Science.gov

Sample records for chronic clostridium difficile

  1. Clostridium Difficile Infections

    MedlinePlus

    Clostridium difficile (C. difficile) is a bacterium that causes diarrhea and more serious intestinal conditions such as colitis. Symptoms include Watery ... Nausea Abdominal pain or tenderness You might get C. difficile disease if you have an illness that ...

  2. Clostridium difficile and C. difficile Toxin Testing

    MedlinePlus

    ... C diff antigen; GDH Formal name: Clostridium difficile Culture; C. difficile Toxin, A and B; C. difficile Cytotoxin Assay; Glutamate Dehydrogenase Test Related tests: Stool Culture ; O&P At a Glance Test Sample The ...

  3. Clostridium difficile

    MedlinePlus

    ... Health Issues Conditions Abdominal ADHD Allergies & Asthma Autism Cancer Chest & Lungs Chronic Conditions Cleft & Craniofacial Developmental Disabilities Ear Nose & Throat Emotional Problems Eyes Fever From Insects or Animals Genitals and Urinary Tract Glands & Growth ...

  4. Clostridium difficile infection

    PubMed Central

    Viswanathan, VK; Mallozzi, MJ

    2010-01-01

    Clostridium difficile infection (CDI) is the primary cause of antibiotic-associated diarrhea and is a significant nosocomial disease. In the past ten years, variant toxin-producing strains of C. difficile have emerged, that have been associated with severe disease as well as outbreaks worldwide. This review summarizes current information on C. difficile pathogenesis and disease, and highlights interventions used to combat single and recurrent episodes of CDI. PMID:21327030

  5. Clostridium difficile infection.

    PubMed

    Smits, Wiep Klaas; Lyras, Dena; Lacy, D Borden; Wilcox, Mark H; Kuijper, Ed J

    2016-01-01

    Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota. PMID:27158839

  6. Vaccines against Clostridium difficile

    PubMed Central

    Leuzzi, Rosanna; Adamo, Roberto; Scarselli, Maria

    2014-01-01

    Clostridium difficile infection (CDI) is recognized as a major cause of nosocomial diseases ranging from antibiotic related diarrhea to fulminant colitis. Emergence during the last 2 decades of C. difficile strains associated with high incidence, severity and lethal outcomes has increased the challenges for CDI treatment. A limited number of drugs have proven to be effective against CDI and concerns about antibiotic resistance as well as recurring disease solicited the search for novel therapeutic strategies. Active vaccination provides the attractive opportunity to prevent CDI, and intense research in recent years led to development of experimental vaccines, 3 of which are currently under clinical evaluation. This review summarizes recent achievements and remaining challenges in the field of C. difficile vaccines, and discusses future perspectives in view of newly-identified candidate antigens. PMID:24637887

  7. [Oncologic aspects of Clostridium difficile].

    PubMed

    Telekes, András

    2016-07-01

    Clostridium difficile infection is one of the most frequent among cancer patients. Its diagnosis is complicated by the fact that the symptoms of the infection and the side effects of the anticancer treatments could be similar. Chemotherapy itself might facilitate Clostridium difficile infection. Several risk factors are known but Clostridium difficile infection can develop in the absence of these. Neutreopenia is a risk factor for fatal Clostridium difficile infection and also the side effect of chemotherapy. Therefore, if symptoms of the potential infection develop (eg. diarrhoea more than three times a day, fever above 38.5 °C, colitis, rapid increase of serum creatinin) Clostridium difficile infection should be excluded. If the infection is confirmed it should be managed in the most efficient way. Orv. Hetil., 2016, 157(28), 1110-1116. PMID:27397423

  8. Advanced chronic kidney disease: a strong risk factor for Clostridium difficile infection

    PubMed Central

    Kim, Sun Chul; Seo, Min Young; Lee, Jun Yong; Kim, Ki Tae; Cho, Eunjung; Kim, Myung-Gyu; Jo, Sang-Kyung; Cho, Won-Yong; Kim, Hyoung-Kyu

    2016-01-01

    Background/Aims: It has been suggested that chronic kidney disease (CKD) is a risk factor for Clostridium difficile infection (CDI) and is associated with increased mortality among patients infected with C. difficile. However, recent studies of the clinical impact of CKD on CDI in Asians are still insufficient. We sought to determine the relationship between CKD and CDI in a Korean population. Methods: This was a single-center, retrospective case-control study. In total, 171 patients with CDI were included as cases and 342 age- and gender-matched patients without CDI were used as controls. We compared the prevalence of CKD in the study sample and identified independent risk factors that could predict the development or prognosis of CDI. Results: Independent risk factors for CDI included stage IV to V CKD not requiring dialysis (odds ratio [OR], 2.90) and end-stage renal disease requiring dialysis (OR, 3.34). Patients with more advanced CKD (estimated glomerular filtration rate < 30) and CDI showed higher in-hospital mortality and poorer responses to the initial metronidazole therapy. Conclusions: More advanced CKD is an independent risk factor for CDI and is associated with higher in-hospital mortality and poor treatment responses in CDI patients. Thus, in CKD patients, careful attention should be paid to the occurrence of CDI and its management to improve the outcome of CDI. PMID:26767866

  9. Clostridium difficile Infection: A Rarity in Patients Receiving Chronic Antibiotic Treatment for Crohn’s Disease

    PubMed Central

    Roy, Abhik; Lichtiger, Simon

    2016-01-01

    Background Prolonged antibiotic use is limited by several adverse effects, one of which is Clostridium difficile infection (CDI). The aim of this study was to determine the incidence of CDI in patients receiving chronic antibiotic treatment for Crohn’s disease (CD). Methods We conducted a retrospective review of 100 patients with CD for which ≥6 months of outpatient antibiotic therapy was prescribed. Data were collected regarding demographics, CD phenotype, treatment history, and CDI. The incidence of CDI in our patient population was calculated and compared with historical controls. Results 100 patients were studied—60% of men, mean age 23.9 years at CD diagnosis. Eighty-two percent had disease involving the ileum, and 33% had disease involving the colon. The mean duration of antibiotic therapy was 39.6 months (range, 6–217 months). The most commonly prescribed classes of antibiotics were fluoroquinolones (84%), penicillins (57%), and cephalosporins (32%). Forty-nine percent of patients were treated with concomitant thiopurines, 45% with budesonide, and 41% with biologics. The overall incidence of CDI was 2%. This incidence of CDI was lower than previously reported for non-CD patients receiving chronic antibiotics for continuous-flow left ventricular assist device infections (12.5%) and orthopedic prosthesis infections (22.2%). Conclusions The incidence of CDI is rare in patients receiving chronic antibiotic treatment for CD, and it seems significantly lower than for non-CD populations reported in the literature. PMID:26650148

  10. Clostridium difficile in paediatric populations

    PubMed Central

    Allen, Upton D

    2014-01-01

    An increase in Clostridium difficile infection incidence has been observed among hospitalized children in the United States. The present statement, targeted at clinicians caring for infants and children in community and institutional settings, summarizes the relevant information relating to the role of C difficile in childhood diarrhea and provides recommendations for diagnosis, prevention and treatment. Significant differences between adult and paediatric risk factors and disease are discussed, along with emerging therapies. The relationship between age and disease severity in children with a newly emergent and more fluoroqinolone-resistant strain of C difficile (North American Pulse-field type-1 [NAP1]) remains unknown. The importance of antimicrobial stewardship as a preventive strategy is highlighted. This statement replaces a previous Canadian Paediatric Society position statement on C difficile published in 2000. PMID:24627655

  11. Clostridium difficile phages: still difficult?

    PubMed Central

    Hargreaves, Katherine R.; Clokie, Martha R. J.

    2014-01-01

    Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage–host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using “whole-phages” are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen. PMID:24808893

  12. Clostridium difficile infections in China.

    PubMed

    Jin, Ke; Wang, Shixia; Huang, Zuhu; Lu, Shan

    2010-11-01

    Clostridium difficile (C. difficile) infection has become one of the major hospital-associated infections in Western countries in the last two decades. However, there is limited information on the status of C. difficile infection in Chinese healthcare settings. Given the large and increasing elderly population and the well-recognized problem of over-prescribing of broad spectrum antibiotics in China, it is critical to understand the epidemiology and potential risk factors that may contribute to C. difficile infection in China. A literature review of available published studies, including those in Chinese language-based journals, was conducted. A review of the currently available literature suggested the presence of C. difficile infections in China, but also suggested that these infections were not particularly endemic. This finding should lead to better designed and greatly expanded studies to provide a more reliable epidemiologically-based conclusion on the actual status of C. difficile infection in China, including the identification of any associated risk factors. Such information is ultimately valuable to develop appropriate strategies to prevent C. difficile infection and the vast negative impact of such infections in China and other developing countries. PMID:23554657

  13. Clostridium difficile and the microbiota

    PubMed Central

    Seekatz, Anna M.; Young, Vincent B.

    2014-01-01

    Clostridium difficile infection (CDI) is the leading health care–associated illness. Both human and animal models have demonstrated the importance of the gut microbiota’s capability of providing colonization resistance against C. difficile. Risk factors for disease development include antibiotic use, which disrupts the gut microbiota, leading to the loss of colonization resistance and subsequent CDI. Identification of the specific microbes capable of restoring this function remains elusive. Future studies directed at how microbial communities influence the metabolic environment may help elucidate the role of the microbiota in disease development. These findings will improve current biotherapeutics for patients with CDI, particularly those with recurrent disease. PMID:25036699

  14. Clostridium difficile Infection: A Worldwide Disease

    PubMed Central

    Burke, Kristin E.

    2014-01-01

    Clostridium difficile, an anaerobic toxigenic bacterium, causes a severe infectious colitis that leads to significant morbidity and mortality worldwide. Both enhanced bacterial toxins and diminished host immune response contribute to symptomatic disease. C. difficile has been a well-established pathogen in North America and Europe for decades, but is just emerging in Asia. This article reviews the epidemiology, microbiology, pathophysiology, and clinical management of C. difficile. Prompt recognition of C. difficile is necessary to implement appropriate infection control practices. PMID:24516694

  15. Clostridium difficile infection in Thailand.

    PubMed

    Putsathit, Papanin; Kiratisin, Pattarachai; Ngamwongsatit, Puriya; Riley, Thomas V

    2015-01-01

    Clostridium difficile is the aetiological agent in ca. 20% of cases of antimicrobial-associated diarrhoea in hospitalised adults. Diseases caused by this organism range from mild diarrhoea to occasional fatal pseudomembranous colitis. The epidemiology of C. difficile infection (CDI) has changed notably in the past decade, following epidemics in the early 2000s of PCR ribotype (RT) 027 infection in North America and Europe, where there was an increase in disease severity and mortality. Another major event has been the emergence of RT 078, initially as the predominant ribotype in production animals in the USA and Europe, and then in humans in Europe. Although there have been numerous investigations of the epidemiology of CDI in North America and Europe, limited studies have been undertaken elsewhere, particularly in Asia. Antimicrobial exposure remains the major risk factor for CDI. Given the high prevalence of indiscriminate and inappropriate use of antimicrobials in Asia, it is conceivable that CDI is relatively common among humans and animals. This review describes the level of knowledge in Thailand regarding C. difficile detection methods, prevalence and antimicrobial susceptibility profile, as well as the clinical features of, treatment options for and outcomes of the disease. In addition, antimicrobial usage in livestock in Thailand will be reviewed. A literature search yielded 18 studies mentioning C. difficile in Thailand, a greater number than from any other Asian country. It is possible that the situation in Thailand in relation to CDI may mirror the situation in other developing Asians countries. PMID:25537687

  16. Clostridium difficile: clinical disease and diagnosis.

    PubMed Central

    Knoop, F C; Owens, M; Crocker, I C

    1993-01-01

    Clostridium difficile is an opportunistic pathogen that causes a spectrum of disease ranging from antibiotic-associated diarrhea to pseudomembranous colitis. Although the disease was first described in 1893, the etiologic agent was not isolated and identified until 1978. Since clinical and pathological features of C. difficile-associated disease are not easily distinguished from those of other gastrointestinal diseases, including ulcerative colitis, chronic inflammatory bowel disease, and Crohn's disease, diagnostic methods have relied on either isolation and identification of the microorganism or direct detection of bacterial antigens or toxins in stool specimens. The current review focuses on the sensitivity, specificity, and practical use of several diagnostic tests, including methods for culture of the etiologic agent, cellular cytotoxicity assays, latex agglutination tests, enzyme immunoassay systems, counterimmunoelectrophoresis, fluorescent-antibody assays, and polymerase chain reactions. PMID:8358706

  17. Clostridium difficile in poultry and poultry meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America from the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer t...

  18. Clostridium difficile infection in patients with inflammatory bowel disease

    PubMed Central

    Biesiada, Grażyna; Perucki, William; Mach, Tomasz

    2014-01-01

    Clostridium difficile is a bacterium widely distributed in the human environment. In the last decade the incidence and severity of Clostridium difficile infection has grown, particularly in Europe and North America, making it one of the more common nosocomial infections. A group particularly susceptible to Clostridium difficile infection are patients with inflammatory bowel disease, especially those with involvement of the colon. This paper presents relevant data on Clostridium difficile infections in inflammatory bowel disease patients, including epidemiology, pathogenesis, diagnosis and treatment. PMID:25097707

  19. Clostridium difficile colitis: pathogenesis and host defence.

    PubMed

    Abt, Michael C; McKenney, Peter T; Pamer, Eric G

    2016-10-01

    Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis. PMID:27573580

  20. Inducing and Quantifying Clostridium difficile Spore Formation.

    PubMed

    Shen, Aimee; Fimlaid, Kelly A; Pishdadian, Keyan

    2016-01-01

    The Gram-positive nosocomial pathogen Clostridium difficile induces sporulation during growth in the gastrointestinal tract. Sporulation is necessary for this obligate anaerobe to form metabolically dormant spores that can resist antibiotic treatment, survive exit from the mammalian host, and transmit C. difficile infections. In this chapter, we describe a method for inducing C. difficile sporulation in vitro. This method can be used to study sporulation and maximize spore purification yields for a number of C. difficile strain backgrounds. We also describe procedures for visualizing spore formation using phase-contrast microscopy and for quantifying the efficiency of sporulation using heat resistance as a measure of functional spore formation. PMID:27507338

  1. Clostridium difficile recurrences in Stockholm.

    PubMed

    Sandell, Staffan; Rashid, Mamun-Ur; Jorup-Rönström, Christina; Ellström, Kristina; Nord, Carl Erik; Weintraub, Andrej

    2016-04-01

    Sixty-eight hospital-admitted patients with a first episode of Clostridium difficile infection (CDI) were included and followed up during 1 year. Faeces samples were collected at 1, 2, 6 and 12 months after inclusion and analyzed for the presence of C. difficile toxin B, genes for toxin A, toxin B, binary toxin and TcdC deletion by PCR. All strains were also PCR-ribotyped and the MICs of the isolates were determined against eight antimicrobial agents. In 68 patients initially included, antibiotics, clinical signs and co-morbidities were analyzed and 56 were evaluable for recurrences. The mean number of different antibiotics given during 3 months prior to inclusion was 2.6 (range 0-6). Six patients had not received any antibiotics and three of them had diagnosed inflammatory bowel disease. Thirty-two patients (57%) had either a microbiological or clinical recurrence, 16 of whom had clinical recurrences that were confirmed microbiologically (13, 23%) or unconfirmed by culture (3, 5%). Twenty-nine patients were positive in at least one of the follow-up tests, 16 had the same ribotype in follow-up tests, i.e. relapse, and 13 a different ribotype, i.e., reinfection. Most common ribotypes were 078/126, 020, 023, 026, 014/077, 001 and 005. No strain of ribotype 027 was found. Strains ribotype 078/126 and 023 were positive for binary toxin and were the strains most prone to cause recurrence. All strains were sensitive to vancomycin and metronidazole. Patients with recurrences were significantly older (p = 0.02) and all patients had a high burden of comorbidities, which could explain the high fatality rate, 26 (38%) patients died during the 1-year follow-up. PMID:26802875

  2. Isolating and Purifying Clostridium difficile Spores.

    PubMed

    Edwards, Adrianne N; McBride, Shonna M

    2016-01-01

    The ability for the obligate anaerobe, Clostridium difficile to form a metabolically dormant spore is critical for the survival of this organism outside of the host. This spore form is resistant to a myriad of environmental stresses, including heat, desiccation, and exposure to disinfectants and antimicrobials. These intrinsic properties of spores allow C. difficile to survive long-term in an oxygenated environment, to be easily transmitted from host-to-host, and to persist within the host following antibiotic treatment. Because of the importance of the spore form to the C. difficile life cycle and treatment and prevention of C. difficile infection (CDI), the isolation and purification of spores are necessary to study the mechanisms of sporulation and germination, investigate spore properties and resistances, and for use in animal models of CDI. Here we provide basic protocols, in vitro growth conditions, and additional considerations for purifying C. difficile spores for a variety of downstream applications. PMID:27507337

  3. Carbohydrate-based Clostridium difficile vaccines.

    PubMed

    Monteiro, Mario A; Ma, Zuchao; Bertolo, Lisa; Jiao, Yuening; Arroyo, Luis; Hodgins, Douglas; Mallozzi, Michael; Vedantam, Gayatri; Sagermann, Martin; Sundsmo, John; Chow, Herbert

    2013-04-01

    Clostridium difficile is responsible for thousands of deaths each year and a vaccine would be welcomed, especially one that would disrupt bacterial maintenance, colonization and persistence in carriers and convalescent patients. Structural explorations at the University of Guelph (ON, Canada) discovered that C. difficile may express three phosphorylated polysaccharides, named PSI, PSII and PSIII; this review captures our recent efforts to create vaccines based on these glycans, especially PSII, the common antigen that has precipitated immediate attention. The authors describe the design and immunogenicity of vaccines composed of raw polysaccharides and conjugates thereof. So far, it has been observed that anti-PSII antibodies can be raised in farm animals, mice and hamster models; humans and horses carry anti-PSII IgA and IgG antibodies from natural exposure to C. difficile, respectively; phosphate is an indispensable immunogenic epitope and vaccine-induced PSII antibodies recognize PSII on C. difficile outer surface. PMID:23560922

  4. Models for the study of Clostridium difficile infection

    PubMed Central

    Best, Emma L.; Freeman, Jane; Wilcox, Mark H.

    2012-01-01

    Models of Clostridium difficile infection (C. difficile) have been used extensively for Clostridium difficile (C. difficile) research. The hamster model of C. difficile infection has been most extensively employed for the study of C. difficile and this has been used in many different areas of research, including the induction of C. difficile, the testing of new treatments, population dynamics and characterization of virulence. Investigations using in vitro models for C. difficile introduced the concept of colonization resistance, evaluated the role of antibiotics in C. difficile development, explored population dynamics and have been useful in the evaluation of C. difficile treatments. Experiments using models have major advantages over clinical studies and have been indispensible in furthering C. difficile research. It is important for future study programs to carefully consider the approach to use and therefore be better placed to inform the design and interpretation of clinical studies. PMID:22555466

  5. Clostridium difficile PCR Ribotypes in Calves, Canada

    PubMed Central

    Stämpfli, Henry R.; Duffield, Todd; Peregrine, Andrew S.; Trotz-Williams, Lise A.; Arroyo, Luis G.; Brazier, Jon S.; Weese, J. Scott

    2006-01-01

    We investigated Clostridium difficile in calves and the similarity between bovine and human C. difficile PCR ribotypes by conducting a case-control study of calves from 102 dairy farms in Canada. Fecal samples from 144 calves with diarrhea and 134 control calves were cultured for C. difficile and tested with an ELISA for C. difficile toxins A and B. C. difficile was isolated from 31 of 278 calves: 11 (7.6%) of 144 with diarrhea and 20 (14.9%) of 134 controls (p = 0.009). Toxins were detected in calf feces from 58 (56.8%) of 102 farms, 57 (39.6%) of 144 calves with diarrhea, and 28 (20.9%) of 134 controls (p = 0.0002). PCR ribotyping of 31 isolates showed 8 distinct patterns; 7 have been identified in humans, 2 of which have been associated with outbreaks of severe disease (PCR types 017 and 027). C. difficile may be associated with calf diarrhea, and cattle may be reservoirs of C. difficile for humans. PMID:17283624

  6. Prospects for a vaccine for Clostridium difficile.

    PubMed

    Kyne, L; Kelly, C P

    1998-09-01

    Clostridium difficile diarrhoea and colitis is a new disease that is attributable to broad spectrum antibiotic therapy. During the past 2 decades C. difficile has become one of the most common nosocomial pathogens in the developed world. As changing demographics create an increasingly elderly population and the use of broad spectrum antimicrobials continues to expand, C. difficile is likely to become increasingly problematic. Disease caused by this organism is caused by the inflammatory actions of its 2 toxins, A and B, on the intestinal mucosa. Human antibody responses to these toxins are common in the general population and in patients with C. difficile-associated disease. There is substantial, albeit inconclusive, evidence to indicate that antitoxin antibodies provide protection against severe, prolonged or recurrent C. difficile diarrhoea. Immunity induced by oral or parenteral passive administration of antibody is protective in animal models of C. difficile infection. In humans, intravenous passive immunisation with pooled human immunoglobulin has been successful in the treatment of recurrent and severe C. difficile colitis. Human trials of oral passive immunotherapy with bovine immunoglobulin therapy are in progress. Formalin-inactivated culture filtrate from toxigenic C. difficile, as well as purified and inactivated toxins, have been used to successfully immunise animals. Similar preparations are under investigation as possible human vaccines. Antibiotic therapy is effective in treating most individual patients with C. difficile diarrhoea, but has proven ineffective in reducing the overall incidence of nosocomial infection. Active immunisation is probably the most promising approach to long term control of this difficult iatrogenic disease. PMID:18020593

  7. An Update on Clostridium difficile Toxinotyping

    PubMed Central

    Janezic, Sandra

    2015-01-01

    Toxinotyping is a PCR-restriction fragment length polymorphism (RFLP)-based method for differentiation of Clostridium difficile strains according to the changes in the pathogenicity locus (PaLoc), a region coding for toxins A and B. Toxinotypes are a heterogenous group of strains that are important in the development of molecular diagnostic tests and vaccines and are a good basis for C. difficile phylogenetic studies. Here we describe an overview of the 34 currently known toxinotypes (I to XXXIV) and some changes in nomenclature. PMID:26511734

  8. Clostridium difficile: from obscurity to superbug.

    PubMed

    Brazier, J S

    2008-01-01

    According to the UK media and popular press, Clostridium difficile is now a fully fledged member of that notorious but ill-defined group of microorganisms portrayed to the general public as superbugs. Following the trail blazed by methicillin-resistant Staphylococcus aureus (MRSA), C. difficile has made the transition from being an obscure anaerobic bacterium, mainly of interest to specialist anaerobic microbiologists, to that of an infamous superbug responsible for outbreaks of hospital-acquired infection that commonly result in serious disease and death. This review tracks the rise in scientific knowledge and public awareness of this organism. PMID:18476496

  9. Action of nitroheterocyclic drugs against Clostridium difficile

    PubMed Central

    Kumar, Manish; Adhikari, Sudip; Hurdle, Julian G.

