in the past, glial cells are now known to be important for brain function. Treatments for mood disorders enhance glial cell proliferation, and experimental stimulation of cell growth has antidepressant effects in animal models of mood disorders. These findings suggest that the proliferation and survival of glial cells may be important in the pathogenesis of mood disorders and may be possible targets for the development of new treatments. In this chapter, we will review the evidence for glial abnormalities in mood disorders. We will discuss glial cell biology and evidence from postmortem studies of mood disorders. This is not carry out a comprehensive review; rather we selectively discuss existing evidence in building an argument for the role of glial cells in mood disorders. PMID:25377605

  6. Early right ventricular fibrosis and reduction in biventricular cardiac reserve in the dystrophin-deficient mdx heart.

    PubMed

    Meyers, Tatyana A; Townsend, DeWayne

    2015-02-15

    Duchenne muscular dystrophy (DMD) is a progressive disease of striated muscle deterioration. Respiratory and cardiac muscle dysfunction are particularly clinically relevant because they result in the leading causes of death in DMD patients. Despite the clinical and physiological significance of these systems, little has been done to understand the cardiorespiratory interaction in DMD. We show here that prior to the onset of global cardiac dysfunction, dystrophin-deficient mdx mice have increased cardiac fibrosis with the right ventricle being particularly affected. Using a novel biventricular cardiac catheterization technique coupled with cardiac stress testing, we demonstrate that both the right and left ventricles have significant reductions in both systolic and diastolic function in response to dobutamine. Unstimulated cardiac function is relatively normal except for a significant reduction in the ventricular pressure transient duration compared with controls. These biventricular analyses also reveal the absence of a dobutamine-induced increase in isovolumic relaxation in the right ventricle of control hearts. Simultaneous assessment of biventricular pressure demonstrates a dobutamine-dependent enhancement of coupling between the ventricles in control mice, which is absent in mdx mice. Furthermore, studies probing the passive-extension properties of the left ventricle demonstrate that the mdx heart is significantly more compliant compared with age-matched C57BL/10 hearts, which have an age-dependent stiffening that is completely absent from dystrophic hearts. These new results indicate that right ventricular fibrosis is an early indicator of the development of dystrophic cardiomyopathy, suggesting a mechanism by which respiratory insufficiency may accelerate the development of heart failure in DMD. PMID:25485898

  7. In vivo and in vitro correction of the mdx dystrophin gene nonsense mutation by short-fragment homologous replacement.

    PubMed

    Kapsa, R; Quigley, A; Lynch, G S; Steeper, K; Kornberg, A J; Gregorevic, P; Austin, L; Byrne, E

    2001-04-10

    Targeted genetic correction of mutations in cells is a potential strategy for treating human conditions that involve nonsense, missense, and transcriptional splice junction mutations. One method of targeted gene repair, single-stranded short-fragment homologous replacement (ssSFHR), has been successful in repairing the common deltaF508 3-bp microdeletion at the cystic fibrosis transmembrane conductance regulator (CFTR) locus in 1% of airway epithelial cells in culture. This study investigates in vitro and in vivo application of a double-stranded method variant of SFHR gene repair to the mdx mouse model of Duchenne muscular dystrophy (DMD). A 603-bp wild-type PCR product was used to repair the exon 23 C-to-T mdx nonsense transition at the Xp21.1 dys locus in cultured myoblasts and in tibialis anterior (TA) from male mdx mice. Multiple transfection and variation of lipofection reagent both improved in vitro SFHR efficiency, with successful conversion of mdx to wild-type nucleotide at the dys locus achieved in 15 to 20% of cultured loci and in 0.0005 to 0.1% of TA. The genetic correction of mdx myoblasts was shown to persist for up to 28 days in culture and for at least 3 weeks in TA. While a high frequency of in vitro gene repair was observed, the lipofection used here appeared to have adverse effects on subsequent cell viability and corrected cells did not express dystrophin transcript. With further improvements to in vitro and in vivo gene repair efficiencies, SFHR may find some application in DMD and other genetic neuromuscular disorders in humans. PMID:11426463

  8. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion

    PubMed Central

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-01-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of β1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisenseDp71 clones to analyze in detail the potential involvement of Dp71f isoform with the β1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell β1-integrin adhesion complex is composed of β1-integrin, talin, paxillin, α-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the β1-integrin complex components (β1-integrin, FAK, α-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the β1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and β1-integrin. Our data indicate that Dp71f is a structural component of the β1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance. PMID:16935300

  9. Dying myofibers in elderly mouse skeletal muscles are characterized by the appearance of dystrophin-encircled vacuoles.

    PubMed

    Lal, Navneet; Sheard, Philip

    2015-08-01

    The age-related loss of skeletal muscle mass and strength (sarcopenia) is predominantly attributed to myofiber atrophy, however the role or existence of myofiber death is currently unclear. We recently discovered dysmorphic myofibers in normal elderly mice resembling those that characterize the Autophagic Vacuolar Myopathies, and speculated that they may be myofibers caught in the act of dying. Since these myofibers were identifiable by Dystrophin Encircled Vacuoles and invaginations with Intracellular Localization we coined the acronym DEVILs and aimed to determine their frequency, pathogenesis and correlation with myofiber loss. In whole transverse sections of young (1-6 month) and elderly (22-26 month) C57Bl/6j mouse muscles, DEVILated myofiber number correlated with myofiber loss, being increasingly prevalent in aged extensor digitorum longus (R = 0.7, p < 0.001) and soleus (R = 0.6, p = 0.004) muscles, whilst rare in myofiber loss resistant muscles (cleido- and sternomastoid). In a cell viability dye-exclusion test, 17 ± 14% of DEVILated myofibers stained positive and were accompanied by immunoglobulin infiltration compared to 1 ± 1% of normal myofibers (p = 0.029). Virtually all DEVILs were acid-phosphatase reactive but contained p62 immunoreactivity and periodic acid-Schiff stained plaques. Compared to normal myofibers, BNIP3 immunostaining in DEVILated myofibers was reduced, whilst MAP-LC3b was indifferent. Cleaved-caspase 3 immunoreactivity was marginally elevated in DEVILated myofibers, but unaccompanied by nuclear DNA fragmentation. DEVILated myofibers were also identified in elderly rat (24 month) and cadaveric human (78 years) muscles. We argue that DEVIL formation reflects a previously undescribed fibre death process via a mechanism involving autophagic dysfunction and that the process may represent our first direct insight into the mechanism by which myofibers are lost in old age. PMID:25758773

  10. Nonradioactive assay for new microsatellite polymorphisms at the 5' end of the dystrophin gene, and estimation of intragenic recombination.

    PubMed Central

    Oudet, C; Heilig, R; Hanauer, A; Mandel, J L

    1991-01-01

    Indirect tracking of mutation by DNA polymorphisms is still essential for carrier and prenatal diagnosis of Duchenne/Becker muscular dystrophy, at least in the families where no deletion can be detected. Because of the relatively high level of intragenic recombination, informative and easily testable markers at both ends of the gene are necessary for efficient and accurate diagnosis. We report the characterization of two polymorphic microsatellite sequences (TG repeats) at the 5' end of the dystrophin gene, within 40 kb of the muscle-specific promoter. The most useful one (5' DYS MSA) has 10 alleles with a 57% heterozygosity and can be tested on small polyacrylamide gels in a nonradioactive PCR-based assay. Despite its large number of alleles, this microsatellite shows strong linkage disequilibrium with a two-allele polymorphism reported by Roberts et al., an indication of the stability of this type of sequences. We have used the new microsatellites at the 5' end, along with one we reported previously for the 3' end, to type the families in the CEPH (Centre d'Etude du Polymorphisme Humain) panel. While the number of informative families has increased by a factor of about two with respect to the study of Abbs et al., the estimates of the recombination fractions are in good agreement with this previous report, suggesting a 11% recombination across the gene (3% between the 5' end and the pERT87 region, 8% between pERT87 and the 3' end), which is about fivefold more than expected. However, these estimates still have wide confidence limits. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1867193

  11. Making chromosome abnormalities treatable conditions.

    PubMed

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122

  12. Foot abnormalities of wild birds

    USGS Publications Warehouse

    Herman, C.M.; Locke, L.N.; Clark, G.M.

    1962-01-01

    The various foot abnormalities that occur in birds, including pox, scaly-leg, bumble-foot, ergotism and freezing are reviewed. In addition, our findings at the Patuxent Wildlife Research Center include pox from dove, mockingbird, cowbird, grackle and several species of sparrows. Scaly-leg has been particularly prevalent on icterids. Bumble foot has been observed in a whistling swan and in a group of captive woodcock. Ergotism is reported from a series of captive Canada geese from North Dakota. Several drug treatments recommended by others are presented.

  13. Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice.

    PubMed

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A; Janssen, Paulus M L; Martin, Paul T

    2015-10-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. PMID:26435413

  14. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations.

    PubMed

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A F V

    2016-02-18

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  15. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations

    PubMed Central

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M.; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A.F.V.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  16. The shortest isoform of dystrophin (Dp40) interacts with a group of presynaptic proteins to form a presumptive novel complex in the mouse brain.

    PubMed

    Tozawa, Takenori; Itoh, Kyoko; Yaoi, Takeshi; Tando, So; Umekage, Masafumi; Dai, Hongmei; Hosoi, Hajime; Fushiki, Shinji

    2012-04-01

    Duchenne muscular dystrophy (DMD) causes cognitive impairment in one third of the patients, although the underlying mechanisms remain to be elucidated. Recent studies showed that mutations in the distal part of the dystrophin gene correlate well with the cognitive impairment in DMD patients, which is attributed to Dp71. The study on the expression of the shortest isoform, Dp40, has not been possible due to the lack of an isoform specific antibody. Dp40 has the same promoter as that found in Dp71 and lacks the normal C-terminal end of Dp427. In the present study, we have raised polyclonal antibody against the N-terminal sequence common to short isoforms of dystrophin, including Dp40, and investigated the expression pattern of Dp40 in the mouse brain. Affinity chromatography with this antibody and the consecutive LC-MS/MS analysis on the interacting proteins revealed that Dp40 was abundantly expressed in synaptic vesicles and interacted with a group of presynaptic proteins, including syntaxin1A and SNAP25, which are involved in exocytosis of synaptic vesicles in neurons. We thus suggest that Dp40 may form a novel protein complex and play a crucial role in presynaptic function. Further studies on these aspects of Dp40 function might provide more insight into the molecular mechanisms of cognitive impairment found in patients with DMD. PMID:22258561

  17. Abnormality on Liver Function Test

    PubMed Central

    2013-01-01

    Children with abnormal liver function can often be seen in outpatient clinics or inpatients wards. Most of them have respiratory disease, or gastroenteritis by virus infection, accompanying fever. Occasionally, hepatitis by the viruses causing systemic infection may occur, and screening tests are required. In patients with jaundice, the tests for differential diagnosis and appropriate treatment are important. In the case of a child with hepatitis B virus infection vertically from a hepatitis B surface antigen positive mother, the importance of the recognition of immune clearance can't be overstressed, for the decision of time to begin treatment. Early diagnosis changes the fate of a child with Wilson disease. So, screening test for the disease should not be omitted. Non-alcoholic fatty liver disease, which is mainly discovered in obese children, is a new strong candidate triggering abnormal liver function. Muscular dystrophy is a representative disease mimicking liver dysfunction. Although muscular dystrophy is a progressive disorder, and early diagnosis can't change the fate of patients, it will be better to avoid parent's blame for delayed diagnosis. PMID:24511518

  18. Medical management of abnormal pregnancy.

    PubMed

    Ratnam, S S; Prasad, R N

    1990-06-01

    Medical termination of abnormal pregnancy requires specific techniques since some conditions make therapy more effective, e.g., missed abortion intrauterine death and molar pregnancy, and others less so, e.g. anencephalic pregnancy. In all cases it is best to terminate the pregnancy as soon as possible to reduce anguish and risks of complications such as consumptive coagulopathy. Oxytocin is not consistently effective, but intraamniotic rivanol has oxytocic properties, and prostaglandins (PGs) are effective by several routes. Surgical methods are more popular in Japan and the US. A diagnostic flow chart is included and described. For missed abortion and fetal death vacuum aspiration or dilatation and evacuation are appropriate for early pregnancy, or PGs are used for later pregnancy, unless there are medical contraindications. Anencephalic pregnancy, usually diagnoses in 2nd or 3rd trimester, is resistant to medical therapy and must often be terminated by cesarean section. Molar pregnancy can be managed with vacuum aspiration at any length of gestation, but must be completed by curettage. Intraamniotic PGs are not advised for mole or fetal death. PG analogs can be administered intramuscularly, or vaginally in gel form. Other types of abnormal pregnancy that can be managed with PGs are spina bifida, hydrocephalus, hydrops fetalis, Dandy-Walker syndrome and Down's syndrome. Tubal pregnancy can be evacuated with intratubally administered PGs under laparoscopic control, thereby preserving tubal integrity. PMID:2225605

  19. Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy

    PubMed Central

    Malerba, Alberto; Kang, Jagjeet K; McClorey, Graham; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Wood, Matthew JA; Dickson, George

    2012-01-01

    The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD). In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in older patients may not be sufficient to restore the functionality of the muscles. We recently demonstrated that phosphorodiamidate morpholino oligomers (PMOs) can be used to re-direct myostatin splicing and promote the expression of an out-of-frame transcript so reducing the amount of the synthesized myostatin protein. Furthermore, the systemic administration of the same PMO conjugated to an octaguanidine moiety (Vivo-PMO) led to a significant increase in the mass of soleus muscle of treated mice. Here, we have further optimized the use of Vivo-PMO in normal mice and also tested the efficacy of the same PMO conjugated to an arginine-rich cell-penetrating peptide (B-PMO). Similar experiments conducted in mdx dystrophic mice showed that B-PMO targeting myostatin is able to significantly increase the tibialis anterior (TA) muscle weight and when coadministered with a B-PMO targeting the dystrophin exon 23, it does not have a detrimental interaction. This study confirms that myostatin knockdown by exon skipping is a potential therapeutic strategy to counteract muscle wasting conditions and dual myostatin and dystrophin skipping has potential as a therapy for DMD. PMID:23250360

  20. Lack of dystrophin protein Dp71 results in progressive cataract formation due to loss of fiber cell organization

    PubMed Central

    Darche, Marie; Sahel, José-Alain; Rendon, Alvaro; Tadayoni, Ramin

    2014-01-01

    Purpose Dp71 is the main product of the Duchenne muscular dystrophy (DMD) gene in the central nervous system. While studying the impact of its absence on retinal functions, we discovered that mice lacking Dp71 also developed a progressive opacification of the crystalline lens. The purpose of this study was to perform a detailed characterization of the cataract formation in Dp71 knockout (KO-Dp71) mice. Methods Cataract formations in KO-Dp71 mice and wild-type (wt) littermates were assessed in vivo by slit-lamp examination and ex vivo by histological analysis as a function of aging. The expression and cellular localization of the DMD gene products were monitored by western blot and immunohistochemical analysis. Fiber cell integrity was assessed by analyzing the actin cytoskeleton as well as the expression of aquaporin-0 (AQP0). Results As expected, a slit-lamp examination revealed that only one of the 20 tested wt animals presented with a mild opacification of the lens and only at the most advanced age. However, a lack of Dp71 was associated with a 40% incidence of cataracts as early as 2 months of age, which progressively increased to full penetrance by 7 months. A subsequent histological analysis revealed an alteration in the structures of the lenses of KO-Dp71 mice that correlated with the severity of the lens opacity. An analysis of the expression of the different dystrophin gene products revealed that Dp71 was the major DMD gene product expressed in the lens, especially in fiber cells. The role of Dp71 in fiber cells was also suggested by the progressive disorganization of the lens fibers, which was observed in the absence of Dp71 and demonstrated by irregular staining of the actin network and the aqueous channel AQP0. Conclusions While its role in the retina has been well characterized, this study demonstrates for the first time the role played by Dp71 in a different ocular tissue: the crystalline lens. It primarily demonstrates the role that Dp71 plays in the

  1. Abnormalities of the Erythrocyte Membrane

    PubMed Central

    Gallagher, Patrick G.

    2014-01-01

    Synopsis Primary abnormalities of the erythrocyte membrane, including the hereditary spherocytosis and hereditary elliptocytosis syndromes, are an important group of inherited hemolytic anemias. Classified by distinctive morphology on peripheral blood smear, these disorders are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Once considered routine, growing recognition of the longterm risks of splenectomy, including cardiovascular disease, thrombotic disorders, and pulmonary hypertension, as well as the emergence of penicillin-resistant pneumococci, a concern for infection in overwhelming postsplenectomy infection, have led to re-evaluation of the role of splenectomy. Current management guidelines acknowledge these important considerations when entertaining splenectomy and recommend detailed discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy. PMID:24237975

  2. Adults with Chromosome 18 Abnormalities.

    PubMed

    Soileau, Bridgette; Hasi, Minire; Sebold, Courtney; Hill, Annice; O'Donnell, Louise; Hale, Daniel E; Cody, Jannine D

    2015-08-01

    The identification of an underlying chromosome abnormality frequently marks the endpoint of a diagnostic odyssey. However, families are frequently left with more questions than answers as they consider their child's future. In the case of rare chromosome conditions, a lack of longitudinal data often makes it difficult to provide anticipatory guidance to these families. The objective of this study is to describe the lifespan, educational attainment, living situation, and behavioral phenotype of adults with chromosome 18 abnormalities. The Chromosome 18 Clinical Research Center has enrolled 483 individuals with one of the following conditions: 18q-, 18p-, Tetrasomy 18p, and Ring 18. As a part of the ongoing longitudinal study, we collect data on living arrangements, educational level attained, and employment status as well as data on executive functioning and behavioral skills on an annual basis. Within our cohort, 28 of the 483 participants have died, the majority of whom have deletions encompassing the TCF4 gene or who have unbalanced rearrangement involving other chromosomes. Data regarding the cause of and age at death are presented. We also report on the living situation, educational attainment, and behavioral phenotype of the 151 participants over the age of 18. In general, educational level is higher for people with all these conditions than implied by the early literature, including some that received post-high school education. In addition, some individuals are able to live independently, though at this point they represent a minority of patients. Data on executive function and behavioral phenotype are also presented. Taken together, these data provide insight into the long-term outcome for individuals with a chromosome 18 condition. This information is critical in counseling families on the range of potential outcomes for their child. PMID:25403900

  3. Breathing abnormalities in sleep in achondroplasia.

    PubMed Central

    Waters, K A; Everett, F; Sillence, D; Fagan, E; Sullivan, C E

    1993-01-01

    Overnight sleep studies were performed in 20 subjects with achondroplasia to document further the respiratory abnormalities present in this group. Somatosensory evoked potentials (SEPs) were recorded in 19 of the subjects to screen for the presence of brainstem abnormalities, which are one of the potential aetiological mechanisms. Fifteen children aged 1 to 14 years, and five young adults, aged 20 to 31 years were included. All had upper airway obstruction and 15 (75%) had a pathological apnoea index (greater than five per hour). Other sleep associated respiratory abnormalities, including partial obstruction, central apnoea, and abnormal electromyographic activity of accessory muscles of respiration, also showed a high prevalence. SEPs were abnormal in eight (42%), but there was no correlation between abnormal SEPs and apnoea during sleep, either qualitatively or quantitatively. A high prevalence of both sleep related respiratory abnormalities and abnormal SEPs in young subjects with achondroplasia was demonstrated. However, the sleep related respiratory abnormalities do not always result in significant blood gas disturbances or correlate with abnormal SEPs in this group. PMID:8215519

  4. Biochemical abnormalities in Pearson syndrome.

    PubMed

    Crippa, Beatrice Letizia; Leon, Eyby; Calhoun, Amy; Lowichik, Amy; Pasquali, Marzia; Longo, Nicola

    2015-03-01

    Pearson marrow-pancreas syndrome is a multisystem mitochondrial disorder characterized by bone marrow failure and pancreatic insufficiency. Children who survive the severe bone marrow dysfunction in childhood develop Kearns-Sayre syndrome later in life. Here we report on four new cases with this condition and define their biochemical abnormalities. Three out of four patients presented with failure to thrive, with most of them having normal development and head size. All patients had evidence of bone marrow involvement that spontaneously improved in three out of four patients. Unique findings in our patients were acute pancreatitis (one out of four), renal Fanconi syndrome (present in all patients, but symptomatic only in one), and an unusual organic aciduria with 3-hydroxyisobutyric aciduria in one patient. Biochemical analysis indicated low levels of plasma citrulline and arginine, despite low-normal ammonia levels. Regression analysis indicated a significant correlation between each intermediate of the urea cycle and the next, except between ornithine and citrulline. This suggested that the reaction catalyzed by ornithine transcarbamylase (that converts ornithine to citrulline) might not be very efficient in patients with Pearson syndrome. In view of low-normal ammonia levels, we hypothesize that ammonia and carbamylphosphate could be diverted from the urea cycle to the synthesis of nucleotides in patients with Pearson syndrome and possibly other mitochondrial disorders. PMID:25691415

  5. Semen abnormalities with SSRI antidepressants.

    PubMed

    2015-01-01

    Despite decades of widespread use, the adverse effect profile of "selective" serotonin reuptake inhibitor (SSRI) antidepressants has still not been fully elucidated. Studies in male animals have shown delayed sexual development and reduced fertility. Three prospective cohort studies conducted in over one hundred patients exposed to an SSRI for periods ranging from 5 weeks to 24 months found altered semen param-eters after as little as 3 months of exposure: reduced sperm concentration, reduced sperm motility, a higher percentage of abnormal spermatozoa, and increased levels of sperm DNA fragmentation. One clinical trial showed growth retardation in children considered depressed who were exposed to SSRls. SSRls may have endocrine disrupting properties. Dapoxetine is a short-acting serotonin reuptake inhibitor that is chemically related to fluoxetine and marketed in the European Union for men complaining of premature ejaculation. But the corresponding European summary of product characteristics does not mention any effects on fertility. In practice, based on the data available as of mid-2014, the effects of SSRI exposure on male fertility are unclear. However, it is a risk that should be taken into account and pointed out to male patients who would like to father a child or who are experiencing fertility problems. PMID:25729824

  6. The XXXXY Sex Chromosome Abnormality

    PubMed Central

    Barr, M. L.; Carr, D. H.; Pozsonyi, J.; Wilson, R. A.; Dunn, H. G.; Jacobson, T. S.; Miller, J. R.; Chown, B.

    1962-01-01

    The most common sex chromosome complex in sex chromatin-positive males with Klinefelter's syndrome is XXY. When the complex is XXYY or XXXY, the clinical findings do not seem to differ materially from those seen in XXY subjects, although more patients with these intersexual chromosome complements need to be studied to establish possible phenotypical expressions of the chromosomal variants. Two male children with an XXXXY sex chromosome abnormality are described. The data obtained from the study of these cases and five others described in the literature suggest that the XXXXY patient is likely to have congenital defects not usually seen in the common form of the Klinefelter syndrome. These include a triad of (1) skeletal anomalies (including radioulnar synostosis), (2) hypogenitalism (hypoplasia of penis and scrotum, incomplete descent of testes and defective prepubertal development of seminiferous tubules), and (3) greater risk of severe mental deficiency. That the conclusions are based on data from a small number of patients is emphasized, together with the need for a cytogenetic survey of a large control or unselected population. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10 PMID:13969480

  7. Abnormal Mitochondrial Dynamics and Neurodegenerative Diseases

    PubMed Central

    Su, Bo; Wang, Xinglong; Zheng, Ling; Perry, George; Smith, Mark A.; Zhu, Xiongwei

    2009-01-01

    Mitochondrial dysfunction is a prominent feature of various neurodegenerative diseases. A deeper understanding of the remarkably dynamic nature of mitochondria, characterized by a delicate balance of fission and fusion, has helped to fertilize a recent wave of new studies demonstrating abnormal mitochondrial dynamics in neurodegenerative diseases. This review highlights mitochondrial dysfunction and abnormal mitochondrial dynamics in Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease and discusses how these abnormal mitochondrial dynamics may contribute to mitochondrial and neuronal dysfunction. We propose that abnormal mitochondrial dynamics represents a key common pathway that mediates or amplifies mitochondrial dysfunction and neuronal dysfunction during the course of neurodegeneration. PMID:19799998

  8. Chromosomal abnormalities in child psychiatric patients.

    PubMed

    Hong, K E; Kim, J H; Moon, S Y; Oh, S K

    1999-08-01

    To determine the frequency of chromosomal abnormalities in a child psychiatric population, and to evaluate possible associations between types of abnormalities and patient's clinical characteristics, cytogenetic examination was performed on 604 patients. Demographic data, reasons for karyotyping, clinical signs, and other patient characteristics were assessed and correlated with the results from karyotyping. Chromosomal abnormalities were found in 69 patients (11.3%); these were structural in 49 cases and numerical in 20. Inversion of chromosome nine was found in 15 subjects, trisomy of chromosome 21 in 11, and fragile X in five patients. When karyotyping was performed because of intellectual impairment or multiple developmental delay, significantly more abnormalities were found than average; when performed because autistic disorder was suspected, the number of abnormalities was significantly fewer. There were no differences in clinical variables between structural and numerical abnormalities, nor among nine types of chromosomal abnormalities, except that numerical abnormalities and polymorphism were found at a later age, and that walking was more delayed and IQ was lower in patients with Down syndrome. Clinicians should be aware of the possible presence of chromosomal abnormalities in child psychiatric populations; the close collaboration with geneticists and the use of more defined guidelines for cytogenetic investigation are important. PMID:10485616

  9. Radiologic atlas of pulmonary abnormalities in children

    SciTech Connect

    Singleton, E.B.; Wagner, M.L.; Dutton, R.V.

    1988-01-01

    This book is an atlas about thoracic abnormalities in infants and children. The authors include computed tomographic, digital subtraction angiographic, ultrasonographic, and a few magnetic resonance (MR) images. They recognize and discuss how changes in the medical treatment of premature infants and the management of infection and pediatric tumors have altered some of the appearances and considerations in these diseases. Oriented toward all aspects of pulmonary abnormalities, the book starts with radiographic techniques and then discusses the normal chest, the newborn, infections, tumors, and pulmonary vascular diseases. There is comprehensive treatment of mediastinal abnormalities and a discussion of airway abnormalities.

  10. [WEAK COMBINED MAGNETIC FIELDS ADJUSTED TO THE PARAMETRIC RESONANCE FOR Ca2+ INTENSIFY DYSTROPHIN SYNTHESIS IN MDX MICE SKELETAL MUSCLES AFTER CELL THERAPY].

