Science.gov

Sample records for chromosomes mammalian

  1. Evolution of genomic structures on Mammalian sex chromosomes.

    PubMed

    Katsura, Yukako; Iwase, Mineyo; Satta, Yoko

    2012-04-01

    Throughout mammalian evolution, recombination between the two sex chromosomes was suppressed in a stepwise manner. It is thought that the suppression of recombination led to an accumulation of deleterious mutations and frequent genomic rearrangements on the Y chromosome. In this article, we review three evolutionary aspects related to genomic rearrangements and structures, such as inverted repeats (IRs) and palindromes (PDs), on the mammalian sex chromosomes. First, we describe the stepwise manner in which recombination between the X and Y chromosomes was suppressed in placental mammals and discuss a genomic rearrangement that might have led to the formation of present pseudoautosomal boundaries (PAB). Second, we describe ectopic gene conversion between the X and Y chromosomes, and propose possible molecular causes. Third, we focus on the evolutionary mode and timing of PD formation on the X and Y chromosomes. The sequence of the chimpanzee Y chromosome was recently published by two groups. Both groups suggest that rapid evolution of genomic structure occurred on the Y chromosome. Our re-analysis of the sequences confirmed the species-specific mode of human and chimpanzee Y chromosomal evolution. Finally, we present a general outlook regarding the rapid evolution of mammalian sex chromosomes. PMID:23024603

  2. Are topoisomerases required for mammalian chromosome segregation?

    SciTech Connect

    Sumner, A.T.; Perry, P.E.; Slavotinek, A.

    1993-12-31

    Theoretical considerations indicate that topoisomerase II should be involved in chromosome segregation, since newly replicated daughter DNA molecules must be interwined, and an enzyme such as topoisomerase II is needed to disentangle them. It has been shown, using scanning electron microscopy, that regions of centromeric heterochromatin are the last parts of the chromosomes to separate at anaphase. Such regions generally contain highly repetitive, satellite DNAs, whose function is obscure, since they vary extensively, and apparently randomly, in their sequence and average base composition. However, in spite of this compositional variation, it appears that many satellite DNAs show characteristic curvature, which may, rather than a specific nucleotide sequence, be a recognition site for topoisomerase II. Satellite DNA in centromeric heterochromatin might then, regardless of sequence, provide a specific substrate on which topoisomerase II could act in a concerted fashion at the beginning of anaphase to ensure orderly separation of the daughter chromosomes.

  3. RNAi pathway participates in chromosome segregation in mammalian cells

    PubMed Central

    Huang, Chuan; Wang, Xiaolin; Liu, Xu; Cao, Shuhuan; Shan, Ge

    2015-01-01

    The RNAi machinery is a mighty regulator in a myriad of life events. Despite lines of evidence that small RNAs and components of the RNAi pathway may be associated with structure and behavior of mitotic chromosomes in diverse organisms, a direct role of the RNAi pathway in mammalian mitotic chromosome segregation remains elusive. Here we report that Dicer and AGO2, two central components of the mammalian RNAi pathway, participate in the chromosome segregation. Knockdown of Dicer or AGO2 results in a higher incidence of chromosome lagging, and this effect is independent from microRNAs as examined with DGCR8 knockout cells. Further investigation has revealed that α-satellite RNA, a noncoding RNA derived from centromeric repeat region, is managed by AGO2 under the guidance of endogenous small interference RNAs (ASAT siRNAs) generated by Dicer. Furthermore, the slicer activity of AGO2 is essential for the chromosome segregation. Level and distribution of chromosome-associated α-satellite RNA have crucial regulatory effect on the localization of centromeric proteins such as centromere protein C1 (CENPC1). With these results, we also provide a paradigm in which the RNAi pathway participates in vital cellular events through the maintenance of level and distribution of noncoding RNAs in cells.

  4. A syntenic region conserved from fish to Mammalian x chromosome.

    PubMed

    Guan, Guijun; Yi, Meisheng; Kobayashi, Tohru; Hong, Yunhan; Nagahama, Yoshitaka

    2014-01-01

    Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes. PMID:25506037

  5. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes

    PubMed Central

    Zhou, Qi; Wang, Jun; Huang, Ling; Nie, Wenhui; Wang, Jinhuan; Liu, Yan; Zhao, Xiangyi; Yang, Fengtang; Wang, Wen

    2008-01-01

    Background The regular mammalian X and Y chromosomes diverged from each other at least 166 to 148 million years ago, leaving few traces of their early evolution, including degeneration of the Y chromosome and evolution of dosage compensation. Results We studied the intriguing case of black muntjac, in which a recent X-autosome fusion and a subsequent large autosomal inversion within just the past 0.5 million years have led to inheritance patterns identical to the traditional X-Y (neo-sex chromosomes). We compared patterns of genome evolution in 35-kilobase noncoding regions and 23 gene pairs on the homologous neo-sex chromosomes. We found that neo-Y alleles have accumulated more mutations, comprising a wide variety of mutation types, which indicates cessation of recombination and is consistent with an ongoing neo-Y degeneration process. Putative deleterious mutations were observed in coding regions of eight investigated genes as well as cis-regulatory regions of two housekeeping genes. In vivo assays characterized a neo-Y insertion in the promoter of the CLTC gene that causes a significant reduction in allelic expression. A neo-Y-linked deletion in the 3'-untranslated region of gene SNX22 abolished a microRNA target site. Finally, expression analyses revealed complex patterns of expression divergence between neo-Y and neo-X alleles. Conclusion The nascent neo-sex chromosome system of black muntjacs is a valuable model in which to study the evolution of sex chromosomes in mammals. Our results illustrate the degeneration scenarios in various genomic regions. Of particular importance, we report - for the first time - that regulatory mutations were probably able to accelerate the degeneration process of Y and contribute to further evolution of dosage compensation. PMID:18554412

  6. Chromosomal Redistribution of Male-Biased Genes in Mammalian Evolution with Two Bursts of Gene Gain on the X Chromosome

    PubMed Central

    Zhang, Yong E.; Vibranovski, Maria D.; Landback, Patrick; Marais, Gabriel A. B.; Long, Manyuan

    2010-01-01

    Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution. PMID:20957185

  7. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis....

  8. Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution.

    PubMed

    Waters, Paul D; Delbridge, Margaret L; Deakin, Janine E; El-Mogharbel, Nisrine; Kirby, Patrick J; Carvalho-Silva, Denise R; Graves, Jennifer A Marshall

    2005-01-01

    Mammalian sex chromosomes evolved from an ancient autosomal pair. Mapping of human X- and Y-borne genes in distantly related mammals and non-mammalian vertebrates has proved valuable to help deduce the evolution of this unique part of the genome. The platypus, a monotreme mammal distantly related to eutherians and marsupials, has an extraordinary sex chromosome system comprising five X and five Y chromosomes that form a translocation chain at male meiosis. The largest X chromosome (X1), which lies at one end of the chain, has considerable homology to the human X. Using comparative mapping and the emerging chicken database, we demonstrate that part of the therian X chromosome, previously thought to be conserved across all mammals, was lost from the platypus X1 to an autosome. This region included genes flanking the XIST locus, and also genes with Y-linked homologues that are important to male reproduction in therians. Since these genes lie on the X in marsupials and eutherians, and also on the homologous region of chicken chromosome 4, this represents a loss from the monotreme X rather than an additional evolutionary stratum of the human X. PMID:15973504

  9. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators.

    PubMed

    Bellott, Daniel W; Hughes, Jennifer F; Skaletsky, Helen; Brown, Laura G; Pyntikova, Tatyana; Cho, Ting-Jan; Koutseva, Natalia; Zaghlul, Sara; Graves, Tina; Rock, Susie; Kremitzki, Colin; Fulton, Robert S; Dugan, Shannon; Ding, Yan; Morton, Donna; Khan, Ziad; Lewis, Lora; Buhay, Christian; Wang, Qiaoyan; Watt, Jennifer; Holder, Michael; Lee, Sandy; Nazareth, Lynne; Alföldi, Jessica; Rozen, Steve; Muzny, Donna M; Warren, Wesley C; Gibbs, Richard A; Wilson, Richard K; Page, David C

    2014-04-24

    The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease. PMID:24759411

  10. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators

    PubMed Central

    Bellott, Daniel W.; Hughes, Jennifer F.; Skaletsky, Helen; Brown, Laura G.; Pyntikova, Tatyana; Cho, Ting-Jan; Koutseva, Natalia; Zaghlul, Sara; Graves, Tina; Rock, Susie; Kremitzki, Colin; Fulton, Robert S.; Dugan, Shannon; Ding, Yan; Morton, Donna; Khan, Ziad; Lewis, Lora; Buhay, Christian; Wang, Qiaoyan; Watt, Jennifer; Holder, Michael; Lee, Sandy; Nazareth, Lynne; Alföldi, Jessica; Rozen, Steve; Muzny, Donna M.; Warren, Wesley C.; Gibbs, Richard A.; Wilson, Richard K.; Page, David C.

    2014-01-01

    The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three percent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was non-random, and in two cases, convergent across placental and marsupial mammals. We conclude that the Y chromosome's gene content became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and plays unappreciated roles in Turner syndrome and in phenotypic differences between the sexes in health and disease. PMID:24759411

  11. Mammalian X homolog acts as sex chromosome in lacertid lizards.

    PubMed

    Rovatsos, M; Vukić, J; Kratochvíl, L

    2016-07-01

    Among amniotes, squamate reptiles are especially variable in their mechanisms of sex determination; however, based largely on cytogenetic data, some lineages possess highly evolutionary stable sex chromosomes. The still very limited knowledge of the genetic content of squamate sex chromosomes precludes a reliable reconstruction of the evolutionary history of sex determination in this group and consequently in all amniotes. Female heterogamety with a degenerated W chromosome typifies the lizards of the family Lacertidae, the widely distributed Old World clade including several hundreds of species. From the liver transcriptome of the lacertid Takydromus sexlineatus female, we selected candidates for Z-specific genes as the loci lacking single-nucleotide polymorphisms. We validated the candidate genes through the comparison of the copy numbers in the female and male genomes of T. sexlineatus and another lacertid species, Lacerta agilis, by quantitative PCR that also proved to be a reliable technique for the molecular sexing of the studied species. We suggest that this novel approach is effective for the detection of Z-specific and X-specific genes in lineages with degenerated W, respectively Y chromosomes. The analyzed gene content of the Z chromosome revealed that lacertid sex chromosomes are not homologous with those of other reptiles including birds, but instead the genes have orthologs in the X-conserved region shared by viviparous mammals. It is possible that this part of the vertebrate genome was independently co-opted for the function of sex chromosomes in viviparous mammals and lacertids because of its content of genes involved in gonad differentiation. PMID:26980341

  12. Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2015-12-01

    The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved. PMID:26690510

  13. Analysis of chromosome segregation during mammalian meiosis using combined immunofluorescence and fluorescence in situ hubridization

    SciTech Connect

    Hunt, P.A.; Embury, P.B.; Mroz, K.M.

    1994-09-01

    Meiotic non-disjunction is thought to occur in 10-20% of all human oocytes, making this the most common genetic abnormality in our species. Aberrant recombination has been implicated in the genesis of these errors; however, direct studies of the meiotic process have been hampered by the lack of material and appropriate technology. We have developed a technique for the evaluation of meiosis in intact mammalian oocytes that combines immunofluorescence and fluorescence in situ hybridization (FISH). This allows for simultaneous, 3-dimensional visualization of the meiotic spindle, the alignment of the chromosomes on the spindle, and the placement of specific chromosomes. We have used this technology to follow meiotic progression in oocytes from XO female mice to evaluate the behavior of an unsynapsed chromosome during mammalian meiosis. Perturbations in chromosome behavior are evident early in meiosis: during the formation of the first meiotic spindle, the univalent X chromosome is properly positioned. With the onset of anaphase, the single X chromosome most commonly segregates as an intact chromosome, although equational segregation of the X chromatids is seen in a significant minority (approximately 20%) of oocytes. These observations demonstrate that failure of pairing/recombination can result in segregation of sister chromatids at meiosis I. This has obvious implications for human non-disjunction, much of which is thought to be due to recombination deficiencies; accordingly, we are now extending our studies to include analyses of human oocytes.

  14. Genetic and pharmacological reactivation of the mammalian inactive X chromosome

    PubMed Central

    Bhatnagar, Sanchita; Zhu, Xiaochun; Ou, Jianhong; Lin, Ling; Chamberlain, Lynn; Zhu, Lihua J.; Wajapeyee, Narendra; Green, Michael R.

    2014-01-01

    X-chromosome inactivation (XCI), the random transcriptional silencing of one X chromosome in somatic cells of female mammals, is a mechanism that ensures equal expression of X-linked genes in both sexes. XCI is initiated in cis by the noncoding Xist RNA, which coats the inactive X chromosome (Xi) from which it is produced. However, trans-acting factors that mediate XCI remain largely unknown. Here, we perform a large-scale RNA interference screen to identify trans-acting XCI factors (XCIFs) that comprise regulators of cell signaling and transcription, including the DNA methyltransferase, DNMT1. The expression pattern of the XCIFs explains the selective onset of XCI following differentiation. The XCIFs function, at least in part, by promoting expression and/or localization of Xist to the Xi. Surprisingly, we find that DNMT1, which is generally a transcriptional repressor, is an activator of Xist transcription. Small-molecule inhibitors of two of the XCIFs can reversibly reactivate the Xi, which has implications for treatment of Rett syndrome and other dominant X-linked diseases. A homozygous mouse knockout of one of the XCIFs, stanniocalcin 1 (STC1), has an expected XCI defect but surprisingly is phenotypically normal. Remarkably, X-linked genes are not overexpressed in female Stc1−/− mice, revealing the existence of a mechanism(s) that can compensate for a persistent XCI deficiency to regulate X-linked gene expression. PMID:25136103

  15. Distribution of the mammalian Stat gene family in mouse chromosomes

    SciTech Connect

    Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.

    1995-09-01

    Studies of transcriptional activation by interferons and a variety of cytokines have led to the identification of a family of proteins that serve as signal transducers and activators of transcription, Stats. Here, we report that the seven mouse Stat loci map in three clusters, with each cluster located on a different mouse autosome. The data suggest that the family has arisen via a tandem duplication of the ancestral locus, followed by dispersion of the linked loci to different mouse chromosomes. 28 refs., 1 fig., 1 tab.

  16. Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity.

    PubMed Central

    Ip, N Y; Ibáñez, C F; Nye, S H; McClain, J; Jones, P F; Gies, D R; Belluscio, L; Le Beau, M M; Espinosa, R; Squinto, S P

    1992-01-01

    Nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 (NT-3) are the three members of the neurotrophin family known to exist in mammals. Recently, a fourth neurotrophin (designated neurotrophin-4 or NT-4), which shares all of the features found in the mammalian neurotrophins, has been identified in Xenopus and viper. We used sequences specific to the Xenopus/viper NT-4 to isolate a neurotrophin from both human and rat genomic DNA that appears to represent the mammalian counterpart of Xenopus/viper NT-4. Human NT-4 as well as a human NT-4 pseudogene colocalize to chromosome 19 band q13.3. Mammalian NT-4 has many unusual features compared to the previously identified neurotrophins and is less conserved evolutionarily than the other neurotrophins. However, mammalian NT-4 displays bioactivity and trk receptor specificity similar to that of Xenopus NT-4. Images PMID:1313578

  17. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes.

    PubMed

    Fukuda, Tomoyuki; Daniel, Katrin; Wojtasz, Lukasz; Toth, Attila; Höög, Christer

    2010-01-15

    HORMA domain-containing proteins regulate interactions between homologous chromosomes (homologs) during meiosis in a wide range of eukaryotes. We have identified a mouse HORMA domain-containing protein, HORMAD1, and biochemically and cytologically shown it to be associated with the meiotic chromosome axis. HORMAD1 first accumulates on the chromosomes during the leptotene to zygotene stages of meiotic prophase I. As germ cells progress into the pachytene stage, HORMAD1 disappears from the synapsed chromosomal regions. However, once the chromosomes desynapse during the diplotene stage, HORMAD1 again accumulates on the chromosome axis of the desynapsed homologs. HORMAD1 thus preferentially localizes to unsynapsed or desynapsed chromosomal regions during the prophase I stage of meiosis. Analysis of mutant strains lacking different components of the synaptonemal complex (SC) revealed that establishment of the SC is required for the displacement of HORMAD1 from the chromosome axis. Our results therefore strongly suggest that also mammalian cells use a HORMA domain-containing protein as part of a surveillance system that monitors synapsis or other interactions between homologs. PMID:19686734

  18. Expression reduction in mammalian X chromosome evolution refutes Ohno’s hypothesis of dosage compensation

    PubMed Central

    Lin, Fangqin; Xing, Ke; Zhang, Jianzhi; He, Xionglei

    2012-01-01

    Susumu Ohno proposed in 1967 that, during the origin of mammalian sex chromosomes from a pair of autosomes, per-allele expression levels of X-linked genes were doubled to compensate for the degeneration of their Y homologs. This conjecture forms the foundation of the current evolutionary model of sex chromosome dosage compensation, but has been tested in mammals only indirectly via a comparison of expression levels between X-linked and autosomal genes in the same genome. The test results have been controversial, because examinations of different gene sets led to different conclusions that either support or refute Ohno’s hypothesis. Here we resolve this uncertainty by directly comparing mammalian X-linked genes with their one-to-one orthologs in species that diverged before the origin of the mammalian sex chromosomes. Analyses of RNA sequencing data and proteomic data provide unambiguous evidence for expression halving (i.e., no change in per-allele expression level) of X-linked genes during evolution, with the exception of only ∼5% of genes that encode members of large protein complexes. We conclude that Ohno’s hypothesis is rejected for the vast majority of genes, reopening the search for the evolutionary force driving the origin of chromosome-wide X inactivation in female mammals. PMID:22753487

  19. Expression reduction in mammalian X chromosome evolution refutes Ohno's hypothesis of dosage compensation.

    PubMed

    Lin, Fangqin; Xing, Ke; Zhang, Jianzhi; He, Xionglei

    2012-07-17

    Susumu Ohno proposed in 1967 that, during the origin of mammalian sex chromosomes from a pair of autosomes, per-allele expression levels of X-linked genes were doubled to compensate for the degeneration of their Y homologs. This conjecture forms the foundation of the current evolutionary model of sex chromosome dosage compensation, but has been tested in mammals only indirectly via a comparison of expression levels between X-linked and autosomal genes in the same genome. The test results have been controversial, because examinations of different gene sets led to different conclusions that either support or refute Ohno's hypothesis. Here we resolve this uncertainty by directly comparing mammalian X-linked genes with their one-to-one orthologs in species that diverged before the origin of the mammalian sex chromosomes. Analyses of RNA sequencing data and proteomic data provide unambiguous evidence for expression halving (i.e., no change in per-allele expression level) of X-linked genes during evolution, with the exception of only ∼5% of genes that encode members of large protein complexes. We conclude that Ohno's hypothesis is rejected for the vast majority of genes, reopening the search for the evolutionary force driving the origin of chromosome-wide X inactivation in female mammals. PMID:22753487

  20. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    PubMed

    Shin, Yong-Hyun; Choi, Youngsok; Erdin, Serpil Uckac; Yatsenko, Svetlana A; Kloc, Malgorzata; Yang, Fang; Wang, P Jeremy; Meistrich, Marvin L; Rajkovic, Aleksandar

    2010-11-01

    Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/) (-)) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/) (-) testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/) (-) ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/) (-) oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. PMID:21079677

  1. High resolution SIMS imaging of cations in mammalian cell mitosis, and in Drosophila polytene chromosomes

    NASA Astrophysics Data System (ADS)

    Levi-Setti, R.; Gavrilov, K. L.; Neilly, M. E.; Strick, R.; Strissel, P. L.

    2006-07-01

    The University of Chicago high resolution scanning ion microprobe (UC-SIM) was used to image, by Secondary Ion Mass Spectrometry (SIMS), the distribution of Ca 2+ and Mg 2+ in the chromosomes of Indian muntjac (IM) deer mitotic fibroblasts. This is part of a systematic study of the cation composition of mammalian cells and chromosomes throughout the cell cycle, after having shown that Ca 2+ and Mg 2+ appear to be important for chromosome condensation and structure at metaphase. We focus here on a detailed description of the metaphase-anaphase transition at narrow time intervals beyond the G2/M border, made possible by controlled cell synchronization procedures. High-density distributions of chromosome spreads showed progressive stages of mitosis, identified by their morphology, within the same UC-SIM field of view. Subtle differences in cation contents between successive mitotic stages could thus be quantified in identical experimental conditions. Preliminary results indicate maximal chromosomal concentrations of Ca 2+ and Mg 2+ at metaphase, and a progressive decrease of the same with advancing stages of anaphase. Ca 2+ and Mg 2+ distributions were also imaged in the polytene chromosomes of Drosophila melanogaster, whose DNA distribution had been previously studied by BrdU labeling. These cations may play a common role in mitosis from lower eukaryotes to mammals.

  2. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres

    PubMed Central

    Espejel, Silvia; Franco, Sonia; Rodríguez-Perales, Sandra; Bouffler, Simon D.; Cigudosa, Juan C.; Blasco, María A.

    2002-01-01

    Here we analyze the functional interaction between Ku86 and telomerase at the mammalian telomere by studying mice deficient for both proteins. We show that absence of Ku86 prevents the end-to-end chromosomal fusions that result from critical telomere shortening in telomerase-deficient mice. In addition, Ku86 deficiency rescues the male early germ cell apoptosis triggered by short telomeres in these mice. Together, these findings define a role for Ku86 in mediating chromosomal instability and apoptosis triggered by short telomeres. In addition, we show here that Ku86 deficiency results in telomerase-dependent telomere elongation and in the fusion of random pairs of chromosomes in telomerase-proficient cells, suggesting a model in which Ku86 keeps normal-length telomeres less accessible to telomerase- mediated telomere lengthening and to DNA repair activities. PMID:11980718

  3. Inter-chromosomal contact networks provide insights into Mammalian chromatin organization.

    PubMed

    Kaufmann, Stefanie; Fuchs, Christiane; Gonik, Mariya; Khrameeva, Ekaterina E; Mironov, Andrey A; Frishman, Dmitrij

    2015-01-01

    The recent advent of conformation capture techniques has provided unprecedented insights into the spatial organization of chromatin. We present a large-scale investigation of the inter-chromosomal segment and gene contact networks in embryonic stem cells of two mammalian organisms: humans and mice. Both interaction networks are characterized by a high degree of clustering of genome regions and the existence of hubs. Both genomes exhibit similar structural characteristics such as increased flexibility of certain Y chromosome regions and co-localization of centromere-proximal regions. Spatial proximity is correlated with the functional similarity of genes in both species. We also found a significant association between spatial proximity and the co-expression of genes in the human genome. The structural properties of chromatin are also species specific, including the presence of two highly interactive regions in mouse chromatin and an increased contact density on short, gene-rich human chromosomes, thereby indicating their central nuclear position. Trans-interacting segments are enriched in active marks in human and had no distinct feature profile in mouse. Thus, in contrast to interactions within individual chromosomes, the inter-chromosomal interactions in human and mouse embryonic stem cells do not appear to be conserved. PMID:25961318

  4. The interphase mammalian chromosome as a structural system based on tensegrity.

    PubMed

    Aranda-Anzaldo, Armando

    2016-03-21

    Each mammalian chromosome is constituted by a DNA fiber of macroscopic length that needs to be fitted in a microscopic nucleus. The DNA fiber is subjected at physiological temperature to random thermal bending and looping that must be constrained so as achieve structural stability thus avoiding spontaneous rupturing of the fiber. Standard textbooks assume that chromatin proteins are primarily responsible for the packaging of DNA and so of its protection against spontaneous breakage. Yet the dynamic nature of the interactions between chromatin proteins and DNA is unlikely to provide the necessary long-term structural stability for the chromosomal DNA. On the other hand, longstanding evidence indicates that stable interactions between DNA and constituents of a nuclear compartment commonly known as the nuclear matrix organize the chromosomal DNA as a series of topologically constrained, supercoiled loops during interphase. This results in a primary level of DNA condensation and packaging within the nucleus, as well as in protection against spontaneous DNA breakage, independently of chromatin proteins which nevertheless increase and dynamically modulate the degree of DNA packaging and its role in the regulation of DNA function. Thus current evidence, presented hereunder, supports a model for the organization of the interphase chromosome as resilient system that satisfies the principles of structural tensegrity. PMID:26780650

  5. Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes

    PubMed Central

    Fukuda, Atsushi; Tanino, Motohiko; Matoba, Ryo; Umezawa, Akihiro; Akutsu, Hidenori

    2015-01-01

    Oocytes have unique characteristics compared with other cell types. In mouse and human oocytes, two X chromosomes are maintained in the active state. Previous microarray studies have shown that the balance of the expression state is maintained in haploid oocytes. Here, we investigated transcripts using RNA-sequence technology in mouse and human oocytes. The median expression ratio between X chromosome and autosomal genes (X:A) in immature mouse oocytes increased as the gene expression levels increased, reaching a value of 1. However, the ratio in mature oocytes was under 1 for all expression categories. Moreover, we observed a markedly low ratio resulting from the bimodal expression patterns of X–linked genes. The low X:A expression ratio in mature oocyte was independent of DNA methylation. While mature human oocytes exhibited a slightly low X:A expression ratio, this was the result of the skewed high frequency of lowly expressed X-linked genes rather than the bimodal state. We propose that this imbalance between the expression dosages of X-chromosome and autosomal genes is a feature of transcripts in mammalian oocytes lacking X-chromosome inactivation. PMID:26370379

  6. The chromosomes of Afrotheria and their bearing on mammalian genome evolution.

    PubMed

    Svartman, M; Stanyon, R

    2012-01-01

    Afrotheria is the clade of placental mammals that, together with Xenarthra, Euarchontoglires and Laurasiatheria, represents 1 of the 4 main recognized supraordinal eutherian clades. It reunites 6 orders of African origin: Proboscidea, Sirenia, Hyracoidea, Macroscelidea, Afrosoricida and Tubulidentata. The apparently unlikely relationship among such disparate morphological taxa and their possible basal position at the base of the eutherian phylogenetic tree led to a great deal of attention and research on the group. The use of biomolecular data was pivotal in Afrotheria studies, as they were the basis for the recognition of this clade. Although morphological evidence is still scarce, a plethora of molecular data firmly attests to the phylogenetic relationship among these mammals of African origin. Modern cytogenetic techniques also gave a significant contribution to the study of Afrotheria, revealing chromosome signatures for the group as a whole, as well as for some of its internal relationships. The associations of human chromosomes HSA1/19 and 5/21 were found to be chromosome signatures for the group and provided further support for Afrotheria. Additional chromosome synapomorphies were also identified linking elephants and manatees in Tethytheria (the associations HSA2/3, 3/13, 8/22, 18/19 and the lack of HSA4/8) and elephant shrews with the aardvark (HSA2/8, 3/20 and 10/17). Herein, we review the current knowledge on Afrotheria chromosomes and genome evolution. The already available data on the group suggests that further work on this apparently bizarre assemblage of mammals will provide important data to a better understanding on mammalian genome evolution. PMID:22868637

  7. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    PubMed Central

    Taketo, Teruko

    2015-01-01

    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions. PMID:25578929

  8. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    PubMed Central

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R. R.; Huminiecki, Lukasz

    2015-01-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  9. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    PubMed

    Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Huminiecki, Lukasz

    2015-12-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  10. Development of a Safeguard System Using an Episomal Mammalian Artificial Chromosome for Gene and Cell Therapy.

    PubMed

    Uno, Narumi; Uno, Katsuhiro; Komoto, Shinya; Suzuki, Teruhiko; Hiratsuka, Masaharu; Osaki, Mitsuhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo

    2015-01-01

    The development of a safeguard system to remove tumorigenic cells would allow safer clinical applications of stem cells for the treatment of patients with an intractable disease including genetic disorders. Such safeguard systems should not disrupt the host genome and should have long-term stability. Here, we attempted to develop a tumor-suppressing mammalian artificial chromosome containing a safeguard system that uses the immune rejection system against allogeneic tissue from the host. For proof-of-concept of the safeguard system, B16F10 mouse melanoma cells expressing the introduced H2-K(d) major histocompatibility complex (MHC class I)-allogenic haplotype were transplanted into recipient C57BL/6J mice expressing MHC H2-K(b). Subcutaneous implantation of B16F10 cells into C57BL/6J mice resulted in high tumorigenicity. The volume of tumors derived from B16F10 cells expressing allogenic MHC H2-K(d) was decreased significantly (P < 0.01). Suppression of MHC H2-K(d)-expressing tumors in C57BL/6J mice was enhanced by immunization with MHC H2-K(d)-expressing splenocytes (P < 0.01). These results suggest that the safeguard system is capable of suppressing tumor formation by the transplanted cells. PMID:26670279

  11. Delivery of bacterial artificial chromosomes into mammalian cells with psoralen-inactivated adenovirus carrier.

    PubMed Central

    Baker, A; Cotten, M

    1997-01-01

    Molecular biology has many applications where the introduction of large (>100 kb) DNA molecules is required. The current methods of large DNA transfection are very inefficient. We reasoned that two limits to improving transfection methods with these large DNA molecules were the difficulty of preparing workable quantities of clean DNA and the lack of rapid assays to determine transfection success. We have used bacterial artificial chromosomes (BACs) based on the Escherichia coli F factor plasmid system, which are simple to manipulate and purify in microgram quantities. Because BAC plasmids are kept at one to two copies per cell, the problems of rearrangement observed with YACs are eliminated. We have generated two series of BAC vectors bearing marker genes for luciferase and green fluorescent protein (GFP). Using these reagents, we have developed methods of delivering BACs of up to 170 kb into mammalian cells with transfection efficiency comparable to 5-10 kb DNA. Psoralen-inactivated adenovirus is used as the carrier, thus eliminating the problems associated with viral gene expression. The delivered DNA is linked to the carrier virus with a condensing polycation. Further improvements in gene delivery were obtained by replacing polylysine with low molecular weight polyethylenimine (PEI) as the DNA condensing agent. PMID:9115362

  12. Cations in mammalian cells and chromosomes: Sample preparation protocols affect elemental abundances by SIMS

    NASA Astrophysics Data System (ADS)

    Levi-Setti, R.; Gavrilov, K. L.; Neilly, M. E.

    2006-07-01

    The focus of our current research aims at detailing and quantifying the presence of cations, primarily Ca and Mg, in mammalian cells and chromosomes throughout the different stages of the cell cycle, using our high resolution scanning ion microprobe, the UC-SIM. The 45 keV Ga + probe of this instrument, typically ˜40 nm in diameter, carries a current of 30-40 pA, appropriate for surface SIMS studies, but limited in sample erosion rate for dynamic SIMS mapping over cell-size areas, of order 100 μm × 100 μm. Practical and reliable use of this probe toward the above SIMS goals requires a careful matching of the latter factors with the physical and chemical consequences of sample preparation protocols. We examine here how the preferred sample cryo-preservation methodologies such as freeze-fracture and lyophilization affect high resolution SIMS analysis, and, from this standpoint, develop and evaluate the advantages and disadvantages of fast alternate approaches to drying frozen samples. The latter include the use of methanol, ethanol, and methanol/acetic acid fixative. Methanol-dried freeze-fractured samples preserve histological morphology and yield Ca and Mg distributions containing reliable differential dynamical information, when compared with those following lyophilization.

  13. Phosphorylation of chromosome core components may serve as axis marks for the status of chromosomal events during mammalian meiosis.

    PubMed

    Fukuda, Tomoyuki; Pratto, Florencia; Schimenti, John C; Turner, James M A; Camerini-Otero, R Daniel; Höög, Christer

    2012-02-01

    Meiotic recombination and chromosome synapsis between homologous chromosomes are essential for proper chromosome segregation at the first meiotic division. While recombination and synapsis, as well as checkpoints that monitor these two events, take place in the context of a prophase I-specific axial chromosome structure, it remains unclear how chromosome axis components contribute to these processes. We show here that many protein components of the meiotic chromosome axis, including SYCP2, SYCP3, HORMAD1, HORMAD2, SMC3, STAG3, and REC8, become post-translationally modified by phosphorylation during the prophase I stage. We found that HORMAD1 and SMC3 are phosphorylated at a consensus site for the ATM/ATR checkpoint kinase and that the phosphorylated forms of HORMAD1 and SMC3 localize preferentially to unsynapsed chromosomal regions where synapsis has not yet occurred, but not to synapsed or desynapsed regions. We investigated the genetic requirements for the phosphorylation events and revealed that the phosphorylation levels of HORMAD1, HORMAD2, and SMC3 are dramatically reduced in the absence of initiation of meiotic recombination, whereas BRCA1 and SYCP3 are required for normal levels of phosphorylation of HORMAD1 and HORMAD2, but not of SMC3. Interestingly, reduced HORMAD1 and HORMAD2 phosphorylation is associated with impaired targeting of the MSUC (meiotic silencing of unsynapsed chromatin) machinery to unsynapsed chromosomes, suggesting that these post-translational events contribute to the regulation of the synapsis surveillance system. We propose that modifications of chromosome axis components serve as signals that facilitate chromosomal events including recombination, checkpoint control, transcription, and synapsis regulation. PMID:22346761

  14. Effect of lead chromate on chromosome aberration, sister-chromatid exchange and DNA damage in mammalian cells in vitro.

    PubMed

    Douglas, G R; Bell, R D; Grant, C E; Wytsma, J M; Bora, K C

    1980-02-01

    Possible mutagenic activity of lead chromate in mammalian cells was studied using assays for chromosome aberrations and sister-chromatid exchanges in cultured human lymphocytes, and DNA fragmentation as detected by alkaline-sucrose gradient sedimentation in cultured Chinese hamster ovary (CHO) cells. Lead chromate caused dose-related increases in chromosome aberration and sister-chromatid exchange in human lymphocytes. No increase in DNA damage was observed in CHO cells, possibly due to the relative insensitivity of the CHO cells and the limited solubility of lead chromate in tissue culture medium. The mutagenicity of lead chromate in human lymphocytes appears to be entirely due to the chromate ion since chromosome aberrations were induced by potassium chromate but not lead chloride. PMID:7374664

  15. Ser2481-autophosphorylated mTOR colocalizes with chromosomal passenger proteins during mammalian cell cytokinesis.

    PubMed

    Vazquez-Martin, Alejandro; Sauri-Nadal, Tamara; Menendez, Octavio J; Oliveras-Ferraros, Cristina; Cufí, Sílvia; Corominas-Faja, Bruna; López-Bonet, Eugeni; Menendez, Javier A

    2012-11-15

    Energy- and nutrient-sensing proteins such as AMPK, mTOR and S6K1 are now recognized as novel regulators of mitotic completion in proliferating cells. We investigated the cellular distribution of the Ser2481 autophosphorylation of mTOR, which directly monitors mTORC-specific catalytic activity, during mammalian cell mitosis and cytokinesis. Automated immunofluorescence experiments in human carcinoma cell lines revealed that phospho-mTOR (Ser2481) exhibited profound spatial and temporal dynamics during cell division. Phospho-mTOR (Ser2481) was strikingly enriched in mitotic cells, and in prophase, bright phospho-mTOR (Ser2481) staining could be clearly observed among condensed chromosomes. Phospho-mTOR (Ser2481) then redistributes from diffuse cytosolic staining that partially colocalizes with the mitotic spindle during the early phases of mitosis to the furrow at the onset of cytokinesis. Like the bona fide chromosomal passenger proteins (CPPs) INCENP and Aurora B, phospho-mTOR (Ser2481) displayed noteworthy accumulation in the central spindle midzone and the midbody regions, which persisted during the furrowing process. Accordingly, double-staining experiments confirmed that phospho-mTOR (Ser2481) largely colocalized with CCPs in the midbodies. The CPP-like mitotic localization of phospho-mTOR (Ser2481) was fully prevented by the microtubule-depolymerizing drug nocodazole; mitotic traveling of phospho-mTOR (Ser2481) to the midbody during telophase and cytokinesis, where it appears to be integrated into the CPP-driven cytokinetic machinery, may therefore require dynamic microtubules. Although the Ser2448-phosphorylated form of mTOR was also found at high levels during M-phase in human cancer cells, we failed to observe a significant association of phospho-mTOR (Ser2448) with CCP-positive mitotic and cytokinetic structures. Our findings add phospho-mTOR (Ser2481) to the growing list of phospho-active forms of proteins belonging to the AMPK/mTOR/S6K1 signaling axis

  16. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y.

    PubMed

    Tomaszkiewicz, Marta; Rangavittal, Samarth; Cechova, Monika; Campos Sanchez, Rebeca; Fescemyer, Howard W; Harris, Robert; Ye, Danling; O'Brien, Patricia C M; Chikhi, Rayan; Ryder, Oliver A; Ferguson-Smith, Malcolm A; Medvedev, Paul; Makova, Kateryna D

    2016-04-01

    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species. PMID:26934921

  17. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y

    PubMed Central

    Tomaszkiewicz, Marta; Rangavittal, Samarth; Cechova, Monika; Sanchez, Rebeca Campos; Fescemyer, Howard W.; Harris, Robert; Ye, Danling; O'Brien, Patricia C.M.; Chikhi, Rayan; Ryder, Oliver A.; Ferguson-Smith, Malcolm A.; Medvedev, Paul; Makova, Kateryna D.

    2016-01-01

    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species. PMID:26934921

  18. Genomes of Ellobius species provide insight into the evolutionary dynamics of mammalian sex chromosomes.

    PubMed

    Mulugeta, Eskeatnaf; Wassenaar, Evelyne; Sleddens-Linkels, Esther; van IJcken, Wilfred F J; Heard, Edith; Grootegoed, J Anton; Just, Walter; Gribnau, Joost; Baarends, Willy M

    2016-09-01

    The X and Y sex chromosomes of placental mammals show hallmarks of a tumultuous evolutionary past. The X Chromosome has a rich and conserved gene content, while the Y Chromosome has lost most of its genes. In the Transcaucasian mole vole Ellobius lutescens, the Y Chromosome including Sry has been lost, and both females and males have a 17,X diploid karyotype. Similarly, the closely related Ellobius talpinus, has a 54,XX karyotype in both females and males. Here, we report the sequencing and assembly of the E. lutescens and E. talpinus genomes. The results indicate that the loss of the Y Chromosome in E. lutescens and E. talpinus occurred in two independent events. Four functional homologs of mouse Y-Chromosomal genes were detected in both female and male E. lutescens, of which three were also detected in the E. talpinus genome. One of these is Eif2s3y, known as the only Y-derived gene that is crucial for successful male meiosis. Female and male E. lutescens can carry one and the same X Chromosome with a largely conserved gene content, including all genes known to function in X Chromosome inactivation. The availability of the genomes of these mole vole species provides unique models to study the dynamics of sex chromosome evolution. PMID:27510564

  19. Chromosome

    MedlinePlus

    ... if you are born a boy or a girl (your gender). They are called sex chromosomes: Females have 2 X chromosomes. Males have 1 X and 1 Y chromosome. The mother gives an X chromosome to the ... baby is a girl or a boy. The remaining chromosomes are called ...

  20. Chromosome

    MedlinePlus

    ... genes . It is the building block of the human body. Chromosomes also contain proteins that help DNA exist ... come in pairs. Normally, each cell in the human body has 23 pairs of chromosomes (46 total chromosomes). ...

  1. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes.

    PubMed

    Dowen, Jill M; Fan, Zi Peng; Hnisz, Denes; Ren, Gang; Abraham, Brian J; Zhang, Lyndon N; Weintraub, Abraham S; Schuijers, Jurian; Lee, Tong Ihn; Zhao, Keji; Young, Richard A

    2014-10-01

    The pluripotent state of embryonic stem cells (ESCs) is produced by active transcription of genes that control cell identity and repression of genes encoding lineage-specifying developmental regulators. Here, we use ESC cohesin ChIA-PET data to identify the local chromosomal structures at both active and repressed genes across the genome. The results produce a map of enhancer-promoter interactions and reveal that super-enhancer-driven genes generally occur within chromosome structures that are formed by the looping of two interacting CTCF sites co-occupied by cohesin. These looped structures form insulated neighborhoods whose integrity is important for proper expression of local genes. We also find that repressed genes encoding lineage-specifying developmental regulators occur within insulated neighborhoods. These results provide insights into the relationship between transcriptional control of cell identity genes and control of local chromosome structure. PMID:25303531

  2. 40 CFR 799.9538 - TSCA mammalian bone marrow chromosomal aberration test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cells are analyzed for chromosome aberrations. (2) Description—(i) Preparations—(A) Selection of animal... 70% other than during room cleaning, the aim should be 50-60%. Lighting should be artificial, the..., and treatment regimen to be used in the main study (an approach to dose selection is presented in...

  3. 40 CFR 799.9538 - TSCA mammalian bone marrow chromosomal aberration test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cells are analyzed for chromosome aberrations. (2) Description—(i) Preparations—(A) Selection of animal... 70% other than during room cleaning, the aim should be 50-60%. Lighting should be artificial, the..., and treatment regimen to be used in the main study (an approach to dose selection is presented in...

  4. 40 CFR 799.9538 - TSCA mammalian bone marrow chromosomal aberration test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cells are analyzed for chromosome aberrations. (2) Description—(i) Preparations—(A) Selection of animal... 70% other than during room cleaning, the aim should be 50-60%. Lighting should be artificial, the..., and treatment regimen to be used in the main study (an approach to dose selection is presented in...

  5. Effect of ultrasonic irradiation on mammalian cells and chromosomes in vitro

    NASA Technical Reports Server (NTRS)

    Roseboro, J. A.; Buchanan, P.; Norman, A.; Stern, R.

    1978-01-01

    Human peripheral blood and HeLa cells were irradiated in vitro at the ultrasonic frequency of 65 kHz. The whole blood and HeLa cell suspensions were exposed to continuous and pulsed ultrasonic power levels of 0.12, 0.16, 0.72, 1.12 and 2.24 W for a period of one minute. The method of ultrasonic irradiation was carried out with the whole blood or HeLa cell suspensions coupled directly to a cylindrical transducer while heating of the cell suspensions in excess of 41 C was avoided. Irradiated and unirradiated peripheral blood lymphocyte chromosome cultures were prepared and scored for selected numerical and morphological aberrations. There was no significant difference in the frequency of chromosomal aberrations between irradiated and unirradiated cells.

  6. Evaluation of an Hprt-Luciferase Reporter Gene on a Mammalian Artificial Chromosome in Response to Cytotoxicity

    PubMed Central

    Endo, Takeshi; Noda, Natsumi; Kuromi, Yasushi; Kokura, Kenji; Kazuki, Yasuhiro; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2016-01-01

    Background Hypoxanthine guanine phosphoribosyltransferase (Hprt) is known as a house-keeping gene, and has been used as an internal control for real-time quantitative RT-PCR and various other methods of gene expression analysis. To evaluate the Hprt mRNA levels as a reference standard, we engineered a luciferase reporter driven by a long Hprt promoter and measured its response to cytotoxicity. Methods We constructed a reporter vector that harbored a phiC31 integrase recognition site and a mouse Hprt promoter fused with green-emitting luciferase (SLG) coding sequence. The Hprt-SLG vector was loaded onto a mouse artificial chromosome containing a multi-integrase platform using phiC31 integrase in mouse A9 cells. We established three independent clones. Results The established cell lines had similar levels of expression of the Hprt-SLG reporter gene. Hprt-SLG activity increased proportionately under growth conditions and decreased under cytotoxic conditions after blasticidin or cisplatin administration. Similar increases and decreases in the SLG luminescent were observed under growth and cytotoxic conditions, respectively, to those in the fluorescent obtained using the commercially available reagent, alamarBlue. Conclusion By employing a reliable and stable expression system in a mammalian artificial chromosome, the activity of an Hprt-SLG reporter can reflect cell numbers under cell growth condition and cell viability in the evaluation of cytotoxic conditions. PMID:27493490

  7. Structural damage to meiotic chromosomes impairs DNA recombination and checkpoint control in mammalian oocytes.

    PubMed

    Wang, Hong; Höög, Christer

    2006-05-22

    Meiosis in human oocytes is a highly error-prone process with profound effects on germ cell and embryo development. The synaptonemal complex protein 3 (SYCP3) transiently supports the structural organization of the meiotic chromosome axis. Offspring derived from murine Sycp3(-)(/)(-) females die in utero as a result of aneuploidy. We studied the nature of the proximal chromosomal defects that give rise to aneuploidy in Sycp3(-)(/)(-) oocytes and how these errors evade meiotic quality control mechanisms. We show that DNA double-stranded breaks are inefficiently repaired in Sycp3(-)(/)(-) oocytes, thereby generating a temporal spectrum of recombination errors. This is indicated by a strong residual gammaH2AX labeling retained at late meiotic stages in mutant oocytes and an increased persistence of recombination-related proteins associated with meiotic chromosomes. Although a majority of the mutant oocytes are rapidly eliminated at early postnatal development, a subset with a small number of unfinished crossovers evades the DNA damage checkpoint, resulting in the formation of aneuploid gametes. PMID:16717125

  8. Induction of chromosome aberrations in mammalian cells after heavy ion exposure.

    PubMed

    Ritter, S; Kraft-Weyrather, W; Scholz, M; Kraft, G

    1992-01-01

    The induction of chromosome aberrations by heavy charged particles was studied in V79 Chinese hamster cells over a wide range of energies (3-100 MeV/u) and LET (20-16000 keV/micrometer). For comparison, X-ray experiments were performed. Our data indicate quantitative and qualitative differences in the response of cells to particle and x-ray irradiation. For the same level of cell survival the amount of damaged cells which can be observed is smaller in heavy ion (11.4 MeV/u Ar) irradiated samples. The highest yield of damaged cells is found 8 to 12 hours after particle irradiation and 4 hours after x-irradiation. Differences in the amount of damaged cells are attributed to cell cycle perturbations which interfere with the expression of damage. After heavy ion exposure the amount of cells reaching mitosis (mitotic index) decreases drastically and not all damaged cells reach mitosis within 48 hours after exposure. A portion of cells die in interphase. Cell cycle delays induced by x-ray irradiation are less pronounced and all cells reach the first post-irradiation mitosis within 24 hours after irradiation. Additionally, the damage produced by charged particles seems to be more severe. The disintegration of chromosomes was only observed after high LET radiation: an indication of the high and local energy deposition in the particle track. Only cross sections for the induction of chromosome aberrations in mitotic cells were reported in this paper because of the problems arising from the drastic cell cycle perturbations. In this case, cells were irradiated in mitosis and assayed immediately. PMID:11536999

  9. Induction of chromosome aberrations in mammalian cells after heavy ion exposure

    NASA Astrophysics Data System (ADS)

    Ritter, S.; Kraft-Weyrather, W.; Scholz, M.; Kraft, G.