    2014-01-01

    The nitroheterocyclic classes of drugs have a long history of use in treating anaerobic infections, as exemplified by metronidazole as a first-line treatment for mild-to-moderate Clostridium difficile infection (CDI). Since direct comparisons of the three major classes of nitroheterocyclic drugs (i.e. nitroimidazole, nitazoxanide and nitrofurans) and nitrosating agents against C. difficile are under-examined, in this study their actions against C. difficile were compared. Results show that whilst transient resistance occurs to metronidazole and nitazoxanide, stable resistance arises to nitrofurans upon serial passage. All compounds killed C. difficile at high concentrations in addition to the host defence nitrosating agent S-nitrosoglutathione (GSNO). This suggests that GSNO killing of C. difficile contributes to its efficacy in murine CDI. Although nitric oxide production could not be detected for the nitroheterocyclic drugs, the cellular response to metronidazole and nitrofurans has some overlap with the response to GSNO, causing significant upregulation of the hybrid-cluster protein Hcp that responds to nitrosative stress. These findings provide new insights into the action of nitroheterocyclic drugs against C. difficile. PMID:25129314

  10. Secretome analysis of Clostridium difficile strains.

    PubMed

    Boetzkes, Alexander; Felkel, Katharina Wiebke; Zeiser, Johannes; Jochim, Nelli; Just, Ingo; Pich, Andreas

    2012-08-01

    Clostridium difficile causes infections ranging from mild C. difficile-associated diarrhea to severe pseudomembranous colitis. Since 2003 new hypervirulent C. difficile strains (PCR ribotype 027) emerged characterized by a dramatically increased mortality. The secretomes of the three C. difficile strains CDR20291, CD196, and CD630 were analyzed and compared. Proteins were separated and analyzed by means of SDS--PAGE and LC-MS. MS data were analyzed using Mascot and proteins were checked for export signals with SecretomeP and SignalP. LC-MS analysis revealed 158 different proteins in the supernatant of C. difficile. Most of the identified proteins originate from the cytoplasm. Thirty-two proteins in CDR20291, 36 in CD196 and 26 in CD630 were identified to be secreted by C. difficile strains. Those were mainly S-layer proteins, substrate-binding proteins of ABC-transporters, cell wall hydrolases, pilin and unknown hypothetical proteins. Toxin A and toxin B were identified after growth in brain heart infusion medium using immunological techniques. The ADP-ribosyltransferase-binding component protein, which is a part of the binary toxin CDT, was only identified in the hypervirulent ribotype 027 strains. Further proteins that are secreted specifically by hypervirulent strains were identified. PMID:22398929

  11. Characterization of Functional Prophages in Clostridium difficile.

    PubMed

    Sekulović, Ognjen; Fortier, Louis-Charles

    2016-01-01

    Bacteriophages (phages) are present in almost, if not all ecosystems. Some of these bacterial viruses are present as latent "prophages," either integrated within the chromosome of their host, or as episomal DNAs. Since prophages are ubiquitous throughout the bacterial world, there has been a sustained interest in trying to understand their contribution to the biology of their host. Clostridium difficile is no exception to that rule and with the recent release of hundreds of bacterial genome sequences, there has been a growing interest in trying to identify and classify these prophages. Besides their identification in bacterial genomes, there is also growing interest in determining the functionality of C. difficile prophages, i.e., their capacity to escape their host and reinfect a different strain, thereby promoting genomic evolution and horizontal transfer of genes through transduction, for example of antibiotic resistance genes. There is also some interest in using therapeutic phages to fight C. difficile infections.The objective of this chapter is to share with the broader C. difficile research community the expertise we developed in the study of C. difficile temperate phages. In this chapter, we describe a general "pipeline" comprising a series of experiments that we use in our lab to identify, induce, isolate, propagate, and characterize prophages. Our aim is to provide readers with the necessary basic tools to start studying C. difficile phages. PMID:27507339

  12. [New aspects on Clostridium difficile infection].

    PubMed

    von Müller, Lutz

    2016-08-01

    Clostridium difficile infection (CDI) is a frequent and complex disease which is influenced by the repertoire of bacterial virulence factors, by host immunity and by the intestinal microbiome. These complex interaction opens a number of options which may be used for treatment in the future. One example for new treatment options is fecal microbiota transplantation (FMT). Driven by C. difficile related research activities the knowledge of protective microorganism is increasing and it may be assumed that bacteriotherapy by next-generation probiotics may be used very soon also for other diseases. Very often, CDI reflects to the clinician that antibiotic therapy is associated with side effects. Therefore, C. difficile is the guilty conscience which helps to implement targeted and restrictive antibiotic use in the daily practice. PMID:27509341

  13. Persistent and Recurrent Clostridium difficile Colitis

    PubMed Central

    Cole, Shola A.; Stahl, Thomas J.

    2015-01-01

    Clostridium difficile infection (CDI) is the most frequent cause of nosocomial diarrhea. It has become a significant dilemma in the treatment of patients, and causes increasing morbidity that, in extreme cases, may result in death. Persistent and recurrent disease hamper attempts at eradication of this infection. Escalating levels of treatment and novel therapeutics are being utilized and developed to treat CDI. Further trials are warranted to definitively determine what protocols can be used to treat persistent and recurrent disease. PMID:26034401

  14. Type IV pili promote early biofilm formation by Clostridium difficile.

    PubMed

    Maldarelli, Grace A; Piepenbrink, Kurt H; Scott, Alison J; Freiberg, Jeffrey A; Song, Yang; Achermann, Yvonne; Ernst, Robert K; Shirtliff, Mark E; Sundberg, Eric J; Donnenberg, Michael S; von Rosenvinge, Erik C

    2016-08-01

    Increasing morbidity and mortality from Clostridium difficile infection (CDI) present an enormous challenge to healthcare systems. Clostridium difficile express type IV pili (T4P), but their function remains unclear. Many chronic and recurrent bacterial infections result from biofilms, surface-associated bacterial communities embedded in an extracellular matrix. CDI may be biofilm mediated; T4P are important for biofilm formation in a number of organisms. We evaluate the role of T4P in C. difficile biofilm formation using RNA sequencing, mutagenesis and complementation of the gene encoding the major pilin pilA1, and microscopy. RNA sequencing demonstrates that, in comparison to other growth phenotypes, C. difficile growing in a biofilm has a distinct RNA expression profile, with significant differences in T4P gene expression. Microscopy of T4P-expressing and T4P-deficient strains suggests that T4P play an important role in early biofilm formation. A non-piliated pilA1 mutant forms an initial biofilm of significantly reduced mass and thickness in comparison to the wild type. Complementation of the pilA1 mutant strain leads to formation of a biofilm which resembles the wild-type biofilm. These findings suggest that T4P play an important role in early biofilm formation. Novel strategies for confronting biofilm infections are emerging; our data suggest that similar strategies should be investigated in CDI. PMID:27369898

  15. Clostridium difficile associated infection, diarrhea and colitis

    PubMed Central

    Hookman, Perry; Barkin, Jamie S

    2009-01-01

    A new, hypervirulent strain of Clostridium difficile, called NAP1/BI/027, has been implicated in C. difficile outbreaks associated with increased morbidity and mortality since the early 2000s. The epidemic strain is resistant to fluoroquinolones in vitro, which was infrequent prior to 2001. The name of this strain reflects its characteristics, demonstrated by different typing methods: pulsed-field gel electrophoresis (NAP1), restriction endonuclease analysis (BI) and polymerase chain reaction (027). In 2004 and 2005, the US Centers for Disease Control and Prevention (CDC) emphasized that the risk of C. difficile-associated diarrhea (CDAD) is increased, not only by the usual factors, including antibiotic exposure, but also gastrointestinal surgery/manipulation, prolonged length of stay in a healthcare setting, serious underlying illness, immune-compromising conditions, and aging. Patients on proton pump inhibitors (PPIs) have an elevated risk, as do peripartum women and heart transplant recipients. Before 2002, toxic megacolon in C. difficile-associated colitis (CDAC), was rare, but its incidence has increased dramatically. Up to two-thirds of hospitalized patients may be infected with C. difficile. Asymptomatic carriers admitted to healthcare facilities can transmit the organism to other susceptible patients, thereby becoming vectors. Fulminant colitis is reported more frequently during outbreaks of C. difficile infection in patients with inflammatory bowel disease (IBD). C. difficile infection with IBD carries a higher mortality than without underlying IBD. This article reviews the latest information on C. difficile infection, including presentation, vulnerable hosts and choice of antibiotics, alternative therapies, and probiotics and immunotherapy. We review contact precautions for patients with known or suspected C. difficile-associated disease. Healthcare institutions require accurate and rapid diagnosis for early detection of possible outbreaks, to initiate

  16. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins

    PubMed Central

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A.

    2014-01-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of world-wide concern. Due to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. While important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and B. subtilis at the level of sporulation, germination and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. PMID:24814671

  17. Clostridium difficile Is an Autotrophic Bacterial Pathogen

    PubMed Central

    Köpke, Michael; Straub, Melanie; Dürre, Peter

    2013-01-01

    During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates) is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy) could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile. PMID:23626782

  18. Blastocystis sp. Infection Mimicking Clostridium Difficile Colitis

    PubMed Central

    Gil, Gaby S.; Chaudhari, Shobhana; Shady, Ahmed; Caballes, Ana; Hong, Joe

    2016-01-01

    We report an unusual case of severe diarrhea related to Blastocystis sp. infection in a patient with end stage renal disease on hemodialysis. The patient was admitted due to profuse diarrhea associated with fever and leukocytosis. Pertinent stool work-up such as leukocytes in stool, stool culture, clostridium difficile toxin B PCR, and serology for hepatitis A, hepatitis B, and hepatitis C and cytomegalovirus screening were all negative. Ova and parasite stool examination revealed Blastocystis sp. The patient was given intravenous metronidazole with clinical improvement by day three and total resolution of symptoms by day ten. PMID:27247810

  19. Novel Risk Factors for Recurrent Clostridium difficile Infection in Children

    PubMed Central

    Nicholson, Maribeth R.; Thomsen, Isaac P.; Slaughter, James C.; Creech, C. Buddy; Edwards, Kathryn M.

    2014-01-01

    Objectives Clostridium difficile, a common cause of antibiotic-associated diarrhea, has been reported to recur in high rates in adults. The rates and risk factors for recurrent Clostridium difficile infection (rCDI) in children have not been well established. Methods We conducted a retrospective cohort study of 186 pediatric patients seen at a tertiary care referral center over a 5-year period diagnosed with a primary infection with Clostridium difficile. Children with recurrent disease, defined as return of symptoms of Clostridium difficile infection and positive testing ≤60 days after the completion of therapy, were compared to children who did not experience an episode of recurrence. Results Of the 186 pediatric patients included in this study, 41 (22%) experienced recurrent Clostridium difficile infection. On univariable analysis, factors significantly associated with recurrent Clostridium difficile infection included malignancy, recent hospitalization, recent surgery, antibiotic use, number of antibiotic exposures by class, acid blocker use, immunosuppressant use, and hospital acquired disease. On multivariable analysis, malignancy (OR=3.39, 95% CI=1.52–7.85), recent surgery (OR=2.40, 95% CI=1.05–5.52), and the number of antibiotic exposures by class (OR=1.33, 95% CI=1.01–1.75) were significantly associated with recurrent disease in children. Conclusions The rate of recurrent Clostridium difficile infection in children was 22%. Recurrence was significantly associated with the risk factors of malignancy, recent surgery, and the number of antibiotic exposures by class. PMID:25199038

  20. A prediction model for Clostridium difficile recurrence

    PubMed Central

    LaBarbera, Francis D.; Nikiforov, Ivan; Parvathenani, Arvin; Pramil, Varsha; Gorrepati, Subhash

    2015-01-01

    Background Clostridium difficile infection (CDI) is a growing problem in the community and hospital setting. Its incidence has been on the rise over the past two decades, and it is quickly becoming a major concern for the health care system. High rate of recurrence is one of the major hurdles in the successful treatment of C. difficile infection. There have been few studies that have looked at patterns of recurrence. The studies currently available have shown a number of risk factors associated with C. difficile recurrence (CDR); however, there is little consensus on the impact of most of the identified risk factors. Methods Our study was a retrospective chart review of 198 patients diagnosed with CDI via Polymerase Chain Reaction (PCR) from January 2009 to Jun 2013. In our study, we decided to use a machine learning algorithm called the Random Forest (RF) to analyze all of the factors proposed to be associated with CDR. This model is capable of making predictions based on a large number of variables, and has outperformed numerous other models and statistical methods. Results We came up with a model that was able to accurately predict the CDR with a sensitivity of 83.3%, specificity of 63.1%, and area under curve of 82.6%. Like other similar studies that have used the RF model, we also had very impressive results. Conclusions We hope that in the future, machine learning algorithms, such as the RF, will see a wider application. PMID:25656667

  1. Laboratory Diagnosis of Clostridium difficile Infection

    PubMed Central

    Tenover, Fred C.; Baron, Ellen Jo; Peterson, Lance R.; Persing, David H.

    2011-01-01

    The laboratory diagnosis of Clostridium difficile infection (CDI) continues to be challenging. Recent guidelines from professional societies in the United States note that enzyme immunoassays for toxins A and B do not have adequate sensitivity to be used alone for detecting CDI, yet the optimal method for diagnosing this infection remains unclear. Nucleic acid amplification tests (NAATs) that target chromosomal toxin genes (usually the toxin B gene, tcdB) show high sensitivity and specificity, provide rapid results, and are amenable to both batch and on-demand testing, but these tests were not universally recommended for routine use in the recent guidelines. Rather, two-step algorithms that use glutamate dehydrogenase (GDH) assays to screen for C. difficile in stool specimens, followed by either direct cytotoxin testing or culture to identify toxin-producing C. difficile isolates, were recommended in one guideline and either GDH algorithms or NAATs were recommended in another guideline. Unfortunately, neither culture nor direct cytotoxin testing is widely available. In addition, this two-step approach requires 48 to 92 hours to complete, which may delay the initiation of therapy and critical infection control measures. Recent studies also show the sensitivity of several GDH assays to be <90%. This review considers the role of NAATs for diagnosing CDI and explores their potential advantages over two-step algorithms, including shorter time to results, while providing comparable, if not superior, accuracy. PMID:21854871

  2. Current status of Clostridium difficile infection epidemiology.

    PubMed

    Lessa, Fernanda C; Gould, Carolyn V; McDonald, L Clifford

    2012-08-01

    The dramatic changes in the epidemiology of Clostridium difficile infection (CDI) during recent years, with increases in incidence and severity of disease in several countries, have made CDI a global public health challenge. Increases in CDI incidence have been largely attributed to the emergence of a previously rare and more virulent strain, BI/NAP1/027. Increased toxin production and high-level resistance to fluoroquinolones have made this strain a very successful pathogen in healthcare settings. In addition, populations previously thought to be at low risk are now being identified as having severe CDI. Recent genetic analysis suggests that C. difficile has a highly fluid genome with multiple mechanisms to modify its content and functionality, which can make C. difficile adaptable to environmental changes and potentially lead to the emergence of more virulent strains. In the face of these changes in the epidemiology and microbiology of CDI, surveillance systems are necessary to monitor trends and inform public health actions. PMID:22752867

  3. Purification and characterization of Clostridium difficile toxin.

    PubMed Central

    Rolfe, R D; Finegold, S M

    1979-01-01

    Recent evidence indicates that toxigenic Clostridium difficile strains are a major cause of antimicrobial-associated ileocecitis in laboratory animals and pseudomembranous colitis in humans. C. difficile ATCC 9689 was cultivated in a synthetic medium to which 3% ultrafiltrated proteose peptone was added. Purification of the toxin from broth filtrate was accomplished through ultrafiltration (100,000 nominal-molecular-weight-limit membrane), precipitation with 75% (NH4)2SO4, and chromatographic separation using Bio-Gel A 5m followed by ion-exchange chromatography on a diethylaminoethyl-Sephadex A-25 column. The purified toxin displayed only one band on polyacrylamide gel electrophoresis, and approximately 170 pg was cytopathic for human amnion cells. The isolated toxin was neutralized by Clostridium sordelli antitoxin, heat labile (56 degrees C for 30 min), and inactivated at pH 4 and 9; it had an isoelectric point of 5.0, increased vascular permeability in rabbits, and caused ileocecitis in hamsters when injected intracecally. Treatment of the toxin with trypsin, chymotrypsin, pronase, amylase, or ethylmercurithiosalicylate caused inactivation, whereas lipase had no effect. By gel filtration, its molecular weight was estimated as 530,000. Upon reduction and denaturation, the toxin dissociated into 185,000- and 50,000-molecular-weight components, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extensive dissociation yielded only the 50,000-molecular-weight component. The toxin appears to be protoplasmic and is released into the surrounding environment upon autolysis of the cells. Attempts to correlate specific enzymatic activity with the toxin have been unsuccessful. These studies will help delineate the role of C. difficile toxin in antimicrobial-associated colitis and diarrhea. Images PMID:478634

  4. The emergence of 'hypervirulence' in Clostridium difficile.

    PubMed

    Cartman, Stephen T; Heap, John T; Kuehne, Sarah A; Cockayne, Alan; Minton, Nigel P

    2010-08-01

    The impact of Clostridium difficile-associated disease (CDAD) in healthcare settings throughout the developed world is considerable in terms of mortality, morbidity, and disease management. The incidence of CDAD has risen dramatically since the turn of this century, concomitant with the emergence of so-called hypervirulent strains which are thought to cause a more severe disease, higher relapse rates, and increased mortality. Pre-eminent amongst hypervirulent strains are those belonging to ribotype 027, which were first reported in Canada in 2003 and shortly thereafter in the UK. Since its arrival in Europe, it has spread rapidly and has now been reported in 16 member states and Switzerland. The physiological factors responsible for the rapid emergence of hypervirulent C. difficile strains remain unclear. It is known that they produce a binary toxin (CDT) in addition to toxins A and B, that they are resistant to fluoroquinolones due to mutations in gyrA, and that they are resistant to erythromycin. Representative strains have been suggested to produce more toxin A and B in the 'laboratory flask' (most likely due to a frameshift mutation in the repressor gene tcdC), to be more prolific in terms of spore formation, and also exhibit increased adherence to human intestinal epithelial cells due to altered surface proteins. However, the contribution of these and other as yet unidentified factors to the rapid spread of certain C. difficile variants (e.g., ribotypes 027 and 078) remains unclear at present. The advent of ClosTron technology means that it is now possible to construct genetically stable isogenic mutants of C. difficile and carry out reverse genetic studies to elucidate the role of specific gene loci in causing disease. The identification of virulence factors using this approach should help lead to the rational development of therapeutic countermeasures against CDAD. PMID:20547099

  5. Flooding and Clostridium difficile infection: a case-crossover analysis

    EPA Science Inventory

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospttalized and/or receiving antibiotics; however, community­ associated infections affecting otherwise healthy individuals have become more ...

  6. Validation of the chronic disease score-infectious disease (CDS-ID) for the prediction of hospital-associated clostridium difficile infection (CDI) within a retrospective cohort

    PubMed Central

    2013-01-01

    Background Aggregate comorbidity scores are useful for summarizing risk and confounder control in studies of hospital-associated infections. The Chronic Disease Score – Infectious Diseases (CDS-ID) was developed for this purpose, but it has not been validated for use in studies of Clostridium difficile Infection (CDI). The aim of this study was to assess the discrimination, calibration and potential for confounder control of CDS-ID compared to age alone or individual comorbid conditions. Methods Secondary analysis of a retrospective cohort study of adult inpatients with 2 or more days of antibiotic exposure at a tertiary care facility during 2005. Logistic regression models were used to predict the development of CDI up to 60 days post-discharge. Model discrimination and calibration were assessed using the c-statistic and Hosmer-Lemeshow (HL) tests, respectively. C-statistics were compared using chi-square tests. Results CDI developed in 185 out of 7,792 patients. The CDS-ID was a better standalone predictor of CDI than age (c-statistic 0.653 vs 0.609, P=0.04). The best discrimination was observed when CDS-ID and age were both used to predict CDI (c-statistic 0.680). All models had acceptable calibration (P>0.05). Conclusion The CDS-ID is a valid tool for summarizing risk of CDI associated with comorbid conditions. PMID:23530876

  7. Clostridium difficile Ribotype 027, Toxinotype III, the Netherlands

    PubMed Central

    van den Berg, Renate J.; Debast, Sylvia; Visser, Caroline E.; Veenendaal, Dick; Troelstra, Annet; van der Kooi, Tjallie; van den Hof, Susan; Notermans, Daan W.

    2006-01-01

    Outbreaks due to Clostridium difficile polymerase chain reaction (PCR) ribotype 027, toxinotype III, were detected in 7 hospitals in the Netherlands from April 2005 to February 2006. One hospital experienced at the same time a second outbreak due to a toxin A–negative C. difficile PCR ribotype 017 toxinotype VIII strain. The outbreaks are difficult to control. PMID:16704846

  8. PREVALENCE OF CLOSTRIDIUM DIFFICILE IN AN INTEGRATED SWINE OPERATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the prevalence of Clostridium difficile among different age and production groups of swine in a vertically integrated swine operation in Texas in 2006 and to compare our isolates to other animal and human isolates. Isolation of C. difficile was performed u...

  9. Small Molecules Take A Big Step Against Clostridium difficile.

    PubMed

    Beilhartz, Greg L; Tam, John; Melnyk, Roman A

    2015-12-01

    Effective treatment of Clostridium difficile infections demands a shift away from antibiotics towards toxin-neutralizing agents. Work by Bender et al., using a drug that attenuates toxin action in vivo without affecting bacterial survival, demonstrates the exciting potential of small molecules as a new modality in the fight against C. difficile. PMID:26547239

  10. Isolation of Clostridium difficile from healthy food animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Clostridium difficile-associated disease is increasingly reported and studies indicate that food animals may be sources of human infections. Methods: The presence of C. difficile in 345 swine fecal, 1,325 dairy cattle fecal, and 371 dairy environmental samples were examined. Two isolati...

  11. Antimicrobial susceptibilities of canine Clostridium difficile and Clostridium perfringens isolates to commonly utilized antimicrobial drugs.