    PubMed

    Sokolova, A V; Sokolov, G V; Mikhailov, V M

    2016-01-01

    The mdx mice are an X-linked myopathic mutants, an animal model for human Duchenne muscular dystrophy (DMD). Mdx mice muscles are characterized by high level of striated muscle fibers (SMF) death followed by regeneration. As a result most SMFs of mdx mice have centrally located nuclei. The possibility of using stem cells therapy for the correction of DMD is actively being studied. One of the approaches to the usage of bone marrow stem cells for cellular therapy of DMD is the replacement of bone marrow after irradiation by X-rays. This method however does not give significant increase of dystrophin synthesis in mdx mice muscles fibers. We have tried to affect the mice after bone marrow transplantation by weak combined magnetic fields adjusted to the parametric resonance for Ca2+(Ca(2+)-MF) based on the data that the weak combined magnetic fields influence on tissues regeneration. We observed a significant increase in the proportion of dystrophin-positive SMFs in group of mdx mice radiation chimera 5 Gy and 3 Gy which was additionally exposed in Ca(2+)-MF in comparison with the control mdx mice and the group of mdx mice radiation chimera 5 Gy and 3 Gy which was kept in terrestrial magnetic field 2 months after chimera preparation--up to 15.8 and 18.3%, respectively. Also, there was an accumulation of SMFs without central nuclei. These data indicate a significanly increased efficacy of cell therapy in the case of additional exposition in Ca(2+)-MF. Thus, the efficiency of bone marrow transplantation mdx mice after both in doses 3 and 5 Gy was considerably enhanced by additional exposition to Ca(2+)-MF. Apparently, such magnetic field can intensify functioning of donor's nuclei which had been incorporated into muscle fibers. PMID:27228662

  11. An Abnormal Psychology Community Based Interview Assignment

    ERIC Educational Resources Information Center

    White, Geoffry D.

    1977-01-01

    A course option in abnormal psychology involves students in interviewing and observing the activities of individuals in the off-campus community who are concerned with some aspect of abnormal psychology. The technique generates student interest in the field when they interview people about topics such as drug abuse, transsexualism, and abuse of…

  12. Detection of Structural Abnormalities Using Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, M.; Maccalla, A.; Daggumati, V.; Gulati, S.; Toomarian, N.

    1996-01-01

    This paper describes a feed-forward neural net approach for detection of abnormal system behavior based upon sensor data analyses. A new dynamical invariant representing structural parameters of the system is introduced in such a way that any structural abnormalities in the system behavior are detected from the corresponding changes to the invariant.

  13. Immune Abnormalities in Patients with Autism.

    ERIC Educational Resources Information Center

    Warren, Reed P.; And Others

    1986-01-01

    A study of 31 autistic patients (3-28 years old) has revealed several immune-system abnormalities, including decreased numbers of T lymphocytes and an altered ratio of helper-to-suppressor T cells. Immune-system abnormalities may be directly related to underlying biologic processes of autism or an indirect reflection of the actual pathologic…

  14. Nail abnormalities in patients with vitiligo*

    PubMed Central

    Topal, Ilteris Oguz; Gungor, Sule; Kocaturk, Ozgur Emek; Duman, Hatice; Durmuscan, Mustafa

    2016-01-01

    Background Vitiligo is an acquired pigmentary skin disorder affecting 0.1-4% of the general population. The nails may be affected in patients with an autoimmune disease such as psoriasis, and in those with alopecia areata. It has been suggested that nail abnormalities should be apparent in vitiligo patients. Objective We sought to document the frequency and clinical presentation of nail abnormalities in vitiligo patients compared to healthy volunteers. We also examined the correlations between nail abnormalities and various clinical parameters. Methods This study included 100 vitiligo patients and 100 healthy subjects. Full medical histories were collected from the subjects, who underwent thorough general and nail examinations. All nail changes were noted. In the event of clinical suspicion of a fungal infection, additional mycological investigations were performed. Results Nail abnormalities were more prevalent in the patients (78%) than in the controls (55%) (p=0.001). Longitudinal ridging was the most common finding (42%), followed by (in descending order): leukonychia, an absent lunula, onycholysis, nail bed pallor, onychomycosis, splinter hemorrhage and nail plate thinning. The frequency of longitudinal ridging was significantly higher in patients than in controls (p<0.001). Conclusions Nail abnormalities were more prevalent in vitiligo patients than in controls. Systematic examination of the nails in such patients is useful because nail abnormalities are frequent. However, the causes of such abnormalities require further study. Longitudinal ridging and leukonychia were the most common abnormalities observed in this study. PMID:27579738

  15. [Abnormality in bone metabolism after burn].

    PubMed

    Gong, X; Xie, W G

    2016-08-20

    Burn causes bone metabolic abnormality in most cases, including the changes in osteoblasts and osteoclasts, bone mass loss, and bone absorption, which results in decreased bone mineral density. These changes are sustainable for many years after burn and even cause growth retardation in burned children. The mechanisms of bone metabolic abnormality after burn include the increasing glucocorticoids due to stress response, a variety of cytokines and inflammatory medium due to inflammatory response, vitamin D deficiency, hypoparathyroidism, and bone loss due to long-term lying in bed. This article reviews the pathogenesis and regularity of bone metabolic abnormality after burn, the relationship between bone metabolic abnormality and burn area/depth, and the treatment of bone metabolic abnormality, etc. and discusses the research directions in the future. PMID:27562160

  16. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice.

    PubMed

    Foltz, Steven J; Modi, Jill N; Melick, Garrett A; Abousaud, Marin I; Luan, Junna; Fortunato, Marisa J; Beedle, Aaron M

    2016-01-01

    Glycosylated α-dystroglycan provides an essential link between extracellular matrix proteins, like laminin, and the cellular cytoskeleton via the dystrophin-glycoprotein complex. In secondary dystroglycanopathy muscular dystrophy, glycosylation abnormalities disrupt a complex O-mannose glycan necessary for muscle structural integrity and signaling. Fktn-deficient dystroglycanopathy mice develop moderate to severe muscular dystrophy with skeletal muscle developmental and/or regeneration defects. To gain insight into the role of glycosylated α-dystroglycan in these processes, we performed muscle fiber typing in young (2, 4 and 8 week old) and regenerated muscle. In mice with Fktn disruption during skeletal muscle specification (Myf5/Fktn KO), newly regenerated fibers (embryonic myosin heavy chain positive) peaked at 4 weeks old, while total regenerated fibers (centrally nucleated) were highest at 8 weeks old in tibialis anterior (TA) and iliopsoas, indicating peak degeneration/regeneration activity around 4 weeks of age. In contrast, mature fiber type specification at 2, 4 and 8 weeks old was relatively unchanged. Fourteen days after necrotic toxin-induced injury, there was a divergence in muscle fiber types between Myf5/Fktn KO (skeletal-muscle specific) and whole animal knockout induced with tamoxifen post-development (Tam/Fktn KO) despite equivalent time after gene deletion. Notably, Tam/Fktn KO retained higher levels of embryonic myosin heavy chain expression after injury, suggesting a delay or abnormality in differentiation programs. In mature fiber type specification post-injury, there were significant interactions between genotype and toxin parameters for type 1, 2a, and 2x fibers, and a difference between Myf5/Fktn and Tam/Fktn study groups in type 2b fibers. These data suggest that functionally glycosylated α-dystroglycan has a unique role in muscle regeneration and may influence fiber type specification post-injury. PMID:26751696

  17. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice

    PubMed Central

    Foltz, Steven J.; Modi, Jill N.; Melick, Garrett A.; Abousaud, Marin I.; Luan, Junna; Fortunato, Marisa J.; Beedle, Aaron M.

    2016-01-01

    Glycosylated α-dystroglycan provides an essential link between extracellular matrix proteins, like laminin, and the cellular cytoskeleton via the dystrophin-glycoprotein complex. In secondary dystroglycanopathy muscular dystrophy, glycosylation abnormalities disrupt a complex O-mannose glycan necessary for muscle structural integrity and signaling. Fktn-deficient dystroglycanopathy mice develop moderate to severe muscular dystrophy with skeletal muscle developmental and/or regeneration defects. To gain insight into the role of glycosylated α-dystroglycan in these processes, we performed muscle fiber typing in young (2, 4 and 8 week old) and regenerated muscle. In mice with Fktn disruption during skeletal muscle specification (Myf5/Fktn KO), newly regenerated fibers (embryonic myosin heavy chain positive) peaked at 4 weeks old, while total regenerated fibers (centrally nucleated) were highest at 8 weeks old in tibialis anterior (TA) and iliopsoas, indicating peak degeneration/regeneration activity around 4 weeks of age. In contrast, mature fiber type specification at 2, 4 and 8 weeks old was relatively unchanged. Fourteen days after necrotic toxin-induced injury, there was a divergence in muscle fiber types between Myf5/Fktn KO (skeletal-muscle specific) and whole animal knockout induced with tamoxifen post-development (Tam/Fktn KO) despite equivalent time after gene deletion. Notably, Tam/Fktn KO retained higher levels of embryonic myosin heavy chain expression after injury, suggesting a delay or abnormality in differentiation programs. In mature fiber type specification post-injury, there were significant interactions between genotype and toxin parameters for type 1, 2a, and 2x fibers, and a difference between Myf5/Fktn and Tam/Fktn study groups in type 2b fibers. These data suggest that functionally glycosylated α-dystroglycan has a unique role in muscle regeneration and may influence fiber type specification post-injury. PMID:26751696

  18. Sleep physiology, abnormal States, and therapeutic interventions.

    PubMed

    Wickboldt, Alvah T; Bowen, Alex F; Kaye, Aaron J; Kaye, Adam M; Rivera Bueno, Franklin; Kaye, Alan D

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  19. Sleep Physiology, Abnormal States, and Therapeutic Interventions

    PubMed Central

    Wickboldt, Alvah T.; Bowen, Alex F.; Kaye, Aaron J.; Kaye, Adam M.; Rivera Bueno, Franklin; Kaye, Alan D.

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  20. Right Liver Lobe Hypoplasia and Related Abnormalities

    PubMed Central

    Alicioglu, Banu

    2015-01-01

    Summary Background Hypoplasia and agenesis of the liver lobe is a rare abnormality. It is associated with biliary system abnormalities, high location of the right kidney, and right colon interposition. These patients are prone to gallstones, portal hypertension and possible surgical complications because of anatomical disturbance. Case Report Magnetic resonance imaging features of a rare case of hypoplasia of the right lobe of the liver in a sigmoid cancer patient are presented. Conclusions Hypoplasia of the right liver should not be confused with liver atrophy; indeed, associations with other coexistent abnormalities are also possible. Awareness and familiarity with these anomalies are necessary to avoid fatal surgical and interventional complications. PMID:26634012

  1. Numerically abnormal chromosome constitutions in humans

    SciTech Connect

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  2. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: Members of the nuclear DAPC associate with the nuclear matrix

    SciTech Connect

    Fuentes-Mera, Lizeth; Rodriguez-Munoz, Rafael; Gonzalez-Ramirez, Ricardo; Garcia-Sierra, Francisco; Gonzalez, Everardo; Mornet, Dominique; Cisneros, Bulmaro . E-mail: bcisnero@cinvestav.mx

    2006-10-01

    Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, {beta}-sarcoglycan, {beta}-dystroglycan, {alpha}- and {beta}-syntrophin, {alpha}1- and {beta}-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, {beta}-dystroglycan, nNOS, {beta}-sarcoglycan, {alpha}/{beta} syntrophin, {alpha}1-dystrobrevin and {beta}-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, {beta}-dystroglycan and {beta}-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture.

  3. Low-set ears and pinna abnormalities

    MedlinePlus

    Low-set ears; Microtia; "Lop" ear; Pinna abnormalities; Genetic defect-pinna; Congenital defect-pinna ... The outer ear or "pinna" forms when the baby is growing in the mother's womb. The growth of this ear part ...

  4. Pinna abnormalities and low-set ears

    MedlinePlus

    ... because they do not affect hearing. However, sometimes cosmetic surgery is recommended. Skin tags may be tied off, ... 5 years old. More severe abnormalities may require surgery for cosmetic reasons as well as for function. Surgery to ...

  5. Abnormal Uterine Bleeding (Beyond the Basics)

    MedlinePlus

    ... Approach to abnormal uterine bleeding in nonpregnant reproductive-age women Differential diagnosis of genital tract bleeding in women Postmenopausal uterine bleeding The following organizations also provide reliable health information. ● National Library of Medicine ( www.nlm.nih.gov/ ...

  6. Spontaneous occurrence of chromosome abnormality in cats.

    PubMed

    THULINE, H C; NORBY, D W

    1961-08-25

    A syndrome in male cats analogous to chromatin-positive Klinefelter's syndrome in human males has been demonstrated. The physical characteristics which suggested an abnormality of chromosome number in cats were "calico" or "tortoise-shell" coat colors in a male. Buccal mucosal smears were found to have "female-type" patterns in two out of 12 such male cats screened, and these two were found to have a diploid chromosome number of 39 rather than the normal 38. Testicular biopsy performed on one revealed an abnormal pattern; no gonadal tissue was found in the other cat with an abnormal chromosome number. These findings indicate that the cat, in addition to the mouse, is available for experimental study of chromosome number abnormalities. PMID:13776765

  7. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models.

    PubMed

    van der Pijl, Elizabeth M; van Putten, Maaike; Niks, Erik H; Verschuuren, Jan J G M; Aartsma-Rus, Annemieke; Plomp, Jaap J

    2016-06-01

    Duchenne muscular dystrophy (DMD) is an X-linked myopathy caused by dystrophin deficiency. Dystrophin is present intracellularly at the sarcolemma, connecting actin to the dystrophin-associated glycoprotein complex. Interestingly, it is enriched postsynaptically at the neuromuscular junction (NMJ), but its synaptic function is largely unknown. Utrophin, a dystrophin homologue, is also concentrated at the NMJ, and upregulated in DMD. It is possible that the absence of dystrophin at NMJs in DMD causes neuromuscular transmission defects that aggravate muscle weakness. We studied NMJ function in mdx mice (lacking dystrophin) and wild type mice. In addition, mdx/utrn(+/-) and mdx/utrn(-/-) mice (lacking utrophin) were used to investigate influences of utrophin levels. The three Duchenne mouse models showed muscle weakness when comparatively tested in vivo, with mdx/utrn(-/-) mice being weakest. Ex vivo muscle contraction and electrophysiological studies showed a reduced safety factor of neuromuscular transmission in all models. NMJs had ~ 40% smaller miniature endplate potential amplitudes compared with wild type, indicating postsynaptic sensitivity loss for the neurotransmitter acetylcholine. However, nerve stimulation-evoked endplate potential amplitudes were unchanged. Consequently, quantal content (i.e. the number of acetylcholine quanta released per nerve impulse) was considerably increased. Such a homeostatic compensatory increase in neurotransmitter release is also found at NMJs in myasthenia gravis, where autoantibodies reduce acetylcholine receptors. However, high-rate nerve stimulation induced exaggerated endplate potential rundown. Study of NMJ morphology showed that fragmentation of acetylcholine receptor clusters occurred in all models, being most severe in mdx/utrn(-/-) mice. Overall, we showed mild 'myasthenia-like' neuromuscular synaptic dysfunction in several Duchenne mouse models, which possibly affects muscle weakness and degeneration. PMID:27037492

  8. Abnormal brain scan with subacute extradural haematomas

    PubMed Central

    Morley, J. Barrie; Langford, Keith H.

    1970-01-01

    Four patients are described with proven subacute extradural haematomas, each with an abnormal cerebral scan of diagnostic assistance. A possible mechanism of production of the subacute extradural haematoma is discussed, and appears to be similar to the mechanism involved in the subacute subdural haematoma. The means by which the abnormal scan results in such cases is also examined, from which it appears that non-specific meningeal membrane inflammatory reaction surrounding the haematoma is significant. Images PMID:5478950

  9. Prevalence of asymptomatic urinary abnormalities among adolescents.

    PubMed

    Fouad, Mohamed; Boraie, Maher

    2016-05-01

    To determine the prevalence of asymptomatic urinary abnormalities in adolescents, first morning clean mid-stream urine specimens were obtained from 2500 individuals and examined by dipstick and light microscopy. Adolescents with abnormal screening results were reexamined after two weeks and those who had abnormal results twice were subjected to systemic clinical examination and further clinical and laboratory investigations. Eight hundred and three (32.1%) individuals had urinary abnormalities at the first screening, which significantly decreased to 345 (13.8%) at the second screening, (P <0.001). Hematuria was the most common urinary abnormalities detected in 245 (9.8%) adolescents who had persistent urine abnormalities; 228 (9.1%) individuals had non glomerular hematuria. The hematuria was isolated in 150 (6%) individuals, combined with leukocyturia in 83 (3.3%) individuals, and combined with proteinuria in 12 (0.5%) individuals. Leukocyturia was detected in 150 (6%) of all studied adolescents; it was isolated in 39 (1.6%) individuals and combined with proteinuria in 28 (1.1%) of them. Asymptomatic bacteriuria was detected in 23 (0.9%) of all studied adolescents; all the cases were females. Proteinuria was detected in 65 (2.6%) of all the studied adolescents; 45 (1.8%) individuals had <0.5 g/day and twenty (0.8%) individuals had 0.5-3 g/day. Asymptomatic urinary abnormalities were more common in males than females and adolescents from rural than urban areas (P <0.01) and (P <0.001), respectively. The present study found a high prevalence of asymptomatic urinary abnormalities among adolescents in our population. PMID:27215241

  10. Abnormal ferrite in hyper-eutectoid steels

    SciTech Connect

    Chairuangsri, T.; Edmonds, D.V.

    2000-04-19

    The microstructural characteristics of ultra-high carbon hyper-eutectoid Fe-C and Fe-C-Cu experimental steels have been examined after isothermal transformation in a range just beneath the eutectoid temperature. Particular attention was paid to the formation of so-called abnormal ferrite, which refers to coarse ferrite grains which can form, in hyper-eutectoid compositions, on the pro-eutectoid cementite before the pearlite reaction occurs. Thus it is confirmed that the abnormal ferrite is not a result of pearlite coarsening, but of austenite decomposition before the conditions for coupled growth of pearlite are established. The abnormal ferrite formed on both allotriomorphic and Widmanstaetten forms of pro-eutectoid cementite, and significantly, it was observed that the pro-eutectoid cementite continued to grow, despite being enclosed by the abnormal ferrite. Under certain conditions this could lead to the eventual formation of substantially reduced amounts of pearlite. Thus, a model for carbon redistribution that allows the proeutectoid cementite to thicken concurrently with the abnormal ferrite is presented. The orientation relationships between the abnormal ferrite and pro-eutectoid cementite were also determined and found to be close to those which have been reported between pearlitic ferrite and pearlitic cementite.

  11. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing

    PubMed Central

    2011-01-01

    Background Duchenne and Becker Muscular dystrophies (DMD/BMD) are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements. Methods We selected 47 patients (41 families; 35 DMD, 6 BMD) without deletions and duplications in DMD gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis). This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis. Results We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n = 10 patients), followed by TAG (n = 7) and TAA (n = 4). We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the DMD gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65. Conclusion The analysis of our patients' sample, carrying point mutations or complex rearrangements in DMD gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects and dystrophin

  12. [Change in gastrocnemius dystrophin and metabolic enzymes and increase in high-speed exhaustive time induced by hypoxic training in rats].

    PubMed

    Xu, Yu-Ming; Li, Jun-Ping; Wang, Rui-Yuan

    2012-08-25

    The aim of the present study was to explore the changes and roles of dystrophin and membrane permeability in hypoxic training. Seventy-two 8-week-old Sprague Dawley (SD) rats were randomly divided into 4 groups, normoxic non-train (NC), normoxic train (NT), hypoxic non-train (HC), and hypoxic train (HT) groups. The rats of each group were randomly divided into three subgroups, non-exhaustive, low-speed exhaustive test and high-speed exhaustive test subgroups. Rats in hypoxia groups lived and were trained in a condition of 12.7% oxygen concentration (equal to the 4 300 m altitude). NT and HT groups received 4 weeks of training exercise. Then the rats in all non-exhaustive subgroups were sacrificed, and gastrocnemii were sampled for the measurements of lactate dehydrogenase (LDH), succinatedehydrogenase (SDH), malate dehydrogenase (MDH) activities. Moreover, serum LDH activity was analyzed. Low-speed exhaustive test and high-speed exhaustive test subgroups received exhaustive tests with 20 (71% VO2max) and 30 m/min speed (86% VO2max), respectively, and their exhaustive times were recorded. The results showed that, compared with normoxic groups, the weights in hypoxia groups exhibited slower increase. The level of dystrophin in HT group without exhaustion test didn't change significantly. The muscle MDH activities were markedly affected by the different oxygen concentration, training and their interaction (P < 0.05), whereas the muscle LDH activities were only affected by the different oxygen concentration (P < 0.05). Serum LDH activities were affected by the interaction of the different oxygen concentration and training (P < 0.05), showing decreased muscle LDH and increased blood LDH activities. The exhaustion time were markedly affected by the different test speed, training and their interaction (P < 0.05), and also affected by the interaction of the different oxygen concentration and training (P < 0.05), but didn't affected by oxygen concentration. The exhaustive

  13. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  14. Abnormal magnetic field effects on electrogenerated chemiluminescence.

    PubMed

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes in solution at room temperature. PMID:25772580

  15. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    PubMed Central

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

  16. Next-generation sequencing discloses a nonsense mutation in the dystrophin gene from long preserved dried umbilical cord and low-level somatic mosaicism in the proband mother.

    PubMed

    Taniguchi-Ikeda, Mariko; Takeshima, Yasuhiro; Lee, Tomoko; Nishiyama, Masahiro; Awano, Hiroyuki; Yagi, Mariko; Unzaki, Ai; Nozu, Kandai; Nishio, Hisahide; Matsuo, Masafumi; Kurahashi, Hiroki; Toda, Tatsushi; Morioka, Ichiro; Iijima, Kazumoto

    2016-04-01

    Duchene muscular dystrophy (DMD) is a progressive muscle wasting disease, caused by mutations in the dystrophin (DMD) on the X chromosome. One-third of patients are estimated to have de novo mutations. To provide in-depth genetic counseling, the comprehensive identification of mutations is mandatory. However, many DMD patients did not undergo genetic diagnosis because detailed genetic diagnosis was not available or their mutational types were difficult to identify. Here we report the genetic testing of a sporadic DMD boy, who died >20 years previously. Dried umbilical cord preserved for 38 years was the only available source of genomic DNA. Although the genomic DNA was severely degraded, multiplex ligation-dependent probe amplification analysis was performed but no gross mutations found. Sanger sequencing was attempted but not conclusive. Next-generation sequencing (NGS) was performed by controlling the tagmentation during library preparation. A nonsense mutation in DMD (p.Arg2095*) was clearly identified in the proband. Consequently, the identical mutation was detected as an 11% mosaic mutation from his healthy mother. Finally, the proband's sister was diagnosed as a non-carrier of the mutation. Thus using NGS we have identified a pathogenic DMD mutation from degraded DNA and low-level somatic mosaicism, which would have been overlooked using Sanger sequencing. PMID:26740235

  17. Spatio-Temporal Differences in Dystrophin Dynamics at mRNA and Protein Levels Revealed by a Novel FlipTrap Line

    PubMed Central

    Fraser, Scott E.; Trinh, Le A.

    2015-01-01

    Dystrophin (Dmd) is a structural protein that links the extracellular matrix to actin filaments in muscle fibers and is required for the maintenance of muscles integrity. Mutations in Dmd lead to muscular dystrophies in humans and other vertebrates. Here, we report the characterization of a zebrafish gene trap line that fluorescently labels the endogenous Dmd protein (Dmd-citrine, Gt(dmd-citrine) ct90a). We show that the Dmd-citrine line recapitulates endogenous dmd transcript expression and Dmd protein localization. Using this Dmd-citrine line, we follow Dmd localization to the myosepta in real-time using time-lapse microscopy, and find that the accumulation of Dmd protein at the transverse myosepta coincides with the onset of myotome formation, a critical stage in muscle maturation. We observed that Dmd protein localizes specifically to the myosepta prior to dmd mRNA localization. Additionally, we demonstrate that the Dmd-citrine line can be used to assess muscular dystrophy following both genetic and physical disruptions of the muscle. PMID:26083378

  18. Pregnancy after preimplantation diagnosis for a deletion in the dystrophin gene by polymerase chain reaction in embryos obtained after intracytoplasmic sperm injection

    SciTech Connect

    Lissens, W.; Liu, J.; Van Broeckhoven, C.

    1994-09-01

    Duchenne muscular dystrophy (DMD) is one of the most common X-linked recessive diseases. In order to be able to perform a DMD-specific preimplantation diagnosis (PID) in a female carrier of a deletion of exons 3 to 18 in the dystrophin gene, we have developed a PCR assay to detect the deletion based on sequences of exon 17. The efficiency of this PCR was evaluated on 50 single blastomeres from 12 normal control embryos and on 41 blastomeres for 9 male and 3 female embryos from the female DMD carrier, obtained after a first preimplantation diagnosis by sexing. The exon 17 region was amplified with 100% efficiency, except in all 21 blastomeres from 6 male embryos from the carrier where no PCR signals were observed. The negative results in these blastomeres were interpreted as being found only in male embryos carrying the deletion. Intracytoplasmic sperm injection was carried out on the carrier`s metaphase II oocytes retrieved after ovarian stimulation. Embryos were analyzed for the presence of exon 17 and 2 male embryos were found to be deleted, while 4 embryos showed normal amplification signals. Three of the latter embryos were replaced, resulting in a singleton pregnancy. Amniotic cell analysis showed a normal female karyotype and DNA analysis indicated a non-carrier.

  19. Early Progressive Dilated Cardiomyopathy in a Family with Becker Muscular Dystrophy Related to a Novel Frameshift Mutation in the Dystrophin Gene Exon 27

    PubMed Central

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O.; Marks, Harold; Flanigan, Kevin M.; Moore, Steven A.

    2014-01-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device (LVAD) implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAins GG), in which 7 base pairs are deleted and two are inserted. While this predicts an amino acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both siblings developed progressive heart failure secondary to early onset DCM. In addition, their 7 year old nephew with delayed gross motor development, mild proximal muscle weakness, and markedly elevated serum creatine kinase (CK) level (> 13,000 IU/L) at 16 months was recently demonstrated to have the familial DMD mutation. Here we report a novel genotype of BMD with early onset DCM and progressive lethal heart failure during early adolescence. PMID:25537791

  20. Screening Duchenne and Becker muscular dystrophy patients for deletions in 30 exons of the dystrophin gene by three-multiplex PCR

    SciTech Connect

    Risch, N. )

    1992-09-01

    Deletion mutations of the dystrophin gene may cause either the severe Duchenne muscular dystrophy (DMD) or the milder, allelic Becker muscular dystrophy (BMD) and are clustered in two high-frequency-deletion regions (HFDRs) located, respectively, 500 kb and 1,200 kb downstream from the 5[prime] end of the gene. Three PCR reactions described allowed the analysis of a total of 30 exons and led, to the identification of three additional deletions involving the following exons: (a) 42 only, (b) 28-42, and (c) 16 only, none of which were detected with the two original multiplex reactions. Therefore, the three modified multiplexes detected 95 of the 96 deletions identified among the 152 patients studied so far by using Southern analysis and cDNA probes. The only deletion that remained undetected with this system involves exons 22-25 and generates the junction fragment described elsewhere. The percentage of deletion mutations among DMS/BMD patients amounts to 63%, which is in agreement with similar estimates from other laboratories. When field-inversion gel electrophoresis is coupled to Southern analysis, the detection rate of deletion and duplication mutations reaches 65%.