    The induction of chromosome aberrations by heavy charged particles was studied in V79 Chinese hamster cells over a wide range of energies (3-100 MeV/u) and LET (20-16000 keV/μm). For comparison, X-ray experiments were performed. Our data indicate quantitative and qualitative differences in the response of cells to particle and x-ray irradiation. For the same level of cell survival the amount of damaged cells which can be observed is smaller in heavy ion (11.4 MeV/u Ar) irradiated samples. The highest yield of damaged cells is found 8 to 12 hours after particle irradiation and 4 hours after x-irradiation. Differences in the amount of damaged cells are attributed to cell cycle perturbations which interfere with the expression of damage. After heavy ion exposure the amount of cells reaching mitosis (mitotic index) decreases drastically and not all damaged cells reach mitosis within 48 hours after exposure. A portion of cells die in interphase. Cell cycle delays induced by x-ray irradiation are less pronounced and all cells reach the first post-irradiation mitosis within 24 hours after irradiation. Additionally, the damage produced by charged particles seems to be more severe. The disintegration of chromosomes was only observed after high LET radiation: an indication of the high and local energy deposition in the particle track. Only cross sections for the induction of chromosome aberrations in mitotic cells were reported in this paper because of the problems arising from the drastic cell cycle perturbations. In this case, cells were irradiated in mitosis and assayed immediately.

  10. Expression of mRNAs encoding mammalian chromosomal proteins HMG-I and HMG-Y during cellular proliferation

    SciTech Connect

    Johnson, K.R.; Disney, J.E.; Wyatt, C.R.; Reeves, R. )

    1990-03-01

    The high mobility group chromosomal proteins HMG-I and HMG-Y are closely related isoforms that are expressed at high levels in rapidly dividing, undifferentiated mammalian cells. The authors analyzed HMG-I/Y mRNA levels at various cell cycle stages in murine NIH/3T3 fibroblasts partially synchronized by seeding from quiescent, contact-inhibited cultures. Flow microfluorometric analysis of DNA content demonstrated a comparable degree of synchronization in such seeded NIH 3T3 cell populations as is obtained by serum deprivation or other means and has the added advantage of avoiding the use of possibly detrimental inhibitors or metabolic starvation to induce such synchrony. They show that HMG-I/Y mRNA levels gradually increase in NIH/3T3 cells during the first 16 hours after seeding (G{sub 0}/G{sub 1} to late S phase), but thereafter remain constant, in contrast to the cell cycle-regulated expression of the histone H3 gene. The HMG-I/Y mRNAs appear to be very stable; there was no decrease in their levels 6 hours after actinomycin D transcription termination. The proportion of HMG-I to HMG-Y mRNAs was greater in the human than in the murine cells examined, appeared to be greater in proliferating than in quiescent cells, and did not always correspond with the HMG-I to HMG-Y protein ratio.

  11. Report from the working group on the in vivo mammalian bone marrow chromosomal aberration test.

    PubMed

    Tice, R R; Hayashi, M; MacGregor, J T; Anderson, D; Blakey, D H; Holden, H E; Kirsch-Volders, M; Oleson, F B; Pacchierotti, F; Preston, R J

    1994-06-01

    The following summary represents a consensus of the working group, except where noted. The goal of this working group was to identify the minimal requirements needed to conduct a scientifically valid and practical in vivo chromosomal aberration assay. For easy reference, the items discussed are listed in the order in which they appear in OECD guideline 475. Specific disagreement with the current and/or proposed OECD guideline is presented in the text. Introduction, purpose, scope, relevance, application, and limits of test: This test would not be appropriate in situations where there was sufficient evidence to indicate that the test article or reactive metabolites could not reach the bone marrow. Test substances: Solid and liquid test substances should be dissolved, if possible, in water or isotonic saline. If insoluble in water/saline, the test substance should be dissolved or homogeneously suspended in an appropriate vehicle (e.g., vegetable oil). A suspension was not considered suitable for an intravenous injection. The use of dimethyl sulfoxide as an organic solvent was not recommended. The use of any uncommonly used solvent/vehicle should be justified. Freshly prepared solutions or suspensions of the test substance should be employed unless stability data demonstrate the acceptability of storage. Selection of species: Any commonly used rodent species was deemed acceptable but rats or mice were preferred, with no strain preference. Number and sex: A consensus could not be reached as to the requirement for both sexes versus one sex in this assay. It was suggested that a single sex should be used unless pharmacokinetic and/or toxicity data indicated a difference in metabolism and/or sensitivity between males and females. The size of the experiment (i.e., number of cells per animal, number of animals per treatment group) should be based on statistical considerations. Lacking a formal analysis, it was agreed that at least 100 metaphase cells should be scored per

  12. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    PubMed Central

    2012-01-01

    Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT) ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes. PMID:22655747

  13. Dosage compensation and gene expression on the mammalian X chromosome: one plus one does not always equal two

    PubMed Central

    Prothero, Katie E.; Stahl, Jill M.; Carrel, Laura

    2016-01-01

    Counting chromosomes is not just simple math. Although normal males and females differ in sex chromosome content (XY vs. XX), X chromosome imbalance is tolerated because dosage compensation mechanisms have evolved to ensure functional equivalence. In mammals this is accomplished by two processes—X chromosome inactivation that silences most genes on one X chromosome in females, leading to functional X monosomy for most genes in both sexes, and X chromosome upregulation that results in increased gene expression on the single active X in males and females, equalizing dosage relative to autosomes. This review focuses on genes on the X chromosome, and how gene content, organization and expression levels can be influenced by these two processes. Special attention is given to genes that are not X inactivated, and are not necessarily fully dosage compensated. These genes that “escape” X inactivation are of medical importance as they explain phenotypes in individuals with sex chromosome aneuploidies and may impact normal traits and disorders that differ between men and women. Moreover, escape genes give insight into how X chromosome inactivation is spread and maintained on the X. PMID:19802704

  14. INCIDENCE OF CHROMOSOME ABERRATIONS IN MAMMALIAN SPERM STAINED WITH HOECHST 33342 AND UV-LASER IRRADIATED DURING FLOW SORTING

    EPA Science Inventory

    The separation of two sperm populations is possible using the technique of flow sorting, provided that a significant difference exists in the DNA content of X- and Y-bearing sperm. In order to ascertain whether or not chromosome damage was induced in sorted sperm, chromosome prep...

  15. First description of multivalent ring structures in eutherian mammalian meiosis: new chromosomal characterization of Cormura brevirostris (Emballonuridae, Chiroptera).

    PubMed

    de Araújo, Ramon Everton Ferreira; Nagamachi, Cleusa Yoshiko; da Costa, Marlyson Jeremias Rodrigues; Noronha, Renata Coelho Rodrigues; Rodrigues, Luís Reginaldo Ribeiro; Pieczarka, Julio César

    2016-08-01

    Twelve specimens of the bat Cormura brevirostris (Emballonuridae: Chiroptera) were collected from four localities in the Brazilian Amazon region and analyzed by classical and molecular cytogenetics. The diploid number and autosomal fundamental number were as previously reported (2n = 22 and FNa = 40, respectively). Fluorescence in situ hybridization using rDNA probes and silver nitrate technique demonstrated the presence of two NOR sites and the presence of internal telomeric sequences at pericentromeric regions of all chromosomes with exception of Y. Based on meiotic studies and chromosome banding we suggest that the sex chromosome pair of C. brevirostris was equivocally identified as it appears in the literature. Meiotic analysis demonstrated that at diplotene-diakinesis the cells had a ring conformation involving four chromosome pairs. This suggests the occurrence of multiple reciprocal translocations among these chromosomes, which is a very rare phenomenon in vertebrates, and has never been described in Eutheria. PMID:27300547

  16. Mechanism for differential sensitivity of the chromosome and growth cycles of mammalian cells to the rate of protein synthesis.

    PubMed Central

    Wu, R S; Bonner, W M

    1985-01-01

    It has been documented widely that when the generation times of eucaryotic cells are lengthened by slowing the rate of protein synthesis, the duration of the chromosome cycle (S, G2, and M phases) remains relatively invariant. Paradoxically, when the growth of exponentially growing cultures of CHO cells is partially inhibited with inhibitors of protein synthesis, the immediate effect is a proportionate reduction in the rate of total protein, histone protein, and DNA synthesis. However, on further investigation it was found that over the next 2 h the rates of histone protein and DNA synthesis recover, in some cases completely to the uninhibited rate, while the synthesis rates of other proteins do not recover. We called this process chromosome cycle compensation. The amount of compensation seen in CHO cell cultures can account quantitatively for the relative invariance in the length of the chromosome cycle (S, G2, and M phases) reported for these cells. The mechanism for this compensation involves a specific increase in the levels of histone mRNAs. An invariant chromosome cycle coupled with a lengthening growth cycle must result in a disproportionate lengthening of the G1 phase. Thus, these results suggest that chromosome cycle invariance may be due more to specific cellular compensation mechanisms rather than to the more usual interpretation involving a rate-limiting step for cell cycle progression in the G1 phase. Images PMID:3837839

  17. Role of polycomb group protein cbx2/m33 in meiosis onset and maintenance of chromosome stability in the Mammalian germline.

    PubMed

    Baumann, Claudia; De La Fuente, Rabindranath

    2011-01-01

    Polycomb group proteins (PcG) are major epigenetic regulators, essential for establishing heritable expression patterns of developmental control genes. The mouse PcG family member M33/Cbx2 (Chromobox homolog protein 2) is a component of the Polycomb-Repressive Complex 1 (PRC1). Targeted deletion of Cbx2/M33 in mice results in homeotic transformations of the axial skeleton, growth retardation and male-to-female sex reversal. In this study, we tested whether Cbx2 is involved in the control of chromatin remodeling processes during meiosis. Our analysis revealed sex reversal in 28.6% of XY(-/-) embryos, in which a hypoplastic testis and a contralateral ovary were observed in close proximity to the kidney, while the remaining male mutant fetuses exhibited bilateral testicular hypoplasia. Notably, germ cells recovered from Cbx2((XY-/-)) testes on day 18.5 of fetal development exhibited premature meiosis onset with synaptonemal complex formation suggesting a role for Cbx2 in the control of meiotic entry in male germ cells. Mutant females exhibited small ovaries with significant germ cell loss and a high proportion of oocytes with abnormal synapsis and non-homologous interactions at the pachytene stage as well as formation of univalents at diplotene. These defects were associated with failure to resolve DNA double strand breaks marked by persistent γH2AX and Rad51 foci at the late pachytene stage. Importantly, two factors required for meiotic silencing of asynapsed chromatin, ubiquitinated histone H2A (ubH2A) and the chromatin remodeling protein BRCA1, co-localized with fully synapsed chromosome axes in the majority of Cbx2((-/-)) oocytes. These results provide novel evidence that Cbx2 plays a critical and previously unrecognized role in germ cell viability, meiosis onset and homologous chromosome synapsis in the mammalian germline. PMID:22200029

  18. Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes.

    PubMed

    Romiguier, Jonathan; Ranwez, Vincent; Douzery, Emmanuel J P; Galtier, Nicolas

    2010-08-01

    The origin, evolution, and functional relevance of genomic variations in GC content are a long-debated topic, especially in mammals. Most of the existing literature, however, has focused on a small number of model species and/or limited sequence data sets. We analyzed more than 1000 orthologous genes in 33 fully sequenced mammalian genomes, reconstructed their ancestral isochore organization in the maximum likelihood framework, and explored the evolution of third-codon position GC content in representatives of 16 orders and 27 families. We showed that the previously reported erosion of GC-rich isochores is not a general trend. Several species (e.g., shrew, microbat, tenrec, rabbit) have independently undergone a marked increase in GC content, with a widening gap between the GC-poorest and GC-richest classes of genes. The intensively studied apes and (especially) murids do not reflect the general placental pattern. We correlated GC-content evolution with species life-history traits and cytology. Significant effects of body mass and genome size were detected, with each being consistent with the GC-biased gene conversion model. PMID:20530252

  19. cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases.

    PubMed Central

    Seidah, N G; Hamelin, J; Mamarbachi, M; Dong, W; Tardos, H; Mbikay, M; Chretien, M; Day, R

    1996-01-01

    By using reverse transcription-coupled PCR on rat anterior pituitary RNA, we isolated a 285-bp cDNA coding for a novel subtilisin/kexin-like protein convertase (PC), called rat (r) PC7. By screening rat spleen and PC12 cell lambda gt11 cDNA libraries, we obtained a composite 3.5-kb full-length cDNA sequence of rPC7. The open reading frame codes for a prepro-PC with a 36-amino acid signal peptide, a 104-amino acid prosegment ending with a cleavable RAKR sequence, and a 747-amino acid type I membrane-bound glycoprotein, representing the mature form of this serine proteinase. Phylogenetic analysis suggests that PC7 represents the most divergent enzyme of the mammalian convertase family and that it is the closest member to the yeast convertases krp and kexin. Northern blot analyses demonstrated a widespread expression with the richest source of rPC7 mRNA being the colon and lymphoid-associated tissues. In situ hybridization revealed a distinctive tissue distribution that sometimes overlaps with that of furin, suggesting that PC7 has widespread proteolytic functions. The gene for PC7 (Pcsk7) was mapped to mouse chromosome 9 by linkage analysis of an interspecific backcross DNA panel. Images Fig. 3 Fig. 4 Fig. 5 PMID:8622945

  20. cDNA cloning, expression analysis, and chromosomal localization of a gene with high homology to wheat eIF-(iso)4F and mammalian eIF-4G

    SciTech Connect

    Shaughnessy, J.D. Jr.; Jenkins, N.A.; Copeland, N.G.

    1997-01-15

    A novel mammalian gene, Eif4g2, with a high degree of homology to the p82 subunit of the wheat germ eukaryotic translation initiation factor eIF-(iso)4F and mammalian eIF-4G has been isolated. Zoo blot analysis indicates that Eif4g2 is a single-copy gene that is highly conserved among vertebrates. Northern blot analysis shows that Eif4g2 is ubiquitously expressed at high levels in all human and mouse tissues examined. The 3810-nucleotide Eif4g2 cDNA contains a 907-amino-acid open reading frame that codes for a polypeptide with a predicted molecular mass of 102 kDa. The Eif4g2 polypeptide exhibits an overall similarity to wheat p82 of 52%. A 248-amino-acid segment at the amino-terminal end of both peptides exhibits 63% similarity and contains conserved potential RNA binding domains and a phosphorylation site. The Eif4g2 polypeptide contains multiple potential N-linked glycosylation sites as well as protein kinase C and casein kinase II phosphorylation sites. Southern blot analysis of DNA from interspecific backcross mice shows that Eif4g2 is localized to distal mouse chromosome 7 in a region syntenic with human chromosome 11p15. 25 refs., 5 figs.

  1. GREAM: A Web Server to Short-List Potentially Important Genomic Repeat Elements Based on Over-/Under-Representation in Specific Chromosomal Locations, Such as the Gene Neighborhoods, within or across 17 Mammalian Species

    PubMed Central

    Chandrashekar, Darshan Shimoga; Dey, Poulami; Acharya, Kshitish K.

    2015-01-01

    Background Genome-wide repeat sequences, such as LINEs, SINEs and LTRs share a considerable part of the mammalian nuclear genomes. These repeat elements seem to be important for multiple functions including the regulation of transcription initiation, alternative splicing and DNA methylation. But it is not possible to study all repeats and, hence, it would help to short-list before exploring their potential functional significance via experimental studies and/or detailed in silico analyses. Result We developed the ‘Genomic Repeat Element Analyzer for Mammals’ (GREAM) for analysis, screening and selection of potentially important mammalian genomic repeats. This web-server offers many novel utilities. For example, this is the only tool that can reveal a categorized list of specific types of transposons, retro-transposons and other genome-wide repetitive elements that are statistically over-/under-represented in regions around a set of genes, such as those expressed differentially in a disease condition. The output displays the position and frequency of identified elements within the specified regions. In addition, GREAM offers two other types of analyses of genomic repeat sequences: a) enrichment within chromosomal region(s) of interest, and b) comparative distribution across the neighborhood of orthologous genes. GREAM successfully short-listed a repeat element (MER20) known to contain functional motifs. In other case studies, we could use GREAM to short-list repetitive elements in the azoospermia factor a (AZFa) region of the human Y chromosome and those around the genes associated with rat liver injury. GREAM could also identify five over-represented repeats around some of the human and mouse transcription factor coding genes that had conserved expression patterns across the two species. Conclusion GREAM has been developed to provide an impetus to research on the role of repetitive sequences in mammalian genomes by offering easy selection of more interesting

  2. Evidence for an indirect effect of radiation on mammalian chromosomes. III. UV- and x-ray-induced sister chromatid exchanges in heterokaryons

    SciTech Connect

    Graves, J.A.; Kellow, G.N.

    1983-04-01

    The hypothesis that chromosomes may be damaged indirectly by radiation was examined by assaying sister chromatid exchange, (SCE) frequency in heterokaryons between irradiated and unirradiated mouse and Chinese hamster cells. One cell line was UV or x irradiated, then fused to unirradiated BrdU-labeled cells of the other line; SCEs in the unirradiated set were scored in heterokaryons. A dose-dependent increase was consistently observed; the magnitude of which suggested that 25% of UV-induced and up to 60% of x-ray-induced SCEs are indirectly induced. Medium transfer experiments, cell mixing, and fusion with irradiated chick erythrocyte ghosts suggested that unirradiated chromosomes in heterokaryons are damaged by a stable, nondiffusible cytoplasmic component contributed by the irradiated cell.

  3. Detection of Short-Range DNA Interactions in Mammalian Cells Using High-Resolution Circular Chromosome Conformation Capture Coupled to Deep Sequencing.

    PubMed

    Millau, Jean-François; Gaudreau, Luc

    2015-01-01

    DNA interactions shape the genome to physically and functionally connect regulatory elements to their target genes. Studying these interactions is crucial to understanding the molecular mechanisms that regulate gene expression. In this chapter, we present a protocol for high-resolution circular chromosome conformation capture coupled to deep sequencing. This methodology allows to investigate short-range DNA interactions (<100 kbp) and to obtain high-resolution DNA interaction maps of loci. It is a powerful tool to explore how regulatory elements and genes are connected together. PMID:26404155

  4. DAX1/NR0B1 was expressed during mammalian gonadal development and gametogenesis before it was recruited to the eutherian X chromosome.

    PubMed

    Stickels, Robert; Clark, Kevin; Heider, Thomas N; Mattiske, Deidre M; Renfree, Marilyn B; Pask, Andrew J

    2015-01-01

    The nuclear receptor subfamily 0, group B, member 1 (NR0B1) gene is an orphan nuclear receptor that is X-linked in eutherian mammals and plays a critical role in the establishment and function of the hypothalamic-pituitary-adrenal-gonadal axis. Duplication or overexpression of NR0B1 in eutherian males causes male to female sex reversal, and mutation and deletions of NR0B1 cause testicular defects. Thus, gene dosage is critical for the function of NR0B1 in normal gonadogenesis. However, NR0B1 is autosomal in all noneutherian vertebrates, including marsupials and monotreme mammals, and two active copies of the gene are compatible with both male and female gonadal development. In the current study, we examined the evolution and expression of autosomal NR0B1 during gonadal development in a marsupial (the tammar wallaby) as compared to the role of its X-linked orthologues in a eutherian (the mouse). We show that NR0B1 underwent rapid evolutionary change when it relocated from its autosomal position in the nonmammalian vertebrates, monotremes, and marsupials to an X-linked location in eutherian mammals. Despite the acquisition of a novel genomic location and a unique N-terminal domain, NR0B1 protein distribution was remarkably similar between mice and marsupials both throughout gonadal development and during gamete formation. A conserved accumulation of NR0B1 protein was observed in developing oocytes, where its function appears to be critical in the early embryo, prior to zygotic genome activation. Together these findings suggest that NR0B1 had a conserved role in gonadogenesis that existed long before it moved to the X chromosome and despite undergoing significant evolutionary change. PMID:25395677

  5. The Y Chromosome

    ERIC Educational Resources Information Center

    Offner, Susan

    2010-01-01

    The Y chromosome is of great interest to students and can be used to teach about many important biological concepts in addition to sex determination. This paper discusses mutation, recombination, mammalian sex determination, sex determination in general, and the evolution of sex determination in mammals. It includes a student activity that…

  6. DNA modifications in the mammalian brain

    PubMed Central

    Shin, Jaehoon; Ming, Guo-li; Song, Hongjun

    2014-01-01

    DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function. PMID:25135973

  7. SISTER CHROMATID EXCHANGES IN MAMMALIAN MEIOTIC CHROMOSOMES

    EPA Science Inventory

    Very little is known about sister chromatid exchanges (SCEs) in meiotic cells--only that they occur (1) and reveal frequency and distribution patterns apparently unaffected by cross-over (CO) exchange conditions in those cells; (2) unfortunately, the number of studies from which ...

  8. Escape Artists of the X Chromosome.

    PubMed

    Balaton, Bradley P; Brown, Carolyn J

    2016-06-01

    Inactivation of one X chromosome in mammalian females achieves dosage compensation between XX females and XY males; however, over 15% of human X-linked genes continue to be expressed from the inactive X chromosome. New genomic methodologies have improved our identification and characterization of these escape genes, revealing the importance of DNA sequence, chromatin structure, and chromosome ultrastructure in regulating expression from an otherwise inactive chromosome. Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI). Recent advances also demonstrate the importance of these genes in sexually dimorphic disease risk, particularly cancer. PMID:27103486

  9. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  10. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  11. Chromosomal Conditions

    MedlinePlus

    ... 150 babies is born with a chromosomal condition. Down syndrome is an example of a chromosomal condition. Because ... all pregnant women be offered prenatal tests for Down syndrome and other chromosomal conditions. A screening test is ...

  12. Medical and experimental mammalian genetics: A perspective

    SciTech Connect

    McKusick, V.A.; Roderick, T.H.; Mori, J.; Paul, N.W.

    1987-01-01

    This book contains 14 papers. Some of the titles are: Structure and Organization of Mammalian Chromosomes: Normal and Abnormal; Globin Gene Structure and the Nature of Mutation; Retroviral DNA Content of the Mouse Genome; Maternal Genes: Mitochondrial Diseases; Human Evolution; and Prospects for Gene Replacement Therapy.

  13. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    SciTech Connect

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M. ); Riggs, A.D. )

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which is G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.

  14. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  15. Chromosomal variations in the primate Alouatta seniculus seniculus.

    PubMed

    Yunis, E J; Torres de Caballero, O M; Ramírez, C; Ramírez, Z E

    1976-01-01

    Chromosome analysis in 23 specimens of Alouatta s. seniculus trapped in different localities of Colombia were examined with the C- and Q-banding techniques. The chromosome numbers (2n=44) showed variations from 2n = 43 to 2n = 45 involving three and five microchromosomes, respectively. Two specimens also showed a structural chromosome variation involving a pericentric inversion of the chromosome No. 13. Chromosome measurements revealed an X chromosome with a value significantly smaller to that established for the standard mammalian X chromosome. PMID:817992

  16. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  17. SYNAPTONEMAL COMPLEX ANALYSIS OF MUTAGEN EFFECTS ON MEIOTIC CHROMOSOME STRUCTURE AND BEHAVIOR

    EPA Science Inventory

    Homologous chromosome synapsis and crossing-over at meiosis are basic to mammalian gamete development. hey achieve genetic recombination, regulate chromosome segregation, and are believed to function in repair and maturation. ynaptonemal complexes (SCs) are axial correlates of me...

  18. Amplification of genome sections in mammalian somatic cells resistant to colchicine. VII. Localization of original and amplified copes of the mdr gene in the same segment of chromosome 4 of the Dzungarian hamster

    SciTech Connect

    Sokova, O.I.; Siyanova, E.Yu.; Gudkov, A.V.; Kopnin, B.P.

    1988-11-01

    Using in situ hybridization, the mdr gene was mapped in chromosomes of Dzungarian hamster embryonic cells, amplification of which accompanies development of multidrug resistance (MDR). It was shown that the mdr gene is located in chromosome segment 4q15-21, in which, according to data obtained previously, amplified copes of /open quotes/MDR genes/closed quotes/ (mdr, et al.) are distributed, as a rule. Results obtained, as well as data of other investigators, attest to the fact that integration recombination of amplified copies of DNA occurs primarily at the site of disposition of homologous sequences.

  19. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  20. The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3 illustrates principles of C2H2 zinc finger evolution associated with unique expression profiles in human tissues

    PubMed Central

    2010-01-01

    Background Expansion of multi-C2H2 domain zinc finger (ZNF) genes, including the Krüppel-associated box (KRAB) subfamily, paralleled the evolution of tetrapodes, particularly in mammalian lineages. Advances in their cataloging and characterization suggest that the functions of the KRAB-ZNF gene family contributed to mammalian speciation. Results Here, we characterized the human 8q24.3 ZNF cluster on the genomic, the phylogenetic, the structural and the transcriptome level. Six (ZNF7, ZNF34, ZNF250, ZNF251, ZNF252, ZNF517) of the seven locus members contain exons encoding KRAB domains, one (ZNF16) does not. They form a paralog group in which the encoded KRAB and ZNF protein domains generally share more similarities with each other than with other members of the human ZNF superfamily. The closest relatives with respect to their DNA-binding domain were ZNF7 and ZNF251. The analysis of orthologs in therian mammalian species revealed strong conservation and purifying selection of the KRAB-A and zinc finger domains. These findings underscore structural/functional constraints during evolution. Gene losses in the murine lineage (ZNF16, ZNF34, ZNF252, ZNF517) and potential protein truncations in primates (ZNF252) illustrate ongoing speciation processes. Tissue expression profiling by quantitative real-time PCR showed similar but distinct patterns for all tested ZNF genes with the most prominent expression in fetal brain. Based on accompanying expression signatures in twenty-six other human tissues ZNF34 and ZNF250 revealed the closest expression profiles. Together, the 8q24.3 ZNF genes can be assigned to a cerebellum, a testis or a prostate/thyroid subgroup. These results are consistent with potential functions of the ZNF genes in morphogenesis and differentiation. Promoter regions of the seven 8q24.3 ZNF genes display common characteristics like missing TATA-box, CpG island-association and transcription factor binding site (TFBS) modules. Common TFBS modules partly

  1. Chromosomal Flexibility

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    Scientists have shown that a genetic element on one chromosome may direct gene activity on another. Howard Hughes Medical Institute (HHMI) researchers report that a multitasking master-control region appears to over-see both a set of its own genes and a related gene on a nearby chromosome. The findings reinforce the growing importance of location…

  2. The X Chromosomes of Mammals: Karyological Homology as Revealed by Banding Techniques

    PubMed Central

    Pathak, Sen; Stock, A. Dean

    1974-01-01

    A comparison of the Giemsa-banding patterns of the X chromosomes in various mammalian species including man indicates that two major bands (A and B), which are resistant to trypsin and urea-treatments, are always present irrespective of the gross morphology of the X chromosomes. This is true in all mammalian species with the "original or standard type" X chromosomes (5–6% of the haploid genome) thus far analyzed. In the unusually large-sized X chromosomes the extra chromosomal material may be due either to the addition of genetically inert constitutive heterochromatin or to an X-autosome translocation. In these X chromosomes two major bands are present in the actual X-chromosome segment. Our data on C and G band patterns also support Ohno's hypothesis that the mammalian X chromosome is extremely conservative in its genetic content, in spite of its cytogenetic variability. PMID:4141315

  3. Computational model for chromosomal instabilty

    NASA Astrophysics Data System (ADS)

    Zapperi, Stefano; Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina

    2015-03-01

    Faithful segregation of genetic material during cell division requires alignment of the chromosomes between the spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated into a coherent picture. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compares well with early observations in mammalian cell spindles. Our results shed new light on the origin of several pathological conditions related to chromosomal instability.

  4. Mitotic chromosome condensation in vertebrates

    SciTech Connect

    Vagnarelli, Paola

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes of

  5. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  6. Chromosome Compaction by Active Loop Extrusion.

    PubMed

    Goloborodko, Anton; Marko, John F; Mirny, Leonid A

    2016-05-24

    During cell division, chromosomes are compacted in length by more than a 100-fold. A wide range of experiments demonstrated that in their compacted state, mammalian chromosomes form arrays of closely stacked consecutive ∼100 kb loops. The mechanism underlying the active process of chromosome compaction into a stack of loops is unknown. Here we test the hypothesis that chromosomes are compacted by enzymatic machines that actively extrude chromatin loops. When such loop-extruding factors (LEF) bind to chromosomes, they progressively bridge sites that are further away along the chromosome, thus extruding a loop. We demonstrate that collective action of LEFs leads to formation of a dynamic array of consecutive loops. Simulations and an analytically solved model identify two distinct steady states: a sparse state, where loops are highly dynamic but provide little compaction; and a dense state, where there are more stable loops and dramatic chromosome compaction. We find that human chromosomes operate at the border of the dense steady state. Our analysis also shows how the macroscopic characteristics of the loop array are determined by the microscopic properties of LEFs and their abundance. When the number of LEFs are used that match experimentally based estimates, the model can quantitatively reproduce the average loop length, the degree of compaction, and the general loop-array morphology of compact human chromosomes. Our study demonstrates that efficient chromosome compaction can be achieved solely by an active loop-extrusion process. PMID:27224481

  7. Noninvolvement of the X chromosome in radiation-induced chromosome translocations in the human lymphoblastoid cell line TK6

    SciTech Connect

    Jordan, R.; Schwartz, J.L. )

    1994-03-01

    Fluorescence in situ hybridization procedures were used to examine the influence of chromosome locus on the frequency and type of chromosome aberrations induced by [sup 60]Co [gamma] rays in the human lymphoblastoid cell line TK6. Aberrations involving the X chromosome were compared to those involving the similarly sized autosome chromosome 7. When corrected for DNA content, acentric fragments were induced with equal frequency in the X and 7 chromosomes. Dose-dependent increases in chromosomal interchanges involving chromosome 7 were noted, and the frequencies of balanced translocations and dicentrics produced were approximately equal. Chromosome interchanges involving the X chromosome were rare and showed no apparent dose dependence. Thus, while chromosomes 7 and X are equally sensitive to the induction of chromosome breaks, the X chromosome is much less likely to interact with autosomes than chromosome 7. The noninvolvement of the X chromosome in translocations with autosomes may reflect a more peripheral and separate location for the X chromosome in the mammalian nucleus. 20 refs., 2 figs., 1 tab.

  8. Molecular characterization of flow-sorted mammalian centromeres

    SciTech Connect

    Hamkalo, B.A.; Henschen, A.; Parseghian, M.H.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved experiments directed towards developing a molecular characterization of the centromere region of mammalian chromosomes. Attempts to purify this essential chromosomal locus by conventional methods have thus far been unsuccessful. However, preliminary data obtained in collaboration with the National Flow Cytometry Resource (NFCR) showed that it is possible to purify a chromosome fragment that is present in certain cultured mouse cell lines and has all the properties expected of an intact centromere region. To begin sorting this minichromosome for the identification of proteins preferentially associated with centromere regions, standard buffers utilized in chromosome sorting were evaluated for potential effects on maintenance of chromosomal proteins during sorting. The data indicate that the presence of several buffer constituents results in the extraction of all but a few chromosomal proteins. The subsequent use of a magnesium sulfate buffer resulted in the sorting of mouse chromosomes that do not suffer a significant loss of proteins. Several DNA stains were also evaluated for causing protein dissociation, but no significant losses were observed. Although flow-sorted chromosomes have been used extensively for DNA analysis and cloning, this is a pioneering effort by the NFCR, and its collaborators, to exploit chromosome sorting capabilities for the analysis of chromosomal proteins.

  9. ANEUPLOIDY TEST DEVELOPMENT: KINETOCHORE STAINING IN MAMMALIAN SYSTEMS

    EPA Science Inventory

    The purpose of the project was to determine the feasibility of using human-derived antibodies against the chromosomal kinetochore region coupled with immunofluorescence staining as a method for evaluating the induction of aneuploidy in mammalian cells in vitro and in vivo. The te...

  10. Synthetic chromosomes.

    PubMed

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes. PMID:26111960

  11. Chromosome and cell genetics

    SciTech Connect

    Sharma, A.K.; Sharma, A.

    1985-01-01

    This book contains 11 chapters. Some of the titles are: Chromosomes in differentiation; Chromosome axis; Nuclear and organelle split genes; Chemical mutagenesis; and Chromosome architecture and additional elements.

  12. Dean flow fractionation of chromosomes

    NASA Astrophysics Data System (ADS)

    Hockin, Matt; Sant, Himanshu J.; Capecchi, Mario; Gale, Bruce K.

    2016-03-01

    Efforts to transfer intact mammalian chromosomes between cells have been attempted for more than 50 years with the consistent result being transfer of sub unit length pieces regardless of method. Inertial microfluidics is a new field that has shown much promise in addressing the fractionation of particles in the 2-20 μm size range (with unknown limits) and separations are based upon particles being carried by curving confined flows (within a spiral shaped, often rectangular flow chamber) and migrating to stable "equilibrium" positions of varying distance from a chamber wall depending on the balance of dean and lift forces. We fabricated spiral channels for inertial microfluidic separations using a standard soft lithography process. The concentration of chromosomes, small contaminant DNA and large cell debris in each outlets were evaluated using microscope (60X) and a flow cytometer. Using Dean Flow Fractionation, we were able to focus 4.5 times more chromosomes in outlet 2 compared to outlet 4 where most of the large debris is found. We recover 16% of the chromosomes in outlet #1- 50% in 2, 23% in 3 and 11% in 4. It should be noted that these estimates of recovery do not capture one piece of information- it actually may be that the chromosomes at each outlet are physically different and work needs to be done to verify this potential.

  13. Flow cytometric sexing of mammalian sperm.

    PubMed

    Garner, Duane L

    2006-03-15

    This review reexamines parameters needed for optimization of flow cytometric sexing mammalian sperm and updates the current status of sperm sexing for various species where this technology is currently being applied. Differences in DNA content have provided both a method to differentiate between these sex-determining gametes and a method to sort them that can be used for predetermining sex in mammals. Although the DNA content of all cells for each mammalian species is highly conserved, slight but measurable DNA content differences of sperm occur within species even among cattle breeds due to different sizes of Y-chromosomes. Most mammals produce flattened, oval-headed sperm that can be oriented within a sorter using hydrodynamic forces. Multiplying the percentage the difference in DNA content of the X- or Y-chromosome bearing sperm times the area of the flat profile of the sperm head gives a simple sorting index that suggests that bull and boar sperm are well suited for separation in a flow sorter. Successful sperm sexing of various species must take into account the relative susceptibilities of gametes to the stresses that occur during sexing. Sorting conditions must be optimized for each species to achieve acceptable sperm sexing efficiency, usually at 90% accuracy. In the commercial application of sperm sexing to cattle, fertility of sex-sorted bull sperm at 2 x 10(6)/dose remains at 70-80% of unsexed sperm at normal doses of 10 to 20 x 10(6) sperm. DNA content measurements have been used to identify the sex-chromosome bearing sperm populations with good accuracy in semen from at least 23 mammalian species, and normal-appearing offspring have been produced from sexed sperm of at least seven species. PMID:16242764

  14. Mammalian telomeres and their partnership with lamins

    PubMed Central

    Burla, Romina; La Torre, Mattia; Saggio, Isabella

    2016-01-01

    ABSTRACT Chromosome ends are complex structures, which require a panel of factors for their elongation, replication, and protection. We describe here the mechanics of mammalian telomeres, dynamics and maintainance in relation to lamins. Multiple biochemical connections, including association of telomeres to the nuclear envelope and matrix, of telomeric proteins to lamins, and of lamin-associated proteins to chromosome ends, underline the interplay between lamins and telomeres. Paths toward senescence, such as defective telomere replication, altered heterochromatin organization, and impaired DNA repair, are common to lamins' and telomeres' dysfunction. The convergence of phenotypes can be interpreted through a model of dynamic, lamin-controlled functional platforms dedicated to the function of telomeres as fragile sites. The features of telomeropathies and laminopathies, and of animal models underline further overlapping aspects, including the alteration of stem cell compartments. We expect that future studies of basic biology and on aging will benefit from the analysis of this telomere-lamina interplay. PMID:27116558

  15. Chromosome Microarray.

    PubMed

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed. PMID:27276104

  16. Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.

  17. Mammalian meiotic silencing exhibits sexually dimorphic features.

    PubMed

    Cloutier, J M; Mahadevaiah, S K; ElInati, E; Tóth, A; Turner, James

    2016-06-01

    During mammalian meiotic prophase I, surveillance mechanisms exist to ensure that germ cells with defective synapsis or recombination are eliminated, thereby preventing the generation of aneuploid gametes and embryos. Meiosis in females is more error-prone than in males, and this is in part because the prophase I surveillance mechanisms are less efficient in females. A mechanistic understanding of this sexual dimorphism is currently lacking. In both sexes, asynapsed chromosomes are transcriptionally inactivated by ATR-dependent phosphorylation of histone H2AFX. This process, termed meiotic silencing, has been proposed to perform an important prophase I surveillance role. While the transcriptional effects of meiotic silencing at individual genes are well described in the male germ line, analogous studies in the female germ line have not been performed. Here we apply single- and multigene RNA fluorescence in situ hybridization (RNA FISH) to oocytes from chromosomally abnormal mouse models to uncover potential sex differences in the silencing response. Notably, we find that meiotic silencing in females is less efficient than in males. Within individual oocytes, genes located on the same asynapsed chromosome are silenced to differing extents, thereby generating mosaicism in gene expression profiles across oocyte populations. Analysis of sex-reversed XY female mice reveals that the sexual dimorphism in silencing is determined by gonadal sex rather than sex chromosome constitution. We propose that sex differences in meiotic silencing impact on the sexually dimorphic prophase I response to asynapsis. PMID:26712235

  18. Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution

    PubMed Central

    Müller, S.; Stanyon, R.; Finelli, P.; Archidiacono, N.; Wienberg, J.

    2000-01-01

    Chromosome painting in placental mammalians illustrates that genome evolution is marked by chromosomal synteny conservation and that the association of chromosomes 3 and 21 may be the largest widely conserved syntenic block known for mammals. We studied intrachromosomal rearrangements of the syntenic block 3/21 by using probes derived from chromosomal subregions with a resolution of up to 10–15 Mbp. We demonstrate that the rearrangements visualized by chromosome painting, mostly translocations, are only a fraction of the actual chromosomal changes that have occurred during evolution. The ancestral segment order for both primates and carnivores is still found in some species in both orders. From the ancestral primate/carnivore condition an inversion is needed to derive the pig homolog, and a fission of chromosome 21 and a pericentric inversion is needed to derive the Bornean orangutan condition. Two overlapping inversions in the chromosome 3 homolog then would lead to the chromosome form found in humans and African apes. This reconstruction of the origin of human chromosome 3 contrasts with the generally accepted scenario derived from chromosome banding in which it was proposed that only one pericentric inversion was needed. From the ancestral form for Old World primates (now found in the Bornean orangutan) a pericentric inversion and centromere shift leads to the chromosome ancestral for all Old World monkeys. Intrachromosomal rearrangements, as shown here, make up a set of potentially plentiful and informative markers that can be used for phylogenetic reconstruction and a more refined comparative mapping of the genome. PMID:10618396

  19. Mammalian cardiolipin biosynthesis.

    PubMed

    Mejia, Edgard M; Nguyen, Hieu; Hatch, Grant M

    2014-04-01

    Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed. PMID:24144810

  20. Chromosome Aberrations by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  1. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  2. ORC proteins in the mammalian zygote.

    PubMed

    Ortega, Michael A; Nguyen, Hieu; Ward, W Steven

    2016-01-01

    The origin recognition complex (ORC) proteins, ORC1-6, are the first known proteins that bind DNA replication origins to mark the competency for the initiation of DNA synthesis. These proteins have complex mechanisms of assembly into the ORC complex and unexpected localizations in the mitotic chromosomes, cytoplasm, and nuclear structures. The mammalian zygote is a potentially important model that may contribute to our understanding of the mechanisms and features influencing origin establishment and in the identification of other functions of the ORC proteins. Together with expected localizations to the chromatin during G1, we found an unexpected distribution in the cytoplasm that appeared to accumulate ORC proteins suggesting potential roles for ORC subunits in mitosis and chromatin segregation. ORC1, 2, 3, and 5 all localize to the area between the separating maternal chromosomes shortly after fertilization. ORC4 forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. These data suggest that the ORC proteins may also play roles in preparing the cell for DNA replication in addition to their direct role in establishing functional replication origins. PMID:26453397

  3. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation.

    PubMed

    Minajigi, Anand; Froberg, John E; Wei, Chunyao; Sunwoo, Hongjae; Kesner, Barry; Colognori, David; Lessing, Derek; Payer, Bernhard; Boukhali, Myriam; Haas, Wilhelm; Lee, Jeannie T

    2015-07-17

    The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform "identification of direct RNA interacting proteins" (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors-including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers-that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist, the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes. PMID:26089354

  4. MAMMALIAN CELL CULTURE ASSAY TO QUANTITATE CHEMICALLY INDUCED ANEUPLOIDY: USE OF A MONOCHROMOSOMAL HUMAN/MOUSE CELL HYBRID

    EPA Science Inventory

    A short-term assay utilizing a human/mouse monochromosomal hybrid cell line R3-5, to detect chemically induced aneuploidy in mammalian cells is described. A single human chromosome transferred into mouse cells was used as a cytogenetic marker to quantitate abnormal chromosome seg...

  5. Relationships between chromosome structure and chromosomal aberrations

    NASA Astrophysics Data System (ADS)

    Eidelman, Yuri; Andreev, Sergey

    An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.

  6. Base composition and gene distribution: critical patterns in mammalian genome organization.

    PubMed

    Gardiner, K

    1996-12-01

    Recent success in developing transcriptional maps of large genomic regions provide excellent opportunities for the investigation of mammalian genome organization. Detailed definition of organizational features will, in the short term, aid in prioritizing genomic sequencing efforts and in interpreting sequencing results and, in the long term, will surely provide insights into the structural, functional and evolutionary basis for the mammalian chromosome and chromosomal banding patterns. For such efforts, human chromosome 21 provides an excellent model system because the physical and clone maps are detailed, and several transcriptional mapping projects have provided large numbers of novel genes. It is, therefore, valuable at this point to examine these transcriptional mapping data and to compare them with the isochore model of the mammalian genome, which describes patterns in base composition and predicts gene distributions. Not only do compelling organizational patterns appear, but new questions about additional possible patterns in gene size, structure, conservation and transcription can be asked. PMID:9257535

  7. Origin and evolution of X chromosome inactivation.

    PubMed

    Gribnau, Joost; Grootegoed, J Anton

    2012-06-01

    Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals. PMID:22425180

  8. Rapid, modular and reliable construction of complex mammalian gene circuits

    PubMed Central

    Guye, Patrick; Li, Yinqing; Wroblewska, Liliana; Duportet, Xavier; Weiss, Ron

    2013-01-01

    We developed a framework for quick and reliable construction of complex gene circuits for genetically engineering mammalian cells. Our hierarchical framework is based on a novel nucleotide addressing system for defining the position of each part in an overall circuit. With this framework, we demonstrate construction of synthetic gene circuits of up to 64 kb in size comprising 11 transcription units and 33 basic parts. We show robust gene expression control of multiple transcription units by small molecule inducers in human cells with transient transfection and stable chromosomal integration of these circuits. This framework enables development of complex gene circuits for engineering mammalian cells with unprecedented speed, reliability and scalability and should have broad applicability in a variety of areas including mammalian cell fermentation, cell fate reprogramming and cell-based assays. PMID:23847100

  9. Mammalian Septins Nomenclature

    PubMed Central

    Macara, Ian G.; Baldarelli, Richard; Field, Christine M.; Glotzer, Michael; Hayashi, Yasuhide; Hsu, Shu-Chan; Kennedy, Mary B.; Kinoshita, Makoto; Longtine, Mark; Low, Claudia; Maltais, Lois J.; McKenzie, Louise; Mitchison, Timothy J.; Nishikawa, Toru; Noda, Makoto; Petty, Elizabeth M.; Peifer, Mark; Pringle, John R.; Robinson, Phillip J.; Roth, Dagmar; Russell, S.E. Hilary; Stuhlmann, Heidi; Tanaka, Manami; Tanaka, Tomoo; Trimble, William S.; Ware, Jerry; Zeleznik-Le, Nancy J.; Zieger, Barbara

    2002-01-01

    There are 10 known mammalian septin genes, some of which produce multiple splice variants. The current nomenclature for the genes and gene products is very confusing, with several different names having been given to the same gene product and distinct names given to splice variants of the same gene. Moreover, some names are based on those of yeast or Drosophila septins that are not the closest homologues. Therefore, we suggest that the mammalian septin field adopt a common nomenclature system, based on that adopted by the Mouse Genomic Nomenclature Committee and accepted by the Human Genome Organization Gene Nomenclature Committee. The human and mouse septin genes will be named SEPT1–SEPT10 and Sept1–Sept10, respectively. Splice variants will be designated by an underscore followed by a lowercase “v” and a number, e.g., SEPT4_v1. PMID:12475938

  10. Mammalian sweet taste receptors.

    PubMed

    Nelson, G; Hoon, M A; Chandrashekar, J; Zhang, Y; Ryba, N J; Zuker, C S

    2001-08-10

    The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery. PMID:11509186

  11. The complete sequence of human chromosome 5

    SciTech Connect

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  12. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  13. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. We isolated 11 lethal lines that map...