    PubMed

    Marks, Stanley L; Kather, Elizabeth J

    2003-06-24

    Clostridium difficile and Clostridium perfringens are anaerobic, Gram-positive bacilli that are common causes of enteritis and enterotoxemias in both domestic animals and humans. Both organisms have been associated with acute and chronic large and small bowel diarrhea, and acute hemorrhagic diarrheal syndrome in the dog. The objective of this study was to determine the in vitro antimicrobial susceptibilities of canine C. difficile and C. perfringens isolates in an effort to optimize antimicrobial therapy for dogs with clostridial-associated diarrhea. The minimum inhibitory concentrations (MIC) of antibiotics recommended for treating C. difficile (metronidazole, vancomycin) and C. perfringens-associated diarrhea in the dog (ampicillin, erythromycin, metronidazole, tetracycline, tylosin) were determined for 70 canine fecal C. difficile isolates and 131 C. perfringens isolates. All C. difficile isolates tested had an MIC of or=256 microg/ml for both erythromycin and tylosin. A third C. perfringens isolate had an MIC of 32 microg/ml for metronidazole. Based on the results of this study, ampicillin, erythromycin, metronidazole, and tylosin appear to be effective antibiotics for the treatment of C. perfringens-associated diarrhea, although resistant strains do exist. However, because there is limited information regarding breakpoints for veterinary anaerobes, and because intestinal concentrations are not known, in vitro results should be interpreted with caution. PMID:12742714

  12. Current State of Clostridium difficile Treatment Options

    PubMed Central

    Venugopal, Anilrudh A.; Johnson, Stuart

    2012-01-01

    Recent reports of reduced response to standard therapies for Clostridium difficile infection (CDI) and the risk for recurrent CDI that is common with all currently available treatment agents have posed a significant challenge to clinicians. Current recommendations include metronidazole for treatment of mild to moderate CDI and vancomycin for severe CDI. Results from small clinical trials suggest that nitazoxanide and teicoplanin may be alternative options to standard therapies, whereas rifaximin has demonstrated success in uncontrolled trials for the management of multiple recurrences. Anecdotal reports have also suggested that tigecycline might be useful as an adjunctive agent for the treatment of severe complicated CDI. Reports of resistance will likely limit the clinical use of fusidic acid and bacitracin and, possibly, rifaximin if resistance to this agent becomes widespread. Treatment of patients with multiple CDI recurrences and those with severe complicated CDI is based on limited clinical evidence, and new treatments or strategies are needed. PMID:22752868

  13. The Changing Epidemiology of Clostridium difficile Infections

    PubMed Central

    Freeman, J.; Bauer, M. P.; Baines, S. D.; Corver, J.; Fawley, W. N.; Goorhuis, B.; Kuijper, E. J.; Wilcox, M. H.

    2010-01-01

    Summary: The epidemiology of Clostridium difficile infection (CDI) has changed dramatically during this millennium. Infection rates have increased markedly in most countries with detailed surveillance data. There have been clear changes in the clinical presentation, response to treatment, and outcome of CDI. These changes have been driven to a major degree by the emergence and epidemic spread of a novel strain, known as PCR ribotype 027 (sometimes referred to as BI/NAP1/027). We review the evidence for the changing epidemiology, clinical virulence and outcome of treatment of CDI, and the similarities and differences between data from various countries and continents. Community-acquired CDI has also emerged, although the evidence for this as a distinct new entity is less clear. There are new data on the etiology of and potential risk factors for CDI; controversial issues include specific antimicrobial agents, gastric acid suppressants, potential animal and food sources of C. difficile, and the effect of the use of alcohol-based hand hygiene agents. PMID:20610822

  14. [Epidemiology of Clostridium difficile infection in Spain].

    PubMed

    Asensio, Angel; Monge, Diana

    2012-06-01

    There has been increasing interest in Clostridium difficile infection (CDI) due its association with healthcare and its impact on morbidity and mortality in the elderly. During the last few years there has been a growing increase in the number of published studies on the incidence, changes on the clinical presentation and on the epidemiology, with the description of new risk factors. The frequency of CDI in Spain is not sufficiently characterised. The available data indicates that incidence is within the range of that of surrounding countries but increasing. Furthermore, the high and growing use of broad spectrum antibiotics, both in our hospitals and in the community setting, are factors that favour the increase of the disease. The hyper-virulent ribotype 027 has not spread in our hospitals. We need to know with enhanced validity and accuracy the incidence of CDI, both community and healthcare-associated, the information on outbreaks, the incidence on certain population groups, the characterisation of circulating ribotypes and the impact of the disease in terms of mortality and health costs. We need to implement programs for the improvement of antibiotic therapy in the hospital, as well as in the community. Furthermore, the knowledge and the performance of standard precautions need to be improved, particularly hand hygiene, and the specific measures to limit the transmission of C. difficile among the healthcare institutions. PMID:22136747

  15. Clostridium difficile Spore-Macrophage Interactions: Spore Survival

    PubMed Central

    Paredes-Sabja, Daniel; Cofre-Araneda, Glenda; Brito-Silva, Christian; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R.

    2012-01-01

    Background Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. Methodology/Principal Findings In this work, we provide evidence that C. difficile spores are well suited to survive the host’s innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells’ ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. Conclusions/Significance These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells. PMID:22952726

  16. Culturing and Maintaining Clostridium difficile in an Anaerobic Environment

    PubMed Central

    Edwards, Adrianne N.; Suárez, Jose M.; McBride, Shonna M.

    2013-01-01

    Clostridium difficile is a Gram-positive, anaerobic, sporogenic bacterium that is primarily responsible for antibiotic associated diarrhea (AAD) and is a significant nosocomial pathogen. C. difficile is notoriously difficult to isolate and cultivate and is extremely sensitive to even low levels of oxygen in the environment. Here, methods for isolating C. difficile from fecal samples and subsequently culturing C. difficile for preparation of glycerol stocks for long-term storage are presented. Techniques for preparing and enumerating spore stocks in the laboratory for a variety of downstream applications including microscopy and animal studies are also described. These techniques necessitate an anaerobic chamber, which maintains a consistent anaerobic environment to ensure proper conditions for optimal C. difficile growth. We provide protocols for transferring materials in and out of the chamber without causing significant oxygen contamination along with suggestions for regular maintenance required to sustain the appropriate anaerobic environment for efficient and consistent C. difficile cultivation. PMID:24084491

  17. Clostridium difficile Infection: Epidemiology, Pathogenesis, Risk Factors, and Therapeutic Options

    PubMed Central

    Seyedjavadi, Sima Sadat; Goudarzi, Hossein; Mehdizadeh Aghdam, Elnaz; Nazeri, Saeed

    2014-01-01

    The incidence and mortality rate of Clostridium difficile infection have increased remarkably in both hospital and community settings during the last two decades. The growth of infection may be caused by multiple factors including inappropriate antibiotic usage, poor standards of environmental cleanliness, changes in infection control practices, large outbreaks of C. difficile infection in hospitals, alteration of circulating strains of C. difficile, and spread of hypervirulent strains. Detection of high-risk populations could be helpful for prompt diagnosis and consequent treatment of patients suffering from C. difficile infection. Metronidazole and oral vancomycin are recommended antibiotics for the treatment of initial infection. Current treatments for C. difficile infection consist of supportive care, discontinuing the unnecessary antibiotic, and specific antimicrobial therapy. Moreover, novel approaches include fidaxomicin therapy, monoclonal antibodies, and fecal microbiota transplantation mediated therapy. Fecal microbiota transplantation has shown relevant efficacy to overcome C. difficile infection and reduce its recurrence. PMID:24991448

  18. Clostridium difficile infection: molecular pathogenesis and novel therapeutics

    PubMed Central

    Rineh, Ardeshir; Kelso, Michael J; Vatansever, Fatma; Tegos, George P; Hamblin, Michael R

    2015-01-01

    The Gram-positive anaerobic bacterium Clostridium difficile produces toxins A and B, which can cause a spectrum of diseases from pseudomembranous colitis to C. difficile-associated diarrhea. A limited number of C. difficile strains also produce a binary toxin that exhibits ADP ribosyltransferase activity. Here, the structure and the mechanism of action of these toxins as well as their role in disease are reviewed. Nosocomial C. difficile infection is often contracted in hospital when patients treated with antibiotics suffer a disturbance in normal gut microflora. C. difficile spores can persist on dry, inanimate surface for months. Metronidazole and oral vancomycin are clinically used for treatment of C. difficile infection but clinical failure and concern about promotion of resistance are motivating the search for novel non-antibiotic therapeutics. Methods for controlling both toxins and spores, replacing gut microflora by probiotics or fecal transplant, and killing bacteria in the anaerobic gut by photodynamic therapy are discussed. PMID:24410618

  19. Clostridium difficile in Children: To Treat or Not to Treat?

    PubMed Central

    2014-01-01

    Clostridium difficile infection has been increasing since 2000 in children and in adults. Frequent antibiotics use, comorbidity, and the development of hypervirulent strains have increased the risk of infection. Despite the high carriage rates of C. difficile, infants rarely develop clinical infection. Discontinuing antibiotics and supportive management usually leads to resolution of disease. Antibiotics use should be stratified depending on the patient's age and severity of the disease. PMID:25061582

  20. Crystal structure of Clostridium difficile toxin A.

    PubMed

    Chumbler, Nicole M; Rutherford, Stacey A; Zhang, Zhifen; Farrow, Melissa A; Lisher, John P; Farquhar, Erik; Giedroc, David P; Spiller, Benjamin W; Melnyk, Roman A; Lacy, D Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon(1,2). The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host(3,4). The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27571750

  1. Crystal structure of Clostridium difficile toxin A

    PubMed Central

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon1,2. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host3,4. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27512603

  2. Fecal Transplantation for the Treatment of Recurrent Clostridium Difficile Infection

    PubMed Central

    Karadsheh, Zeid; Sule, Sachin

    2013-01-01

    Clostridium difficile infection (CDI) is currently a leading cause of antibiotic and health care-related diarrhea. The incidence and the severity of CDI-related diarrhea have increased dramatically in the USA and Europe in the past few decades. The emergence of multidrug-resistant hypervirulent strains of C. difficile has led to an increase in mortality. Fecal microbiota transplantation (FMT) (also known as fecal bacteriotherapy) has been utilized sporadically since the 1950s; and currently, the interest in using FMT has grown again in the past few years for the treatment of CDI and other chronic gastrointestinal diseases. FMT has shown to be effective, cheap, and has very few side effects. It is believed to manipulate and restore the gut microbiota, and therefore enhances the growth of “healthy” bacteria that break the cycle of recurrent CDI. This article focus on the recent case reports on FMT, and general approach to patients undergoing this therapy. Data were obtained through a literature search via PubMed and Google. PMID:23923106

  3. Role of obesity and adipose tissue-derived cytokine leptin during Clostridium difficile infection.

    PubMed

    Madan, Rajat; Petri, William A

    2015-08-01

    Obesity is among the most pressing health concerns in the world since it is increasingly common even in the developing world, and is clearly associated with increased risk for chronic debilitating diseases and death. Furthermore, obesity can influence the pathogenesis of infectious diseases by affecting the balance of pathogen clearance and pathological inflammation. The mechanisms that result in enhanced inflammation in obese individuals are poorly understood. Clostridium difficile is a major cause of nosocomial infections worldwide. Recent studies have shown that obesity is associated with increased risk of C. difficile infections. In this review, we will discuss our current knowledge of the role of obesity in determining risk of C. difficile infections, and focus on the role of the adipose tissue-derived cytokine leptin in C. difficile infections. PMID:25638400

  4. Role of obesity and adipose tissue-derived cytokine leptin during Clostridium difficile infection

    PubMed Central

    Madan, Rajat; Petri, William A.

    2015-01-01

    Obesity is among the most pressing health concerns in the world since it is increasingly common even in the developing world, and is clearly associated with increased risk for chronic debilitating diseases and death. Furthermore, obesity can influence the pathogenesis of infectious diseases by affecting the balance of pathogen clearance and pathological inflammation. The mechanisms that result in enhanced inflammation in obese individuals are poorly understood. Clostridium difficile is a major cause of nosocomial infections worldwide. Recent studies have shown that obesity is associated with increased risk of C. difficile infections. In this review, we will discuss our current knowledge of the role of obesity in determining risk of C. difficile infections, and focus on the role of the adipose tissue-derived cytokine leptin in C. difficile infections. PMID:25638400

  5. Controversies Surrounding Clostridium difficile Infection in Infants and Young Children

    PubMed Central

    Nicholson, Maribeth R.; Thomsen, Isaac P.; Edwards, Kathryn M.

    2014-01-01

    Clostridium difficile is a frequent cause of antibiotic-associated diarrhea in adults and older children. However, as many as 80% of infants can be asymptomatically colonized. The reasons for this have not been well established but are believed to be due to differences in toxin receptors or toxin internalization. Determining which children who test positive for C. difficile warrant treatment is exceedingly difficult, especially in the setting of increased rates of detection and the rising risk of disease in children lacking classic risk factors for C. difficile.

  6. Infectious Diarrhea: Norovirus and Clostridium difficile in Older Adults.

    PubMed

    White, Mary B; Rajagopalan, Shobita; Yoshikawa, Thomas T

    2016-08-01

    Norovirus infection usually results in acute gastroenteritis, often with incapacitating nausea, vomiting, and diarrhea. It is highly contagious and resistant to eradication with alcohol-based hand sanitizer. Appropriate preventative and infection control measures can mitigate the morbidity and mortality associated with norovirus infection. Clostridium difficile infection is the leading cause of health care-associated diarrhea in the United States. Antibiotic use is by far the most common risk factor for C difficile colonization and infection. Appropriate preventive measures and judicious use of antibiotics can help mitigate the morbidity and mortality associated with C difficile infection. PMID:27394020

  7. Challenges for standardization of Clostridium difficile typing methods.

    PubMed

    Huber, Charlotte A; Foster, Niki F; Riley, Thomas V; Paterson, David L

    2013-09-01

    Typing of Clostridium difficile facilitates understanding of the epidemiology of the infection. Some evaluations have shown that certain strain types (for example, ribotype 027) are more virulent than others and are associated with worse clinical outcomes. Although restriction endonuclease analysis (REA) and pulsed-field gel electrophoresis have been widely used in the past, PCR ribotyping is the current method of choice for typing of C. difficile. However, global standardization of ribotyping results is urgently needed. Whole-genome sequencing of C. difficile has the potential to provide even greater epidemiologic information than ribotyping. PMID:23784128

  8. Clostridium difficile infection in the twenty-first century.

    PubMed

    Ghose, Chandrabali

    2013-09-01

    Clostridium difficile is a spore-forming gram-positive bacillus, and the leading cause of antibiotic-associated nosocomial diarrhea and colitis in the industrialized world. With the emergence of a hypervirulent strain of C. difficile (BI/NAP1/027), the epidemiology of C. difficile infection has rapidly changed in the last decade. C. difficile infection, once thought to be an easy to treat bacterial infection, has evolved into an epidemic that is associated with a high rate of mortality, causing disease in patients thought to be low-risk. In this review, we discuss the changing face of C .difficile infection and the novel treatment and prevention strategies needed to halt this ever growing epidemic. PMID:26038491

  9. Clostridium difficile-associated reactive arthritis in two children.

    PubMed

    Löffler, Helga A; Pron, Benedicte; Mouy, Richard; Wulffraat, Nico M; Prieur, Anne-Marie

    2004-01-01

    In adults, reactive arthritis (ReA) following Clostridium difficile-enterocolitis has been documented. In children, only one case of C. difficile-associated ReA has been reported. We now describe two other cases of ReA associated with C. difficile in children. The characteristics of ReA due to C. difficile appear to be similar in adults and children. Both children show polyarthritis after an episode of diarrhoea with positive stool cultures for C. difficile. Arthritis is asymmetrical with a self-limiting course. Nonsteroidal antiinflammatory drug (NSAID) therapy is sufficient. One case is remarkable because of its prolonged course of ReA despite NSAID therapy, and its association with the presence of HLA-B27 antigen. PMID:14769523

  10. Evaluation of the Cepheid Xpert C. difficile/Epi and Meridian Bioscience illumigene C. difficile Assays for Detecting Clostridium difficile Ribotype 033 Strains

    PubMed Central

    Androga, Grace O.; McGovern, Alan M.; Elliott, Briony; Chang, Barbara J.; Perkins, Timothy T.; Foster, Niki F.

    2014-01-01

    Clostridium difficile PCR ribotype 033 (RT033) is found in the gastrointestinal tracts of production animals and, occasionally, humans. The illumigene C. difficile assay (Meridian Bioscience, Inc.) failed to detect any of 52 C. difficile RT033 isolates, while all strains signaled positive for the binary toxin genes but were reported as negative for C. difficile by the Xpert C. difficile/Epi assay (Cepheid). PMID:25520452

  11. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium difficile is commonly associated with a spectrum of disease in humans referred to as C. difficile-associated disease (CDAD) and use of antimicrobials is considered a risk factor for development of disease in humans. Clostridium difficile can also inhabit healthy food animals and transmi...

  12. Colonic Immunopathogenesis of Clostridium difficile Infections

    PubMed Central

    Turnwald, Bradley P.; Koo, Hoonmo L.; Garey, Kevin W.; Jiang, Zhi-Dong; Aitken, Samuel L.; DuPont, Herbert L.

    2014-01-01

    There are major gaps in our understanding of the immunopathogenesis of Clostridium difficile infections (CDIs). In this study, 36 different biomarkers were examined in the stools of CDI and non-CDI patients using the Proteome Profiler human cytokine array assay and quantitative enzyme-linked immunosorbent assay. Diarrheal stools from patients with CDI (CDI-positive diarrheal stools) showed higher relative amounts of the following inflammatory markers than the diarrheal stools from CDI-negative patients (CDI-negative diarrheal stools): C5a, CD40L, granulocyte colony-stimulating factor, I-309, interleukin-13 (IL-13), IL-16, IL-27, monocyte chemoattractant protein 1, tumor necrosis factor alpha, and IL-8. IL-8 and IL-23 were present in a larger number of CDI-positive diarrheal stools than CDI-negative diarrheal stools. Th1 and Th2 cytokines were not significantly different between the CDI-positive and CDI-negative diarrheal stools. Lactoferrin and calprotectin concentrations were also higher in the CDI-positive diarrheal stools. Our results demonstrate that CDI elicits a proinflammatory host response, and we report for the first time that IL-23 is a major marker in CDI-positive diarrheal stools. IL-23 may explain the lack of a robust immunological response exhibited by a proportion of CDI patients and may relate to recurrence; the IL-23 levels induced during CDI in these patients may be inadequate to sustain the cellular immunity conferred by this cytokine in promoting the induction and proliferation of effector memory T cells. PMID:24477852

  13. Using a Novel Lysin To Help Control Clostridium difficile Infections

    PubMed Central

    Wang, Qiong; Euler, Chad W.; Delaune, Aurelia

    2015-01-01

    As a consequence of excessive antibiotic therapies in hospitalized patients, Clostridium difficile, a Gram-positive anaerobic spore-forming intestinal pathogen, is the leading cause of hospital-acquired diarrhea and colitis. Drug treatments for these diseases are often complicated by antibiotic-resistant strains and a high frequency of treatment failures and relapse; therefore, novel nonantibiotic approaches may prove to be more effective. In this study, we recombinantly expressed a prophage lysin identified from a C. difficile strain, CD630, which we named PlyCD. PlyCD was found to have lytic activity against specific C. difficile strains. However, the recombinantly expressed catalytic domain of this protein, PlyCD1–174, displayed significantly greater lytic activity (>4-log kill) and a broader lytic spectrum against C. difficile strains while still retaining a high degree of specificity toward C. difficile versus commensal clostridia and other bacterial species. Our data also indicated that noneffective doses of vancomycin and PlyCD1–174 when combined in vitro could be significantly more bactericidal against C. difficile. In an ex vivo treatment model of mouse colon infection, we found that PlyCD1–174 functioned in the presence of intestinal contents, significantly decreasing colonizing C. difficile compared to controls. Together, these data suggest that PlyCD1–174 has potential as a novel therapeutic for clinical application against C. difficile infection, either alone or in combination with other preexisting treatments to improve their efficacy. PMID:26392484

  14. Clostridium difficile in mixed populations of animals and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: Since 2003, there has been an emergence of BI/NAP1 strain of Clostridium difficile (Cd) in North American hospitals. The origins of this epidemic strain have yet to be determined. However, PFGE analysis has shown ~80% similarity between this strain and some swine isolates. The objecti...

  15. Clostridium difficile strains from community-associated infections.

    PubMed

    Limbago, Brandi M; Long, Cherie M; Thompson, Angela D; Killgore, George E; Hannett, George E; Havill, Nancy L; Mickelson, Stephanie; Lathrop, Sarah; Jones, Timothy F; Park, Mahin M; Harriman, Kathleen H; Gould, L Hannah; McDonald, L Clifford; Angulo, Frederick J

    2009-09-01

    Clostridium difficile isolates from presumed community-associated infections (n = 92) were characterized by toxinotyping, pulsed-field gel electrophoresis, tcdC and cdtB PCR, and antimicrobial susceptibility. Nine toxinotypes (TOX) and 31 PFGE patterns were identified. TOX 0 (48, 52%), TOX III (18, 20%), and TOX V (9, 10%) were the most common; three isolates were nontoxigenic. PMID:19571021

  16. Clostridium difficile in retail meat and processing plants in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile (Cd) have increased in hospitals in North America from the emergence of newer, more virulent strains of Cd. Toxigenic Cd has been isolated from food animals and retail meat with potential implications of transfer ...

  17. Severe Clostridium difficile-associated disease in children.

    PubMed

    Pokorn, Marko; Radsel, Anja; Cizman, Milan; Jereb, Matjaz; Karner, Primoz; Kalan, Gorazd; Grosek, Stefan; Andlovic, Alenka; Rupnik, Maja

    2008-10-01

    Three cases of Clostridium difficile-associated disease in children were detected within a short time interval. Intensive therapy was required in 2 cases with colectomy in one of them. One of the severe cases was community-acquired. Two patients had underlying diseases (Hirschprung disease, Down syndrome) and also tested positive for enteric viruses (rotavirus, calicivirus). PMID:18756189

  18. Clostridium difficile from healthy food animals: Optimized isolation and prevalence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two isolation methods were compared for isolation of Clostridium difficile from food animal feces. The single alcohol shock method (SS) used selective enrichment in cycloserine-cefoxitin fructose broth supplemented with 0.1% sodium taurocholate (TCCFB) followed by alcohol shock and isolation on tryp...

  19. Clostridium difficile prevalence in an integrated swine operation in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently there has been an epidemic of human disease in North America caused by the bacterium Clostridium difficile (Cd). It appears to be a new strain that is more virulent than previous strains, produces more toxins, and causes more severe disease (McDonald et al., 2005). The origin of the new s...