  1. One Hundred Twenty-One Dystrophin Point Mutations Detected from Stored DNA Samples by Combinatorial Denaturing High-Performance Liquid Chromatography

    PubMed Central

    Torella, Annalaura; Trimarco, Amelia; Del Vecchio Blanco, Francesca; Cuomo, Anna; Aurino, Stefania; Piluso, Giulio; Minetti, Carlo; Politano, Luisa; Nigro, Vincenzo

    2010-01-01

    Duchenne and Becker muscular dystrophies are caused by a large number of different mutations in the dystrophin gene. Outside of the deletion/duplication “hot spots,” small mutations occur at unpredictable positions. These account for about 15 to 20% of cases, with the major group being premature stop codons. When the affected male is deceased, carrier testing for family members and prenatal diagnosis become difficult and expensive. We tailored a cost-effective and reliable strategy to discover point mutations from stored DNA samples in the absence of a muscle biopsy. Samples were amplified in combinatorial pools and tested by denaturing high-performance liquid chromatography analysis. An anomalous elution profile belonging to two different pools univocally addressed the allelic variation to an unambiguous sample. Mutations were then detected by sequencing. We identified 121 mutations of 99 different types. Fifty-six patients show stop codons that represent the 46.3% of all cases. Three non-obvious single amino acid mutations were considered as causative. Our data support combinatorial denaturing high-performance liquid chromatography analysis as a clear-cut strategy for time and cost-effective identification of small mutations when only DNA is available. PMID:19959795

  2. GABA(A) receptor expression and inhibitory post-synaptic currents in cerebellar Purkinje cells in dystrophin-deficient mdx mice.

    PubMed

    Kueh, S L L; Head, S I; Morley, J W

    2008-02-01

    1. Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease and arises as a consequence of an absence or disruption of the protein dystrophin. In addition to wasting of the skeletal musculature, boys with DMD have a significant degree of cognitive impairment. 2. We show here that there is no difference between littermate control and mdx mice (a murine model of DMD) in the overall expression of the GABA(A) receptor a1-subunit, supporting the suggestion that it is the clustering at the synapse that is affected and not the expression of the GABA(A) receptor protein. 3. We report a significant reduction in both the frequency and amplitude of spontaneous inhibitory post-synaptic currents in cerebellar Purkinje cells of mdx mice compared with littermate controls, consistent with the reported reduction in the number and size of GABA(A) receptor clusters immunoreactive for a1- and a2-subunits at the post-synaptic densities. 4. These results may explain some of the behavioural problems and cognitive impairment reported in DMD. PMID:17941889

  3. Abnormal head position in infantile nystagmus syndrome.

    PubMed

    Noval, Susana; González-Manrique, Mar; Rodríguez-Del Valle, José María; Rodríguez-Sánchez, José María

    2011-01-01

    Infantile nystagmus is an involuntary, bilateral, conjugate, and rhythmic oscillation of the eyes which is present at birth or develops within the first 6 months of life. It may be pendular or jerk-like and, its intensity usually increases in lateral gaze, decreasing with convergence. Up to 64% of all patients with nystagmus also present strabismus, and even more patients have an abnormal head position. The abnormal head positions are more often horizontal, but they may also be vertical or take the form of a tilt, even though the nystagmus itself is horizontal. The aim of this article is to review available information about the origin and treatment of the abnormal head position associated to nystagmus, and to describe our treatment strategies. PMID:24533187

  4. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  5. Parsing abnormal grain growth in specialty aluminas

    NASA Astrophysics Data System (ADS)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  6. [Nutritional abnormalities in chronic obstructive pulmonary disease].

    PubMed

    Gea, Joaquim; Martínez-Llorens, Juana; Barreiro, Esther

    2014-07-22

    Nutritional abnormalities are associated with chronic obstructive pulmonary disease with a frequency ranging from 2 to 50%, depending on the geographical area and the study design. Diagnostic tools include anthropometry, bioelectrical impedance, dual energy radioabsortiometry and deuterium dilution, being the body mass and the lean mass indices the most frequently used parameters. While the most important consequences of nutritional abnormalities are muscle dysfunction and exercise limitation, factors implicated include an imbalance between caloric intake and consumption, and between anabolic and catabolic hormones, inflammation, tobacco smoking, poor physical activity, hypoxemia, some drugs and aging/comorbidities. The most important molecular mechanism for malnutrition associated with chronic obstructive pulmonary disease appears to be the mismatching between protein synthesis and breakdown. Among the therapeutic measures proposed for these nutritional abnormalities are improvements in lifestyle and nutritional support, although the use of anabolic drugs (such as secretagogues of the growth hormone) offers a new therapeutic strategy. PMID:24054776

  7. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  8. Echocardiographic abnormalities in the mucopolysaccharide storage diseases.

    PubMed

    Gross, D M; Williams, J C; Caprioli, C; Dominguez, B; Howell, R R

    1988-01-01

    The mucopolysaccharide storage diseases express themselves clinically with a wide variety of abnormalities, including growth and mental retardation, skeletal abnormalities, clouded corneas, nerve compression syndromes, upper airway obstruction and cardiovascular involvement, to name the most common. In most cases the cause of early death is cardiorespiratory failure secondary to cardiovascular involvement and upper airway obstruction. The findings of cardiac ultrasound examination in 29 children, adolescents and young adults are presented. In addition to the previously well-described abnormalities of the mitral and aortic valves in several types of mucopolysaccharide storage disease, we report patchy involvement in some cases, 3 instances of asymmetric septal hypertrophy not previously reported in mucopolysaccharide storage diseases, cardiac involvement in half of our patients with Sanfilippo syndrome and a lack of age-related severity of cardiac involvement even within the specific syndromes. PMID:3122547

  9. Advances in understanding paternally transmitted Chromosomal Abnormalities

    SciTech Connect

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  10. Cone photopigment bleaching abnormalities in diabetes.

    PubMed

    Elsner, A E; Burns, S A; Lobes, L A; Doft, B H

    1987-04-01

    We have used a color-matching technique to obtain estimates of the optical density of cone photopigments as a function of retinal illuminance in patients with insulin-dependent diabetes mellitus (IDDM). We found that the half-bleach illuminance of some patients is abnormally high. That is, it takes more light to bleach an equivalent amount of photopigment in these patients. Since low illuminance color matches for these patients are normal, this implies that these patients have normal amounts of photopigment, but the photopigment is not bleaching normally. This result clearly points to abnormalities in the outer retina of these diabetic patients. The most likely causes of this abnormality are either decreases in the ability of the cones to absorb light, or an increased rate of regeneration of the cone photopigments. PMID:3557875

  11. Schizophrenia and abnormal brain network hubs

    PubMed Central

    Rubinov, Mikail; Bullmore, Ed.

    2013-01-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia. PMID:24174905

  12. Abnormal carbene-silicon halide complexes.

    PubMed

    Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Schaefer, Henry F; Robinson, Gregory H

    2016-04-14

    Reaction of the anionic N-heterocyclic dicarbene (NHDC), [:C{[N(2,6-Pr(i)2C6H3)]2CHCLi}]n (1), with SiCl4 gives the trichlorosilyl-substituted (at the C4 carbon) N-heterocyclic carbene complex (7). Abnormal carbene-SiCl4 complex (8) may be conveniently synthesized by combining 7 with HCl·NEt3. In addition, 7 may react with CH2Cl2 in warm hexane, giving the abnormal carbene-complexed SiCl3(+) cation (9). The nature of the bonding in 9 was probed with complementary DFT computations. PMID:26605692

  13. Hemorheological abnormalities in human arterial hypertension

    NASA Astrophysics Data System (ADS)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  14. Ocular motor abnormalities in neurodegenerative disorders

    PubMed Central

    Antoniades, C A; Kennard, C

    2015-01-01

    Eye movements are a source of valuable information to both clinicians and scientists as abnormalities of them frequently act as clues to the localization of a disease process. Classically, they are divided into two main types: those that hold the gaze, keeping images steady on the retina (vestibulo-ocular and optokinetic reflexes) and those that shift gaze and redirect the line of sight to a new object of interest (saccades, vergence, and smooth pursuit). Here we will review some of the major ocular motor abnormalities present in neurodegenerative disorders. PMID:25412716

  15. Nonpathologizing trauma interventions in abnormal psychology courses.

    PubMed

    Hoover, Stephanie M; Luchner, Andrew F; Pickett, Rachel F

    2016-01-01

    Because abnormal psychology courses presuppose a focus on pathological human functioning, nonpathologizing interventions within these classes are particularly powerful and can reach survivors, bystanders, and perpetrators. Interventions are needed to improve the social response to trauma on college campuses. By applying psychodynamic and feminist multicultural theory, instructors can deliver nonpathologizing interventions about trauma and trauma response within these classes. We recommend class-based interventions with the following aims: (a) intentionally using nonpathologizing language, (b) normalizing trauma responses, (c) subjectively defining trauma, (d) challenging secondary victimization, and (e) questioning the delineation of abnormal and normal. The recommendations promote implications for instructor self-reflection, therapy interventions, and future research. PMID:26460794

  16. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  17. Heterozygous deletion of a 2-Mb region including the dystroglycan gene in a patient with mild myopathy, facial hypotonia, oral-motor dyspraxia and white matter abnormalities.

    PubMed

    Frost, Amy R; Böhm, Sabrina V; Sewduth, Raj N; Josifova, Dragana; Ogilvie, Caroline Mackie; Izatt, Louise; Roberts, Roland G

    2010-07-01

    Dystroglycan is a protein which binds directly to two proteins defective in muscular dystrophies (dystrophin and laminin alpha2) and whose own aberrant post-translational modification is the common aetiological route of neuromuscular diseases associated with mutations in genes encoding at least six other proteins (POMT1, POMT2, POMGnT1, LARGE, FKTN and FKRP). It is surprising, therefore, that to our knowledge no mutations of the human dystroglycan gene itself have yet been reported. In this study, we describe a patient with a heterozygous de novo deletion of a approximately 2-Mb region of chromosome 3, which includes the dystroglycan gene (DAG1). The patient is a 16-year-old female with learning difficulties, white matter abnormalities, elevated serum creatine kinase, oral-motor dyspraxia and facial hypotonia but minimal clinically significant involvement of other muscles. As these symptoms are a subset of those observed in disorders of dystroglycan glycosylation (muscle-eye-brain disease and Warker-Warburg syndrome), we assess the likely contribution to her phenotype of her heterogosity for a null mutation of DAG1. We also show that the transcriptional compensation observed in the Dag1(+/-) mouse is not observed in the patient. Although we cannot show that haploinsufficiency of DAG1 is the sole cause of this patient's myopathy and white matter changes, this case serves to constrain our ideas of the severity of the phenotypic consequences of heterozygosity for null DAG1 mutations. PMID:20234391

  18. Heterozygous deletion of a 2-Mb region including the dystroglycan gene in a patient with mild myopathy, facial hypotonia, oral-motor dyspraxia and white matter abnormalities

    PubMed Central

    Frost, Amy R; Böhm, Sabrina V; Sewduth, Raj N; Josifova, Dragana; Ogilvie, Caroline Mackie; Izatt, Louise; Roberts, Roland G

    2010-01-01

    Dystroglycan is a protein which binds directly to two proteins defective in muscular dystrophies (dystrophin and laminin α2) and whose own aberrant post-translational modification is the common aetiological route of neuromuscular diseases associated with mutations in genes encoding at least six other proteins (POMT1, POMT2, POMGnT1, LARGE, FKTN and FKRP). It is surprising, therefore, that to our knowledge no mutations of the human dystroglycan gene itself have yet been reported. In this study, we describe a patient with a heterozygous de novo deletion of a ∼2-Mb region of chromosome 3, which includes the dystroglycan gene (DAG1). The patient is a 16-year-old female with learning difficulties, white matter abnormalities, elevated serum creatine kinase, oral-motor dyspraxia and facial hypotonia but minimal clinically significant involvement of other muscles. As these symptoms are a subset of those observed in disorders of dystroglycan glycosylation (muscle–eye–brain disease and Warker–Warburg syndrome), we assess the likely contribution to her phenotype of her heterogosity for a null mutation of DAG1. We also show that the transcriptional compensation observed in the Dag1+/− mouse is not observed in the patient. Although we cannot show that haploinsufficiency of DAG1 is the sole cause of this patient's myopathy and white matter changes, this case serves to constrain our ideas of the severity of the phenotypic consequences of heterozygosity for null DAG1 mutations. PMID:20234391

  19. Abnormal behaviors detection using particle motion model

    NASA Astrophysics Data System (ADS)

    Chen, Yutao; Zhang, Hong; Cheng, Feiyang; Yuan, Ding; You, Yuhu

    2015-03-01

    Human abnormal behaviors detection is one of the most challenging tasks in the video surveillance for the public security control. Interaction Energy Potential model is an effective and competitive method published recently to detect abnormal behaviors, but their model of abnormal behaviors is not accurate enough, so it has some limitations. In order to solve this problem, we propose a novel Particle Motion model. Firstly, we extract the foreground to improve the accuracy of interest points detection since the complex background usually degrade the effectiveness of interest points detection largely. Secondly, we detect the interest points using the graphics features. Here, the movement of each human target can be represented by the movements of detected interest points of the target. Then, we track these interest points in videos to record their positions and velocities. In this way, the velocity angles, position angles and distance between each two points can be calculated. Finally, we proposed a Particle Motion model to calculate the eigenvalue of each frame. An adaptive threshold method is proposed to detect abnormal behaviors. Experimental results on the BEHAVE dataset and online videos show that our method could detect fight and robbery events effectively and has a promising performance.

  20. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  1. Esophageal motility abnormalities in gastroesophageal reflux disease.

    PubMed

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-05-01

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett's esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted. PMID:24868489

  2. Pancreatic abnormalities and AIDS related sclerosing cholangitis.

    PubMed Central

    Teare, J P; Daly, C A; Rodgers, C; Padley, S P; Coker, R J; Main, J; Harris, J R; Scullion, D; Bray, G P; Summerfield, J A

    1997-01-01

    OBJECTIVES: Biliary tract abnormalities are well recognised in AIDS, most frequently related to opportunistic infection with Cryptosporidium, Microsporidium, and cytomegalovirus. We noted a high frequency of pancreatic abnormalities associated with biliary tract disease. To define these further we reviewed the clinical and radiological features in these patients. METHODS: Notes and radiographs were available from two centres for 83 HIV positive patients who had undergone endoscopic retrograde cholangiopancreatography for the investigation of cholestatic liver function tests or abdominal pain. RESULTS: 56 patients had AIDS related sclerosing cholangitis (ARSC); 86% of these patients had epigastric or right upper quadrant pain and 52% had hepatomegaly. Of the patients with ARSC, 10 had papillary stenosis alone, 11 had intra- and extrahepatic sclerosing cholangitis alone, and 35 had a combination of the two. Ampullary biopsies performed in 24 patients confirmed an opportunistic infection in 16. In 15 patients, intraluminal polyps were noted on the cholangiogram. Pancreatograms were available in 34 of the 45 patients with papillary stenosis, in which 29 (81%) had associated pancreatic duct dilatation, often with associated features of chronic pancreatitis. In the remaining 27 patients, final diagnoses included drug induced liver disease, acalculous cholecystitis, gall bladder empyema, chronic B virus hepatitis, and alcoholic liver disease. CONCLUSION: Pancreatic abnormalities are commonly seen with ARSC and may be responsible for some of the pain not relieved by biliary sphincterotomy. The most frequent radiographic biliary abnormality is papillary stenosis combined with ductal sclerosis. Images PMID:9389948

  3. Teaching Abnormal Psychology in a Multimedia Classroom.

    ERIC Educational Resources Information Center

    Brewster, JoAnne

    1996-01-01

    Examines the techniques used in teaching an abnormal psychology class in a multimedia environment with two computers and a variety of audiovisual equipment. Students respond anonymously to various questions via keypads mounted on their desks, then immediately view and discuss summaries of their responses. (MJP)

  4. Psychology Faculty Perceptions of Abnormal Psychology Textbooks

    ERIC Educational Resources Information Center

    Rapport, Zachary

    2011-01-01

    The problem. The purpose of the current study was to investigate the perceptions and opinions of psychology professors regarding the accuracy and inclusiveness of abnormal psychology textbooks. It sought answers from psychology professors to the following questions: (1) What are the expectations of the psychology faculty at a private university of…

  5. Schizophrenogenic Parenting in Abnormal Psychology Textbooks.

    ERIC Educational Resources Information Center

    Wahl, Otto F.

    1989-01-01

    Considers the treatment of family causation of schizophrenia in undergraduate abnormal psychology textbooks. Reviews texts published only after 1986. Points out a number of implications for psychologists which arise from the inclusion in these texts of the idea that parents cause schizophrenia, not the least of which is the potential for…

  6. Familial Precocious Fetal Abnormal Cortical Sulcation.

    PubMed

    Frassoni, Carolina; Avagliano, Laura; Inverardi, Francesca; Spaccini, Luigina; Parazzini, Cecilia; Rustico, Maria Angela; Bulfamante, Gaetano; Righini, Andrea

    2016-08-01

    The development of the human cerebral cortex is a complex and precisely programmed process by which alterations may lead to morphological and functional neurological abnormalities. We report familial cases of prenatally diagnosed abnormal brain, characterized by aberrant symmetrical mesial oversulcation of the parietooccipital lobes, in fetuses affected by abnormal skeletal features. Fetal brain anomalies were characterized by prenatal magnetic resonance imaging at 21 weeks of gestation and histologically evaluated at 22 weeks. Histological examination added relevant information showing some focal cortical areas of micropoligyria and heterotopic extension of the cortical plate into the marginal zone beneath the cortical surface. Genetic analysis of the fetuses excluded FGFR3 mutations known to be related to skeletal dysplasia and aberrant symmetrical oversulcation in other brain areas (temporal lobes). Hence, the present report suggests the existence of a class of rare syndromes of skeleton and brain development abnormality unrelated to FGFR3 mutations or related to other not described FGFR3 gene defects. Using magnetic resonance imaging, histopathology and molecular characterization we provide an example of a translational study of a rare and unreported brain congenital malformation. PMID:27177044

  7. Abnormal Web Usage Control by Proxy Strategies.

    ERIC Educational Resources Information Center

    Yu, Hsiang-Fu; Tseng, Li-Ming

    2002-01-01

    Approaches to designing a proxy server with Web usage control and to making the proxy server effective on local area networks are proposed to prevent abnormal Web access and to prioritize Web usage. A system is implemented to demonstrate the approaches. The implementation reveals that the proposed approaches are effective, such that the abnormal…

  8. Ultrasonography of gallbladder abnormalities due to schistosomiasis.

    PubMed

    Richter, Joachim; Azoulay, Daniel; Dong, Yi; Holtfreter, Martha C; Akpata, Robert; Calderaro, Julien; El-Scheich, Tarik; Breuer, Matthias; Neumayr, Andreas; Hatz, Christoph; Kircheis, Gerald; Botelho, Monica C; Dietrich, Christoph F

    2016-08-01

    After malaria, schistosomiasis remains the most important tropical parasitic disease in large parts of the world. Schistosomiasis has recently re-emerged in Southern Europe. Intestinal schistosomiasis is caused by most Schistosoma (S.) spp. pathogenic to humans and leads to chronic inflammation and fibrosis of the colon as well as to liver fibrosis. Gallbladder abnormalities usually occur in patients with advanced hepatic portal fibrosis due to Schistosoma mansoni infection. Occasionally, gallbladder abnormalities have been seen also in children and occurring without associated overt liver abnormalities.The specific S. mansoni-induced gallbladder abnormalities detectable by ultrasound include typical hyperechogenic wall thickening with external gallbladder wall protuberances. The luminal wall surface is smooth. The condition is usually clinically silent although some cases of symptomatic cholecystitis have been described. The ultrasonographic Murphy response is negative. Gallbladder contractility is impaired but sludge and calculi occur rarely. Contrary to other trematodes such as liver flukes, S. mansoni does not obstruct the biliary tract. Advanced gallbladder fibrosis is unlikely to reverse after therapy. PMID:27169865

  9. Abnormal interhemispheric connectivity in male psychopathic offenders

    PubMed Central

    Hoppenbrouwers, Sylco S.; De Jesus, Danilo R.; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J.; Schutter, Dennis J.L.G.

    2014-01-01

    Background Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. Methods We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. Results We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. Limitations The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. Conclusion To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders. PMID:23937798

  10. Craniofacial abnormalities among patients with Edwards Syndrome

    PubMed Central

    Rosa, Rafael Fabiano M.; Rosa, Rosana Cardoso M.; Lorenzen, Marina Boff; Zen, Paulo Ricardo G.; Graziadio, Carla; Paskulin, Giorgio Adriano

    2013-01-01

    OBJECTIVE To determine the frequency and types of craniofacial abnormalities observed in patients with trisomy 18 or Edwards syndrome (ES). METHODS This descriptive and retrospective study of a case series included all patients diagnosed with ES in a Clinical Genetics Service of a reference hospital in Southern Brazil from 1975 to 2008. The results of the karyotypic analysis, along with clinical data, were collected from medical records. RESULTS: The sample consisted of 50 patients, of which 66% were female. The median age at first evaluation was 14 days. Regarding the karyotypes, full trisomy of chromosome 18 was the main alteration (90%). Mosaicism was observed in 10%. The main craniofacial abnormalities were: microretrognathia (76%), abnormalities of the ear helix/dysplastic ears (70%), prominent occiput (52%), posteriorly rotated (46%) and low set ears (44%), and short palpebral fissures/blepharophimosis (46%). Other uncommon - but relevant - abnormalities included: microtia (18%), orofacial clefts (12%), preauricular tags (10%), facial palsy (4%), encephalocele (4%), absence of external auditory canal (2%) and asymmetric face (2%). One patient had an initial suspicion of oculo-auriculo-vertebral spectrum (OAVS) or Goldenhar syndrome. CONCLUSIONS: Despite the literature description of a characteristic clinical presentation for ES, craniofacial alterations may be variable among these patients. The OAVS findings in this sample are noteworthy. The association of ES with OAVS has been reported once in the literature. PMID:24142310

  11. Abnormal Saccadic Eye Movements in Autistic Children.

    ERIC Educational Resources Information Center

    Kemner, C.; Verbaten, M. N.; Cuperus, J. M.; Camfferman, G.; van Engeland, H.

    1998-01-01

    The saccadic eye movements, generated during a visual oddball task, were compared for 10 autistic children, 10 children with attention deficit hyperactivity disorder, 10 dyslexic children, and 10 typically developing children. Several abnormal patterns of saccades were found in the autistic group. (DB)

  12. Abnormal Cervical Cancer Screening Test Results

    MedlinePlus

    ... LEEP) —A thin wire loop that carries an electric current is used to remove abnormal areas of the ... the cervix using a thin wire loop and electric energy. Pap ... this document sets forth current information and opinions related to women’s health. The ...

  13. Dynamic Abnormal Grain Growth in Refractory Metals

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2015-11-01

    High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

  14. On (ab)normality: Einstein's fusiform gyrus.

    PubMed

    Weiner, Kevin S

    2015-03-01

    Recently, Hines (2014) wrote an evocative paper challenging findings from both histological and morphological studies of Einstein's brain. In this discussion paper, I extend Hines' theoretical point and further discuss how best to determine 'abnormal' morphology. To do so, I assess the sulcal patterning of Einstein's fusiform gyrus (FG) for the first time. The sulcal patterning of the FG was unconsidered in prior studies because the morphological features of the mid-fusiform sulcus have only been clarified recently. On the one hand, the sulcal patterning of Einstein's FG is abnormal relative to averages of 'normal' brains generated from two independent datasets (N = 39 and N = 15, respectively). On the other hand, within the 108 hemispheres used to make these average brains, it is not impossible to find FG sulcal patterns that resemble those of Einstein. Thus, concluding whether a morphological pattern is normal or abnormal heavily depends on the chosen analysis method (e.g. group average vs. individual). Such findings question the functional meaning of morphological 'abnormalities' when determined by comparing an individual to an average brain or average frequency characteristics. These observations are not only important for analyzing a rare brain such as that of Einstein, but also for comparing macroanatomical features between typical and atypical populations. PMID:25562419

  15. Behavioral abnormalities in captive nonhuman primates.

    PubMed

    Mallapur, Avanti; Choudhury, B C

    2003-01-01

    In this study, we dealt with 11 species of nonhuman primates across 10 zoos in India. We recorded behavior as instantaneous scans between 9 a.m. and 5 p.m. In the study, we segregated behaviors for analyses into abnormal, undesirable, active, and resting. The 4 types of abnormal behavior exhibited included floating limb, self-biting, self-clasping, and stereotypic pacing. In the study, we recorded 2 types of undesirable behavior: autoerotic stimulation and begging. Langurs and group-housed macaques did not exhibit undesirable behaviors. A male lion-tailed macaque and a male gibbon exhibited begging behavior. autoerotic stimulation and self-biting occurred rarely. Males exhibited higher levels of undesirable behavior than did females. Animals confiscated from touring zoos, circuses, and animal traders exhibited higher levels of abnormal behaviors than did animals reared in larger, recognized zoos. The stump-tailed macaque was the only species to exhibit floating limb, autoerotic stimulation, self-biting, and self-clasping. Our results show that rearing experience and group composition influence the proportions of abnormal behavior exhibited by nonhuman primates in captivity. The history of early social and environmental deprivation in these species of captive nonhuman primates probably is critical in the development of behavioral pathologies. Establishing this will require further research. PMID:14965782

  16. First-Trimester Detection of Surface Abnormalities

    PubMed Central

    Rousian, Melek; Koning, Anton H. J.; Bonsel, Gouke J.; Eggink, Alex J.; Cornette, Jérôme M. J.; Schoonderwaldt, Ernst M.; Husen-Ebbinge, Margreet; Teunissen, Katinka K.; van der Spek, Peter J.; Steegers, Eric A. P.; Exalto, Niek

    2014-01-01

    The aim was to determine the diagnostic performance of 3-dimensional virtual reality ultrasound (3D_VR_US) and conventional 2- and 3-dimensional ultrasound (2D/3D_US) for first-trimester detection of structural abnormalities. Forty-eight first trimester cases (gold standard available, 22 normal, 26 abnormal) were evaluated offline using both techniques by 5 experienced, blinded sonographers. In each case, we analyzed whether each organ category was correctly indicated as normal or abnormal and whether the specific diagnosis was correctly made. Sensitivity in terms of normal or abnormal was comparable for both techniques (P = .24). The general sensitivity for specific diagnoses was 62.6% using 3D_VR_US and 52.2% using 2D/3D_US (P = .075). The 3D_VR_US more often correctly diagnosed skeleton/limb malformations (36.7% vs 10%; P = .013). Mean evaluation time in 3D_VR_US was 4:24 minutes and in 2D/3D_US 2:53 minutes (P < .001). General diagnostic performance of 3D_VR_US and 2D/3D_US apparently is comparable. Malformations of skeleton and limbs are more often detected using 3D_VR_US. Evaluation time is longer in 3D_VR_US. PMID:24440996

  17. Sensory Abnormalities in Autism: A Brief Report

    ERIC Educational Resources Information Center

    Klintwall Lars; Holm, Anette; Eriksson, Mats; Carlsson, Lotta Hoglund; Olsson, Martina Barnevik; Hedvall, Asa; Gillberg, Christopher; Fernell, Elisabeth

    2011-01-01

    Sensory abnormalities were assessed in a population-based group of 208 20-54-month-old children, diagnosed with autism spectrum disorder (ASD) and referred to a specialized habilitation centre for early intervention. The children were subgrouped based upon degree of autistic symptoms and cognitive level by a research team at the centre. Parents…

  18. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress

    PubMed Central

    Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies. PMID:26083527

  19. Chromosomal abnormalities in a psychiatric population

    SciTech Connect

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W.