  14. The pig X and Y Chromosomes: structure, sequence, and evolution

    PubMed Central

    Skinner, Benjamin M.; Sargent, Carole A.; Churcher, Carol; Hunt, Toby; Herrero, Javier; Loveland, Jane E.; Dunn, Matt; Louzada, Sandra; Fu, Beiyuan; Chow, William; Gilbert, James; Austin-Guest, Siobhan; Beal, Kathryn; Carvalho-Silva, Denise; Cheng, William; Gordon, Daria; Grafham, Darren; Hardy, Matt; Harley, Jo; Hauser, Heidi; Howden, Philip; Howe, Kerstin; Lachani, Kim; Ellis, Peter J.I.; Kelly, Daniel; Kerry, Giselle; Kerwin, James; Ng, Bee Ling; Threadgold, Glen; Wileman, Thomas; Wood, Jonathan M.D.; Yang, Fengtang; Harrow, Jen; Affara, Nabeel A.; Tyler-Smith, Chris

    2016-01-01

    We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes—both single copy and amplified—on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution. PMID:26560630

  15. The pig X and Y Chromosomes: structure, sequence, and evolution.

    PubMed

    Skinner, Benjamin M; Sargent, Carole A; Churcher, Carol; Hunt, Toby; Herrero, Javier; Loveland, Jane E; Dunn, Matt; Louzada, Sandra; Fu, Beiyuan; Chow, William; Gilbert, James; Austin-Guest, Siobhan; Beal, Kathryn; Carvalho-Silva, Denise; Cheng, William; Gordon, Daria; Grafham, Darren; Hardy, Matt; Harley, Jo; Hauser, Heidi; Howden, Philip; Howe, Kerstin; Lachani, Kim; Ellis, Peter J I; Kelly, Daniel; Kerry, Giselle; Kerwin, James; Ng, Bee Ling; Threadgold, Glen; Wileman, Thomas; Wood, Jonathan M D; Yang, Fengtang; Harrow, Jen; Affara, Nabeel A; Tyler-Smith, Chris

    2016-01-01

    We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution. PMID:26560630

  16. Conserved synteny between pig chromosome 8 and human chromosome 4 but rearranged and distorted linkage maps

    SciTech Connect

    Ellegren, H.; Edfors-Lilja, I.; Anderson, L. ); Wintero, A.K. )

    1993-09-01

    The porcine genes encoding interleukin 2, alcohol dehydrogenase (class I) gamma polypeptide, and osteopontin were mapped to chromosome 8 by linkage analysis. Together with previous assignments to this chromosome (the albumin, platelet-derived growth factor receptor A, and fibrinogen genes), an extensive syntenic homology with human chromosome 4 was discovered. Loci from about three-quarters of the q arm of human chromosome 4 are on pig chromosome 8. However, the linear order of the markers is not identical in the two species, and there are several examples of interspecific differences in the recombination fractions between adjacent markers. The conserved synteny between man and the pig gives strong support to a previous suggestion that a synteny group present in the ancestor of mammalian species has been retained on human chromosome 4q. Since loci from this synteny group are found on two cattle chromosomes, the bovine rearrangement must have occurred after the split of Suidae and Bovidae within Artiodactyla. 29 refs., 3 figs., 1 tab.

  17. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    PubMed

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-02-01

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage. PMID:25637223

  18. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?

    PubMed Central

    Matveevsky, Sergey; Bakloushinskaya, Irina; Kolomiets, Oxana

    2016-01-01

    Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis. PMID:27425629

  19. Female meiotic sex chromosome inactivation in chicken.

    PubMed

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2009-05-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis. PMID:19461881

  20. Sequence conservation on the Y chromosome

    SciTech Connect

    Gibson, L.H.; Yang-Feng, L.; Lau, C.

    1994-09-01

    The Y chromosome is present in all mammals and is considered to be essential to sex determination. Despite intense genomic research, only a few genes have been identified and mapped to this chromosome in humans. Several of them, such as SRY and ZFY, have been demonstrated to be conserved and Y-located in other mammals. In order to address the issue of sequence conservation on the Y chromosome, we performed fluorescence in situ hybridization (FISH) with DNA from a human Y cosmid library as a probe to study the Y chromosomes from other mammalian species. Total DNA from 3,000-4,500 cosmid pools were labeled with biotinylated-dUTP and hybridized to metaphase chromosomes. For human and primate preparations, human cot1 DNA was included in the hybridization mixture to suppress the hybridization from repeat sequences. FISH signals were detected on the Y chromosomes of human, gorilla, orangutan and baboon (Old World monkey) and were absent on those of squirrel monkey (New World monkey), Indian munjac, wood lemming, Chinese hamster, rat and mouse. Since sequence analysis suggested that specific genes, e.g. SRY and ZFY, are conserved between these two groups, the lack of detectable hybridization in the latter group implies either that conservation of the human Y sequences is limited to the Y chromosomes of the great apes and Old World monkeys, or that the size of the syntenic segment is too small to be detected under the resolution of FISH, or that homologeous sequences have undergone considerable divergence. Further studies with reduced hybridization stringency are currently being conducted. Our results provide some clues as to Y-sequence conservation across species and demonstrate the limitations of FISH across species with total DNA sequences from a particular chromosome.

  1. Female Meiotic Sex Chromosome Inactivation in Chicken

    PubMed Central

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W.; Laven, Joop S. E.; Grootegoed, J. Anton; Baarends, Willy M.

    2009-01-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, γH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of γH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses γH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis. PMID:19461881

  2. Global Epigenomic Reconfiguration During Mammalian Brain Development

    PubMed Central

    Nery, Joseph R.; Urich, Mark; Puddifoot, Clare A.; Johnson, Nicholas D.; Lucero, Jacinta; Huang, Yun; Dwork, Andrew J.; Schultz, Matthew D.; Yu, Miao; Tonti-Filippini, Julian; Heyn, Holger; Hu, Shijun; Wu, Joseph C.; Rao, Anjana; Esteller, Manel; He, Chuan; Haghighi, Fatemeh G.; Sejnowski, Terrence J.; Behrens, M. Margarita; Ecker, Joseph R.

    2013-01-01

    DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity. PMID:23828890

  3. Epigenetic Pattern on the Human Y Chromosome Is Evolutionarily Conserved

    PubMed Central

    Meng, Hao; Agbagwa, Ikechukwu O.; Wang, Ling-Xiang; Wang, Yingzhi; Yan, Shi; Ren, Shancheng; Sun, Yinghao; Pei, Gang; Liu, Xin; Liu, Jiang; Jin, Li; Li, Hui; Sun, Yingli

    2016-01-01

    DNA methylation plays an important role for mammalian development. However, it is unclear whether the DNA methylation pattern is evolutionarily conserved. The Y chromosome serves as a powerful tool for the study of human evolution because it is transferred between males. In this study, based on deep-rooted pedigrees and the latest Y chromosome phylogenetic tree, we performed epigenetic pattern analysis of the Y chromosome from 72 donors. By comparing their respective DNA methylation level, we found that the DNA methylation pattern on the Y chromosome was stable among family members and haplogroups. Interestingly, two haplogroup-specific methylation sites were found, which were both genotype-dependent. Moreover, the African and Asian samples also had similar DNA methylation pattern with a remote divergence time. Our findings indicated that the DNA methylation pattern on the Y chromosome was conservative during human male history. PMID:26760298

  4. Epigenetic Pattern on the Human Y Chromosome Is Evolutionarily Conserved.

    PubMed

    Zhang, Minjie; Wang, Chuan-Chao; Yang, Caiyun; Meng, Hao; Agbagwa, Ikechukwu O; Wang, Ling-Xiang; Wang, Yingzhi; Yan, Shi; Ren, Shancheng; Sun, Yinghao; Pei, Gang; Liu, Xin; Liu, Jiang; Jin, Li; Li, Hui; Sun, Yingli

    2016-01-01

    DNA methylation plays an important role for mammalian development. However, it is unclear whether the DNA methylation pattern is evolutionarily conserved. The Y chromosome serves as a powerful tool for the study of human evolution because it is transferred between males. In this study, based on deep-rooted pedigrees and the latest Y chromosome phylogenetic tree, we performed epigenetic pattern analysis of the Y chromosome from 72 donors. By comparing their respective DNA methylation level, we found that the DNA methylation pattern on the Y chromosome was stable among family members and haplogroups. Interestingly, two haplogroup-specific methylation sites were found, which were both genotype-dependent. Moreover, the African and Asian samples also had similar DNA methylation pattern with a remote divergence time. Our findings indicated that the DNA methylation pattern on the Y chromosome was conservative during human male history. PMID:26760298

  5. The Precarious Prokaryotic Chromosome

    PubMed Central

    2014-01-01

    Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other “precarious” features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction. PMID:24633873

  6. The precarious prokaryotic chromosome.

    PubMed

    Kuzminov, Andrei

    2014-05-01

    Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other "precarious" features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction. PMID:24633873

  7. B-chromosome evolution.

    PubMed Central

    Camacho, J P; Sharbel, T F; Beukeboom, L W

    2000-01-01

    B chromosomes are extra chromosomes to the standard complement that occur in many organisms. They can originate in a number of ways including derivation from autosomes and sex chromosomes in intra- and interspecies crosses. Their subsequent molecular evolution resembles that of univalent sex chromosomes, which involves gene silencing, heterochromatinization and the accumulation of repetitive DNA and transposons. B-chromosome frequencies in populations result from a balance between their transmission rates and their effects on host fitness. Their long-term evolution is considered to be the outcome of selection on the host genome to eliminate B chromosomes or suppress their effects and on the B chromosome's ability to escape through the generation of new variants. Because B chromosomes interact with the standard chromosomes, they can play an important role in genome evolution and may be useful for studying molecular evolutionary processes. PMID:10724453

  8. Mammalian Endogenous Retroviruses.

    PubMed

    Mager, Dixie L; Stoye, Jonathan P

    2015-02-01

    Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles. PMID:26104559

  9. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes

    PubMed Central

    Soh, Y.Q. Shirleen; Alföldi, Jessica; Pyntikova, Tatyana; Brown, Laura G.; Graves, Tina; Minx, Patrick J.; Fulton, Robert S.; Kremitzki, Colin; Koutseva, Natalia; Mueller, Jacob L.; Rozen, Steve; Hughes, Jennifer F.; Owens, Elaine; Womack, James E.; Murphy, William J.; Cao, Qing; de Jong, Pieter; Warren, Wesley C.; Wilson, Richard K.; Skaletsky, Helen; Page, David C.

    2014-01-01

    Summary We sequenced the MSY (Male-Specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only two percent of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 50 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs, but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism. PMID:25417157

  10. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes.

    PubMed

    Soh, Y Q Shirleen; Alföldi, Jessica; Pyntikova, Tatyana; Brown, Laura G; Graves, Tina; Minx, Patrick J; Fulton, Robert S; Kremitzki, Colin; Koutseva, Natalia; Mueller, Jacob L; Rozen, Steve; Hughes, Jennifer F; Owens, Elaine; Womack, James E; Murphy, William J; Cao, Qing; de Jong, Pieter; Warren, Wesley C; Wilson, Richard K; Skaletsky, Helen; Page, David C

    2014-11-01

    We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism. PMID:25417157

  11. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website. PMID:26799266

  12. Mammalian phospholipase C.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale. PMID:23140367

  13. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  14. Chromosomal Disorders and Autism.

    ERIC Educational Resources Information Center

    Gillberg, Christopher

    1998-01-01

    This paper reviews the literature on chromosomal aberrations in autism, especially possible gene markers. It notes that Chromosome 15 and numerical and structural abnormalities of the sex chromosomes have been most frequently reported as related to the genesis of autism. (Author/DB)

  15. Chromosomal development of cancer

    SciTech Connect

    1993-12-31

    Chapter 30, describes the chromosomal development of cancer. It has been established through cytological research that the number of chromosomes in cancer cells often deviates greatly from the usual number in healthy cells of the host organism. This chapter includes discussions on chromosome studies in ascites tumors, stemline and tumor development, mitotic aberrations in cancer, and selection and tumor progression. 25 refs., 2 figs.

  16. Relationship of Chromosome Changes to Neoplastic Cell Transformation

    PubMed Central

    DiPaolo, Joseph A.; Popescu, Nicolae C.

    1976-01-01

    Chromosomal abnormalities are a frequent concomitant of neoplasia, and although it is tempting to relate these mutations and alterations in chromatin (DNA) function to cancer, their relationship to the initiation or progression of carcinogenesis is unknown. Mammalian cells in culture, after interacting with chemical carcinogens, often exhibit chromosome damage consisting of breaks and exchanges of chromatid material. The pattern of damage of banded metaphases indicates that negative bands are especially vulnerable to the action of chemical carcinogens, probably because of differential chromatin condensation. Damage to individual chromosomes may be random or nonrandom, depending on the species. Cell death can be correlated with chromatid alterations that occur shortly after treatment with chemical carcinogens. There is also a correlation between mutagenic and carcinogenic activity of some chemical carcinogens and the frequency of sister chromatid exchanges. The question of whether specific chromosome changes are absolutely required for neoplastic transformation cannot be answered because of conflicting data and diverse results from studies even with known carcinogens. Cell transformation may occur without any visible chromosome changes. A universal specific numerical or visible structural chromosomal alteration is not necessarily associated with chemical or viral transformation. Chromosome changes are independent of the etiologic agents: different carcinogens may produce transformation associated with the same abnormal chromosomes, but not all transformed lines invariably exhibit the same abnormality, even with the same chemical. In some species, chromosome having nucleolar organizer regions may be more frequently involved in numerical or structural deviations. Progressively growing tumors also may occur as a result of the proliferation of transformed cells without detectable chromosome changes, indicating that tumorigenicity need not be related to an imbalance of

  17. DIFFERENTIAL RECOVERY OF 'TK' AND 'HGPRT' INDUCED MUTANTS IN MAMMALIAN CELLS

    EPA Science Inventory

    Human genetic disease is known to result from both point mutations and chromosomal aberrations. It is therefore critical that short-term in vitro mammalian tests be evaluated as to their capabilities for detecting both types of lesions. Research to date indicates that L5178Y/TK p...

  18. Infectious delivery of alphaherpesvirus bacterial artificial chromosomes.

    PubMed

    Tobler, Kurt; Fraefel, Cornel

    2015-01-01

    Bacterial artificial chromosomes (BACs) can accommodate and stably propagate the genomes of large DNA viruses in E. coli. As DNA virus genomes are often per se infectious upon transfection into mammalian cells, their cloning in BACs and easy modification by homologous recombination in bacteria has become an important strategy to investigate the functions of individual virus genes. This chapter describes a strategy to clone the genomes of viruses of the Alphaherpesvirinae subfamily within the family of the Herpesviridae, which is a group of large DNA viruses that can establish both lytic and latent infections in most animal species including humans. The cloning strategy includes the following steps: (1) Construction of a transfer plasmid that contains the BAC backbone with selection and screening markers, and targeting sequences which support homologous recombination between the transfer plasmid and the alphaherpesvirus genome. (2) Introduction of the transfer plasmid sequences into the alphaherpesvirus genome via homologous recombination in mammalian cells. (3) Isolation of recombinant virus genomes containing the BAC backbone sequences from infected mammalian cells and electroporation into E. coli. (4) Preparation of infectious BAC DNA from bacterial cultures and transfection into mammalian cells. (5) Isolation and characterization of progeny virus. PMID:25239748

  19. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    PubMed

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. PMID:26006188

  20. Mapping strategies: Chromosome 16 workshop

    SciTech Connect

    Not Available

    1989-01-01

    The following topics from a workshop on chromosome 16 are briefly discussed: genetic map of chromosome 16; chromosome breakpoint map of chromosome 16; integrated physical/genetic map of chromosome 16; pulsed field map of the 16p13.2--p13.3 region (3 sheets); and a report of the HGM10 chromosome 16 committee.

  1. Comparative chromosome painting in mammals: Human and the Indian muntjac (Muntiacus muntjak vaginalis)

    SciTech Connect

    Yang, Fengtang; Mueller, S.; Ferguson-Smith, M.A.

    1997-02-01

    We have used human chromosome-specific painting probes for in situ hybridization on Indian muntjac (Muntiacus muntjak vaginalis, 2n = 6, 7) metaphase chromosomes to identify the homologous chromosome regions of the entire human chromosome set. Chromosome rearrangements that have been involved in the karyotype evolution of these two species belonging to different mammalian orders were reconstructed based on hybridization patterns. Although, compared to human chromosomes, the karyotype of the Indian muntjac seems to be highly rearranged, we could identify a limited number of highly conserved homologous chromosome regions for each of the human chromosome-specific probes. We identified 48 homologous autosomal chromosome segments, which is in the range of the numbers found in other artiodactyls and carnivores recently analyzed by chromosome painting. The results demonstrate that the reshuffling of the muntjac karyotype is mostly due to fusions of huge blocks of entire chromosomes. This is in accordance with previous chromosome painting analyses between various Muntjac species and contrasts the findings for some other mammals (e.g., gibbons, mice) that show exceptional chromosome reshuffling due to multiple reciprocal translocation events. 21 refs., 3 figs.

  2. The DNA sequence of the human X chromosome.

    PubMed

    Ross, Mark T; Grafham, Darren V; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R; Burrows, Christine; Bird, Christine P; Frankish, Adam; Lovell, Frances L; Howe, Kevin L; Ashurst, Jennifer L; Fulton, Robert S; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C; Hurles, Matthew E; Andrews, T Daniel; Scott, Carol E; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P; Hunt, Sarah E; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Ainscough, Rachael; Ambrose, Kerrie D; Ansari-Lari, M Ali; Aradhya, Swaroop; Ashwell, Robert I S; Babbage, Anne K; Bagguley, Claire L; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E; Barlow, Karen F; Barrett, Ian P; Bates, Karen N; Beare, David M; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M; Brown, Andrew J; Brown, Mary J; Bonnin, David; Bruford, Elspeth A; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y; Clarke, Graham; Clee, Chris M; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G; Conquer, Jen S; Corby, Nicole; Connor, Richard E; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; Deshazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A; Hawes, Alicia; Heath, Paul D; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J; Huckle, Elizabeth J; Hume, Jennifer; Hunt, Paul J; Hunt, Adrienne R; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J; Joseph, Shirin S; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M; Loulseged, Hermela; Loveland, Jane E; Lovell, Jamieson D; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O'Dell, Christopher N; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V; Pearson, Danita M; Pelan, Sarah E; Perez, Lesette; Porter, Keith M; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A; Schlessinger, David; Schueler, Mary G; Sehra, Harminder K; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M; Shownkeen, Ratna; Skuce, Carl D; Smith, Michelle L; Sotheran, Elizabeth C; Steingruber, Helen E; Steward, Charles A; Storey, Roy; Swann, R Mark; Swarbreck, David; Tabor, Paul E; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C; d'Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L; Whiteley, Mathew N; Wilkinson, Jane E; Willey, David L; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L; Wray, Paul W; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J; Hillier, Ladeana W; Willard, Huntington F; Wilson, Richard K; Waterston, Robert H; Rice, Catherine M; Vaudin, Mark; Coulson, Alan; Nelson, David L; Weinstock, George; Sulston, John E; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A; Beck, Stephan; Rogers, Jane; Bentley, David R

    2005-03-17

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  3. The DNA sequence of the human X chromosome

    PubMed Central

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  4. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues

    PubMed Central

    Knouse, Kristin A.; Wu, Jie; Whittaker, Charles A.; Amon, Angelika

    2014-01-01

    Whole-chromosome copy number alterations, also known as aneuploidy, are associated with adverse consequences in most cells and organisms. However, high frequencies of aneuploidy have been reported to occur naturally in the mammalian liver and brain, fueling speculation that aneuploidy provides a selective advantage in these organs. To explore this paradox, we used single cell sequencing to obtain a genome-wide, high-resolution assessment of chromosome copy number alterations in mouse and human tissues. We find that aneuploidy occurs much less frequently in the liver and brain than previously reported and is no more prevalent in these tissues than in skin. Our results highlight the rarity of chromosome copy number alterations across mammalian tissues and argue against a positive role for aneuploidy in organ function. Cancer is therefore the only known example, in mammals, of altering karyotype for functional adaptation. PMID:25197050

  5. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited.

    PubMed

    Brown, Judith D; O'Neill, Rachel J

    2010-01-01

    Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation. PMID:20438362

  6. Structure of mammalian metallothionein

    SciTech Connect

    Kaegi, J.H.R.; Vasak, M.; Lerch, K.; Gilg, D.E.O.; Hunziker, P.; Bernhard, W.R.; Good, M.

    1984-03-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me/sub 7/(Cys/sup -/)/sub 20/ stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures surrounded by properly folded segments of the chain providing the ligands. /sup 1/H-NMR data and infrared absorption measurements are consistent with a tightly folded structure rich in ..beta..-type conformation. 79 references, 11 figures, 4 tables.

  7. Mammalian Sirtuins and Energy Metabolism

    PubMed Central

    Li, Xiaoling; Kazgan, Nevzat

    2011-01-01

    Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes. PMID:21614150

  8. Birth and expression evolution of mammalian microRNA genes.

    PubMed

    Meunier, Julien; Lemoine, Frédéric; Soumillon, Magali; Liechti, Angélica; Weier, Manuela; Guschanski, Katerina; Hu, Haiyang; Khaitovich, Philipp; Kaessmann, Henrik

    2013-01-01

    MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing, we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally, our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian miRNA genes and the associated selective forces. PMID:23034410

  9. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice.

    PubMed

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-03-31

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene silencing have been the subject of debate. We performed a systematic, single-cell transcriptional analysis to examine the activity of the Xp chromosome for a panel of X-linked genes throughout early preimplantation development in the mouse. Rather than being preinactivated, we found the Xp to be fully active at the time of zygotic gene activation, with silencing beginning from the 4-cell stage onward. X-inactivation patterns were, however, surprisingly diverse between genes. Some loci showed early onset (4-8-cell stage) of X inactivation, and some showed extremely late onset (postblastocyst stage), whereas others were never fully inactivated. Thus, we show that silencing of some X-chromosomal regions occurs outside of the usual time window and that escape from X inactivation can be highly lineage specific. These results reveal that imprinted X inactivation in mice is far less concerted than previously thought and highlight the epigenetic diversity underlying the dosage compensation process during early mammalian development. PMID:19273861

  10. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice

    PubMed Central

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-01-01

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene silencing have been the subject of debate. We performed a systematic, single-cell transcriptional analysis to examine the activity of the Xp chromosome for a panel of X-linked genes throughout early preimplantation development in the mouse. Rather than being preinactivated, we found the Xp to be fully active at the time of zygotic gene activation, with silencing beginning from the 4-cell stage onward. X-inactivation patterns were, however, surprisingly diverse between genes. Some loci showed early onset (4–8-cell stage) of X inactivation, and some showed extremely late onset (postblastocyst stage), whereas others were never fully inactivated. Thus, we show that silencing of some X-chromosomal regions occurs outside of the usual time window and that escape from X inactivation can be highly lineage specific. These results reveal that imprinted X inactivation in mice is far less concerted than previously thought and highlight the epigenetic diversity underlying the dosage compensation process during early mammalian development. PMID:19273861

  11. Effects of simulated weightlessness on mammalian development. Part 1: Development of clinostat for mammalian tissue culture and use in studies on meiotic maturation of mouse oocytes

    NASA Technical Reports Server (NTRS)

    Wolegemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of weightlessness on three aspects of mammalian reproduction: oocyte development, fertilization, and early embryogenesis was studied. Zero-gravity conditions within the laboratory by construction of a clinostat designed to support in vitro tissue culture were simulated and the effects of simulated weightlessness on meiotic maturation in mammalian oocytes using mouse as the model system were studied. The timing and frequency of germinal vesicule breakdown and polar body extrusion, and the structural and numerical properties of meiotic chromosomes at Metaphase and Metaphase of meiosis are assessed.

  12. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  13. Cohesin: a critical chromatin organizer in mammalian gene regulation

    PubMed Central

    Chien, Richard; Zeng, Weihua; Ball, Alexander R.; Yokomori, Kyoko

    2014-01-01

    Cohesins are evolutionarily conserved essential multi-protein complexes important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders. PMID:21851156

  14. Mammalian Interphase Cdks

    PubMed Central

    2012-01-01

    Cyclin-dependent kinases (Cdks) drive cell cycle progression in all eukaryotes. Yeasts have a single major Cdk that mediates distinct cell cycle transitions via association with different cyclins. The closest homolog in mammals, Cdk1, drives mitosis. Mammals have additional Cdks—Cdk2, Cdk4, and Cdk6—that represent the major Cdks activated during interphase (iCdks). A large body of evidence has accrued that suggests that activation of iCdks dictates progression though interphase. In apparent contradiction, deficiency in each individual iCdk, respectively, in knockout mice proved to be compatible with live birth and in some instances fertility. Moreover, murine embryos could be derived with Cdk1 as the only functional Cdk. Thus, none of the iCdks is strictly essential for mammalian cell cycle progression, raising the possibility that Cdk1 is the dominant regulator in interphase. However, an absence of iCdks has been accompanied by major shifts in cyclin association to Cdk1, suggesting gain in function. After considerable tweaking, a chemical genetic approach has recently been able to examine the impact of acute inhibition of Cdk2 activity without marked distortion of cyclin/Cdk complex formation. The results suggest that, when expressed at its normal levels, Cdk2 performs essential roles in driving human cells into S phase and maintaining genomic stability. These new findings appear to have restored order to the cell cycle field, bringing it full circle to the view that iCdks indeed play important roles. They also underscore the caveat in knockdown and knockout approaches that protein underexpression can significantly perturb a protein interaction network. We discuss the implications of the new synthesis for future cell cycle studies and anti–Cdk-based therapy of cancer and other diseases. PMID:23634250

  15. Isotope Labeling in Mammalian Cells

    PubMed Central

    Dutta, Arpana; Saxena, Krishna; Klein-Seetharaman, Judith

    2011-01-01

    Isotope labeling of proteins represents an important and often required tool for the application of nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and dynamics of proteins. Mammalian expression systems have conventionally been considered to be too weak and inefficient for protein expression. However, recent advances have significantly improved the expression levels of these systems. Here, we provide an overview of some of the recent developments in expression strategies for mammalian expression systems in view of NMR investigations. PMID:22167668

  16. Control of mammalian sex ratio by sexing sperm

    SciTech Connect

    Gledhill, B.L.

    1983-11-01

    Preselection of sex is discussed with emphasis on methods which have claimed success in separating X- and Y-chromosome-bearing sperm. Much of the recent experimental work in separating human X and Y sperm judges the success of enrichment solely by staining for the Y sperm with a quinacrine dye, which causes a bright fluorescence of the long arm of the Y chromosome. This method is questioned because the endpoint may be producing spurious results. Flow sorting is believed to be the first verified separation of mammalian sperm, but the sperm were nonviable. Flow cytometry can be used to quickly determine the success of other enrichment techniques. Bulk separation, as contrasted to separation based on determination of individual sperm characteristics, with 80% enrichment seems to be a reasonable future goal.

  17. The role of recombination and RAD52 in mutation of chromosomal DNA transformed into yeast.

    PubMed Central

    Larionov, V; Graves, J; Kouprina, N; Resnick, M A

    1994-01-01

    While transformation is a prominent tool for genetic analysis and genome manipulation in many organisms, transforming DNA has often been found to be unstable relative to established molecules. We determined the potential for transformation-associated mutations in a 360 kb yeast chromosome III composed primarily of unique DNA. Wild-type and rad52 Saccharomyces cerevisiae strains were transformed with either a homologous chromosome III or a diverged chromosome III from S. carlsbergensis. The host strain chromosome III had a conditional centromere allowing it to be lost on galactose medium so that recessive mutations in the transformed chromosome could be identified. Following transformation of a RAD+ strain with the homologous chromosome, there were frequent changes in the incoming chromosome, including large deletions and mutations that do not lead to detectable changes in chromosome size. Based on results with the diverged chromosome, interchromosomal recombinational interactions were the source of many of the changes. Even though rad52 exhibits elevated mitotic mutation rates, the percentage of transformed diverged chromosomes incapable of substituting for the resident chromosome was not increased in rad52 compared to the wild-type strain, indicating that the mutator phenotype does not extend to transforming chromosomal DNA. Based on these results and our previous observation that the incidence of large mutations is reduced during the cloning of mammalian DNA into a rad52 as compared to a RAD+ strain, a rad52 host is well-suited for cloning DNA segments in which gene function must be maintained. Images PMID:7937151

  18. Human postmeiotic sex chromatin and its impact on sex chromosome evolution.

    PubMed

    Sin, Ho-Su; Ichijima, Yosuke; Koh, Eitetsu; Namiki, Mikio; Namekawa, Satoshi H

    2012-05-01

    Sex chromosome inactivation is essential epigenetic programming in male germ cells. However, it remains largely unclear how epigenetic silencing of sex chromosomes impacts the evolution of the mammalian genome. Here we demonstrate that male sex chromosome inactivation is highly conserved between humans and mice and has an impact on the genetic evolution of human sex chromosomes. We show that, in humans, sex chromosome inactivation established during meiosis is maintained into spermatids with the silent compartment postmeiotic sex chromatin (PMSC). Human PMSC is illuminated with epigenetic modifications such as trimethylated lysine 9 of histone H3 and heterochromatin proteins CBX1 and CBX3, which implicate a conserved mechanism underlying the maintenance of sex chromosome inactivation in mammals. Furthermore, our analyses suggest that male sex chromosome inactivation has impacted multiple aspects of the evolutionary history of mammalian sex chromosomes: amplification of copy number, retrotranspositions, acquisition of de novo genes, and acquisition of different expression profiles. Most strikingly, profiles of escape genes from postmeiotic silencing diverge significantly between humans and mice. Escape genes exhibit higher rates of amino acid changes compared with non-escape genes, suggesting that they are beneficial for reproductive fitness and may allow mammals to cope with conserved postmeiotic silencing during the evolutionary past. Taken together, we propose that the epigenetic silencing mechanism impacts the genetic evolution of sex chromosomes and contributed to speciation and reproductive diversity in mammals. PMID:22375025

  19. Human postmeiotic sex chromatin and its impact on sex chromosome evolution

    PubMed Central

    Sin, Ho-Su; Ichijima, Yosuke; Koh, Eitetsu; Namiki, Mikio; Namekawa, Satoshi H.

    2012-01-01

    Sex chromosome inactivation is essential epigenetic programming in male germ cells. However, it remains largely unclear how epigenetic silencing of sex chromosomes impacts the evolution of the mammalian genome. Here we demonstrate that male sex chromosome inactivation is highly conserved between humans and mice and has an impact on the genetic evolution of human sex chromosomes. We show that, in humans, sex chromosome inactivation established during meiosis is maintained into spermatids with the silent compartment postmeiotic sex chromatin (PMSC). Human PMSC is illuminated with epigenetic modifications such as trimethylated lysine 9 of histone H3 and heterochromatin proteins CBX1 and CBX3, which implicate a conserved mechanism underlying the maintenance of sex chromosome inactivation in mammals. Furthermore, our analyses suggest that male sex chromosome inactivation has impacted multiple aspects of the evolutionary history of mammalian sex chromosomes: amplification of copy number, retrotranspositions, acquisition of de novo genes, and acquisition of different expression profiles. Most strikingly, profiles of escape genes from postmeiotic silencing diverge significantly between humans and mice. Escape genes exhibit higher rates of amino acid changes compared with non-escape genes, suggesting that they are beneficial for reproductive fitness and may allow mammals to cope with conserved postmeiotic silencing during the evolutionary past. Taken together, we propose that the epigenetic silencing mechanism impacts the genetic evolution of sex chromosomes and contributed to speciation and reproductive diversity in mammals. PMID:22375025

  20. Moving toward a higher efficiency of microcell-mediated chromosome transfer.

    PubMed

    Liskovykh, Mikhail; Lee, Nicholas Co; Larionov, Vladimir; Kouprina, Natalay

    2016-01-01

    Microcell-mediated chromosome transfer (MMCT) technology enables individual mammalian chromosomes, megabase-sized chromosome fragments, or mammalian artificial chromosomes that include human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) to be transferred from donor to recipient cells. In the past few decades, MMCT has been applied to various studies, including mapping the genes, analysis of chromosome status such as aneuploidy and epigenetics. Recently, MMCT was applied to transfer MACs/HACs carrying entire chromosomal copies of genes for genes function studies and has potential for regenerative medicine. However, a safe and efficient MMCT technique remains an important challenge. The original MMCT protocol includes treatment of donor cells by Colcemid to induce micronucleation, where each chromosome becomes surrounded with a nuclear membrane, followed by disarrangement of the actin cytoskeleton using Cytochalasin B to help induce microcells formation. In this study, we modified the protocol and demonstrated that replacing Colcemid and Cytochalasin B with TN-16 + Griseofulvin and Latrunculin B in combination with a Collage/Laminin surface coating increases the efficiency of HAC transfer to recipient cells by almost sixfold and is possibly less damaging to HAC than the standard MMCT method. We tested the improved MMCT protocol on four recipient cell lines, including human mesenchymal stem cells and mouse embryonic stem cells that could facilitate the cell engineering by HACs. PMID:27382603

  1. Moving toward a higher efficiency of microcell-mediated chromosome transfer

    PubMed Central

    Liskovykh, Mikhail; Lee, Nicholas CO; Larionov, Vladimir; Kouprina, Natalay

    2016-01-01

    Microcell-mediated chromosome transfer (MMCT) technology enables individual mammalian chromosomes, megabase-sized chromosome fragments, or mammalian artificial chromosomes that include human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) to be transferred from donor to recipient cells. In the past few decades, MMCT has been applied to various studies, including mapping the genes, analysis of chromosome status such as aneuploidy and epigenetics. Recently, MMCT was applied to transfer MACs/HACs carrying entire chromosomal copies of genes for genes function studies and has potential for regenerative medicine. However, a safe and efficient MMCT technique remains an important challenge. The original MMCT protocol includes treatment of donor cells by Colcemid to induce micronucleation, where each chromosome becomes surrounded with a nuclear membrane, followed by disarrangement of the actin cytoskeleton using Cytochalasin B to help induce microcells formation. In this study, we modified the protocol and demonstrated that replacing Colcemid and Cytochalasin B with TN-16 + Griseofulvin and Latrunculin B in combination with a Collage/Laminin surface coating increases the efficiency of HAC transfer to recipient cells by almost sixfold and is possibly less damaging to HAC than the standard MMCT method. We tested the improved MMCT protocol on four recipient cell lines, including human mesenchymal stem cells and mouse embryonic stem cells that could facilitate the cell engineering by HACs. PMID:27382603

  2. Y-chromosomal genes affecting male fertility: A review

    PubMed Central

    Dhanoa, Jasdeep Kaur; Mukhopadhyay, Chandra Sekhar; Arora, Jaspreet Singh

    2016-01-01

    The mammalian sex-chromosomes (X and Y) have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion) of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility. PMID:27536043

  3. Y-chromosomal genes affecting male fertility: A review.

    PubMed

    Dhanoa, Jasdeep Kaur; Mukhopadhyay, Chandra Sekhar; Arora, Jaspreet Singh

    2016-07-01

    The mammalian sex-chromosomes (X and Y) have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion) of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility. PMID:27536043

  4. Functional significance of the sex chromosomes during spermatogenesis.

    PubMed

    Hu, Yueh-Chiang; Namekawa, Satoshi H

    2015-06-01

    Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC1.Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC2. PMID:25948089

  5. Chromosomal rearrangements underlying karyotype differences between Chinese pangolin (Manis pentadactyla) and Malayan pangolin (Manis javanica) revealed by chromosome painting.

    PubMed

    Nie, Wenhui; Wang, Jinhuan; Su, Weiting; Wang, Yingxiang; Yang, Fengtang

    2009-01-01

    The Chinese pangolin (Manis pentadactyla), a representative species of the order Pholidota, has been enlisted in the mammalian whole-genome sequencing project mainly because of its phylogenetic importance. Previous studies showed that the diploid number of M. pentadactyla could vary from 2n = 36 to 42. To further characterize the genome organization of M. pentadactyla and to elucidate chromosomal mechanism underlying the karyotype diversity of Pholidota, we flow-sorted the chromosomes of 2n = 40 M. pentadactyla, and generated a set of chromosome-specific probes by DOP-PCR amplification of flow-sorted chromosomes. A comparative chromosome map between M. pentadactyla and the Malayan pangolin (Manis javanica, 2n = 38), as well as between human and M. pentadactyla, was established by chromosome painting for the first time. Our results demonstrate that seven Robertsonian rearrangements, together with considerable variations in the quantity of heterochromatin and in the number of nucleolar organizer regions (NORs) differentiate the karyotypes of 2n = 38 M. javanica and 2n = 40 M. pentadactyla. Moreover, we confirm that the M. javanica Y chromosome bears one NOR. Comparison of human homologous segment associations found in the genomes of M. javanica and M. pentadactyla revealed seven shared associations (HSA 1q/11, 2p/5, 2q/10q, 4p+q/20, 5/13, 6/19p and 8q/10p) that could constitute the potential Pholidota-specific signature rearrangements. PMID:19283495

  6. Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect

    SciTech Connect

    Wang, Yisong; Liu, Yie

    2006-01-01

    Msh2 is a key mammalian DNA mismatch repair (MMR) gene and mutations or deficiencies in mammalian Msh2 gene result in microsatellite instability (MSI+) and the development of cancer. Here, we report that primary mouse embryonic fibroblasts (MEFs) deficient in the murine MMR gene Msh2 (Msh2-/-) showed a significant increase in chromosome aneuploidy, centrosome amplification, and defective mitotic spindle organization and unequal chromosome segregation. Although Msh2-/- mouse tissues or primary MEFs had no apparent change in telomerase activity, telomere length, or recombination at telomeres, Msh2-/- MEFs showed an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA. These data suggest that MSH2 helps to maintain genomic stability through the regulation of the centrosome and normal telomere capping in vivo and that defects in MMR can contribute to oncogenesis through multiple pathways.

  7. Plant sex chromosome evolution.

    PubMed

    Charlesworth, Deborah

    2013-01-01

    It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past. PMID:23125359

  8. Capturing Chromosome Conformation

    NASA Astrophysics Data System (ADS)

    Dekker, Job; Rippe, Karsten; Dekker, Martijn; Kleckner, Nancy

    2002-02-01

    We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.

  9. Repair of radiation damage in mammalian cells

    SciTech Connect

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  10. Sirtuins: Guardians of Mammalian Healthspan

    PubMed Central

    Giblin, William; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relationships between sirtuins, lifespan, and age-associated dysfunction. Here we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process. PMID:24877878

  11. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  12. Rapid speciation and chromosomal evolution in mammals.

    PubMed Central

    Bush, G L; Case, S M; Wilson, A C; Patton, J L

    1977-01-01

    To test the hypothesis that population subdivision into small demes promotes both rapid speciation and evolutionary changes in gene arrangement by inbreeding and drift, we estimated rates of speciation and rates of chromosomal evolution in 225 genera of vertebrates. Rates of speciation were estimated by considering the number of living species in each genus and the fossil record of each genus as well as information about extinction rates. Speciation rate was strongly correlated with rate of chromosomal evolution and average rates of speciation in lower vertebrate genera were one-fifth those in mammalian genera. Genera with high karyotypic diversity and rapid speciation rates may generally have small effective population size (Ne), whereas large Ne values may be associated with karyotypically uniform genera and slow rates of speciation. Speciation and chromosomal evolution seem fastest in those genera with species organized into clans or harems (e.g., some primates and horses) or with limited adult vagility and juvenile dispersal, patchy distribution, and strong individual territoriality (e.g., some rodents). This is consistent with the above hypothesis regarding the evolutionary importance of demes. PMID:269445

  13. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  14. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  15. Sequential cloning of chromosomes

    SciTech Connect

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  16. Asymmetric partitioning of transfected DNA during mammalian cell division

    PubMed Central

    Wang, Xuan; Le, Nhung; Denoth-Lippuner, Annina; Barral, Yves; Kroschewski, Ruth

    2016-01-01

    Foreign DNA molecules and chromosomal fragments are generally eliminated from proliferating cells, but we know little about how mammalian cells prevent their propagation. Here, we show that dividing human and canine cells partition transfected plasmid DNA asymmetrically, preferentially into the daughter cell harboring the young centrosome. Independently of how they entered the cell, most plasmids clustered in the cytoplasm. Unlike polystyrene beads of similar size, these clusters remained relatively immobile and physically associated to endoplasmic reticulum-derived membranes, as revealed by live cell and electron microscopy imaging. At entry of mitosis, most clusters localized near the centrosomes. As the two centrosomes split to assemble the bipolar spindle, predominantly the old centrosome migrated away, biasing the partition of the plasmid cluster toward the young centrosome. Down-regulation of the centrosomal proteins Ninein and adenomatous polyposis coli abolished this bias. Thus, we suggest that DNA clustering, cluster immobilization through association to the endoplasmic reticulum membrane, initial proximity between the cluster and centrosomes, and subsequent differential behavior of the two centrosomes together bias the partition of plasmid DNA during mitosis. This process leads to their progressive elimination from the proliferating population and might apply to any kind of foreign DNA molecule in mammalian cells. Furthermore, the functional difference of the centrosomes might also promote the asymmetric partitioning of other cellular components in other mammalian and possibly stem cells. PMID:27298340

  17. Mammalian transcription in support of hybrid mRNA and protein synthesis in testis and lung.

    PubMed

    Fitzgerald, Carolyn; Sikora, Curtis; Lawson, Vannice; Dong, Karen; Cheng, Min; Oko, Richard; van der Hoorn, Frans A

    2006-12-15

    Post-transcriptional mechanisms including differential splicing expand the protein repertoire beyond that provided by the one gene-one protein model. Trans-splicing has been observed in mammalian systems but is low level (sometimes referred to as noise), and a contribution to hybrid protein expression is unclear. In the study of rat sperm tail proteins a cDNA, called 1038, was isolated representing a hybrid mRNA derived in part from the ornithine decarboxylase antizyme 3 (Oaz3) gene located on rat chromosome 2 fused to sequences encoded by a novel gene on chromosome 4. Cytoplasmic Oaz3 mRNA is completely testis specific. However, in several tissues Oaz3 is transcribed and contributes to hybrid 1038 mRNA synthesis, without concurrent Oaz3 mRNA synthesis. 1038 mRNA directs synthesis of a hybrid 14-kDa protein, part chromosome 2- and part chromosome 4-derived as shown in vitro and in transfected cells. Antisera that recognize a chromosome 4-encoded C-terminal peptide confirm the hybrid character of endogenous 14-kDa protein and its presence in sperm tail structures and 1038-positive tissue. Our data suggest that the testis-specific OAZ3 gene may be an example of a mammalian gene that in several tissues is transcribed to contribute to a hybrid mRNA and protein. This finding expands the repertoire of known mechanisms available to cells to generate proteome diversity. PMID:17040916

  18. Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement

    SciTech Connect

    Wilcox, S.A.; Watson, J.M.; Spencer, J.A.

    1996-07-01

    Previous comparisons of gene location in the three major groups of mammals (eutherians, marsupials, and monotremes) have suggested that the long arm of the human X represents the ancestral mammalian X chromosome, whereas the short arm represents an autosomal region(s) recently added to the eutherian X chromosome. To identify the fusion point of this ancient X-autosome rearrangement, we have mapped four genes, three of which map near the centromere of the human Xp, in marsupials and in a monotreme. We found that ARAF1, and GATA1 are located on the X chromosome in marsupials, and ALA2 and GATA1 are also located on the X in the platypus. This implies that the proximal short arm of the human X chromosome, including the centromere, was part of the ancestral mammalian X chromosome. The fusion point between the conserved region and the recently added regions therefore maps to human Xp11.23, although gene order on the human X indicates that there has been some rearrangement of this region. 26 refs., 3 figs., 1 tab.

  19. A new chromosome was born: comparative chromosome painting in Boechera.

    PubMed

    Koch, Marcus A

    2015-09-01

    Comparative chromosome painting is a powerful tool to study the evolution of chromosomes and genomes. Analyzing karyotype evolution in cruciferous plants highlights the origin of aberrant chromosomes in apomictic Boechera and further establishes the cruciferous plants as important model system for our understanding of plant chromosome and genome evolution. PMID:26228436

  20. Determination of motility forces on isolated chromosomes with laser tweezers

    PubMed Central

    Khatibzadeh, Nima; Stilgoe, Alexander B.; Bui, Ann A. M.; Rocha, Yesenia; Cruz, Gladys M.; Loke, Vince; Shi, Linda Z.; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina; Berns, Michael W.

    2014-01-01

    Quantitative determination of the motility forces of chromosomes during cell division is fundamental to understanding a process that is universal among eukaryotic organisms. Using an optical tweezers system, isolated mammalian chromosomes were held in a 1064 nm laser trap. The minimum force required to move a single chromosome was determined to be ≈0.8–5 pN. The maximum transverse trapping efficiency of the isolated chromosomes was calculated as ≈0.01–0.02. These results confirm theoretical force calculations of ≈0.1–12 pN to move a chromosome on the mitotic or meiotic spindle. The verification of these results was carried out by calibration of the optical tweezers when trapping microspheres with a diameter of 4.5–15 µm in media with 1–7 cP viscosity. The results of the chromosome and microsphere trapping experiments agree with optical models developed to simulate trapping of cylindrical and spherical specimens. PMID:25359514

  1. Complex interactions between the DNA-damage response and mammalian telomeres

    PubMed Central

    Arnoult, Nausica; Karlseder, Jan

    2016-01-01

    Natural chromosome ends resemble double-stranded DNA breaks, but they do not activate a damage response in healthy cells. Telomeres therefore have evolved to solve the ‘end-protection problem’ by inhibiting multiple DNA damage–response pathways. During the past decade, the view of telomeres has progressed from simple caps that hide chromosome ends to complex machineries that have an active role in organizing the genome. Here we focus on mammalian telomeres and summarize and interpret recent discoveries in detail, focusing on how repair pathways are inhibited, how resection and replication are controlled and how these mechanisms govern cell fate during senescence, crisis and transformation. PMID:26581520

  2. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages. PMID:17141556

  3. The DNA Sequence And Comparative Analysis Of Human Chromosome5

    SciTech Connect

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, Steve; Gordon, Laurie A.; Scott, Duncan; Xie,Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black,Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan,Yee Man; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner,Kristen; Kimball, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou,Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar,Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Retterer, James; Rodriguez, Alex; Rogers,Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang,Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, SusanM.; Myers, Richard M.; Rubin, Edward M.