  20. ID Learning Unit: Understanding and Interpreting Testing for Clostridium difficile

    PubMed Central

    Solomon, Daniel A.; Milner, Danny A.

    2014-01-01

    Understanding and interpreting the molecular tests for Clostridium difficile is challenging because there are several different types of assays and most laboratories combine multiple tests in order to assess for presence of disease. This learning unit demonstrates the basic principles of each test along with its strengths and weaknesses, and illustrates how the tests are used in clinical practice. PMID:25734081

  1. Varied prevalence of Clostridium difficile in an integrated swine operation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the prevalence of Clostridium difficile among different age and production groups of swine in a vertically integrated swine operation in Texas in 2006 and to compare our isolates to other animal and human isolates. Preliminary results are based on 131 C. d...

  2. Diverse Temperate Bacteriophage Carriage in Clostridium difficile 027 Strains

    PubMed Central

    Nale, Janet Y.; Shan, Jinyu; Hickenbotham, Peter T.; Fawley, Warren N.; Wilcox, Mark H.; Clokie, Martha R. J.

    2012-01-01

    Background The hypervirulent Clostridium difficile ribotype 027 can be classified into subtypes, but it unknown if these differ in terms of severity of C. difficile infection (CDI). Genomic studies of C. difficile 027 strains have established that they are rich in mobile genetic elements including prophages. This study combined physiological studies, electron microscopy analysis and molecular biology to determine the potential role of temperate bacteriophages in disease and diversity of C. difficile 027. Methodology/Principal Findings We induced prophages from 91 clinical C. difficile 027 isolates and used transmission electron microscopy and pulsed-field gel electrophoresis to characterise the bacteriophages present. We established a correlation between phage morphology and subtype. Morphologically distinct tailed bacteriophages belonging to Myoviridae and Siphoviridae were identified in 63 and three isolates, respectively. Dual phage carriage was observed in four isolates. In addition, there were inducible phage tail-like particles (PT-LPs) in all isolates. The capacity of two antibiotics mitomycin C and norfloxacin to induce prophages was compared and it was shown that they induced specific prophages from C. difficile isolates. A PCR assay targeting the capsid gene of the myoviruses was designed to examine molecular diversity of C. difficile myoviruses. Phylogenetic analysis of the capsid gene sequences from eight ribotypes showed that all sequences found in the ribotype 027 isolates were identical and distinct from other C. difficile ribotypes and other bacteria species. Conclusion/Significance A diverse set of temperate bacteriophages are associated with C. difficile 027. The observed correlation between phage carriage and the subtypes suggests that temperate bacteriophages contribute to the diversity of C. difficile 027 and may play a role in severity of disease associated with this ribotype. The capsid gene can be used as a tool to identify C. difficile

  3. Effective Sequestration of Clostridium difficile Protein Toxins by Calcium Aluminosilicate

    PubMed Central

    Pokusaeva, Karina; Carpenter, Robert

    2015-01-01

    Clostridium difficile is a leading cause of antibiotic-associated diarrhea and the etiologic agent responsible for C. difficile infection. Toxin A (TcdA) and toxin B (TcdB) are nearly indispensable virulence factors for Clostridium difficile pathogenesis. Given the toxin-centric mechanism by which C. difficile pathogenesis occurs, the selective sequestration with neutralization of TcdA and TcdB by nonantibiotic agents represents a novel mode of action to prevent or treat C. difficile-associated disease. In this preclinical study, we used quantitative enzyme immunoassays to determine the extent by which a novel drug, calcium aluminosilicate uniform particle size nonswelling M-1 (CAS UPSN M-1), is capable of sequestering TcdA and TcdB in vitro. The following major findings were derived from the present study. First, we show that CAS UPSN M-1 efficiently sequestered both TcdA and TcdB to undetectable levels. Second, we show that CAS UPSN M-1's affinity for TcdA is greater than its affinity for TcdB. Last, we show that CAS UPSN M-1 exhibited limited binding affinity for nontarget proteins. Taken together, these results suggest that ingestion of calcium aluminosilicate might protect gastrointestinal tissues from antibiotic- or chemotherapy-induced C. difficile infection by neutralizing the cytotoxic and proinflammatory effects of luminal TcdA and TcdB. PMID:26149988

  4. Effectiveness of hand hygiene for removal of Clostridium difficile spores from hands.

    PubMed

    Edmonds, Sarah L; Zapka, Carrie; Kasper, Douglas; Gerber, Robert; McCormack, Robert; Macinga, David; Johnson, Stuart; Sambol, Susan; Fricker, Christopher; Arbogast, James; Gerding, Dale N

    2013-03-01

    This study determined whether surrogate organisms can predict activity against Clostridium difficile spores and compared the efficacy of hand hygiene preparations against C. difficile. Our data suggest that surrogate organisms were not predictive of C. difficile spore removal. Four preparations were significantly more effective than tap water at removing C. difficile. PMID:23388366

  5. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938.

    PubMed

    Lawson, Paul A; Citron, Diane M; Tyrrell, Kerin L; Finegold, Sydney M

    2016-08-01

    The recent proposal by Lawson and Rainey (2015) to restrict the genus Clostridium to Clostridium butyricum and related species has ramifications for the members of the genera that fall outside this clade that should not be considered as Clostridium sensu stricto. One such organism of profound medical importance is Clostridioides difficile that is a major cause of hospital-acquired diarrhea and mortality in individuals. Based on 16S rRNA gene sequence analysis, the closest relative of Clostridium difficile is Clostridium mangenotii with a 94.7% similarity value and both are located within the family Peptostreptococcaceae that is phylogenetically far removed from C. butyricum and other members of Clostridium sensu stricto. Clostridium difficile is Clostridium mangenotii each produce abundant H2 gas when grown in PYG broth and also produce a range of straight and branched chain saturated and unsaturated fatty acids with C16:0 as a major product. The cell wall peptidoglycan contains meso-DAP as the diagnostic diamino acid. Based on phenotypic, chemotaxonomic and phylogenetic analyses, novel genus Clostridioides gen. nov. is proposed for Clostridium difficile as Clostridioides difficile gen. nov. comb. nov. and that Clostridium mangenotii be transferred to this genus as Clostridioides mangenotii comb. nov. The type species of Clostridioides is Clostridioides difficile. PMID:27370902

  6. Clostridium difficile infections among Jordanian adult hospitalized patients.

    PubMed

    Nasereddin, Lina M; Bakri, Fares G; Shehabi, Asem A

    2009-12-01

    This prospective study investigated the important epidemiologic aspects of Clostridium difficile infections (CDIs) among Jordanian adult hospitalized patients. A total of 300 stool specimens were investigated using culture and polymerase chain reaction methods for detection of C difficile, its toxins, and fluoroquinolone resistance. C difficile-positive cultures were found in 13.7% of the patients, and 73% of the isolates carried tcdA and/or tcdB toxin genes, and all C difficile isolates were negative for binary toxin. The isolates showed moderate level of resistance to both ciprofloxacin and levofloxacin, whereas metronidazole and vancomycin were highly susceptible. This study indicates the need for early detection of CDIs and prevention of its severe disease in hospitalized patients. PMID:19712999

  7. Interactions Between the Gastrointestinal Microbiome and Clostridium difficile

    PubMed Central

    Theriot, Casey M.; Young, Vincent B.

    2016-01-01

    Antibiotics have significant and long-lasting effects on the intestinal microbiota and consequently reduce colonization resistance against pathogens, including Clostridium difficile. By altering the community structure of the gut microbiome, antibiotics alter the intestinal metabolome, which includes both host- and microbe-derived metabolites. The mechanisms by which antibiotics reduce colonization resistance against C. difficile are unknown yet important for development of preventative and therapeutic approaches against this pathogen. This review focuses on how antibiotics alter the structure of the gut microbiota and how this alters microbial metabolism in the intestine. Interactions between gut microbial products and C. difficile spore germination, growth, and toxin production are discussed. New bacterial therapies to restore changes in bacteria-driven intestinal metabolism following antibiotics will have important applications for treatment and prevention of C. difficile infection. PMID:26488281

  8. Treatment of Clostridium difficile infection in pediatric patients.

    PubMed

    Esposito, Susanna; Umbrello, Giulia; Castellazzi, Luca; Principi, Nicola

    2015-06-01

    Clostridium difficile causes infections that can either remain asymptomatic or manifest as clinical disease. In this report, problems, possible solutions, and future perspectives on the treatment of C. difficile infections (CDIs) in pediatric patients are discussed. CDI, despite increasing as a consequence of the overuse and misuse of antibiotics, remains relatively uncommon in pediatrics mainly because younger children are poorly susceptible to the action of C. difficile toxins. In most such cases, C. difficile disease is mild to moderate and discontinuation of the administered antibiotics in patients receiving these drugs when CDI develops, or administration of metronidazole, is sufficient to solve this problem. In severe or frequently relapsing cases, vancomycin is the drug of choice. Probiotics do not seem to add significant advantages. Other treatment options must be reserved for severe cases and be considered as a salvage treatment, although potential advantages in pediatric patients remain unclear. PMID:25912469

  9. The Burden of Clostridium difficile after Cervical Spine Surgery.

    PubMed

    Guzman, Javier Z; Skovrlj, Branko; Rothenberg, Edward S; Lu, Young; McAnany, Steven; Cho, Samuel K; Hecht, Andrew C; Qureshi, Sheeraz A

    2016-06-01

    Study Design Retrospective database analysis. Objective The purpose of this study is to investigate incidence, comorbidities, and impact on health care resources of Clostridium difficile infection after cervical spine surgery. Methods A total of 1,602,130 cervical spine surgeries from the Nationwide Inpatient Sample database from 2002 to 2011 were included. Patients were included for study based on International Classification of Diseases Ninth Revision, Clinical Modification procedural codes for cervical spine surgery for degenerative spine diagnoses. Baseline patient characteristics were determined. Multivariable analyses assessed factors associated with increased incidence of C. difficile and risk of mortality. Results Incidence of C. difficile infection in postoperative cervical spine surgery hospitalizations is 0.08%, significantly increased since 2002 (p < 0.0001). The odds of postoperative C. difficile infection were significantly increased in patients with comorbidities such as congestive heart failure, renal failure, and perivascular disease. Circumferential cervical fusion (odds ratio [OR] = 2.93, p < 0.0001) increased the likelihood of developing C. difficile infection after degenerative cervical spine surgery. C. difficile infection after cervical spine surgery results in extended length of stay (p < 0.0001) and increased hospital costs (p < 0.0001). Mortality rate in patients who develop C. difficile after cervical spine surgery is nearly 8% versus 0.19% otherwise (p < 0.0001). Moreover, multivariate analysis revealed C. difficile to be a significant predictor of inpatient mortality (OR = 3.99, p < 0.0001). Conclusions C. difficile increases the risk of in-hospital mortality and costs approximately $6,830,695 per year to manage in patients undergoing elective cervical spine surgery. Patients with comorbidities such as renal failure or congestive heart failure have increased probability of developing infection

  10. Human Clostridium difficile infection: altered mucus production and composition

    PubMed Central

    Engevik, Melinda A.; Yacyshyn, Mary Beth; Engevik, Kristen A.; Wang, Jiang; Darien, Benjamin; Hassett, Daniel J.; Yacyshyn, Bruce R.

    2014-01-01

    The majority of antibiotic-induced diarrhea is caused by Clostridium difficile (C. difficile). Hospitalizations for C. difficile infection (CDI) have tripled in the last decade, emphasizing the need to better understand how the organism colonizes the intestine and maintain infection. The mucus provides an interface for bacterial-host interactions and changes in intestinal mucus have been linked host health. To assess mucus production and composition in healthy and CDI patients, the main mucins MUC1 and MUC2 and mucus oligosaccharides were examined. Compared with healthy subjects, CDI patients demonstrated decreased MUC2 with no changes in surface MUC1. Although MUC1 did not change at the level of the epithelia, MUC1 was the primary constituent of secreted mucus in CDI patients. CDI mucus also exhibited decreased N-acetylgalactosamine (GalNAc), increased N-acetylglucosamine (GlcNAc), and increased terminal galactose residues. Increased galactose in CDI specimens is of particular interest since terminal galactose sugars are known as C. difficile toxin A receptor in animals. In vitro, C. difficile is capable of metabolizing fucose, mannose, galactose, GlcNAc, and GalNAc for growth under healthy stool conditions (low Na+ concentration, pH 6.0). Injection of C. difficile into human intestinal organoids (HIOs) demonstrated that C. difficile alone is sufficient to reduce MUC2 production but is not capable of altering host mucus oligosaccharide composition. We also demonstrate that C. difficile binds preferentially to mucus extracted from CDI patients compared with healthy subjects. Our results provide insight into a mechanism of C. difficile colonization and may provide novel target(s) for the development of alternative therapeutic agents. PMID:25552581

  11. Fate of ingested Clostridium difficile spores in mice.

    PubMed

    Howerton, Amber; Patra, Manomita; Abel-Santos, Ernesto

    2013-01-01

    Clostridium difficile infection (CDI) is a leading cause of antibiotic-associated diarrhea, a major nosocomial complication. The infective form of C. difficile is the spore, a dormant and resistant structure that forms under stress. Although spore germination is the first committed step in CDI onset, the temporal and spatial distribution of ingested C. difficile spores is not clearly understood. We recently reported that CamSA, a synthetic bile salt analog, inhibits C. difficile spore germination in vitro and in vivo. In this study, we took advantage of the anti-germination activity of bile salts to determine the fate of ingested C. difficile spores. We tested four different bile salts for efficacy in preventing CDI. Since CamSA was the only anti-germinant tested able to prevent signs of CDI, we characterized CamSa's in vitro stability, distribution, and cytotoxicity. We report that CamSA is stable to simulated gastrointestinal (GI) environments, but will be degraded by members of the natural microbiota found in a healthy gut. Our data suggest that CamSA will not be systemically available, but instead will be localized to the GI tract. Since in vitro pharmacological parameters were acceptable, CamSA was used to probe the mouse model of CDI. By varying the timing of CamSA dosage, we estimated that C. difficile spores germinated and established infection less than 10 hours after ingestion. We also showed that ingested C. difficile spores rapidly transited through the GI tract and accumulated in the colon and cecum of CamSA-treated mice. From there, C. difficile spores were slowly shed over a 96-hour period. To our knowledge, this is the first report of using molecular probes to obtain disease progression information for C. difficile infection. PMID:24023628

  12. Pneumatosis intestinalis in a patient with recurrent Clostridium difficile infection

    PubMed Central

    Ha, Duc; Tsai, Chung-Jyi

    2012-01-01

    A 65-year-old man with long-standing diarrhoea, recurrent Clostridium difficile infection (CDI) in the previous 5 months presented to the gastroenterology clinic with recurrent diarrhoea and abdominal cramping. Physical examination was negative for signs of acute abdomen. Stool C difficile PCR was positive. Abdominal imaging demonstrated an extensive pneumatosis intestinalis involving the small bowel and a dilated small bowel loop. He was treated conservatively with oral vancomycin for recurrent CDI with resolution of diarrhoea and abdominal cramping on 1-month follow-up visit. PMID:23112256

  13. New advances in the treatment of Clostridium difficile infection (CDI)

    PubMed Central

    Hedge, Dennis D; Strain, Joe D; Heins, Jodi R; Farver, Debra K

    2008-01-01

    Clostridium difficile infections (CDI) have increased in frequency throughout the world. In addition to an increase in frequency, recent CDI epidemics have been linked to a hypervirulent C. difficile strain resulting in greater severity of disease. Although most mild to moderate cases of CDI continue to respond to metronidazole or vancomycin, refractory and recurrent cases of CDI may require alternative therapies. This review provides a brief overview of CDI and summarizes studies involving alternative antibiotics, toxin binders, probiotics, and immunological therapies that can be considered for treatment of acute and recurrent CDI in severe and refractory situations. PMID:19209277

  14. Clostridium difficile: the anaerobe that made the grade.

    PubMed

    Brazier, Jon S

    2012-04-01

    Unlike other anaerobic bacteria of clinical importance, Clostridium difficile has managed to enter into the realm of public awareness. Following the trail blazed by methicillin-resistant Staphylococcus aureus (MRSA), C. difficile has made the transition from being an obscure anaerobic bacterium, mainly of interest to specialist anaerobic microbiologists, to that of an infamous "superbug" responsible for outbreaks of hospital-acquired infection that commonly result in serious disease and death. This report picks out key moments, particularly in the UK, which tracked the rise in both the public and political awareness of this organism. PMID:22293217

  15. Detection of toxigenic Clostridium difficile: comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays.

    PubMed

    Pancholi, P; Kelly, C; Raczkowski, M; Balada-Llasat, J M

    2012-04-01

    Clostridium difficile is the most important cause of nosocomial diarrhea. Several laboratory techniques are available to detect C. difficile toxins or the genes that encode them in fecal samples. We evaluated the Xpert C. difficile and Xpert C. difficile/Epi (Cepheid, CA) that detect the toxin B gene (tcdB) and tcdB, cdt, and a deletion in tcdC associated with the 027/NAP1/BI strain, respectively, by real-time PCR, and the Illumigene C. difficile (Meridian Bioscience, Inc.) that detects the toxin A gene (tcdA) by loop-mediated isothermal amplification in stool specimens. Toxigenic culture was used as the reference method for discrepant stool specimens. Two hundred prospective and fifty retrospective diarrheal stool specimens were tested simultaneously by the cell cytotoxin neutralization assay (CCNA) and the Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. Of the 200 prospective stools tested, 10.5% (n = 23) were determined to be positive by CCNA, 17.5% (n = 35) were determined to be positive by Illumigene C. difficile, and 21.5% (n = 43) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 50 retrospective stools, previously determined to be positive by CCNA, 94% (n = 47) were determined to be positive by Illumigene C. difficile and 100% (n = 50) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 11 discrepant results (i.e., negative by Illumigene C. difficile but positive by Xpert C. difficile and Xpert C. difficile/Epi), all were determined to be positive by the toxigenic culture. A total of 21% of the isolates were presumptively identified by the Xpert C. difficile/Epi as the 027/NAP1/BI strain. The Xpert C. difficile and Xpert C. difficile/Epi assays were the most sensitive, rapid, and easy-to use assays for the detection of toxigenic C. difficile in stool specimens. PMID:22278839

  16. A case if infant botulism due to neurotoxigenic Clostridium butyricum type E associated with Clostridium difficile colitis.

    PubMed

    Fenicia, L; Da Dalt, L; Anniballi, F; Franciosa, G; Zanconato, S; Aureli, P

    2002-10-01

    Reported here is the sixth case of intestinal toxemia botulism caused by Clostridium butyricum type E in Italy since 1984. In this case, the patient was concomitantly affected with colitis due to Clostridium difficile toxin. A review of previously reported cases revealed that some of these patients may also have had intestinal toxemia botulism associated with Clostridium difficile colitis, based on the reported symptoms. Given that this association has been shown to exist not only in Italy but also in the USA, it is recommended that individuals with intestinal botulism and symptoms of colitis undergo testing for Clostridium difficile and its toxins in fecal samples. PMID:12479171

  17. An Alkaline Phosphatase Reporter for use in Clostridium difficile

    PubMed Central

    Edwards, Adrianne N.; Pascual, Ricardo A.; Childress, Kevin O.; Nawrocki, Kathryn L.; Woods, Emily C.; McBride, Shonna M.

    2015-01-01

    Clostridium difficile is an anaerobic, Gram-positive pathogen that causes severe gastrointestinal disease in humans and other mammals. C. difficile is notoriously difficult to work with and, until recently, few tools were available for genetic manipulation and molecular analyses. Despite the recent advances in the field, there is no simple or cost-effective technique for measuring gene transcription in C. difficile other than direct transcriptional analyses (e.g., quantitative real-time PCR and RNA-seq), which are time-consuming, expensive and difficult to scale-up. We describe the development of an in vivo reporter assay that can provide qualitative and quantitative measurements of C. difficile gene expression. Using the Enterococcus faecalis alkaline phosphatase gene, phoZ, we measured expression of C. difficile genes using a colorimetric alkaline phosphatase assay. We show that inducible alkaline phosphatase activity correlates directly with native gene expression. The ability to analyze gene expression using a standard reporter is an important and critically needed tool to study gene regulation and design genetic screens for C. difficile and other anaerobic clostridia. PMID:25576237

  18. Flooding and Clostridium difficile Infection: A Case-Crossover Analysis.

    PubMed

    Lin, Cynthia J; Wade, Timothy J; Hilborn, Elizabeth D

    2015-06-01

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospitalized and/or receiving antibiotics; however, community-associated infections affecting otherwise healthy individuals have become more commonly reported. A case-crossover study was used to assess emergency room (ER) and outpatient visits for C. difficile infection following flood events in Massachusetts from 2003 through 2007. Exposure status was based on whether or not a flood occurred prior to the case/control date during the following risk periods: 0-6 days, 7-13 days, 14-20 days, and 21-27 days. Fixed-effects logistic regression was used to estimate the risk of diagnosis with C. difficile infection following a flood. There were 129 flood events and 1575 diagnoses of C. difficile infection. Among working age adults (19-64 years), ER and outpatient visits for C. difficile infection were elevated during the 7-13 days following a flood (Odds Ratio, OR = 1.69; 95% Confidence Interval, CI: 0.84, 3.37). This association was more substantial among males (OR = 3.21; 95% CI: 1.01-10.19). Associations during other risk periods were not observed (p < 0.05). Although we were unable to differentiate community-associated versus nosocomial infections, a potential increase in C. difficile infections should be considered as more flooding is projected due to climate change. PMID:26090609

  19. Analysis of the pathogenicity locus in Clostridium difficile strains.

    PubMed

    Cohen, S H; Tang, Y J; Silva, J

    2000-02-01

    The genes for Clostridium difficile toxins A and B (tcdA and tcdB) are part of a 19.6-kb pathogenicity locus (PaLoc) that includes the genes tcdD, tcdE, and tcdC. To determine whether the C. difficile PaLoc is a stable and conserved genetic unit in toxigenic strains, a multiplex polymerase chain reaction was used to analyze 50 toxigenic, 39 nontoxigenic, and 2 toxin-defective isolates. The respective amplicons were identified for tcdA-E in the toxigenic isolates; these were absent in the nontoxigenic isolates. C. difficile P-829 lacked at least a fragment of tcdD, tcdB, tcdE, and tcdC, but tcdA was present. C. difficile 8864 had deletions in the tcdA and tcdC genes. These data suggest that the PaLoc is highly stable in toxigenic C. difficile, nontoxigenic isolates lack the unit, and isolates with a defective PaLoc can still cause clinical disease. Further studies are needed to define the role of individual genes in the pathogenesis of C. difficile-associated diarrhea. PMID:10669352

  20. Flooding and Clostridium difficile Infection: A Case-Crossover Analysis

    PubMed Central

    Lin, Cynthia J.; Wade, Timothy J.; Hilborn, Elizabeth D.