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  20. Abnormal grain growth in TD-nickel.

    NASA Technical Reports Server (NTRS)

    Petrovic, J. J.; Ebert, L. J.

    1972-01-01

    Characteristics of the coarse grain transformation occurring in TD-nickel 1 in. bar under certain conditions of deformation and annealing were examined. The transformation exhibits Avrami-type kinetics, with an activation energy of 250 kcal per mole. Characteristics of untransformed regions are like those of the as-received state. The transformed grain size increases with increasing deformation and decreasing annealing temperature. The coarse grain transformation is significantly different from primary recrystallization in pure nickel. Its characteristics cannot be rationalized in terms of primary recrystallization concepts, but may be explained in terms of an abnormal grain growth description. The coarse grain transformation in TD-nickel is abnormal grain growth rather than primary recrystallization. The analysis suggests an explanation for the effect of thermomechanical history on the deformation and annealing behavior of TD-nickel.

  1. Evaluation of abnormal liver function tests.

    PubMed

    Agrawal, Swastik; Dhiman, Radha K; Limdi, Jimmy K

    2016-04-01

    Incidentally detected abnormality in liver function tests is a common situation encountered by physicians across all disciplines. Many of these patients do not have primary liver disease as most of the commonly performed markers are not specific for the liver and are affected by myriad factors unrelated to liver disease. Also, many of these tests like liver enzyme levels do not measure the function of the liver, but are markers of liver injury, which is broadly of two types: hepatocellular and cholestatic. A combination of a careful history and clinical examination along with interpretation of pattern of liver test abnormalities can often identify type and aetiology of liver disease, allowing for a targeted investigation approach. Severity of liver injury is best assessed by composite scores like the Model for End Stage Liver Disease rather than any single parameter. In this review, we discuss the interpretation of the routinely performed liver tests along with the indications and utility of quantitative tests. PMID:26842972

  2. Esophageal motility abnormalities in gastroesophageal reflux disease

    PubMed Central

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-01-01

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett’s esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted. PMID:24868489

  3. [TMJ morphological changes in abnormal occlusion].

    PubMed

    Volkov, S I; Bazhenov, D V; Semkin, V A; Bogdanov, A O

    2013-01-01

    TMJ dysfunction is one of the most common diseases among all disorders of the maxillofacial region. Any abnormality in synchrony or amplitude of motion of the TMJ results in the malposition of the articular disc. Researchers and clinicians were always interested in topographic anatomy of the TMJ. There is currently no consensus on matters relating to changes in anatomical features of the TMJ by occlusal disturbances. PMID:23715443

  4. Congenital anorectal abnormalities in six dogs.

    PubMed

    Prassinos, N N; Papazoglou, L G; Adamama-Moraitou, K K; Galatos, A D; Gouletsou, P; Rallis, T S

    2003-07-19

    Congenital anorectal abnormalities were diagnosed in three male and three female dogs. One dog had anal stenosis, three had a persistent anal membrane, and the other two had an imperforate anus associated with a rectovaginal fistula. Five of the dogs were treated surgically, and four of them which were followed up for periods ranging from one to five years continued to pass faeces normally. PMID:12892267

  5. Practice and Educational Gaps in Abnormal Pigmentation.

    PubMed

    Mohammad, Tasneem F; Hamzavi, Iltefat H

    2016-07-01

    Dyschromia refers to abnormal pigmentation and is one of the most common diagnoses in dermatology. However, there are many educational and practice gaps in this area, specifically in melasma, postinflammatory hyperpigmentation, and vitiligo. This article aims to review the gold standard of care for these conditions as well as highlight common educational and practice gaps in these areas. Finally, possible solutions to these gaps are addressed. PMID:27363886

  6. CT of trauma to the abnormal kidney

    SciTech Connect

    Rhyner, P.; Federle, M.P.; Jeffrey, R.B.

    1984-04-01

    Traumatic injuries to already abnormal kidneys are difficult to assess by excretory urography and clinical evaluation. Bleeding and urinary extravasation may accompany minor trauma; conversely, underlying tumors, perirenal hemorrhage, and extravasation may be missed on urography. Computed tomography (CT) was performed in eight cases including three neoplasms, one adult polycystic disease, one simple renal cyst, two hydronephrotic kidneys, and one horseshoe kidney. CT provided specific and clinically useful information in each case that was not apparent on excretory urography.

  7. Chromosome abnormalities in chronic active hepatitis

    PubMed Central

    Stefanescu, D. T.; Moanga, M.; Teodorescu, M.; Brucher, J.

    1972-01-01

    An investigation on human peripheral blood lymphocyte chromosomes in chronic active hepatitis was carried out. A higher percentage of chromatid and chromosome lesions was recorded in all patients studied as compared with control groups—normal individuals, healthy subjects who had suffered from acute viral hepatitis, patients with alcoholic liver disease, and patients with mechanical jaundice due to cancer. The possible origin of these abnormalities is discussed. PMID:5076805

  8. Varenicline and Abnormal Sleep Related Events

    PubMed Central

    Savage, Ruth L.; Zekarias, Alem; Caduff-Janosa, Pia

    2015-01-01

    Study Objectives: To assess adverse drug reaction reports of “abnormal sleep related events” associated with varenicline, a partial agonist to the α4β2 subtype of nicotinic acetylcholine receptors on neurones, indicated for smoking cessation. Design: Twenty-seven reports of “abnormal sleep related events” often associated with abnormal dreams, nightmares, or somnambulism, which are known to be associated with varenicline use, were identified in the World Health Organisation (WHO) Global Individual Case Safety Reports Database. Original anonymous reports were obtained from the four national pharmacovigilance centers that submitted these reports and assessed for reaction description and causality. Measurements and Results: These 27 reports include 10 of aggressive activity occurring during sleep and seven of other sleep related harmful or potentially harmful activities, such as apparently deliberate self-harm, moving a child or a car, or lighting a stove or a cigarette. Assessment of these 17 reports of aggression or other actual or potential harm showed that nine patients recovered or were recovering on varenicline withdrawal and there were no consistent alternative explanations. Thirteen patients experienced single events, and two had multiple events. Frequency was not stated for the remaining two patients. Conclusions: The descriptions of the reports of aggression during sleep with violent dreaming are similar to those of rapid eye movement sleep behavior disorder and also nonrapid eye movement (NREM) sleep parasomnias in some adults. Patients who experience somnambulism or dreams of a violent nature while taking varenicline should be advised to consult their health providers. Consideration should be given to clarifying the term sleep disorders in varenicline product information and including sleep related harmful and potentially harmful events. Citation: Savage RL, Zekarias A, Caduff-Janosa P. Varenicline and abnormal sleep related events. SLEEP 2015

  9. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    PubMed Central

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-01-01

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process. PMID:27271632

  10. Autism and chromosome abnormalities-A review.

    PubMed

    Bergbaum, Anne; Ogilvie, Caroline Mackie

    2016-07-01

    The neuro-behavioral disorder of autism was first described in the 1940s and was predicted to have a biological basis. Since that time, with the growth of genetic investigations particularly in the area of pediatric development, an increasing number of children with autism and related disorders (autistic spectrum disorders, ASD) have been the subject of genetic studies both in the clinical setting and in the wider research environment. However, a full understanding of the biological basis of ASDs has yet to be achieved. Early observations of children with chromosomal abnormalities detected by G-banded chromosome analysis (karyotyping) and in situ hybridization revealed, in some cases, ASD associated with other features arising from such an abnormality. The introduction of higher resolution techniques for whole genome screening, such as array comparative genome hybridization (aCGH), allowed smaller imbalances to be detected, some of which are now considered to represent autism susceptibility loci. In this review, we describe some of the work underpinning the conclusion that ASDs have a genetic basis; a brief history of the developments in genetic analysis tools over the last 50 years; and the most common chromosome abnormalities found in association with ASDs. Introduction of next generation sequencing (NGS) into the clinical diagnostic setting is likely to provide further insights into this complex field but will not be covered in this review. Clin. Anat. 29:620-627, 2016. © 2016 Wiley Periodicals, Inc. PMID:27012322

  11. Apparent Ruvalcaba syndrome with genitourinary abnormalities.

    PubMed

    Bialer, M G; Wilson, W G; Kelly, T E

    1989-07-01

    The Ruvalcaba syndrome is a rare malformation syndrome characterized by skeletal dysplasia, facial anomalies, and mental retardation. We report on a 22-year-old woman with severe growth and mental retardation and numerous manifestations characteristic of the Ruvalcaba syndrome. In addition, she has several anomalies not previously described in the Ruvalcaba syndrome, including upslanting palpebral fissures, torus palatinus, hiatal hernia with gastroesophageal reflux, recurrent respiratory infections, pectus excavatum, equinovarous deformity, hypotonia, unilateral renal hypoplasia, an accessory ovary, and atretic fallopian tube. Review of published reports of Ruvalcaba syndrome confirms variability of the clinical and radiographic changes. Findings present in at least 50% of reported patients include mental retardation, short stature, pubertal delay, an abnormal nose (usually beaked) with hypoplastic nasal alae, microstomia with narrow maxilla, thin upper lip vermilion, broad hips, small hands, joint limitation, short fingers and toes, and vertebral abnormalities. Because 5 of the reported patients had renal abnormalities, a renal ultrasound or contrast study is indicated in the evaluation of these patients. Additional reports, particular from multiplex families, will be important to better characterize this syndrome. PMID:2679089

  12. Abnormal Activity Detection Using Pyroelectric Infrared Sensors.

    PubMed

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-01-01

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process. PMID:27271632

  13. Abnormalities in Hippocampal Functioning with Persistent Pain

    PubMed Central

    Mutso, Amelia A.; Radzicki, Daniel; Baliki, Marwan N.; Huang, Lejian; Banisadr, Ghazal; Centeno, Maria Virginia; Radulovic, Jelena; Martina, Marco; Miller, Richard J.; Apkarian, A. Vania

    2012-01-01

    Chronic pain patients exhibit increased anxiety, depression, and deficits in learning and memory. Yet how persistent pain affects the key brain area regulating these behaviors, the hippocampus, has remained minimally explored. In this study we investigated the impact of spared nerve injury (SNI) neuropathic pain in mice on hippocampal-dependent behavior and underlying cellular and molecular changes. In parallel, we measured the hippocampal volume of three groups of chronic pain patients. We found that SNI animals were unable to extinguish to contextual fear and showed increased anxiety-like behavior. Additionally, SNI mice in comparison to sham animals exhibited hippocampal 1) reduced extracellular signal-regulated kinase (ERK) expression and phosphorylation, 2) decreased neurogenesis and 3) altered short-term synaptic plasticity. In order to relate the observed hippocampal abnormalities with human chronic pain, we measured the volume of human hippocampus in chronic back pain (CBP), complex regional pain syndrome (CRPS), and osteoarthritis patients (OA). Compared to controls, CBP and CRPS, but not OA, had significantly less bilateral hippocampal volume. These results indicate that hippocampus-mediated behavior, synaptic plasticity and neurogenesis are abnormal in neuropathic rodents. The changes may be related to the reduction in hippocampal volume we see in chronic pain patients, and these abnormalities may underlie learning and emotional deficits commonly observed in such patients. PMID:22539837

  14. Persistent Pain and Sensory Abnormalities after Abdominoplasty

    PubMed Central

    Finnerup, Kenneth; Andresen, Sven R.; Nikolajsen, Lone; Finnerup, Nanna B.

    2015-01-01

    Background: Persistent postsurgical pain is a well-recognized problem after a number of common surgical procedures, such as amputation, thoracotomy, and inguinal hernia repair. Less is known about persistent pain after cosmetic surgical procedures. We, therefore, decided to study the incidence and characteristics of persistent pain after abdominoplasty, which is one of the most frequent cosmetic surgical procedures. Methods: In September 2014, a link to a web-based questionnaire was mailed to 217 patients who had undergone abdominoplasty between 2006 and 2014 at the Department of Plastic Surgery, Aalborg University Hospital, Denmark. The questionnaire included questions about pain and sensory abnormalities located to the abdominal skin, and physical and psychological function; patient satisfaction with surgery was rated on a 4-point scale. Results: One hundred seventy patients answered the questionnaire. Fourteen patients (8.2%) reported pain within the past 7 days related to the abdominoplasty. Abnormal abdominal skin sensation was common and reported by 138 patients (81%). Sensory hypersensitivity was associated with the presence of persistent pain. Satisfaction with the procedure was reported by 149 (88%) patients. The majority of patients reported improvement on all physical and psychological factors. Patients with pain were more often disappointed with the surgery and unwilling to recommend the surgery. Conclusions: Overall, patients were satisfied with the procedure, although abnormal abdominal skin sensation was common. However, there is a risk of developing persistent neuropathic pain after abdominoplasty, and patients should be informed about this before surgery. PMID:26893986

  15. Abnormal calcium homeostasis in peripheral neuropathies

    PubMed Central

    Fernyhough, Paul; Calcutt, Nigel A.

    2010-01-01

    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neuron function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca 2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation with both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies. PMID:20034667

  16. Dynamic Abnormal Grain Growth in Molybdenum

    NASA Astrophysics Data System (ADS)

    Worthington, Daniel L.; Pedrazas, Nicholas A.; Noell, Philip J.; Taleff, Eric M.

    2013-11-01

    A new abnormal grain growth phenomenon that occurs only during continuous plastic straining, termed dynamic abnormal grain growth (DAGG), was observed in molybdenum (Mo) at elevated temperature. DAGG was produced in two commercial-purity molybdenum sheets and in a commercial-purity molybdenum wire. Single crystals, centimeters in length, were created in these materials through the DAGG process. DAGG was observed only at temperatures of 1713 K (1440 °C) and above and occurred across the range of strain rates investigated, ~10-5 to 10-4 s-1. DAGG initiates only after a critical plastic strain, which decreases with increasing temperature but is insensitive to strain rate. Following initiation of an abnormal grain, the rate of boundary migration during DAGG is on the order of 10 mm/min. This rapid growth provides a convenient means of producing large single crystals in the solid state. When significant normal grain growth occurs prior to DAGG, island grains result. DAGG was observed in sheet materials with two very different primary recrystallization textures. DAGG grains in Mo favor boundary growth along the tensile axis in a <110> direction, preferentially producing single crystals with orientations from an approximately <110> fiber family of orientations. A mechanism of boundary unpinning is proposed to explain the dependence of boundary migration on plastic straining during DAGG.

  17. Electrocardiographic abnormalities in centenarians: impact on survival

    PubMed Central

    2012-01-01

    Background The centenarian population is gradually increasing, so it is becoming more common to see centenarians in clinical practice. Electrocardiogram abnormalities in the elderly have been reported, but several methodological biases have been detected that limit the validity of their results. The aim of this study is to analyse the ECG abnormalities in a prospective study of the centenarian population and to assess their impact on survival. Method We performed a domiciliary visit, where a medical history, an ECG and blood analysis were obtained. Barthel index (BI), cognitive mini-exam (CME) and Charlson index (ChI) were all determined. Patients were followed up by telephone up until their death. Results A total of 80 centenarians were studied, 26 men and 64 women, mean age 100.8 (SD 1.3). Of these, 81% had been admitted to the hospital at least once in the past, 81.3% were taking drugs (mean 3.3, rank 0–11). ChI was 1.21 (SD 1.19). Men had higher scores both for BI (70 -SD 34.4- vs. 50.4 -SD 36.6-, P = .005) and CME (16.5 -SD 9.1- vs. 9.1 –SD 11.6-, P = .008); 40.3% of the centenarians had anaemia, 67.5% renal failure, 13% hyperglycaemia, 22.1% hypoalbuminaemia and 10.7% dyslipidaemia, without statistically significant differences regarding sex. Only 7% had a normal ECG; 21 (26.3%) had atrial fibrillation (AF), 30 (37.5%) conduction defects and 31 (38.8%) abnormalities suggestive of ischemia, without sex-related differences. A history of heart disease was significantly associated with the presence of AF (P = .002, OR 5.2, CI 95% 1.8 to 15.2) and changes suggestive of ischemia (P = .019, OR 3.2, CI 95% 1.2-8.7). Mean survival was 628 days (SD 578.5), median 481 days. Mortality risk was independently associated with the presence of AF (RR 2.0, P = .011), hyperglycaemia (RR 2.2, P = .032), hypoalbuminaemia (RR 3.5, P < .001) and functional dependence assessed by BI (RR 1.8, P = .024). Conclusion Although ECG abnormalities are

  18. Perceived functional impact of abnormal facial appearance.

    PubMed

    Rankin, Marlene; Borah, Gregory L

    2003-06-01

    Functional facial deformities are usually described as those that impair respiration, eating, hearing, or speech. Yet facial scars and cutaneous deformities have a significant negative effect on social functionality that has been poorly documented in the scientific literature. Insurance companies are declining payments for reconstructive surgical procedures for facial deformities caused by congenital disabilities and after cancer or trauma operations that do not affect mechanical facial activity. The purpose of this study was to establish a large, sample-based evaluation of the perceived social functioning, interpersonal characteristics, and employability indices for a range of facial appearances (normal and abnormal). Adult volunteer evaluators (n = 210) provided their subjective perceptions based on facial physical appearance, and an analysis of the consequences of facial deformity on parameters of preferential treatment was performed. A two-group comparative research design rated the differences among 10 examples of digitally altered facial photographs of actual patients among various age and ethnic groups with "normal" and "abnormal" congenital deformities or posttrauma scars. Photographs of adult patients with observable congenital and posttraumatic deformities (abnormal) were digitally retouched to eliminate the stigmatic defects (normal). The normal and abnormal photographs of identical patients were evaluated by the large sample study group on nine parameters of social functioning, such as honesty, employability, attractiveness, and effectiveness, using a visual analogue rating scale. Patients with abnormal facial characteristics were rated as significantly less honest (p = 0.007), less employable (p = 0.001), less trustworthy (p = 0.01), less optimistic (p = 0.001), less effective (p = 0.02), less capable (p = 0.002), less intelligent (p = 0.03), less popular (p = 0.001), and less attractive (p = 0.001) than were the same patients with normal facial

  19. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  20. Bakers' cyst and tibiofemoral abnormalities are more distinctive MRI features of symptomatic osteoarthritis than patellofemoral abnormalities

    PubMed Central

    Visser, A W; Mertens, B; Reijnierse, M; Bloem, J L; de Mutsert, R; le Cessie, S; Rosendaal, F R; Kloppenburg, M

    2016-01-01

    Objective To investigate which structural MR abnormalities discriminate symptomatic knee osteoarthritis (OA), taking co-occurrence of abnormalities in all compartments into account. Methods The Netherlands Epidemiology of Obesity (NEO) study is a population-based cohort aged 45–65 years. In 1285 participants (median age 56 years, 55% women, median body mass index (BMI) 30 kg/m2), MRI of the right knee were obtained. Structural abnormalities (osteophytes, cartilage loss, bone marrow lesions (BMLs), subchondral cysts, meniscal abnormalities, effusion, Baker's cyst) at 9 patellofemoral and tibiofemoral locations were scored following the knee OA scoring system. Symptomatic OA in the imaged knee was defined following the American College of Rheumatology criteria. Logistic ridge regression analyses were used to investigate which structural abnormalities discriminate best between individuals with and without symptomatic OA, crude and adjusted for age, sex and BMI. Results Symptomatic knee OA was present in 177 individuals. Structural MR abnormalities were highly frequent both in individuals with OA and in those without. Baker's cysts showed the highest adjusted regression coefficient (0.293) for presence of symptomatic OA, followed by osteophytes and BMLs in the medial tibiofemoral compartment (0.185–0.279), osteophytes in the medial trochlear facet (0.262) and effusion (0.197). Conclusions Baker's cysts discriminate best between individuals with and without symptomatic knee OA. Structural MR abnormalities, especially in the medial side of the tibiofemoral joint and effusion, add further in discriminating symptomatic OA. Baker's cysts may present as a target for treatment. PMID:27252896

  1. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    PubMed Central

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-01-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  2. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    PubMed

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-11-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  3. Ultrasound diagnosis of structural abnormalities in the first trimester.

    PubMed

    Dugoff, Lorraine

    2002-04-01

    The advances in ultrasound technology have made it possible to identify fetal structural abnormalities and genetic syndromes in the first trimester. First trimester prenatal diagnosis of fetal central nervous system, renal, gastrointestinal, cardiac, and skeletal abnormalities is reviewed. PMID:11981912

  4. Down's Syndrome and Leukemia: Mechanism of Additional Chromosomal Abnormalities

    ERIC Educational Resources Information Center

    And Others; Goh, Kong-oo

    1978-01-01

    Chromosomal abnormalities, some appearing in a stepwise clonal evoluation, were found in five Down's syndrome patients (35 weeks to 12 years old), four with acute leukemia and one with abnormal regulation of leukopoiesis. (Author/SBH)

  5. Gene Abnormality May Be Key to Down Syndrome, Scientists Say

    MedlinePlus

    ... 157468.html Gene Abnormality May Be Key to Down Syndrome, Scientists Say Results might eventually lead to new ... abnormality that affects brain development in people with Down Syndrome, and they say this finding might lead to ...

  6. Familial myopathy with tubular aggregates associated with abnormal pupils.

    PubMed

    Shahrizaila, Nortina; Lowe, James; Wills, Adrian

    2004-09-28

    The authors describe familial tubular aggregate myopathy associated with abnormal pupils. Four family members from two generations had myopathy and pupillary abnormalities. The myopathologic findings consisted of tubular aggregates in many fibers but predominantly type I fibers. PMID:15452313

  7. NEW FRONTIER IN UNDERSTANDING THE MECHANISMS OF DEVELOPMENTAL ABNORMALITIES

    EPA Science Inventory

    Recent advancements in molecular developmental biology afford an opportunity to apply newly developed tools for understanding the mechanisms of both normal and abnormal development. lthough a number of agents have been identified as causing developmental abnormalities, knowledge ...

  8. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  9. Chromosome abnormalities in primary ovarian cancer

    SciTech Connect

    Yonescu, R.; Currie, J.; Griffin, C.A.

    1994-09-01

    Chromosome abnormalities that are specific and recurrent may occur in regions of the genome that are involved in the conversion of normal cells to those with tumorigenic potential. Ovarian cancer is the primary cause of death among patients with gynecological malignancies. We have performed cytogenetic analysis of 16 ovarian tumors from women age 28-82. Three tumors of low malignant potential and three granulosa cell tumors had normal karyotypes. To look for the presence of trisomy 12, which has been suggested to be a common aberration in this group of tumors, interphase fluorescence in situ hybridization was performed on direct preparations from three of these tumors using a probe for alpha satellite sequences of chromosome 12. In the 3 preparations, 92-98 percent of the cells contained two copies of chromosome 12, indicating that trisomy 12 is not a universal finding in low grade ovarian tumors. Endometrioid carcinoma of the ovary is histologically indistinguishable from endometial carcinoma of the uterus. We studied 10 endometrioid tumors to determine the degree of genetic similarity between these two carcinomas. Six out of ten endometrioid tumors showed a near-triploid modal number, and one presented with a tetraploid modal number. Eight of the ten contained structural chromosome abnormalities, of which the most frequent were 1p- (5 tumors), 19q+ (3 tumors), 6q- or ins(6) (4 tumors), 3q- or 3q+ (4 tumors). These cytogenetic results resemble those reported for papillary ovarian tumors and differ from those of endometrial carcinoma of the uterus. We conclude that despite the histologic similarities between the endometrioid and endometrial carcinomas, the genetic abnormalities in the genesis of these tumors differ significantly.

  10. [Abnormal daytime drowsiness--attempt at typology].

    PubMed

    Meier-Ewert, K

    1991-11-01

    Abnormal drowsiness during the day is defined on the basis of three criteria: 1. subjective feeling of increased tiredness, 2. objective observation of attacks of falling asleep, 3. detection of premature falling asleep in the multiple sleep latency test. About 3 to 4% of the population of modern industrial countries complain of this symptom which very quickly leads to inability to work in numerous occupations (driving instructors, lorry drivers, airline pilots). In many cases, the symptoms can be eliminated by effective methods of treatment. Early diagnosis and therapy is hence an important task of physicians. Clinically suitable tools and methods of measurement for appraising the phenomena are at present: 1. the multiple sleep latency test (Richardson et al., 1978), 2. the multiple staying awake test (Mitler et al., 1982), 3. the vigilance test according to Quatember and Maly from the Vienna test system. In neurophysiological terms, an attempt is made to differentiate between: REM drowsiness, non-REM drowsiness, hypofunction of the arousal systems of the reticular formation, and hyperfunction and overstimulation of the arousal systems of the reticular formation (over-aroused tiredness). Approaches to a clinical typology of abnormal drowsiness are available from two points of departure: 1. Forms of permanent somnolence which are not alleviated but intensified by a brief restorative sleep and resemble the 'oversleeping syndrome' of the healthy individual. 2. Attacks of imperative falling asleep in narcoleptic patients. The characteristic of this form of abnormal drowsiness during the day is that in the interval between the attacks of falling asleep patients can take on any healthy person with regard to alertness, reaction capacity and ready wit. After a brief restorative sleep of less than 5 min., they immediately feel fresh, alert and fit again. PMID:1754972

  11. Fetal MR Imaging of Gastrointestinal Abnormalities.

    PubMed

    Furey, Elizabeth A; Bailey, April A; Twickler, Diane M

    2016-01-01

    Fetal magnetic resonance (MR) imaging plays an increasing and valuable role in antenatal diagnosis and perinatal management of fetal gastrointestinal (GI) abnormalities. Advances in MR imaging data acquisition and use of motion-insensitive techniques have established MR imaging as an important adjunct to obstetric ultrasonography (US) for fetal diagnosis. In this regard, MR imaging provides high diagnostic accuracy for antenatal diagnosis of common and uncommon GI pathologic conditions. In the setting of fetal GI disease, T1-weighted images demonstrate the amount and distribution of meconium, which is crucial to the diagnostic capability of fetal MR imaging. Specifically, knowledge of the T1 signal intensity characteristics of fetal meconium, the normal pattern of meconium with advancing gestational age, and the expected caliber of small and large bowel in the fetus is key to diagnosis of abnormalities of the GI tract. Use of ultrafast T2-weighted sequences for evaluation of the expected location and morphology of fluid-containing structures, including the stomach and small bowel, in the fetal abdomen further aids in diagnostic confidence. Uncommonly encountered fetal GI pathologic conditions, especially cloacal dysmorphology, may demonstrate characteristic MR imaging patterns, which may add additional information to that from fetal US, allowing improved fetal and neonatal management. This article discusses common indications for fetal MR imaging of the GI tract, imaging protocols for fetal GI MR imaging, the normal appearance of the fetal GI tract with advancing gestational age, and the imaging appearances of common fetal GI abnormalities, as well as uncommon fetal GI conditions with characteristic appearances. (©)RSNA, 2016. PMID:27163598

  12. Vitamin D and Risk of Neuroimaging Abnormalities

    PubMed Central

    Littlejohns, Thomas J.; Kos, Katarina; Henley, William E.; Lang, Iain A.; Annweiler, Cedric; Beauchet, Olivier; Chaves, Paulo H. M.; Kestenbaum, Bryan R.; Kuller, Lewis H.; Langa, Kenneth M.; Lopez, Oscar L.; Llewellyn, David J.