    2004-08-01

    Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.

  4. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles

    PubMed Central

    Farré, Marta; Narayan, Jitendra; Slavov, Gancho T.; Damas, Joana; Auvil, Loretta; Li, Cai; Jarvis, Erich D.; Burt, David W.; Griffin, Darren K.; Larkin, Denis M.

    2016-01-01

    Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes. PMID:27401172

  5. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles.

    PubMed

    Farré, Marta; Narayan, Jitendra; Slavov, Gancho T; Damas, Joana; Auvil, Loretta; Li, Cai; Jarvis, Erich D; Burt, David W; Griffin, Darren K; Larkin, Denis M

    2016-01-01

    Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes. PMID:27401172

  6. Systematic Characterization of Human Protein Complexes Identifies Chromosome Segregation Proteins

    PubMed Central

    Hutchins, James R.A.; Toyoda, Yusuke; Hegemann, Björn; Poser, Ina; Hériché, Jean-Karim; Sykora, Martina M.; Augsburg, Martina; Hudecz, Otto; Buschhorn, Bettina A.; Bulkescher, Jutta; Conrad, Christian; Comartin, David; Schleiffer, Alexander; Sarov, Mihail; Pozniakovsky, Andrei; Slabicki, Mikolaj Michal; Schloissnig, Siegfried; Steinmacher, Ines; Leuschner, Marit; Ssykor, Andrea; Lawo, Steffen; Pelletier, Laurence; Stark, Holger; Nasmyth, Kim; Ellenberg, Jan; Durbin, Richard; Buchholz, Frank; Mechtler, Karl; Hyman, Anthony A.; Peters, Jan-Michael

    2010-01-01

    Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference (RNAi) screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization and tandem affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex (APC/C) and the γ-tubulin ring complex (γ-TuRC), large complexes which are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high throughput follow-up analyses of phenotypic screens in mammalian cells. PMID:20360068

  7. Systematic analysis of human protein complexes identifies chromosome segregation proteins.

    PubMed

    Hutchins, James R A; Toyoda, Yusuke; Hegemann, Björn; Poser, Ina; Hériché, Jean-Karim; Sykora, Martina M; Augsburg, Martina; Hudecz, Otto; Buschhorn, Bettina A; Bulkescher, Jutta; Conrad, Christian; Comartin, David; Schleiffer, Alexander; Sarov, Mihail; Pozniakovsky, Andrei; Slabicki, Mikolaj Michal; Schloissnig, Siegfried; Steinmacher, Ines; Leuschner, Marit; Ssykor, Andrea; Lawo, Steffen; Pelletier, Laurence; Stark, Holger; Nasmyth, Kim; Ellenberg, Jan; Durbin, Richard; Buchholz, Frank; Mechtler, Karl; Hyman, Anthony A; Peters, Jan-Michael

    2010-04-30

    Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells. PMID:20360068

  8. Structural organization of the inactive X chromosome in the mouse.

    PubMed

    Giorgetti, Luca; Lajoie, Bryan R; Carter, Ava C; Attia, Mikael; Zhan, Ye; Xu, Jin; Chen, Chong Jian; Kaplan, Noam; Chang, Howard Y; Heard, Edith; Dekker, Job

    2016-07-28

    X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions,remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes indifferent neural progenitor clones are associated with the presence of different TAD

  9. The chromosome passenger complex is required for fidelity of chromosome transmission and cytokinesis in meiosis of mouse oocytes.

    PubMed

    Sharif, Bedra; Na, Jie; Lykke-Hartmann, Karin; McLaughlin, Stephen H; Laue, Ernest; Glover, David M; Zernicka-Goetz, Magdalena

    2010-12-15

    The existence of two forms of the chromosome passenger complex (CPC) in the mammalian oocyte has meant that its role in female meiosis has remained unclear. Here we use loss- and gain-of function approaches to assess the meiotic functions of one of the shared components of these complexes, INCENP, and of the variable kinase subunits, Aurora B or Aurora C. We show that either the depletion of INCENP or the combined inhibition of Aurora kinases B and C activates the anaphase-promoting complex or cyclosome (APC/C) before chromosomes have properly congressed in meiosis I and also prevents cytokinesis and hence extrusion of the first polar body. Overexpression of Aurora C also advances APC/C activation and results in cytokinesis failure in a high proportion of oocytes, indicative of a dominant effect on CPC function. Together, this points to roles for the meiotic CPC in functions similar to the mitotic roles of the complex: correcting chromosome attachment to microtubules, facilitating the spindle-assembly checkpoint (SAC) function and enabling cytokinesis. Surprisingly, overexpression of Aurora B leads to a failure of APC/C activation, stabilization of securin and consequently a failure of chiasmate chromosomes to resolve - a dominant phenotype that is completely suppressed by depletion of INCENP. Taken together with the differential distribution of Aurora proteins B and C on chiasmate chromosomes, this points to differential functions of the two forms of CPC in regulating the separation of homologous chromosomes in meiosis I. PMID:21123620

  10. Genetic markers on chromosome 7.

    PubMed Central

    Tsui, L C

    1988-01-01

    Chromosome 7 is frequently associated with chromosome aberrations, rearrangements, and deletions. It also contains many important genes, gene families, and disease loci. This brief review attempts to summarise these and other interesting aspects of chromosome 7. With the rapid accumulation of cloned genes and polymorphic DNA fragments, this chromosome has become an excellent substrate for molecular genetic studies. PMID:3290488

  11. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes.

    PubMed

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A; Gerlich, Daniel W

    2016-07-14

    Eukaryotic genomes are partitioned into chromosomes that form compact and spatially well-separated mechanical bodies during mitosis. This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes and the discovery of proteins at the chromosome surface, the molecular and biophysical bases of mitotic chromosome structural individuality have remained unclear. Here we report that the proliferation marker protein Ki-67 (encoded by the MKI67 gene), a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of human Ki-67 is not confined within a specific protein domain, but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrostatic charge barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-colour labelling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic of polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery in mammalian cells and suggests that natural proteins can function as surfactants in intracellular compartmentalization. PMID:27362226

  12. Incidence of Chromosome Disorders

    PubMed Central

    Valentine, G. H.

    1979-01-01

    A minority of conceptions result in live births. Of recognized conceptions, 15% result in spontaneous abortions, up to 60% of which are due to chromosome abnormalities. The incidence of the different disorders is given. Of live births, one in 200 suffers a chromosome abnormality. The common abnormalities are described with their incidence. The effect of maternal age on this incidence is pronounced, but even so must be kept in proportion for counselling purposes.

  13. Chromosome doubling method

    DOEpatents

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  14. Pure chromosome-specific PCR libraries from single sorted chromosomes.

    PubMed Central

    VanDevanter, D R; Choongkittaworn, N M; Dyer, K A; Aten, J; Otto, P; Behler, C; Bryant, E M; Rabinovitch, P S

    1994-01-01

    Chromosome-specific DNA libraries can be very useful in molecular and cytogenetic genome mapping studies. We have developed a rapid and simple method for the generation of chromosome-specific DNA sequences that relies on polymerase chain reaction (PCR) amplification of a single flow-sorted chromosome or chromosome fragment. Previously reported methods for the development of chromosome libraries require larger numbers of chromosomes, with preparation of pure chromosomes sorted by flow cytometry, generation of somatic cell hybrids containing targeted chromosomes, or a combination of both procedures. These procedures are labor intensive, especially when hybrid cell lines are not already available, and this has limited the generation of chromosome-specific DNA libraries from nonhuman species. In contrast, a single sorted chromosome is a pure source of DNA for library production even when flow cytometric resolution of chromosome populations is poor. Furthermore, any sorting cytometer may be used with this technique. Using this approach, we demonstrate the generation of PCR libraries suitable for both molecular and fluorescence in situ hybridization studies from individual baboon and canine chromosomes, separate human homologues, and a rearranged marker chromosome from a transformed cell line. PCR libraries specific to subchromosomal regions have also been produced by sorting a small chromosome fragment. This simple and rapid technique will allow generation of nonhuman linkage maps and probes for fluorescence in situ hybridization and the characterization of marker chromosomes from solid tumors. In addition, allele-specific libraries generated by this strategy may also be useful for mapping genetic diseases. Images PMID:8016078

  15. Chromosomal Abnormalities and Schizophrenia

    PubMed Central

    BASSETT, ANNE S.; CHOW, EVA W.C.; WEKSBERG, ROSANNA

    2011-01-01

    Schizophrenia is a common and serious psychiatric illness with strong evidence for genetic causation, but no specific loci yet identified. Chromosomal abnormalities associated with schizophrenia may help to understand the genetic complexity of the illness. This paper reviews the evidence for associations between chromosomal abnormalities and schizophrenia and related disorders. The results indicate that 22q11.2 microdeletions detected by fluorescence in-situ hybridization (FISH) are significantly associated with schizophrenia. Sex chromosome abnormalities seem to be increased in schizophrenia but insufficient data are available to indicate whether schizophrenia or related disorders are increased in patients with sex chromosome aneuploidies. Other reports of chromosomal abnormalities associated with schizophrenia have the potential to be important adjuncts to linkage studies in gene localization. Advances in molecular cytogenetic techniques (i.e., FISH) have produced significant increases in rates of identified abnormalities in schizophrenia, particularly in patients with very early age at onset, learning difficulties or mental retardation, or dysmorphic features. The results emphasize the importance of considering behavioral phenotypes, including adult onset psychiatric illnesses, in genetic syndromes and the need for clinicians to actively consider identifying chromosomal abnormalities and genetic syndromes in selected psychiatric patients. PMID:10813803

  16. Micromechanics of human mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F.

    2011-02-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.

  17. A platform for rapid prototyping of synthetic gene networks in mammalian cells

    PubMed Central

    Duportet, Xavier; Wroblewska, Liliana; Guye, Patrick; Li, Yinqing; Eyquem, Justin; Rieders, Julianne; Rimchala, Tharathorn; Batt, Gregory; Weiss, Ron

    2014-01-01

    Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines. PMID:25378321

  18. Genome sequence of the brown Norway rat yields insights into mammalian evolution

    SciTech Connect

    Gibbs, Richard A.; Weinstock, George M.; Metzker, Michael L.; Muzny, Donna M.; Sodergren, Erica J.; Scherer, Steven; Scott, Graham; Steffen, David; Worley, Kim C.; Burch, Paula E.; Okwuonu, Geoffrey; Hines, Sandra; Lewis, Lora; DeRamo, Christine; Delgado, Oliver; Dugan-Rocha, Shannon; Miner, George; Morgan, Margaret; Hawes, Alicia; Gill, Rachel; Holt, Robert A.; Adams, Mark D.; Amanatides, Peter G.; Baden-Tillson, Holly; Barnstead, Mary; Chin, Soo; Evans, Cheryl A.; Ferriera, Steven; Fosler, Carl; Glodek, Anna; Gu, Zhiping; Jennings, Don; Kraft, Cheryl L.; Nguyen, Trixie; Pfannkoch, Cynthia M.; Sitter, Cynthia; Sutton, Granger G.; Venter, J. Craig; Woodage, Trevor; Smith, Douglas; Lee, Hong-Maei; Gustafson, Erik; Cahill, Patrick; Kana, Arnold; Doucette-Stamm, Lynn; Weinstock, Keith; Fechtel, Kim; Weiss, Robert B.; Dunn, Diane M.; Green, Eric D.; Blakesley, Robert W.; Bouffard, Gerard G.; de Jong, Pieter J.; Osoegawa, Kazutoyo; Zhu, Baoli; Marra, Marco; Schein, Jacqueline; Bosdet, Ian; Fjell, Chris; Jones, Steven; Krzywinski, Martin; Mathewson, Carrie; Siddiqui, Asim; Wye, Natasja; McPherson, John; Zhao, Shaying; Fraser, Claire M.; Shetty, Jyoti; Shatsman, Sofiya; Geer, Keita; Chen, Yixin; Abramzon, Sofyia; Nierman, William C.; Havlak, Paul H.; Chen, Rui; Durbin, K. James; Egan, Amy; Ren, Yanru; Song, Xing-Zhi; Li, Bingshan; Liu, Yue; Qin, Xiang; Cawley, Simon; Cooney, A.J.; D'Souza, Lisa M.; Martin, Kirt; Wu, Jia Qian; Gonzalez-Garay, Manuel L.; Jackson, Andrew R.; Kalafus, Kenneth J.; McLeod, Michael P.; Milosavljevic, Aleksandar; Virk, Davinder; Volkov, Andrei; Wheeler, David A.; Zhang, Zhengdong; Bailey, Jeffrey A.; Eichler, Evan E.; Tuzun, Eray; Birney, Ewan; Mongin, Emmanuel; Ureta-Vidal, Abel; Woodwark, Cara; Zdobnov, Evgeny; Bork, Peer; Suyama, Mikita; Torrents, David; Alexandersson, Marina; Trask, Barbara J.; Young, Janet M.; et al.

    2004-02-02

    The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90 percent of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.

  19. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  20. An overview of mammalian pluripotency.

    PubMed

    Wu, Jun; Yamauchi, Takayoshi; Izpisua Belmonte, Juan Carlos

    2016-05-15

    Mammalian pluripotency is the ability to give rise to all somatic cells as well as the germ cells of an adult mammal. It is a unique feature of embryonic epiblast cells, existing only transiently, as cells pass through early developmental stages. By contrast, pluripotency can be captured and stabilized indefinitely in cell culture and can also be reactivated in differentiated cells via nuclear reprogramming. Pluripotent stem cells (PSCs) are the in vitro carriers of pluripotency and they can inhabit discrete pluripotent states depending on the stage at which they were derived and their culture conditions. Here, and in the accompanying poster, we provide a summary of mammalian pluripotency both in vivo and in vitro, and highlight recent and future applications of PSCs for basic and translational research. PMID:27190034

  1. Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction.

    PubMed

    Yamauchi, Yasuhiro; Riel, Jonathan M; Ruthig, Victor A; Ortega, Eglė A; Mitchell, Michael J; Ward, Monika A

    2016-01-29

    The mammalian Y chromosome is considered a symbol of maleness, as it encodes a gene driving male sex determination, Sry, as well as a battery of other genes important for male reproduction. We previously demonstrated in the mouse that successful assisted reproduction can be achieved when the Y gene contribution is limited to only two genes, Sry and spermatogonial proliferation factor Eif2s3y. Here, we replaced Sry by transgenic activation of its downstream target Sox9, and Eif2s3y, by transgenic overexpression of its X chromosome-encoded homolog Eif2s3x. The resulting males with no Y chromosome genes produced haploid male gametes and sired offspring after assisted reproduction. Our findings support the existence of functional redundancy between the Y chromosome genes and their homologs encoded on other chromosomes. PMID:26823431

  2. New Insights into the Genetic Regulation of Homologue Disjunction in Mammalian Oocytes

    PubMed Central

    Homer, H.

    2011-01-01

    Mammalian oocytes execute a unique meiotic programme involving 2 arrest stages and an unusually protracted preamble to chromosome segregation during the first meiotic division (meiosis I). How mammalian oocytes successfully navigate their exceptional meiotic journey has long been a question of immense interest. Understanding the minutiae of female mammalian meiosis I is not merely of academic interest as 80–90% of human aneuploidy is the consequence of errors arising at this particular stage of oocyte maturation, a stage with a peculiar vulnerability to aging. Recent evidence indicates that oocytes employ many of the same cast of proteins during meiosis I as somatic cells do during mitosis, often to execute similar tasks, but intriguingly, occasionally delegate them to unexpected and unprecedented roles. This is epitomised by the master cell-cycle regulon, the anaphase-promoting complex or cyclosome (APC/C), acting in concert with a critical APC/C-targeted surveillance mechanism, the spindle assembly checkpoint (SAC). Together, the APC/C and the SAC are among the most influential entities overseeing the fidelity of cell-cycle progression and the precision of chromosome segregation. Here I review the current status of pivotal elements underpinning homologue disjunction in mammalian oocytes including spindle assembly, critical biochemical anaphase-initiating events, APC/C activity and SAC signalling along with contemporary findings relevant to progressive oocyte SAC dysfunction as a model for age-related human aneuploidy. PMID:21335952

  3. Olfactory sensitivity in mammalian species.

    PubMed

    Wackermannová, M; Pinc, L; Jebavý, L

    2016-07-18

    Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described. PMID:27070753

  4. Chromosomes of kinetoplastida.

    PubMed Central

    Van der Ploeg, L H; Cornelissen, A W; Barry, J D; Borst, P

    1984-01-01

    We have compared chromosome-sized DNA molecules (molecular karyotypes) of five genera (nine species) of kinetoplastida after cell lysis and deproteinization of DNA in agarose blocks and size fractionation of the intact DNA molecules by pulsed field gradient (PFG) gel electrophoresis. With the possible exception of Trypanosoma vivax and Crithidia fasciculata, all species have at least 20 chromosomes. There are large differences between species in molecular karyotype and in the chromosomal distribution of the genes for alpha- and beta-tubulin, rRNA and the common mini-exon sequence of kinetoplastid mRNAs. In all cases, the rRNA genes are in DNA that is larger than 500 kb. Whereas T. brucei has approximately 100 mini-chromosomes of 50-150 kb, only few are found in T. equiperdum; T. vivax has no DNA smaller than 2000 kb. As all three species exhibit antigenic variation, small chromosomes with telomeric variant surface glycoprotein genes cannot be vital to the mechanism of antigenic variation. The apparent plasticity of kinetoplastid genome composition makes PFG gel electrophoresis a potentially useful tool for taxonomic studies. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6526012

  5. Plasmid-Chromosome Recombination of Irradiated Shuttle Vector DNA in African Green Monkey Kidney Cells.

    NASA Astrophysics Data System (ADS)

    Mudgett, John Stuart

    1987-09-01

    An autonomously replicating shuttle vector was used to investigate the enhancement of plasmid-chromosome recombination in mammalian host cells by ultraviolet light and gamma radiation. Sequences homologous to the shuttle vector were stably inserted into the genome of African Green Monkey kidney cells to act as the target substrate for these recombination events. The SV40- and pBR322-derived plasmid DNA was irradiated with various doses of radiation before transfection into the transformed mammalian host cells. The successful homologous transfer of the bacterial ampicillin resistance (amp^{rm r}) gene from the inserted sequences to replace a mutant amp^->=ne on the shuttle vector was identified by plasmid extraction and transformation into E. coli host cells. Ultraviolet light (UV) was found not to induce homologous plasmid-chromosome recombination, while gamma radiation increased the frequency of recombinant plasmids detected. The introduction of specific double -strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was found to be increased by plasmid UV irradiation, but not to change with time. Plasmid survival, recombination, and mutagenesis were not affected by treating the mammalian host cells with UV light prior to plasmid transfection. The amp^{rm r} recombinant plasmid molecules analyzed were found to be mostly the result of nonconservative exchanges which appeared to involve both homologous and possibly nonhomologous interactions with the host chromosome. The observation that these recombinant structures were obtained from all of the plasmid alterations investigated suggests a common mechanistic origin for plasmid -chromosome recombination in these mammalian cells.

  6. Plant Sex Chromosomes.

    PubMed

    Charlesworth, Deborah

    2016-04-29

    Although individuals in most flowering plant species, and in many haploid plants, have both sex functions, dioecious species-in which individuals have either male or female functions only-are scattered across many taxonomic groups, and many species have genetic sex determination. Among these, some have visibly heteromorphic sex chromosomes, and molecular genetic studies are starting to uncover sex-linked markers in others, showing that they too have fully sex-linked regions that are either too small or are located in chromosomes that are too small to be cytologically detectable from lack of pairing, lack of visible crossovers, or accumulation of heterochromatin. Detailed study is revealing that, like animal sex chromosomes, plant sex-linked regions show evidence for accumulation of repetitive sequences and genetic degeneration. Estimating when recombination stopped confirms the view that many plants have young sex-linked regions, making plants of great interest for studying the timescale of these changes. PMID:26653795

  7. Sex chromosome drive.

    PubMed

    Helleu, Quentin; Gérard, Pierre R; Montchamp-Moreau, Catherine

    2015-02-01

    Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. PMID:25524548

  8. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage.

    PubMed

    Zody, Michael C; Garber, Manuel; Adams, David J; Sharpe, Ted; Harrow, Jennifer; Lupski, James R; Nicholson, Christine; Searle, Steven M; Wilming, Laurens; Young, Sarah K; Abouelleil, Amr; Allen, Nicole R; Bi, Weimin; Bloom, Toby; Borowsky, Mark L; Bugalter, Boris E; Butler, Jonathan; Chang, Jean L; Chen, Chao-Kung; Cook, April; Corum, Benjamin; Cuomo, Christina A; de Jong, Pieter J; DeCaprio, David; Dewar, Ken; FitzGerald, Michael; Gilbert, James; Gibson, Richard; Gnerre, Sante; Goldstein, Steven; Grafham, Darren V; Grocock, Russell; Hafez, Nabil; Hagopian, Daniel S; Hart, Elizabeth; Norman, Catherine Hosage; Humphray, Sean; Jaffe, David B; Jones, Matt; Kamal, Michael; Khodiyar, Varsha K; LaButti, Kurt; Laird, Gavin; Lehoczky, Jessica; Liu, Xiaohong; Lokyitsang, Tashi; Loveland, Jane; Lui, Annie; Macdonald, Pendexter; Major, John E; Matthews, Lucy; Mauceli, Evan; McCarroll, Steven A; Mihalev, Atanas H; Mudge, Jonathan; Nguyen, Cindy; Nicol, Robert; O'Leary, Sinéad B; Osoegawa, Kazutoyo; Schwartz, David C; Shaw-Smith, Charles; Stankiewicz, Pawel; Steward, Charles; Swarbreck, David; Venkataraman, Vijay; Whittaker, Charles A; Yang, Xiaoping; Zimmer, Andrew R; Bradley, Allan; Hubbard, Tim; Birren, Bruce W; Rogers, Jane; Lander, Eric S; Nusbaum, Chad

    2006-04-20

    Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome. PMID:16625196

  9. New Xist-Interacting Proteins in X-Chromosome Inactivation.

    PubMed

    Mira-Bontenbal, Hegias; Gribnau, Joost

    2016-04-25

    To achieve dosage compensation of X-linked gene expression, female mammalian cells inactivate one X chromosome through a process called X-chromosome inactivation (XCI). A central component of this process is the X-encoded long non-coding RNA Xist. Following upregulation from one X chromosome, Xist spreads in cis, kicking off a plethora of events that ultimately results in stable X-linked gene repression, which is then faithfully transmitted to all daughter cells. In the last decades, intensive work has been undertaken to understand each of the steps in XCI, namely Xist transcription control, Xist spreading and localization, and silencing of gene expression. Recently, several groups have spearheaded the research of Xist's interactome and the factors involved in silencing. Several novel proteins have now been shown to be required for the transcriptional silencing of the X chromosome and/or Xist spreading and localization to the inactive X chromosome. Here, we review these new findings in the context of existing knowledge about Xist-interacting factors. PMID:27115694

  10. Chromosomes and clinical anatomy.

    PubMed

    Gardner, Robert James McKinlay

    2016-07-01

    Chromosome abnormalities may cast light on the nature of mechanisms whereby normal anatomy evolves, and abnormal anatomy arises. Correlating genotype to phenotype is an exercise in which the geneticist and the anatomist can collaborate. The increasing power of the new genetic methodologies is enabling an increasing precision in the delineation of chromosome imbalances, even to the nucleotide level; but the classical skills of careful observation and recording remain as crucial as they always have been. Clin. Anat. 29:540-546, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990310

  11. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting

    PubMed Central

    Pinton, Alain; Ducos, Alain; Yerle, Martine

    2003-01-01

    A pericentric inversion of chromosome 4 in a boar, as well as a case of (2q-;5p+) translocation mosaicism in a bull were analysed by chromosome painting using probes generated by conventional microdissection. For the porcine inversion, probes specific for p arms and q arms were produced and hybridised simultaneously on metaphases of a heterozygote carrier. In the case of the bovine translocation, two whole chromosome probes (chromosome 5, and derived chromosome 5) were elaborated and hybridised independently on chromosomal preparations of the bull who was a carrier of the mosaic translocation. The impossibility of differentiating chromosomes 2 and der(2) from other chromosomes of the metaphases did not allow the production of painting probes for these chromosomes. For all experiments, the quality of painting was comparable to that usually observed with probes obtained from flow-sorted chromosomes. The results obtained allowed confirmation of the interpretations proposed with G-banding karyotype analyses. In the bovine case, however, the reciprocity of the translocation could not be proven. The results presented in this paper show the usefulness of the microdissection technique for characterising chromosomal rearrangements in species for which commercial probes are not available. They also confirmed that the main limiting factor of the technique is the quality of the chromosomal preparations, which does not allow the identification of target chromosomes or chromosome fragments in all cases. PMID:14604515

  12. Recent insights into spindle function in mammalian oocytes and early embryos.

    PubMed

    Howe, Katie; FitzHarris, Greg

    2013-09-01

    Errors in chromosome segregation in oocytes and early embryos lead to embryo aneuploidy, which contributes to early pregnancy loss. At the heart of chromosome segregation is the spindle, a dynamic biomechanical machine fashioned from microtubules, which is tasked with gathering and sorting chromosomes and dispatching them to the daughter cells at the time of cell division. Understanding the causes of segregation error in the oocyte and early embryo will undoubtedly hinge on a thorough understanding of the mechanism of spindle assembly and function in these highly specialized cellular environments. The recent advent of live imaging approaches to observe chromosome segregation in real-time in oocytes and embryos, paired with gene-silencing techniques and specific inhibition for assessing the function of a protein of interest, has led to a substantial advance in our understanding of chromosome segregation in early mammalian development. These studies have uncovered numerous mechanistic differences between oocytes, embryos, and traditional model systems. In addition, a flurry of recent studies using naturally aged mice as the model for human aging have begun to shed light on the increased levels of aneuploidy seen in embryos from older mothers. Here we review these recent developments and consider what has been learned about the causes of chromosome missegregation in early development. PMID:23966320

  13. The cytogenetics of mammalian autosomal rearrangements

    SciTech Connect

    Daniel, A. )

    1988-01-01

    This book is covered under the following topics: Ascertainment and risks of recombinant progeny; Infertility, gametic selection, and fetal loss; origin of chromosome rearrangements; and Some implications of chromosome breakpoints.

  14. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture

    PubMed Central

    2013-01-01

    Background The packaging of long chromatin fibers in the nucleus poses a major challenge, as it must fulfill both physical and functional requirements. Until recently, insights into the chromosomal architecture of plants were mainly provided by cytogenetic studies. Complementary to these analyses, chromosome conformation capture technologies promise to refine and improve our view on chromosomal architecture and to provide a more generalized description of nuclear organization. Results Employing circular chromosome conformation capture, this study describes chromosomal architecture in Arabidopsis nuclei from a genome-wide perspective. Surprisingly, the linear organization of chromosomes is reflected in the genome-wide interactome. In addition, we study the interplay of the interactome and epigenetic marks and report that the heterochromatic knob on the short arm of chromosome 4 maintains a pericentromere-like interaction profile and interactome despite its euchromatic surrounding. Conclusion Despite the extreme condensation that is necessary to pack the chromosomes into the nucleus, the Arabidopsis genome appears to be packed in a predictive manner, according to the following criteria: heterochromatin and euchromatin represent two distinct interactomes; interactions between chromosomes correlate with the linear position on the chromosome arm; and distal chromosome regions have a higher potential to interact with other chromosomes. PMID:24267747

  15. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies. PMID:22983571

  16. Chromosome Variations And Human Behavior

    ERIC Educational Resources Information Center

    Soudek, D.

    1974-01-01

    Article focused on the science of cytogenetics, which studied the transmission of the units of heredity called chromosomes, and considered the advantage of proper diagnosis of genetic diseases, treated on the chromosomal level. (Author/RK)

  17. Why Chromosome Palindromes?

    PubMed Central

    Betrán, Esther; Demuth, Jeffery P.; Williford, Anna

    2012-01-01

    We look at sex-limited chromosome (Y or W) evolution with particular emphasis on the importance of palindromes. Y chromosome palindromes consist of inverted duplicates that allow for local recombination in an otherwise nonrecombining chromosome. Since palindromes enable intrachromosomal gene conversion that can help eliminate deleterious mutations, they are often highlighted as mechanisms to protect against Y degeneration. However, the adaptive significance of recombination resides in its ability to decouple the evolutionary fates of linked mutations, leading to both a decrease in degeneration rate and an increase in adaptation rate. Our paper emphasizes the latter, that palindromes may exist to accelerate adaptation by increasing the potential targets and fixation rates of incoming beneficial mutations. This hypothesis helps reconcile two enigmatic features of the “palindromes as protectors” view: (1) genes that are not located in palindromes have been retained under purifying selection for tens of millions of years, and (2) under models that only consider deleterious mutations, gene conversion benefits duplicate gene maintenance but not initial fixation. We conclude by looking at ways to test the hypothesis that palindromes enhance the rate of adaptive evolution of Y-linked genes and whether this effect can be extended to palindromes on other chromosomes. PMID:22844637

  18. Why chromosome palindromes?

    PubMed

    Betrán, Esther; Demuth, Jeffery P; Williford, Anna

    2012-01-01

    We look at sex-limited chromosome (Y or W) evolution with particular emphasis on the importance of palindromes. Y chromosome palindromes consist of inverted duplicates that allow for local recombination in an otherwise nonrecombining chromosome. Since palindromes enable intrachromosomal gene conversion that can help eliminate deleterious mutations, they are often highlighted as mechanisms to protect against Y degeneration. However, the adaptive significance of recombination resides in its ability to decouple the evolutionary fates of linked mutations, leading to both a decrease in degeneration rate and an increase in adaptation rate. Our paper emphasizes the latter, that palindromes may exist to accelerate adaptation by increasing the potential targets and fixation rates of incoming beneficial mutations. This hypothesis helps reconcile two enigmatic features of the "palindromes as protectors" view: (1) genes that are not located in palindromes have been retained under purifying selection for tens of millions of years, and (2) under models that only consider deleterious mutations, gene conversion benefits duplicate gene maintenance but not initial fixation. We conclude by looking at ways to test the hypothesis that palindromes enhance the rate of adaptive evolution of Y-linked genes and whether this effect can be extended to palindromes on other chromosomes. PMID:22844637

  19. Mast cells in mammalian brain.

    PubMed

    Dropp, J J

    1976-01-01

    Mast cells, which had until recently been believed to be not present in the mammalian brain, were studied in the brains of 29 mammalian species. Although there was considerable intraspecific and interspecific variation, mast cells were most numerous within the leptomeninges (especially in those overlying the cerebrum and the dorsal thalamus - most rodents, most carnivores, chimpanzees, squirrel monkeys and elephant), the cerebral cortex (most rodents, tiger, fox, chimpanzee, tarsier, and elephant) and in many nuclei of the dorsal thalamus (most rodents, tiger, lion, and fox). In some mammals, mast cells were also numerous in the stroma of the telencephalic choroid plexuses (chimpanzee, squirrel monkey), the putamen and the claustrum (chimpanzee), the subfornical organ (pack rat, tiger, chimpanzee), the olfactory peduncles (hooded rat, albino rat), the stroma of the diencephalic choroid plexus (lion, chimpanzee, squirrel monkey), the pineal organ (chimpanzee, squirrel monkey), some nuclei of the hypothalamus (tiger), the infundibulum (hooded rat, tiger, fox) the area postrema (pack rat, chinchilla, lion, spider monkey, chimpanzee, fox) and some nuclei and tracts of the metencephalon and the myelencephalon (tiger). Neither the sex of the animal nor electrolytic lesions made in the brains of some of the animals at various times prior to sacrifice appeared to effect the number and the distribution of mast cells. Age-related changes in mast cell number and distribution were detected in the albino rat. PMID:961335

  20. [Chromosomal organization of the genomes of small-chromosome plants].

    PubMed

    Muravenko, O V; Zelenin, A V

    2009-11-01

    An effective approach to study the chromosome organization in genomes of plants with small chromosomes and/or with low-informative C-banding patterns was developed in the course of investigation of the karyotypes of cotton plant, camomile, flax, and pea. To increase the resolving power of chromosome analysis, methods were worked out for revealing early replication patterns on chromosomes and for artificial impairment of mitotic chromosome condensation with the use of a DNA intercalator, 9-aminoacridine (9-AMA). To estimate polymorphism of the patterns of C-banding of small chromosomes on preparations obtained with the use of 9-AMA, it is necessary to choose a length interval that must not exceed three average sizes of metaphase chromosomes without the intercalator. The use of 9-AMA increases the resolution of differential C- and OR-banding and the precision of physical chromosome mapping by the FISH method. Of particular importance in studying small chromosomes is optimization of the computer-aided methods used to obtain and process chromosome images. The complex approach developed for analysis of the chromosome organization in plant genomes was used to study the karyotypes of 24 species of the genus Linum L. It permitted their chromosomes to be identified for the first time, and, in addition, B chromosomes were discovered and studied in the karyotypes of the species of the section Syllinum. By similarity of the karyotypes, the studied flax species were distributed in eight groups in agreement with the clusterization of these species according to the results of RAPD analysis performed in parallel. Systematic positions and phylogenetic relationships of the studied flax species were verified. Out results can serve as an important argument in favour of the proposal to develop a special program for sequencing the genome of cultivated flax (L. usitatissimum L.), which is a major representative of small-chromosome species. PMID:20058798

  1. Degeneration of a Nonrecombining Chromosome

    NASA Astrophysics Data System (ADS)

    Rice, William R.

    1994-01-01

    Comparative studies suggest that sex chromosomes begin as ordinary autosomes that happen to carry a major sex determining locus. Over evolutionary time the Y chromosome is selected to stop recombining with the X chromosome, perhaps in response to accumulation of alleles beneficial to the heterogametic but harmful to the homogametic sex. Population genetic theory predicts that a nonrecombining Y chromosome should degenerate. Here this prediction is tested by application of specific selection pressures to Drosophila melanogaster populations. Results demonstrate the decay of a nonrecombining, nascent Y chromosome and the capacity for recombination to ameliorate such decay.

  2. Gene stability in mammalian cells and protein consistency.

    PubMed

    Berthold, W

    1994-01-01

    The safety of a patient who is the recipient of protein drugs has to be assured. A "wrong" protein is thought to represent a great risk. The philosophy of testing strategies related to gene stability with product safety will be discussed in the light of experimental data available today. Although all mammalian cell lines used in the production of biologicals including recombinant DNA-derived lines have been produced from individual clones (functional monoclonality) they have been found to be heterogenous with regard to the genomic content (number of chromosomes, characteristics of identifiable chromosomes and position and number of integrated recombinant sequences). The verification of the presence of correct gene in a production cell line constitutes a well accepted and useful test, especially if derived by "population sequencing". A batch not related repeated confirmation of this fact cannot lead to any additional assurance for the correctness of all proteins constituting a given product beyond the level provided by cheminal testing. In contrast to this obvious and unavoidable heterogeneity in cellular genomes, the coding regions of genes have not been shown to change. Evidence is available to demonstrate the consistency of protein products originating from recombinant (and hybridoma) cell lines, e.g. more than 500,000 patients have received and tolerated rtPA well. PMID:7883100

  3. Mammalian Polymerase Theta Promotes Alternative-NHEJ and Suppresses Recombination

    PubMed Central

    Mateos-Gomez, Pedro A.; Gong, Fade; Nair, Nidhi; Miller, Kyle M.; Lazzerini-Denchi, Eros; Sfeir, Agnel

    2016-01-01

    The alternative nonhomologous end-joining (alt-NHEJ) machinery facilitates a number of genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions1,2,3. Using next-generation sequencing technology, we found that repair by alt-NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify Polymerase theta (Polθ; encoded by PolQ) as a critical alt-NHEJ factor in mammalian cells. PolQ inhibition suppresses alt-NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that PolQ loss results in increased rates of homology directed repair (HDR), evident by recombination of dysfunctional telomeres and accumulation of Rad51 at double stranded breaks. Lastly, we show that depletion of PolQ has a synergistic impact on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumors carrying mutations in HDR genes. PMID:25642960

  4. Deficient transcription of XIST from tiny ring X chromosomes in females with severe phenotypes.

    PubMed Central

    Migeon, B R; Luo, S; Stasiowski, B A; Jani, M; Axelman, J; Van Dyke, D L; Weiss, L; Jacobs, P A; Yang-Feng, T L; Wiley, J E

    1993-01-01

    The severe phenotype of human females whose karyotype includes tiny ring X chromosomes has been attributed to the inability of the small ring X chromosome to inactivate. The XIST locus is expressed only from the inactive X chromosome, resides at the putative X inactivation center, and is considered a prime player in the initiation of mammalian X dosage compensation. Using PCR, Southern blot analysis, and in situ hybridization, we have looked for the presence of the XIST locus in tiny ring X chromosomes from eight females who have multiple congenital malformations and severe mental retardation. Our studies reveal heterogeneity within this group; some rings lack the XIST locus, while others have sequences homologous to probes for XIST. However, in the latter, the locus is either not expressed or negligibly expressed, based on reverse transcription-PCR analysis. Therefore, what these tiny ring chromosomes have in common is a level of XIST transcription comparable to an active X. As XIST transcription is an indicator of X chromosome inactivity, the absence of XIST transcription strongly suggests that tiny ring X chromosomes in females with severe phenotypes are mutants in the X chromosome inactivation pathway and that the inability of these rings to inactivate is responsible for the severe phenotypes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8265665

  5. The chromosome cycle of prokaryotes

    PubMed Central

    Kuzminov, Andrei

    2013-01-01

    Summary In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation-decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister-chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the “chromosome cycle”. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: -replication-condensation-segregation-(cell division)-decondensation-, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice “progressive” chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are “segregation forks” in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication-segregation transition stays compacted. I consider possible origins of this concurrent replication-segregation and outline the “nucleoid administration” system that organizes the dynamic part of the prokaryotic chromosome cycle. PMID:23962352

  6. Sex chromosome aneuploidy and aging.

    PubMed

    Stone, J F; Sandberg, A A

    1995-10-01

    Loss of an X chromosome in females and of the Y chromosome in males are phenomena associated with aging. X chromosome loss occurs in and may be limited to PHA stimulated peripheral lymphocytes. In males, the loss of the Y is most evident in bone marrow cells, but also occurs to a lesser extent in PHA stimulated peripheral lymphocytes. X chromosome loss is associated with premature centromere division leading to anaphase lag and elimination in micronuclei. The mechanism of Y chromosome loss has not been elucidated. No pathological consequence of either X or Y chromosome loss has been convincingly demonstrated. With the advent of FISH technology, measurement of sex chromosome aneuploidy may prove to be a convenient assay for cellular senecence and aging. PMID:7565866

  7. Chromosome 19 International Workshop

    SciTech Connect

    Pericak-Vance, M.A. . Medical Center); Ropers, H.H. . Dept. of Human Genetics); Carrano, A.J. )

    1993-01-04

    The Second International Workshop on Human Chromosome 19 was hosted on January 25 and 26, 1992, by the Department of Human Genetics, University Hospital Nijmegen, The Netherlands, at the 'Meerdal Conference Center'. The workshop was supported by a grant from the European Community obtained through HUGO, the Dutch Research Organization (NWO) and the Muscular Dystrophy Association (MDA). Travel support for American participants was provided by the Department of Energy. The goals of this workshop were to produce genetic, physical and integrated maps of chromosome 19, to identify inconsistencies and gaps, and to discuss and exchange resources and techniques available for the completion of these maps. The second day of the meeting was largely devoted to region or disease specific efforts. In particular, the meeting served as a platform for assessing and discussing the recent progress made into the molecular elucidation of myotonic dystrophy.

  8. Dosage compensation of the sex chromosomes and autosomes.

    PubMed

    Disteche, Christine M

    2016-08-01

    Males are XY and females are XX in most mammalian species. Other species such as birds have a different sex chromosome make-up: ZZ in males and ZW in females. In both types of organisms one of the sex chromosomes, Y or W, has degenerated due to lack of recombination with its respective homolog X or Z. Since autosomes are present in two copies in diploid organisms the heterogametic sex has become a natural "aneuploid" with haploinsufficiency for X- or Z-linked genes. Specific mechanisms have evolved to restore a balance between critical gene products throughout the genome and between males and females. Some of these mechanisms were co-opted from and/or added to compensatory processes that alleviate autosomal aneuploidy. Surprisingly, several modes of dosage compensation have evolved. In this review we will consider the evidence for dosage compensation and the molecular mechanisms implicated. PMID:27112542

  9. HACking the centromere chromatin code: insights from human artificial chromosomes.

    PubMed

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations. PMID:22825423

  10. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  11. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  12. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  13. Body Size in Mammalian Paleobiology

    NASA Astrophysics Data System (ADS)

    Damuth, John; MacFadden, Bruce J.

    1990-11-01

    This valuable collection of essays presents and evaluates techniques of body-mass estimation and reviews current and potential applications of body-size estimates in paleobiology. Papers discuss explicitly the errors and biases of various regression techniques and predictor variables, and the identification of functionally similar groups of species for improving the accuracy of estimates. At the same time other chapters review and discuss the physiological, ecological, and behavioral correlates of body size in extant mammals; the significance of body-mass distributions in mammalian faunas; and the ecology and evolution of body size in particular paleofaunas. Coverage is particularly detailed for carnivores, primates, and ungulates, but information is also presented on marsupials, rodents, and proboscideans.

  14. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  15. Development of the Mammalian Kidney.

    PubMed

    McMahon, Andrew P

    2016-01-01

    The basic unit of kidney function is the nephron. In the mouse, around 14,000 nephrons form in a 10-day period extending into early neonatal life, while the human fetus forms the adult complement of nephrons in a 32-week period completed prior to birth. This review discusses our current understanding of mammalian nephrogenesis: the contributing cell types and the regulatory processes at play. A conceptual developmental framework has emerged for the mouse kidney. This framework is now guiding studies of human kidney development enabled in part by in vitro systems of pluripotent stem cell-seeded nephrogenesis. A near future goal will be to translate our developmental knowledge-base to the productive engineering of new kidney structures for regenerative medicine. PMID:26969971

  16. Evidence for local regulatory control of escape from imprinted X chromosome inactivation.

    PubMed

    Mugford, Joshua W; Starmer, Joshua; Williams, Rex L; Calabrese, J Mauro; Mieczkowski, Piotr; Yee, Della; Magnuson, Terry

    2014-06-01

    X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes. PMID:24653000

  17. Evidence for Local Regulatory Control of Escape from Imprinted X Chromosome Inactivation

    PubMed Central

    Mugford, Joshua W.; Starmer, Joshua; Williams, Rex L.; Calabrese, J. Mauro; Mieczkowski, Piotr; Yee, Della; Magnuson, Terry

    2014-01-01

    X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes. PMID:24653000

  18. A new light on DNA replication from the inactive X chromosome

    PubMed Central

    Aladjem, Mirit I.; Fu, Haiqing

    2014-01-01

    While large portions of the mammalian genome are known to replicate sequentially in a distinct, tissue-specific order, recent studies suggest that the inactive X chromosome is duplicated rapidly via random, synchronous DNA synthesis at numerous adjacent regions. The rapid duplication of the inactive X chromosome was observed in high-resolution studies visualizing DNA replication patterns in the nucleus, and by allele-specific DNA sequencing studies measuring the extent of DNA synthesis. These studies conclude that inactive X chromosomes complete replication earlier than previously thought and suggest that the strict order of DNA replication detected in the majority of genomic regions is not preserved in non-transcribed, “silent” chromatin. These observations alter current concepts about the regulation of DNA replication in non-transcribed portions of the genome in general and in the inactive X-chromosome in particular. PMID:24706495

  19. Activation of a human chromosomal replication origin by protein tethering

    PubMed Central

    Chen, Xiaomi; Liu, Guoqi; Leffak, Michael

    2013-01-01

    The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences. PMID:23658226

  20. DNA methylation on N(6)-adenine in mammalian embryonic stem cells.

    PubMed

    Wu, Tao P; Wang, Tao; Seetin, Matthew G; Lai, Yongquan; Zhu, Shijia; Lin, Kaixuan; Liu, Yifei; Byrum, Stephanie D; Mackintosh, Samuel G; Zhong, Mei; Tackett, Alan; Wang, Guilin; Hon, Lawrence S; Fang, Gang; Swenberg, James A; Xiao, Andrew Z

    2016-04-21

    It has been widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes. Here we identify N(6)-methyladenine as another form of DNA modification in mouse embryonic stem cells. Alkbh1 encodes a demethylase for N(6)-methyladenine. An increase of N(6)-methyladenine levels in Alkbh1-deficient cells leads to transcriptional silencing. N(6)-methyladenine deposition is inversely correlated with the evolutionary age of LINE-1 transposons; its deposition is strongly enriched at young (<1.5 million years old) but not old (>6 million years old) L1 elements. The deposition of N(6)-methyladenine correlates with epigenetic silencing of such LINE-1 transposons, together with their neighbouring enhancers and genes, thereby resisting the gene activation signals during embryonic stem cell differentiation. As young full-length LINE-1 transposons are strongly enriched on the X chromosome, genes located on the X chromosome are also silenced. Thus, N(6)-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms. Our results demonstrate that N(6)-methyladenine constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes. PMID:27027282

  1. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  2. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  3. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes

    PubMed Central

    Tischer, Thomas; Santhanam, Balaji; Schuh, Melina

    2015-01-01

    During fertilization, an egg and a sperm fuse to form a new embryo. Eggs develop from oocytes in a process called meiosis. Meiosis in human oocytes is highly error-prone1,2, and defective eggs are the leading cause of pregnancy loss and several genetic disorders such as Down’s syndrome3-5. Which genes safeguard accurate progression through meiosis is largely unclear. Here, we developed high-content phenotypic screening methods for the systematic identification of mammalian meiotic genes. We targeted 774 genes by RNAi within follicle-enclosed mouse oocytes to block protein expression from an early stage of oocyte development onwards. We then analysed the function of several genes simultaneously by high-resolution imaging of chromosomes and microtubules in live oocytes and scored each oocyte quantitatively for 50 phenotypes, generating a comprehensive resource of meiotic gene function. The screen generated an unprecedented annotated dataset of meiotic progression in 2,241 mammalian oocytes, which allowed us to analyse systematically which defects are linked to abnormal chromosome segregation during meiosis, identifying progression into anaphase with misaligned chromosomes as well as defects in spindle organization as risk factors. This study demonstrates how high-content screens can be performed in oocytes, and now allows systematic studies of meiosis in mammals. PMID:26147080

  4. SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins

    PubMed Central

    Mannini, Linda; Cucco, Francesco; Quarantotti, Valentina; Amato, Clelia; Tinti, Mara; Tana, Luigi; Frattini, Annalisa; Delia, Domenico; Krantz, Ian D.; Jessberger, Rolf; Musio, Antonio

    2015-01-01

    Cohesin is an evolutionarily conserved protein complex that plays a role in many biological processes: it ensures faithful chromosome segregation, regulates gene expression and preserves genome stability. In mammalian cells, the mitotic cohesin complex consists of two structural maintenance of chromosome proteins, SMC1A and SMC3, the kleisin protein RAD21 and a fourth subunit either STAG1 or STAG2. Meiotic paralogs in mammals were reported for SMC1A, RAD21 and STAG1/STAG2 and are called SMC1B, REC8 and STAG3 respectively. It is believed that SMC1B is only a meiotic-specific cohesin member, required for sister chromatid pairing and for preventing telomere shortening. Here we show that SMC1B is also expressed in somatic mammalian cells and is a member of a mitotic cohesin complex. In addition, SMC1B safeguards genome stability following irradiation whereas its ablation has no effect on chromosome segregation. Finally, unexpectedly SMC1B depletion impairs gene transcription, particularly at genes mapping to clusters such as HOX and PCDHB. Genome-wide analyses show that cluster genes changing in expression are enriched for cohesin-SMC1B binding. PMID:26673124

  5. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    PubMed Central

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  6. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    PubMed

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  7. Mammalian reproduction: an ecological perspective.