    2015-01-01

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospitalized and/or receiving antibiotics; however, community-associated infections affecting otherwise healthy individuals have become more commonly reported. A case-crossover study was used to assess emergency room (ER) and outpatient visits for C. difficile infection following flood events in Massachusetts from 2003 through 2007. Exposure status was based on whether or not a flood occurred prior to the case/control date during the following risk periods: 0–6 days, 7–13 days, 14–20 days, and 21–27 days. Fixed-effects logistic regression was used to estimate the risk of diagnosis with C. difficile infection following a flood. There were 129 flood events and 1575 diagnoses of C. difficile infection. Among working age adults (19–64 years), ER and outpatient visits for C. difficile infection were elevated during the 7–13 days following a flood (Odds Ratio, OR = 1.69; 95% Confidence Interval, CI: 0.84, 3.37). This association was more substantial among males (OR = 3.21; 95% CI: 1.01–10.19). Associations during other risk periods were not observed (p < 0.05). Although we were unable to differentiate community-associated versus nosocomial infections, a potential increase in C. difficile infections should be considered as more flooding is projected due to climate change. PMID:26090609

  1. Prevalence of Clostridium difficile colonization among healthcare workers

    PubMed Central

    2013-01-01

    Background Clostridium difficile infection (CDI) has increased to epidemic proportions in recent years. The carriage of C. difficile among healthy adults and hospital inpatients has been established. We sought to determine whether C. difficile colonization exists among healthcare workers (HCWs) in our setting. Methods A point prevalence study of stool colonization with C. difficile among doctors, nurses and allied health staff at a large regional teaching hospital in Geelong, Victoria. All participants completed a short questionnaire and all stool specimens were tested by Techlab® C.diff Quik Check enzyme immunoassay followed by enrichment culture. Results Among 128 healthcare workers, 77% were female, of mean age 43 years, and the majority were nursing staff (73%). Nineteen HCWs (15%) reported diarrhoea, and 12 (9%) had taken antibiotics in the previous six weeks. Over 40% of participants reported having contact with a patient with known or suspected CDI in the 6 weeks before the stool was collected. C. difficile was not isolated from the stool of any participants. Conclusion Although HCWs are at risk of asymptomatic carriage and could act as a reservoir for transmission in the hospital environment, with the use of a screening test and culture we were unable to identify C. difficile in the stool of our participants in a non-outbreak setting. This may reflect potential colonization resistance of the gut microbiota, or the success of infection prevention strategies at our institution. PMID:24090343

  2. Fidaxomicin in Clostridium difficile infection: latest evidence and clinical guidance

    PubMed Central

    2014-01-01

    The incidence of Clostridium difficile infection (CDI) has risen 400% in the last decade. It currently ranks as the third most common nosocomial infection. CDI has now crossed over as a community-acquired infection. The major failing of current therapeutic options for the management of CDI is recurrence of disease after the completion of treatment. Fidaxomicin has been proven to be superior to vancomycin in successful sustained clinical response to therapy. Improved outcomes may be due to reduced collateral damage to the gut microflora by fidaxomicin, bactericidal activity, inhibition of Clostridial toxin formation and inhibition of new sporulation. This superiority is maintained in groups previously reported as being at high risk for CDI recurrence including those: with relapsed infection after a single treatment course; on concomitant antibiotic therapy; aged >65 years; with cancer; and with chronic renal insufficiency. Because the acquisition cost of fidaxomicin far exceeds that of metronidazole or vancomycin, in order to rationally utilize this agent, it should be targeted to those populations who are at high risk for relapse and in whom the drug has demonstrated superiority. In this manuscript is reviewed the changing epidemiology of CDI, current treatment options for this infection, proposed benefits of fidaxomicin over currently available antimicrobial options, available analysis of cost effectiveness of the drug, and is given recommendations for judicious use of the drug based upon the available published literature. PMID:24587892

  3. Nosocomial outbreak of Clostridium difficile diarrhea in a pediatric service.

    PubMed

    Ferroni, A; Merckx, J; Ancelle, T; Pron, B; Abachin, E; Barbut, F; Larzul, J; Rigault, P; Berche, P; Gaillard, J L

    1997-12-01

    An outbreak of nosocomial diarrhea that occurred in a pediatric orthopedic service between 1 December 1993 and 15 April 1994 is reported. A total of 37 patients (mean age, 9.6 years; range, 2 months-19.3 years) were involved in the outbreak, including six patients with bacteriologically documented Clostridium difficile infection. A multivariate analysis identified lincomycin treatment for at least three days as the only significant risk factor. Stool samples from four asymptomatic patients were also positive for Clostridium difficile and its cytotoxins. Isolates from all patients belonged to serogroup C, were highly resistant to lincomycin, and exhibited the same restriction pattern by pulsed-field gel electrophoresis. The outbreak ended after treatment with lincomycin was discontinued and hygiene control measures were implemented. PMID:9495676

  4. Cyclic Diguanylate Inversely Regulates Motility and Aggregation in Clostridium difficile

    PubMed Central

    Purcell, Erin B.; McKee, Robert W.; McBride, Shonna M.; Waters, Christopher M.

    2012-01-01

    Clostridium difficile-associated disease is increasing in incidence and is costly to treat. Our understanding of how this organism senses its entry into the host and adapts for growth in the large bowel is limited. The small-molecule second messenger cyclic diguanylate (c-di-GMP) has been extensively studied in Gram-negative bacteria and has been shown to modulate motility, biofilm formation, and other processes in response to environmental signals, yet little is known about the functions of this signaling molecule in Gram-positive bacteria or in C. difficile specifically. In the current study, we investigated the function of the second messenger c-di-GMP in C. difficile. To determine the role of c-di-GMP in C. difficile, we ectopically expressed genes encoding a diguanylate cyclase enzyme, which synthesizes c-di-GMP, or a phosphodiesterase enzyme, which degrades c-di-GMP. This strategy allowed us to artificially elevate or deplete intracellular c-di-GMP, respectively, and determine that c-di-GMP represses motility in C. difficile, consistent with previous studies in Gram-negative bacteria, in which c-di-GMP has a negative effect on myriad modes of bacterial motility. Elevated c-di-GMP levels also induced clumping of C. difficile cells, which may signify that C. difficile is capable of forming biofilms in the host. In addition, we directly quantified, for the first time, c-di-GMP production in a Gram-positive bacterium. This work demonstrates the effect of c-di-GMP on the motility of a Gram-positive bacterium and on aggregation of C. difficile, which may be relevant to the function of this signaling molecule during infection. PMID:22522894

  5. Clostridium difficile: emergence of hypervirulence and fluoroquinolone resistance.

    PubMed

    Razavi, B; Apisarnthanarak, A; Mundy, L M

    2007-10-01

    Clostridium difficile is a well-known cause of sporadic and healthcare-associated diarrhea. Multihospital outbreaks due to a single strain and outbreaks associated with antibiotic selective pressure, especially clindamycin, have been well documented. Severe cases and fatalities from C. difficile are uncommon. The recent global emergence of a hypervirulent strain containing binary toxin (Toxinotype III ribotype 027), with or without deletion in a regulatory gene (tcdC gene), together with high-level resistance to third generation fluoroquinolones, has been associated with increased morbidity and mortality. Although the defective regulatory gene locus is associated with increased toxin production in vitro, the in vivo significance of this mutation and of the binary toxin remains undefined. To date, treatment strategies have not evolved in response to the emergence of this hypervirulaent strain. We provide a critical, quantitative summary of the evolving clinical and molecular epidemiology of C. difficile along with implications relevant to future treatment strategies. PMID:17885732

  6. Lipoprotein CD0873 is a novel adhesin of Clostridium difficile.

    PubMed

    Kovacs-Simon, Andrea; Leuzzi, Rosanna; Kasendra, Magdalena; Minton, Nigel; Titball, Richard W; Michell, Stephen L

    2014-07-15

    Clostridium difficile is a cause of antibiotic-associated diarrhea and colitis, a healthcare-associated intestinal disease. Colonization of the gut is a critical step in the course of infection. The C. difficile lipoprotein CD0873 was identified as a putative adhesin through a bioinformatics approach. Surface exposure of CD0873 was confirmed and a CD0873 mutant was generated. The CD0873 mutant showed a significant reduction in adherence to Caco-2 cells and wild-type bacteria preincubated with anti-CD0873 antibodies showed significantly decreased adherence to Caco-2 cells. In addition, we demonstrated that purified recombinant CD0873 protein alone associates with Caco-2 cells. This is the first definitive identification of a C. difficile adhesin, which now allows work to devise improved measures for preventing and treating disease. PMID:24482399

  7. Clostridium difficile Cell Attachment Is Modified by Environmental Factors

    PubMed Central

    Waligora, Anne-Judith; Barc, Marie-Claude; Bourlioux, Pierre; Collignon, Anne; Karjalainen, Tuomo

    1999-01-01

    Adherence of Clostridium difficile to Vero cells under anaerobic conditions was increased by a high sodium concentration, calcium-rich medium, an acidic pH, and iron starvation. The level of adhesion of nontoxigenic strains was comparable to that of toxigenic strains. Depending on the bacterial culture conditions, Vero cells could bind to one, two, or three bacterial surface proteins with molecular masses of 70, 50, and 40 kDa. PMID:10473442

  8. Prevalence and Risk Factors for Asymptomatic Clostridium difficile Carriage

    PubMed Central

    Alasmari, Faisal; Seiler, Sondra M.; Hink, Tiffany; Burnham, Carey-Ann D.; Dubberke, Erik R.

    2014-01-01

    Background. Clostridium difficile infection (CDI) incidence has increased dramatically over the last decade. Recent studies suggest that asymptomatic carriers may be an important reservoir of C. difficile in healthcare settings. We sought to identify the prevalence and risk factors for asymptomatic C. difficile carriage on admission to the hospital. Methods. Patients admitted to Barnes-Jewish Hospital without diarrhea were enrolled from June 2010 through October 2011. Demographic information and healthcare and medication exposures 90 days prior to admission were collected. Stool specimens or rectal swabs were collected within 48 hours of admission and stored at −30°C until cultured. Clostridium difficile isolates were typed and compared with isolates from patients with CDI. Results. A stool/swab specimen was obtained for 259 enrolled subjects on admission. Two hundred four (79%) were not colonized, 40 (15%) had toxigenic C. difficile (TCD), and 15 (6%) had nontoxigenic C. difficile. There were no differences between TCD-colonized and -uncolonized subjects for age (mean, 56 vs 58 years; P = .46), comorbidities, admission from another healthcare facility (33% vs 24%; P = .23), or recent hospitalization (50% vs 50%; P = .43). There were no differences in antimicrobial exposures in the 90 days prior to admission (55% vs 56%; P = .91). Asymptomatic carriers were colonized with strains similar to strains from patients with CDI, but the relative proportions were different. Conclusions. There was a high prevalence of TCD colonization on admission. In contrast to past studies, TCD colonization was not associated with recent antimicrobial or healthcare exposures. Additional investigation is needed to determine the role of asymptomatic TCD carriers on hospital-onset CDI incidence. PMID:24755858

  9. Development of Photodynamic Antimicrobial Chemotherapy (PACT) for Clostridium difficile

    PubMed Central

    Pye, Hayley; Kohoutova, Darina; Mosse, Charles A.; Yahioglu, Gokhan; Stamati, Ioanna; Deonarain, Mahendra; Battah, Sinan; Ready, Derren; Allan, Elaine; Mullany, Peter; Lovat, Laurence B.

    2015-01-01

    Background Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudo membranous colitis in the developed world. The aim of this study was to explore whether Photodynamic Antimicrobial Chemotherapy (PACT) could be used as a novel approach to treating C. difficile infections. Methods PACT utilises the ability of light-activated photosensitisers (PS) to produce reactive oxygen species (ROS) such as free radical species and singlet oxygen, which are lethal to cells. We screened thirteen PS against C. difficile planktonic cells, biofilm and germinating spores in vitro, and cytotoxicity of effective compounds was tested on the colorectal adenocarcinoma cell-line HT-29. Results Three PS were able to kill 99.9% of bacteria in both aerobic and anaerobic conditions, both in the planktonic state and in a biofilm, after exposure to red laser light (0.2 J/cm2) without harming model colon cells. The applicability of PACT to eradicate C. difficile germinative spores indirectly was also shown, by first inducing germination with the bile salt taurocholate, followed by PACT. Conclusion This innovative and simple approach offers the prospect of a new antimicrobial therapy using light to treat C. difficile infection of the colon. PMID:26313448

  10. Protective Efficacy Induced by Recombinant Clostridium difficile Toxin Fragments

    PubMed Central

    Leuzzi, Rosanna; Spencer, Janice; Buckley, Anthony; Brettoni, Cecilia; Martinelli, Manuele; Tulli, Lorenza; Marchi, Sara; Luzzi, Enrico; Irvine, June; Candlish, Denise; Veggi, Daniele; Pansegrau, Werner; Fiaschi, Luigi; Savino, Silvana; Swennen, Erwin; Cakici, Osman; Oviedo-Orta, Ernesto; Giraldi, Monica; Baudner, Barbara; D'Urzo, Nunzia; Maione, Domenico; Soriani, Marco; Rappuoli, Rino; Pizza, Mariagrazia

    2013-01-01

    Clostridium difficile is a spore-forming bacterium that can reside in animals and humans. C. difficile infection causes a variety of clinical symptoms, ranging from diarrhea to fulminant colitis. Disease is mediated by TcdA and TcdB, two large enterotoxins released by C. difficile during colonization of the gut. In this study, we evaluated the ability of recombinant toxin fragments to induce neutralizing antibodies in mice. The protective efficacies of the most promising candidates were then evaluated in a hamster model of disease. While limited protection was observed with some combinations, coadministration of a cell binding domain fragment of TcdA (TcdA-B1) and the glucosyltransferase moiety of TcdB (TcdB-GT) induced systemic IgGs which neutralized both toxins and protected vaccinated animals from death following challenge with two strains of C. difficile. Further characterization revealed that despite high concentrations of toxin in the gut lumens of vaccinated animals during the acute phase of the disease, pathological damage was minimized. Assessment of gut contents revealed the presence of TcdA and TcdB antibodies, suggesting that systemic vaccination with this pair of recombinant polypeptides can limit the disease caused by toxin production during C. difficile infection. PMID:23716610

  11. Equine hyperimmune serum protects mice against Clostridium difficile spore challenge

    PubMed Central

    Yan, Weiwei; Shin, Kang-Soon; Wang, Shih-Jon; Xiang, Hua; Divers, Thomas; McDonough, Sean; Bowman, James; Rowlands, Anne; Akey, Bruce; Mohamed, Hussni

    2014-01-01

    Clostridium (C.) difficile is a common cause of nosocomial diarrhea in horses. Vancomycin and metronidazole have been used as standard treatments but are only moderately effective, which highlights the need for a novel alternative therapy. In the current study, we prepared antiserum of equine origin against both C. difficile toxins A and B as well as whole-cell bacteria. The toxin-neutralizing activities of the antibodies were evaluated in vitro and the prophylactic effects of in vivo passive immunotherapy were demonstrated using a conventional mouse model. The data demonstrated that immunized horses generated antibodies against both toxins A and B that possessed toxin-neutralizing activity. Additionally, mice treated with the antiserum lost less weight without any sign of illness and regained weight back to a normal range more rapidly compared to the control group when challenged orally with 107 C. difficile spores 1 day after serum injection. These results indicate that intravenous delivery of hyperimmune serum can protect animals from C. difficile challenge in a dose-dependent manner. Hence, immunotherapy may be a promising prophylactic strategy for preventing C. difficile infection in horses. PMID:24136208

  12. Genotypic investigation of Clostridium difficile in Prince Edward Island.

    PubMed

    Martin, H; Abbott, L P; Low, D E; Willey, B; Mulvey, M; Weese, J Scott

    2008-11-01

    Clostridium difficile is an important cause of disease in Canada; however, little information is available about the disease in the Maritime provinces. The objective of the present study was to characterize C difficile isolates obtained from people hospitalized with C difficile infection in Prince Edward Island. One hundred twenty-six C difficile ELISA toxin-positive stool samples were obtained and cultured using an enrichment protocol. C difficile was isolated from 105 of 126 (83%) samples. Twenty-two different ribotypes were identified. The most common ribotype, ribotype W, was a North American pulsotype 2 (NAP2), toxinotype 0 strain, which represented 18% of isolates. The next most common ribotype was a NAP1, toxinotype III strain, which accounted for 11% of isolates. Ribotype 027/NAP1 only accounted for five (4.7%) isolates. Forty-five per cent of isolates possessed genes encoding production of binary toxin. Three different ribotypes, all NAP1, toxinotype III strains, had a frameshift mutation in the tcdC gene (Delta117), while one isolate (ribotype 078, NAP4, toxinotype V) had a truncating mutation (C184T) in the tcdC gene. PMID:19436570

  13. Bacteriophage-mediated toxin gene regulation in Clostridium difficile.

    PubMed

    Govind, Revathi; Vediyappan, Govindsamy; Rolfe, Rial D; Dupuy, Bruno; Fralick, Joe A

    2009-12-01

    Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by PhiCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in PhiCD119 lysogens. During this study we found that repR, a putative repressor gene of PhiCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in PhiCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen. PMID:19776116

  14. Toxin Synthesis by Clostridium difficile Is Regulated through Quorum Signaling

    PubMed Central

    DuPont, Herbert L.; Norris, Steven J.; Kaplan, Heidi B.

    2015-01-01

    ABSTRACT Clostridium difficile infection (CDI) is dramatically increasing as a cause of antibiotic- and hospital-associated diarrhea worldwide. C. difficile, a multidrug-resistant pathogen, flourishes in the colon after the gut microbiota has been altered by antibiotic therapy. Consequently, it produces toxins A and B that directly cause disease. Despite the enormous public health problem posed by this pathogen, the molecular mechanisms that regulate production of the toxins, which are directly responsible for disease, remained largely unknown until now. Here, we show that C. difficile toxin synthesis is regulated by an accessory gene regulator quorum-signaling system, which is mediated through a small (<1,000-Da) thiolactone that can be detected directly in stools of CDI patients. These findings provide direct evidence of the mechanism of regulation of C. difficile toxin synthesis and offer exciting new avenues both for rapid detection of C. difficile infection and development of quorum-signaling-based non-antibiotic therapies to combat this life-threatening emerging pathogen. PMID:25714717

  15. Clostridium difficile ribotypes in humans and animals in Brazil.

    PubMed

    Silva, Rodrigo Otávio Silveira; Rupnik, Maja; Diniz, Amanda Nádia; Vilela, Eduardo Garcia; Lobato, Francisco Carlos Faria

    2015-12-01

    Clostridium difficile is an emerging enteropathogen responsible for pseudomembranous colitis in humans and diarrhoea in several domestic and wild animal species. Despite its known importance, there are few studies about C. difficile polymerase chain reaction (PCR) ribotypes in Brazil and the actual knowledge is restricted to studies on human isolates. The aim of the study was therefore to compare C. difficile ribotypes isolated from humans and animals in Brazil. Seventy-six C. difficile strains isolated from humans (n = 25), dogs (n = 23), piglets (n = 12), foals (n = 7), calves (n = 7), one cat, and one manned wolf were distributed into 24 different PCR ribotypes. Among toxigenic strains, PCR ribotypes 014/020 and 106 were the most common, accounting for 14 (18.4%) and eight (10.5%) samples, respectively. Fourteen different PCR ribotypes were detected among human isolates, nine of them have also been identified in at least one animal species. PCR ribotype 027 was not detected, whereas 078 were found only in foals. This data suggests a high diversity of PCR ribotypes in humans and animals in Brazil and support the discussion of C. difficile as a zoonotic pathogen. PMID:26676318

  16. The potential for emerging therapeutic options for Clostridium difficile infection

    PubMed Central

    Mathur, Harsh; Rea, Mary C; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2014-01-01

    Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review. PMID:25564777

  17. How to eradicate Clostridium difficile from the environment.

    PubMed

    Barbut, F

    2015-04-01

    During the last decade, Clostridium difficile has emerged as a major cause of healthcare-associated diarrhoea and death. Transmission of this spore-forming bacterium is thought to occur via the hands of healthcare providers or via the contaminated environment. Therefore, enhanced environmental cleaning/disinfection of the rooms housing C. difficile-infected patients is warranted. Guidelines from various scientific bodies have been published. They recommend performing environmental decontamination of rooms of patients with C. difficile infection (CDI) using hypochlorite (diluted 1/10) or a sporicidal product. Compliance with cleaning and disinfection is a critical point and is often suboptimal. Novel 'no-touch' methods for room disinfection have recently been introduced. Ultraviolet (UV) light or hydrogen peroxide systems are most widely used. In-vitro studies suggest that hydrogen peroxide vapour (from 30% hydrogen peroxide) methods achieve a >6 log10 reduction in C. difficile spores placed on carriers, and that aerosolized hydrogen peroxide systems (from 5% to 6% hydrogen peroxide) achieve ∼4 log10 reduction, whereas UV-based methods achieve ∼2 log10 reduction. Very few studies have assessed the impact of these devices on the transmission of C. difficile. Major limitations of these devices include the fact that they can only be used after the patient's discharge, because patients and staff must be removed from the room. The new no-touch methods for room disinfection supplement, but do not replace, daily cleaning. PMID:25638358

  18. Clostridium difficile-associated diarrhea in an ocelot (Leopardus pardalis).

    PubMed

    Silva, Rodrigo Otávio Silveira; D'elia, Mirella Lauria; de Magalhães Soares, Danielle Ferreira; Cavalcanti, Álvaro Roberto; Leal, Rodrigo Costa; Cavalcanti, Guilherme; Pereira, Pedro Lúcio Lithg; Lobato, Francisco Carlos Faria

    2013-04-01

    The aim of this study is to report a case of Clostridium difficile-associated diarrhea in an ocelot (Leopardus pardalis) in the state of Mato Grosso do Sul, Brazil. The animal, a 24-month-old male, was referred to the Centro de Reabilitação de Animais Silvestres (CRAS) with a history of having been run over and tibia and fibula fractures. After a surgery to repair the fractures, the ocelot underwent antibiotic therapy with two doses of sodium cefovecin, during which he presented with diarrhea. A stool sample was positive for A/B toxins by a cytotoxicity assay, and a toxigenic strain of C. difficile was isolated. No other enteropathogens were detected. The association between the history, clinical signs and laboratory exams confirmed the diagnosis of C. difficile-associated diarrhea. The present report confirms C. difficile as a potential pathogen for wild felids and suggests that the C. difficile-associated diarrhea should be considered in diarrhea cases, especially when the clinical signs began after antimicrobial use. PMID:23467074

  19. Successful Treatment of Peritoneal Dialysis Catheter-Related Polymicrobial Peritonitis Involving Clostridium difficile

    PubMed Central

    Malhotra, Prashant; Juretschko, Stefan

    2015-01-01

    Clostridium difficile is one of the most common nosocomial pathogens and the cause of pseudomembranous colitis in cases of prior antimicrobial exposure. Extraintestinal manifestations of C. difficile are uncommon and rarely reported. We report the first successfully treated case of catheter-related C. difficile peritonitis in a patient undergoing peritoneal dialysis. PMID:26378285

  20. High colonization rate and prolonged shedding of Clostridium difficile in pediatric oncology patients.

    PubMed

    Dominguez, Samuel R; Dolan, Susan A; West, Kelly; Dantes, Raymund B; Epson, Erin; Friedman, Deborah; Littlehorn, Cynthia A; Arms, Lesley E; Walton, Karen; Servetar, Ellen; Frank, Daniel N; Kotter, Cassandra V; Dowell, Elaine; Gould, Carolyn V; Hilden, Joanne M; Todd, James K

    2014-08-01

    Surveillance testing for Clostridium difficile among pediatric oncology patients identified stool colonization in 29% of patients without gastrointestinal symptoms and in 55% of patients with prior C. difficile infection (CDI). A high prevalence of C. difficile colonization and diarrhea complicates the diagnosis of CDI in this population. PMID:24785235

  1. Draft Genome Sequence of Clostridium difficile Belonging to Ribotype 018 and Sequence Type 17.

    PubMed

    Riccobono, E; Di Pilato, V; Della Malva, N; Meini, S; Ciraolo, F; Torricelli, F; Rossolini, G M

    2016-01-01

    Clostridium difficile, belonging to ribotype 018 (RT018), is one of the most prevalent genotypes circulating in hospital settings in Italy. Here, we report the draft genome of C. difficile CD8-15 belonging to RT018, isolated from a patient with fatal C. difficile-associated infection. PMID:27587821

  2. Draft Genome Sequence of Clostridium difficile Belonging to Ribotype 018 and Sequence Type 17

    PubMed Central

    Riccobono, E.; Di Pilato, V.; Della Malva, N.; Meini, S.; Ciraolo, F.; Torricelli, F.