    2016-01-01

    Vitamin D deficiency has been linked with an increased risk of incident all-cause dementia and Alzheimer’s disease. The aim of the current study was to explore the potential mechanisms underlying these associations by determining whether low vitamin D concentrations are associated with the development of incident cerebrovascular and neurodegenerative neuroimaging abnormalities. The population consisted of 1,658 participants aged ≥65 years from the US-based Cardiovascular Health Study who were free from prevalent cardiovascular disease, stroke and dementia at baseline in 1992–93. Serum 25-hydroxyvitamin D (25(OH)D) concentrations were determined by liquid chromatography-tandem mass spectrometry from blood samples collected at baseline. The first MRI scan was conducted between 1991–1994 and the second MRI scan was conducted between 1997–1999. Change in white matter grade, ventricular grade and presence of infarcts between MRI scan one and two were used to define neuroimaging abnormalities. During a mean follow-up of 5.0 years, serum 25(OH)D status was not significantly associated with the development of any neuroimaging abnormalities. Using logistic regression models, the multivariate adjusted odds ratios (95% confidence interval) for worsening white matter grade in participants who were severely 25(OH)D deficient (<25 nmol/L) and deficient (≥25–50 nmol/L) were 0.76 (0.35–1.66) and 1.09 (0.76–1.55) compared to participants with sufficient concentrations (≥50 nmol/L). The multivariate adjusted odds ratios for ventricular grade in participants who were severely 25(OH)D deficient and deficient were 0.49 (0.20–1.19) and 1.12 (0.79–1.59) compared to those sufficient. The multivariate adjusted odds ratios for incident infarcts in participants who were severely 25(OH)D deficient and deficient were 1.95 (0.84–4.54) and 0.73 (0.47–1.95) compared to those sufficient. Overall, serum vitamin D concentrations could not be shown to be associated with

  13. Vitamin D and Risk of Neuroimaging Abnormalities.

    PubMed

    Littlejohns, Thomas J; Kos, Katarina; Henley, William E; Lang, Iain A; Annweiler, Cedric; Beauchet, Olivier; Chaves, Paulo H M; Kestenbaum, Bryan R; Kuller, Lewis H; Langa, Kenneth M; Lopez, Oscar L; Llewellyn, David J

    2016-01-01

    Vitamin D deficiency has been linked with an increased risk of incident all-cause dementia and Alzheimer's disease. The aim of the current study was to explore the potential mechanisms underlying these associations by determining whether low vitamin D concentrations are associated with the development of incident cerebrovascular and neurodegenerative neuroimaging abnormalities. The population consisted of 1,658 participants aged ≥65 years from the US-based Cardiovascular Health Study who were free from prevalent cardiovascular disease, stroke and dementia at baseline in 1992-93. Serum 25-hydroxyvitamin D (25(OH)D) concentrations were determined by liquid chromatography-tandem mass spectrometry from blood samples collected at baseline. The first MRI scan was conducted between 1991-1994 and the second MRI scan was conducted between 1997-1999. Change in white matter grade, ventricular grade and presence of infarcts between MRI scan one and two were used to define neuroimaging abnormalities. During a mean follow-up of 5.0 years, serum 25(OH)D status was not significantly associated with the development of any neuroimaging abnormalities. Using logistic regression models, the multivariate adjusted odds ratios (95% confidence interval) for worsening white matter grade in participants who were severely 25(OH)D deficient (<25 nmol/L) and deficient (≥25-50 nmol/L) were 0.76 (0.35-1.66) and 1.09 (0.76-1.55) compared to participants with sufficient concentrations (≥50 nmol/L). The multivariate adjusted odds ratios for ventricular grade in participants who were severely 25(OH)D deficient and deficient were 0.49 (0.20-1.19) and 1.12 (0.79-1.59) compared to those sufficient. The multivariate adjusted odds ratios for incident infarcts in participants who were severely 25(OH)D deficient and deficient were 1.95 (0.84-4.54) and 0.73 (0.47-1.95) compared to those sufficient. Overall, serum vitamin D concentrations could not be shown to be associated with the development of

  14. Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Paulk, H. H.; And Others

    1977-01-01

    Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)

  15. Chromosomal abnormalities associated with cyclopia and synophthalmia.

    PubMed Central

    Howard, R O

    1977-01-01

    At the present time, essentially all known facts concerning cyclopia are consistent with some chromosomal disease, including clinical features of the pregnancy (fetal wastage, prematurity, intrauterine growth retardation, maternal age factor, complications of pregnancy), the generalized developmental abnormalities, specific ocular dysgenesis, by the high incidence of chromosomal abnormality already demonstrated, and the possibility of error in those cases of cyclopia with normal chromosomes. Even if chromosomal aberrations represent only one group of several different etiologic factors leading to cyclopia, at the present time chromosomal errors would seem to be the most common cause of cyclopia now recognized. Further studies will establish or disprove a chromosomal error in those instances which are now considered to be the result of an environmental factor alone or those with apparent familial patterns of inheritance. This apparent diverse origin of cyclopia can be clarified if future cyclopic specimens are carefully investigated. The evaluation should include a careful gross and microscopic examination of all organs, including the eye, and chromosome banding studies of all organs, including the eye, and chromosome banding studies of at least two cyclopic tissues. Then the presence or absence of multiple causative factors can be better evaluated. Images FIGURE 2 A FIGURE 2 B FIGURE 1 A FIGURE 1 B FIGURE 1 C FIGURE 1 D FIGURE 1 E FIGURE 1 F FIGURE 3 A FIGURE 3 B FIGURE 4 A FIGURE 4 B FIGURE 4 C FIGURE 4 D FIGURE 5 FIGURE 6 FIGURE 7 A FIGURE 7 B PMID:418547

  16. Abnormal mandibular growth and the condylar cartilage.

    PubMed

    Pirttiniemi, Pertti; Peltomäki, Timo; Müller, Lukas; Luder, Hans U

    2009-02-01

    Deviations in the growth of the mandibular condyle can affect both the functional occlusion and the aesthetic appearance of the face. The reasons for these growth deviations are numerous and often entail complex sequences of malfunction at the cellular level. The aim of this review is to summarize recent progress in the understanding of pathological alterations occurring during childhood and adolescence that affect the temporomandibular joint (TMJ) and, hence, result in disorders of mandibular growth. Pathological conditions taken into account are subdivided into (1) congenital malformations with associated growth disorders, (2) primary growth disorders, and (3) acquired diseases or trauma with associated growth disorders. Among the congenital malformations, hemifacial microsomia (HFM) appears to be the principal syndrome entailing severe growth disturbances, whereas growth abnormalities occurring in conjunction with other craniofacial dysplasias seem far less prominent than could be anticipated based on their often disfiguring nature. Hemimandibular hyperplasia and elongation undoubtedly constitute the most obscure conditions that are associated with prominent, often unilateral, abnormalities of condylar, and mandibular growth. Finally, disturbances of mandibular growth as a result of juvenile idiopathic arthritis (JIA) and condylar fractures seem to be direct consequences of inflammatory and/or mechanical damage to the condylar cartilage. PMID:19164410

  17. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  18. Genetic abnormalities associated with acute lymphoblastic leukemia.

    PubMed

    Yokota, Takafumi; Kanakura, Yuzuru

    2016-06-01

    Acute lymphoblastic leukemia (ALL) occurs with high frequency in childhood and is associated with high mortality in adults. Recent technical advances in next-generation sequencing have shed light on genetic abnormalities in hematopoietic stem/progenitor cells as the precursor to ALL pathogenesis. Based on these genetic abnormalities, ALL is now being reclassified into newly identified subtypes. Philadelphia chromosome-like B-lineage ALL is one of the new high-risk subtypes characterized by genetic alterations that activate various signaling pathways, including those involving cytokine receptors, tyrosine kinases, and epigenetic modifiers. Philadelphia chromosome-like ALL is essentially heterogeneous; however, deletion mutations in the IKZF1 gene encoding the transcription factor IKAROS underlie many cases as a key factor inducing aggressive phenotypes and poor treatment responses. Whole-genome sequencing studies of ALL patients and ethnically matched controls also identified inherited genetic variations in lymphoid neoplasm-related genes, which are likely to increase ALL susceptibility. These findings are directly relevant to clinical hematology, and further studies on this aspect could contribute to accurate diagnosis, effective monitoring of residual disease, and patient-oriented therapies. PMID:26991355

  19. Karyotypic abnormalities in tumours of the pancreas.

    PubMed Central

    Bardi, G.; Johansson, B.; Pandis, N.; Mandahl, N.; Bak-Jensen, E.; Andrén-Sandberg, A.; Mitelman, F.; Heim, S.

    1993-01-01

    Short-term cultures from 20 pancreatic tumours, three endocrine and 17 exocrine, were cytogenetically analysed. All three endocrine tumours had a normal chromosome complement. Clonal chromosome aberrations were detected in 13 of the 17 exocrine tumours: simple karyotypic changes were found in five carcinomas and numerous numerical and/or structural changes in eight. When the present findings and those previously reported by our group were viewed in conjunction, the most common numerical imbalances among the 22 karyotypically abnormal pancreatic carcinomas thus available for evaluation turned out to be, in order of falling frequency, -18, -Y, +20, +7, +11 and -12. Imbalances brought about by structural changes most frequently affected chromosomes 1 (losses in 1p but especially gains of 1q), 8 (in particular 8q gains but also 8p losses), and 17 (mostly 17q gain but also loss of 17p). Chromosomal bands 1p32, 1q10, 6q21, 7p22, 8p21, 8q11, 14p11, 15q10-11, and 17q11 were the most common breakpoint sites affected by the structural rearrangements. Abnormal karyotypes were detected more frequently in poorly differentiated and anaplastic carcinomas than in moderately and well differentiated tumours. Images Figure 1 PMID:8494707

  20. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  1. Eye movement abnormalities in anorexia nervosa.

    PubMed

    Pallanti, S; Quercioli, L; Zaccara, G; Ramacciotti, A B; Arnetoli, G

    1998-03-20

    The aim of the present study is to investigate smooth pursuit eye movement and saccadic performance in anorexia nervosa during a restored weight period and to determine if functional links can be made between eye movement performance and clinical features. SPEM parameters were recorded for 28 female anorectic out-patients (DSM IV), who had a body weight loss of up to 20% of ideal body weight. Twenty-eight comparison subjects were also tested. Clinically, each patient was assessed using the Eating Disorder Inventory (EDI), the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), the Structured Interview for Personality Disorders (SCID II), the Symptom Checklist-90-Revised (SCL-90-R) and the Hamilton Scale for Depression (HRSD). The anorectic patients performed slightly worse than the comparison subjects on a number of SPEM measures. No relationship was found between SPEM impairment and a global severity index of psychopathology (SCL 90-R GSI) or depressive symptoms. Moreover, OCD symptoms and scores on some EDI scales (such as perfectionism) appear related to the severity of the eye movement alterations. The evidence of SPEM abnormalities in a subgroup of anorectic patients during the remitted state and the relationship of the abnormalities to obsessive-compulsive symptoms are discussed. Results are in agreement with the hypothesis regarding the persistence of neurophysiological as well as psychopathological traits of disorder in anorectic patients. PMID:9579703

  2. Native fluorescence characterization of human liver abnormalities

    NASA Astrophysics Data System (ADS)

    Ganesan, Singaravelu; Madhuri, S.; Aruna, Prakasa R.; Suchitra, S.; Srinivasan, T. G.

    1999-05-01

    Fluorescence spectroscopy of intrinsic biomolecules has been extensively used in biology and medicine for the past several decades. In the present study, we report the native fluorescence characteristics of blood plasma from normal human subjects and patients with different liver abnormalities such as hepatitis, leptospirosis, jaundice, cirrhosis and liver cell failure. Native fluorescence spectra of blood plasma -- acetone extract were measured at 405 nm excitation. The average spectrum of normal blood plasma has a prominent emission peak around 464 nm whereas in the case of liver diseased subjects, the primary peak is red shifted with respect to normal. In addition, liver diseased cases show distinct secondary emission peak around 615 nm, which may be attributed to the presence of endogenous porphyrins. The red shift of the prominent emission peak with respect to normal is found to be maximum for hepatitis and minimum for cirrhosis whereas the secondary emission peak around 615 nm was found to be more prominent in the case of cirrhosis than the rest. The ratio parameter I465/I615 is found to be statistically significant (p less than 0.001) in discriminating liver abnormalities from normal.

  3. [Classification and genetic abnormalities of multiple myeloma].

    PubMed

    Hanamura, Ichiro; Iida, Shinsuke

    2015-01-01

    Multiple myeloma (MM) is a malignancy of plasma cells which develops through genetic aberrations, epigenetic changes and the bone marrow microenvironment interaction. Despite recent tremendous progress in treatments for MM, a complete cure remains elusive. Further development of more effective therapeutic strategies is needed. The International Staging System (ISS) reported in 2005 has been used widely as the most simple and powerful prognostic classification in MM, but genetic abnormalities affecting prognosis were not considered in this model. In the past decade, non-random chromosomal aberrations such as t(4;14), t(14;16), t(14;20), amp1q21 and del17p have shown to be poor prognostic value, and moreover, recent progress in genome-wide deep sequencing studies has revealed novel mutations and intra-tumor subclonal heterogeneity which may explain clinical phenotype and therapeutic resistance. Here we review the current understanding of genetic abnormalities in MM for developing better prognostic classification and molecular targeted therapies leading to the stratified or personalized medicine. PMID:25626298

  4. Hepatic perfusion abnormalities during CT angiography: Detection and interpretation

    SciTech Connect

    Freeny, P.C.; Marks, W.M.

    1986-06-01

    Twenty-seven perfusion abnormalities were detected in 17 of 50 patients who underwent computed tomographic angiography (CTA) of the liver. All but one of the perfusion abnormalities occurred in patients with primary or metastatic liver tumors. Perfusion abnormalities were lobar in nine cases, segmental in 11, and subsegmental in seven; 14 were hypoperfusion and 13 were hyperperfusion abnormalities. The causes for the abnormalities included nonperfusion of a replaced hepatic artery (n = 11), cirrhosis and nodular regeneration (n = 3), altered hepatic hemodynamics (e.g., siphoning, laminar flow) caused by tumor (n = 7), contrast media washout from a nonperfused vessel (n = 1), compression of adjacent hepatic parenchyma (n = 1), and unknown (n = 4). Differentiation of perfusion abnormalities from tumor usually can be made by comparing the morphology of the known tumor with the suspected perfusion abnormality, changes of each on delayed CTA scans, and review of initial angiograms and other imaging studies.

  5. Prenatal diagnosis of limb abnormalities: role of fetal ultrasonography

    PubMed Central

    Ermito, Santina; Dinatale, Angela; Carrara, Sabina; Cavaliere, Alessandro; Imbruglia, Laura; Recupero, Stefania

    2009-01-01

    Fetal ultrasonografy is the most important tool to provide prenatal diagnosis of fetal anomalies. The detection of limb abnormalities may be a complex problem if the correct diagnostic approch is not established. A careful description of the abnormality using the rigth nomenclature is the first step. Looking for other associated abnormalities is the threshold to suspect chromosomal abnormalities or single gene disorder. According to the patogenic point of view, limb abnormalities may be the result of malformation, deformation, or disruption. The prenatal diagnosis and the management of limb abnormalities involve a multidisciplinary team of ostetrician, radiologist/sonologist, clinical geneticist, neonatologist, and orthopedic surgeons to provide the parents with the information regarding etiology of the disorder, prognosis, option related to the pregnancy and recurrence risk for future pregnancies. The aim of this review is to describe the importance of detailed fetal ultrasonography in prenatal diagnosis of limb abnormalities. PMID:22439035

  6. What proportion of congenital abnormalities can be prevented?

    PubMed Central

    Czeizel, A E; Intôdy, Z; Modell, B

    1993-01-01

    OBJECTIVE--To estimate the proportion of preventable congenital abnormalities in Hungary. DESIGN--Analysis of available Hungarian data-bases and of the effectiveness of primary, secondary, and tertiary preventive methods. SETTING--Databases of ad hoc epidemiological studies and of the Hungarian congenital abnormality registry. MAIN OUTCOME MEASURES--Prevalence at birth and prevalence after prevention in 73 congenital abnormality types or groups. RESULTS--Preventive methods are available for 51 (70%) of the 73 congenital abnormality types or groups evaluated. The birth prevalence of all congenital abnormalities could be reduced from 65 to 26 per 1000; thus 39 per 1000 (60%) are preventable. Without congenital dislocation of the hip, which is unusually common in Hungary, the preventable proportion of congenital abnormalities is 52%. CONCLUSION--Many congenital abnormalities can be prevented, but as they do not represent a single pathological category there is no single strategy for their prevention. Images p502-a p503-a PMID:8448464

  7. Abnormal Presentation of Choriocarcinoma and Literature Review

    PubMed Central

    Yousefi, Zohreh; Mottaghi, Mansorhe; Rezaei, Alireza; Ghasemian, Sedighe

    2016-01-01

    Introduction Gestational trophoblastic neoplasms have highly been malignant potential, which usually occurred in child-bearing age women. Unusual feature of this malignancy would be rare, it was important to take in mind the possibility of GTN in different manifestation. Based on the above mentioned, the aim of this presentation would be the management and outcome of a case series of choriocarcinoma patients with abnormal manifestation. Case Presentation We have presented four patients, first who initially manifestation with signs of septic shock, the second case with severe gastrointestinal hemorrhage, the third case with postpartum infection and the forth case was a postmenopausal bleeding patient. Conclusions In case of metastatic choriocarcinoma with precise history, accurate diagnosis and appropriate treatment have led us to curable results. PMID:27482332

  8. Developmental disruptions underlying brain abnormalities in ciliopathies

    PubMed Central

    Guo, Jiami; Higginbotham, Holden; Li, Jingjun; Nichols, Jackie; Hirt, Josua; Ghukasyan, Vladimir; Anton, E.S.

    2015-01-01

    Primary cilia are essential conveyors of signals underlying major cell functions. Cerebral cortical progenitors and neurons have a primary cilium. The significance of cilia function for brain development and function is evident in the plethora of developmental brain disorders associated with human ciliopathies. Nevertheless, the role of primary cilia function in corticogenesis remains largely unknown. Here we delineate the functions of primary cilia in the construction of cerebral cortex and their relevance to ciliopathies, using an shRNA library targeting ciliopathy genes known to cause brain disorders, but whose roles in brain development are unclear. We used the library to query how ciliopathy genes affect distinct stages of mouse cortical development, in particular neural progenitor development, neuronal migration, neuronal differentiation and early neuronal connectivity. Our results define the developmental functions of ciliopathy genes and delineate disrupted developmental events that are integrally related to the emergence of brain abnormalities in ciliopathies. PMID:26206566

  9. Pleural abnormalities: thoracic ultrasound to the rescue!

    PubMed Central

    Pathmanathan, Sega; Lakshminarayana, Umesh B.; Avery, Gerard R.; Kastelik, Jack A.; Morjaria, Jaymin B.

    2013-01-01

    Diaphragmatic hernias that are diagnosed in adulthood may be traumatic or congenital in nature. Therefore, respiratory specialists need to be aware of the presentation of patients with these conditions. In this report, we describe a case series of patients with congenital and traumatic diaphragmatic hernias and highlight a varied range of their presentations. Abnormalities were noted in the thorax on the chest radiographs, but it was unclear as to the nature of the anomaly. The findings on thoracic ultrasound conducted by a pulmonologist helped to direct appropriate investigations avoiding unnecessary interventions. Instead of pleural effusions, consolidation or collapse, thoracic computed tomography demonstrated diaphragmatic hernias which were managed either conservatively or by surgery. There is increasing evidence that pulmonary specialists should be trained in thoracic ultrasonography to identify pleural pathology as well as safely conducting pleural-based interventions. PMID:23819018

  10. Pleural abnormalities: thoracic ultrasound to the rescue!

    PubMed

    Aslam, Imran; Pathmanathan, Sega; Lakshminarayana, Umesh B; Avery, Gerard R; Kastelik, Jack A; Morjaria, Jaymin B

    2013-07-01

    Diaphragmatic hernias that are diagnosed in adulthood may be traumatic or congenital in nature. Therefore, respiratory specialists need to be aware of the presentation of patients with these conditions. In this report, we describe a case series of patients with congenital and traumatic diaphragmatic hernias and highlight a varied range of their presentations. Abnormalities were noted in the thorax on the chest radiographs, but it was unclear as to the nature of the anomaly. The findings on thoracic ultrasound conducted by a pulmonologist helped to direct appropriate investigations avoiding unnecessary interventions. Instead of pleural effusions, consolidation or collapse, thoracic computed tomography demonstrated diaphragmatic hernias which were managed either conservatively or by surgery. There is increasing evidence that pulmonary specialists should be trained in thoracic ultrasonography to identify pleural pathology as well as safely conducting pleural-based interventions. PMID:23819018

  11. Computed tomography of the abnormal thymus

    SciTech Connect

    Baron, R.L.; Lee, J.K.T.; Sagel, S.S.; Levitt, R.G.

    1982-01-01

    Computed tomography (CT) should be the imaging method of choice following plain chest radiographs when a suspected thymic abnormality requires further evaluation. Based upon a six-year experience, including the evaluation of 25 patients with thymic pathology, CT was found useful in suggesting or excluding a diagnosis of thymoma and in distinguishing thymic hyperplasis from thymoma in patients with myasthenia gravis. The thickness of the thymic lobes determined by CT was found to be a more accurate indicator of infiltrative disease (thymic hyperplasia and lymphoma) than the width. CT was helpful in differentiating benign thymic cysts from solid tumors, and in defining the extent of a thymic neoplasms. On occasion, CT may suggest the specific histologic nature of a thymic lesion.

  12. States of 13C with abnormal radii

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Sobolev, Yu. G.; Khlebnikov, S. V.; Burtebaev, N.; Trzaska, W.; Heikkinen, P.; Tyurin, G. P.; Janseitov, D.; Gurov, Yu. B.

    2016-05-01

    Differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E(α) = 90 MeV. The root mean-square radii() of 13C nucleus in the states: 8.86 (1/2-), 3.09 (1/2+) and 9.90 (3/2-) MeV were determined by the Modified diffraction model (MDM). The radii of the first two levels are enhanced compared to that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state is an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. Some indications to the abnormally small size of the 9.90 MeV state were obtained.

  13. Abnormal right ventricular relaxation in pulmonary hypertension

    PubMed Central

    La Gerche, Andre; Roberts, Timothy J.; Prior, David L.; MacIsaac, Andrew I.; Burns, Andrew T.

    2015-01-01

    Abstract Left ventricular diastolic dysfunction is a well-described complication of systemic hypertension. However, less is known regarding the effect of chronic pressure overload on right ventricular (RV) diastolic function. We hypothesized that pulmonary hypertension (PHT) is associated with abnormal RV early relaxation and that this would be best shown by invasive pressure measurement. Twenty-five patients undergoing right heart catheterization for investigation of breathlessness and/or suspected PHT were studied. In addition to standard measurements, RV pressure was sampled with a high-fidelity micromanometer, and RV pressure/time curves were analyzed. Patients were divided into a PHT group and a non-PHT group on the basis of a derived mean pulmonary artery systolic pressure of 25 mmHg. Eleven patients were classified to the PHT group. This group had significantly higher RV minimum diastolic pressure ( vs. mmHg, ) and RV end-diastolic pressure (RVEDP; vs. mmHg, ), and RV τ was significantly prolonged ( vs. ms, ). There were strong correlations between RV τ and RV minimum diastolic pressure (, ) and between RV τ and RVEDP (, ). There was a trend toward increased RV contractility (end-systolic elastance) in the PHT group ( vs. mmHg/mL, ) and a correlation between RV systolic pressure and first derivative of maximum pressure change (, ). Stroke volumes were similar. Invasive measures of RV early relaxation are abnormal in patients with PHT, whereas measured contractility is static or increasing, which suggests that diastolic dysfunction may precede systolic dysfunction. Furthermore, there is a strong association between measures of RV relaxation and RV filling pressures. PMID:26064464

  14. Protruding labia minora: abnormal or just uncool?

    PubMed

    Michala, Lina; Koliantzaki, Sofia; Antsaklis, Aris

    2011-09-01

    There is a wide variety in the appearance of normal female external genitalia. Nevertheless a specific prototype is promoted by the media, leading to a false sense that all other appearances are abnormal. As adolescents become sexually aware at an earlier age, most of them are worried about the appearance of their genitalia, especially when labia minora protrude beyond labia majora. This is a prospective audit of adolescents presenting for assessment of their perceived abnormal genitalia. Sixteen girls aged 10.2 to 17.8 years presented between June 2009 and December 2010 to a specialist adolescent gynecology service. Their mean labial width was 36 mm (range: 20-55 mm). In six girls, the reason for attending the service was inequality of the size of labia ranging between 6 mm and 35 mm (mean of 20 mm). Among the remaining 10 girls, the concern had arisen through comparison with a prepubescent sibling (one case), change of genitalia during puberty (four cases), looking at internet pictures (four cases), and looking at an anatomy book (one case). Risks of Female Genital Cosmetic Surgery (FGCS) have not been adequately documented, especially with regards to sexual function and long-term patient satisfaction. External genitalia are likely to change during puberty and therefore, any genital operation in the absence of clear pathology should be deferred until adulthood. Even then, women should have clear expectations of what will be achieved with the operation in terms of appearance and function. PMID:21696338

  15. Glucose abnormalities in hepatitis C virus infection.

    PubMed

    Huang, Jee-Fu; Yu, Ming-Lung; Dai, Chia-Yen; Chuang, Wan-Long

    2013-02-01

    Hepatitis C virus (HCV) infection is one of the most important causes of cirrhosis and hepatocellular carcinoma and has a tremendous impact on public health worldwide. HCV is both hepatotropic and lymphotropic. Replication of HCV in diseased extrahepatic organs and tissues may either trigger latent autoimmunity or induce autoimmune disorders. In addition to established liver injury, type 2 diabetes mellitus (T2DM) is an important feature of extrahepatic metabolic disorders which is attributed to HCV infection. It also has some impact on the disease activity, disease course, clinical outcomes, and treatment efficacy of antiviral therapy. Previous experimental and clinical findings have highly suggested that HCV per se is diabetogenic. The cause-effect interaction between a common endocrine disorder and an infectious disease is an important issue to elucidate. Although the precise mechanisms whereby HCV infection leads to insulin resistance (IR) and glucose abnormalities are not entirely clear, it differs from the usual pathogenesis of T2DM in those with non-HCV liver diseases. This review initially highlights epidemiological and pathophysiological studies addressing the mutual link between chronic HCV infection (CHC) and T2DM. The characteristics of glucose abnormalities in this special population are depicted from the current evidence. The mutual roles of IR and CHC with respect to the prediction of treatment efficacy, how treatment response affects IR, and the role of pancreatic beta cell function in the entire suite are discussed. With the rapid progression of antiviral therapy for CHC in the past decade, we have also listed some points of future perspective in this issue. PMID:23347806

  16. Abnormal Fixational Eye Movements in Amblyopia

    PubMed Central

    Shaikh, Aasef G.; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F.

    2016-01-01

    Purpose Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Methods Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. Results We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. Discussion This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity. PMID:26930079

  17. [Renal abnormalities in HIV infected patients].