    PubMed

    Bronson, F H

    1985-02-01

    The objectives of this paper are to organize our concepts about the environmental regulation of reproduction in mammals and to delineate important gaps in our knowledge of this subject. The environmental factors of major importance for mammalian reproduction are food availability, ambient temperature, rainfall, the day/night cycle and a variety of social cues. The synthesis offered here uses as its core the bioenergetic control of reproduction. Thus, for example, annual patterns of breeding are viewed as reflecting primarily the caloric costs of the female's reproductive effort as they relate to the energetic costs and gains associated with her foraging effort. Body size of the female is an important consideration since it is correlated with both potential fat reserves and life span. Variation in nutrient availability may or may not be an important consideration. The evolutionary forces that have shaped the breeding success of males usually are fundamentally different from those acting on females and, by implication, the environmental controls governing reproduction probably also often differ either qualitatively or quantitatively in the two sexes. Mammals often live in habitats where energetic and nutrient challenges vary seasonally, even in the tropics. When seasonal breeding is required, a mammal may use a predictor such as photoperiod or a secondary plant compound to prepare metabolically for reproduction. A reasonable argument can be made, however, that opportunistic breeding, unenforced by a predictor, may be the most prevalent strategy extant among today's mammals. Social cues can have potent modulating actions. They can act either via discrete neural and endocrine pathways to alter specific processes such as ovulation, or they can induce nonspecific emotional states that secondarily affect reproduction. Many major gaps remain in our knowledge about the environmental regulation of mammalian reproduction. For one, we have a paucity of information about the

  8. Mammalian Carboxylesterase 5: Comparative Biochemistry and Genomics

    PubMed Central

    Holmes, Roger S; Cox, Laura A; VandeBerg, John L

    2008-01-01

    Carboxylesterase 5 (CES5) (also called cauxin or CES7) is one of at least five mammalian CES gene families encoding enzymes of broad substrate specificity and catalysing hydrolytic and transesterification reactions. In silico methods were used to predict the amino acid sequences, secondary structures and gene locations for CES5 genes and gene products. Amino acid sequence alignments of mammalian CES5 enzymes enabled identification of key CES sequences previously reported for human CES1, as well as other sequences that are specific to the CES5 gene family, which were consistent with being monomeric in subunit structure and available for secretion into body fluids. Predicted secondary structures for mammalian CES5 demonstrated significant conservation with human CES1 as well as distinctive mammalian CES5 like structures. Mammalian CES5 genes are located in tandem with the CES1 gene(s), are transcribed on the reverse strand and contained 13 exons. CES5 has been previously reported in high concentrations in the urine (cauxin) of adult male cats, and within a protein complex of mammalian male epididymal fluids. Roles for CES5 may include regulating urinary levels of male cat pheromones; catalysing lipid transfer reactions within mammalian male reproductive fluids; and protecting neural tissue from drugs and xenobiotics. PMID:19727319

  9. Effects of simultaneous radiofrequency radiation and chemical exposure of mammalian cells. Volume 1. Annual report, 2 January-31 December 1984

    SciTech Connect

    Meltz, M.L.

    1987-08-01

    The major objective of this project was to determine whether radiofrequency radiation (RFR), at power densities and specific absorption rate (SAR) values which can result in temperature increases in the exposure medium, can affect the extent of chemically induced toxicity, mutagenicity, sister chromatid exchange, or chromosome aberrations in mammalian cells. The in-vitro system used for toxicity and mutagenicity studies is the mouse leukemic L5178Y cell thymidine kinase locus mutation assay.

  10. The chromosome periphery during mitosis.

    PubMed

    Hernandez-Verdun, D; Gautier, T

    1994-03-01

    A complex structure, visible by electron microscopy, surrounds each chromosome during mitosis. The organization of this structure is distinct from that of the chromosomes and the cytoplasm. It forms a perichromosomal layer that can be isolated together with the chromosomes. This layer covers the chromosomes except in centromeric regions. The perichromosomal layer includes nuclear and nucleolar proteins as well as ribonucleoproteins (RNPs). The list of proteins and RNAs identified includes nuclear matrix proteins (perichromin, peripherin), nucleolar proteins (perichro-monucleolin, Ki-67 antigen, B23 protein, fibrillarin, p103, p52), ribosomal proteins (S1) and snRNAs (U3 RNAs). Only limited information is available about how and when the perichromosomal layer is formed. During early prophase, the proteins extend from the nucleoli towards the periphery of the nucleus. Thin cordon-like structures reach the nuclear envelope delimiting areas in which chromosomes condense. At telophase, the proteins are associated with the part of the chromosomes remaining condensed and accumulate in newly formed nucleoli in regions where chromatin is already decondensed. The perichromosomal layer contains several different classes of proteins and RNPs and it has been attributed various roles: (1) in chromosome organization, (2) as a barrier around the chromosomes, (3) involvement in compartmentation of the cells in prophase and telophase and (4) a binding site for chromosomal passenger proteins necessary to the early process of nuclear assembly. PMID:8166671

  11. Fate Mapping Mammalian Corneal Epithelia.

    PubMed

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  12. Possible mechanisms of mammalian immunocontraception.

    PubMed

    Barber, M R; Fayrer-Hosken, R A

    2000-03-01

    Ecological and conservation programs in ecosystems around the world have experienced varied success in population management. One of the greatest problems is that human expansion has led to the shrinking of wildlife habitat and, as a result, the overpopulation of many different species has occurred. The pressures exerted by the increased number of animals has caused environmental damage. The humane and practical control of these populations has solicited the scientific community to arrive at a safe, effective, and cost-efficient means of population control. Immunocontraception using zona pellucida antigens, specifically porcine zona pellucida (pZP), has become one of the most promising population control tools in the world today, with notable successes in horses and elephants. A conundrum has risen where pZP, a single vaccine, successfully induces an immunocontraceptive effect in multiple species of mammals. This review describes the most current data pertaining to the mammalian zona pellucida and immunocontraception, and from these studies, we suggest several potential mechanisms of immunocontraception. PMID:10706942

  13. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  14. Mammalian mitochondrial beta-oxidation.

    PubMed Central

    Eaton, S; Bartlett, K; Pourfarzam, M

    1996-01-01

    The enzymic stages of mammalian mitochondrial beta-oxidation were elucidated some 30-40 years ago. However, the discovery of a membrane-associated multifunctional enzyme of beta-oxidation, a membrane-associated acyl-CoA dehydrogenase and characterization of the carnitine palmitoyl transferase system at the protein and at the genetic level has demonstrated that the enzymes of the system itself are incompletely understood. Deficiencies of many of the enzymes have been recognized as important causes of disease. In addition, the study of these disorders has led to a greater understanding of the molecular mechanism of beta-oxidation and the import, processing and assembly of the beta-oxidation enzymes within the mitochondrion. The tissue-specific regulation, intramitochondrial control and supramolecular organization of the pathway is becoming better understood as sensitive analytical and molecular techniques are applied. This review aims to cover enzymological and organizational aspects of mitochondrial beta-oxidation together with the biochemical aspects of inherited disorders of beta-oxidation and the intrinsic control of beta-oxidation. PMID:8973539

  15. Cell death in mammalian development.

    PubMed

    Penaloza, C; Orlanski, S; Ye, Y; Entezari-Zaher, T; Javdan, M; Zakeri, Z

    2008-01-01

    During embryogenesis there is an exquisite orchestration of cellular division, movement, differentiation, and death. Cell death is one of the most important aspects of organization of the developing embryo, as alteration in timing, level, or pattern of cell death can lead to developmental anomalies. Cell death shapes the embryo and defines the eventual functions of the organs. Cells die using different paths; understanding which path a dying cell takes helps us define the signals that regulate the fate of the cell. Our understanding of cell death in development stems from a number of observations indicating genetic regulation of the death process. With today's increased knowledge of the pathways of cell death and the identification of the genes whose products regulate the pathways we know that, although elimination of some of these gene products has no developmental phenotype, alteration of several others has profound effects. In this review we discuss the types and distributions of cell death seen in developing mammalian embryos as well as the gene products that may regulate the process. PMID:18220829

  16. Direct kinetochore–spindle pole connections are not required for chromosome segregation

    PubMed Central

    Sikirzhytski, Vitali; Magidson, Valentin; Steinman, Jonathan B.; He, Jie; Le Berre, Maël; Tikhonenko, Irina; Ault, Jeffrey G.; McEwen, Bruce F.; Chen, James K.; Sui, Haixin; Piel, Matthieu; Kapoor, Tarun M.

    2014-01-01

    Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes′ kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells. PMID:25023516

  17. Role of the Number of Microtubules in Chromosome Segregation during Cell Division

    PubMed Central

    Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina A. M.; Zapperi, Stefano

    2015-01-01

    Faithful segregation of genetic material during cell division requires alignment of chromosomes between two spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated so that coherent chromosome motion emerges from a large collection of random and deterministic processes. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation during mitosis. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compares well with early observations in mammalian cell spindles. Our results shed new light on the origin of several pathological conditions related to chromosomal instability. PMID:26506005

  18. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  19. Engineering Escherichia coli into a Protein Delivery System for Mammalian Cells

    PubMed Central

    2015-01-01

    Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications. PMID:25853840

  20. Chromosome Connections: Compelling Clues to Common Ancestry

    ERIC Educational Resources Information Center

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  1. ssiRNA Induced Gene Silencing is Transmitted Between Cells From the Mammalian Central Nervous System

    PubMed Central

    Zhao, Tian-Yong; Zou, Shi-Ping; Alimova, Yelena V.; Wang, Guoying; Hauser, Kurt F.; Ghandour, M. Said; Knapp, Pamela E.

    2014-01-01

    Although siRNA induced gene silencing can be transmitted between cells in plants and in C. elegans, this phenomenon has been barely studied in mammalian cells. Both immortalized oligodendrocytes and SNB-19 glioblastoma cells were transfected with siRNA constructs for PTEN (phosphatase and tensin homolog deleted on chromosome 10) or Akt (Akt/protein kinase B). Co-cultures were established between silenced cells and non-silenced cells which were hygromycin resistant and/or expressed green fluorescent protein (GFP). After fluorescence sorting or hygromycin selection to remove the silenced cells, the expression of PTEN or Akt genes in the originally unsilenced cells was in all cases significantly decreased. Importantly, silencing did not occur in transwell culture studies, suggesting that transmission of the silencing signal requires a close association between cells. These results provide the first direct demonstration that an siRNA induced silencing signal can be transmitted between mammalian central nervous system (CNS) cells. PMID:16923165

  2. Gene amplification during differentiation of mammalian neural stem cells in vitro and in vivo.

    PubMed

    Fischer, Ulrike; Backes, Christina; Raslan, Abdulrahman; Keller, Andreas; Meier, Carola; Meese, Eckart

    2015-03-30

    In development of amphibians and flies, gene amplification is one of mechanisms to increase gene expression. In mammalian cells, gene amplification seems to be restricted to tumorigenesis and acquiring of drug-resistance in cancer cells. Here, we report a complex gene amplification pattern in mouse neural progenitor cells during differentiation with approximately 10% of the genome involved. Half of the amplified mouse chromosome regions overlap with amplified regions previously reported in human neural progenitor cells, indicating conserved mechanisms during differentiation. Using fluorescence in situ hybridization, we verified the amplification in single cells of primary mouse mesencephalon E14 (embryonic stage) neurosphere cells during differentiation. In vivo we confirmed gene amplifications of the TRP53 gene in cryosections from mouse embryos at stage E11.5. Gene amplification is not only a cancer-related mechanism but is also conserved in evolution, occurring during differentiation of mammalian neural stem cells. PMID:25760141

  3. Positive genetic selection for gene disruption in mammalian cells by homologous recombination.

    PubMed Central

    Sedivy, J M; Sharp, P A

    1989-01-01

    Efficient modification of genes in mammalian cells by homologous recombination has not been possible because of the high frequency of nonhomologous recombination. An efficient method for targeted gene disruption has been developed. Cells with substitution of exogenous sequences into a chromosomal locus were enriched, by a factor of 100, using a positive genetic selection that specifically selects for homologous recombination at the targeted site. The selection is based on the conditional expression of a dominant selectable marker by virtue of in-frame gene fusion with the target gene. The dominant selectable marker was derived by modification of the Escherichia coli neo gene so that it retains significant activity in mammalian cells after in-frame fusion with heterologous coding sequences. In the example presented here, homologous recombinants were efficiently recovered from a pool in which the targeted gene was disrupted in 1 per 10,000 cells incorporating exogenous DNA. Images PMID:2536156

  4. Nuclear reorganization of mammalian DNA synthesis prior to cell cycle exit.

    PubMed

    Barbie, David A; Kudlow, Brian A; Frock, Richard; Zhao, Jiyong; Johnson, Brett R; Dyson, Nicholas; Harlow, Ed; Kennedy, Brian K

    2004-01-01

    In primary mammalian cells, DNA replication initiates in a small number of perinucleolar, lamin A/C-associated foci. During S-phase progression in proliferating cells, replication foci distribute to hundreds of sites throughout the nucleus. In contrast, we find that the limited perinucleolar replication sites persist throughout S phase as cells prepare to exit the cell cycle in response to contact inhibition, serum starvation, or replicative senescence. Proteins known to be involved in DNA synthesis, such as PCNA and DNA polymerase delta, are concentrated in perinucleolar foci throughout S phase under these conditions. Moreover, chromosomal loci are redirected toward the nucleolus and overlap with the perinucleolar replication foci in cells poised to undergo cell cycle exit. These same loci remain in the periphery of the nucleus during replication under highly proliferative conditions. These results suggest that mammalian cells undergo a large-scale reorganization of chromatin during the rounds of DNA replication that precede cell cycle exit. PMID:14701733

  5. The XXXXY Chromosome Anomaly

    PubMed Central

    Zaleski, Witold A.; Houston, C. Stuart; Pozsonyi, J.; Ying, K. L.

    1966-01-01

    The majority of abnormal sex chromosome complexes in the male have been considered to be variants of Klinefelter's syndrome but an exception should probably be made in the case of the XXXXY individual who has distinctive phenotypic features. Clinical, radiological and cytological data on three new cases of XXXXY syndrome are presented and 30 cases from the literature are reviewed. In many cases the published clinical and radiological data were supplemented and re-evaluated. Mental retardation, usually severe, was present in all cases. Typical facies was observed in many; clinodactyly of the fifth finger was seen in nearly all. Radiological examination revealed abnormalities in the elbows and wrists in all the 19 personally evaluated cases, and other skeletal anomalies were very frequent. Cryptorchism is very common and absence of Leydig's cells may differentiate the XXXXY chromosome anomaly from polysomic variants of Klinefelter's syndrome. The relationship of this syndrome to Klinefelter's syndrome and to Down's syndrome is discussed. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15 PMID:4222822

  6. X-chromosome workshop.

    PubMed

    Paterson, A D

    1998-01-01

    Researchers presented results of ongoing research to the X-chromosome workshop of the Fifth World Congress on Psychiatric Genetics, covering a wide range of disorders: X-linked infantile spasms; a complex phenotype associated with deletions of Xp11; male homosexuality; degree of handedness; bipolar affective disorder; schizophrenia; childhood onset psychosis; and autism. This report summarizes the presentations, as well as reviewing previous studies. The focus of this report is on linkage findings for schizophrenia and bipolar disorder from a number of groups. For schizophrenia, low positive lod scores were obtained for markers DXS991 and DXS993 from two studies, although the sharing of alleles was greatest from brother-brother pairs in one study, and sister-sister in the other. Data from the Irish schizophrenia study was also submitted, with no strong evidence for linkage on the X chromosome. For bipolar disease, following the report of a Finnish family linked to Xq24-q27, the Columbia group reported some positive results for this region from 57 families, however, another group found no evidence for linkage to this region. Of interest, is the clustering of low positive linkage results that point to regions for possible further study. PMID:9686435

  7. Single chromosome transcriptional profiling reveals chromosome-level regulation of gene expression

    PubMed Central

    Levesque, Marshall J.; Raj, Arjun

    2013-01-01

    Here we report iceFISH, a multiplex imaging method for measuring gene expression and chromosome structure simultaneously on single chromosomes. We demonstrate that chromosomal translocations can alter transcription chromosome-wide, finding substantial differences in transcriptional frequency between genes located on a translocated chromosome in comparison to the normal chromosome in the same cell. Examination of correlations between genes on a single chromosome revealed a cis chromosome-level transcriptional interaction spanning 14.3 megabases. PMID:23416756

  8. Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells.

    PubMed

    Izhar, Lior; Ziv, Omer; Cohen, Isadora S; Geacintov, Nicholas E; Livneh, Zvi

    2013-04-16

    DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis. PMID:23530190

  9. Enhancer Evolution across 20 Mammalian Species

    PubMed Central

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  10. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  11. Mammalian Response to Cenozoic Climatic Change

    NASA Astrophysics Data System (ADS)

    Blois, Jessica L.; Hadly, Elizabeth A.

    2009-05-01

    Multiple episodes of rapid and gradual climatic changes influenced the evolution and ecology of mammalian species and communities throughout the Cenozoic. Climatic change influenced the abundance, genetic diversity, morphology, and geographic ranges of individual species. Within communities these responses interacted to catalyze immigration, speciation, and extinction. Combined they affected long-term patterns of community stability, functional turnover, biotic turnover, and diversity. Although the relative influence of climate on particular evolutionary processes is oft debated, an understanding of processes at the root of biotic change yields important insights into the complexity of mammalian response. Ultimately, all responses trace to events experienced by populations. However, many such processes emerge as patterns above the species level, where shared life history traits and evolutionary history allow us to generalize about mammalian response to climatic change. These generalizations provide the greatest power to understand and predict mammalian responses to current and future global change.

  12. Bats and Rodents Shape Mammalian Retroviral Phylogeny

    PubMed Central

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  13. Bats and Rodents Shape Mammalian Retroviral Phylogeny.

    PubMed

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  14. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  15. Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system

    PubMed Central

    Randall, Andrew D; Kurihara, Mai; Brandon, Nicholas J; Brown, Jon T

    2014-01-01

    The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins. Here, we discuss the evidence for a role of DISC1 in synaptic function in the mammalian CNS. PMID:24712987

  16. Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system.

    PubMed

    Randall, Andrew D; Kurihara, Mai; Brandon, Nicholas J; Brown, Jon T

    2014-04-01

    The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins. Here, we discuss the evidence for a role of DISC1 in synaptic function in the mammalian CNS. PMID:24712987

  17. Advances in plant chromosome genomics.

    PubMed

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Simková, Hana

    2014-01-01

    Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics - the marriage of cytology and genomics - will make a significant contribution to the field of plant genetics. PMID:24406816

  18. SEX CHROMOSOMES IN FLOWERING PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex chromosomes in dioecious and polygamous plants evolved as a mechanism for ensuring outcrossing to increase genetic variation in the offspring. Sex specificity has evolved in 75% of plant families by male sterile or female sterile mutations, but well defined heteromorphic sex chromosomes are know...

  19. Cohesin in determining chromosome architecture

    SciTech Connect

    Haering, Christian H.; Jessberger, Rolf

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  20. Organization of the bacterial chromosome.

    PubMed Central

    Krawiec, S; Riley, M

    1990-01-01

    Recent progress in studies on the bacterial chromosome is summarized. Although the greatest amount of information comes from studies on Escherichia coli, reports on studies of many other bacteria are also included. A compilation of the sizes of chromosomal DNAs as determined by pulsed-field electrophoresis is given, as well as a discussion of factors that affect gene dosage, including redundancy of chromosomes on the one hand and inactivation of chromosomes on the other hand. The distinction between a large plasmid and a second chromosome is discussed. Recent information on repeated sequences and chromosomal rearrangements is presented. The growing understanding of limitations on the rearrangements that can be tolerated by bacteria and those that cannot is summarized, and the sensitive region flanking the terminator loci is described. Sources and types of genetic variation in bacteria are listed, from simple single nucleotide mutations to intragenic and intergenic recombinations. A model depicting the dynamics of the evolution and genetic activity of the bacterial chromosome is described which entails acquisition by recombination of clonal segments within the chromosome. The model is consistent with the existence of only a few genetic types of E. coli worldwide. Finally, there is a summary of recent reports on lateral genetic exchange across great taxonomic distances, yet another source of genetic variation and innovation. PMID:2087223

  1. Reverse genetics for mammalian reovirus.

    PubMed

    Boehme, Karl W; Ikizler, Miné; Kobayashi, Takeshi; Dermody, Terence S

    2011-10-01

    Mammalian orthoreoviruses (reoviruses) are highly tractable models for studies of viral replication and pathogenesis. The versatility of reovirus as an experimental model has been enhanced by development of a plasmid-based reverse genetics system. Infectious reovirus can be recovered from cells transfected with plasmids encoding cDNAs of each reovirus gene segment using a strategy that does not require helper virus and is independent of selection. In this system, transcription of each gene segment is driven by bacteriophage T7 RNA polymerase, which can be supplied transiently by recombinant vaccinia virus (rDIs-T7pol) or by cells that constitutively express the enzyme. Reverse genetics systems have been developed for two prototype reovirus strains, type 1 Lang (T1L) and type 3 Dearing (T3D). Each reovirus cDNA was encoded on an independent plasmid for the first-generation rescue system. The efficiency of virus recovery was enhanced in a second-generation system by combining the cDNAs for multiple reovirus gene segments onto single plasmids to reduce the number of plasmids from 10 to 4. The reduction in plasmid number and the use of baby hamster kidney cells that express T7 RNA polymerase increased the efficiency of viral rescue, reduced the incubation time required to recover infectious virus, and eliminated potential biosafety concerns associated with the use of recombinant vaccinia virus. Reovirus reverse genetics has been used to introduce mutations into viral capsid and nonstructural components to study viral protein-structure activity relationships and can be exploited to engineer recombinant reoviruses for vaccine and oncolytic applications. PMID:21798351

  2. Chemosignals, Hormones and Mammalian Reproduction

    PubMed Central

    Petrulis, Aras

    2013-01-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as “pheromones” but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking. PMID:23545474

  3. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-01

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line. PMID:19533721

  4. Simplified Bioreactor For Growing Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.

    1995-01-01

    Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.

  5. The mammalian homologue of mago nashi encodes a serum-inducible protein.

    PubMed

    Zhao, X F; Colaizzo-Anas, T; Nowak, N J; Shows, T B; Elliott, R W; Aplan, P D

    1998-01-15

    The products of at least 11 maternal effect genes have been shown to be essential for proper germ plasm assembly in Drosophila melanogaster embryos. Here we report the isolation and characterization of the mammalian counterpart for one of these genes (named MAGOH for mago nashi homologue). The predicted amino acid sequence of mouse and human MAGOH are completely identical; MAGOH homologues from the nematode Caenorhabditis elegans and rice grain Oryza sativa also show a remarkable degree of amino acid conservation. MAGOH was mapped to chromosome 1p33-p34 in the human and a syntenic region of chromosome 4 in the mouse. Of note, MAGOH mRNA expression is not limited to germ plasm, but is expressed ubiquitously in adult tissues and can be induced by serum stimulation of quiescent fibroblasts. PMID:9479507

  6. Mammalian phylogeny reveals recent diversification rate shifts.

    PubMed

    Stadler, Tanja

    2011-04-12

    Phylogenetic trees of present-day species allow investigation of the rate of evolution that led to the present-day diversity. A recent analysis of the mammalian phylogeny challenged the view of explosive mammalian evolution after the Cretaceous-Tertiary (K/T) boundary (65 Mya). However, due to lack of appropriate methods, the diversification (speciation minus extinction) rates in the more recent past of mammalian evolution could not be determined. In this paper, I provide a method that reveals that the tempo of mammalian evolution did not change until ∼ 33 Mya. This constant period was followed by a peak of diversification rates between 33 and 30 Mya. Thereafter, diversification rates remained high and constant until 8.55 Mya. Diversification rates declined significantly at 8.55 and 3.35 Mya. Investigation of mammalian subgroups (marsupials, placentals, and the six largest placental subgroups) reveals that the diversification rate peak at 33-30 Mya is mainly driven by rodents, cetartiodactyla, and marsupials. The recent diversification rate decrease is significant for all analyzed subgroups but eulipotyphla, cetartiodactyla, and primates. My likelihood approach is not limited to mammalian evolution. It provides a robust framework to infer diversification rate changes and mass extinction events in phylogenies, reconstructed from, e.g., present-day species or virus data. In particular, the method is very robust toward noise and uncertainty in the phylogeny and can account for incomplete taxon sampling. PMID:21444816

  7. Bacterial chromosome organization and segregation.

    PubMed

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation. PMID:26566111

  8. Schizophrenia and chromosomal deletions

    SciTech Connect

    Lindsay, E.A.; Baldini, A.; Morris, M. A.

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  9. X-Chromosome dosage compensation.

    PubMed

    Meyer, Barbara J

    2005-01-01

    In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the

  10. Cell cycle-regulated membrane binding of NuMA contributes to efficient anaphase chromosome separation.

    PubMed

    Zheng, Zhen; Wan, Qingwen; Meixiong, Gerry; Du, Quansheng

    2014-03-01

    Accurate and efficient separation of sister chromatids during anaphase is critical for faithful cell division. It has been proposed that cortical dynein-generated pulling forces on astral microtubules contribute to anaphase spindle elongation and chromosome separation. In mammalian cells, however, definitive evidence for the involvement of cortical dynein in chromosome separation is missing. It is believed that dynein is recruited and anchored at the cell cortex during mitosis by the α subunit of heterotrimeric G protein (Gα)/mammalian homologue of Drosophila Partner of Inscuteable/nuclear mitotic apparatus (NuMA) ternary complex. Here we uncover a Gα/LGN-independent lipid- and membrane-binding domain at the C-terminus of NuMA. We show that the membrane binding of NuMA is cell cycle regulated-it is inhibited during prophase and metaphase by cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation and only occurs after anaphase onset when CDK1 activity is down-regulated. Further studies indicate that cell cycle-regulated membrane association of NuMA underlies anaphase-specific enhancement of cortical NuMA and dynein. By replacing endogenous NuMA with membrane-binding-deficient NuMA, we can specifically reduce the cortical accumulation of NuMA and dynein during anaphase and demonstrate that cortical NuMA and dynein contribute to efficient chromosome separation in mammalian cells. PMID:24371089

  11. Telomere Disruption Results in Non-Random Formation of De Novo Dicentric Chromosomes Involving Acrocentric Human Chromosomes

    PubMed Central

    Stimpson, Kaitlin M.; Song, Ihn Young; Jauch, Anna; Holtgreve-Grez, Heidi; Hayden, Karen E.; Bridger, Joanna M.; Sullivan, Beth A.

    2010-01-01

    Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the α-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same α-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment. PMID:20711355

  12. A system for mutation measurement in mammalian cells: application to gamma-irradiation.

    PubMed

    Puck, T T; Johnson, R; Rasumussen, S

    1997-02-18

    Monitoring of mutagenesis by environmental agents for the purpose of preventing genetic disease including cancer must include quantitation of cell killing, sensitive measurement of mutation production by appropriate doses of each agent, and assessment of mutation repair effects in mammalian cells. A four-step procedure, in the presence and absence of a repair suppressor, is proposed: (i) determination of the survival curve; (ii) measurement of the mitotic index in cells collected after treatment with colcemid; (iii) construction of a mutagenesis yield curve in the presence and absence of a repair suppressor, like caffeine; and (iv) assessment of the effect of test agents on the repair of mutations produced by other mutagens. The procedure is quantitative, reproducible, and reasonably rapid. It involves measurement of mutations causing visible chromosomal aberrations. Numerical parameters are proposed defining quantitatively mutation, cell killing, and mutation repair capacity. The procedure is applied to gamma-irradiation and can detect the effects of doses as low as 2-5 cGy. Theoretical analysis of the underlying processes is presented, using the concept of D(0)E, the effective dose of mutagen after repair mechanisms and neutralizing agents have acted. Microscopically visible chromosome aberrations are due to mutations that distort the process of mitotic chromosome condensation, with or without actual chromosome breakage. PMID:9037033

  13. Condensin-driven remodelling of X chromosome topology during dosage compensation.

    PubMed

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R; Wheeler, Bayly S; Ralston, Edward J; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J

    2015-07-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (∼1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using

  14. Condensin-driven remodelling of X chromosome topology during dosage compensation

    NASA Astrophysics Data System (ADS)

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.

    2015-07-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using

  15. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR–eIF4F pathway

    PubMed Central

    Susor, Andrej; Jansova, Denisa; Cerna, Renata; Danylevska, Anna; Anger, Martin; Toralova, Tereza; Malik, Radek; Supolikova, Jaroslava; Cook, Matthew S.; Oh, Jeong Su; Kubelka, Michal

    2015-01-01

    The fully grown mammalian oocyte is transcriptionally quiescent and utilizes only transcripts synthesized and stored during early development. However, we find that an abundant RNA population is retained in the oocyte nucleus and contains specific mRNAs important for meiotic progression. Here we show that during the first meiotic division, shortly after nuclear envelope breakdown, translational hotspots develop in the chromosomal area and in a region that was previously surrounded the nucleus. These distinct translational hotspots are separated by endoplasmic reticulum and Lamin, and disappear following polar body extrusion. Chromosomal translational hotspots are controlled by the activity of the mTOR–eIF4F pathway. Here we reveal a mechanism that—following the resumption of meiosis—controls the temporal and spatial translation of a specific set of transcripts required for normal spindle assembly, chromosome alignment and segregation. PMID:25629602

  16. Universal mapping probes and the origin of human chromosome 3.

    PubMed Central

    Hino, O; Testa, J R; Buetow, K H; Taguchi, T; Zhou, J Y; Bremer, M; Bruzel, A; Yeung, R; Levan, G; Levan, K K

    1993-01-01

    Universal mapping probes (UMPs) are defined as short segments of human DNA that are useful for physical and genetic mapping in a wide variety of mammals. The most useful UMPs contain a conserved DNA sequence immediately adjoined to a highly polymorphic CA repeat. The conserved region determines physical gene location, whereas the CA repeat facilitates genetic mapping. Both the CA repeat and its neighboring sequence are highly conserved in evolution. This permits molecular, cytogenetic, and genetic mapping of UMPs throughout mammalia. UMPs are significant because they make genetic information cumulative among well-studied species and because they transfer such information from "map rich" organisms to those that are "map poor." As a demonstration of the utility of UMPs, comparative maps between human chromosome 3 (HSA3) and the rat genome have been constructed. HSA3 is defined by at least 12 syntenic clusters located on seven different rat chromosomes. These data, together with previous comparative mapping information between human, mouse, and bovine genomes, allow us to propose a distinct evolutionary pathway that connects HSA3 with the chromosomes of rodents, artiodactyls, and primates. The model predicts a parsimonious phylogenetic tree, is readily testable, and will be of considerable use for determining the pathways of mammalian evolution. Images PMID:8093645

  17. Polymer physics of chromosome large-scale 3D organisation

    PubMed Central

    Chiariello, Andrea M.; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding. PMID:27405443

  18. Polymer physics of chromosome large-scale 3D organisation.

    PubMed

    Chiariello, Andrea M; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding. PMID:27405443

  19. Polymer physics of chromosome large-scale 3D organisation

    NASA Astrophysics Data System (ADS)

    Chiariello, Andrea M.; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-07-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  20. Wnt signalling pathway parameters for mammalian cells.

    PubMed

    Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters

  1. A chromosome 11 YAC library

    SciTech Connect

    Qin, S.; Zhang, J.; Isaacs, C.M.; Nagafuchi, S.; Jani Sait, S.N.; Abel, K.J.; Higgins, M.J.; Nowak, N.J.; Shows, T.B. )

    1993-06-01

    A targeted yeast artificial chromosome (YAC) library for chromosome 11 has been constructed from the J1 cell line that carries a single human chromosome 11 within a hamster DNA background. Interspecies chimeric clones generated during construction of the library were detected during the screening process and eliminated from the library. Contig assembly becomes much less difficult using such a library as the complexity is decreased and the ends of the clone inserts can be rescued for walking to neighboring clones. The library contains > 1824 clones with an average insert length of 337 kb. This represents a fourfold coverage of chromosome 11 or a >95% chance of recovering a unique single-copy sequence from the library. Two hundred YAC clones were localized by fluorescence in situ hybridization and found to be randomly distributed along the chromosome. The library has been screened with probes for the chromosome 11 markers HBB, GLUR4, H19, and D11S193. Corresponding YAC clones have been isolated for each locus. This analysis has indicated that the library is unbiased, that cognate YAC clones can be recovered with chromosome 11 markers, and that extensive contig assembly should be feasible. 31 refs., 5 figs.

  2. Amplification of large artificial chromosomes.

    PubMed Central

    Smith, D R; Smyth, A P; Moir, D T

    1990-01-01

    Yeast artificial chromosome cloning is an attractive technology for genomic mapping studies because very large DNA segments can be readily propagated. However, detailed analyses often require the extensive application of blotting-hybridization techniques because artificial chromosomes are normally present at only one copy per haploid genome. We have developed a cloning vector and host strain that alleviate this problem by permitting copy number amplification of artificial chromosomes. The vector includes a conditional centromere that can be turned on or off by changing the carbon source. Strong selective pressure for extra copies of the artificial chromosome can be applied by selecting for the expression of a heterologous thymidine kinase gene. When this system was used, artificial chromosomes ranging from about 100 to 600 kilobases in size were readily amplified 10- to 20-fold. The selective conditions did not induce obvious rearrangements in any of the clones tested. Reactivation of the centromere in amplified artificial chromosome clones resulted in stable maintenance of an elevated copy number for 20 generations. Applications of copy number control to various aspects of artificial chromosome analysis are addressed. Images PMID:2236036

  3. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  4. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-01-01

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat. PMID:23884766

  5. Stable Chromosome Condensation Revealed by Chromosome Conformation Capture.

    PubMed

    Eagen, Kyle P; Hartl, Tom A; Kornberg, Roger D

    2015-11-01

    Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to 10-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes. PMID:26544940

  6. Analysis of chromosome 21 yeast artificial chromosome (YAC) clones

    SciTech Connect

    Tassone, F. A. Gemelli School of Medicine, Rome ); Cheng, S.; Gardiner, K. )

    1992-12-01

    Chromosome 21 contains genes relevant to several important diseases. Yeast artificial chromosome (YAC) clones, because they span >100 kbp, will provide attractive material for initiating searches for such genes. Twenty-two YAC clones, each of which maps to a region of potential relevance either to aspects of the Down syndrome phenotype or to one of the other chromosome 21-associated genetic diseases, have been analyzed in detail. Clones total [approximately]6,000 kb and derive from all parts of the long arm. Rare restriction-site maps have been constructed for each clone and have been used to determine regional variations in clonability, methylation frequency, CpG island density, and CpG island frequency versus gene density. This information will be useful for the isolation and mapping of new genes to chromosome 21 and for walking in YAC libraries. 48 refs., 3 figs., 4 tabs.

  7. Numerous Transitions of Sex Chromosomes in Diptera

    PubMed Central

    Vicoso, Beatriz; Bachtrog, Doris

    2015-01-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  8. Numerous transitions of sex chromosomes in Diptera.

    PubMed

    Vicoso, Beatriz; Bachtrog, Doris

    2015-04-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  9. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes

    PubMed Central

    Chindera, Kantaraja; Mahato, Manohar; Kumar Sharma, Ashwani; Horsley, Harry; Kloc-Muniak, Klaudia; Kamaruzzaman, Nor Fadhilah; Kumar, Satish; McFarlane, Alexander; Stach, Jem; Bentin, Thomas; Good, Liam

    2016-01-01

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance. PMID:26996206

  10. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes.

    PubMed

    Chindera, Kantaraja; Mahato, Manohar; Kumar Sharma, Ashwani; Horsley, Harry; Kloc-Muniak, Klaudia; Kamaruzzaman, Nor Fadhilah; Kumar, Satish; McFarlane, Alexander; Stach, Jem; Bentin, Thomas; Good, Liam

    2016-01-01

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance. PMID:26996206

  11. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... The definitions in section 3 of TSCA and in 40 CFR Part 792—Good Laboratory Practice Standards apply... after an S period of DNA replication, the nucleus does not go into mitosis but starts another S...

  12. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The definitions in section 3 of TSCA and in 40 CFR Part 792—Good Laboratory Practice Standards apply... after an S period of DNA replication, the nucleus does not go into mitosis but starts another S...

  13. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... The definitions in section 3 of TSCA and in 40 CFR Part 792—Good Laboratory Practice Standards apply... after an S period of DNA replication, the nucleus does not go into mitosis but starts another S...

  14. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... The definitions in section 3 of TSCA and in 40 CFR Part 792—Good Laboratory Practice Standards apply... after an S period of DNA replication, the nucleus does not go into mitosis but starts another S...

  15. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... The definitions in section 3 of TSCA and in 40 CFR Part 792—Good Laboratory Practice Standards apply... after an S period of DNA replication, the nucleus does not go into mitosis but starts another S...

  16. Selection and separation of X- and Y- chromosome-bearing mammalian sperm.

    PubMed

    Gledhill, B L

    1988-07-01

    Preselection of the gender of offspring is a subject that has held man's attention since the beginning of recorded history. Most scientific hypotheses for producing the desired sex of offspring address separation of X- and Y-bearing sperm, and most have had limited, if any success. Eight of these hypotheses and their experimental verifications are discussed here. Three hypotheses are based on physical characteristics of sperm, one on supposed differences in size and shape, another on differences in density, and a third on differences in surface charge. There has been no experimental verification of differences based on size and shape, and the results from attempts to verify separation of X- and Y-bearing sperm based on density have been mixed. Electrophoresis may provide a method for separating X- and Y-bearing sperm, but it is currently unproven and would be of little practical utility, since sperm motility is lost. A fourth hypothesis employs H-Y antigen to select preimplantation embryos. This method reliably produces female offspring, but does not permit the selection of male offspring and does not work on sperm. There are two applications of the theory that X- and Y-bearing sperm should be separable by flow fractionation. Flow fractionation using thermal convection, counter-streaming sedimentation, and galvanization is highly promoted by its originator but has not gained wide acceptance due to lack of independent confirmation. Flow fractionation by laminar flow is said to provide up to 80% enrichment of both X- and Y-bearing sperm; however, this method also has not been confirmed by other workers or tested in breeding trials. The sixth theory discussed is that of separation through Sephadex gel filtration. This method may provide enrichment of X-bearing sperm, but, again, other experimenters have not been able to adequately confirm the enrichment. The best-known approach to sperm separation is that employing albumin centrifugation, yet even with this method, not all researchers have been able to confirm a final fraction rich in Y sperm, and trials in animals have given contradictory results. The most reliable method for separating X- and Y-bearing sperm is use of flow cytometric and flow sorting techniques. These techniques routinely separate fractions with a purity greater than 80% and can be above 90%. Unfortunately, these methods do not always work for human samples. Furthermore, as with electrophoretic approaches, the methods identify and separate only chemically fixed sperm and provide limited biological applications.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3069686

  17. 40 CFR 799.9538 - TSCA mammalian bone marrow chromosomal aberration test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Endoreduplication is a process in which after an S period of DNA replication, the nucleus does not go into mitosis..., pharmacokinetics and DNA-repair processes although these may vary among species and among tissues. An in vivo...

  18. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the... procedures. Eds. Kilby, B.J., Legator, M. Nichols, C., Ramel, D., (Amsterdam: Elsevier/North...

  19. Chromosomal localization of the chicken and mammalian orthologues of the orphan phosphatase PHOSPHO1 gene.

    PubMed

    Houston, B; Paton, I R; Burt, D W; Farquharson, C

    2002-12-01

    PHOSPHO1 is a recently identified phosphatase expressed at high levels in the chicken growth plate and which may be involved in generating inorganic phosphate for skeletal matrix mineralization. Using a degenerate RT-PCR approach a fragment of human PHOSPHO1 was cloned. This enabled the identification of the human orthologue on HSA17q21, and the mouse orthologue on a region of MMU11 that exhibits conservation of synteny with HSA17q21. Chicken PHOSPHO1 was mapped by SSCP analysis to position 44 cM on GGA27, adjacent to the HOXB@ (44 cM) and COL1A1 (36 cM) loci. Comparison of genes on GGA27 with their orthologues on the preliminary draft of the human genome identifies regions of conserved synteny equivalent to 25 Mb on HSA17q21.2-23.3 and approximately 20 Mb on GGA27 in which the gene order appears to be conserved. Mapping of the PHOSPHO1 genes to regions of HSA17q21.3, MMU11 and GGA27 that exhibit conservation of synteny provides strong evidence that they are orthologous. PMID:12464021

  20. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Animals shall be randomized and assigned to treatment and control groups. (4) Control groups—(1... report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J...

  1. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the... used. Examples of commonly used rodent species are rats, mice, and hamsters. (ii) Age. Healthy...

  2. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the... used. Examples of commonly used rodent species are rats, mice, and hamsters. (ii) Age. Healthy...

  3. 40 CFR 799.9538 - TSCA mammalian bone marrow chromosomal aberration test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Endoreduplication is a process in which after an S period of DNA replication, the nucleus does not go into mitosis..., pharmacokinetics and DNA-repair processes although these may vary among species and among tissues. An in vivo...

  4. Familial transmission of a deletion of chromosome 21 derived from a translocation between chromosome 21 and an inverted chromosome 22.

    PubMed

    Aviv, H; Lieber, C; Yenamandra, A; Desposito, F

    1997-06-27

    Chromosome analysis of a newborn boy with Down syndrome resulted in the identification of a family with an unusual derivative chromosome 22. The child has 46 chromosomes, including two chromosomes 21, one normal chromosome 22, and a derivative chromosome 22. Giemsa banding and fluorescent in situ hybridization (FISH) studies show that the derivative chromosome is chromosome 22 with evidence of both paracentric and pericentric inversions, joined to the long arm of chromosome 21 from 21q21.2 to qter. The rearrangement results in partial trisomy 21 extending from 21q21.2 to 21q terminus in the patient. The child's mother, brother, maternal aunt, and maternal grandmother are all carriers of the derivative chromosome. All have 45 chromosomes, with one normal chromosome 21, one normal chromosome 22, and the derivative chromosome 22. The rearrangement results in the absence of the short arm, the centromere, and the proximal long arm of chromosome 21 (del 21pter-21q21.2) in carriers. Carriers of the derivative chromosome in this family have normal physical appearance, mild learning disabilities and poor social adjustment. PMID:9182781

  5. Multiple copies of SRY on the large Y chromosome of the Okinawa spiny rat, Tokudaia muenninki.

    PubMed

    Murata, Chie; Yamada, Fumio; Kawauchi, Norihiro; Matsuda, Yoichi; Kuroiwa, Asato

    2010-09-01

    The Okinawa spiny rat, Tokudaia muenninki, is the only species with a Y chromosome in the genus Tokudaia. Its phylogenic relationship with two XO/XO species, Tokudaia osimensis and Tokudaia tokunoshimensis, lacking a Y chromosome and the mammalian sex-determining gene SRY, is unknown. Furthermore, there has been little cytogenetic analysis of the sex chromosomes in T. muenninki. Therefore, we constructed molecular phylogenetic trees with nucleotide sequences of cyt b, RAG1, and IRBP. All trees strongly supported that T. muenninki was the first to diverge from the Tokudaia ancestor, indicating that loss of the Y chromosome and SRY occurred in the common ancestor of the two XO/XO species after T. muenninki diverged. We found that the X and Y chromosomes of T. muenninki consisted of large euchromatic and heterochromatic regions by conducting G- and C-banding analyses. PCR, Southern blotting, and FISH revealed that T. muenninki males had multiple SRY copies on the long arm of the Y chromosome. At least three of 24 SRY sequences contained a complete open reading frame (ORF). A species-specific substitution from alanine to serine was found in all copies at the DNA-binding surface within the HMG-box, suggesting that it occurred in an original SRY. PMID:20574822

  6. Pseudohomothallism and evolution of the mating-type chromosome in Neurospora tetrasperma

    SciTech Connect

    Merino, S.T.; Nelson, M.A.; Natvig, D.O.