    2016-01-01

    Clostridium difficile, belonging to ribotype 018 (RT018), is one of the most prevalent genotypes circulating in hospital settings in Italy. Here, we report the draft genome of C. difficile CD8-15 belonging to RT018, isolated from a patient with fatal C. difficile-associated infection. PMID:27587821

  3. Clostridium difficile Enterocolitis and Reactive Arthritis: A Case Report and Review of the Literature

    PubMed Central

    Cappella, Michela; Pugliese, Fabrizio; Zucchini, Andrea; Marchetti, Federico

    2016-01-01

    Reactive arthritis is a rare complication of Clostridium difficile enterocolitis, especially in children. We review the 6 pediatric cases published in the English and non-English literature and discuss their clinical presentation, outcome, treatment, and pathophysiology. We also report the seventh case of Clostridium difficile reactive arthritis in a 6-year-old boy who was treated with amoxicillin-clavulanate for 10 days because of an upper respiratory infection. After the antibiotic course, the child developed at the same time diarrhea with positive stool culture for Clostridium difficile and an asymmetric polyarthritis. Nonsteroidal anti-inflammatory drugs and metronidazole completely resolved the pain, joint swelling, and diarrhea. After twelve months of follow-up there has been no recurrence. This report confirms the self-limiting course of Clostridium difficile reactive arthritis. Clostridium difficile testing in children with gastrointestinal symptoms and acute onset of joint pain should be always considered. PMID:27190666

  4. Clostridium difficile Enterocolitis and Reactive Arthritis: A Case Report and Review of the Literature.

    PubMed

    Cappella, Michela; Pugliese, Fabrizio; Zucchini, Andrea; Marchetti, Federico

    2016-01-01

    Reactive arthritis is a rare complication of Clostridium difficile enterocolitis, especially in children. We review the 6 pediatric cases published in the English and non-English literature and discuss their clinical presentation, outcome, treatment, and pathophysiology. We also report the seventh case of Clostridium difficile reactive arthritis in a 6-year-old boy who was treated with amoxicillin-clavulanate for 10 days because of an upper respiratory infection. After the antibiotic course, the child developed at the same time diarrhea with positive stool culture for Clostridium difficile and an asymmetric polyarthritis. Nonsteroidal anti-inflammatory drugs and metronidazole completely resolved the pain, joint swelling, and diarrhea. After twelve months of follow-up there has been no recurrence. This report confirms the self-limiting course of Clostridium difficile reactive arthritis. Clostridium difficile testing in children with gastrointestinal symptoms and acute onset of joint pain should be always considered. PMID:27190666

  5. Laboratory Detection of Clostridium difficile in Piglets in Australia

    PubMed Central

    Knight, Daniel R.; Squire, Michele M.

    2014-01-01

    Clostridium difficile is a well-known enteric pathogen of humans and the causative agent of high-morbidity enteritis in piglets aged 1 to 7 days. C. difficile prevalence in Australian piglets is as high as 70%. The current diagnostic assays have been validated only for human infections, and there are no published studies assessing their performance in Australian piglets. We evaluated the suitability of five assays for detecting C. difficile in 157 specimens of piglet feces. The assays included a loop-mediated isothermal amplification (LMIA)-PCR for tcdA (illumigene C. difficile; Meridian), a real-time PCR for tcdB (GeneOhm Cdiff; Becton Dickinson), two-component enzyme immunoassays (EIA) for C. difficile glutamate dehydrogenase (GDH) (EIA-GDH) and TcdA/TcdB (EIA-TcdA/TcdB) (C. diff Quik Chek; Alere), and direct culture (DC) (C. difficile chromID agar; bioMérieux). The assays for detection of the organism were compared against enrichment culture (EC), and assays for detection of toxins/toxin genes were compared against EC followed by PCR for toxin genes (toxigenic EC [TEC]). The recovery of C. difficile by EC was 39.5% (n = 62/157), and TEC revealed that 58.1% (n = 36/62) of isolates were positive for at least one toxin gene (tcdA/tcdB). Compared with those for EC/TEC, the sensitivities, specificities, positive predictive values, and negative predictive values were, respectively, as follows: DC, 91.9, 100.0, 100.0, and 95.0%; EIA-GDH, 41.9, 92.6, 78.8, and 71.0%; EIA-TcdA/TcdB, 5.6, 99.2, 66.7, and 77.9%; real-time PCR, 42.9, 96.7, 78.9, and 85.4% and LMIA-PCR, 25.0, 95.9, 64.3, and 81.1%. The performance of the molecular methods was poor, suggesting that the current commercially available assays for diagnosis of C. difficile in humans are not suitable for use in piglets. C. difficile recovery by the DC provides a cost-effective alternative. PMID:25122859

  6. Rapid molecular characterization of Clostridium difficile and assessment of populations of C. difficile in stool specimens.

    PubMed

    Wroblewski, Danielle; Hannett, George E; Bopp, Dianna J; Dumyati, Ghinwa K; Halse, Tanya A; Dumas, Nellie B; Musser, Kimberlee A

    2009-07-01

    Our laboratory has developed testing methods that use real-time PCR and pyrosequencing analysis to enable the rapid identification of potential hypervirulent Clostridium difficile strains. We describe a real-time PCR assay that detects four C. difficile genes encoding toxins A (tcdA) and B (tcdB) and the binary toxin genes (cdtA and cdtB), as well as a pyrosequencing assay that detects common deletions in the tcdC gene in less than 4 h. A subset of historical and recent C. difficile isolates (n = 31) was also analyzed by pulsed-field gel electrophoresis to determine the circulating North American pulsed-field (NAP) types that have been isolated in New York State. Thirteen different NAP types were found among the 31 isolates tested, 13 of which were NAP type 1 strains. To further assess the best approach to utilizing our conventional and molecular methods, we studied the populations of C. difficile in patient stool specimens (n = 23). Our results indicated that 13% of individual stool specimens had heterogeneous populations of C. difficile when we compared the molecular characterization results for multiple bacterial isolates (n = 10). Direct molecular analysis of stool specimens gave results that correlated well with the results obtained with cultured stool specimens; the direct molecular analysis was rapid, informative, and less costly than the testing of multiple patient stool isolates. PMID:19403775

  7. Comparison of Five Assays for Detection of Clostridium difficile Toxin

    PubMed Central

    Chapin, Kimberle C.; Dickenson, Roberta A.; Wu, Fongman; Andrea, Sarah B.

    2011-01-01

    Performance characteristics of five assays for detection of Clostridium difficile toxin were compared using fresh stool samples from patients with C. difficile infection (CDI). Assays were performed simultaneously and according to the manufacturers' instructions. Patients were included in the study if they exhibited clinical symptoms consistent with CDI. Nonmolecular assays included glutamate dehydrogenase antigen tests, with positive findings followed by the Premier Toxin A and B Enzyme Immunoassay (GDH/EIA), and the C. Diff Quik Chek Complete test. Molecular assays (PCR) included the BD GeneOhm Cdiff Assay, the Xpert C. difficile test, and the ProGastro Cd assay. Specimens were considered true positive if results were positive in two or more assays. For each method, the Youden index was calculated and cost-effectiveness was analyzed. Of 81 patients evaluated, 26 (32.1%) were positive for CDI. Sensitivity of the BD GeneOhm Cdiff assay, the Xpert C. difficile test, the ProGastro Cd assay, C. Diff Quik Chek Complete test, and two-step GDH/EIA was 96.2%, 96.2%, 88.5%, 61.5%, and 42.3%, respectively. Specificity of the Xpert C. difficile test was 96.4%, and for the other four assays was 100%. Compared with nonmolecular methods, molecular methods detected 34.7% more positive specimens. Assessment of performance characteristics and cost-effectiveness demonstrated that the BD GeneOhm Cdiff assay yielded the best results. While costly, the Xpert C. difficile test required limited processing and yielded rapid results. Because of discordant results, specimen processing, and extraction equipment requirements, the ProGastro Cd assay was the least favored molecular assay. The GDH/EIA method lacked sufficient sensitivity to be recommended. PMID:21704273

  8. Contributions to the taxonomy and biology of Clostridium difficile.

    PubMed

    Bittner, J; Macovei, A; Lemeni, D; Arboreanu, D; Potorac, E

    1992-01-01

    Clostridium difficile was incriminated by Hughes and Jarvis (1987) as a cause of intestinal infections in USA in the 1980-1984 period in 45 p. 100 of cases, whereas Salmonellae only in 12 p. 100. Four strains of this organism are studied in this paper in comparison with ten strains of C. bifermentans and six of C. sordellii, because the three species share a common antigen and have other common characteristics, as well. However, spores of C. difficile swell the bacteria and those of other bacteria (C. bifermentans and C. sordellii) do not; C. difficile does not produce indole, whereas the other species produce it. We confirmed the selective capacity of the medium of George et al. (1979) using the "alcohol shock" and as selective agents cycloserine D and cefoxitin. C. difficile proved to be most susceptible to metronidazole and rifampin. Whereas the former antibiotic was considered as a cause of post-antibiotic intestinal infections by different authors, the second was not, to our knowledge. The strain 10463 has a considerable toxicity (1000 DLM/ml for the white mouse, and pathogenicity--2000--5000 DCL for the white mouse, as compared to 25 DCL of the other three strains). Using this toxin an antitoxic serum was obtained in horse, with a capacity of neutralizing the action of the toxin up to a dilution of 1 p. 1000. PMID:1304829

  9. Bench-to-bedside review: Clostridium difficile colitis

    PubMed Central

    Gould, Carolyn V; McDonald, L Clifford

    2008-01-01

    In recent years, the incidence and severity of Clostridium difficile-associated disease (CDAD) have increased dramatically. Beginning in 2000, widespread regional outbreaks associated with a previously uncommon hypervirulent strain of C. difficile have occurred in North America and Europe. Most likely because of increased toxin production as well as other virulence factors, this epidemic strain has caused more severe and refractory disease leading to complications, including intensive care unit admission, colectomies, and death. Worldwide increasing use of fluoroquinolones and cephalosporins has likely contributed to the proliferation of this epidemic strain, which is highly resistant to both. The elderly have been disproportionately affected by CDAD, but C. difficile has also recently emerged in populations previously considered to be at low risk, including healthy outpatients and peripartum women, although it is unknown if these cases are related to the epidemic strain. Nevertheless, transmission within hospitals is the major source of C. difficile acquisition, and previous or concurrent antimicrobial use is almost universal among cases. Applying current evidence-based strategies for management and prevention is critically important, and clinicians should maintain an awareness of the changing epidemiology of CDAD and take measures to reduce the risk of disease in patients. PMID:18279531

  10. Clostridium difficile ribotypes in humans and animals in Brazil

    PubMed Central

    Silva, Rodrigo Otávio Silveira; Rupnik, Maja; Diniz, Amanda Nádia; Vilela, Eduardo Garcia; Lobato, Francisco Carlos Faria

    2015-01-01

    Clostridium difficile is an emerging enteropathogen responsible for pseudomembranous colitis in humans and diarrhoea in several domestic and wild animal species. Despite its known importance, there are few studies aboutC. difficile polymerase chain reaction (PCR) ribotypes in Brazil and the actual knowledge is restricted to studies on human isolates. The aim of the study was therefore to compare C. difficileribotypes isolated from humans and animals in Brazil. Seventy-six C. difficile strains isolated from humans (n = 25), dogs (n = 23), piglets (n = 12), foals (n = 7), calves (n = 7), one cat, and one manned wolf were distributed into 24 different PCR ribotypes. Among toxigenic strains, PCR ribotypes 014/020 and 106 were the most common, accounting for 14 (18.4%) and eight (10.5%) samples, respectively. Fourteen different PCR ribotypes were detected among human isolates, nine of them have also been identified in at least one animal species. PCR ribotype 027 was not detected, whereas 078 were found only in foals. This data suggests a high diversity of PCR ribotypes in humans and animals in Brazil and support the discussion of C. difficile as a zoonotic pathogen. PMID:26676318

  11. Detection of virulence genes of Clostridium difficile by multiplex PCR.

    PubMed

    Antikainen, Jenni; Pasanen, Tanja; Mero, Sointu; Tarkka, Eveliina; Kirveskari, Juha; Kotila, Saara; Mentula, Silja; Könönen, Eija; Virolainen-Julkunen, Anni-Riitta; Vaara, Martti; Tissari, Päivi

    2009-08-01

    Clostridium difficile strains belonging to the PCR ribotype 027, pulse-field gel electrophoresis (PFGE) type NAP1, toxinotype III and restriction endonuclease analysis group BI harbouring mutations in the tcdC gene and possessing binary toxin components A and B have been described to cause epidemics with increased morbidity and mortality. In the present study we developed a conventional multiplex PCR designed to detect selected virulence associated markers of the hypervirulent C. difficile PCR ribotype 027. The multiplex PCR assay detected the major toxins A and B, binary toxin components A and B as well as a possible deletion in the tcdC gene: a characteristic pattern of amplification products for the PCR ribotype 027 strains was detected. This rather simple method was specific for the screening of this hypervirulent C. difficile strain. The correlation between the multiplex PCR and PCR ribotyping methods was excellent. The sensitivity and specificity were 100% in our epidemiological situation. In conclusion, this multiplex PCR was found useful in the preliminary screening for the hypervirulent C. difficile PCR ribotype 027. PMID:19664132

  12. Characteristics of patients with Clostridium difficile infection in Taiwan.

    PubMed

    Lin, Y-C; Huang, Y-T; Lee, T-F; Lee, N-Y; Liao, C-H; Lin, S-Y; Ko, W-C; Hsueh, P-R

    2013-10-01

    The medical records of 84 patients with stool cultures positive for Clostridium difficile during the period August 2007 to June 2009 were retrospectively reviewed. A case of confirmed (toxigenic)C. difficile infection (CDI) was defined by the presence of symptoms (fever, diarrhoea, abdominal discomfort or distension, ileus) and the presence of toxigenic C. difficile. Patients with compatible clinical symptoms and stool cultures positive for non-toxigenic C. difficile isolates were defined as probable (non-toxigenic) CDI cases. Of these 84 patients, 50 (59.5%) were diagnosed as confirmed CDI and 34 (40.5%) as probable CDI. Thirteen (15.5%) of the 84 patients died during their hospital stay. Usage of proton pump inhibitors was a significant independent risk factor for CDI (OR 3.21, P=0.014). Of the 50 isolates associated with confirmed CDI, seven (8.3%) carried binary toxin genes (cdtAB), and six (7.1%) had a deletion in the tcdC gene. The mortality rate in confirmed CDI patients with isolates exhibiting deletion in the tcdC gene (2/6, 33.3%), those with isolates harbouring binary toxin genes (2/7, 28.6%), and those with isolates containing mutations in gyrA (2/7, 28.6%) and gyrB (1/2, 50%) was higher than the overall mortality rate (10/50, 20%) in patients with confirmed CDI. PMID:23218131

  13. Immune-based treatment and prevention of Clostridium difficile infection

    PubMed Central

    Zhao, Song; Ghose-Paul, Chandrabali; Zhang, Keshan; Tzipori, Saul; Sun, Xingmin

    2015-01-01

    Clostridium difficile (C. difficile) causes over 500,000 infections per year in the US, with an estimated 15,000 deaths and an estimated cost of $1–3 billion. Moreover, a continual rise in the incidence of severe C. difficile infection (CDI) has been observed worldwide. Currently, standard treatment for CDI is the administration of antibiotics. While effective, these treatments do not prevent and may contribute to a disease recurrence rate of 15–35%. Prevention of recurrence is one of the most challenging aspects in the field. A better knowledge of the molecular mechanisms of the disease, the host immune response and identification of key virulence factors of C. difficilenow permits the development of immune-based therapies. Antibodies specific for C. difficile toxins have been shown to effectively treat CDI and prevent disease relapse in animal models and in humans. Vaccination has been recognized as the most cost-effective treatment/prevention for CDI. This review will summarize CDI transmission, epidemiology, major virulent factors and highlights the rational and the development of immune-based approaches against this remerging threat. PMID:25668664

  14. Colonization Resistance of the Gut Microbiota against Clostridium difficile

    PubMed Central

    Pérez-Cobas, Ana Elena; Moya, Andrés; Gosalbes, María José; Latorre, Amparo

    2015-01-01

    Antibiotics strongly disrupt the human gut microbiota, which in consequence loses its colonization resistance capacity, allowing infection by opportunistic pathogens such as Clostridium difficile. This bacterium is the main cause of antibiotic-associated diarrhea and a current problem in developed countries, since its incidence and severity have increased during the last years. Furthermore, the emergence of antibiotic resistance strains has reduced the efficiency of the standard treatment with antibiotics, leading to a higher rate of relapses. Here, we review recent efforts focused on the impact of antibiotics in the gut microbiome and their relationship with C. difficile colonization, as well as, in the identification of bacteria and mechanisms involved in the protection against C. difficile infection. Since a healthy gut microbiota is able to avoid pathogen colonization, restoration of the gut microbiota seems to be the most promising approach to face C. difficile infection, especially for recurrent cases. Therefore, it would be possible to design probiotics for patients undergoing antimicrobial therapies in order to prevent or fight the expansion of the pathogen in the gut ecosystem. PMID:27025628

  15. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis.

    PubMed

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  16. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    PubMed Central

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  17. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission.

    PubMed

    Martin, Jessica S H; Monaghan, Tanya M; Wilcox, Mark H

    2016-04-01

    Clostridium difficile infection (CDI) continues to affect patients in hospitals and communities worldwide. The spectrum of clinical disease ranges from mild diarrhoea to toxic megacolon, colonic perforation and death. However, this bacterium might also be carried asymptomatically in the gut, potentially leading to 'silent' onward transmission. Modern technologies, such as whole-genome sequencing and multi-locus variable-number tandem-repeat analysis, are helping to track C. difficile transmission across health-care facilities, countries and continents, offering the potential to illuminate previously under-recognized sources of infection. These typing strategies have also demonstrated heterogeneity in terms of CDI incidence and strain types reflecting different stages of epidemic spread. However, comparison of CDI epidemiology, particularly between countries, is challenging due to wide-ranging approaches to sampling and testing. Diagnostic strategies for C. difficile are complicated both by the wide range of bacterial targets and tests available and the need to differentiate between toxin-producing and non-toxigenic strains. Multistep diagnostic algorithms have been recommended to improve sensitivity and specificity. In this Review, we describe the latest advances in the understanding of C. difficile epidemiology, transmission and diagnosis, and discuss the effect of these developments on the clinical management of CDI. PMID:26956066

  18. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis.

    PubMed

    Makroczyová, Jana; Jamroškovič, Ján; Krascsenitsová, Eva; Labajová, Nad'a; Barák, Imrich

    2016-06-01

    In rod-shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well-studied gram-negative and gram-positive bacteria. While in gram-negative Escherichia coli, the Min system undergoes pole-to-pole oscillation, in gram-positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore-forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host. PMID:26817670

  19. Recurrent Clostridium difficile infections: The importance of the intestinal microbiota

    PubMed Central

    Zanella Terrier, Marie Céline; Simonet, Martine Louis; Bichard, Philippe; Frossard, Jean Louis

    2014-01-01

    Clostridium difficile infections (CDI) are a leading cause of antibiotic-associated and nosocomial diarrhea. Despite effective antibiotic treatments, recurrent infections are common. With the recent emergence of hypervirulent isolates of C. difficile, CDI is a growing epidemic with higher rates of recurrence, increasing severity and mortality. Fecal microbiota transplantation (FMT) is an alternative treatment for recurrent CDI. A better understanding of intestinal microbiota and its role in CDI has opened the door to this promising therapeutic approach. FMT is thought to resolve dysbiosis by restoring gut microbiota diversity thereby breaking the cycle of recurrent CDI. Since the first reported use of FMT for recurrent CDI in 1958, systematic reviews of case series and case report have shown its effectiveness with high resolution rates compared to standard antibiotic treatment. This article focuses on current guidelines for CDI treatment, the role of intestinal microbiota in CDI recurrence and current evidence about FMT efficacy, adverse effects and acceptability. PMID:24966611

  20. Clostridium difficile infection: management strategies for a difficult disease

    PubMed Central

    Pardi, Darrell S.