    PubMed

    Pernasetti, María Marta; Chiurchiu, Carlos; Fuente, Jorge de la; Arteaga, Javier de; Douthat, Walter; Bardosy, Cecilia; Zarate, Abel; Massari, Pablo U

    2010-01-01

    Several renal complications may occur during HIV infection, especially in advanced stages related to HIV, to other infectious agents and/or drugs. Little is known about the prevalence of renal diseases that may occur as a complication of or related to HIV infection in asymptomatic patients. This is a single center cross-sectional study of asymptomatic HIV(+) patients referred to a nefrology care service at an Argentine hospital to look for the presence of renal abnormalities. Fifty two consecutive patients were studied between April and November 2008. Patients underwent plasma and urine analysis, ultrasound, and kidney biopsy as needed. Mean age was 39.9 +/- 10.6 years, 88% were male, time from HIV diagnosis 53.2 +/- 41.2 months (2-127); 71% had HIV-disease and 77% were on antiretroviral therapy. Mean plasma HIV-RNA copies number was 7.043 +/- 3.322 and CD4+ cell count: 484 +/- 39. Pathologic findings in urine analysis were present in 30.7% of patients: albuminuria 16.6%, microscopic hematuria 11.5%, hypercalciuria 10.8% and crystalluria 6%. Mean glomerular filtration rate was 102.2 +/- 22.95 ml/min (34-149) and 41% of patients could be classified in stages 1 to 3 of chronic kidney disease. Renal abnormalities prevaled in older patients without relationship with presence of HIV-disease. Two patients were biopsied and the findings included: tubulointerstitial nephritis with presence of crystal deposition in one and IgA nephropathy in the other. No HIV-associated nephropathy was detected. The broad spectrum and the high prevalence of lesions found in this series suggest that asymptomatic HIV-infected patients should routinely undergo renal evaluation. PMID:20529774

  18. Antenatal diagnosis and management of urinary abnormalities.

    PubMed

    Colodny, A H

    1987-10-01

    Although much time, effort, and money have been expended in the area of fetal surgery and even though considerable unfortunate media publicity has resulted, the actual clinical problem is not one of great magnitude. Currently all those interested in this area agree that consideration of any intrauterine manipulation or surgery should be reserved for a fetus who has bilateral involvement that is progressive, destructive, and associated with oligohydramnios. Except for rare instances, this eliminates all fetuses except those with some type of urethral obstruction. Significant urethral obstruction accounts for approximately 10 per cent of all patients who have a prenatal diagnosis of a urologic abnormality. Of this 10 per cent, some will not be progressive, some will not be destructive, some will not involve both kidneys, and some will not develop oligohydramnios. Some of these patients will be diagnosed early enough in pregnancy to allow termination of the pregnancy if the involvement is significant and if termination is acceptable to the family. Some will be diagnosed late enough in pregnancy so that if the lungs are mature or can be stimulated to mature, early delivery and postnatal management can be elected. Some will have other associated lethal anomalies that can be diagnosed and would preclude any consideration of intrauterine manipulation or therapy. Some will have irreversible renal failure. Occasionally, the mother may refuse any proposed intrauterine therapy. Thus we are probably considering, on a theoretic basis, well under 1 per cent of all fetuses who have a prenatal diagnosis of urologic abnormalities. There may be some unusual situations that justify intrauterine manipulation. One that we encountered involved a fetus with an abdominal mass so large that a cesarean section was deemed necessary (Figs. 12 and 13). Aspiration of the mass just before delivery was performed to allow a vaginal delivery. Another case involved a pregnant woman who developed

  19. Functional Neuroimaging Abnormalities in Psychosis Spectrum Youth

    PubMed Central

    Wolf, Daniel H.; Satterthwaite, Theodore D.; Calkins, Monica E.; Ruparel, Kosha; Elliott, Mark A.; Hopson, Ryan D.; Jackson, Chad; Prabhakaran, Karthik; Bilker, Warren B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.

    2015-01-01

    Importance The continuum view of the psychosis spectrum (PS) implies that in population-based samples, PS symptoms should be associated with neural abnormalities similar to those found in help-seeking clinical-risk individuals and in schizophrenia. Functional neuroimaging has not previously been applied in large population-based PS samples, and can help understand the neural architecture of psychosis more broadly, and identify brain phenotypes beyond symptomatology that are associated with the extended psychosis phenotype. Objective To examine the categorical and dimensional relationships of PS symptoms to prefrontal hypoactivation during working memory and to amygdala hyperactivation during threat emotion processing. Design The Philadelphia Neurodevelopmental Cohort (PNC) is a genotyped prospectively accrued population-based sample of nearly 10,000 youths, who received a structured psychiatric evaluation and a computerized neurocognitive battery. A subsample of 1,445 subjects underwent neuroimaging including functional magnetic resonance imaging (fMRI) tasks examined here. Setting The PNC is a collaboration between The Children’s Hospital of Philadelphia and the Hospital of the University of Pennsylvania. Participants Youths ages 11–22 years identified through structured interview as having psychosis-spectrum features (PS, n=260), and typically developing comparison subjects without significant psychopathology (TD, n=220). Main Outcomes and Measures Two fMRI paradigms were utilized, a fractal n-back working memory task probing executive system function, and an emotion identification task probing amygdala responses to threatening faces. Results In the n-back task, PS showed reduced activation in executive control circuitry, which correlated with cognitive deficits. During emotion identification, PS demonstrated elevated amygdala responses to threatening facial expressions, which correlated with positive symptom severity. Conclusions and Relevance The pattern of

  20. Congenital and acquired orthopedic abnormalities in patients with myelomeningocele.

    PubMed

    Westcott, M A; Dynes, M C; Remer, E M; Donaldson, J S; Dias, L S

    1992-11-01

    This article presents a radiologic review of the spectrum of acquired and congenital orthopedic abnormalities found in patients with myelomeningocele. These abnormalities are caused predominantly by muscle imbalance, paralysis, and decreased sensation in the lower extremity. Iatrogenic injury, such as a postoperative tethered cord, may also cause bone abnormalities. Selected images were obtained from more than 800 children. Important entities presented include spinal curvatures such as kyphosis, scoliosis, and lordosis; subluxation and dislocation of the hip, coxa valga, contractures of the hip, and femoral torsion; knee deformities; rotational abnormalities of the lower extremity and external and internal torsion; ankle and foot abnormalities such as ankle valgus, calcaneus foot, congenital vertical talus (rocker-bottom deformity), and talipes equinovarus; and metaphyseal, diaphyseal, and physeal fractures. Familiarity with congenital abnormalities and an understanding of the pathogenesis of acquired disorders in patients with myelomeningocele are essential for proper radiologic interpretation and timely therapy. PMID:1439018

  1. The time of onset of abnormal calcification in spondylometaepiphyseal dysplasia, short limb-abnormal calcification type.

    PubMed

    Tüysüz, Beyhan; Gazioğlu, Nurperi; Ungür, Savaş; Aji, Dolly Yafet; Türkmen, Seval

    2009-01-01

    A 1-month-old boy with shortness of extremities on prenatal US was referred to our department with a provisional diagnosis of achondroplasia. His height was normal but he had short extremities and platyspondyly, premature carpal epiphyses on both hands, and short tubular bones with irregular metaphyses on radiographs. Re-evaluation of the patient at the age of 1 year revealed very short height and premature calcification of the costal cartilages and epiphyses. Spondylometaepiphyseal dysplasia (SMED), short limb-abnormal calcification type was diagnosed. This condition is a very rare autosomal recessively inherited disorder, and most of the patients die in early childhood due to neurological involvement. At the age of 2 years and 5 months, a CT scan showed narrowing of the cervical spinal canal. One month later he died suddenly because of spinal cord injury. In conclusion early diagnosis is very important because the recurrence risk is high and patients may die due to early neurological complications. The time of onset of abnormal calcifications, a diagnostic finding of the disease, is at the age of around 1 year in most patients. When abnormal calcifications are not yet present, but radiological changes associated with SMED are present, this rare disease must be considered. PMID:19002453

  2. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    SciTech Connect

    Shore, V.; Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  3. Screening for fetal and genetic abnormalities.

    PubMed

    Simpson, J L

    1991-09-01

    Screening for genetic abnormalities is an integral part of obstetrics. Prior to initiating screening, however, several prerequisites must be met: (i) capacity to alter clinical management, (ii) cost effectiveness, (iii) reliable means (usually assays) of assessment, and (iv) capacity to handle problems. In all pregnancies one should determine in systematic fashion whether family history places a pregnant woman at increased risk over the background risk of 2-3% congenital anomalies. All women over age 35 years at delivery should be offered prenatal cytogenetic testing, and women of all ages should be offered maternal serum alpha-fetoprotein screening for neural tube defects. Screening ostensibly normal populations is appropriate in certain ethnic groups to determine heterozygosity for selected disorders: Blacks for sickle-cell anaemia, Mediterranean people for beta-thalassaemia, Southeast Asians and Filipinos for alpha-thalassaemia, Ashkenazi Jews and perhaps French-Canadians for Tay-Sachs disease. Cystic fibrosis screening (delta F508 mutations) is not currently recommended for the general populations, but should be offered to relatives of an individual having delta F508 cystic fibrosis. Irrespective of the extent of screening programmes for Mendelian traits, the mutant allele will remain in the general population because by far the greatest genetic load lies in clinically normal heterozygotes, affected contributing far less to the load despite the obvious clinical effect. PMID:1720071

  4. Salivary abnormalities in Prader-Willi Syndrome

    SciTech Connect

    Hart, S.; Poshva, C.

    1994-09-01

    Although abnormal saliva is a well documented finding in PWS, little is known about the saliva in these individuals. We have recently undertaken a study to characterize the salivary composition from PW patients and to see if there is any correlation with their underlying molecular diagnosis (deletion vs. disomy). We have collected whole saliva on 3 patients; 2 had normal high-resolution karyotype analysis (Cases 1 & 3) and 1 had a deletion of 15q11q13 (Case 3). For all parameters, Case 3`s values were notably different from those of his unaffected sibling. The salivary flow rates and concentrations for all 3 PW patients are similar and are significantly different from normal controls (mean {plus_minus} SE) (p<0.05). Although this data is from only 3 PW patients, it provides valuable information. First, decreased flow appears to be due to an effect of PWS and not medications since Cases 2 & 3 are not on any medications. Second, decreased flow appears to be present in younger as well as older individuals. Third, deviations from normal in the salivary composition are evident. It is possible that these alterations are concentration effects relative to a decrease in flow rate. We are currently obtaining saliva from more PW individuals to see if these alterations are present in all PW patients and whether they can be applied as a screening test.

  5. Update: consequences of abnormal fetal growth.

    PubMed

    Chernausek, Steven D

    2012-03-01

    Intrauterine growth restriction (IUGR) is prevalent worldwide and affects children and adults in multiple ways. These include predisposition to type 2 diabetes mellitus, the metabolic syndrome, cardiovascular disease, persistent reduction in stature, and possibly changes in the pattern of puberty. A review of recent literature confirms that the metabolic effects of being born small for gestational age are evident in the very young, persist with age, and are amplified by adiposity. Furthermore, the pattern of growth in the first few years of life has a significant bearing on a person's later health, with those that show increasing weight gain being at the greatest risk for future metabolic dysfunction. Treatment with exogenous human GH is used to improve height in children who remain short after being small for gestational age at birth, but the response of individuals remains variable and difficult to predict. The mechanisms involved in the metabolic programming of IUGR children are just beginning to be explored. It appears that IUGR leads to widespread changes in DNA methylation and that specific "epigenetic signatures" for IUGR are likely to be found in various fetal tissues. The challenge is to link such alterations with modifications in gene expression and ultimately the metabolic abnormalities of adulthood, and it represents one of the frontiers for research in the field. PMID:22238390

  6. Automated Identification of Abnormal Adult EEGs

    PubMed Central

    López, S.; Suarez, G.; Jungreis, D.; Obeid, I.; Picone, J.

    2016-01-01

    The interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiners. Though interrater agreement on critical events such as seizures is high, it is much lower on subtler events (e.g., when there are benign variants). The process used by an expert to interpret an EEG is quite subjective and hard to replicate by machine. The performance of machine learning technology is far from human performance. We have been developing an interpretation system, AutoEEG, with a goal of exceeding human performance on this task. In this work, we are focusing on one of the early decisions made in this process – whether an EEG is normal or abnormal. We explore two baseline classification algorithms: k-Nearest Neighbor (kNN) and Random Forest Ensemble Learning (RF). A subset of the TUH EEG Corpus was used to evaluate performance. Principal Components Analysis (PCA) was used to reduce the dimensionality of the data. kNN achieved a 41.8% detection error rate while RF achieved an error rate of 31.7%. These error rates are significantly lower than those obtained by random guessing based on priors (49.5%). The majority of the errors were related to misclassification of normal EEGs. PMID:27195311

  7. Electroencephalographic abnormalities in antisocial personality disorder.

    PubMed

    Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell

    2012-01-01

    The presence of brain dysfunction in violent offenders has been frequently examined with inconsistent results. The aim of the study was to assess the EEG of 84 violent offenders by visual inspection and frequency-domain quantitative analysis in 84 violent prisoners. Low-resolution electromagnetic tomography (LORETA) was also employed for theta band of the EEG spectra. Antisocial personality disorder (ASPD) was present in 50 of the offenders and it was absent in the remaining 34. The prevalence of EEG abnormalities, by visual inspection, was similar for both the ASPD group (82%) and non-ASPD group (79%). The brain topography of these anomalies also did not differ between groups, in contrast to results of the EEG quantitative analysis (QEEG) and LORETA that showed remarkable regional differences between both groups. QEEG analysis showed a pattern of excess of theta-delta activities and decrease of alpha band on the right fronto-temporal and left temporo-parietal regions in the ASPD group. LORETA signified an increase of theta activity (5.08 Hz) in ASPD group relative to non-ASPD group within left temporal and parietal regions. Findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among offenders with ASPD, which was not obvious to visual inspection. PMID:22152445

  8. Parental recognition of developmental abnormalities in autism.

    PubMed

    De Giacomo, A; Fombonne, E

    1998-09-01

    In order to identify factors associated with the early detection and referral of children with pervasive developmental disorders, a sample of 82 consecutive referrals to an outpatient diagnostic service was studied. All children were thoroughly assessed with the Autism Diagnostic Interview (ADI), standardized psychological tests and direct observations. Data from the ADI on the first symptoms to arouse parental concern and on the first professional advice sought were analyzed. The mean age of children was 19.1 months (SD = 9.4) when the parents first became concerned, and the first professional advice was sought when children were 24.1 months old (SD = 11.7). The most common parental concerns were for speech and language development, followed by abnormal socio-emotional response, and medical problem or delay in milestone. In both bivariate and multiple regression analyses, the mean age of children at first parental concern and professional advice was significantly lower in the presence of mental retardation in the child, of an older sibling in the family, and of first parental concerns for medical problem/delay in milestone. More specific autistic behaviours, child's gender, social class and place of residence did not influence the age of recognition of the disorder in this sample. Health visitors and general practitioners were the first professionals contacted by parents. The implications of these findings for early detection and diagnosis of autism are discussed. PMID:9826299

  9. Thyroid abnormalities after therapeutic external radiation

    SciTech Connect

    Hancock, S.L.; McDougall, I.R.; Constine, L.S.

    1995-03-30

    The thyroid gland is the largest pure endocrine gland in the body and one of the organs most likely to produce clinically significant abnormalities after therapeutic external radiation. Radiation doses to the thyroid that exceed approximately 26 Gy frequently produce hypothyroidism, which may be clinically overt or subclinical, as manifested by increased serum thyrotropin and normal serum-free thyroxine concentrations. Pituitary or hypothalamic hypothyroidism may arise when the pituitary region receives doses exceeding 50 Gy with conventional, 1.8-2 Gy fractionation. Direct irradiation of the thyroid may increase the risk of Graves` disease or euthyroid Graves` ophthalmopathy. Silent thyroiditis, cystic degeneration, benign adenoma, and thyroid cancer have been observed after therapeutically relevant doses of external radiation. Direct or incidental thyroid irradiation increases the risk for well-differentiated, papillary, and follicular thyroid cancer from 15- to 53-fold. Thyroid cancer risk is highest following radiation at a young age, decreases with increasing age at treatment, and increases with follow-up duration. The potentially prolonged latent period between radiation exposure and the development of thyroid dysfunction, thyroid nodularity, and thyroid cancer means that individuals who have received neck or pituitary irradiation require careful, periodic clinical and laboratory evaluation to avoid excess morbidity. 39 refs.

  10. Surrogate Motherhood and Abortion for Fetal Abnormality.

    PubMed

    Walker, Ruth; van Zyl, Liezl

    2015-10-01

    A diagnosis of fetal abnormality presents parents with a difficult - even tragic - moral dilemma. Where this diagnosis is made in the context of surrogate motherhood there is an added difficulty, namely that it is not obvious who should be involved in making decisions about abortion, for the person who would normally have the right to decide - the pregnant woman - does not intend to raise the child. This raises the question: To what extent, if at all, should the intended parents be involved in decision-making? In commercial surrogacy it is thought that as part of the contractual agreement the intended parents acquire the right to make this decision. By contrast, in altruistic surrogacy the pregnant woman retains the right to make these decisions, but the intended parents are free to decide not to adopt the child. We argue that both these strategies are morally unsound, and that the problems encountered serve to highlight more fundamental defects within the commercial and altruistic models, as well as in the legal and institutional frameworks that support them. We argue in favour of the professional model, which acknowledges the rights and responsibilities of both parties and provides a legal and institutional framework that supports good decision-making. In particular, the professional model acknowledges the surrogate's right to decide whether to undergo an abortion, and the intended parents' obligation to accept legal custody of the child. While not solving all the problems that arise in surrogacy, the model provides a framework that supports good decision-making. PMID:25688455

  11. Sleep abnormality in neuromyelitis optica spectrum disorder

    PubMed Central

    Song, Yijun; Pan, Liping; Fu, Ying; Sun, Na; Li, Yu-Jing; Cai, Hao; Su, Lei; Shen, Yi; Cui, Linyang

    2015-01-01

    Objectives: We investigated the sleep structure of patients with neuromyelitis optica spectrum disorder (NMOSD) and the association of abnormalities with brain lesions. Methods: This was a prospective cross-sectional study. Thirty-three patients with NMOSD and 20 matched healthy individuals were enrolled. Demographic and clinical characteristics of patients were collected. Questionnaires were used to assess quality of sleep, daytime sleepiness, fatigue, and depression. Nocturnal polysomnography was performed. Results: Compared with healthy controls, patients with NMOSD had decreases in sleep efficiency (7%; p = 0.0341), non-REM sleep N3 (12%; p < 0.0001), and arousal index (6; p = 0.0138). REM sleep increased by 4% (p = 0.0423). There were correlations between arousal index and REM% or Epworth Sleepiness Scale (r = −0.0145; p = 0.0386, respectively). Six patients with NMOSD (18%, 5 without infratentorial lesions and 1 with infratentorial lesions) had a hypopnea index >5, and all of those with sleep apnea had predominantly the peripheral type. The periodic leg movement (PLM) index was higher in patients with NMOSD than in healthy controls (20 vs 2, p = 0.0457). Surprisingly, 77% of the patients with PLM manifested infratentorial lesions. Conclusions: Sleep architecture was markedly disrupted in patients with NMOSD. Surveillance of nocturnal symptoms and adequate symptomatic control are expected to improve the quality of life of patients with NMOSD. PMID:25918736

  12. Prenatal imaging of distal limb abnormalities using OCT in mice

    NASA Astrophysics Data System (ADS)

    Larina, Irina V.; Syed, Saba H.; Dickinson, Mary E.; Overbeek, Paul; Larin, Kirill V.

    2012-01-01

    Congenital abnormalities of the limbs are common birth defects. These include missing or extra fingers or toes, abnormal limb length, and abnormalities in patterning of bones, cartilage or muscles. Optical Coherence Tomography (OCT) is a 3-D imaging modality, which can produce high-resolution (~8 μm) images of developing embryos with an imaging depth of a few millimeters. Here we demonstrate the capability of OCT to perform 3D imaging of limb development in normal embryos and a mouse model with congenital abnormalities. Our results suggest that OCT is a promising tool to analyze embryonic limb development in mammalian models of congenital defects.

  13. Myelodysplastic syndromes: pathogenesis, functional abnormalities, and clinical implications.

    PubMed Central

    Jacobs, A

    1985-01-01

    The myelodysplastic syndromes represent a preleukaemic state in which a clonal abnormality of haemopoietic stem cell is characterised by a variety of phenotypic manifestations with varying degrees of ineffective haemopoiesis. This state probably develops as a sequence of events in which the earliest stages may be difficult to detect by conventional pathological techniques. The process is characterised by genetic changes leading to abnormal control of cell proliferation and differentiation. Expansion of an abnormal clone may be related to independence from normal growth factors, insensitivity to normal inhibitory factors, suppression of normal clonal growth, or changes in the immunological or nutritional condition of the host. The haematological picture is of peripheral blood cytopenias: a cellular bone marrow, and functional abnormalities of erythroid, myeloid, and megakaryocytic cells. In most cases marrow cells have an abnormal DNA content, often with disturbances of the cell cycle: an abnormal karyotype is common in premalignant clones. Growth abnormalities of erythroid or granulocyte-macrophage progenitors are common in marrow cultures, and lineage specific surface membrane markers indicate aberrations of differentiation. Progression of the disorder may occur through clonal expansion or through clonal evolution with a greater degree of malignancy. Current attempts to influence abnormal growth and differentiation have had only limited success. Clinical recognition of the syndrome depends on an acute awareness of the signs combined with the identification of clonal and functional abnormalities. PMID:2999194

  14. Abnormal grain growth in Ni-5at.%W

    NASA Astrophysics Data System (ADS)

    Witte, M.; Belde, M.; Barrales Mora, L.; de Boer, N.; Gilges, S.; Klöwer, J.; Gottstein, G.

    2012-12-01

    The growth of abnormally large grains in textured Ni-5at.%W substrates for high-temperature superconductors deteriorates the sharp texture of these materials and thus has to be avoided. Therefore the growth of abnormal grains is investigated and how it is influenced by the grain orientation and the annealing atmosphere. Texture measurements and grain growth simulations show that the grain orientation only matters so far that a high-angle grain boundary exists between an abnormally growing grain and the Cube-orientated matrix grains. The annealing atmosphere has a large influence on abnormal grain growth which is attributed to the differences in oxygen partial pressure.

  15. Abnormal behavior in caged birds kept as pets.

    PubMed

    van Hoek, C S; ten Cate, C

    1998-01-01

    There are a limited number of studies dealing with abnormal behavior in caged birds kept as pets. However, these studies demonstrate the presence of abnormal behavior in both songbirds and parrots. Ethological studies on these birds, as well as studies on domestic and zoo birds, indicate that inappropriate rearing and housing conditions may lead to behavioral abnormalities. Together these data indicate that behavioral abnormalities occur among both wild-caught and domesticated pet birds. The severity and magnitude of these abnormalities is probably underestimated, and there is a need for systematic studies on the nature, origin, variability, species-specificity, and reversibility of behavioral problems in pet birds. Abnormal behavior in caged birds may to some extent be prevented and reduced by environmental enrichment. However, most enrichment studies are anecdotal and not based on a thorough analysis of the behavioral abnormalities, which may lead to measures resulting in a reduction of symptoms rather than the underlying causes. Although it is likely that several of these problems could be reduced by modifying rearing and housing conditions, the current insights into the causal mechanisms underlying abnormal behavior of domesticated and wild-caught pet birds are limited, as are the insights into the possibilities of preventing or curing abnormal behavior. PMID:16363987

  16. Executive function abnormalities in pathological gamblers

    PubMed Central

    2008-01-01

    Background Pathological gambling (PG) is an impulse control disorder characterized by persistent and maladaptive gambling behaviors with disruptive consequences for familial, occupational and social functions. The pathophysiology of PG is still unclear, but it is hypothesized that it might include environmental factors coupled with a genetic vulnerability and dysfunctions of different neurotransmitters and selected brain areas. Our study aimed to evaluate a group of patients suffering from PG by means of some neuropsychological tests in order to explore the brain areas related to the disorder. Methods Twenty outpatients (15 men, 5 women), with a diagnosis of PG according to DSM-IV criteria, were included in the study and evaluated with a battery of neuropsychological tests: the Wisconsin Card Sorting Test (WCST), the Wechsler Memory Scale revised (WMS-R) and the Verbal Associative Fluency Test (FAS). The results obtained in the patients were compared with normative values of matched healthy control subjects. Results The PG patients showed alterations at the WCST only, in particular they had a great difficulty in finding alternative methods of problem-solving and showed a decrease, rather than an increase, in efficiency, as they progressed through the consecutive phases of the test. The mean scores of the other tests were within the normal range. Conclusion Our findings showed that patients affected by PG, in spite of normal intellectual, linguistic and visual-spatial abilities, had abnormalities emerging from the WCST, in particular they could not learn from their mistakes and look for alternative solutions. Our results would seem to confirm an altered functioning of the prefrontal areas which might provoke a sort of cognitive "rigidity" that might predispose to the development of impulsive and/or compulsive behaviors, such as those typical of PG. PMID:18371193

  17. Myocardial bioenergetic abnormalities in experimental uremia

    PubMed Central

    Chesser, Alistair MS; Harwood, Steven M; Raftery, Martin J; Yaqoob, Muhammad M

    2016-01-01

    Purpose Cardiac bioenergetics are known to be abnormal in experimental uremia as exemplified by a reduced phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio. However, the progression of these bioenergetic changes during the development of uremia still requires further study and was therefore investigated at baseline, 4 weeks and 8 weeks after partial nephrectomy (PNx). Methods A two-stage PNx uremia model in male Wistar rats was used to explore in vivo cardiac and skeletal muscles’ bioenergetic changes over time. High-energy phosphate nucleotides were determined by phosphorus-31 nuclear magnetic resonance (31P-NMR) and capillary zone electrophoresis. Results 31P-NMR spectroscopy revealed lower PCr/ATP ratios in PNx hearts compared to sham (SH)-operated animals 4 weeks after PNx (median values given ± SD, 0.64±0.16 PNx, 1.13±0.31 SH, P<0.02). However, 8 weeks after PNx, the same ratio was more comparable between the two groups (0.84±0.15 PNx, 1.04±0.44 SH, P= not significant), suggestive of an adaptive mechanism. When 8-week hearts were prestressed with dobutamine, the PCr/ATP ratio was again lower in the PNx group (1.08±0.36 PNx, 1.55±0.38 SH, P<0.02), indicating a reduced energy reserve during the progression of uremic heart disease. 31P-NMR data were confirmed by capillary zone electrophoresis, and the changes in myocardial bioenergetics were replicated in the skeletal muscle. Conclusion This study provides evidence of the changes that occur in myocardial energetics in experimental uremia and highlights how skeletal muscle bioenergetics mirror those found in the cardiac tissue and so might potentially serve as a practical surrogate tissue during clinical cardiac NMR investigations. PMID:27307758

  18. A Case of ADHD and a Major Y Chromosome Abnormality

    ERIC Educational Resources Information Center

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.…

  19. Freud Was Right. . . about the Origins of Abnormal Behavior

    ERIC Educational Resources Information Center

    Muris, Peter

    2006-01-01

    Freud's psychodynamic theory is predominantly based on case histories of patients who displayed abnormal behavior. From a scientific point of view, Freud's analyses of these cases are unacceptable because the key concepts of his theory cannot be tested empirically. However, in one respect, Freud was totally right: most forms of abnormal behavior…

  20. Autosomal Chromosome Abnormality: A Cause of Birth Defects.

    ERIC Educational Resources Information Center

    Plumridge, Diane

    Intended for parents and professionals, the book explains chromosome abnormalities in lay terms and discusses the relationship of specific conditions to birth defects. Chromosomal abnormalities are defined and factors in diagnosis and recurrence are discussed. Normal chromosome reproduction processes are covered while such numerical abnormalities…

  1. Abnormal Spatial Asymmetry of Selective Attention in ADHD

    ERIC Educational Resources Information Center

    Chan, Edgar; Mattingley, Jason B.; Huang-Pollock, Cynthia; English, Therese; Hester, Robert; Vance, Alasdair; Bellgrove, Mark A.