    1996-06-01

    Ascospores of Neurospora tetrasperma normally contain nuclei of both mating-type idiomorphs (a and A), resulting in self-fertile heterokaryons (a type of sexual reproduction termed pseudohomothallism). Occasional homokaryotic self-sterile strains (either a or A) behave as heterothallics and, in principal, provide N. tetrasperma to assess levels of intrastrain heterokaryosis (heterozygosity). The unexpected result was the mating-type chromosome and autosomes exhibited very different patterns of evolution, apparently because of suppressed recombination between mating-type chromosomes. Analysis of sequences on the mating-type chromosomes of wild-collected self-fertile strains revealed high levels of genetic variability between sibling A and a nuclei. In contrast, sequences on autosomes of sibling A and a nuclei exhibited nearly complete homogeneity. Conservation of distinct haplotype combinations on A and a mating-type chromosomes in strains from diverse locations further suggested an absence of recombination over substantial periods of evolutionary time. The suppression of recombination of the N. tetrasperma mating-type chromosome, expected to ensure a high frequency of self fertility, presents an interesting parallel with, and possible model for studying aspects of, the evolution of mammalian sex chromosomes. 39 refs., 5 figs., 1 tab.

  7. Dgcr8 and Dicer are essential for sex chromosome integrity during meiosis in males

    PubMed Central

    Modzelewski, Andrew J.; Hilz, Stephanie; Crate, Elizabeth A.; Schweidenback, Caterina T. H.; Fogarty, Elizabeth A.; Grenier, Jennifer K.; Freire, Raimundo; Cohen, Paula E.; Grimson, Andrew

    2015-01-01

    ABSTRACT Small RNAs play crucial roles in regulating gene expression during mammalian meiosis. To investigate the function of microRNAs (miRNAs) and small interfering RNAs (siRNAs) during meiosis in males, we generated germ-cell-specific conditional deletions of Dgcr8 and Dicer in mice. Analysis of spermatocytes from both conditional knockout lines revealed that there were frequent chromosomal fusions during meiosis, always involving one or both sex chromosomes. RNA sequencing indicates upregulation of Atm in spermatocytes from miRNA-deficient mice, and immunofluorescence imaging demonstrates an increased abundance of activated ATM kinase and mislocalization of phosphorylated MDC1, an ATM phosphorylation substrate. The Atm 3′UTR contains many potential microRNA target sites, and, notably, target sites for several miRNAs depleted in both conditional knockout mice were highly effective at promoting repression. RNF8, a telomere-associated protein whose localization is controlled by the MDC1–ATM kinase cascade, normally associates with the sex chromosomes during pachytene, but in both conditional knockouts redistributed to the autosomes. Taken together, these results suggest that Atm dysregulation in microRNA-deficient germ lines contributes to the redistribution of proteins involved in chromosomal stability from the sex chromosomes to the autosomes, resulting in sex chromosome fusions during meiotic prophase I. PMID:25934699

  8. Pseudohomothallism and Evolution of the Mating-Type Chromosome in Neurospora Tetrasperma

    PubMed Central

    Merino, S. T.; Nelson, M. A.; Jacobson, D. J.; Natvig, D. O.

    1996-01-01

    Ascospores of Neurospora tetrasperma normally contain nuclei of both mating-type idiomorphs (a and A), resulting in self-fertile heterokaryons (a type of sexual reproduction termed pseudohomothallism). Occasional homokaryotic self-sterile strains (either a or A) behave as heterothallics and, in principle, provide N. tetrasperma with a means for facultative outcrossing. This study was conceived as an investigation of the population biology of N. tetrasperma to assess levels of intrastrain heterokaryosis (heterozygosity). The unexpected result was that the mating-type chromosome and autosomes exhibited very different patterns of evolution, apparently because of suppressed recombination between mating-type chromosomes. Analysis of sequences on the mating-type chromosomes of wild-collected self-fertile strains revealed high levels of genetic variability between sibling A and a nuclei. In contrast, sequences on autosomes of sibling A and a nuclei exhibited nearly complete homogeneity. Conservation of distinct haplotype combinations on A and a mating-type chromosomes in strains from diverse locations further suggested an absence of recombination over substantial periods of evolutionary time. The suppression of recombination on the N. tetrasperma mating-type chromosome, expected to ensure a high frequency of self fertility, presents an interesting parallel with, and possible model for studying aspects of, the evolution of mammalian sex chromosomes. PMID:8725227

  9. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals.

    PubMed

    Furlan, Giulia; Rougeulle, Claire

    2016-09-01

    X-chromosome inactivation (XCI) is a chromosome-wide regulatory process that ensures dosage compensation for X-linked genes in Theria. XCI is established during early embryogenesis and is developmentally regulated. Different XCI strategies exist in mammalian infraclasses and the regulation of this process varies also among closely related species. In Eutheria, initiation of XCI is orchestrated by a cis-acting locus, the X-inactivation center (Xic), which is particularly enriched in genes producing long noncoding RNAs (lncRNAs). Among these, Xist generates a master transcript that coats and propagates along the future inactive X-chromosome in cis, establishing X-chromosome wide transcriptional repression through interaction with several protein partners. Other lncRNAs also participate to the regulation of X-inactivation but the extent to which their function has been maintained in evolution is still poorly understood. In Metatheria, Xist is not conserved, but another, evolutionary independent lncRNA with similar properties, Rsx, has been identified, suggesting that lncRNA-mediated XCI represents an evolutionary advantage. Here, we review current knowledge on the interplay of X chromosome-encoded lncRNAs in ensuring proper establishment and maintenance of chromosome-wide silencing, and discuss the evolutionary implications of the emergence of species-specific lncRNAs in the control of XCI within Theria. WIREs RNA 2016, 7:702-722. doi: 10.1002/wrna.1359 For further resources related to this article, please visit the WIREs website. PMID:27173581

  10. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation

    PubMed Central

    Zhang, Teng; Zhou, Yang; Qi, Shu-Tao; Wang, Zhen-Bo; Qian, Wei-Ping; Ouyang, Ying-Chun; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2015-01-01

    Nuf2 plays an important role in kinetochore-microtubule attachment and thus is involved in regulation of the spindle assembly checkpoint in mitosis. In this study, we examined the localization and function of Nuf2 during mouse oocyte meiotic maturation. Myc6-Nuf2 mRNA injection and immunofluorescent staining showed that Nuf2 localized to kinetochores from germinal vesicle breakdown to metaphase I stages, while it disappeared from the kinetochores at the anaphase I stage, but relocated to kinetochores at the MII stage. Overexpression of Nuf2 caused defective spindles, misaligned chromosomes, and activated spindle assembly checkpoint, and thus inhibited chromosome segregation and metaphase-anaphase transition in oocyte meiosis. Conversely, precocious polar body extrusion was observed in the presence of misaligned chromosomes and abnormal spindle formation in Nuf2 knock-down oocytes, causing aneuploidy. Our data suggest that Nuf2 is a critical regulator of meiotic cell cycle progression in mammalian oocytes. PMID:26054848

  11. Construction, characterization and FISH mapping of a bacterial artificial chromosome library of Chinese pangolin (Manis pentadactyla).

    PubMed

    Che, J; Wang, J; Su, W; Ye, J; Wang, Y; Nie, W; Yang, F

    2008-01-01

    Chinese pangolins as a representative species in the order Pholidota have highly specified morphological characters and occupy an important place in the mammalian phylogenetic tree. To obtain genomic data for this species, we have constructed a bacterial artificial chromosome (BAC) library of Chinese pangolin. The library contains 208,272 clones with an average insert size of 122.1 kb and represents approximately eight times the Chinese pangolin haploid genome (if we assume that the Chinese pangolins have a genome size similar to human). One hundred and twenty randomly-selected BAC clones were mapped onto Chinese pangolin chromosomes by fluorescence in situ hybridization (FISH), showing a largely unbiased chromosomal distribution. Several clones containing repetitive DNA and ribosomal DNA genes were also found. The BAC library and FISH mapped BAC clones are useful resources for comparative genomics and cytogenetics of mammals and in particular, the ongoing genome sequencing project of Chinese pangolins. PMID:18931486

  12. Chromosomal damage observed in first postirradiation metaphases of repair-proficient and -deficient cell lines

    NASA Technical Reports Server (NTRS)

    Ritter, S.; Kraft-Weyrather, W.; Fussel, K.; Kehr, E.; Kraft, G.

    1994-01-01

    Investigation of radiation induced damage in mutant strains of mammalian cells which show a defect in the rejoining of DNA double strand breaks provides an unique opportunity to examine the role of double strand breaks and the mechanisms of double strand break rejoining in the production of chromosome aberrations. This is particularly important, because there is increasing evidence that the DNA double strand break is the major lesion responsible for the formation of chromosome aberrations. To address this issue, we studied the induction of chromosome aberrations in xrs-5 cells, an x-ray sensitive strain of a Chinese hamster ovary cell line, which shows a defect in the rejoining of double strand breaks and their wild-type parent CHO-cells. Because radiosensitivity depends strongly on cellular age, the experiments were performed with synchronous cells.

  13. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  14. A Comparative Study of Mammalian Diversification Pattern

    PubMed Central

    Yu, Wenhua; Xu, Junxiao; Wu, Yi; Yang, Guang

    2012-01-01

    Although mammals have long been regarded as a successful radiation, the diversification pattern among the clades is still poorly known. Higher-level phylogenies are conflicting and comprehensive comparative analyses are still lacking. Using a recently published supermatrix encompassing nearly all extant mammalian families and a novel comparative likelihood approach (MEDUSA), the diversification pattern of mammalian groups was examined. Both order- and family-level phylogenetic analyses revealed the rapid radiation of Boreoeutheria and Euaustralidelphia in the early mammalian history. The observation of a diversification burst within Boreoeutheria at approximately 100 My supports the Long Fuse model in elucidating placental diversification progress, and the rapid radiation of Euaustralidelphia suggests an important role of biogeographic dispersal events in triggering early Australian marsupial rapid radiation. Diversification analyses based on family-level diversity tree revealed seven additional clades with exceptional diversification rate shifts, six of which represent accelerations in net diversification rate as compared to the background pattern. The shifts gave origin to the clades Muridae+Cricetidae, Bovidae+Moschidae+Cervidae, Simiiformes, Echimyidae, Odontoceti (excluding Physeteridae+Kogiidae+Platanistidae), Macropodidae, and Vespertilionidae. Moderate to high extinction rates from background and boreoeutherian diversification patterns indicate the important role of turnovers in shaping the heterogeneous taxonomic richness observed among extant mammalian groups. Furthermore, the present results emphasize the key role of extinction on erasing unusual diversification signals, and suggest that further studies are needed to clarify the historical radiation of some mammalian groups for which MEDUSA did not detect exceptional diversification rates. PMID:22457604

  15. Meiosis and chromosome painting of sex chromosome systems in Ceboidea.

    PubMed

    Mudry, M D; Rahn, I M; Solari, A J

    2001-06-01

    The identity of the chromosomes involved in the multiple sex system of Alouatta caraya (Aca) and the possible distribution of this system among other Ceboidea were investigated by chromosome painting of mitotic cells from five species and by analysis of meiosis at pachytene in two species. The identity of the autosome #7 (X2) involved in the multiple system of Aca and its breakage points were demonstrated by both meiosis and chromosome painting. These features are identical to those described by Consigliere et al. [1996] in Alouatta seniculus sara (Assa) and Alouatta seniculus arctoidea (Asar). This multiple system was absent in the other four Ceboidea species studied here. However, data from the literature strongly suggest the presence of this multiple in other members of this genus. The presence of this multiple system among several species and subspecies that show high levels of chromosome rearrangements may suggest a special selective value of this multiple. The meiotic features of the sex systems of Aca and Cebus apella paraguayanus (Cap) are strikingly different at pachytene, as the latter system is similar to the sex pair of man and other primates. The relatively large genetic distances between species presently showing this multiple system suggest that its origin is not recent. Other members of the same genus should be investigated at meiosis and by chromosome painting in order to know the extent and distribution of this complex sex-chromosome system. PMID:11376445

  16. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  17. Telomere homeostasis in mammalian germ cells: a review.

    PubMed

    Reig-Viader, Rita; Garcia-Caldés, Montserrat; Ruiz-Herrera, Aurora

    2016-06-01

    Telomeres protect against genome instability and participate in chromosomal movements during gametogenesis, especially in meiosis. Thus, maintaining telomere structure and telomeric length is essential to both cell integrity and the production of germ cells. As a result, alteration of telomere homeostasis in the germ line may result in the generation of aneuploid gametes or gametogenesis disruption, triggering fertility problems. In this work, we provide an overview on fundamental aspects of the literature regarding the organization of telomeres in mammalian germ cells, paying special attention to telomere structure and function, as well as the maintenance of telomeric length during gametogenesis. Moreover, we discuss the different roles recently described for telomerase and TERRA in maintaining telomere functionality. Finally, we review how new findings in the field of reproductive biology underscore the role of telomere homeostasis as a potential biomarker for infertility. Overall, we anticipate that the study of telomere stability and equilibrium will contribute to improve diagnoses of patients; assess the risk of infertility in the offspring; and in turn, find new treatments. PMID:26525972

  18. Role of cysteines in mammalian VDAC isoforms' function.

    PubMed

    De Pinto, Vito; Reina, Simona; Gupta, Ankit; Messina, Angela; Mahalakshmi, Radhakrishnan

    2016-08-01

    In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at the amino acid level. Among others, cysteine content is noticeable. In humans, VDAC1 has 2, VDAC2 has 9 and VDAC3 has 6 cysteines. Recent works have shown that, at variance from VDAC1, VDAC2 and VDAC3 exhibit cysteines predicted to protrude towards the intermembrane space, making them a preferred target for oxidation by ROS. Mass spectrometry in VDAC3 revealed that a disulfide bridge can be formed and other cysteine oxidations are also detectable. Both VDAC2 and VDAC3 cysteines were mutagenized to highlight their role in vitro and in complementation assays in Δporin1 yeast. Chemico-physical techniques revealed an important function of cysteines in the structural stabilization of the pore. In conclusion, the works available on VDAC cysteines support the notion that the three proteins are paralogs with a similar pore-function and slightly different, but important, ancillary biological functions. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26947058

  19. Gene mapping and chromosome 19.

    PubMed Central

    Shaw, D J; Brook, J D; Meredith, A L; Harley, H G; Sarfarazi, M; Harper, P S

    1986-01-01

    Chromosome 19 is currently the most fully mapped of the smaller chromosomes, with about 40 loci assigned to it (HGM8). Major inherited disorders on this chromosome include myotonic dystrophy and familial hypercholesterolaemia. Other loci include five blood groups, a cluster of apolipoprotein genes, and the receptors for insulin and polio virus. A number of cloned genes and random DNA sequences identify polymorphisms which, together with blood group and other protein polymorphisms, have been used to establish a framework for ordering the loci and estimating genetic distances. Hybrid cell lines allow loci to be assigned to one of eight different regions and a detailed genetic map of the chromosome will be possible in the near future. PMID:3081724

  20. Origin and domestication of papaya Yh chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previo...

  1. Methods for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1995-01-01

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  2. The kinase VRK1 is required for normal meiotic progression in mammalian oogenesis.

    PubMed

    Schober, Carolyn S; Aydiner, Fulya; Booth, Carmen J; Seli, Emre; Reinke, Valerie

    2011-01-01

    The kinase VRK1 has been implicated in mitotic and meiotic progression in invertebrate species, but whether it mediates these events during mammalian gametogenesis is not completely understood. Previous work has demonstrated a role for mammalian VRK1 in proliferation of male spermatogonia, yet whether VRK1 plays a role in meiotic progression, as seen in Drosophila, has not been determined. Here, we have established a mouse strain bearing a gene trap insertion in the VRK1 locus that disrupts Vrk1 expression. In addition to the male proliferation defects, we find that reduction of VRK1 activity causes a delay in meiotic progression during oogenesis, results in the presence of lagging chromosomes during formation of the metaphase plate, and ultimately leads to the failure of oocytes to be fertilized. The activity of at least one phosphorylation substrate of VRK1, p53, is not required for these defects. These results are consistent with previously defined functions of VRK1 in meiotic progression in Drosophila oogenesis, and indicate a conserved role for VRK1 in coordinating proper chromosomal configuration in female meiosis. PMID:21277975

  3. Histone H3.3 maintains genome integrity during mammalian development

    PubMed Central

    Jang, Chuan-Wei; Shibata, Yoichiro; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2015-01-01

    Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development. PMID:26159997

  4. Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes

    PubMed Central

    Reis, Alexandra; Madgwick, Suzanne; Chang, Heng-Yu; Nabti, Ibtissem; Levasseur, Mark; Jones, Keith T

    2008-01-01

    Summary The first female meiotic division (MI) is uniquely prone to chromosome segregation errors through non-disjunction, resulting in trisomies and early pregnancy loss1. Here, we show a fundamental difference in the control of mammalian meiosis which may underlie such susceptibility. It involved a reversal in the well-established timing of activation of the Anaphase-Promoting Complex (APC)2, 3 by its co-activators cdc20 and cdh1. APCcdh1 was active first, during prometaphase I, and was needed in order to allow homologue congression, since loss of cdh1 speeded up MI, leading to premature chromosome segregation and a non-disjunction phenotype. APCcdh1 targeted cdc20 for degradation but not securin and cyclin B1. These were degraded later in MI through APCcdc20, making cdc20 re-synthesis essential for successful meiotic progression. The switch from APCcdh1 to APCcdc20 activity was controlled by increasing CDK1 and cdh1 loss. These findings demonstrate a fundamentally different mechanism of control for the first meiotic division in mammalian oocytes not observed in meioses of other species. PMID:17891138

  5. Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes.

    PubMed

    Reis, Alexandra; Madgwick, Suzanne; Chang, Heng-Yu; Nabti, Ibtissem; Levasseur, Mark; Jones, Keith T

    2007-10-01

    The first female meiotic division (meiosis I, MI) is uniquely prone to chromosome segregation errors through non-disjunction, resulting in trisomies and early pregnancy loss. Here, we show a fundamental difference in the control of mammalian meiosis that may underlie such susceptibility. It involves a reversal in the well-established timing of activation of the anaphase-promoting complex (APC) by its co-activators cdc20 and cdh1. APC(cdh1) was active first, during prometaphase I, and was needed in order to allow homologue congression, as loss of cdh1 speeded up MI, leading to premature chromosome segregation and a non-disjunction phenotype. APC(cdh1) targeted cdc20 for degradation, but did not target securin or cyclin B1. These were degraded later in MI through APC(cdc20), making cdc20 re-synthesis essential for successful meiotic progression. The switch from APC(cdh1) to APC(cdc20) activity was controlled by increasing CDK1 and cdh1 loss. These findings demonstrate a fundamentally different mechanism of control for the first meiotic division in mammalian oocytes that is not observed in meioses of other species. PMID:17891138

  6. Capacitation-Associated Glycocomponents of Mammalian Sperm.

    PubMed

    Liu, Min

    2016-05-01

    Mammalian fertilization is a series of events that are mostly carbohydrate mediated. The male gamete glycocomponents are extensively synthesized and modified during sperm development and sperm transport in the reproductive tracts. Freshly ejaculated mammalian sperm are required to undergo capacitation, which takes place in the female reproductive system, in order to become fully fertilizable. Several lines of evidence reveal changes in glycosylated sperm constituents during capacitation. Although the contributions of these molecular changes to capacitation are not completely understood, the presence, rearrangement, and/or modification of these sperm glycocomponents have been demonstrated to be important for fertilization. The following review summarizes mammalian sperm glycoconstituents, with emphasis on their molecular changes during capacitation. PMID:26363036

  7. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  8. Toward predictive models of mammalian cells.

    PubMed

    Ma'ayan, Avi; Blitzer, Robert D; Iyengar, Ravi

    2005-01-01

    Progress in experimental and theoretical biology is likely to provide us with the opportunity to assemble detailed predictive models of mammalian cells. Using a functional format to describe the organization of mammalian cells, we describe current approaches for developing qualitative and quantitative models using data from a variety of experimental sources. Recent developments and applications of graph theory to biological networks are reviewed. The use of these qualitative models to identify the topology of regulatory motifs and functional modules is discussed. Cellular homeostasis and plasticity are interpreted within the framework of balance between regulatory motifs and interactions between modules. From this analysis we identify the need for detailed quantitative models on the basis of the representation of the chemistry underlying the cellular process. The use of deterministic, stochastic, and hybrid models to represent cellular processes is reviewed, and an initial integrated approach for the development of large-scale predictive models of a mammalian cell is presented. PMID:15869393

  9. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  10. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  11. The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila.

    PubMed Central

    Rong, Yikang S; Golic, Kent G

    2003-01-01

    In recombinational DNA double-strand break repair a homologous template for gene conversion may be located at several different genomic positions: on the homologous chromosome in diploid organisms, on the sister chromatid after DNA replication, or at an ectopic position. The use of the homologous chromosome in mitotic gene conversion is thought to be limited in the yeast Saccharomyces cerevisiae and mammalian cells. In contrast, by studying the repair of double-strand breaks generated by the I-SceI rare-cutting endonuclease, we find that the homologous chromosome is frequently used in Drosophila melanogaster, which we suggest is attributable to somatic pairing of homologous chromosomes in mitotic cells of Drosophila. We also find that Drosophila mitotic cells of the germ line, like yeast, employ the homologous recombinational repair pathway more often than imperfect nonhomologous end joining. PMID:14704169

  12. Numerically abnormal chromosome constitutions in humans

    SciTech Connect

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  13. Chromosome Architecture and Genome Organization

    PubMed Central

    Bernardi, Giorgio

    2015-01-01

    How the same DNA sequences can function in the three-dimensional architecture of interphase nucleus, fold in the very compact structure of metaphase chromosomes and go precisely back to the original interphase architecture in the following cell cycle remains an unresolved question to this day. The strategy used to address this issue was to analyze the correlations between chromosome architecture and the compositional patterns of DNA sequences spanning a size range from a few hundreds to a few thousands Kilobases. This is a critical range that encompasses isochores, interphase chromatin domains and boundaries, and chromosomal bands. The solution rests on the following key points: 1) the transition from the looped domains and sub-domains of interphase chromatin to the 30-nm fiber loops of early prophase chromosomes goes through the unfolding into an extended chromatin structure (probably a 10-nm “beads-on-a-string” structure); 2) the architectural proteins of interphase chromatin, such as CTCF and cohesin sub-units, are retained in mitosis and are part of the discontinuous protein scaffold of mitotic chromosomes; 3) the conservation of the link between architectural proteins and their binding sites on DNA through the cell cycle explains the “mitotic memory” of interphase architecture and the reversibility of the interphase to mitosis process. The results presented here also lead to a general conclusion which concerns the existence of correlations between the isochore organization of the genome and the architecture of chromosomes from interphase to metaphase. PMID:26619076

  14. Microelasticity of Single Mitotic Chromosomes

    NASA Astrophysics Data System (ADS)

    Poirier, Michael; Eroglu, Sertac; Chatenay, Didier; Marko, John F.; Hirano, Tatsuya

    2000-03-01

    The force-extension behavior of mitotic chromosomes from the newt TVI tumor cell line was studied using micropipette manipulation and force measuring techniques. Reversible, linear elastic response was observed for extensions up to 5 times the native length; the force required to double chromosome length was 1 nanonewton (nN). For further elongations, the linear response teminates at a force plateau of 15 nN and at an extension of 20x. Beyond this extension, the chromosome breaks at elongations between 20x and 70x. These results will be compared to the similar behavior of mitotic chromosomes from explanted newt cells (Poirier, Eroglu, Chatenay and Marko, Mol. Biol. Cell, in press). Also, the effect of biochemical modifications on the elasticity was studied. Ethidium Bromide, which binds to DNA, induces up to a 10 times increase in the Young's modulus. Anti-XCAP-E, which binds to a putative chromosome folding protein, induces up to a 2 times increase in the Young's modulus. Preliminary results on the dynamical relaxation of chromosomes will also be presented. Support of this research through a Biomedical Engineering Research Grant from The Whitaker Foundation is gratefully acknowledged.

  15. Chromosome evolution in Neotropical butterflies.

    PubMed

    Saura, Anssi; Von Schoultz, Barbara; Saura, Anja O; Brown, Keith S

    2013-06-01

    We list the chromosome numbers for 65 species of Neotropical Hesperiidae and 104 species or subspecies of Pieridae. In Hesperiidae the tribe Pyrrhopygini have a modal n = 28, Eudaminae and Pyrgini a modal n = 31, while Hesperiinae have n = around 29. Among Pieridae, Coliadinae have a strong modal n = 31 and among Pierinae Anthocharidini are almost fixed for n = 15 while Pierini vary with n = 26 as the most common chromosome number. Dismorphiinae show wide variation. We discuss these results in the context of chromosome numbers of over 1400 Neotropical butterfly species and subspecies derived from about 3000 populations published here and in earlier papers of a series. The overall results show that many Neotropical groups are characterized by karyotype instability with several derived modal numbers or none at all, while almost all taxa of Lepidoptera studied from the other parts of the world have one of n = 29-31 as modal numbers. Possibly chromosome number changes become fixed in the course of speciation driven by biotic interactions. Population subdivision and structuring facilitate karyotype change. Factors that stabilize chromosome numbers include hybridization among species sharing the same number, migration, sexual selection and possibly the distribution of chromosomes within the nucleus. PMID:23865963

  16. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  17. The mammalian blastema: regeneration at our fingertips

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling

    2015-01-01

    Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans.

  18. Epigenetic Regulation of Mammalian Stem Cells

    PubMed Central

    Li, Xuekun

    2008-01-01

    Two critical properties of stem cells are self-renewal and multipotency. The maintenance of their “stemness” state and commitment to differentiation are therefore tightly controlled by intricate molecular networks. Epigenetic mechanisms, including DNA methylation, chromatin remodeling and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. Recent studies have shown that epigenetic regulators are key players in stem cell biology and their dysfunction can result in human diseases such as cancer and neurodevelopmental disorders. Here, we review the recent evidences that advance our knowledge in epigenetic regulations of mammalian stem cells, with focus on embryonic stem cells and neural stem cells. PMID:18393635

  19. Detection of apoptosis in mammalian development.

    PubMed

    Lin, Lin; Penaloza, Carlos; Ye, Yixia; Lockshin, Richard A; Zakeri, Zahra

    2009-01-01

    Mammalian development is dependent on an intricate orchestration of cell proliferation and death. Deregulation in the levels, localization, and type of cell death can lead to disease and even death of the developing embryo. The mechanisms involved in such deregulation are many; alterations and or manipulations of these can aid in the detection, prevention and possible treatments of any effects this de-regulation may have. Here we describe how cell death can be detected during mammalian development, using diverse staining and microscopy methods, while taking advantage of the advancements in cell death mechanisms, derived from biochemical and teratological studies in the field. PMID:19609762

  20. The Chromosome Microdissection and Microcloning Technique.

    PubMed

    Zhang, Ying-Xin; Deng, Chuan-Liang; Hu, Zan-Min

    2016-01-01

    Chromosome microdissection followed by microcloning is an efficient tool combining cytogenetics and molecular genetics that can be used for the construction of the high density molecular marker linkage map and fine physical map, the generation of probes for chromosome painting, and the localization and cloning of important genes. Here, we describe a modified technique to microdissect a single chromosome, paint individual chromosomes, and construct single-chromosome DNA libraries. PMID:27511173

  1. Human chromosomes: Structure, behavior, and effects

    SciTech Connect

    Therman, E.; Susman, M.

    1993-12-31

    The book `Human Chromosomes: Structure, Behavior, and Effects` covers the most important topics regarding human chromosomes and current research in cytogenetics. Attention is given both to structure and function of autosomes and sex chromosomes, as well as definitions and causes of chromosomal aberrations. This often involves discussion about various aspects of the cell cycle (both mitosis and meiosis). Methods and techniques involved in researching and mapping human chromosomes are also discussed.

  2. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  3. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  4. Localisation of the SMC loading complex Nipbl/Mau2 during mammalian meiotic prophase I.

    PubMed

    Visnes, T; Giordano, F; Kuznetsova, A; Suja, J A; Lander, A D; Calof, A L; Ström, L

    2014-06-01

    Evidence from lower eukaryotes suggests that the chromosomal associations of all the structural maintenance of chromosome (SMC) complexes, cohesin, condensin and Smc5/6, are influenced by the Nipbl/Mau2 heterodimer. Whether this function is conserved in mammals is currently not known. During mammalian meiosis, very different localisation patterns have been reported for the SMC complexes, and the localisation of Nipbl/Mau2 has just recently started to be investigated. Here, we show that Nipbl/Mau2 binds on chromosomal axes from zygotene to mid-pachytene in germ cells of both sexes. In spermatocytes, Nipbl/Mau2 then relocalises to chromocenters, whereas in oocytes it remains bound to chromosomal axes throughout prophase to dictyate arrest. The localisation pattern of Nipbl/Mau2, together with those seen for cohesin, condensin and Smc5/6 subunits, is consistent with a role as a loading factor for cohesin and condensin I, but not for Smc5/6. We also demonstrate that Nipbl/Mau2 localises next to Rad51 and γH2AX foci. NIPBL gene deficiencies are associated with the Cornelia de Lange syndrome in humans, and we find that haploinsufficiency of the orthologous mouse gene results in an altered distribution of double-strand breaks marked by γH2AX during prophase I. However, this is insufficient to result in major meiotic malfunctions, and the chromosomal associations of the synaptonemal complex proteins and the three SMC complexes appear cytologically indistinguishable in wild-type and Nipbl (+/-) spermatocytes. PMID:24287868

  5. Mutagenicity of Tris(2,3-dibromopropyl) phosphate in mammalian gonad and bone marrow tissue

    SciTech Connect

    Salamone, M.F.; Katz, M.

    1981-04-01

    The mutagenic and clastogenic (chromosome breaking) effects of the flame retardant Tris(2,3-dibromopropyl) phosphate (Tris-BP) were investigated in two mammalian in vivo assays, the bone marrow micronucleus test and the abnormal sperm head assay. Two potency of Tris-BP was determined in the Salmonella-mammalian microsome assay. Tris-BP was mutagenic in all three assays, in both mammalian tests, nearly toxic doses were required in B6C3F mice for positive mutagenic and clastogenic results. In the micronucleus test, Tris-BP was a weak clastogen, whereas in the abnormal sperm head assay, Tris-BP was observed to be strongly mutagenic. The abnormal sperm head data might imply genetic damage to germ tissue. The data suggested a means for possibly monitoring Tris-BP exposure. Thus besides being a strong mutagen on bacterial systems, Tris-BP was also a weak clastogen as detected in bone marrow cells and was a mutagen to gonad tissue.

  6. Mutagenic effect of a keV range N + beam on mammalian cells

    NASA Astrophysics Data System (ADS)

    Feng, Huiyun; Wu, Lijun; Yu, Lixiang; Han, Wei; Liu, Xuelan; Yu, Zengliang

    2005-07-01

    The radiobiological effects of a keV (5-20 keV) range nitrogen ion (N +) beam on mammalian cells were studied, particularly with regard to the induction of mutation in the cell genome. The experiment demonstrated that the 20 keV N + beam, which resulted in cell death to a certain extent, induced a 2-3 fold increase in the mutation rates at the CD59 gene locus of the mammalian A L cells as compared to the control. Within certain fluence ranges (0-6 × 10 14 N +/cm 2), the cell survival displayed a down-up-down pattern which is similar to the phenomenon known as 'hyper-radiosensitivity' manifested under low-dose irradiation; the CD59 mutation rate firstly showed a gradual rise up to a 3-fold increment above the background level as the ion fluence went up to 4 × 10 14 N +/cm 2, after this peak point however, a downtrend appeared though the ion fluence increased further. It was also observed that the fraction of CD59 mutation bears no proportional relation to ion energy in further experiments of mutation induction by N + beams with the incident energies of 5, 10, 15 and 20 keV at the same fluence of 3 × 10 14 N +/cm 2. Analyses of the deletion patterns of chromosome 11 in CD59- mutants induced by 5-20 keV N + beams showed that these ions did not result in large-size chromosome deletions in this mammalian cell system. A preliminary discussion, suggesting that the mutagenic effect of such low-energy ion influx on mammalian cells could result from multiple processes involving direct collision of particles with cellular DNA, and cascade atomic and molecular reactions due to plentiful primary and secondary particles, was also presented. The study provided the first glimpse into the roles low-energy ions may play in inducing mutagenesis in mammalian cells, and results will be of much value in helping people to understand the contribution of low-energy ions to radiological effects of various ionising radiations.

  7. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    PubMed

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations. PMID:25482192

  8. Chromosome breakage at a major fragile site associated with P-glycoprotein gene amplification in multidrug-resistant CHO cells.

    PubMed Central

    Kuo, M T; Vyas, R C; Jiang, L X; Hittelman, W N

    1994-01-01

    Recent studies of several drug-resistant Chinese hamster cell lines suggested that a breakage-fusion-bridge mechanism is frequently involved in the amplification of drug resistance genes. These observations underscore the importance of chromosome breakage in the initiation of DNA amplification in mammalian cells. However, the mechanism of this breakage is unknown. Here, we propose that the site of chromosome breakage consistent with the initial event of P-glycoprotein (P-gp) gene amplification via the breakage-fusion-bridge cycle in three independently established multidrug-resistant CHO cells was located at 1q31. This site is a major chromosome fragile site that can be induced by methotrexate and aphidicolin treatments. Pretreatments of CHO cells with methotrexate or aphidicolin enhanced the frequencies of resistance to vinca alkaloid and amplification of the P-gp gene. These observations suggest that chromosome fragile sites play a pivotal role in DNA amplification in mammalian cells. Our data are also consistent with the hypothesis that gene amplification can be initiated by stress-induced chromosome breakage that is independent of modes of action of cytotoxic agents. Drug-resistant variants may arise by their growth advantage due to overproduction of cellular target molecules via gene amplification. Images PMID:7913517

  9. Chromosome breakage at a major fragile site associated with P-glycoprotein gene amplification in multidrug-resistant CHO cells.

    PubMed

    Kuo, M T; Vyas, R C; Jiang, L X; Hittelman, W N

    1994-08-01

    Recent studies of several drug-resistant Chinese hamster cell lines suggested that a breakage-fusion-bridge mechanism is frequently involved in the amplification of drug resistance genes. These observations underscore the importance of chromosome breakage in the initiation of DNA amplification in mammalian cells. However, the mechanism of this breakage is unknown. Here, we propose that the site of chromosome breakage consistent with the initial event of P-glycoprotein (P-gp) gene amplification via the breakage-fusion-bridge cycle in three independently established multidrug-resistant CHO cells was located at 1q31. This site is a major chromosome fragile site that can be induced by methotrexate and aphidicolin treatments. Pretreatments of CHO cells with methotrexate or aphidicolin enhanced the frequencies of resistance to vinca alkaloid and amplification of the P-gp gene. These observations suggest that chromosome fragile sites play a pivotal role in DNA amplification in mammalian cells. Our data are also consistent with the hypothesis that gene amplification can be initiated by stress-induced chromosome breakage that is independent of modes of action of cytotoxic agents. Drug-resistant variants may arise by their growth advantage due to overproduction of cellular target molecules via gene amplification. PMID:7913517

  10. Yeast ribosomal proteins: XIII. Saccharomyces cerevisiae YL8A gene, interrupted with two introns, encodes a homolog of mammalian L7.

    PubMed Central

    Mizuta, K; Hashimoto, T; Otaka, E

    1992-01-01

    We isolated and sequenced a gene, YL8A, encoding ribosomal protein YL8 of Saccharomyces cerevisiae. It is one of the two duplicated genes encoding YL8 and is located on chromosome VII while the other is on chromosome XVI. The haploid strains carrying disrupted YL8A grew more slowly than the parent strain. The open reading frame is interrupted with two introns. The predicted amino acid sequence reveals that yeast YL8 is a homolog of mammalian ribosomal protein L7, E.coli L30 and others. Images PMID:1549461

  11. The cytogenetics of mammalian autosomal rearrangements

    SciTech Connect

    Daniel, A.

    1988-01-01

    Combining data from animal and clinical studies with classical cytogenetic observations, the volume provides information on various aspects of mammalian autosomal rearrangements. Topics range from the reproductive consequences to carriers of autosomal rearrangements to the application of structural rearrangements and DNA probes to gene mapping. In addition, the book presents an overview of new perspectives and future directions for research.

  12. Mammalian PGRPs also mind the fort.

    PubMed

    Rubino, Stephen; Lee, Jooeun; Girardin, Stephen E

    2010-08-19

    Peptidoglycan recognition proteins (PGRPs or Pglyrps) regulate antibacterial responses in Drosophila, yet their functions in humans remain unclear. In this issue of Cell Host & Microbe, Saha and colleagues report that mammalian PGRPs can prevent aberrant interferon-gamma--induced inflammatory damage in vivo by modulating the composition of the intestinal bacterial flora. PMID:20709290

  13. Architecture of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2014-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The fourteen conserved ‘core’ subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 ‘supernumerary’ subunits are unknown. Here, we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we significantly advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases. PMID:25209663

  14. Crossroads between Bacterial and Mammalian Glycosyltransferases

    PubMed Central

    Brockhausen, Inka

    2014-01-01

    Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures. PMID:25368613

  15. A promoter-level mammalian expression atlas

    PubMed Central

    2015-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research. PMID:24670764

  16. Isolation of genomic DNA from mammalian cells.

    PubMed

    Koh, Cheryl M

    2013-01-01

    The isolation of genomic DNA from mammalian cells is a routine molecular biology laboratory technique with numerous downstream applications. The isolated DNA can be used as a template for PCR, cloning, and genotyping and to generate genomic DNA libraries. It can also be used for sequencing to detect mutations and other alterations, and for DNA methylation analyses. PMID:24011044

  17. [Placental developmental defects in cloned mammalian animals].

    PubMed

    Ao, Zheng; Liu, Dewu; Cai, Gengyuan; Wu, Zhenfang; Li, Zicong

    2016-05-01

    The cloning technique, also called somatic cell nuclear transfer (SCNT), has been successfully established and gradually applied to various mammalian species. However, the developmental rate of SCNT mammalian embryos is very low, usually at 1% to 5%, which limits the application of SCNT. Placental developmental defects are considered as the main cause of SCNT embryo development inhibition. Almost all of SCNT-derived mammalian placentas exhibit various abnormalities, such as placental hyperplasia, vascular defects and umbilical cord malformation. Mechanistically, these abnormalities result from failure of establishment of correct epigenetic modification in the trophectoderm genome, which leads to erroneous expression of important genes for placenta development-related, particularly imprinted genes. Consequently, aberrant imprinted gene expression gives rise to placental morphologic abnormalities and functional defects, therefore decreases developmental competence of cloned embryos. Currently, although numerous methods that can improve the developmental ability of SCNT-derived embryos have been reported, most of them are unable to substantially enhance the success rate of SCNT due to failure to eliminate the placental development defects. In this review, we summarize placental abnormalities and imprinted gene expression in mammalian cloning, and propose directions for the future research aiming to improve the cloning efficiency. PMID:27232488

  18. MAMMALIAN CELL MUTAGENESIS, BANBURY CONFERENCE (JOURNAL VERSION)

    EPA Science Inventory

    A conference on mammalian cell mutagenesis was held at the Banbury Center, Cold Spring Harbor, NY, USA, March 22-25, 1987. The objective of the conference was to provide a forum for discussions concerning the genetic, biochemical, and molecular basis of induced mutations in stand...

  19. Structure of mammalian respiratory complex I.

    PubMed

    Zhu, Jiapeng; Vinothkumar, Kutti R; Hirst, Judy

    2016-08-18

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis. PMID:27509854

  20. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  1. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  2. Cold shock response in mammalian cells.

    PubMed

    Fujita, J

    1999-11-01

    Compared to bacteria and plants, the cold shock response has attracted little attention in mammals except in some areas such as adaptive thermogenesis, cold tolerance, storage of cells and organs, and recently, treatment of brain damage and protein production. At the cellular level, some responses of mammalian cells are similar to microorganisms; cold stress changes the lipid composition of cellular membranes, and suppresses the rate of protein synthesis and cell proliferation. Although previous studies have mostly dealt with temperatures below 20 degrees C, mild hypothermia (32 degrees C) can change the cell's response to subsequent stresses as exemplified by APG-1, a member of the HSP110 family. Furthermore, 32 degrees C induces expression of CIRP (cold-inducible RNA-binding protein), the first cold shock protein identified in mammalian cells, without recovery at 37 degrees C. Remniscent of HSP, CIRP is also expressed at 37 degrees C and developmentary regulated, possibly working as an RNA chaperone. Mammalian cells are metabolically active at 32 degrees C, and cells may survive and respond to stresses with different strategies from those at 37 degrees C. Cellular and molecular biology of mammalian cells at 32 degrees C is a new area expected to have considerable implications for medical sciences and possibly biotechnology. PMID:10943555

  3. AMMONIA REMOVAL FROM MAMMALIAN CELL CULTURE MEDIUM

    EPA Science Inventory

    Metabolites such as ammonia and lactic formed during mammalian cell culture can frequently be toxic to the cells themselves beyond a threshold concentration of the metabolites. ell culture conducted in the presence of such accumulated metabolites is therefore limited in productiv...

  4. Ticks Take Cues from Mammalian Interferon.

    PubMed

    de Silva, Aravinda M

    2016-07-13

    Interferons are considered a first line of immune defense restricted to vertebrates. In this issue of Cell Host & Microbe, Smith et al. (2016) demonstrate that mammalian interferon γ activates an antimicrobial response within ticks feeding on blood. The study suggests that arthropods have a parallel interferon-like defense system. PMID:27414493

  5. Genomics in mammalian cell culture bioprocessing

    PubMed Central

    Wuest, Diane M.; Harcum, Sarah W.; Lee, Kelvin H.

    2013-01-01

    Explicitly identifying the genome of a host organism including sequencing, mapping, and annotating its genetic code has become a priority in the field of biotechnology with aims at improving the efficiency and understanding of cell culture bioprocessing. Recombinant protein therapeutics, primarily produced in mammalian cells, constitute a $108 billion global market. The most common mammalian cell line used in biologic production processes is the Chinese hamster ovary (CHO) cell line, and although great improvements have been made in titer production over the past 25 years, the underlying molecular and physiological factors are not well understood. Confident understanding of CHO bioprocessing elements (e.g. cell line selection, protein production, and reproducibility of process performance and product specifications) would significantly improve with a well understood genome. This review describes mammalian cell culture use in bioprocessing, the importance of obtaining CHO cell line genetic sequences, and the current status of sequencing efforts. Furthermore, transcriptomic techniques and gene expression tools are presented, and case studies exploring genomic techniques and applications aimed to improve mammalian bioprocess performance are reviewed. Finally, future implications of genomic advances are surmised. PMID:22079893

  6. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  7. Chromosome photoinactivation, a new method for high speed chromosome sorting

    SciTech Connect

    Martin, J.C.; Park, M.; Han, K.T.; Cram, L.S. )

    1993-01-01

    A new optical high-speed chromosome sorting concept is under development which relies on chromosome inactivation rather than droplet sorting to meet the demands of large volume sorting for cloning into large insert vectors. Inactivation can be achieved by photosensitizing and cross-linking metaphase chromosomes. By eliminating the need to create droplets, sorting rates 50 to 100 times faster than the sorting rates of commercial sorters will be achieved. Preliminary experiments using 8-methoxy psoralen in combination with UV doses of about 20 kJ/m2 have shown that: (1) DNA is cross-linked and remains double stranded even under denaturing conditions, (2) the ability of psoralen treated plasmid DNA to transect E. coli XL1-Blue cells is totally blocked following UV exposure, and (3) an average of one interstrand cross-link per 6 kb is produced with these UV doses.

  8. The lighthouse at the end of the chromosome*

    PubMed Central

    Benslimane, Yahya; Harrington, Lea

    2015-01-01

    Fluorescence microscopy can be used to assess the dynamic localization and intensity of single entities in vitro or in living cells. It has been applied with aplomb to many different cellular processes and has significantly enlightened our understanding of the heterogeneity and complexity of biological systems. Recently, high-resolution fluorescence microscopy has been brought to bear on telomeres, leading to new insights into telomere spatial organization and accessibility, and into the mechanistic nuances of telomere elongation. We provide a snapshot of some of these recent advances with a focus on mammalian systems, and show how three-dimensional, time-lapse microscopy and single-molecule fluorescence shine a new light on the end of the chromosome. PMID:26918148

  9. Structure and chromosomal localization of the human renal kallikrein gene

    SciTech Connect

    Evans, B.A.; Yun, Z.X.; Close, J.A.; Tregear, G.W.; Kitamura, N.; Nakanish, S.; Callen, D.F.; Baker, E.; Hyland, V.J.; Sutherland, G.R.; Richards, R.I.

    1988-05-03

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7.

  10. The lighthouse at the end of the chromosome.

    PubMed

    Benslimane, Yahya; Harrington, Lea

    2015-01-01

    Fluorescence microscopy can be used to assess the dynamic localization and intensity of single entities in vitro or in living cells. It has been applied with aplomb to many different cellular processes and has significantly enlightened our understanding of the heterogeneity and complexity of biological systems. Recently, high-resolution fluorescence microscopy has been brought to bear on telomeres, leading to new insights into telomere spatial organization and accessibility, and into the mechanistic nuances of telomere elongation. We provide a snapshot of some of these recent advances with a focus on mammalian systems, and show how three-dimensional, time-lapse microscopy and single-molecule fluorescence shine a new light on the end of the chromosome. PMID:26918148

  11. Multiplexed analysis of chromosome conformation at vastly improved sensitivity

    PubMed Central

    Davies, James O.J.; Telenius, Jelena M.; McGowan, Simon; Roberts, Nigel A.; Taylor, Stephen; Higgs, Douglas R.; Hughes, Jim R.