    2014-01-01

    Clostridium difficile was first described as a cause of diarrhea in 1978 and in the last three decades has reached an epidemic state with increasing incidence and severity in both healthcare and community settings. There also has been a rise in severe outcomes from C. difficile infection (CDI). There have been tremendous advancements in the field of CDI with the identification of newer risk factors, recognition of CDI in populations previously thought not at risk and development of better diagnostic modalities. Several treatment options are available for CDI apart from metronidazole and vancomycin, and include new drugs such as fidaxomicin and other options such as fecal microbiota transplantation. This review discusses the epidemiology, risk factors and outcomes from CDI, and focuses primarily on existing and evolving treatment modalities. PMID:24587820

  1. Integration of metabolism and virulence in Clostridium difficile

    PubMed Central

    Bouillaut, Laurent; Dubois, Thomas; Sonenshein, Abraham L.; Dupuy, Bruno

    2015-01-01

    Synthesis of the major toxin proteins of the diarrheal pathogen, Clostridium difficile, is dependent on the activity of TcdR, an initiation (sigma) factor of RNA polymerase. The synthesis of TcdR and the activation of toxin gene expression are responsive to multiple components in the bacterium’s nutritional environment, such as the presence of certain sugars, amino acids, and fatty acids. This review summarizes current knowledge about the mechanisms responsible for repression of toxin synthesis when glucose or branched-chain amino acids or proline are in excess and the pathways that lead to synthesis of butyrate, an activator of toxin synthesis. The regulatory proteins implicated in these mechanisms also play key roles in modulating bacterial metabolic pathways, suggesting that C. difficile pathogenesis is intimately connected to the bacterium’s metabolic state. PMID:25445566

  2. Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites

    PubMed Central

    Jarrad, Angie M.; Karoli, Tomislav; Debnath, Anjan; Tay, Chin Yen; Huang, Johnny X.; Kaeslin, Geraldine; Elliott, Alysha G.; Miyamoto, Yukiko; Ramu, Soumya; Kavanagh, Angela M.; Zuegg, Johannes; Eckmann, Lars; Blaskovich, Mark A.T.; Cooper, Matthew A.

    2015-01-01

    Metronidazole has been used clinically for over 50 years as an antiparasitic and broad-spectrum antibacterial agent effective against anaerobic bacteria. However resistance to metronidazole in parasites and bacteria has been reported, and improved second-generation metronidazole analogues are needed. The copper catalysed Huigsen azide-alkyne 1,3-dipolar cycloaddition offers a way to efficiently assemble new libraries of metronidazole analogues. Several new metronidazole-triazole conjugates (Mtz-triazoles) have been identified with excellent broad spectrum antimicrobial and antiparasitic activity targeting Clostridium difficile, Entamoeba histolytica and Giardia lamblia. Cross resistance to metronidazole was observed against stable metronidazole resistant C. difficile and G. lamblia strains. However for the most potent Mtz-triazoles, the activity remained in a therapeutically relevant window. PMID:26117821

  3. On the difficulties of isolating Clostridium difficile from hospital environments.

    PubMed

    Malik, D J; Patel, K V; Clokie, M R J; Shama, G

    2013-06-01

    Spores of Clostridium difficile were deposited on to a stainless steel surface and subsequently exposed to a chlorine-releasing disinfectant (dichloroisocyanurate). Recovery of the spores was carried out using RODAC plates containing a variety of selective and non-selective agars. The non-selective agar media yielded higher recoveries of both control and chlorine-stressed spores. Our results show that the antibiotics used in selective media imposed an additional stress on both disinfectant-treated and untreated spores resulting in considerably reduced recoveries. This could lead to a serious underestimate of the extent of environmental contamination by this organism. PMID:23643391

  4. Community-Acquired Clostridium Difficile Infection: Awareness and Clinical Implications

    PubMed Central

    Juneau, Cheryl; Mendias, Elnora (Nonie) P.; Wagal, Nihas; Loeffelholz, Michael; Savidge, Tor; Croisant, Sharon; Dann, Sara

    2013-01-01

    The epidemiology of Clostridium difficile infection (CDI) is changing. CDI, usually depicted as a nosocomial infection in the elderly, is now occurring in community-dwelling persons who are younger and otherwise dissimilar. A more virulent isolate (North American Pulsed Field type 1 (NAP1) associated with increased morbidity and mortality, has been identified. In 2005, similar strains were associated with severe disease in community-dwelling patients at a rate of 7.6/100,000. Screening patients with potential CDI symptoms and implementing preventative measures, including judicious use of antibiotics, can reduce disease burden. PMID:23814528

  5. Clostridium difficile Infection in Patients with Inflammatory Bowel Disease.

    PubMed

    Fu, Nancy; Wong, Titus

    2016-06-01

    Clostridium difficile infection (CDI) is now the leading cause of nosocomial infection. There has been an upsurge of CDI in patients with inflammatory bowel disease (IBD). IBD patients with CDI have increased morbidity and mortality. The establishment, proliferation, and recurrence of CDI in IBD patients form a complex interplay of microbial, environmental, and host-susceptibility factors. Different risk factors have been found predisposing IBD patients to CDI. Vancomycin performs better than metronidazole in treating IBD patients with CDI. Fecal microbiota transplantation continues to be a very effective therapy. New therapeutic modalities such as vaccinations and bile salts are currently being investigated. PMID:27137789

  6. Probiotics and Antibiotic-Associated Diarrhea and Clostridium difficile Infection

    NASA Astrophysics Data System (ADS)

    Surawicz, Christina M.

    Diarrhea is a common side effect of antibiotics. Antibiotics can cause diarrhea in 5-25% of individuals who take them but its occurrence is unpredictable. Diarrhea due to antibiotics is called antibiotic-associated diarrhea (AAD). Diarrhea may be mild and resolve when antibiotics are discontinued, or it may be more severe. The most severe form of AAD is caused by overgrowth of Clostridium difficile which can cause severe diarrhea, colitis, pseudomembranous colitis, or even fatal toxic megacolon. Rates of diarrhea vary with the specific antibiotic as well as with the individual susceptibility.

  7. First Australian isolation of epidemic Clostridium difficile PCR ribotype 027.

    PubMed

    Riley, Thomas V; Thean, Sarah; Hool, Graham; Golledge, Clayton L

    2009-06-15

    We report the first isolation in Australia of a hypervirulent epidemic strain of Clostridium difficile, PCR ribotype 027. It was isolated from a 43-year-old woman with a permanent ileostomy, who appears to have been infected while travelling in the United States. The isolate was positive for toxin A, toxin B and binary toxin, and resistant to fluoroquinolone antimicrobials, and had characteristic deletions in the tcdC gene. All diagnostic laboratories and health care facilities in Australia should now be on high alert for this organism. PMID:19527210

  8. The role of Clostridium difficile in the paediatric and neonatal gut - a narrative review.

    PubMed

    Lees, E A; Miyajima, F; Pirmohamed, M; Carrol, E D

    2016-07-01

    Clostridium difficile is an important nosocomial pathogen in adults. Its significance in children is less well defined, but cases of C. difficile infection (CDI) appear to be increasingly prevalent in paediatric patients. This review aims to summarize reported Clostridium difficile carriage rates across children of different age groups, appraise the relationship between CDI and factors such as method of delivery, type of infant feed, antibiotic use, and co-morbidities, and review factors affecting the gut microbiome in children and the host immune response to C. difficile. Searches of PubMed and Google Scholar using the terms 'Clostridium difficile neonates' and 'Clostridium difficile children' were completed, and reference lists of retrieved publications screened for further papers. In total, 88 papers containing relevant data were included. There was large inter-study variation in reported C. difficile carriage rates. There was an association between CDI and recent antibiotic use, and co-morbidities such as immunosuppression and inflammatory bowel disease. C. difficile was also found in stools of children with diarrhoea attributed to other pathogens (e.g. rotavirus). The role of C. difficile in the paediatric gut remains unclear; is it an innocent bystander in diarrhoeal disease caused by other organisms, or a pathogen causing subclinical to severe symptoms? Further investigation of the development of serological and local host response to C. difficile carriage may shed new light on disease mechanisms. Work is underway on defining a framework for diagnosis and management of paediatric CDI. PMID:27107991

  9. Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores.

    PubMed

    Pizarro-Guajardo, Marjorie; Calderón-Romero, Paulina; Castro-Córdova, Pablo; Mora-Uribe, Paola; Paredes-Sabja, Daniel

    2016-01-01

    The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the transmission, infectious, and persistent morphotype, and the outermost exosporium layer is likely to play a major role in spore-host interactions during the first contact of C. difficile spores with the host and for spore persistence during recurrent episodes of infection. Although some studies on the biology of the exosporium have been conducted (J. Barra-Carrasco et al., J Bacteriol 195:3863-3875, 2013, http://dx.doi.org/10.1128/JB.00369-13; J. Phetcharaburanin et al., Mol Microbiol 92:1025-1038, 2014, http://dx.doi.org/10.1111/mmi.12611), there is a lack of information on the ultrastructural variability and stability of this layer. In this work, using transmission electron micrographs, we analyzed the variability of the spore's outermost layers in various strains and found distinctive variability in the ultrastructural morphotype of the exosporium within and between strains. Through transmission electron micrographs, we observed that although this layer was stable during spore purification, it was partially lost after 6 months of storage at room temperature. These observations were confirmed by indirect immunofluorescence microscopy, where a significant decrease in the levels of two exosporium markers, the N-terminal domain of BclA1 and CdeC, was observed. It is also noteworthy that the presence of the exosporium marker CdeC on spores obtained from C. difficile biofilms depended on the biofilm culture conditions and the strain used. Collectively, these results provide information on the heterogeneity and stability of the exosporium surface of C. difficile spores. These findings have direct implications and should be considered in the development of novel methods to diagnose and/or remove C. difficile spores by using exosporium proteins as targets. PMID

  10. Synergistic Effects of Antimicrobial Peptides and Antibiotics against Clostridium difficile

    PubMed Central

    Nuding, Sabine; Frasch, Tina; Schaller, Martin; Stange, Eduard F.

    2014-01-01

    Accelerating rates of health care-associated infections caused by Clostridium difficile, with increasing recurrence and rising antibiotic resistance rates, have become a serious problem in recent years. This study was conducted to explore whether a combination of antibiotics with human antimicrobial peptides may lead to an increase in antibacterial activity. The in vitro activities of the antimicrobial peptides HBD1 to HBD3, HNP1, HD5, and LL-37 and the antibiotics tigecycline, moxifloxacin, piperacillin-tazobactam, and meropenem alone or in combination against 10 toxinogenic and 10 nontoxinogenic C. difficile strains were investigated. Bacterial viability was determined by flow cytometry and toxin production by enzyme-linked immunosorbent assay (ELISA). When combined at subinhibitory concentrations, antimicrobial peptides and antibiotics generally led to an additive killing effect against toxinogenic and nontoxinogenic C. difficile strains. However, LL-37 and HBD3 acted in synergism with all the antibiotics that were tested. Electron microscopy revealed membrane perturbation in bacterial cell walls by HBD3. In 3 out of 10 toxinogenic strains, HBD3, LL-37, piperacillin-tazobactam, and meropenem administration led to an increased toxin release which was not neutralized by the addition of HNP1. Antimicrobial peptides increase the bacterial killing of antibiotics against C. difficile regardless of the antibiotics' mode of action. Membrane perturbation in or pore formation on the bacterial cell wall may enhance the uptake of antibiotics and increase their antibacterial effect. Therefore, a combination of antibiotics with antimicrobial peptides may represent a promising novel approach to the treatment of C. difficile infections. PMID:25022581

  11. Susceptibility of Hamsters to Clostridium difficile Isolates of Differing Toxinotype

    PubMed Central

    Buckley, Anthony M.; Spencer, Janice; Maclellan, Lindsay M.; Candlish, Denise; Irvine, June J.; Douce, Gillian R.

    2013-01-01

    Clostridium difficile is the most commonly associated cause of antibiotic associated disease (AAD), which caused ∼21,000 cases of AAD in 2011 in the U.K. alone. The golden Syrian hamster model of CDI is an acute model displaying many of the clinical features of C. difficile disease. Using this model we characterised three clinical strains of C. difficile, all differing in toxinotype; CD1342 (PaLoc negative), M68 (toxinotype VIII) & BI-7 (toxinotype III). The naturally occurring non-toxic strain colonised all hamsters within 1-day post challenge (d.p.c.) with high-levels of spores being shed in the faeces of animals that appeared well throughout the entire experiment. However, some changes including increased neutrophil influx and unclotted red blood cells were observed at early time points despite the fact that the known C. difficile toxins (TcdA, TcdB and CDT) are absent from the genome. In contrast, hamsters challenged with strain M68 resulted in a 45% mortality rate, with those that survived challenge remaining highly colonised. It is currently unclear why some hamsters survive infection, as bacterial & toxin levels and histology scores were similar to those culled at a similar time-point. Hamsters challenged with strain BI-7 resulted in a rapid fatal infection in 100% of the hamsters approximately 26 hr post challenge. Severe caecal pathology, including transmural neutrophil infiltrates and extensive submucosal damage correlated with high levels of toxin measured in gut filtrates ex vivo. These data describes the infection kinetics and disease outcomes of 3 clinical C. difficile isolates differing in toxin carriage and provides additional insights to the role of each toxin in disease progression. PMID:23704976

  12. High mobility group box1 protein is involved in acute inflammation induced by Clostridium difficile toxin A.

    PubMed

    Liu, Ji; Zhang, Bei-Lei; Sun, Chun-Li; Wang, Jun; Li, Shan; Wang, Ju-Fang

    2016-06-01

    High mobility group box1 (HMGB1), as a damage-associated inflammatory factor, contributes to the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, we explored the role of HMGB1 in CDI (Clostridium difficile infection) by in vivo and in vitro experiments. Our results showed that HMGB1 might play an important role in the acute inflammatory responses to C. difficile toxin A (TcdA), affect early inflammatory factors, and induce inflammation via the HMGB1-TLR4 pathway. Our study provides the essential information for better understanding the molecular mechanisms of CDI and the potential new therapeutic strategies for the treatment of this infection. PMID:27151296

  13. Advances in molecular surveillance of Clostridium difficile in Bulgaria.

    PubMed

    Dobreva, Elina G; Ivanov, Ivan N; Vathcheva-Dobrevska, Rossitza S; Ivanova, Katucha I; Asseva, Galina D; Petrov, Petar K; Kantardjiev, Todor V

    2013-09-01

    The increasing incidence of Clostridium difficile infection (CDI) in Bulgaria has indicated the need to implement better surveillance approaches. The aim of the present work was to improve the current surveillance of CDI in Bulgaria by introducing innovative methods for identification and typing. One hundred and twenty stool samples obtained from 108 patients were studied over 4 years from which 32 C. difficile isolates were obtained. An innovative duplex EvaGreen real-time PCR assay based on simultaneous detection of the gluD and tcdB genes was developed for rapid C. difficile identification. Four toxigenic profiles were distinguished by PCR: A(+)B(+)CDT(-) (53.1 %, 17/32), A(-)B(+)CDT(-) (28.1 %, 9/32), A(+)B(+)CDT(+) (9.4 %, 3/32) and A(-)B(-)CDT(-) (9.4 %, 3/32). PCR ribotyping and multilocus variable number of tandem repeat analysis (MLVA7) were used for molecular characterization of the isolates. In total, nine distinct ribotypes were confirmed and the most prevalent for Bulgarian hospitals was 017 followed by 014/020, together accounting for 44 % of all isolates. Eighteen per cent of the isolates (6/32) did not match any of the 25 reference ribotypes available in this study. Twenty-four MLVA7 genotypes were detected among the clinical C. difficile isolates, distributed as follows: five for 017 ribotype, two for 014/020, 001, 002, 012 and 046 each, and one each for ribotypes 023, 070 and 078. The correlation between the typing methods was significant and allowed the identification of several clonal complexes. These results suggest that most C. difficile cases in the eight Bulgarian hospitals studied were associated with isolates belonging to the outbreak ribotypes 017 and 014/20, which are widely distributed in Europe. The real-time PCR protocol for simultaneous detection of gluD and tcdB proved to be very effective and improved C. difficile identification and confirmation of clinical C. difficile isolates. PMID:23598377

  14. A case of reactive arthritis due to Clostridium difficile colitis

    PubMed Central

    Essenmacher, Alex C.; Khurram, Nazish; Bismack, Gregory T.

    2016-01-01

    Reactive arthritis is an acute, aseptic, inflammatory arthropathy following an infectious process but removed from the site of primary infection. It is often attributed to genitourinary and enteric pathogens, such as Chlamydia, Salmonella, Shigella, Campylobacter, and Yersinia, in susceptible individuals. An uncommon and less recognized cause of this disease is preceding colonic infection with Clostridium difficile, an organism associated with pseudomembranous colitis and diarrhea in hospitalized patients and those recently exposed to antibiotics. Recognition of this association may be complicated by non-specific presentation of diarrhea, the interval between gastrointestinal and arthritic symptoms, and the wide differential in mono- and oligoarthritis. We present the case of a 61-year-old, hospitalized patient recently treated for C. difficile colitis who developed sudden, non-traumatic, right knee pain and swelling. Physical examination and radiographs disclosed joint effusion, and sterile aspiration produced cloudy fluid with predominant neutrophils and no growth on cultures. Diagnostic accuracy is enhanced by contemporaneous laboratory investigations excluding other entities such as gout and rheumatoid arthritis and other infections that typically precede reactive arthritis. Contribution of Clostridium infection to reactive arthritis is an obscure association frequently difficult to prove, but this organism is warranted inclusion in the differential of reactive arthritis. PMID:26908381

  15. A case of reactive arthritis due to Clostridium difficile colitis.

    PubMed

    Essenmacher, Alex C; Khurram, Nazish; Bismack, Gregory T

    2016-01-01

    Reactive arthritis is an acute, aseptic, inflammatory arthropathy following an infectious process but removed from the site of primary infection. It is often attributed to genitourinary and enteric pathogens, such as Chlamydia, Salmonella, Shigella, Campylobacter, and Yersinia, in susceptible individuals. An uncommon and less recognized cause of this disease is preceding colonic infection with Clostridium difficile, an organism associated with pseudomembranous colitis and diarrhea in hospitalized patients and those recently exposed to antibiotics. Recognition of this association may be complicated by non-specific presentation of diarrhea, the interval between gastrointestinal and arthritic symptoms, and the wide differential in mono- and oligoarthritis. We present the case of a 61-year-old, hospitalized patient recently treated for C. difficile colitis who developed sudden, non-traumatic, right knee pain and swelling. Physical examination and radiographs disclosed joint effusion, and sterile aspiration produced cloudy fluid with predominant neutrophils and no growth on cultures. Diagnostic accuracy is enhanced by contemporaneous laboratory investigations excluding other entities such as gout and rheumatoid arthritis and other infections that typically precede reactive arthritis. Contribution of Clostridium infection to reactive arthritis is an obscure association frequently difficult to prove, but this organism is warranted inclusion in the differential of reactive arthritis. PMID:26908381

  16. Quantifying Transmission of Clostridium difficile within and outside Healthcare Settings

    PubMed Central

    Olsen, Margaret A.; Dubberke, Erik R.; Galvani, Alison P.; Townsend, Jeffrey P.

    2016-01-01

    To quantify the effect of hospital and community-based transmission and control measures on Clostridium difficile infection (CDI), we constructed a transmission model within and between hospital, community, and long-term care-facility settings. By parameterizing the model from national databases and calibrating it to C. difficile prevalence and CDI incidence, we found that hospitalized patients with CDI transmit C. difficile at a rate 15 (95% CI 7.2–32) times that of asymptomatic patients. Long-term care facility residents transmit at a rate of 27% (95% CI 13%–51%) that of hospitalized patients, and persons in the community at a rate of 0.1% (95% CI 0.062%–0.2%) that of hospitalized patients. Despite lower transmission rates for asymptomatic carriers and community sources, these transmission routes have a substantial effect on hospital-onset CDI because of the larger reservoir of hospitalized carriers and persons in the community. Asymptomatic carriers and community sources should be accounted for when designing and evaluating control interventions. PMID:26982504

  17. Clostridium difficile infection: a review of current and emerging therapies

    PubMed Central

    Ofosu, Andrew

    2016-01-01

    Clostridium difficile (C. difficile) infection (CDI) is the most common cause of ­healthcare-associated infections in US hospitals. The epidemic strain NAP1/BI/ribotype 027 accounts for outbreaks worldwide, with increasing mortality and severity. CDI is acquired from an endogenous source or from spores in the environment, most easily acquired during the hospital stay. The use of antimicrobials disrupts the intestinal microflora enabling C. difficile to proliferate in the colon and produce toxins. Clinical diagnosis in symptomatic patients requires toxin detection from stool specimens and rarely in combination with stool culture to increase sensitivity. However, stool culture is essential for epidemiological studies. Oral metronidazole is the recommended therapy for milder cases of CDI and oral vancomycin or fidaxomicin for more severe cases. Treatment of first recurrence involves the use of the same therapy used in the initial CDI. In the event of a second recurrence oral vancomycin often given in a tapered dose or intermittently, or fidaxomicin may be used. Fecal transplantation is playing an immense role in therapy of recurrent CDI with remarkable results. Fulminant colitis and toxic megacolon warrant surgical intervention. Novel approaches including new antibiotics and immunotherapy against CDI or its toxins appear to be of potential value. PMID:27065726

  18. Toxinotype V Clostridium difficile in humans and food animals.

    PubMed

    Jhung, Michael A; Thompson, Angela D; Killgore, George E; Zukowski, Walter E; Songer, Glenn; Warny, Michael; Johnson, Stuart; Gerding, Dale N; McDonald, L Clifford; Limbago, Brandi M

    2008-07-01

    Clostridium difficile is a recognized pathogen in neonatal pigs and may contribute to enteritis in calves. Toxinotype V strains have been rare causes of human C. difficile-associated disease (CDAD). We examined toxinotype V in human disease, the genetic relationship of animal and human toxinotype V strains, and in vitro toxin production of these strains. From 2001 through 2006, 8 (1.3%) of 620 patient isolates were identified as toxinotype V; before 2001, 7 (<0.02%) of approximately 6,000 isolates were identified as toxinotype V. Six (46.2%) of 13 case-patients for whom information was available had community-associated CDAD. Molecular characterization showed a high degree of similarity between human and animal toxinotype V isolates; all contained a 39-bp tcdC deletion and most produced binary toxin. Further study is needed to understand the epidemiology of CDAD caused by toxinotype V C. difficile, including the potential of foodborne transmission to humans. PMID:18598622

  19. Fidaxomicin - the new drug for Clostridium difficile infection

    PubMed Central

    Vaishnavi, Chetana

    2015-01-01

    Clostridium difficile is one of the many aetiological agents of antibiotic associated diarrhoea and is implicated in 15-25 per cent of the cases. The organism is also involved in the exacearbation of inflammatory bowel disease and extracolonic manifestations. Due to increase in the incidence of C. difficile infection (CDI), emergence of hypervirulent strains, and increased frequency of recurrence, the clinical management of the disease has become important. The management of CDI is based on disease severity, and current antibiotic treatment options are limited to vancomycin or metronidazole in the developing countries. this review article briefly describes important aspects of CDI, and the new drug, fidaxomicin, for its treatment. Fidaxomicin is particularly active against C. difficile and acts by inhibition of RNA synthesis. Clinical trials done to compare the efficacy and safety of fidaxomicin with that of vancomycin in treating CDI concluded that fidaxomicin was non-inferior to vancomycin for treatment of CDI and that there was a significant reduction in recurrences. The bactericidal properties of fidaxomicin make it an ideal alternative for CDI treatment. However, fidaxomicin use should be considered taking into account the potential benefits of the drug, along with the medical requirements of the patient, the risks of treatment and the high cost of fidaxomicin compared to other treatment regimens. PMID:26112840

  20. Diversity and Evolution in the Genome of Clostridium difficile

    PubMed Central

    Knight, Daniel R.; Elliott, Briony; Chang, Barbara J.; Perkins, Timothy T.