    2009-01-01

    Background: Evidence for a selective attention abnormality in children with attention deficit hyperactivity disorder (ADHD) has been hard to identify using conventional methods from cognitive science. This study tested whether the presence of selective attention abnormalities in ADHD may vary as a function of perceptual load and target…

  2. Describing the Sensory Abnormalities of Children and Adults with Autism

    ERIC Educational Resources Information Center

    Leekam, Susan R.; Nieto, Carmen; Libby, Sarah J.; Wing, Lorna; Gould, Judith

    2007-01-01

    Patterns of sensory abnormalities in children and adults with autism were examined using the Diagnostic Interview for Social and Communication Disorders (DISCO). This interview elicits detailed information about responsiveness to a wide range of sensory stimuli. Study 1 showed that over 90% of children with autism had sensory abnormalities and had…

  3. Visualizing how cancer chromosome abnormalities form in living cells

    Cancer.gov

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  4. High incidence of MYC and BCL2 abnormalities in mantle cell lymphoma, although only MYC abnormality predicts poor survival

    PubMed Central

    Li, Chengwen; Zhong, Shizhen; Chen, Weiwei; Li, Zengjun; Xiong, Wenjie; Liu, Wei; Liu, Enbin; Cui, Rui; Ru, Kun; Zhang, Peihong; Xu, Yan; An, Gang; Lv, Rui; Qi, Junyuan; Wang, Jianxiang; Cheng, Tao; Qiu, Lugui

    2015-01-01

    The incidence and prognostic role of MYC and BCL2 rearrangements in mature B-cell lymphomas have been extensively studied, except the infrequent mantle cell lymphoma (MCL). Here, we analyzed the MYC and BCL2 abnormalities and other cytogenetic aberrations by fluorescence in situ hybridization (FISH) in 50 MCL patients with bone marrow involvement. Eighteen patients (36.0%) had MYC gains and/or amplifications, and twelve patients (24.0%) had BCL2 gains and/or amplifications. Among the 18 patients with MYC abnormality, four had simultaneous MYC translocations, but no BCL2 translocation was detected among patients with BCL2 abnormality. Only two patients (4.0%) had both MYC and BCL2 abnormalities. The patients with a MYC abnormality had a significantly higher tumor burden, a higher percentage of medium/high risk MIPI group and genomic instability compared to those without this abnormality. However, no significant difference was observed between patients with or without a BCL2 abnormality in terms of clinical and cytogenetic factors. Patients with a MYC abnormality had poorer progress-free survival (PFS) (9.0 vs. 48.0 months, p = .000) and overall survival (OS) (12.0 vs. 94.5 months, p = .000), but the presence of a BCL2 abnormality did not significantly influence either PFS or OS. In multivariate analysis, the MYC abnormality was the independent adverse factor for both PFS and OS, and intensive chemotherapy did not improve the outcome of these patients. Thus, the presence of a MYC but not BCL2 abnormality predicted the poor survival of MCL patients, and a new treatment strategy should be developed for these patients. PMID:26517511

  5. Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits.

    PubMed

    Husby, Arild; Schielzeth, Holger; Forstmeier, Wolfgang; Gustafsson, Lars; Qvarnström, Anna

    2013-03-01

    Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex-linked genetic variance (h(2)z ). Of 17 traits examined, eight showed a nonzero h(2)Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex-linked genetic variance. Sexually selected traits did not show higher h(2)Z than morphological traits and there was only a weak positive relationship between h(2)Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism. PMID:23461313

  6. TWO SEX-CHROMOSOME-LINKED MICROSATELLITE LOCI SHOW GEOGRAPHIC VARIANCE AMONG NORTH AMERICAN OSTRINIA NUBILALIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A (GAAAAT)n repeat microsatellite was isolated from a partial Ostrinia nubilalis genomic library. Pedigree analysis indicated the marker was female specific, and referred to as Ostrinia nubilalis W-chromosome marker 1 (ONW1). Polymerase chain reaction (PCR) and DNA sequence analysis indicated that ...

  7. Detection of dominant flow and abnormal events in surveillance video

    NASA Astrophysics Data System (ADS)

    Kwak, Sooyeong; Byun, Hyeran

    2011-02-01

    We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.

  8. Abnormal/Emergency Situations. Impact of Unmanned Aircraft Systems Emergency and Abnormal Events on the National Airspace System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Access 5 analyzed the differences between UAS and manned aircraft operations under five categories of abnormal or emergency situations: Link Failure, Lost Communications, Onboard System Failures, Control Station Failures and Abnormal Weather. These analyses were made from the vantage point of the impact that these operations have on the US air traffic control system, with recommendations for new policies and procedures included where appropriate.

  9. Classification of breast abnormalities using artificial neural network

    NASA Astrophysics Data System (ADS)

    Zaman, Nur Atiqah Kamarul; Rahman, Wan Eny Zarina Wan Abdul; Jumaat, Abdul Kadir; Yasiran, Siti Salmah

    2015-05-01

    Classification is the process of recognition, differentiation and categorizing objects into groups. Breast abnormalities are calcifications which are tumor markers that indicate the presence of cancer in the breast. The aims of this research are to classify the types of breast abnormalities using artificial neural network (ANN) classifier and to evaluate the accuracy performance using receiver operating characteristics (ROC) curve. The methods used in this research are ANN for breast abnormalities classifications and Canny edge detector as a feature extraction method. Previously the ANN classifier provides only the number of benign and malignant cases without providing information for specific cases. However in this research, the type of abnormality for each image can be obtained. The existing MIAS MiniMammographic database classified the mammogram images into three features only namely characteristic of background tissues, class of abnormality and radius of abnormality. However, in this research three other features are added-in. These three features are number of spots, area and shape of abnormalities. Lastly the performance of the ANN classifier is evaluated using ROC curve. It is found that ANN has an accuracy of 97.9% which is considered acceptable.

  10. Abnormal grain growth in AISI 304L stainless steel

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2014-11-15

    The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.

  11. A Retrospective Study of Congenital Cardiac Abnormality Associated with Scoliosis

    PubMed Central

    Ucpunar, Hanifi; Sevencan, Ahmet; Balioglu, Mehmet Bulent; Albayrak, Akif; Polat, Veli

    2016-01-01

    Study Design Retrospective study. Purpose To identify the incidence of congenital cardiac abnormalities in patients who had scoliosis and underwent surgical treatment for scoliosis. Overview of Literature Congenital and idiopathic scoliosis (IS) are associated with cardiac abnormalities. We sought to establish and compare the incidence of congenital cardiac abnormalities in patients with idiopathic and congenital scoliosis (CS) who underwent surgical treatment for scoliosis. Methods Ninety consecutive scoliosis patients, who underwent surgical correction of scoliosis, were classified as CS (55 patients, 28 female [51%]) and IS (35 patients, 21 female [60%]). The complete data of the patients, including medical records, plain radiograph and transthoracic echocardiography were retrospectively assessed. Results We found that mitral valve prolapse was the most common cardiac abnormality in both patients with IS (nine patients, 26%) and CS (13 patients, 24%). Other congenital cardiac abnormalities were atrial septal aneurysm (23% of IS patients, 18% of CS patients), pulmonary insufficiency (20% of IS patients, 4% of CS patients), aortic insufficiency (17% of IS patients), atrial septal defect (11% of IS patients, 13% of CS patients), patent foramen ovale (15% of CS patients), dextrocardia (4% of CS patients), bicuspid aortic valve (3% of IS patients), aortic stenosis (2% of CS patients), ventricular septal defect (2% of CS patients), and cardiomyopathy (2% of CS patients). Conclusions We determined the increased incidence of congenital cardiac abnormalities among patients with congenital and IS. Mitral valve prolapse appeared to be the most prevalent congenital cardiac abnormality in both groups. PMID:27114761

  12. Chromosome abnormalities in Indonesian patients with short stature

    PubMed Central

    2012-01-01

    Background Short stature is associated with several disorders including wide variations of chromosomal disorders and single gene disorders. The objective of this report is to present the cytogenetic findings in Indonesian patients with short stature. Methods G-banding and interphase/metaphase FISH were performed on short stature patients with and without other clinical features who were referred by clinicians all over Indonesia to our laboratory during the year 2003–2009. Results The results of chromosomal analysis of ninety seven patients (mean age: 10.7 years old) were collected. The group of patients with other clinical features showed sex chromosome abnormalities in 45% (18/40) and autosomal abnormalities in 10% (4/40), whereas those with short stature only, 42.1% (24/57) had sex chromosome abnormalities and 1.75% (1/57) had autosomal abnormalities. The autosomal chromosomal abnormalities involved mostly subtelomeric regions. Results discrepancies between karyotype and FISH were found in 10 patients, including detection of low-level monosomy X mosaicism in 6 patients with normal karyotype, and detection of mosaic aneuploidy chromosome 18 in 1 patient with 45,XX,rob(13;14)(q10;q10). Statistical analysis showed no significant association between the groups and the type of chromosomal abnormalities. Conclusion Chromosome abnormalities account for about 50% of the short stature patients. Wide variations of both sex and autosomal chromosomes abnormalities were detected in the study. Since three out of five patients had autosomal structural abnormalities involving the subtelomeric regions, thus in the future, subtelomeric FISH or even a more sensitive method such as genomic/SNP microarray is needed to confirm deletions of subtelomeric regions of chromosome 9, 11 and 18. Low-level mosaicism in normal karyotype patients indicates interphase FISH need to be routinely carried out in short stature patients as an adjunct to karyotyping. PMID:22863325

  13. Prevalence of chromosomal abnormalities in infertile couples in romania.

    PubMed

    Mierla, D; Malageanu, M; Tulin, R; Albu, D

    2015-06-01

    The purpose of this study was to establish a correlation between the presence of chromosomal abnormalities in one of the partners and infertility. This retrospective study was performed at the Department of Reproductive Medicine, Life Memorial Hospital, Bucharest, Romania, between August 2007 to December 2011. Two thousand, one hundred and ninety-five patients with reproductive problems were investigated, and the frequency of chromosomal abnormalities was calculated. The control group consisting of 87 fertile persons who had two or more children, was investigated in this retrospective study. All the patients of this study were investigated by cytogenetic techniques and the results of the two groups were compared by a two-tailed Fisher's exact test. In this study, 94.99% patients had a normal karyotype and 5.01% had chromosomal abnormalities (numerical and structural chromosomal abnormalities). In the study group, numerical chromosomal abnormalities were detected in 1.14% of infertile men and 0.62% of infertile women, and structural chromosomal abnormalities were detected in 1.38% of infertile men and 1.87% of infertile women, respectively. The correlation between the incidence of chromosomal anomalies in the two sexes in couple with reproductive problems was not statistically significant. Recently, a possible association between infertility and chromosomal abnormalities with a significant statistical association has been reported. Our study shows that there is no association between chromosomal abnormalities and infertility, but this study needs to be confirmed with further investigations and a larger control group to establish the role of chromosomal abnormalities in the etiology of infertility. PMID:26929902

  14. Prevalence of chromosomal abnormalities in infertile couples in romania

    PubMed Central

    Mierla, D; Malageanu, M; Tulin, R; Albu, D

    2015-01-01

    The purpose of this study was to establish a correlation between the presence of chromosomal abnormalities in one of the partners and infertility. This retrospective study was performed at the Department of Reproductive Medicine, Life Memorial Hospital, Bucharest, Romania, between August 2007 to December 2011. Two thousand, one hundred and ninety-five patients with reproductive problems were investigated, and the frequency of chromosomal abnormalities was calculated. The control group consisting of 87 fertile persons who had two or more children, was investigated in this retrospective study. All the patients of this study were investigated by cytogenetic techniques and the results of the two groups were compared by a two-tailed Fisher’s exact test. In this study, 94.99% patients had a normal karyotype and 5.01% had chromosomal abnormalities (numerical and structural chromosomal abnormalities). In the study group, numerical chromosomal abnormalities were detected in 1.14% of infertile men and 0.62% of infertile women, and structural chromosomal abnormalities were detected in 1.38% of infertile men and 1.87% of infertile women, respectively. The correlation between the incidence of chromosomal anomalies in the two sexes in couple with reproductive problems was not statistically significant. Recently, a possible association between infertility and chromosomal abnormalities with a significant statistical association has been reported. Our study shows that there is no association between chromosomal abnormalities and infertility, but this study needs to be confirmed with further investigations and a larger control group to establish the role of chromosomal abnormalities in the etiology of infertility. PMID:26929902

  15. Cell cycle regulators and their abnormalities in breast cancer.

    PubMed Central

    Fernández, P L; Jares, P; Rey, M J; Campo, E; Cardesa, A

    1998-01-01

    One of the main properties of cancer cells is their increased and deregulated proliferative activity. It is now well known that abnormalities in many positive and negative modulators of the cell cycle are frequent in many cancer types, including breast carcinomas. Abnormalities such as defective function of the retinoblastoma gene and cyclin-dependent kinase inhibitors (for example, p16, p21, and p27), as well as upregulation of cyclins, are often seen in breast tumours. These abnormalities are sometimes coincidental, and newly described interplays between them suggest the existence of a complex regulatory web in the cell cycle. PMID:10193510

  16. GEO Satellite Solar Array Abnormality's Analysis and Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Junyan; Yang, Yujie; Zhu, Weibo; Liu, Jingyong; Xu, Hui

    Solar array, converting sunlight into electricity, is one of the most important components in satellite energy subsystem. It is significant for in-orbit satellite safety that solar array and its subsidiaries work normally. An abnormal phenomenon that the output current of one solar array suddenly decreased happened in a GEO satellite. Combined with the structure of the solar array system and the trends of relevant parameters during the abnormality, the paper analyzed the possible reasons, and detected the root cause, and finally provided an emergency treatment for this kind of abnormality.

  17. Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications

    PubMed Central

    Buckley, Peter F

    2005-01-01

    Schizophrenia, once considered a psychological malady devoid of any organic brain substrate, has been the focus of intense neuroimaging research. Findings reveal mild but generalized tissue loss as well as more selective focal loss. It is unclear whether these abnormalities reflect neurodevelopmental or neurodegenerative processes, or some combination of each; current evidence favors a preponderance of neurodevelopmental abnormalities. The pattern of brain abnormalities is also influenced by environmental and genetic risk factors, as well as by the course (and possibly even treatment) of this illness. These findings are described in this article. PMID:18568069

  18. Atlantooccipital Overlap and Other Craniocervical Junction Abnormalities in Dogs.

    PubMed

    Loughin, Catherine A; Marino, Dominic J

    2016-03-01

    The term craniocervical junction abnormality (CJA) is an umbrella term for a variety of malformations that occur in the craniocervical region. These abnormalities include Chiari-like malformation, atlantooccipital overlapping, atlantoaxial instability, occipitoatlantoaxial malformations, atlantoaxial dural bands, and dens abnormalities. Syringomyelia can occur secondary to any of these malformations or a combination. Clinical signs in dogs with a CJA typically include neck pain and varying signs associated with a cervical myelopathy. MRI of CJAs with computed tomography imaging is necessary for a full evaluation. Some dogs with CJAs respond to medical management, but for most surgery is the treatment of choice. PMID:26631588

  19. Cardiac Arrhythmias and Abnormal Electrocardiograms After Acute Stroke.

    PubMed

    Ruthirago, Doungporn; Julayanont, Parunyou; Tantrachoti, Pakpoom; Kim, Jongyeol; Nugent, Kenneth

    2016-01-01

    Cardiac arrhythmias and electrocardiogram (ECG) abnormalities occur frequently but are often underrecognized after strokes. Acute ischemic and hemorrhagic strokes in some particular area of brain can disrupt central autonomic control of the heart, precipitating cardiac arrhythmias, ECG abnormalities, myocardial injury and sometimes sudden death. Identification of high-risk patients after acute stroke is important to arrange appropriate cardiac monitoring and effective management of arrhythmias, and to prevent cardiac morbidity and mortality. More studies are needed to better clarify pathogenesis, localization of areas associated with arrhythmias and practical management of arrhythmias and abnormal ECGs after acute stroke. PMID:26802767

  20. The effect of abnormal cell proportion on specimen classifier performance

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; White, B. S.

    1981-01-01

    An analysis is presented of the results obtained from a cell classifier which is confronted with an abnormal/normal cell ratio which is different from the ratio assumed in the calibration of the classifier. False negative and false positive error rates are determined in advance for classifier operation, along with the necessary sample size in order to validate the predicted distributions. Changes are demonstrated to happen only regarding the false negative rate, where reductions in the abnormal cell rate below the expected rates would cause totally unreliable data. Substantial overproduction of abnormal cells would be quickly noticeable, while production rates beyond, but close to, the expected rates would only require more extensive sampling. Classifier systems for 10% proportions of abnormal cells are concluded to be possible, but difficulties are present with much lower rates

  1. Adverse Pregnancy Outcomes after Abnormal First Trimester Screening for Aneuploidy

    PubMed Central

    Goetzl, Laura

    2010-01-01

    Women with abnormal first trimester screening but with a normal karyotype are at risk for adverse pregnancy outcomes. A nuchal translucency >3.5mm is associated with an increased risk of subsequent pregnancy loss, fetal infection, fetal heart abnormalities and other structural abnormalities. Abnormal first trimester analytes are also associated with adverse pregnancy outcomes but the predictive value is less impressive. As a single marker, PAPP-A <1st%ile has a good predictive value for subsequent fetal growth restriction. Women with PAPP-A<5th%ile should undergo subsequent risk assessment with routine MSAFP screening with the possible addition of uterine artery PI assessment in the midtrimester. PMID:20638576

  2. Identification of abnormal operating conditions and intelligent decision system

    NASA Astrophysics Data System (ADS)

    Li, Xiuliang; Jiang, Junjie; Su, Hongye; Chu, Jian

    2011-12-01

    In earth pressure balance (EPB) shield construction, the "plastic flow state" is difficult to form using the soil dug in the capsule because it can cause three abnormal operating conditions, including occlusion, caking in the capsule, and spewing at the outlet of the dump device. These abnormal operating conditions can, in turn, trigger failure in tunneling, cutter-device damage, and even catastrophic incidents, such as ground settlement. This present paper effectively integrates the mechanism of abnormal operating conditions and knowledge of soil conditioning, and establishes a uniform model of identifying abnormal conditions and intelligent decision support system based on the belief rule-base system. The model maximizes knowledge in improving the soil, construction experience, and data to optimize the model online. Finally, a numerical simulation with specific construction data is presented to illustrate the effectiveness of the algorithm.

  3. Statistical Analysis of Haralick Texture Features to Discriminate Lung Abnormalities.

    PubMed

    Zayed, Nourhan; Elnemr, Heba A

    2015-01-01

    The Haralick texture features are a well-known mathematical method to detect the lung abnormalities and give the opportunity to the physician to localize the abnormality tissue type, either lung tumor or pulmonary edema. In this paper, statistical evaluation of the different features will represent the reported performance of the proposed method. Thirty-seven patients CT datasets with either lung tumor or pulmonary edema were included in this study. The CT images are first preprocessed for noise reduction and image enhancement, followed by segmentation techniques to segment the lungs, and finally Haralick texture features to detect the type of the abnormality within the lungs. In spite of the presence of low contrast and high noise in images, the proposed algorithms introduce promising results in detecting the abnormality of lungs in most of the patients in comparison with the normal and suggest that some of the features are significantly recommended than others. PMID:26557845

  4. Social and Abnormal Psychology Textbooks: An Objective Analysis.

    ERIC Educational Resources Information Center

    Christopher, Andrew N.; Griggs, Richard A.; Hagans, Chad L.

    2000-01-01

    Provides feature and content analyses of 14 social and 17 abnormal psychology full-length textbooks from 1995-98 that are available for undergraduate psychology courses. Provides instructors of these courses a means for more informed text selection. (CMK)

  5. Video Taping and Abnormal Psychology: Dramatized Clinical Interviews.

    ERIC Educational Resources Information Center

    Lyons, Michael J.; And Others

    1984-01-01

    Students in an abnormal psychology course worked in teams to produce dramatizations of diagnostic interviews and then presented them in class. Positive and negative aspects of the activity are discussed. (RM)

  6. Diverticular Disease of the Colon: Neuromuscular Function Abnormalities.

    PubMed

    Bassotti, Gabrio; Villanacci, Vincenzo; Bernardini, Nunzia; Dore, Maria P

    2016-10-01

    Colonic diverticular disease is a frequent finding in daily clinical practice. However, its pathophysiological mechanisms are largely unknown. This condition is likely the result of several concomitant factors occurring together to cause anatomic and functional abnormalities, leading as a result to the outpouching of the colonic mucosa. A pivotal role seems to be played by an abnormal colonic neuromuscular function, as shown repeatedly in these patients, and by an altered visceral perception. There is recent evidence that these abnormalities might be related to the derangement of the enteric innervation, to an abnormal distribution of mucosal neuropeptides, and to low-grade mucosal inflammation. The latter might be responsible for the development of visceral hypersensitivity, often causing abdominal pain in a subset of these patients. PMID:27622368

  7. The significance of ultrastructural abnormalities of human cilia.

    PubMed

    Fox, B; Bull, T B; Makey, A R; Rawbone, R

    1981-12-01

    The electronmicroscopic structure of cilia was studied from the inferior turbinate of the nose in 22 adults, and in 84 biopsies from the bronchial tree of 40 adults. The incidence of compound cilia and abnormal microtubular structures was assessed. There were significant variations in the incidence of abnormalities in different parts of the airways and even within different areas of the same electronmicroscopic section. The focal nature of differences in structure of cilia indicate that abnormalities found in a single biopsy do not necessarily reflect a generalized change in the bronchial tree. Thus, such a finding should not be used as evidence that the abnormalities of cilia are the cause of decrease in mucociliary clearance or that they play a role in the pathogenesis of bronchiectasis and sinusitis. PMID:7307613

  8. Postnatal evaluation of infants with an abnormal antenatal renal sonogram

    PubMed Central

    Becker, Amy M.

    2009-01-01

    Purpose of review Antenatally detected renal abnormalities are frequently encountered. Recommended postnatal evaluation of these infants has evolved to minimize invasive testing while maximizing detection of significant abnormalities. Recent findings There is a low rate of detectable renal abnormalities in infants with a normal postnatal sonogram at 4–6 weeks of age. Routine prophylactic antibiotics are not indicated in infants with isolated antenatal hydronephrosis. Infants with a multicystic dysplastic kidney and a normal contralateral kidney on renal ultrasound do not require further evaluation. Parents of these children should be counseled on symptoms of urinary tract infections to allow prompt diagnosis. Summary All infants with abnormalities on antenatal sonogram should undergo postnatal evaluation with a sonogram after birth and at 4–6 weeks of age. Further evaluation can be safely limited when the postnatal sonogram is normal at 6 weeks of age. PMID:19663038

  9. Genetics Home Reference: X-linked lissencephaly with abnormal genitalia

    MedlinePlus

    ... often in males. XLAG is characterized by abnormal brain development that results in the brain having a smooth ... for interneuron migration. In addition to impairing normal brain development, a lack of functional ARX protein disrupts cell ...

  10. Effects of abnormal excitation on the dynamics of spiral waves

    NASA Astrophysics Data System (ADS)

    Min-Yi, Deng; Xue-Liang, Zhang; Jing-Yu, Dai

    2016-01-01

    The effect of physiological and pathological abnormal excitation of a myocyte on the spiral waves is investigated based on the cellular automaton model. When the excitability of the medium is high enough, the physiological abnormal excitation causes the spiral wave to meander irregularly and slowly. When the excitability of the medium is low enough, the physiological abnormal excitation leads to a new stable spiral wave. On the other hand, the pathological abnormal excitation destroys the spiral wave and results in the spatiotemporal chaos, which agrees with the clinical conclusion that the early after depolarization is the pro-arrhythmic mechanism of some anti-arrhythmic drugs. The mechanisms underlying these phenomena are analyzed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).

  11. Report to Congress on abnormal occurrences, October--December 1991

    SciTech Connect

    Not Available

    1992-03-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence of an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health and safety and requires a quarterly report of such events to be made to Congress. This report covers the period October through December 1991. Five abnormal occurrences at NRC-licensed facilities are discussed in this report. None of these occurrences involved a nuclear power plant. Four involved medical therapy misadministrations and one involved a medical diagnostic misadministration. The NRC's Agreement States reported three abnormal occurrences. Two involved exposures of non-radiation workers and one involved a medical therapy misadministration. The report also contains information that updates some previously reported abnormal occurrences.

  12. Cardiac and other abnormalities in the sudden infant death syndrome.

    PubMed

    Naeye, R L; Whalen, P; Ryser, M; Fisher, R

    1976-01-01

    Many victims of the sudden infant death syndrome (SIDS) have abnormally heavy cardiac right ventricles. The degree of this abnormality is directly proportional to: a) the mass of muscle about small pulmonary arteries, b) the amount of brown fat retention about adrenal glands, and c) the presence of hepatic erythropoiesis. The pulmonary arterial abnormality is probably the result of chronic alveolar hypoventilation, while brown fat retention and hepatic erythropoiesis are likely consequences of chronic hypoxemia. These abnormalities are found in both SIDS victims who die with and those who die without mild respiratory tract infections. However, there are some differences between the two SIDS groups. Infected victims die at an older age and have smaller thymus glands and larger spleens; there is a greater proportion of males in the infected victims than in the noninfected victims. PMID:1247080

  13. Role of scintigraphy in focally abnormal sonograms of fatty livers

    SciTech Connect

    Lisbona, R.; Mishkin, S.; Derbekyan, V.; Novales-Diaz, J.A.; Roy, A.; Sanders, L.

    1988-06-01

    Fatty infiltration of the liver may cause a range of focal abnormalities on hepatic sonography which may simulate hepatic nodular lesions. Discrete deposits of fat or islands of normal tissue which are uninvolved by fatty infiltration may stand out as potential space-occupying lesions on the sonograms. Twelve patients with such focally abnormal ultrasound images were referred for liver scintigraphy with /sup 133/Xe and /sup 99m/Tc colloidal SPECT studies to clarify the issue. These examinations helped identify, in nine of 12 patients, the innocent nature of the sonographic abnormalities which were simply related to the fat deposition process. Further, (/sup 99m/Tc)RBC scans defined the additional pathologic process in three patients in whom actual space-occupying lesions were indeed present in the liver. Scintigraphy has an important role to play in the understanding of focal hepatic ultrasound abnormalities particularly in unsuspected hepatic steatosis.

  14. Statistical Analysis of Haralick Texture Features to Discriminate Lung Abnormalities

    PubMed Central

    Zayed, Nourhan; Elnemr, Heba A.