    2015-01-01

    Since methods for analysing chromosome conformation in mammalian cells are either low resolution or low throughput and are technically challenging they are not widely used outside of specialised laboratories. We have re-designed the Capture-C method producing a new approach, called next generation (NG) Capture-C. This produces unprecedented levels of sensitivity and reproducibility and can be used to analyse many genetic loci and samples simultaneously. Importantly, high-resolution data can be produced on as few as 100,000 cells and SNPs can be used to generate allele specific tracks. The method is straightforward to perform and should therefore greatly facilitate the task of linking SNPs identified by genome wide association studies with the genes they influence. The complete and detailed protocol presented here, with new publicly available tools for library design and data analysis, will allow most laboratories to analyse chromatin conformation at levels of sensitivity and throughput that were previously impossible. PMID:26595209

  12. Chromosome segregation in plant meiosis

    PubMed Central

    Zamariola, Linda; Tiang, Choon Lin; De Storme, Nico; Pawlowski, Wojtek; Geelen, Danny

    2014-01-01

    Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved. PMID:24987397

  13. The degeneration of Y chromosomes.

    PubMed

    Charlesworth, B; Charlesworth, D

    2000-11-29

    Y chromosomes are genetically degenerate, having lost most of the active genes that were present in their ancestors. The causes of this degeneration have attracted much attention from evolutionary theorists. Four major theories are reviewed here: Muller's ratchet, background selection, the Hill Robertson effect with weak selection, and the 'hitchhiking' of deleterious alleles by favourable mutations. All of these involve a reduction in effective population size as a result of selective events occurring in a non-recombining genome, and the consequent weakening of the efficacy of selection. We review the consequences of these processes for patterns of molecular evolution and variation at loci on Y chromosomes, and discuss the results of empirical studies of these patterns for some evolving Y-chromosome and neo-Y-chromosome systems. These results suggest that the effective population sizes of evolving Y or neo-Y chromosomes are severely reduced, as expected if some or all of the hypothesized processes leading to degeneration are operative. It is, however, currently unclear which of the various processes is most important; some directions for future work to help to resolve this question are discussed. PMID:11127901

  14. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  15. Chromosomally-retained RNA mediates homologous pairing.

    PubMed

    Ding, Da-Qiao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2012-01-01

    Pairing and recombination of homologous chromosomes are essential for ensuring correct segregation of chromosomes in meiosis. In S. pombe, chromosomes are first bundled at the telomeres (forming a telomere bouquet) and then aligned by oscillatory movement of the elongated "horsetail" nucleus. Telomere clustering and subsequent chromosome alignment promote pairing of homologous chromosomes. However, this telomere-bundled alignment of chromosomes cannot be responsible for the specificity of chromosome pairing. Thus, there must be some mechanism to facilitate recognition of homologous partners after telomere clustering. Recent studies in S. pombe have shown that RNA transcripts retained on the chromosome, or RNA bodies, may play a role in recognition of homologous chromosomes for pairing. Acting as fiducial markers of homologous loci they would abrogate the need for direct DNA sequence homology searching. PMID:23117617

  16. Structure and function of eukaryotic chromosomes

    SciTech Connect

    Hennig, W.

    1987-01-01

    Contents: Introduction; Polytene Chromosomel Giant Chromosomes in Ciliates; The sp-I Genes in the Balbiani Rings of Chironomus Salivary Glands; The White Locus of Drosophila Melanogaster; The Genetic and Molecular Organization of the Dense Cluster of Functionally Related Vital Genes in the DOPA Decarboxylase Region of the Drosophila melanogaster Genome; Heat Shock Puffs and Response to Environmental Stress; The Y Chromosomal Lampbrush Loops of Drosophila; Contributions of Electron Microscopic Spreading Preparations (''Miller Spreads'') to the Analysis of Chromosome Structure; Replication of DNA in Eukaryotic Chromosomes; Gene Amplification in Dipteran Chromosomes; The Significance of Plant Transposable Elements in Biologically Relevant Processes; Arrangement of Chromosomes in Interphase Cell Nuclei; Heterochromatin and the Phenomenon of Chromosome Banding; Multiple Nonhistone Protein-DNA Complexes in Chromatin Regulate the Cell- and Stage-Specific Activity of an Eukaryotic Gene; Genetics of Sex Determination in Eukaryotes; Application of Basic Chromosome Research in Biotechnology and Medicine. This book presents an overview of various aspects of chromosome research.

  17. Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression

    PubMed Central

    Roig, Joan; Mikhailov, Alexei; Belham, Christopher; Avruch, Joseph

    2002-01-01

    The protein kinase NIMA is an indispensable pleiotropic regulator of mitotic progression in Aspergillus. Although several mammalian NIMA-like kinases (Neks) are known, none appears to have the broad importance for mitotic regulation attributed to NIMA. Nercc1 is a new NIMA-like kinase that regulates chromosome alignment and segregation in mitosis. Its NIMA-like catalytic domain is followed by a noncatalytic tail containing seven repeats homologous to those of the Ran GEF, RCC1, a Ser/Thr/Pro-rich segment, and a coiled-coil domain. Nercc1 binds to another NIMA-like kinase, Nek6, and also binds specifically to the Ran GTPase through both its catalytic and its RCC1-like domains, preferring RanGDP in vivo. Nercc1 exists as a homooligomer and can autoactivate in vitro by autophosphorylation. Nercc1 is a cytoplasmic protein that is activated during mitosis and is avidly phosphorylated by active p34Cdc2. Microinjection of anti-Nercc1 antibodies in prophase results in spindle abnormalities and/or chromosomal misalignment. In Ptk2 cells the outcome is prometaphase arrest or aberrant chromosome segregation and aneuploidy, whereas in CFPAC-1 cells prolonged arrest in prometaphase is the usual response. Nercc1 and its partner Nek6 represent a new signaling pathway that regulates mitotic progression. PMID:12101123

  18. Mechanism of Suppression of Chromosomal Instability by DNA Polymerase POLQ

    PubMed Central

    Yousefzadeh, Matthew J.; Wyatt, David W.; Takata, Kei-ichi; Mu, Yunxiang; Hensley, Sean C.; Tomida, Junya; Bylund, Göran O.; Doublié, Sylvie; Johansson, Erik; Ramsden, Dale A.; McBride, Kevin M.; Wood, Richard D.

    2014-01-01

    Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ. Using a DNA break end joining assay in cells, we monitored repair of DNA ends with long 3′ single-stranded overhangs. End joining events retaining much of the overhang were dependent on POLQ, and independent of Ku70. To analyze the repair function in more detail, we examined immunoglobulin class switch joining between DNA segments in antibody genes. POLQ participates in end joining of a DNA break during immunoglobulin class-switching, producing insertions of base pairs at the joins with homology to IgH switch-region sequences. Biochemical experiments with purified human POLQ protein revealed the mechanism generating the insertions during DNA end joining, relying on the unique ability of POLQ to extend DNA from minimally paired primers. DNA breaks at the IgH locus can sometimes join with breaks in Myc, creating a chromosome translocation. We found a marked increase in Myc/IgH translocations in Polq-defective mice, showing that POLQ suppresses genomic instability and genome rearrangements originating at DNA double-strand breaks. This work clearly defines a role and mechanism for mammalian POLQ in an alternative end joining pathway that suppresses the formation of chromosomal translocations. Our findings depart from the prevailing view that alternative end joining processes are generically translocation-prone. PMID:25275444

  19. Multicolor fluorescence in situ hybridization with centromeric DNA probes as a new approach to distinguish chromosome breakage from aneuploidy in interphase cells and micronuclei

    SciTech Connect

    Eastmond, D.A.; Rupa, D.S.; Chen, H.W.; Hasegawa, L.

    1993-12-31

    Chromosomal abnormalities are believed to contribute significantly to human reproductive failure, carcinogenesis and other pathophysiological conditions. For example, approximately 15% of recognized pregnancies terminate in spontaneous abortion, and of these approximately 30% have been shown to be chromosomally abnormal. The contribution of chromosomal abnormalities to early embryonic and fetal death appears to decrease with gestational age, suggesting that as many as 67% of the aborted embryos in early embryonic deaths are chromosomally abnormal. Furthermore, clinically significant chromosomal abnormalities can also be found to be present in approximately 0.58 to 0.67% of live births. These figures indicate that within a given year, hundreds of thousands of chromosomally abnormal babies will be born throughout the world and additional millions of chromosomally abnormal embryos will have been spontaneously aborted. For the past several years, our research has focused on utilizing new molecular cytogenetic techniques to develop assays for detecting aneuploidy-inducing agents in mammalian cells. One approach that we have sucessfully employed involves the use of fluorescence in situ hybridization with chromosome-specific DNA probes to determine the number of copies of a representative chromosome present within the nucleus following chemical exposure. DNA sequences (probes) which hybridize to blocks of repetitive centromeric DNA on specific chromosomes have been developed for most of the human chromosomes. In situ hybridization with these probes results in the staining of a compact chromosomal region which can be easily detected in interphase nuclei. The presence of 3 (or more) hybridization domains in an interphase nucleus indicates the presence of three centromeric regions and has been presumed to indicate that three copies of the entire chromosome were present in the nucleus.

  20. The non-coding RNA composition of the mitotic chromosome by 5′-tag sequencing

    PubMed Central

    Meng, Yicong; Yi, Xianfu; Li, Xinhui; Hu, Chuansheng; Wang, Ju; Bai, Ling; Czajkowsky, Daniel M.; Shao, Zhifeng

    2016-01-01

    Mitotic chromosomes are one of the most commonly recognized sub-cellular structures in eukaryotic cells. Yet basic information necessary to understand their structure and assembly, such as their composition, is still lacking. Recent proteomic studies have begun to fill this void, identifying hundreds of RNA-binding proteins bound to mitotic chromosomes. However, by contrast, there are only two RNA species (U3 snRNA and rRNA) that are known to be associated with the mitotic chromosome, suggesting that there are many mitotic chromosome-associated RNAs (mCARs) not yet identified. Here, using a targeted protocol based on 5′-tag sequencing to profile the mammalian mCAR population, we report the identification of 1279 mCARs, the majority of which are ncRNAs, including lncRNAs that exhibit greater conservation across 60 vertebrate species than the entire population of lncRNAs. There is also a significant enrichment of snoRNAs and specific SINE RNAs. Finally, ∼40% of the mCARs are presently unannotated, many of which are as abundant as the annotated mCARs, suggesting that there are also many novel ncRNAs in the mCARs. Overall, the mCARs identified here, together with the previous proteomic and genomic data, constitute the first comprehensive catalogue of the molecular composition of the eukaryotic mitotic chromosomes. PMID:27016738

  1. Chromosomal double-strand break repair in Ku80-deficient cells.

    PubMed Central

    Liang, F; Romanienko, P J; Weaver, D T; Jeggo, P A; Jasin, M

    1996-01-01

    The x-ray sensitive hamster cell line xrs-6 is deficient in DNA double-strand break (DSB) repair and exhibits impaired V(D)J recombination. The molecular defect in this line is in the 80-kDa subunit of the Ku autoantigen, a protein that binds to DNA ends and recruits the DNA-dependent protein kinase to DNA. Using an I-SceI endonuclease expression system, chromosomal DSB repair was examined in xrs-6 and parental CHO-K1 cell lines. A DSB in chromosomal DNA increased the yield of recombinants several thousand-fold above background in both the xrs-6 and CHO-K1 cells, with recombinational repair of DSBs occurring in as many as 1 of 100 cells electroporated with the endonuclease expression vector. Thus, recombinational repair of chromosomal DSBs can occur at substantial levels in mammalian cells and it is not grossly affected in our assay by a deficiency of the Ku autoantigen. Rejoining of broken chromosome ends (end-joining) near the site of the DSB was also examined. In contrast to recombinational repair, end-joining was found to be severely impaired in the xrs-6 cells. Thus, the Ku protein appears to play a critical role in only one of the chromosomal DSB repair pathways. Images Fig. 1 Fig. 2 PMID:8799130

  2. Chromosome painting among Proboscidea, Hyracoidea and Sirenia: Support for Paenungulata (Afrotheria, Mammalia) but not Tethytheria

    USGS Publications Warehouse

    Pardini, A.T.; O'Brien, P. C. M.; Fu, B.; Bonde, R.K.; Elder, F.F.B.; Ferguson-Smith, M. A.; Yang, F.; Robinson, T.J.

    2007-01-01

    Despite marked improvements in the interpretation of systematic relationships within Eutheria, particular nodes, including Paenungulata (Hyracoidea, Sirenia and Proboscidea), remain ambiguous. The combination of a rapid radiation, a deep divergence and an extensive morphological diversification has resulted in a limited phylogenetic signal confounding resolution within this clade both at the morphological and nucleotide levels. Cross-species chromosome painting was used to delineate regions of homology between Loxodonta africana (2n = 56), Procavia capensis (2n=54), Trichechus manatus latirostris (2n = 48) and an outgroup taxon, the aardvark (Orycteropus afer, 2n = 20). Changes specific to each lineage were identified and although the presence of a minimum of 11 synapomorphies confirmed the monophyly of Paenungulata, no change characterizing intrapaenungulate relationships was evident. The reconstruction of an ancestral paenungulate karyotype and the estimation of rates of chromosomal evolution indicate a reduced rate of genomic repatterning following the paenungulate radiation. In comparison to data available for other mammalian taxa, the paenungulate rate of chromosomal evolution is slow to moderate. As a consequence, the absence of a chromosomal character uniting two paenungulates (at the level of resolution characterized in this study) may be due to a reduced rate of chromosomal change relative to the length of time separating successive divergence events. ?? 2007 The Royal Society.

  3. The non-coding RNA composition of the mitotic chromosome by 5'-tag sequencing.

    PubMed

    Meng, Yicong; Yi, Xianfu; Li, Xinhui; Hu, Chuansheng; Wang, Ju; Bai, Ling; Czajkowsky, Daniel M; Shao, Zhifeng

    2016-06-01

    Mitotic chromosomes are one of the most commonly recognized sub-cellular structures in eukaryotic cells. Yet basic information necessary to understand their structure and assembly, such as their composition, is still lacking. Recent proteomic studies have begun to fill this void, identifying hundreds of RNA-binding proteins bound to mitotic chromosomes. However, by contrast, there are only two RNA species (U3 snRNA and rRNA) that are known to be associated with the mitotic chromosome, suggesting that there are many mitotic chromosome-associated RNAs (mCARs) not yet identified. Here, using a targeted protocol based on 5'-tag sequencing to profile the mammalian mCAR population, we report the identification of 1279 mCARs, the majority of which are ncRNAs, including lncRNAs that exhibit greater conservation across 60 vertebrate species than the entire population of lncRNAs. There is also a significant enrichment of snoRNAs and specific SINE RNAs. Finally, ∼40% of the mCARs are presently unannotated, many of which are as abundant as the annotated mCARs, suggesting that there are also many novel ncRNAs in the mCARs. Overall, the mCARs identified here, together with the previous proteomic and genomic data, constitute the first comprehensive catalogue of the molecular composition of the eukaryotic mitotic chromosomes. PMID:27016738

  4. Chromosome painting among Proboscidea, Hyracoidea and Sirenia: support for Paenungulata (Afrotheria, Mammalia) but not Tethytheria.

    PubMed

    Pardini, A T; O'Brien, P C M; Fu, B; Bonde, R K; Elder, F F B; Ferguson-Smith, M A; Yang, F; Robinson, T J

    2007-05-22

    Despite marked improvements in the interpretation of systematic relationships within Eutheria, particular nodes, including Paenungulata (Hyracoidea, Sirenia and Proboscidea), remain ambiguous. The combination of a rapid radiation, a deep divergence and an extensive morphological diversification has resulted in a limited phylogenetic signal confounding resolution within this clade both at the morphological and nucleotide levels. Cross-species chromosome painting was used to delineate regions of homology between Loxodonta africana (2n=56), Procavia capensis (2n=54), Trichechus manatus latirostris (2n=48) and an outgroup taxon, the aardvark (Orycteropus afer, 2n=20). Changes specific to each lineage were identified and although the presence of a minimum of 11 synapomorphies confirmed the monophyly of Paenungulata, no change characterizing intrapaenungulate relationships was evident. The reconstruction of an ancestral paenungulate karyotype and the estimation of rates of chromosomal evolution indicate a reduced rate of genomic repatterning following the paenungulate radiation. In comparison to data available for other mammalian taxa, the paenungulate rate of chromosomal evolution is slow to moderate. As a consequence, the absence of a chromosomal character uniting two paenungulates (at the level of resolution characterized in this study) may be due to a reduced rate of chromosomal change relative to the length of time separating successive divergence events. PMID:17374594

  5. Adults with Chromosome 18 Abnormalities.

    PubMed

    Soileau, Bridgette; Hasi, Minire; Sebold, Courtney; Hill, Annice; O'Donnell, Louise; Hale, Daniel E; Cody, Jannine D

    2015-08-01

    The identification of an underlying chromosome abnormality frequently marks the endpoint of a diagnostic odyssey. However, families are frequently left with more questions than answers as they consider their child's future. In the case of rare chromosome conditions, a lack of longitudinal data often makes it difficult to provide anticipatory guidance to these families. The objective of this study is to describe the lifespan, educational attainment, living situation, and behavioral phenotype of adults with chromosome 18 abnormalities. The Chromosome 18 Clinical Research Center has enrolled 483 individuals with one of the following conditions: 18q-, 18p-, Tetrasomy 18p, and Ring 18. As a part of the ongoing longitudinal study, we collect data on living arrangements, educational level attained, and employment status as well as data on executive functioning and behavioral skills on an annual basis. Within our cohort, 28 of the 483 participants have died, the majority of whom have deletions encompassing the TCF4 gene or who have unbalanced rearrangement involving other chromosomes. Data regarding the cause of and age at death are presented. We also report on the living situation, educational attainment, and behavioral phenotype of the 151 participants over the age of 18. In general, educational level is higher for people with all these conditions than implied by the early literature, including some that received post-high school education. In addition, some individuals are able to live independently, though at this point they represent a minority of patients. Data on executive function and behavioral phenotype are also presented. Taken together, these data provide insight into the long-term outcome for individuals with a chromosome 18 condition. This information is critical in counseling families on the range of potential outcomes for their child. PMID:25403900

  6. NON-MAMMALIAN ESTROGENICITY SCREEN: RAINBOW TROUT ESTROGEN RECEPTOR BINDING

    EPA Science Inventory

    The U.S. EPA has been mandated to screen industrial chemicals and pesticides for potential endocrine activity. Current assays for measuring endocrine activity are primarily mammalian-based. The appropriateness of extrapolating mammalian results to non-mammalian species is uncert...

  7. Making chromosome abnormalities treatable conditions.

    PubMed

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122

  8. Using Chromosomes to Teach Evolution: Chromosomal Rearrangements in Speciation Events.

    ERIC Educational Resources Information Center

    Offner, Susan

    1994-01-01

    Uses diagrams to aid in discussing how the English map of the human chromosomes, published by Offner in 1993, can be used to illustrate some important questions in evolution, as well as give students a glimpse into some of the mechanisms underlying evolutionary change. (ZWH)

  9. Multiscale image enhancement of chromosome banding patterns

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Castleman, Kenneth R.

    1996-10-01

    Visual examination of chromosome banding patterns is an important means of chromosome analysis. Cytogeneticists compare their patient's chromosome image against the prototype normal/abnormal human chromosome banding patterns. Automated chromosome analysis instruments facilitate this by digitally enhancing the chromosome images. Currently available systems employing traditional highpass/bandpass filtering and/or histogram equalization are approximately equivalent to photomicroscopy in their ability to support the detection of band pattern alterations. Improvements in chromosome image display quality, particularly in the detail of the banding pattern, would significantly increase the cost-effectiveness of these systems. In this paper we present our work on the use of multiscale transform and derivative filtering for image enhancement of chromosome banding patterns. A steerable pyramid representation of the chromosome image is generated by a multiscale transform. The derivative filters are designed to detect the bands of a chromosome, and the steerable pyramid transform is chosen based on its desirable properties of shift and rotation invariance. By processing the transform coefficients that correspond to the bands of the chromosome in the pyramid representation, contrast enhancement of the chromosome bands can be achieved with designed flexibility in scale, orientation and location. Compared with existing chromosome image enhancement techniques, this new approach offers the advantage of selective chromosome banding pattern enhancement that allows designated detail analysis. Experimental results indicate improved enhancement capabilities and promise more effective visual aid to comparison of chromosomes to the prototypes and to each other. This will increase the ability of automated chromosome analysis instruments to assist the evaluation of chromosome abnormalities in clinical samples.

  10. Delayed chromosomal instability induced by DNA damage.

    PubMed Central

    Marder, B A; Morgan, W F

    1993-01-01

    DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined populations of metaphase cells several generations after expanding single-cell colonies that had survived 5 or 10 Gy of X rays. Delayed chromosomal instability, manifested as multiple rearrangements of human chromosome 4 in a background of hamster chromosomes, was observed in 29% of colonies surviving 5 Gy and in 62% of colonies surviving 10 Gy. A correlation of delayed chromosomal instability with delayed reproductive cell death, manifested as reduced plating efficiency in surviving clones, suggests a role for chromosome rearrangements in cytotoxicity. There were small differences in chromosome destabilization and plating efficiencies between cells irradiated with 5 or 10 Gy of X rays after a previous exposure to 10 Gy and cells irradiated only once. Cell clones showing delayed chromosomal instability had normal frequencies of sister chromatid exchange formation, indicating that at this cytogenetic endpoint the chromosomal instability was not apparent. The types of chromosomal rearrangements observed suggest that chromosome fusion, followed by bridge breakage and refusion, contributes to the observed delayed chromosomal instability. Images PMID:8413263

  11. The Africa Madagascar connection and mammalian migrations

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Philip D.; Woods, Stephen

    2006-03-01

    Madagascar separated from Africa in the Middle-Late Jurassic and has been in its present position relative to Africa since the Early Cretaceous (˜120-130 my). Several Early Eocene to Late Oligocene (˜50-26 my) terrestrial mammalian groups are observed on Madagascar that have a similar ancestral lineage to those found in Africa. These mammalian groups means of transport across the Mozambique Channel from Africa to Madagascar was either by traversing on exposed land masses across a land bridge or by swimming/rafting, since (1) Madagascar has been separated from mainland Africa for at least 70 my before their arrival, and (2) it is unlikely that similar ancestral lineage's evolved simultaneously in separated regions. No evidence has been found for a land bridge across the Mozambique Channel. The mammals thus either swam or have been swept away on vegetation mats from rivers flowing out of Mozambique or Tanzania.

  12. Mammalian Sperm Motility: Observation and Theory

    NASA Astrophysics Data System (ADS)

    Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C.

    2011-01-01

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.

  13. Mammalian hairs in Early Cretaceous amber

    NASA Astrophysics Data System (ADS)

    Vullo, Romain; Girard, Vincent; Azar, Dany; Néraudeau, Didier

    2010-07-01

    Two mammalian hairs have been found in association with an empty puparium in a ˜100-million-year-old amber (Early Cretaceous) from France. Although hair is known to be an ancestral, ubiquitous feature in the crown Mammalia, the structure of Mesozoic hair has never been described. In contrast to fur and hair of some Jurassic and Cretaceous mammals preserved as carbonized filaments, the exceptional preservation of the fossils described here allows for the study of the cuticular structure. Results show the oldest direct evidence of hair with a modern scale pattern. This discovery implies that the morphology of hair cuticula may have remained unchanged throughout most of mammalian evolution. The association of these hairs with a possible fly puparium provides paleoecological information and indicates peculiar taphonomic conditions.

  14. Mammalian Sirtuins: Biological Insights and Disease Relevance

    PubMed Central

    Haigis, Marcia C.; Sinclair, David A.

    2010-01-01

    Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years. PMID:20078221

  15. Mammalian lipoxygenases and their biological relevance

    PubMed Central

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-01-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652

  16. Freezing mammalian cells for production of biopharmaceuticals.

    PubMed

    Seth, Gargi

    2012-03-01

    Cryopreservation techniques utilize very low temperatures to preserve the structure and function of living cells. Various strategies have been developed for freezing mammalian cells of biological and medical significance. This paper highlights the importance and application of cryopreservation for recombinant mammalian cells used in the biopharmaceutical industry to produce high-value protein therapeutics. It is a primer that aims to give insight into the basic principles of cell freezing for the benefit of biopharmaceutical researchers with limited or no prior experience in cryobiology. For the more familiar researchers, key cell banking parameters such as the cell density and hold conditions have been reviewed to possibly help optimize their specific cell freezing protocols. It is important to understand the mechanisms underlying the freezing of complex and sensitive cellular entities as we implement best practices around the techniques and strategies used for cryopreservation. PMID:22226818

  17. The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis

    SciTech Connect

    Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-19

    Aneuploidy, any deviation from an exact multiple of the haploid number of chromosomes, is a common occurrence in cancer and represents the most frequent chromosomal disorder in newborns. Eukaryotes have evolved mechanisms to assure the fidelity of chromosome segregation during cell division that include a multiplicity of checks and controls. One of the main cell division control mechanisms is the spindle assembly checkpoint (SAC) that monitors the proper attachment of chromosomes to spindle fibers and prevents anaphase until all kinetochores are properly attached. The mammalian SAC is composed by at least 14 evolutionary-conserved proteins that work in a coordinated fashion to monitor the establishment of amphitelic attachment of all chromosomes before allowing cell division to occur. Among the SAC proteins, the budding uninhibited by benzimidazole protein 1 (Bub1), is a highly conserved protein of prominent importance for the proper functioning of the SAC. Studies have revealed many roles for Bub1 in both mitosis and meiosis, including the localization of other SAC proteins to the kinetochore, SAC signaling, metaphase congression and the protection of the sister chromatid cohesion. Recent data show striking sex specific differences in the response to alterations in Bub1 activity. Proper Bub1 functioning is particularly important during oogenesis in preventing the generation of aneuploid gametes that can have detrimental effects on the health status of the fetus and the newborn. These data suggest that Bub1 is a master regulator of SAC and chromosomal segregation in both mitosis and meiosis. Elucidating its many essential functions in regulating proper chromosome segregation can have important consequences for preventing tumorigenesis and developmental abnormalities.

  18. Next Generation Sequencing-Based Comprehensive Chromosome Screening in Mouse Polar Bodies, Oocytes, and Embryos.

    PubMed

    Treff, Nathan R; Krisher, Rebecca L; Tao, Xin; Garnsey, Heather; Bohrer, Chelsea; Silva, Elena; Landis, Jessica; Taylor, Deanne; Scott, Richard T; Woodruff, Teresa K; Duncan, Francesca E

    2016-04-01

    Advanced reproductive age is unequivocally associated with increased aneuploidy in human oocytes, which contributes to infertility, miscarriages, and birth defects. The frequency of meiotic chromosome segregation errors in oocytes derived from reproductively aged mice appears to be similar to that observed in humans, but a limitation of this important model system is our inability to accurately identify chromosome-specific aneuploidy. Here we report the validation and application of a new low-pass whole-genome sequencing approach to comprehensively screen chromosome aneuploidy in individual mouse oocytes and blastocysts. First, we validated this approach by using single mouse embryonic fibroblasts engineered to have stable trisomy 16. We further validated this method by identifying reciprocal chromosome segregation errors in the products of meiosis I (gamete and polar body) in oocytes from reproductively aged mice. Finally, we applied this technology to investigate the incidence of aneuploidy in blastocysts derived from in vitro- and in vivo-matured oocytes in both young and reproductively aged mice. Using this next generation sequencing approach, we quantitatively assessed meiotic and mitotic segregation errors at the single chromosome level, distinguished between errors due to premature separation of sister chromatids and classical nondisjunction of homologous chromosomes, and quantified mitochondrial DNA (mtDNA) segregation in individual cells. This whole-genome sequencing technique, therefore, greatly improves the utility of the mouse model system for the study of aneuploidy and is a powerful quantitative tool with which to examine the molecular underpinnings of mammalian gamete and early embryo chromosome segregation in the context of reproductive aging and beyond. PMID:26911429

  19. Structure and function of mammalian aldehyde oxidases.

    PubMed

    Terao, Mineko; Romão, Maria João; Leimkühler, Silke; Bolis, Marco; Fratelli, Maddalena; Coelho, Catarina; Santos-Silva, Teresa; Garattini, Enrico

    2016-04-01

    Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX. PMID:26920149

  20. Mammalian Evolution May not Be Strictly Bifurcating

    PubMed Central

    Hallström, Björn M.; Janke, Axel

    2010-01-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845

  1. Glia in mammalian development and disease.

    PubMed

    Zuchero, J Bradley; Barres, Ben A

    2015-11-15

    Glia account for more than half of the cells in the mammalian nervous system, and the past few decades have witnessed a flood of studies that detail novel functions for glia in nervous system development, plasticity and disease. Here, and in the accompanying poster, we review the origins of glia and discuss their diverse roles during development, in the adult nervous system and in the context of disease. PMID:26577203

  2. Mathematical glimpse on the Y chromosome degeneration

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.

    2006-04-01

    The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up sqrt{2} more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

  3. Detection of amplified or deleted chromosomal regions

    DOEpatents

    Stokke, T.; Pinkel, D.; Gray, J.W.

    1995-12-05

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20. 3 figs.

  4. Detection of amplified or deleted chromosomal regions

    DOEpatents

    Stokke, Trond; Pinkel, Daniel; Gray, Joe W.

    1995-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  5. Detection Of Amplified Or Deleted Chromosomal Regions

    DOEpatents

    Stokke, Trond , Pinkel, Daniel , Gray, Joe W.

    1997-05-27

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  6. An Automated System for Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Melnyk, J. H.

    1976-01-01

    The design, construction, and testing of a complete system to produce karyotypes and chromosome measurement data from human blood samples, and to provide a basis for statistical analysis of quantitative chromosome measurement data are described.

  7. Chromosome synteny in cucumis species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber, Cucumis sativus L. (2n = 2x = 14) and melon, C. melo L. (2n = 2x = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). Two inter-fertile botanical varieties with 14 chromosomes, the cultivated C. sativus var. sativus L. and the wild C. sativus var. hardwick...

  8. Coordinator's Report: Chromosome 7H

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report summarizes published research across the world in 2006 that placed additional markers, genes and quantitative trait loci (QTLs) on barley chromosome 7H. Some of the traits located include those affecting agronomic traits, root system size, vernalization, and cold tolerance. Studies conti...

  9. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    EPA Science Inventory

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  10. Chromosomal destabilization during gene amplification.

    PubMed Central

    Ruiz, J C; Wahl, G M

    1990-01-01

    Acentric extrachromosomal elements, such as submicroscopic autonomously replicating circular molecules (episomes) and double minute chromosomes, are common early, and in some cases initial, intermediates of gene amplification in many drug-resistant and tumor cell lines. In order to gain a more complete understanding of the amplification process, we investigated the molecular mechanisms by which such extrachromosomal elements are generated and we traced the fate of these amplification intermediates over time. The model system consists of a Chinese hamster cell line (L46) created by gene transfer in which the initial amplification product was shown previously to be an unstable extrachromosomal element containing an inverted duplication spanning more than 160 kilobases (J. C. Ruiz and G. M. Wahl, Mol. Cell. Biol. 8:4302-4313, 1988). In this study, we show that these molecules were formed by a process involving chromosomal deletion. Fluorescence in situ hybridization was performed at multiple time points on cells with amplified sequences. These studies reveal that the extrachromosomal molecules rapidly integrate into chromosomes, often near or at telomeres, and once integrated, the amplified sequences are themselves unstable. These data provide a molecular and cytogenetic chronology for gene amplification in this model system; an early event involves deletion to generate extrachromosomal elements, and subsequent integration of these elements precipitates a cascade of chromosome instability. Images PMID:2188107

  11. The XXXXY Sex Chromosome Abnormality

    PubMed Central

    Barr, M. L.; Carr, D. H.; Pozsonyi, J.; Wilson, R. A.; Dunn, H. G.; Jacobson, T. S.; Miller, J. R.; Chown, B.

    1962-01-01

    The most common sex chromosome complex in sex chromatin-positive males with Klinefelter's syndrome is XXY. When the complex is XXYY or XXXY, the clinical findings do not seem to differ materially from those seen in XXY subjects, although more patients with these intersexual chromosome complements need to be studied to establish possible phenotypical expressions of the chromosomal variants. Two male children with an XXXXY sex chromosome abnormality are described. The data obtained from the study of these cases and five others described in the literature suggest that the XXXXY patient is likely to have congenital defects not usually seen in the common form of the Klinefelter syndrome. These include a triad of (1) skeletal anomalies (including radioulnar synostosis), (2) hypogenitalism (hypoplasia of penis and scrotum, incomplete descent of testes and defective prepubertal development of seminiferous tubules), and (3) greater risk of severe mental deficiency. That the conclusions are based on data from a small number of patients is emphasized, together with the need for a cytogenetic survey of a large control or unselected population. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10 PMID:13969480

  12. Chromosome Territory Modeller and Viewer

    PubMed Central

    Idziak-Helmcke, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert

    2016-01-01

    This paper presents ChroTeMo, a tool for chromosome territory modelling, accompanied by ChroTeVi–a chromosome territory visualisation software that uses the data obtained by ChroTeMo. These tools have been developed in order to complement the molecular cytogenetic research of interphase nucleus structure in a model grass Brachypodium distachyon. Although the modelling tool has been initially created for one particular species, it has universal application. The proposed version of ChroTeMo allows for generating a model of chromosome territory distribution in any given plant or animal species after setting the initial, species-specific parameters. ChroTeMo has been developed as a fully probabilistic modeller. Due to this feature, the comparison between the experimental data on the structure of a nucleus and the results obtained from ChroTeMo can indicate whether the distribution of chromosomes inside a nucleus is also fully probabilistic or is subjected to certain non-random patterns. The presented tools have been written in Python, so they are multiplatform, portable and easy to read. Moreover, if necessary they can be further developed by users writing their portions of code. The source code, documentation, and wiki, as well as the issue tracker and the list of related articles that use ChroTeMo and ChroTeVi, are accessible in a public repository at Github under GPL 3.0 license. PMID:27505434

  13. Chromosome Territory Modeller and Viewer.

    PubMed

    Tkacz, Magdalena A; Chromiński, Kornel; Idziak-Helmcke, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert

    2016-01-01

    This paper presents ChroTeMo, a tool for chromosome territory modelling, accompanied by ChroTeVi-a chromosome territory visualisation software that uses the data obtained by ChroTeMo. These tools have been developed in order to complement the molecular cytogenetic research of interphase nucleus structure in a model grass Brachypodium distachyon. Although the modelling tool has been initially created for one particular species, it has universal application. The proposed version of ChroTeMo allows for generating a model of chromosome territory distribution in any given plant or animal species after setting the initial, species-specific parameters. ChroTeMo has been developed as a fully probabilistic modeller. Due to this feature, the comparison between the experimental data on the structure of a nucleus and the results obtained from ChroTeMo can indicate whether the distribution of chromosomes inside a nucleus is also fully probabilistic or is subjected to certain non-random patterns. The presented tools have been written in Python, so they are multiplatform, portable and easy to read. Moreover, if necessary they can be further developed by users writing their portions of code. The source code, documentation, and wiki, as well as the issue tracker and the list of related articles that use ChroTeMo and ChroTeVi, are accessible in a public repository at Github under GPL 3.0 license. PMID:27505434

  14. Chromosomal disorders and male infertility.

    PubMed

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility. PMID:22120929

  15. Mammalian cells contain a second nucleocytoplasmic hexosaminidase.

    PubMed

    Gutternigg, Martin; Rendić, Dubravko; Voglauer, Regina; Iskratsch, Thomas; Wilson, Iain B H

    2009-04-01

    Some thirty years ago, work on mammalian tissues suggested the presence of two cytosolic hexosaminidases in mammalian cells; one of these has been more recently characterized in a recombinant form and has an important role in cellular function due to its ability to cleave beta-N-acetylglucosamine residues from a variety of nuclear and cytoplasmic proteins. However, the molecular nature of the second cytosolic hexosaminidase, named hexosaminidase D, has remained obscure. In the present study, we molecularly characterize for the first time the human and murine recombinant forms of enzymes, encoded by HEXDC genes, which appear to correspond to hexosaminidase D in terms of substrate specificity, pH dependency and temperature stability. Furthermore, a Myc-tagged form of this novel hexosaminidase displays a nucleocytoplasmic localization. Transcripts of the corresponding gene are expressed in a number of murine tissues. On the basis of its sequence, this enzyme represents, along with the lysosomal hexosaminidase subunits encoded by the HEXA and HEXB genes, the third class 20 glycosidase to be identified from mammalian sources. PMID:19040401

  16. [Telomere Recombination in Normal Mammalian Cells].

    PubMed

    Zhdanova, N S; Rubtsov, N B

    2016-01-01

    Two mechanisms of telomere length maintenance are known to date. The first includes the use of a special enzymatic telomerase complex to solve the problems that arise during the replication of linear DNA in a normal diploid and part of tumor cells. Alternative lengthening of telomeres (ALT), which is based on the homologous recombination of telomere DNA, represents the second mechanism. Until recently, ALT was assumed to be expressed only in 15-20% of tumors lacking active telomerase and, together with telomerase reactivation represented one of two possibilities to overcome the replicative senescence observed in somatic mammalian cells due to aging or during cell culturing in vitro. Previously described sporadic cases of combinations of the two mechanisms of telomere length maintenance in several cell lines in vitro were attributed to the experimental design rather than to a real biological phenomenon, since active cellular division without active telomerase was considered to be the "gold standard" of ALT. The present review describes the morphological and functional reorganizations of mammalian telomeres observed with ALT activation, as well as recently observed,and well-documented cases of combinations between ALT-like and telomerase-dependent mechanisms in mammalian cells. The possible role of telomere recombination in telomerase-dependent cells is discussed. PMID:27183789

  17. Aneuploidy in mammalian somatic cells in vivo.

    PubMed

    Cimino, M C; Tice, R R; Liang, J C

    1986-01-01

    Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed. PMID:3941670

  18. Apoptosis in mammalian preimplantation embryos: regulation by survival factors.

    PubMed

    Brison, Daniel R.

    2000-01-01

    The formation of a developmentally competent mammalian blastocyst requires the transition from a unicellular state, the fertilized zygote, to a differentiated multicellular structure. In common with other developing organisms, generation of the required cell population involves the processes of cell division, differentiation and cell death, all of which can be regulated by peptide growth factors. Cell death in the preimplantation embryo occurs by apoptosis and, by analogy with other systems, may serve to eliminate unwanted cells during the critical developmental transitions that take place during this period. Cells may be eliminated because they are abnormal or possess defects, including damaged DNA or chromosomal abnormalities. At the early cleavage stages, apoptosis may be associated with activation of the embryonic genome and may contribute to the blastomere fragmentation commonly observed in human IVF embryos. The major wave of apoptosis occurs in a number of species in the inner cell mass of the blastocyst, as identified using nuclear labelling including terminal transferase-mediated dUTP nick end labelling (TUNEL) and fluorescence and confocal microscopy. Apoptosis may protect the integrity and cellular composition of the inner cell mass, by eliminating damaged cells or possibly those with an inappropriate phenotype. Preimplantation embryos express genes involved in the regulation and execution of apoptosis and their cells can undergo this default pathway in the absence of exogenous survival signals. Evidence is now accumulating from several species that apoptosis in the embryo is regulated by soluble peptide growth factors acting as survival factors in an autocrine or paracrine manner. To date, these include transforming growth factor alpha and members of the insulin-like growth factor family. Apoptosis may also be affected by environmental factors, including culture conditions and the composition of media. The regulation of apoptosis in the preimplantation

  19. Methods for chromosome-specific staining

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1995-09-05

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogeneous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include ways for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes. 3 figs.

  20. Multicolor spectral karyotyping of human chromosomes.

    PubMed

    Schröck, E; du Manoir, S; Veldman, T; Schoell, B; Wienberg, J; Ferguson-Smith, M A; Ning, Y; Ledbetter, D H; Bar-Am, I; Soenksen, D; Garini, Y; Ried, T

    1996-07-26

    The simultaneous and unequivocal discernment of all human chromosomes in different colors would be of significant clinical and biologic importance. Whole-genome scanning by spectral karyotyping allowed instantaneous visualization of defined emission spectra for each human chromosome after fluorescence in situ hybridization. By means of computer separation (classification) of spectra, spectrally overlapping chromosome-specific DNA probes could be resolved, and all human chromosomes were simultaneously identified. PMID:8662537

  1. Evolution of sex chromosomes ZW of Schistosoma mansoni inferred from chromosome paint and BAC mapping analyses.

    PubMed

    Hirai, Hirohisa; Hirai, Yuriko; LoVerde, Philip T

    2012-12-01

    Chromosomes of schistosome parasites among digenetic flukes have a unique evolution because they exhibit the sex chromosomes ZW, which are not found in the other groups of flukes that are hermaphrodites. We conducted molecular cytogenetic analyses for investigating the sex chromosome evolution using chromosome paint analysis and BAC clones mapping. To carry this out, we developed a technique for making paint probes of genomic DNA from a single scraped chromosome segment using a chromosome microdissection system, and a FISH mapping technique for BAC clones. Paint probes clearly identified each of the 8 pairs of chromosomes by a different fluorochrome color. Combination analysis of chromosome paint analysis with Z/W probes and chromosome mapping with 93 BAC clones revealed that the W chromosome of Schistosoma mansoni has evolved by at least four inversion events and heterochromatinization. Nine of 93 BAC clones hybridized with both the Z and W chromosomes, but the locations were different between Z and W chromosomes. The homologous regions were estimated to have moved from the original Z chromosome to the differentiated W chromosome by three inversions events that occurred before W heterohcromatinization. An inversion that was observed in the heterochromatic region of the W chromosome likely occurred after W heterochromatinization. These inversions and heterochromatinization are hypothesized to be the key factors that promoted the evolution of the W chromosome of S. mansoni. PMID:22831897

  2. CHROMOSOMAL LOCATION AND GENE PAUCITY IN THE MALE SPECIFIC REGION ON PAPAYA Y CHROMOSOME

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex chromosomes in flowering plants evolved recently and many of them remain homomorphic, including those in papaya. We investigated the chromosomal location of papaya’s small male specific region of the hermaphrodite Y (Yh) chromosome (MSY) and its genomic features. We conducted chromosome fluoresc...

  3. Morphology and structure of polytene chromosomes

    SciTech Connect

    Zhimulev, I.F.

    1996-12-31

    The morphology and structure of polytene chromosomes is the subject of this detailed volume of Advances in Genetics. Polytene chromosomes are the only interphase chromosomes that appear throughout as individual structures, and therefore offer the kind of detail of the molecular biology that geneticists need. 2869 refs., 123 figs., 27 tabs.

  4. Genomics of Sex and Sex Chromosomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex chromosomes are distinctive, not only because of their gender determining role, but also for genomic features that reflect their evolutionary history. The genomic sequences in the ancient sex chromosomes of humans and in the incipient sex chromosomes of medaka, stickleback, and papaya exhibit u...

  5. Recent Origin of the Papaya Sex Chromosomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex chromosomes in flowering plants, in contrast to those in animals, evolved relatively recently and only a few are heteromorphic. The sex chromosomes of papaya appear at the cytological level to be homomorphic but, at the molecular level, we are finding that the papaya Y chromosome shows features ...

  6. Assignment of three human markers in chromosome 21q11 to mouse chromosome 16.

    PubMed

    Yu, J; Shen, Y; Tong, S; Kao, F T

    1997-09-01

    Three unique sequence microclones from human chromosome region 21q11 were assigned to mouse chromosome 16 using a mouse/Chinese hamster cell hybrid 96Az2 containing a single mouse chromosome 16. This comparative mapping provides further homology between human chromosome 21 and mouse chromosome 16 to include the very proximal portion of the long arm of human chromosome 21. Since this part of human chromosome 21 is associated with mental retardation in Down syndrome individuals, its homologous mouse region should also be included in the construction of mouse models for studying Down syndrome phenotypes including mental retardation. PMID:9546078

  7. Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla

    PubMed Central

    Li, Xiu-Qing; Du, Donglei

    2014-01-01

    C+G content (GC content or G+C content) is known to be correlated with genome/chromosome size in bacteria but the relationship for other kingdoms remains unclear. This study analyzed genome size, chromosome size, and base composition in most of the available sequenced genomes in various kingdoms. Genome size tends to increase during evolution in plants and animals, and the same is likely true for bacteria. The genomic C+G contents were found to vary greatly in microorganisms but were quite similar within each animal or plant subkingdom. In animals and plants, the C+G contents are ranked as follows: monocot plants>mammals>non-mammalian animals>dicot plants. The variation in C+G content between chromosomes within species is greater in animals than in plants. The correlation between average chromosome C+G content and chromosome length was found to be positive in Proteobacteria, Actinobacteria (but not in other analyzed bacterial phyla), Ascomycota fungi, and likely also in some plants; negative in some animals, insignificant in two protist phyla, and likely very weak in Archaea. Clearly, correlations between C+G content and chromosome size can be positive, negative, or not significant depending on the kingdoms/groups or species. Different phyla or species exhibit different patterns of correlation between chromosome-size and C+G content. Most chromosomes within a species have a similar pattern of variation in C+G content but outliers are common. The data presented in this study suggest that the C+G content is under genetic control by both trans- and cis- factors and that the correlation between C+G content and chromosome length can be positive, negative, or not significant in different phyla. PMID:24551092

  8. Variation, evolution, and correlation analysis of C+G content and genome or chromosome size in different kingdoms and phyla.

    PubMed

    Li, Xiu-Qing; Du, Donglei

    2014-01-01

    C+G content (GC content or G+C content) is known to be correlated with genome/chromosome size in bacteria but the relationship for other kingdoms remains unclear. This study analyzed genome size, chromosome size, and base composition in most of the available sequenced genomes in various kingdoms. Genome size tends to increase during evolution in plants and animals, and the same is likely true for bacteria. The genomic C+G contents were found to vary greatly in microorganisms but were quite similar within each animal or plant subkingdom. In animals and plants, the C+G contents are ranked as follows: monocot plants>mammals>non-mammalian animals>dicot plants. The variation in C+G content between chromosomes within species is greater in animals than in plants. The correlation between average chromosome C+G content and chromosome length was found to be positive in Proteobacteria, Actinobacteria (but not in other analyzed bacterial phyla), Ascomycota fungi, and likely also in some plants; negative in some animals, insignificant in two protist phyla, and likely very weak in Archaea. Clearly, correlations between C+G content and chromosome size can be positive, negative, or not significant depending on the kingdoms/groups or species. Different phyla or species exhibit different patterns of correlation between chromosome-size and C+G content. Most chromosomes within a species have a similar pattern of variation in C+G content but outliers are common. The data presented in this study suggest that the C+G content is under genetic control by both trans- and cis- factors and that the correlation between C+G content and chromosome length can be positive, negative, or not significant in different phyla. PMID:24551092

  9. Mapping strategies: Chromosome 16 workshop. Final technical report

    SciTech Connect

    Not Available

    1989-12-31

    The following topics from a workshop on chromosome 16 are briefly discussed: genetic map of chromosome 16; chromosome breakpoint map of chromosome 16; integrated physical/genetic map of chromosome 16; pulsed field map of the 16p13.2--p13.3 region (3 sheets); and a report of the HGM10 chromosome 16 committee.