    2015-01-01

    The Haralick texture features are a well-known mathematical method to detect the lung abnormalities and give the opportunity to the physician to localize the abnormality tissue type, either lung tumor or pulmonary edema. In this paper, statistical evaluation of the different features will represent the reported performance of the proposed method. Thirty-seven patients CT datasets with either lung tumor or pulmonary edema were included in this study. The CT images are first preprocessed for noise reduction and image enhancement, followed by segmentation techniques to segment the lungs, and finally Haralick texture features to detect the type of the abnormality within the lungs. In spite of the presence of low contrast and high noise in images, the proposed algorithms introduce promising results in detecting the abnormality of lungs in most of the patients in comparison with the normal and suggest that some of the features are significantly recommended than others. PMID:26557845

  15. Electrocardiographic abnormalities and cardiac arrhythmias in chronic obstructive pulmonary disease.

    PubMed

    Goudis, Christos A; Konstantinidis, Athanasios K; Ntalas, Ioannis V; Korantzopoulos, Panagiotis

    2015-11-15

    Chronic obstructive pulmonary disease (COPD) is independently associated with an increased burden of cardiovascular disease. Besides coronary artery disease (CAD) and congestive heart failure (CHF), specific electrocardiographic (ECG) abnormalities and cardiac arrhythmias seem to have a significant impact on cardiovascular prognosis of COPD patients. Disturbances of heart rhythm include premature atrial contractions (PACs), premature ventricular contractions (PVCs), atrial fibrillation (AF), atrial flutter (AFL), multifocal atrial tachycardia (MAT), and ventricular tachycardia (VT). Of note, the identification of ECG abnormalities and the evaluation of the arrhythmic risk may have significant implications in the management and outcome of patients with COPD. This article provides a concise overview of the available data regarding ECG abnormalities and arrhythmias in these patients, including an elaborated description of the underlying arrhythmogenic mechanisms. The clinical impact and prognostic significance of ECG abnormalities and arrhythmias in COPD as well as the appropriate antiarrhythmic therapy and interventions in this setting are also discussed. PMID:26218181

  16. Cytogenetic abnormalities in Tunisian women with premature ovarian failure.

    PubMed

    Ayed, Wiem; Amouri, Ahlem; Hammami, Wajih; Kilani, Olfa; Turki, Zinet; Harzallah, Fatma; Bouayed-Abdelmoula, Nouha; Chemkhi, Imen; Zhioua, Fethi; Slama, Claude Ben

    2014-12-01

    To identify the distribution of chromosome abnormalities among Tunisian women with premature ovarian failure (POF) referred to the department of Cytogenetic at the Pasteur Institute of Tunis (Tunisia), standard cytogenetic analysis was carried out in a total of 100 women younger than 40 affected with premature ovarian failure. We identified 18 chromosomal abnormalities, including seven X-numerical anomalies in mosaic and non-mosaic state (45,X; 47,XXX), four sex reversal, three X-structural abnormalities (terminal deletion and isochromosomes), one autosomal translocation and one supernumerary marker. The overall prevalence of chromosomal abnormalities was 18% in our cohort. X chromosome aneuploidy was the most frequent aberration. This finding confirms the essential role of X chromosome in ovarian function and underlies the importance of cytogenetic investigations in the routine management of POF. PMID:25433561

  17. Phenotype of two males with abnormal Y chromosomes.

    PubMed

    Mićić, M; Mićić, S; Babić, M; Diklić, V

    1990-05-01

    Two infertile males with sex chromosomal abnormalities and mosaic karyotype, 45,X/46,X,dic(Yq) and 45,X/46,X,ring(Y), had considerably changed physical findings, including tooth sizes and craniofacial dimensions. Spermatogenesis was preserved with abnormal meiotic chromosomal behaviour. Mosaic karyotype and structurally changed Y chromosome in both cases had an influence on physical parameters. Tests were normally developed and spermatogenesis was preserved but depressed in later stages. PMID:2354546

  18. Prevention of congenital abnormalities by periconceptional multivitamin supplementation.

    PubMed Central

    Czeizel, A E

    1993-01-01

    OBJECTIVE--To study the effect of periconceptional multivitamin supplementation on neural tube defects and other congenital abnormality entities. DESIGN--Randomised controlled trial of supplementation with multivitamins and trace elements. SETTING--Hungarian family planning programme. SUBJECTS--4156 pregnancies with known outcome and 3713 infants evaluated in the eighth month of life. INTERVENTIONS--A single tablet of a multivitamin including 0.8 mg of folic acid or trace elements supplement daily for at least one month before conception and at least two months after conception. MAIN OUTCOME MEASURES--Number of major and mild congenital abnormalities. RESULTS--The rate of all major congenital abnormalities was significantly lower in the group given vitamins than in the group given trace elements and this difference cannot be explained totally by the significant reduction of neural tube defects. The rate of major congenital abnormalities other than neural tube defects and genetic syndromes was 9.0/1000 in pregnancies with known outcome in the vitamin group and 16.6/1000 in the trace element group; relative risk 1.85 (95% confidence interval 1.02 to 3.38); difference, 7.6/1000. The rate of all major congenital abnormalities other than neural tube defects and genetic syndromes diagnosed up to the eighth month of life was 14.7/1000 informative pregnancies in the vitamin group and 28.3/1000 in the trace element group; relative risk 1.95 (1.23 to 3.09); difference, 13.6/1000. The rate of some congenital abnormalities was lower in the vitamin group than in the trace element group but the differences for each group of abnormalities were not significant. CONCLUSIONS--Periconceptional multivitamin supplementation can reduce not only the rate of neural tube defects but also the rate of other major non-genetic syndromatic congenital abnormalities. Further studies are needed to differentiate the chance effect and vitamin dependent effect. PMID:8324432

  19. Abnormal Bleeding During Menopause Hormone Therapy: Insights for Clinical Management

    PubMed Central

    de Medeiros, Sebastião Freitas; Yamamoto, Márcia Marly Winck; Barbosa, Jacklyne Silva

    2013-01-01

    Objective Our objective was to review the involved mechanisms and propose actions for controlling/treating abnormal uterine bleeding during climacteric hormone therapy. Methods A systemic search of the databases SciELO, MEDLINE, and Pubmed was performed for identifying relevant publications on normal endometrial bleeding, abnormal uterine bleeding, and hormone therapy bleeding. Results Before starting hormone therapy, it is essential to exclude any abnormal organic condition, identify women at higher risk for bleeding, and adapt the regimen to suit eachwoman’s characteristics. Abnormal bleeding with progesterone/progestogen only, combined sequential, or combined continuous regimens may be corrected by changing the progestogen, adjusting the progestogen or estrogen/progestogen doses, or even switching the initial regimen to other formulation. Conclusion To diminish the occurrence of abnormal bleeding during hormone therapy (HT), it is important to tailor the regimen to the needs of individual women and identify those with higher risk of bleeding. The use of new agents as adjuvant therapies for decreasing abnormal bleeding in women on HT awaits future studies. PMID:24665210

  20. Prognostic Impact of Cytogenetic Abnormalities in Multiple Myeloma

    PubMed Central

    Jian, Yuan; Chen, Xiaolei; Zhou, Huixing; Zhu, Wanqiu; Liu, Nian; Geng, Chuanying; Chen, Wenming

    2016-01-01

    Abstract The identification of specific cytogenetic abnormalities by interphase fluorescence in situ hybridization (i-FISH) has become a routine procedure for prognostic stratification of multiple myeloma (MM) patients. In this study, the prognostic significance of cytogenetic abnormalities detected by interphase fluorescence in situ hybridization (iFISH) in 229 newly diagnosed multiple myeloma patients was retrospectively analyzed. Results showed that del (17p), t(4;14), and 1q21 gain were adverse predictors of progression-free survival (PFS). Patients who carried these cytogenetic abnormalities were more likely to have more adverse biological parameters and lower response rate. Multivariate analysis showed that del (17p), t(4;14), and 1q21 gain were statistically independent predictors of PFS, whereas del (17p) was also adverse predictor of overall survival. Multiple coexisting cytogenetic abnormalities also had a negative correlation with PFS. Bortezomib-based therapy could improve the rate and depth of response in patients with t(4;14) translocation and 1q21 gain. Autologous stem cell transplantation could improve, but not overcome the adverse prognostic effect of high-risk cytogenetic abnormalities. These results demonstrate that MM patients with iFISH abnormalities, especially del (17p), are more likely to have a poor prognosis. PMID:27175647

  1. Brain abnormality segmentation based on l1-norm minimization

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos

    2014-03-01

    We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

  2. Central Mechanisms of Abnormal Sympathoexcitation in Chronic Heart Failure

    PubMed Central

    Kishi, Takuya; Hirooka, Yoshitaka

    2012-01-01

    It has been recognized that the sympathetic nervous system is abnormally activated in chronic heart failure, and leads to further worsening chronic heart failure. In the treatment of chronic heart failure many clinical studies have already suggested that the inhibition of the abnormal sympathetic hyperactivity by beta blockers is beneficial. It has been classically considered that abnormal sympathetic hyperactivity in chronic heart failure is caused by the enhancement of excitatory inputs including changes in peripheral baroreceptor and chemoreceptor reflexes and chemical mediators that control sympathetic outflow. Recently, the abnormalities in the central regulation of sympathetic nerve activity mediated by brain renin angiotensin system-oxidative stress axis and/or proinflammatory cytokines have been focused. Central renin angiotensin system, proinflammatory cytokines, and the interaction between them have been determined as the target of the sympathoinhibitory treatment in experimental animal models with chronic heart failure. In conclusion, we must recognize that chronic heart failure is a syndrome with an abnormal sympathoexcitation, which is caused by the abnormalities in the central regulation of sympathetic nerve activity. PMID:22919539

  3. Clinical Correlation between Perverted Nystagmus and Brain MRI Abnormal Findings

    PubMed Central

    Han, Won-Gue; Yoon, Hee-Chul; Kim, Tae-Min; Rah, Yoon Chan

    2016-01-01

    Background and Objectives To analyze the clinical correlation between perverted nystagmus and brain magnetic resonance imaging (MRI) abnormal findings and to evaluate whether perverted nystagmus is clinically significant results of brain abnormal lesions or not. Subjects and Methods We performed medical charts review from January 2008 to July 2014, retrospectively. Patients who were suspected central originated vertigo at Frenzel goggles test were included among patients who visited our hospital. To investigate the correlation with nystagmus suspected central originated vertigo and brain MRI abnormal findings, we confirmed whether performing brain MRI or not. Then we exclude that patients not performed brain MRI. Results The number of patients with perverted nystagmus was 15, upbeating was 1 and down-beating was 14. Among these patients, 5 patients have brain MRI abnormal findings. However, 2 patients with MRI abnormal findings were not associated correctly with perverted nystagmus and only 3 patients with perverted nystagmus were considered central originated vertigo and further evaluation and treatment was performed by the department of neurology. Conclusions Perverted nystagmus was considered to the abnormalities at brain lesions, especially cerebellum, but neurologic symptoms and further evaluation were needed for exact diagnosis of central originated vertigo. PMID:27626081

  4. Abnormal Early Cleavage Events Predict Early Embryo Demise: Sperm Oxidative Stress and Early Abnormal Cleavage

    PubMed Central

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M.; Pera, Renee Reijo; Meyers, Stuart

    2014-01-01

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors. PMID:25307782

  5. Convergent evidence for abnormal striatal synaptic plasticity in dystonia

    PubMed Central

    Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard

    2010-01-01

    Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes

  6. Abnormal EEG and calcification of the pineal gland in schizophrenia.

    PubMed

    Sandyk, R; Kay, S R

    1992-01-01

    Computed tomographic (CT) studies of the brain in schizophrenic patients have demonstrated a variety of structural abnormalities. We reported recently an association between pineal calcification (PC) and cortical and prefrontal cortical atrophy, and third ventricular size on CT scan in chronic schizophrenic patients. These findings indicate that in schizophrenia PC is associated with the morphological brain abnormalities associated with the disease. If PC is, indeed, related to organic cerebral pathology, then one would expect a higher prevalence of pineal gland pathology among patients with electroencephalographic (EEG) abnormalities by comparison to those with a normal EEG. To investigate this hypothesis, we studied the prevalence of PC on CT scan in a sample of 52 neuroleptic-treated schizophrenic patients (29 men, 23 women, mean age: 51.3 years SD = 9.1), of whom 10 (19.2%) had an abnormal EEG. The prevalence of PC in patients with EEG abnormalities was significantly greater by comparison to those with a normal EEG (90.0% vs. 54.8%, X2 = 4.24, p < .05). Since both groups did not differ on any of the historical and demographic data, and since PC was unrelated to neuroleptic exposure, these findings suggest that in schizophrenia PC may be related to the disease process and that it may be a marker of subcortical pathology. PMID:1342008

  7. Evaluation of aminotransferase abnormality in dengue patients: A meta analysis.

    PubMed

    Wang, Xiao-Jun; Wei, Hai-Xia; Jiang, Shi-Chen; He, Cheng; Xu, Xiu-Juan; Peng, Hong-Juan

    2016-04-01

    Dengue virus is a type of flavivirus transmitted by Aedes mosquitoes. The symptoms of infection by this virus range from asymptomatic or mild symptomatic dengue fever (DF) to dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). Significant abnormality in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) has been shown in a large number of dengue infection cases and to be indicator for liver injury provided that there are no other combined infections or liver injury. This study aims to assess the abnormal levels of liver aminotransferase in dengue patients. The related literature was searched in multiple databases, including PubMed, Embase, Google Scholar and Cochrane Library. The literature was selected through strict inclusion and exclusion criteria, and the quantitative synthesis of the liver aminotransferase abnormality was performed with R software. The fixed or random effects model was employed based on the results of the statistical test for homogeneity. In total, 15 studies were included. The proportion of AST abnormality with 95% confidence interval (95% CI) was 0.80 (95% CI: 0.56-0.92) in DHF patients and 0.75 (95% CI: 0.63-0.84) in DF patients; the proportion of ALT abnormality was 0.54 (95% CI: 0.34-0.73) in DHF patients and 0.52 (95% CI: 0.41-0.63) in DF patients. Serum ALT and AST levels may be indicators for evaluating liver injury in dengue infection and for diagnosis and treatment effect. PMID:26739659

  8. White Matter Abnormalities in Schizophrenia and Schizotypal Personality Disorder

    PubMed Central

    Lener, Marc S.; Wong, Edmund; Tang, Cheuk Y.; Byne, William; Goldstein, Kim E.; Blair, Nicholas J.; Haznedar, M. Mehmet; New, Antonia S.; Chemerinski, Eran; Chu, King-Wai; Rimsky, Liza S.; Siever, Larry J.; Koenigsberg, Harold W.; Hazlett, Erin A.

    2015-01-01

    Prior diffusion tensor imaging (DTI) studies examining schizotypal personality disorder (SPD) and schizophrenia, separately have shown that compared with healthy controls (HCs), patients show frontotemporal white matter (WM) abnormalities. This is the first DTI study to directly compare WM tract coherence with tractography and fractional anisotropy (FA) across the schizophrenia spectrum in a large sample of demographically matched HCs (n = 55), medication-naive SPD patients (n = 49), and unmedicated/never-medicated schizophrenia patients (n = 22) to determine whether (a) frontal-striatal-temporal WM tract abnormalities in schizophrenia are similar to, or distinct from those observed in SPD; and (b) WM tract abnormalities are associated with clinical symptom severity indicating a common underlying pathology across the spectrum. Compared with both the HC and SPD groups, schizophrenia patients showed WM abnormalities, as indexed by lower FA in the temporal lobe (inferior longitudinal fasciculus) and cingulum regions. SPD patients showed lower FA in the corpus callosum genu compared with the HC group, but this regional abnormality was more widespread in schizophrenia patients. Across the schizophrenia spectrum, greater WM disruptions were associated with greater symptom severity. Overall, frontal-striatal-temporal WM dysconnectivity is attenuated in SPD compared with schizophrenia patients and may mitigate the emergence of psychosis. PMID:24962608

  9. Heterotaxia syndrome: the role of screening for intestinal rotation abnormalities

    PubMed Central

    Choi, M; Borenstein, S; Hornberger, L; Langer, J

    2005-01-01

    Background: Heterotaxia syndrome involves multiple anomalies, including cardiac malformations and intestinal rotation abnormalities. Most authors recommend routine radiological evaluation, with laparotomy and Ladd procedure if a rotation abnormality is found. Aims: To determine if routine radiological screening is necessary, and if there is a group of children that can safely be managed expectantly. Methods: Retrospective chart review of all children with heterotaxia syndrome from 1968 to 2002. Results: Complete data were available for 177 patients. Twenty five (14%) had neonatal gastrointestinal symptoms (feeding intolerance, vomiting). Eleven of these had gastrointestinal contrast studies, of which seven were abnormal and led to surgery. Of the 152 asymptomatic neonates, nine had radiological screening and six of these were abnormal. Only one was thought to have a narrow based mesentery, but did not undergo surgery due to cardiac disease. There were no intestinal complications on follow up in this group. The other 143 asymptomatic children did not undergo radiological screening and were closely followed. Four subsequently developed gastrointestinal symptoms and had contrast studies; only one of these had malrotation and underwent a Ladd procedure. Of the remaining 139 patients who remained asymptomatic, 60 (43%) died of cardiac disease and none developed intestinal symptoms or complications related to malrotation on follow up. Conclusion: Asymptomatic children with heterotaxia syndrome have a low risk of adverse outcome related to intestinal rotation abnormalities. Routine screening may not be necessary as long as close follow up is done, and prompt investigation is performed for those that develop gastrointestinal symptomatology. PMID:15890694

  10. Mechanisms and consequences of paternally transmitted chromosomal abnormalities

    SciTech Connect

    Marchetti, F; Wyrobek, A J

    2005-04-05

    Paternally transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission and early embryonic consequences of paternally-derived chromosomal abnormalities. The available evidence suggests that: (1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage with male postmeiotic cells being the most sensitive; (2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and, (3) there are maternally susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and directly affect the risk for abnormal reproductive outcomes.

  11. Significance of cytogenetic abnormalities in patients with polycythemia vera.

    PubMed

    Sever, Matjaz; Quintás-Cardama, Alfonso; Pierce, Sherry; Zhou, Lingsha; Kantarjian, Hagop; Verstovsek, Srdan

    2013-12-01

    We analyzed 133 patients with polycythemia vera (PV) who were followed at our institution (median 7.5 years) and had adequate cytogenetics information. The 5-, 10- and 15-year survival rates were 93%, 79% and 64%, respectively, with a median projected overall survival of 24 years. Nineteen patients (14%) had abnormal cytogenetics at any time during the disease course (no survival difference). Sixteen patients (12%) underwent disease transformation during follow-up, after a median of 8.5 years, to myelofibrosis (n = 11), acute myeloid leukemia (n = 4) or myelodysplastic syndrome (n = 1); eight had cytogenetic abnormalities. Among 133 patients, 39 were newly diagnosed: 33 with normal and six with abnormal cytogenetics (no survival difference); nine underwent disease transformation (six with normal and three with abnormal cytogenetics at diagnosis). In keeping with other smaller series, the presence of chromosomal abnormalities may have had a role in disease transformation in patients with PV; survival was not affected likely due to short follow-up. PMID:23488603

  12. Structural abnormality of the corticospinal tract in major depressive disorder

    PubMed Central

    2014-01-01

    Background Scientists are beginning to document abnormalities in white matter connectivity in major depressive disorder (MDD). Recent developments in diffusion-weighted image analyses, including tractography clustering methods, may yield improved characterization of these white matter abnormalities in MDD. In this study, we acquired diffusion-weighted imaging data from MDD participants and matched healthy controls. We analyzed these data using two tractography clustering methods: automated fiber quantification (AFQ) and the maximum density path (MDP) procedure. We used AFQ to compare fractional anisotropy (FA; an index of water diffusion) in these two groups across major white matter tracts. Subsequently, we used the MDP procedure to compare FA differences in fiber paths related to the abnormalities in major fiber tracts that were identified using AFQ. Results FA was higher in the bilateral corticospinal tracts (CSTs) in MDD (p’s < 0.002). Secondary analyses using the MDP procedure detected primarily increases in FA in the CST-related fiber paths of the bilateral posterior limbs of the internal capsule, right superior corona radiata, and the left external capsule. Conclusions This is the first study to implicate the CST and several related fiber pathways in MDD. These findings suggest important new hypotheses regarding the role of CST abnormalities in MDD, including in relation to explicating CST-related abnormalities to depressive symptoms and RDoC domains and constructs. PMID:25295159

  13. Myelin vs Axon Abnormalities in White Matter in Bipolar Disorder

    PubMed Central

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-01-01

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ. PMID:25409595

  14. Fibrillin abnormalities and prognosis in Marfan syndrome and related disorders

    SciTech Connect

    Aoyama, T.; Furthmayr, H.; Francke, U.; Gasner, C.

    1995-08-28

    Marfan syndrome (MFS), a multisystem autosomal-dominant disorder, is characterized by mutations of the fibrillin-1 (FBN1) gene and by abnormal patterns of synthesis, secretion, and matrix deposition of the fibrillin protein. To determine the sensitivity and specificity of fibrillin protein abnormalities in the diagnosis of MFS, we studied dermal fibroblasts from 57 patients with classical MFS, 15 with equivocal MFS, 8 with single-organ manifestations, and 16 with other connective tissue disorders including homocystinuria and Ehlers-Danlos syndrome. Abnormal fibrillin metabolism was identified in 70 samples that were classified into four different groups based on quantitation of fibrillin synthesis and matrix deposition. Significant correlations were found for phenotypic features including arachnodactyly, striae distensae, cardiovascular manifestations, and fibrillin groups II and IV, which included 70% of the MFS patients. In addition, these two groups were associated with shortened {open_quotes}event-free{close_quotes} survival and more severe cardiovascular complications than groups I and III. The latter included most of the equivocal MFS/single manifestation patients with fibrillin abnormalities. Our results indicate that fibrillin defects at the protein level per se are not specific for MFS, but that the drastically reduced fibrillin deposition, caused by a dominant-negative effect of abnormal fibrillin molecules in individuals defined as groups II and IV, is of prognostic and possibly diagnostic significance. 25 refs., 3 figs., 6 tabs.

  15. Computed tomography of the trachea: normal and abnormal

    SciTech Connect

    Gamsu, G.; Webb, W.R.

    1982-08-01

    The trachea was investigated by means of computed tomography (CT) in 50 patients without tracheal or mediastinal abnormalities and in 39 patients with various diseases of the trachea. The variations in the normal CT appearance of the trachea and surrounding structures are described. CT did not provide additional information in the detection of characterization of tracheal stenosis beyond that obtained from more conventional studies, including tomography and positive-contrast tracheography. In patients with a saber-sheath trachea, CT demonstrated the abnormal configuration of the tracheal cartilages and abnormal collapse of the trachea on forced expiration. In patients with primary or secondary neoplasms involving the trachea, CT was most accurate in defining the intraluminal presence of tumor, the degree of airway compression, and the extratracheal extension of tumor. CT can be of value in determining the resectability of primary tracheal neoplasms and the planning of radiation therapy in metastatic lesions to the trachea and surrounding mediastinum.

  16. Myocardial perfusion abnormalities in asymptomatic patients with systemic lupus erythematosus

    SciTech Connect

    Hosenpud, J.D.; Montanaro, A.; Hart, M.V.; Haines, J.E.; Specht, H.D.; Bennett, R.M.; Kloster, F.E.

    1984-08-01

    Accelerated coronary artery disease and myocardial infarction in young patients with systemic lupus erythematosus is well documented; however, the prevalence of coronary involvement is unknown. Accordingly, 26 patients with systemic lupus were selected irrespective of previous cardiac history to undergo exercise thallium-201 cardiac scintigraphy. Segmental perfusion abnormalities were present in 10 of the 26 studies (38.5 percent). Five patients had reversible defects suggesting ischemia, four patients had persistent defects consistent with scar, and one patient had both reversible and persistent defects in two areas. There was no correlation between positive thallium results and duration of disease, amount of corticosteroid treatment, major organ system involvement or age. Only a history of pericarditis appeared to be associated with positive thallium-201 results (p less than 0.05). It is concluded that segmental myocardial perfusion abnormalities are common in patients with systemic lupus erythematosus. Whether this reflects large-vessel coronary disease or small-vessel abnormalities remains to be determined.

  17. Pharmacologic Approaches to Electrolyte Abnormalities in Heart Failure.

    PubMed

    Grodin, Justin L

    2016-08-01

    Electrolyte abnormalities are common in heart failure and can arise from a variety of etiologies. Neurohormonal activation from ventricular dysfunction, renal dysfunction, and heart failure medications can perturb electrolyte homeostasis which impact both heart failure-related morbidity and mortality. These include disturbances in serum sodium, chloride, acid-base, and potassium homeostasis. Pharmacological treatments differ for each electrolyte abnormality and vary from older, established treatments like the vaptans or acetazolamide, to experimental or theoretical treatments like hypertonic saline or urea, or to newer, novel agents like the potassium binders: patiromer and zirconium cyclosilicate. Pharmacologic approaches range from limiting electrolyte intake or directly repleting the electrolyte, to blocking or promoting their resorption, and to neurohormonal antagonism. Because of the prevalence and clinical impact of electrolyte abnormalities, understanding both the older and newer therapeutic options is and will continue to be necessity for the management of heart failure. PMID:27278221

  18. Using Reduced Interference Distribution to Analyze Abnormal Cardiac Signal

    NASA Astrophysics Data System (ADS)

    Mousa, Allam; Saleem, Rashid

    2011-05-01

    Due to the non-stationary, multicomponent nature of biomedical signals, the use of time-frequency analysis can be inevitable for these signals. The choice and selection of the proper Time-Frequency Distribution (TFD) that can reveal the exact multicomponent structure of biological signals is vital in many applications, including the diagnosis of medical abnormalities. In this paper, the instantaneous frequency techniques using two distribution functions are applied for analysis of biological signals. These distributions are the Wigner-Ville Distribution and the Bessel Distribution. The simulation performed on normaland abnormal cardiac signals show that the Bessel Distribution can clearly detect the QRS complexes. However, Wigner-Ville Distribution was able to detect the QRS complexes in the normal signa, but fails to detect these complexes in the abnormal cardiac signal.

  19. Investigating individual differences in brain abnormalities in autism.

    PubMed Central

    Salmond, C H; de Haan, M; Friston, K J; Gadian, D G; Vargha-Khadem, F

    2003-01-01

    Autism is a psychiatric syndrome characterized by impairments in three domains: social interaction, communication, and restricted and repetitive behaviours and interests. Recent findings implicate the amygdala in the neurobiology of autism. In this paper, we report the results of a series of novel experimental investigations focusing on the structure and function of the amygdala in a group of children with autism. The first section attempts to determine if abnormality of the amygdala can be identified in an individual using magnetic resonance imaging in vivo. Using single-case voxel-based morphometric analyses, abnormality in the amygdala was detected in half the children with autism. Abnormalities in other regions were also found. In the second section, emotional modulation of the startle response was investigated in the group of autistic children. Surprisingly, there were no significant differences between the patterns of emotional modulation of the startle response in the autistic group compared with the controls. PMID:12639337

  20. Volume estimation of brain abnormalities in MRI data

    NASA Astrophysics Data System (ADS)

    Suprijadi, Pratama, S. H.; Haryanto, F.

    2014-02-01

    The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.