  10. Condensin-Driven Remodeling of X-Chromosome Topology during Dosage Compensation

    PubMed Central

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.

    2015-01-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure1,2. Here we perform genome-wide chromosome conformation capture analysis, FISH, and RNA-seq to obtain comprehensive 3D maps of the Caenorhabditis elegans genome and to dissect X-chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half3–7. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes5,6. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian Topologically Associating Domains (TADs)8,9. TADs on X have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using CRISPR/Cas9 greatly diminished the boundary. Thus, the DCC imposes a distinct

  11. Y-chromosome polymorphism: Possible largest Y chromosome in man?

    SciTech Connect

    Murthy, D.S.K.; Al-Awadi, S.A.; Bastaki, L.

    1994-09-01

    The role of variations (inversions/deletion or duplication) in the heterochromatin in gonadal development and function, reproductive fitness, and malignant disease has been extensively studied. However, the causal-relationship of large Y (Yqh+) and repeated fetal loss has not been established unequivocally. An Arab couple (?Bedouin origin) with a history of repeated abortions were investigated. Karyotype analysis of the husband showed a very large Y chromosome, confirmed by GTG-, QFQ- and CBG-banding techniques. C-banding showed discontinuous distribution of the heterochromatin blocks separated by pale bands. The origin of the large heterochromatin segment could be due to tandem duplication of the Yq region or translocation (Yq:Yq). No other relatives (males) of the propositus have been available for investigation. Polymorphism of the Y chromosome could be attributed to evolutionary changes from an ancestral type, either by deletion or duplication of the heterochromatin segment. More detailed studies on isolated, aboriginal/tribal human populations will enable us to better understand the significance of the Y chromosome polymorphism.

  12. Automatic segmentation of overlapping and touching chromosomes

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqiang; Chen, Xiaohua; Zhang, Renli; Yu, Chang

    2001-09-01

    This paper describes a technique to segment overlapping and touching chromosomes of human metaphase cells. Automated chromosome classification has been an important pattern recognition problem for decades, numerous attempts were made in the past to characterize chromosome band patterns. But successful separation between touching and overlapping chromosomes is vital for correct classification. Since chromosomes are non-rigid objects, common methods for separation between touching chromosomes are not usable. We proposed a method using shape concave and convex information, topology analysis information, and band pale paths for segmentation of touching and overlapping chromosomes. To detect shape concave and convex information, we should first pre-segment the chromosomes and get the edge of overlapping and touching chromosomes. After filtering the original image using edge-preserving filter, we adopt the Otsu's segmentation method and extract the boundary of chromosomes. Hence the boundary can be used for segment the overlapping and touching chromosomes by detecting the concave and convex information based on boundary information. Most of the traditional boundary-based algorithms detect corners based on two steps: the first step is to acquire the smoothed version of curvature at every point along the contour, and the second step is to detect the positions where curvature maximal occur and threshold the curvature as corner points. Recently wavelet transform has been adopted into corner detection algorithms. Since the metaphase overlapping chromosomes has multi-scale corners, we adopt a multi-scale corner detection method based on Hua's method for corner detection. For touching chromosomes, it is convenient to split them using pale paths. Starting from concave corner points, a search algorithm is represented. The searching algorithm traces three pixels into the object in the direction of the normal vector in order to avoid stopping at the initial boundary until it

  13. Automated clinical system for chromosome analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Friedan, H. J.; Johnson, E. T.; Rennie, P. A.; Wall, R. J. (Inventor)

    1978-01-01

    An automatic chromosome analysis system is provided wherein a suitably prepared slide with chromosome spreads thereon is placed on the stage of an automated microscope. The automated microscope stage is computer operated to move the slide to enable detection of chromosome spreads on the slide. The X and Y location of each chromosome spread that is detected is stored. The computer measures the chromosomes in a spread, classifies them by group or by type and also prepares a digital karyotype image. The computer system can also prepare a patient report summarizing the result of the analysis and listing suspected abnormalities.

  14. Novel insights into mitotic chromosome condensation

    PubMed Central

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division. PMID:27508072

  15. Evidence for the evolutionary origin of human chromosome 21 from comparative gene mapping in the cow and mouse

    SciTech Connect

    Threadgill, D.S.; Womack, J.E. ); Kraus, J.P. ); Krawetz, S.A. )

    1991-01-01

    To determine the extent of conservation between bovine syntenic group U10, human chromosome 21 (HSA 21), and mouse chromosome 16(MMU 16), 11 genes were physically mapped by segregation analysis in a bovine-hamster hybrid somatic cell panel. The genes chosen for study span MMU 16 and represent virtually the entire q arm of HSA 21. Because the somatostatin gene (SST), an HSA 3/MMU 16 locus, was previously shown to be in U10, the transferrin gene (TF), an HSA 3/MMU 9 marker, was also mapped to determine whether U10 contains any HSA 3 genes not represented on MMU 16. With the exception of the protamine gene PRM1 (HSA 16/MMU 16), all of the genes studies were syntenic on bovine U10. Thus, all homologous loci from HSA 21 that have been studied in the cow are on a single chromosome. The bovine homolog of HSA 21 also carries several HSA 3 genes, two of which have homologous loci on MMU 16. The syntenic association of genes from the q arm of HSA 3 with HSAS 21 genes in two mammalian species, the mouse and the cow, indicates that HSA 21 may have evolved from a larger ancestral mammalian chromosome that contained genes now residing on HSA 3. Additionally, the syntenic association of TF with SST in the cow permits the prediction that the rhodopsin gene (RHO) is proximal to TF on HSA 3q.

  16. Microtubule detyrosination guides chromosomes during mitosis

    PubMed Central

    Barisic, Marin; Silva e Sousa, Ricardo; Tripathy, Suvranta K.; Magiera, Maria M.; Zaytsev, Anatoly V.; Pereira, Ana L.; Janke, Carsten; Grishchuk, Ekaterina L.; Maiato, Helder

    2015-01-01

    Before chromosomes segregate into daughter cells they align at the mitotic spindle equator, a process known as chromosome congression. CENP-E/Kinesin-7 is a microtubule plus-end-directed kinetochore motor required for congression of pole-proximal chromosomes. Because the plus-ends of many astral microtubules in the spindle point to the cell cortex, it remains unknown how CENP-E guides pole-proximal chromosomes specifically towards the equator. Here we found that congression of pole-proximal chromosomes depended on specific post-translational detyrosination of spindle microtubules that point to the equator. In vitro reconstitution experiments demonstrated that CENP-E-dependent transport was strongly enhanced on detyrosinated microtubules. Blocking tubulin tyrosination in cells caused ubiquitous detyrosination of spindle microtubules and CENP-E transported chromosomes away from spindle poles in random directions. Thus, CENP-E-driven chromosome congression is guided by microtubule detyrosination. PMID:25908662

  17. Regulation of chromosome speeds in mitosis

    PubMed Central

    Betterton, M. D.; McIntosh, J. Richard

    2015-01-01

    When chromosome are being separated in preparation for cell division, their motions are slow (~16 nm/s) relative to the speed at which many motor enzymes can move their cellular cargoes (160–1000 nm/s and sometimes even faster) and at which microtubules (MTs) depolymerize (~200 nm/s). Indeed, anaphase chromosome speeds are so slow that viscous drag puts little load on the mechanisms that generate the relevant forces [35]. Available evidence suggests that chromosome speed is due to some form of regulation. For example, big and little chromosomes move at about the same speed, chromosomes that have farther to go move faster than others, and chromosome speed is affected by both temperature and an experimentally applied load. In this essay we review data on these phenomena and present our ideas about likely properties of the mechanisms that regulate chromosome speed. PMID:26405462

  18. Mitosis. Microtubule detyrosination guides chromosomes during mitosis.

    PubMed

    Barisic, Marin; Silva e Sousa, Ricardo; Tripathy, Suvranta K; Magiera, Maria M; Zaytsev, Anatoly V; Pereira, Ana L; Janke, Carsten; Grishchuk, Ekaterina L; Maiato, Helder

    2015-05-15

    Before chromosomes segregate into daughter cells, they align at the mitotic spindle equator, a process known as chromosome congression. Centromere-associated protein E (CENP-E)/Kinesin-7 is a microtubule plus-end-directed kinetochore motor required for congression of pole-proximal chromosomes. Because the plus-ends of many astral microtubules in the spindle point to the cell cortex, it remains unknown how CENP-E guides pole-proximal chromosomes specifically toward the equator. We found that congression of pole-proximal chromosomes depended on specific posttranslational detyrosination of spindle microtubules that point to the equator. In vitro reconstitution experiments demonstrated that CENP-E-dependent transport was strongly enhanced on detyrosinated microtubules. Blocking tubulin tyrosination in cells caused ubiquitous detyrosination of spindle microtubules, and CENP-E transported chromosomes away from spindle poles in random directions. Thus, CENP-E-driven chromosome congression is guided by microtubule detyrosination. PMID:25908662

  19. Transient Microgeographic Clines during B Chromosome Invasion.

    PubMed

    Camacho, Juan Pedro M; Shaw, Michael W; Cabrero, Josefa; Bakkali, Mohammed; Ruíz-Estévez, Mercedes; Ruíz-Ruano, Francisco J; Martín-Blázquez, Rubén; López-León, María Dolores

    2015-11-01

    The near-neutral model of B chromosome evolution predicts that the invasion of a new population should last some tens of generations, but the details on how it proceeds in real populations are mostly unknown. Trying to fill this gap, we analyze here a natural population of the grasshopper Eyprepocnemis plorans at three time points during the last 35 years. Our results show that B chromosome frequency increased significantly during this period and that a cline observed in 1992 had disappeared in 2012 once B chromosome frequency reached an upper limit at all sites sampled. This indicates that, during B chromosome invasion, transient clines for B chromosome frequency are formed at the invasion front on a microgeographic scale. Computer simulation experiments showed that the pattern of change observed for genotypic frequencies is consistent with the existence of B chromosome drive through females and selection against individuals with a high number of B chromosomes. PMID:26655780

  20. [The evolution of human Y chromosome].

    PubMed

    Yang, Xianrong; Wang, Meiqin; Li, Shaohua

    2014-09-01

    The human Y chromosome is always intriguing for researchers, because of its role in gender determination and its unusual evolutionary history. The Y chromosome evolves from an autosome, and its evolution has been characterized by massive gene decay. The lack of recombination and protein-coding genes and high content of repetitive sequences have hindered the progress in our understanding of the Y chromosome biology. Recently, with the advances in comparative genomics and sequencing technology, the research on Y chromosome has become a hotspot, with an intensified debate about Y-chromosome final destination resulting from degeneration. This review focuses on the structure, inheritance characteristics, gene content, and the origin and evolution of Y chromosome. We also discuss the long-term destiny of Y chromosome. PMID:25252301

  1. Conservation of sex chromosomes in lacertid lizards.

    PubMed

    Rovatsos, Michail; Vukić, Jasna; Altmanová, Marie; Johnson Pokorná, Martina; Moravec, Jiří; Kratochvíl, Lukáš

    2016-07-01

    Sex chromosomes are believed to be stable in endotherms, but young and evolutionary unstable in most ectothermic vertebrates. Within lacertids, the widely radiated lizard group, sex chromosomes have been reported to vary in morphology and heterochromatinization, which may suggest turnovers during the evolution of the group. We compared the partial gene content of the Z-specific part of sex chromosomes across major lineages of lacertids and discovered a strong evolutionary stability of sex chromosomes. We can conclude that the common ancestor of lacertids, living around 70 million years ago (Mya), already had the same highly differentiated sex chromosomes. Molecular data demonstrating an evolutionary conservation of sex chromosomes have also been documented for iguanas and caenophidian snakes. It seems that differences in the evolutionary conservation of sex chromosomes in vertebrates do not reflect the distinction between endotherms and ectotherms, but rather between amniotes and anamniotes, or generally, the differences in the life history of particular lineages. PMID:27037610

  2. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system.

    PubMed

    Forger, Nancy G; Strahan, J Alex; Castillo-Ruiz, Alexandra

    2016-01-01

    Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970

  3. The Dimerization State of the Mammalian High Mobility Group Protein AT-Hook 2 (HMGA2)

    PubMed Central

    Frost, Lorraine; Baez, Maria A. M.; Harrilal, Christopher; Garabedian, Alyssa; Fernandez-Lima, Francisco; Leng, Fenfei

    2015-01-01

    The mammalian high mobility group protein AT-hook 2 (HMGA2) is a chromosomal architectural transcription factor involved in cell transformation and oncogenesis. It consists of three positively charged “AT-hooks” and a negatively charged C-terminus. Sequence analyses, circular dichroism experiments, and gel-filtration studies showed that HMGA2, in the native state, does not have a defined secondary or tertiary structure. Surprisingly, using combined approaches of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) chemical cross-linking, analytical ultracentrifugation, fluorescence resonance energy transfer (FRET), and mass spectrometry, we discovered that HMGA2 is capable of self-associating into homodimers in aqueous buffer solution. Our results showed that electrostatic interactions between the positively charged “AT-hooks” and the negatively charged C-terminus greatly contribute to the homodimer formation. PMID:26114780

  4. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  5. Bacterial artificial chromosome transgenesis through pronuclear injection of fertilized mouse oocytes.

    PubMed

    Vintersten, Kristina; Testa, Giuseppe; Naumann, Ronald; Anastassiadis, Konstantinos; Stewart, A Francis

    2008-01-01

    In the mouse, conventional transgenes often produced unpredictable results mainly because they were too small to recapitulate a natural gene context. Bacterial artificial chromosomes (BACs) are large enough to encompass the natural context of most mammalian genes and consequently deliver more reliable recapitulations of their endogenous counterparts. Furthermore, recombineering methods now make it easy to engineer precise changes in a BAC transgene. Consequently, BACs have become the preferred vehicle for mouse transgenesis. Here, we detail methods for BAC transgenesis through pronuclear injection of fertilized oocytes. PMID:18370149

  6. International workshop of chromosome 19

    SciTech Connect

    Pericak-Vance, M.A. . Div. of Neurology); Carrano, A.J. )

    1991-09-16

    This document summarizes the workshop on physical and genetic mapping of chromosome 19. The first session discussed the major disease loci found on the chromosome. The second session concentrated on reference families, markers and linkage maps. The third session concentrated on radiation hybrid mapping, somatic cell hybrid panels, macro restriction maps and YACs, followed by cDNA and long range physical maps. The fourth session concentrated on compiling consensus genetic and physical maps as well as discussing regions of conflict. The final session dealt with the LLNL cosmid contig database and comparative mapping of homologous regions of the human and mouse genomes, and ended with a discussion of resource sharing. 18 refs., 2 figs. (MHB)

  7. Slit-scanning analysis of dicentric chromosomes: Different approaches for an automated biological dosimetry

    SciTech Connect

    Beisker, W.; Weller, E.M.; Nuesse, M. )

    1993-01-01

    The analysis of dicentric chromosomes is an important method for applications in biological dosimetry. Automation using slit-scanning flow cytometric analysis requires a careful estimation of preparational and instrumental artifacts. As long as reliable techniques for FISH techniques or immunological kinetochore staining in suspension have not been developed, special interest is directed to methods for evaluating artifacts by instrumental or mathematical procedures. The authors present applications for detection of dicentric chromosomes in mammalian cell cultures as well as in human lymphocytes by multiparameter slit-scanning techniques. The improvement of the sensitivity by mathematical analysis of the profiles as well as by simultaneous use of different DNA dyes with multilaser fluorescence excitation is discussed.

  8. Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish.

    PubMed

    Reichwald, Kathrin; Petzold, Andreas; Koch, Philipp; Downie, Bryan R; Hartmann, Nils; Pietsch, Stefan; Baumgart, Mario; Chalopin, Domitille; Felder, Marius; Bens, Martin; Sahm, Arne; Szafranski, Karol; Taudien, Stefan; Groth, Marco; Arisi, Ivan; Weise, Anja; Bhatt, Samarth S; Sharma, Virag; Kraus, Johann M; Schmid, Florian; Priebe, Steffen; Liehr, Thomas; Görlach, Matthias; Than, Manuel E; Hiller, Michael; Kestler, Hans A; Volff, Jean-Nicolas; Schartl, Manfred; Cellerino, Alessandro; Englert, Christoph; Platzer, Matthias

    2015-12-01

    The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-β family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb). PMID:26638077

  9. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells.

    PubMed

    De La Fuente, Rabindranath; Baumann, Claudia; Fan, Tao; Schmidtmann, Anja; Dobrinski, Ina; Muegge, Kathrin

    2006-12-01

    Lymphoid specific helicase (Lsh) is a major epigenetic regulator that is essential for DNA methylation and transcriptional silencing of parasitic elements in the mammalian genome. However, whether Lsh is involved in the regulation of chromatin-mediated processes during meiosis is not known. Here, we show that Lsh is essential for the completion of meiosis and transcriptional repression of repetitive elements in the female gonad. Oocytes from Lsh knockout mice exhibit demethylation of transposable elements and tandem repeats at pericentric heterochromatin, as well as incomplete chromosome synapsis associated with persistent RAD51 foci and gammaH2AX phosphorylation. Failure to load crossover-associated foci results in the generation of non-exchange chromosomes. The severe oocyte loss observed and lack of ovarian follicle formation, together with the patterns of Lsh nuclear compartmentalization in the germ line, demonstrate that Lsh has a critical and previously unidentified role in epigenetic gene silencing and maintenance of genomic stability during female meiosis. PMID:17115026

  10. Final report. Human artificial episomal chromosome (HAEC) for building large genomic libraries

    SciTech Connect

    Jean-Michael H. Vos

    1999-12-09

    Collections of human DNA fragments are maintained for research purposes as clones in bacterial host cells. However for unknown reasons, some regions of the human genome appear to be unclonable or unstable in bacteria. Their team has developed a system using episomes (extrachromosomal, autonomously replication DNA) that maintains large DNA fragments in human cells. This human artificial episomal chromosomal (HAEC) system may prove useful for coverage of these especially difficult regions. In the broader biomedical community, the HAEC system also shows promise for use in functional genomics and gene therapy. Recent improvements to the HAEC system and its application to mapping, sequencing, and functionally studying human and mouse DNA are summarized. Mapping and sequencing the human genome and model organisms are only the first steps in determining the function of various genetic units critical for gene regulation, DNA replication, chromatin packaging, chromosomal stability, and chromatid segregation. Such studies will require the ability to transfer and manipulate entire functional units into mammalian cells.

  11. Rapid Analysis of Chromosome Aberrations in Mouse B Lymphocytes by PNA-FISH

    PubMed Central

    Misenko, Sarah M.; Bunting, Samuel F.

    2014-01-01

    Defective DNA repair leads to increased genomic instability, which is the root cause of mutations that lead to tumorigenesis. Analysis of the frequency and type of chromosome aberrations in different cell types allows defects in DNA repair pathways to be elucidated. Understanding mammalian DNA repair biology has been greatly helped by the production of mice with knockouts in specific genes. The goal of this protocol is to quantify genomic instability in mouse B lymphocytes. Labeling of the telomeres using PNA-FISH probes (peptide nucleic acid - fluorescent in situ hybridization) facilitates the rapid analysis of genomic instability in metaphase chromosome spreads. B cells have specific advantages relative to fibroblasts, because they have normal ploidy and a higher mitotic index. Short-term culture of B cells therefore enables precise measurement of genomic instability in a primary cell population which is likely to have fewer secondary genetic mutations than what is typically found in transformed fibroblasts or patient cell lines. PMID:25177909

  12. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation.

    PubMed

    Fraser, James; Ferrai, Carmelo; Chiariello, Andrea M; Schueler, Markus; Rito, Tiago; Laudanno, Giovanni; Barbieri, Mariano; Moore, Benjamin L; Kraemer, Dorothee C A; Aitken, Stuart; Xie, Sheila Q; Morris, Kelly J; Itoh, Masayoshi; Kawaji, Hideya; Jaeger, Ines; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Semple, Colin A; Dostie, Josée; Pombo, Ana; Nicodemi, Mario

    2015-12-01

    Mammalian chromosomes fold into arrays of megabase-sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher-order organization remains elusive. Here, we investigate TAD higher-order interactions with Hi-C through neuronal differentiation and show that they form a hierarchy of domains-within-domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree-like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency. PMID:26700852

  13. Structure of transcribing mammalian RNA polymerase II.

    PubMed

    Bernecky, Carrie; Herzog, Franz; Baumeister, Wolfgang; Plitzko, Jürgen M; Cramer, Patrick

    2016-01-28

    RNA polymerase (Pol) II produces messenger RNA during transcription of protein-coding genes in all eukaryotic cells. The Pol II structure is known at high resolution from X-ray crystallography for two yeast species. Structural studies of mammalian Pol II, however, remain limited to low-resolution electron microscopy analysis of human Pol II and its complexes with various proteins. Here we report the 3.4 Å resolution cryo-electron microscopy structure of mammalian Pol II in the form of a transcribing complex comprising DNA template and RNA transcript. We use bovine Pol II, which is identical to the human enzyme except for seven amino-acid residues. The obtained atomic model closely resembles its yeast counterpart, but also reveals unknown features. Binding of nucleic acids to the polymerase involves 'induced fit' of the mobile Pol II clamp and active centre region. DNA downstream of the transcription bubble contacts a conserved 'TPSA motif' in the jaw domain of the Pol II subunit RPB5, an interaction that is apparently already established during transcription initiation. Upstream DNA emanates from the active centre cleft at an angle of approximately 105° with respect to downstream DNA. This position of upstream DNA allows for binding of the general transcription elongation factor DSIF (SPT4-SPT5) that we localize over the active centre cleft in a conserved position on the clamp domain of Pol II. Our results define the structure of mammalian Pol II in its functional state, indicate that previous crystallographic analysis of yeast Pol II is relevant for understanding gene transcription in all eukaryotes, and provide a starting point for a mechanistic analysis of human transcription. PMID:26789250

  14. Mammalian niche conservation through deep time.

    PubMed

    DeSantis, Larisa R G; Beavins Tracy, Rachel A; Koontz, Cassandra S; Roseberry, John C; Velasco, Matthew C

    2012-01-01

    Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas) are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ~2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of terminal Pleistocene

  15. Environmental pollution, chromosomes, and health

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    In mid-May, 1980, President Carter declared a state of emergency at the Love Canal area, near Niagara Falls, New York. The reason for this was for the U.S. to underwrite the relocation costs ($3-5 million) of some 2500 residents who, according to a report by the EPA (Environmental Protection Agency) may have suffered damaged chromosomes. These injuries were apparently caused by contact with toxic wastes that had been dumped in the area in the years prior to development for housing.That the toxic compounds exist in the Love Canal and Niagara Falls subsurface zones, including public water supplies, appears to be established fact. That the residents of the Love Canal area suffered chromosomal damage may be established fact as well. Whether or not these two findings can be linked to ill health of the residents is another matter. Recently, the EPA report has been described as having ‘close to zero scientific significance,’ and has been ‘discredited’(Science, 208, 123a, 1980). The reasons for this disparity go beyond differences of opinion, beyond possible inadequacies of the EPA study, and even beyond problems that probably will arise from future studies, including those now in the planning stages. The problem is that even if victims have easily recognizable injuries from toxic substances (injury that apparently has not occurred to Love Canal residents), medical science usually cannot show a causal relationship. Even chromosomal damage is, at best, difficult to interpret. In ideal studies of significant populations and control groups, the association of toxic chemical to chromosome damage and to cancer and birth defects is indirect and, up to now, has been shown to have little or no significance to an individual member of the exposed population.

  16. Stochastic resonance in mammalian neuronal networks

    SciTech Connect

    Gluckman, B.J.; So, P.; Netoff, T.I.; Spano, M.L.; Schiff, S.J. |

    1998-09-01

    We present stochastic resonance observed in the dynamics of neuronal networks from mammalian brain. Both sinusoidal signals and random noise were superimposed into an applied electric field. As the amplitude of the noise component was increased, an optimization (increase then decrease) in the signal-to-noise ratio of the network response to the sinusoidal signal was observed. The relationship between the measures used to characterize the dynamics is discussed. Finally, a computational model of these neuronal networks that includes the neuronal interactions with the electric field is presented to illustrate the physics behind the essential features of the experiment. {copyright} {ital 1998 American Institute of Physics.}

  17. Site of Mammalian Sperm Acrosome Reaction.

    PubMed

    Hirohashi, Noritaka

    2016-01-01

    Until recently, no special attention has been paid to the question of the site of mammalian sperm acrosome reaction (AR) in the female reproductive tract. Because AR is an essential process that enables the spermatozoon to fertilize, it is generally believed that it occurs at a specific step during sperm-egg interaction. It is generally thought that "the site of action coincides with the site of commitment." Thus, understanding the roles of AR and acrosomal substances is needed to gain insight into the site of the sperm commitment to undergo AR. PMID:27194354

  18. Mammalian cell culture capacity for biopharmaceutical manufacturing.

    PubMed

    Ecker, Dawn M; Ransohoff, Thomas C

    2014-01-01

    : With worldwide sales of biopharmaceuticals increasing each year and continuing growth on the horizon, the manufacture of mammalian biopharmaceuticals has become a major global enterprise. We describe the current and future industry wide supply of manufacturing capacity with regard to capacity type, distribution, and geographic location. Bioreactor capacity and the use of single-use products for biomanufacturing are also profiled. An analysis of the use of this capacity is performed, including a discussion of current trends that will influence capacity growth, availability, and utilization in the coming years. PMID:23748352

  19. Mammalian Developmental Genetics in the Twentieth Century

    PubMed Central

    Artzt, Karen

    2012-01-01

    This Perspectives is a review of the breathtaking history of mammalian genetics in the past century and, in particular, of the ways in which genetic thinking has illuminated aspects of mouse development. To illustrate the power of that thinking, selected hypothesis-driven experiments and technical advances are discussed. Also included in this account are the beginnings of mouse genetics at the Bussey Institute, Columbia University, and The Jackson Laboratory and a retrospective discussion of one of the classic problems in developmental genetics, the T/t complex and its genetic enigmas. PMID:23212897

  20. Apoptotic processes during mammalian preimplantation development.

    PubMed

    Fabian, Dusan; Koppel, Juraj; Maddox-Hyttel, Poul

    2005-07-15

    The paper provides a review of the current state of knowledge on apoptosis during normal preimplantation development based on the literature and on the authors' own findings. Information is focused on the occurrence and the characteristics of spontaneous apoptotic processes. Reports concerning the chronology and the incidence of programmed cell death in mouse, cow, pig and human embryos in early preimplantation stages up to the blastocyst stage are summarized. In addition, specific attributes of the apoptotic process in mammalian preimplantation development are provided, including the description of both morphological and biochemical features of cell death. PMID:15955348

  1. Mammalian Kidney Development: Principles, Progress, and Projections

    PubMed Central

    Little, Melissa H.; McMahon, Andrew P.

    2012-01-01

    The mammalian kidney is a vital organ with considerable cellular complexity and functional diversity. Kidney development is notable for requiring distinct but coincident tubulogenic processes involving reciprocal inductive signals between mesenchymal and epithelial progenitor compartments. Key molecular pathways mediating these interactions have been identified. Further, advances in the analysis of gene expression and gene activity, coupled with a detailed knowledge of cell origins, are enhancing our understanding of kidney morphogenesis and unraveling the normal processes of postnatal repair and identifying disease-causing mechanisms. This article focuses on recent insights into central regulatory processes governing organ assembly and renal disease, and predicts future directions for the field. PMID:22550230

  2. Tension tests on mammalian collagen fibrils.

    PubMed

    Liu, Yehe; Ballarini, Roberto; Eppell, Steven J

    2016-02-01

    A brief overview of isolated collagen fibril mechanics testing is followed by presentation of the first results testing fibrils isolated from load-bearing mammalian tendons using a microelectromechanical systems platform. The in vitro modulus (326 ± 112 MPa) and fracture stress (71 ± 23 MPa) are shown to be lower than previously measured on fibrils extracted from sea cucumber dermis and tested with the same technique. Scanning electron microscope images show the fibrils can fail with a mechanism that involves circumferential rupture, whereas the core of the fibril stays at least partially intact. PMID:26855757

  3. Light-sheet imaging of mammalian development.

    PubMed

    de Medeiros, Gustavo; Balázs, Bálint; Hufnagel, Lars

    2016-07-01

    Tackling modern cell and developmental biology questions requires fast 3D imaging with sub-cellular resolution over extended periods of time. Fluorescence microscopy has emerged as a powerful tool to image biological samples with high spatial and temporal resolution with molecular specificity. In particular, the highly efficient illumination and detection scheme of light-sheet fluorescence microscopy is starting to revolutionize the way we can monitor cellular and developmental processes in vivo. Here we summarize the state-of-the art of light-sheet imaging with a focus on mammalian development - from instrumentation, mounting and sample handling to data processing. PMID:27288888

  4. Mammalian Gravity Receptors: Structure and Metabolism

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1985-01-01

    Calcium metabolism in mammalian gravity receptors is examined. To accomplish this objective it is necessary to study both the mineral deposits of the receptors, the otoconia, and the sensory areas themselves, the saccular and utricular maculas. The main focus was to elucidate the natures of the organic and inorganic phases of the crystalline masses, first in rat otoconia but more recently in otoliths and otoconia of a comparative series of vertebrates. Some of the ultrastructural findings in rat maculas, however, have prompted a more thorough study of the organization of the hair cells and innervation patterns in graviceptors.

  5. Derivation of the mammalian skull vault

    PubMed Central

    MORRISS-KAY, GILLIAN M.

    2001-01-01

    This review describes the evolutionary history of the mammalian skull vault as a basis for understanding its complex structure. Current information on the developmental tissue origins of the skull vault bones (mesoderm and neural crest) is assessed for mammals and other tetrapods. This information is discussed in the context of evolutionary changes in the proportions of the skull vault bones at the sarcopterygian-tetrapod transition. The dual tissue origin of the skull vault is considered in relation to the molecular mechanisms underlying osteogenic cell proliferation and differentiation in the sutural growth centres and in the proportionate contributions of different sutures to skull growth. PMID:11523816

  6. Chromosome rearrangements and transposable elements.

    PubMed

    Lonnig, Wolf-Ekkehard; Saedler, Heinz

    2002-01-01

    There has been limited corroboration to date for McClintock's vision of gene regulation by transposable elements (TEs), although her proposition on the origin of species by TE-induced complex chromosome reorganizations in combination with gene mutations, i.e., the involvement of both factors in relatively sudden formations of species in many plant and animal genera, has been more promising. Moreover, resolution is in sight for several seemingly contradictory phenomena such as the endless reshuffling of chromosome structures and gene sequences versus synteny and the constancy of living fossils (or stasis in general). Recent wide-ranging investigations have confirmed and enlarged the number of earlier cases of TE target site selection (hot spots for TE integration), implying preestablished rather than accidental chromosome rearrangements for nonhomologous recombination of host DNA. The possibility of a partly predetermined generation of biodiversity and new species is discussed. The views of several leading transposon experts on the rather abrupt origin of new species have not been synthesized into the macroevolutionary theory of the punctuated equilibrium school of paleontology inferred from thoroughly consistent features of the fossil record. PMID:12429698

  7. Chromosome segregation and aneuploidy. I

    SciTech Connect

    Vig, B.K.

    1993-12-31

    Of all genetic afflictions of man, aneuploidy ranks as the most prevalent. Among liveborn babies aneuploidy exist to the extent of about 0.3%, to about 0.5% among stillborns and a dramatic 25% among miscarriages. The burden is too heavy to be taken lightly. Whereas cytogeneticists are capable of tracing the origin of the extra or missing chromosome to the contributing parent, it is not certain what factors are responsible for this {open_quote}epidemic{close_quote} affecting the human genome. The matter is complicated by the observation that, to the best of our knowledge, all chromosomes do not malsegregate with equal frequency. Chromosome number 16, for example, is the most prevalent among abortuses - one-third of all aneuploid miscarriages are due to trisomy 16 - yet it never appears in aneuploid constitution among the liveborn. Some chromsomes, number 1, for example, appear only rarely, if at all. In the latter case painstaking efforts have to be made to karyotype very early stages of embryonic development, as early as the 8-cell stage. Even though no convincing data are yet available, it is conceivable that the product of most aneuploid zygotes is lost before implantation.

  8. Whole chromosome painting of B chromosomes of the red-eye tetra Moenkhausia sanctaefilomenae (Teleostei, Characidae)

    PubMed Central

    Scudeler, Patricia Elda Sobrinho; Diniz, Débora; Wasko, Adriane Pinto; Oliveira, Claudio; Foresti, Fausto

    2015-01-01

    Abstract B chromosomes are dispensable genomic elements found in different groups of animals and plants. In the present study, a whole chromosome probe was generated from a specific heterochromatic B chromosome occurring in cells of the characidae fish Moenkhausia sanctaefilomenae (Steindachner, 1907). The chromosome painting probes were used in fluorescence in situ hybridization (FISH) experiments for the assessment of metaphase chromosomes obtained from individuals from three populations of Moenkhausia sanctaefilomenae. The results revealed that DNA sequences were shared between a specific B chromosome and many chromosomes of the A complement in all populations analyzed, suggesting a possible intra-specific origin of these B chromosomes. However, no hybridization signals were observed in other B chromosomes found in the same individuals, implying a possible independent origin of B chromosome variants in this species. FISH experiments using 18S rDNA probes revealed the presence of non-active ribosomal genes in some B chromosomes and in some chromosomes of the A complement, suggesting that at least two types of B chromosomes had an independent origin. The role of heterochromatic segments and ribosomal sequences in the origin of B chromosomes were discussed. PMID:26753081

  9. Transcriptome Characteristics and X-Chromosome Inactivation Status in Cultured Rat Pluripotent Stem Cells.

    PubMed

    Vaskova, Evgeniya A; Medvedev, Sergey P; Sorokina, Anastasiya E; Nemudryy, Artem A; Elisaphenko, Evgeniy A; Zakharova, Irina S; Shevchenko, Alexander I; Kizilova, Elena A; Zhelezova, Antonina I; Evshin, Ivan S; Sharipov, Ruslan N; Minina, Julia M; Zhdanova, Natalia S; Khegay, Igor I; Kolpakov, Fedor A; Sukhikh, Gennadiy T; Pokushalov, Evgeniy A; Karaskov, Alexander M; Vlasov, Valentin V; Ivanova, Ludmila N; Zakian, Suren M

    2015-12-15

    Rat pluripotent stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) as mouse and human ones have a great potential for studying mammalian early development, disease modeling, and evaluation of regenerative medicine approaches. However, data on pluripotency realization and self-renewal maintenance in rat cells are still very limited, and differentiation protocols of rat ESCs (rESCs) and iPSCs to study development and obtain specific cell types for biomedical applications are poorly developed. In this study, the RNA-Seq technique was first used for detailed transcriptome characterization in rat pluripotent cells. The rESC and iPSC transcriptomes demonstrated a high similarity and were significantly different from those in differentiated cells. Additionally, we have shown that reprogramming of rat somatic cells to a pluripotent state was accompanied by X-chromosome reactivation. There were two active X chromosomes in XX rESCs and iPSCs, which is one of the key attributes of the pluripotent state. Differentiation of both rESCs and iPSCs led to X-chromosome inactivation (XCI). The dynamics of XCI in differentiating rat cells was very similar to that in mice. Two types of facultative heterochromatin described in various mammalian species were revealed on the rat inactive X chromosome. To explore XCI dynamics, we established a new monolayer differentiation protocol for rESCs and iPSCs that may be applied to study different biological processes and optimized for directed derivation of specific cell types. PMID:26418521

  10. Efficient identification of Y chromosome sequences in the human and Drosophila genomes

    PubMed Central

    Carvalho, Antonio Bernardo; Clark, Andrew G.

    2013-01-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes. PMID:23921660

  11. Large-scale probabilistic 3D organization of human chromosome territories.

    PubMed

    Sehgal, Nitasha; Fritz, Andrew J; Vecerova, Jaromira; Ding, Hu; Chen, Zihe; Stojkovic, Branislav; Bhattacharya, Sambit; Xu, Jinhui; Berezney, Ronald

    2016-02-01

    There is growing evidence that chromosome territories (CT) have a probabilistic non-random arrangement within the cell nucleus of mammalian cells including radial positioning and preferred patterns of interchromosomal interactions that are cell-type specific. While it is generally assumed that the three-dimensional (3D) arrangement of genes within the CT is linked to genomic regulation, the degree of non-random organization of individual CT remains unclear. As a first step to elucidating the global 3D organization (topology) of individual CT, we performed multi-color fluorescence in situ hybridization using six probes extending across each chromosome in human WI38 lung fibroblasts. Six CT were selected ranging in size and gene density (1, 4, 12, 17, 18 and X). In-house computational geometric algorithms were applied to measure the 3D distances between every combination of probes and to elucidate data-mined structural patterns. Our findings demonstrate a high degree of non-random arrangement of individual CT that vary from chromosome to chromosome and display distinct changes during the cell cycle. Application of a classic, well-defined data mining and pattern recognition approach termed the 'k-means' generated 3D models for the best fit arrangement of each chromosome. These predicted models correlated well with the detailed distance measurements and analysis. We propose that the unique 3D topology of each CT and characteristic changes during the cell cycle provide the structural framework for the global gene expression programs of the individual chromosomes. PMID:26604142

  12. [MARY LYON (1925-2014) AND THE RANDOM INACTIVATION OF CHROMOSOME X].

    PubMed

    Sagie, Shira; Monovich, Einat

    2016-03-01

    Since the beginning of the last century, genetic research has been preoccupied with the dosage compensation question: What mechanism controls equal expression of chromosome X genes between females and males? In the 1950s, many discoveries occurred in the field of cytogenetics related to the sex chromatin of female mammals. Concomitantly, genetic information accumulated with regard to expression patterns of X-linked genes in female mice and the expression effect of translocations between chromosome X and autosomes. In addition, many case reports were published about families with sex-linked diseases. The lately deceased scientist Mary F. Lyon suggested a unifying theory of these findings. In her articles "Gene action in the X-chromosome of the mouse (Mus musculus L.T in 1961, and "Sex chromatin and gene action in the mammalian X-chromosome" in 1962, she suggested that: (1) the heteropyknotic chromosome X was genetically inactivated, (2) the inactivated chromosome X could be either paternal or maternal in origin in different cells of the same animal, and (3) the inactivation occurred early in embryonic development. This theory led to an immediate breakthrough in understanding the basic mechanisms responsible for X-linked diseases and solved many unexplained case studies. Moreover, the inquiry of the mechanism of the phenomenon promoted scientific understanding of a wide range of areas in molecular biology such as DNA methylation, the silencing mechanism by XIST, histone modifications, DNA replication timing and more. The current article deals with some biographical details about Mary F. Lyon, the background of her theory, her historical articles and the development of the field since. PMID:27305745

  13. Long-Range Chromosome Interactions Mediated by Cohesin Shape Circadian Gene Expression

    PubMed Central

    Xu, Yichi; Guo, Weimin; Li, Ping; Zhang, Yan; Zhao, Meng; Fan, Zenghua; Zhao, Zhihu; Yan, Jun

    2016-01-01

    Mammalian circadian rhythm is established by the negative feedback loops consisting of a set of clock genes, which lead to the circadian expression of thousands of downstream genes in vivo. As genome-wide transcription is organized under the high-order chromosome structure, it is largely uncharted how circadian gene expression is influenced by chromosome architecture. We focus on the function of chromatin structure proteins cohesin as well as CTCF (CCCTC-binding factor) in circadian rhythm. Using circular chromosome conformation capture sequencing, we systematically examined the interacting loci of a Bmal1-bound super-enhancer upstream of a clock gene Nr1d1 in mouse liver. These interactions are largely stable in the circadian cycle and cohesin binding sites are enriched in the interactome. Global analysis showed that cohesin-CTCF co-binding sites tend to insulate the phases of circadian oscillating genes while cohesin-non-CTCF sites are associated with high circadian rhythmicity of transcription. A model integrating the effects of cohesin and CTCF markedly improved the mechanistic understanding of circadian gene expression. Further experiments in cohesin knockout cells demonstrated that cohesin is required at least in part for driving the circadian gene expression by facilitating the enhancer-promoter looping. This study provided a novel insight into the relationship between circadian transcriptome and the high-order chromosome structure. PMID:27135601

  14. Birth of a new gene on the Y chromosome of Drosophila melanogaster.

    PubMed

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A M; Swenor, Bonnielin; Clark, Andrew G

    2015-10-01

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes. PMID:26385968

  15. Birth of a new gene on the Y chromosome of Drosophila melanogaster

    PubMed Central

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A. M.; Swenor, Bonnielin; Clark, Andrew G.

    2015-01-01

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes. PMID:26385968

  16. Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells.

    PubMed

    Wang, Lihong; Fraley, Cresson D; Faridi, Jesika; Kornberg, Arthur; Roth, Richard A

    2003-09-30

    Inorganic polyphosphate (poly P), chains of hundreds of phosphate residues linked by "high-energy" bonds as in ATP, has been conserved from prebiotic times in all cells. Poly P is essential for a wide variety of functions in bacteria, including virulence in pathogens. In this study, we observe the unique and many-fold stimulation by poly P in vitro of the protein kinase mTOR (mammalian target of rapamycin). To explore the role of poly P in mammalian cells, a yeast polyphosphatase, PPX1, was inserted into the chromosomes of MCF-7 mammary cancer cells. The transfected cells are markedly deficient in their response to mitogens, such as insulin and amino acids, as seen in their failure to activate mTOR to phosphorylate one of its substrates, PHAS-I (the initiation factor 4E-binding protein). In addition, the transfected cells are severely reduced in their growth in a serum-free medium. On the basis of these findings, we suggest that poly P (and/or PPX1) serves as a regulatory factor in the activation of mTOR in the proliferative signaling pathways of animal cells. PMID:12970465

  17. Mutation measurement in mammalian cells. IV: Comparison of gamma-ray and chemical mutagenesis.

    PubMed

    Puck, T T; Johnson, R; Webb, P; Yohrling, G

    1998-01-01

    The interaction of chemical mutagens with mammalian cells is much more complex than that of gamma-irradiation because of the different ways in which chemical agents react with cell and medium components. Nevertheless, the system previously described for analysis of mutagenesis by gamma-radiation appears applicable to chemical mutagenesis. The approach involves measurement of cell survival, use of caffeine to inhibit repair, analysis of mitotic index changes, and quantitation of microscopically visible structural changes in mitotic chromosomes. The behavior of a variety of chemical mutagens and nonmutagens in this system is described and compared with that of gamma-irradiation. The procedure is simple and the results reasonably quantitative though less so than those of gamma-irradiation. The procedure can be used for environmental monitoring, analysis of mutational events, and individual and epidemiological testing. Mutational events should be classified as primary or secondary depending on whether they represent initial genomic insult, or genomic changes resulting from primary mutation followed by structural changes due to metabolic actions. While caffeine has multiple effects on the mammalian genome, when used under the conditions specified here it appears to act principally as an inhibitor of mutation repair, and so affords a measure of the role of repair in the action of different mutagens on cells in the G2 phase of the life cycle. PMID:9776977

  18. Novel insights into mammalian embryonic neural stem cell division: focus on microtubules

    PubMed Central

    Mora-Bermúdez, Felipe; Huttner, Wieland B.

    2015-01-01

    During stem cell divisions, mitotic microtubules do more than just segregate the chromosomes. They also determine whether a cell divides virtually symmetrically or asymmetrically by establishing spindle orientation and the plane of cell division. This can be decisive for the fate of the stem cell progeny. Spindle defects have been linked to neurodevelopmental disorders, yet the role of spindle orientation for mammalian neurogenesis has remained controversial. Here we explore recent advances in understanding how the microtubule cytoskeleton influences mammalian neural stem cell division. Our focus is primarily on the role of spindle microtubules in the development of the cerebral cortex. We also highlight unique characteristics in the architecture and dynamics of cortical stem cells that are tightly linked to their mode of division. These features contribute to setting these cells apart as mitotic “rule breakers,” control how asymmetric a division is, and, we argue, are sufficient to determine the fate of the neural stem cell progeny in mammals. PMID:26628750

  19. Spare PRELI Gene Loci: Failsafe Chromosome Insurance?

    PubMed Central

    Rangel, Roberto; Ortiz-Quintero, Blanca; Blackburn, Michael R.; Martinez-Valdez, Hector

    2012-01-01

    Background LEA (late embryogenesis abundant) proteins encode conserved N-terminal mitochondrial signal domains and C-terminal (A/TAEKAK) motif repeats, long-presumed to confer cell resistance to stress and death cues. This prompted the hypothesis that LEA proteins are central to mitochondria mechanisms that connect bioenergetics with cell responses to stress and death signaling. In support of this hypothesis, recent studies have demonstrated that mammalian LEA protein PRELI can act as a biochemical hub, which upholds mitochondria energy metabolism, while concomitantly promoting B cell resistance to stress and induced death. Hence, it is important to define in vivo the physiological relevance of PRELI expression. Methods and Findings Given the ubiquitous PRELI expression during mouse development, embryo lethality could be anticipated. Thus, conditional gene targeting was engineered by insertion of flanking loxP (flox)/Cre recognition sites on PRELI chromosome 13 (Chr 13) locus to abort its expression in a tissue-specific manner. After obtaining mouse lines with homozygous PRELI floxed alleles (PRELIf/f), the animals were crossed with CD19-driven Cre-recombinase transgenic mice to investigate whether PRELI inactivation could affect B-lymphocyte physiology and survival. Mice with homozygous B cell-specific PRELI deletion (CD19-Cre/Chr13 PRELI−/−) bred normally and did not show any signs of morbidity. Histopathology and flow cytometry analyses revealed that cell lineage identity, morphology, and viability were indistinguishable between wild type CD19-Cre/Chr13 PRELI+/+ and CD19-Cre/Chr13 PRELI−/− deficient mice. Furthermore, B cell PRELI gene expression seemed unaffected by Chr13 PRELI gene targeting. However, identification of additional PRELI loci in mouse Chr1 and Chr5 provided an explanation for the paradox between LEA-dependent cytoprotection and the seemingly futile consequences of Chr 13 PRELI gene inactivation. Importantly, PRELI expression from spare

  20. Biological dosimetry by interphase chromosome painting

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.