    2015-01-01

    SUMMARY Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen. PMID:26085550

  1. Clostridium Difficile Infection and Takotsubo Cardiomyopathy: Is There a Relation?

    PubMed Central

    Virk, Hafeez Ul Hassan; Inayat, Faisal

    2016-01-01

    Context: Takotsubo cardiomyopathy (TCM) mimics acute coronary syndrome and is accompanied by reversible left ventricular apical ballooning in the absence of angiographically significant coronary artery stenosis. It is a transient condition that typically precedes physical or emotional triggers. Case Report: We describe the case of a 65-year-old woman who presented to our institution with symptomatic Clostridium difficile infection. 24 hours after admission, the patient complained of severe, retrosternal chest pain. Electrocardiogram showed diffuse elevation of ST-segment in the chest leads; however, coronary angiography demonstrated normal coronary arteries. Therein, an echocardiography was performed, which revealed apical ballooning and hypercontractile base with global left ventricular hypokinesis. These features were consistent with TCM. The patient was managed conservatively. Repeat echocardiogram 2 weeks later showed resolution of heart failure. Conclusion: To our research, this is the first report of TCM caused by C. difficile infection. Clinicians involved in the care of patients with C. difficile infection must be aware of this complication and should consider TCM in those who develop atypical chest pain. PMID:27583241

  2. Comparison of ChromID Agar and Clostridium difficile Selective Agar for Effective Isolation of C. difficile from Stool Specimens

    PubMed Central

    Lee, Eun Joo

    2014-01-01

    Background ChromID Clostridium difficile agar (IDCd; bioMérieux SA, France) is a recently developed chromogenic medium for rapid and specific isolation of C. difficile. We compared the performance of IDCd with that of Clostridium difficile Selective Agar (CDSA). Methods A total of 530 fresh stool specimens were collected from patients with clinical signs compatible with C. difficile infection, and cultures for C. difficile were performed on IDCd and CDSA. C. difficile colonies were identified by spore staining, odor, use of an ANI identification test kit (bioMérieux SA), and multiplex PCR for tcdA, tcdB, and tpi. Results The concordance rate between IDCd and CDSA was 90.6% (480/530). The positivity rates on IDCd on days 1 and 2 (55.6% and 85.0%, respectively) were significantly higher than those on CDSA (19.4% and 75.6%, respectively) (P<0.001 for day 1 and P=0.02 for day 2), but the detection rates on IDCd and CDSA on day 3 were not different (89.4% vs. 82.8%, P=0.0914). On day 3, the recovery rates for non-C. difficile isolates on IDCd and CDSA were 30.2% (160/530) and 22.1% (117/530), respectively (P=0.0075). Clostridium spp. other than C. difficile were the most prevalent non-C. difficile isolates on both media. Conclusions The culture positivity rates on IDCd and CDSA were not different on day 3 but IDCd may allow for rapid and sensitive detection of C. difficile within 2 days of cultivation. PMID:24422190

  3. The Potential Value of Clostridium difficile Vaccine: An Economic Computer Simulation Model

    PubMed Central

    Lee, Bruce Y.; Popovich, Michael J.; Tian, Ye; Bailey, Rachel R.; Ufberg, Paul J.; Wiringa, Ann E.; Muder, Robert R.

    2010-01-01

    Efforts are currently underway to develop a vaccine against Clostridium difficile infection (CDI). We developed two decision analytic Monte Carlo computer simulation models: (1) an Initial Prevention Model depicting the decision whether to administer C. difficile vaccine to patients at-risk for CDI and (2) a Recurrence Prevention Model depicting the decision whether to administer C. difficile vaccine to prevent CDI recurrence. Our results suggest that a C. difficile vaccine could be cost-effective over a wide range of C. difficile risk, vaccine costs, and vaccine efficacies especially when being used post-CDI treatment to prevent recurrent disease. PMID:20541582

  4. Prevalence and Duration of Asymptomatic Clostridium difficile Carriage among Healthy Subjects in Pittsburgh, Pennsylvania

    PubMed Central

    Galdys, Alison L.; Nelson, Jemma S.; Shutt, Kathleen A.; Schlackman, Jessica L.; Pakstis, Diana L.; Pasculle, A. William; Marsh, Jane W.; Harrison, Lee H.

    2014-01-01

    Previous studies suggested that 7 to 15% of healthy adults are colonized with toxigenic Clostridium difficile. To investigate the epidemiology, genetic diversity, and duration of C. difficile colonization in asymptomatic persons, we recruited healthy adults from the general population in Allegheny County, Pennsylvania. Participants provided epidemiological and dietary intake data and submitted stool specimens. The presence of C. difficile in stool specimens was determined by anaerobic culture. Stool specimens yielding C. difficile underwent nucleic acid testing of the tcdA gene segment with a commercial assay; tcdC genotyping was performed on C. difficile isolates. Subjects positive for C. difficile by toxigenic anaerobic culture were asked to submit additional specimens. One hundred six (81%) of 130 subjects submitted specimens, and 7 (6.6%) of those subjects were colonized with C. difficile. Seven distinct tcdC genotypes were observed among the 7 C. difficile-colonized individuals, including tcdC genotype 20, which has been found in uncooked ground pork in this region. Two (33%) out of 6 C. difficile-colonized subjects who submitted additional specimens tested positive for identical C. difficile strains on successive occasions, 1 month apart. The prevalence of C. difficile carriage in this healthy cohort is concordant with prior estimates. C. difficile-colonized individuals may be important reservoirs for C. difficile and may falsely test positive for infections due to C. difficile when evaluated for community-acquired diarrhea caused by other enteric pathogens. PMID:24759727

  5. Prevalence and duration of asymptomatic Clostridium difficile carriage among healthy subjects in Pittsburgh, Pennsylvania.

    PubMed

    Galdys, Alison L; Nelson, Jemma S; Shutt, Kathleen A; Schlackman, Jessica L; Pakstis, Diana L; Pasculle, A William; Marsh, Jane W; Harrison, Lee H; Curry, Scott R

    2014-07-01

    Previous studies suggested that 7 to 15% of healthy adults are colonized with toxigenic Clostridium difficile. To investigate the epidemiology, genetic diversity, and duration of C. difficile colonization in asymptomatic persons, we recruited healthy adults from the general population in Allegheny County, Pennsylvania. Participants provided epidemiological and dietary intake data and submitted stool specimens. The presence of C. difficile in stool specimens was determined by anaerobic culture. Stool specimens yielding C. difficile underwent nucleic acid testing of the tcdA gene segment with a commercial assay; tcdC genotyping was performed on C. difficile isolates. Subjects positive for C. difficile by toxigenic anaerobic culture were asked to submit additional specimens. One hundred six (81%) of 130 subjects submitted specimens, and 7 (6.6%) of those subjects were colonized with C. difficile. Seven distinct tcdC genotypes were observed among the 7 C. difficile-colonized individuals, including tcdC genotype 20, which has been found in uncooked ground pork in this region. Two (33%) out of 6 C. difficile-colonized subjects who submitted additional specimens tested positive for identical C. difficile strains on successive occasions, 1 month apart. The prevalence of C. difficile carriage in this healthy cohort is concordant with prior estimates. C. difficile-colonized individuals may be important reservoirs for C. difficile and may falsely test positive for infections due to C. difficile when evaluated for community-acquired diarrhea caused by other enteric pathogens. PMID:24759727

  6. Aerial dissemination of Clostridium difficile on a pig farm and its environment.

    PubMed

    Keessen, E C; Donswijk, C J; Hol, S P; Hermanus, C; Kuijper, E J; Lipman, L J A

    2011-11-01

    Clostridium difficile is increasingly recognized as an important enteropathogen in both humans and animals. The finding of C. difficile in air samples in hospitals suggests a role for aerial dissemination in the transmission of human C. difficile infection. The present study was designed to investigate the occurrence of airborne C. difficile in, and nearby a pig farm with a high prevalence of C. difficile. Airborne colony counts in the farrowing pens peaked on the moments shortly after or during personnel activity in the pens (P=0.043 (farrowing pens 1, 2), P=0.034 (farrowing pen 2)). A decrease in airborne C. difficile colony counts was observed parallel to aging of the piglets. Airborne C. difficile was detected up to 20 m distant from the farm. This study showed widespread aerial dissemination of C. difficile on a pig farm that was positively associated with personnel activity. PMID:22014605

  7. Importance of Glutamate Dehydrogenase (GDH) in Clostridium difficile Colonization In Vivo

    PubMed Central

    Girinathan, Brintha Parasumanna; Braun, Sterling; Sirigireddy, Apoorva Reddy; Lopez, Jose Espinola; Govind, Revathi

    2016-01-01

    Clostridium difficile is the principal cause of antibiotic-associated diarrhea. Major metabolic requirements for colonization and expansion of C. difficile after microbiota disturbance have not been fully determined. In this study, we show that glutamate utilization is important for C. difficile to establish itself in the animal gut. When the gluD gene, which codes for glutamate dehydrogenase (GDH), was disrupted, the mutant C. difficile was unable to colonize and cause disease in a hamster model. Further, from the complementation experiment it appears that extracellular GDH may be playing a role in promoting C. difficile colonization and disease progression. Quantification of free amino acids in the hamster gut during C. difficile infection showed that glutamate is among preferred amino acids utilized by C. difficile during its expansion. This study provides evidence of the importance of glutamate metabolism for C. difficile pathogenesis. PMID:27467167

  8. DNA Microarray-Based PCR Ribotyping of Clostridium difficile

    PubMed Central

    Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2014-01-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. PMID:25411174

  9. Ultrasound diagnosis of Clostridium difficile-associated diarrhea.

    PubMed

    Wiener-Well, Y; Kaloti, S; Hadas-Halpern, I; Munter, G; Yinnon, A M

    2015-10-01

    Clostridium difficile colitis is diagnosed using an immunoassay or polymerase chain reaction (PCR) assay for toxins A/B. Since ultrasound is frequently used as a screening test for hospitalized patients suffering from different abdominal morbidities, we searched for sonographic indicators of C. difficile infection (CDI). In a prospective and blinded case-control study, abdominal ultrasound was performed on hospitalized patients for whom stool samples were sent for C. difficile toxin immunoassay. All patients with positive toxin were included as the case group and patients with negative toxin comprised the control group. Sonographic parameters of both groups were compared. Demographic variables of the 67 patients in the toxin-positive group were similar to those of the 71 patients in the toxin-negative group. The sonographic parameters which were found to be associated with CDI included colonic wall thickening, appearing in 61 (91%) patients of the toxin-positive group versus 15 (21%) patients of the toxin-negative group (p < 0.001), and also internal ring (24 versus 0%, p < 0.001), external ring (15 versus 0%, p < 0.001), ascites (24 versus 10%, p < 0.001), and diminution of large bowel content (16 versus 1%, p < 0.001). Bowel wall thickening had high positive and negative predictive values (0.80 and 0.90, respectively), while the other features had only high positive predictive values (0.7-1.0). Abdominal ultrasound may contribute to the diagnosis of C. difficile colitis in patients developing hospital-acquired diarrhea. PMID:26173691

  10. Refractory Clostridium difficile Infection Successfully Treated with Tigecycline, Rifaximin, and Vancomycin

    PubMed Central

    Lao, Dominador; Chiang, Tom; Gomez, Eric

    2012-01-01

    The occurrence of Clostridium difficile colitis is on the rise and has become more difficult to manage with standard therapy. Thus, the need for alternative treatments is essential. Tigecycline is a glycylcycline antibiotic that has been shown to be effective against C. difficile through several published case reports and in in vitro studies. We present a case of C. difficile colitis that failed to respond to metronidazole and oral vancomycin therapy, but improved on a combination of rifaximin, tigecycline, and vancomycin. PMID:22829841

  11. Refractory Clostridium difficile Infection Successfully Treated with Tigecycline, Rifaximin, and Vancomycin.

    PubMed

    Lao, Dominador; Chiang, Tom; Gomez, Eric

    2012-01-01

    The occurrence of Clostridium difficile colitis is on the rise and has become more difficult to manage with standard therapy. Thus, the need for alternative treatments is essential. Tigecycline is a glycylcycline antibiotic that has been shown to be effective against C. difficile through several published case reports and in in vitro studies. We present a case of C. difficile colitis that failed to respond to metronidazole and oral vancomycin therapy, but improved on a combination of rifaximin, tigecycline, and vancomycin. PMID:22829841

  12. Evaluation of a Loop-Mediated Isothermal Amplification Assay for Diagnosis of Clostridium difficile Infections▿

    PubMed Central

    Lalande, Valérie; Barrault, Laurence; Wadel, Sophie; Eckert, Catherine; Petit, Jean-Claude; Barbut, Frédéric

    2011-01-01

    A new assay (illumigene C. difficile; Meridian Bioscience), based on the original loop-mediated isothermal amplification (LAMP) assay, was evaluated with 472 unformed stools from patients suspected of Clostridium difficile infection. Compared to the toxigenic culture, the sensitivity, specificity, and positive and negative predictive values were 91.8, 99.1, 91.8, and 99.1% for the illumigene C. difficile assay and 69.4, 100, 100, and 96.6% for the cytotoxicity assay, respectively. PMID:21525213

  13. Evaluation of a loop-mediated isothermal amplification assay for diagnosis of Clostridium difficile infections.

    PubMed

    Lalande, Valérie; Barrault, Laurence; Wadel, Sophie; Eckert, Catherine; Petit, Jean-Claude; Barbut, Frédéric

    2011-07-01

    A new assay (illumigene C. difficile; Meridian Bioscience), based on the original loop-mediated isothermal amplification (LAMP) assay, was evaluated with 472 unformed stools from patients suspected of Clostridium difficile infection. Compared to the toxigenic culture, the sensitivity, specificity, and positive and negative predictive values were 91.8, 99.1, 91.8, and 99.1% for the illumigene C. difficile assay and 69.4, 100, 100, and 96.6% for the cytotoxicity assay, respectively. PMID:21525213

  14. In Vivo Selection of Rifamycin-Resistant Clostridium difficile during Rifaximin Therapy

    PubMed Central

    Boone, James H.; Grover, Harish; Wickham, Kimberly N.; Chen, Li

    2012-01-01

    We report the selection of Clostridium difficile resistant to the rifamycin class of antibiotics in a patient within 32 h of receiving rifaximin for the treatment of recurrent C. difficile diarrhea. Resistance was associated with single nucleotide substitutions within rpoB. PMID:22908175

  15. In vivo selection of rifamycin-resistant Clostridium difficile during rifaximin therapy.

    PubMed

    Carman, Robert J; Boone, James H; Grover, Harish; Wickham, Kimberly N; Chen, Li

    2012-11-01

    We report the selection of Clostridium difficile resistant to the rifamycin class of antibiotics in a patient within 32 h of receiving rifaximin for the treatment of recurrent C. difficile diarrhea. Resistance was associated with single nucleotide substitutions within rpoB. PMID:22908175

  16. Novel molecular type of Clostridium difficile in neonatal pigs, Western Australia.

    PubMed

    Squire, Michele M; Carter, Glen P; Mackin, Kate E; Chakravorty, Anjana; Norén, Torbjörn; Elliott, Briony; Lyras, Dena; Riley, Thomas V

    2013-05-01

    Clostridium difficile causes neonatal enteritis in piglets; strains of PCR ribotype 078 are most commonly identified. We investigated C. difficile prevalence in piglets in Australia and isolated a novel strain with a unique pathogenicity locus. In a mouse infection model, this strain produced more weight loss than did a ribotype 078 strain. PMID:23697508

  17. Novel Molecular Type of Clostridium difficile in Neonatal Pigs, Western Australia

    PubMed Central

    Squire, Michele M.; Carter, Glen P.; Mackin, Kate E.; Chakravorty, Anjana; Norén, Torbjörn; Elliott, Briony; Lyras, Dena

    2013-01-01

    Clostridium difficile causes neonatal enteritis in piglets; strains of PCR ribotype 078 are most commonly identified. We investigated C. difficile prevalence in piglets in Australia and isolated a novel strain with a unique pathogenicity locus. In a mouse infection model, this strain produced more weight loss than did a ribotype 078 strain. PMID:23697508

  18. Survey of Clostridium difficile in retail seafood in College Station, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America with the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer t...

  19. The potential economic value of screening hospital admissions for Clostridium difficile.

    PubMed

    Bartsch, S M; Curry, S R; Harrison, L H; Lee, B Y

    2012-11-01

    Asymptomatic Clostridium difficile carriage has a prevalence reported as high as 51-85 %; with up to 84 % of incident hospital-acquired infections linked to carriers. Accurately identifying carriers may limit the spread of Clostridium difficile. Since new technology adoption depends heavily on its economic value, we developed an analytic simulation model to determine the cost-effectiveness screening hospital admissions for Clostridium difficile from the hospital and third party payer perspectives. Isolation precautions were applied to patients testing positive, preventing transmission. Sensitivity analyses varied Clostridium difficile colonization rate, infection probability among secondary cases, contact isolation compliance, and screening cost. Screening was cost-effective (i.e., incremental cost-effectiveness ratio [ICER] ≤ $50,000/QALY) for every scenario tested; all ICER values were ≤ $256/QALY. Screening was economically dominant (i.e., saved costs and provided health benefits) with a ≥10.3 % colonization rate and ≥5.88 % infection probability when contact isolation compliance was ≥25 % (hospital perspective). Under some conditions screening led to cost savings per case averted (range, $53-272). Clostridium difficile screening, coupled with isolation precautions, may be a cost-effective intervention to hospitals and third party payers, based on prevalence. Limiting Clostridium difficile transmission can reduce the number of infections, thereby reducing its economic burden to the healthcare system. PMID:22752150

  20. Non-selective and selective enrichment media for the recovery of Clostridium difficile from chopped beef.

    PubMed

    Chai, Changhoon; Lee, Kyung-Soo; Lee, Dayoung; Lee, Soyeon; Oh, Se-Wook

    2015-02-01

    Clostridium difficile exists within the intestines of animals and in meat products. Enrichment of C. difficile in an appropriate medium is necessary for the detection of C. difficile in meat products. Non-selective media (brain heart infusion medium [TBHI] and cooked meat medium containing sodium taurocholate [TCM]) and selective media (cycloserine-cefoxitin-fructose medium [TCCFB] and C. difficile moxalactam-norfloxacin medium containing antibiotics and sodium taurocholate [TCDMN]) can be used to enrich C. difficile. This study aimed to evaluate non-selective and selective enrichment media for the recovery of C. difficile from beef specimens. The efficiency of the enrichment media was investigated on the basis of the recovery frequency of C. difficile from beef specimens inoculated with C. difficile. The beef specimens were inherently contaminated with bacteria (around 10(4)CFUg(-1)), and further inoculated with C. difficile (around 10(0)CFUg(-1)). The antibiotics in TCCFB and TCDMN adversely affected C. difficile growth. The bacteria inherent to these specimens exhibited resistance to antibiotics and grew during the enrichment of C. difficile-inoculated chopped beef in TCCFB and TCDMN, which hindered the recovery of C. difficile. The frequency of recovery of C. difficile from beef specimens in TCM was higher than that from any other enrichment medium. PMID:25499549

  1. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  2. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  3. Recurrent Clostridium difficile infection: From colonization to cure.

    PubMed

    Shields, Kelsey; Araujo-Castillo, Roger V; Theethira, Thimmaiah G; Alonso, Carolyn D; Kelly, Ciaran P

    2015-08-01

    Clostridium difficile infection (CDI) is increasingly prevalent, dangerous and challenging to prevent and manage. Despite intense national and international attention the incidence of primary and of recurrent CDI (PCDI and RCDI, respectively) have risen rapidly throughout the past decade. Of major concern is the increase in cases of RCDI resulting in substantial morbidity, morality and economic burden. RCDI management remains challenging as there is no uniformly effective therapy, no firm consensus on optimal treatment, and reliable data regarding RCDI-specific treatment options is scant. Novel therapeutic strategies are critically needed to rapidly, accurately, and effectively identify and treat patients with, or at-risk for, RCDI. In this review we consider the factors implicated in the epidemiology, pathogenesis and clinical presentation of RCDI, evaluate current management options for RCDI and explore novel and emerging therapies. PMID:25930686

  4. Prevalence of diverticulosis in recurrent Clostridium difficile infection

    PubMed Central

    Lipp, Michael J; Pagovich, Odelya E; Rabin, David; Min, Albert D; Bernstein, Brett B

    2010-01-01

    AIM: To re-evaluate the theory that colonic diverticulosis is associated with relapse of Clostridium difficile associated disease (CDAD) in light of data suggesting increasing rates of CDAD infection and relapse. METHODS: Charts were reviewed for patients with recurrent CDAD who had also had a prior colonoscopy or flexible sigmoidoscopy. An age and gender matched control group was used to compare the prevalence of diverticulosis. RESULTS: Twenty-two patients met the study criteria, and the prevalence of diverticulosis in patients with CDAD relapse was 23% compared to 32% in age and sex matched controls (P = 0.44). A significant proportion of patients with CDAD relapse had co-morbidities associated with immune suppression. CONCLUSION: Diverticulosis does not appear to be associated with CDAD relapse. PMID:20082480

  5. Dentists, antibiotics and Clostridium difficile-associated disease.

    PubMed

    Beacher, N; Sweeney, M P; Bagg, J

    2015-09-25

    Dentists prescribe significant volumes of antimicrobial drugs within primary care settings. There is good evidence that many of the prescriptions are not justified by current clinical guidance and that that there is considerable misuse of these drugs in dentistry. One of the risks associated with antibiotic administration is Clostridium difficile-associated disease (CDAD), an entity of which many healthcare workers, including dentists, have little knowledge or understanding. This review seeks to identify the extent and nature of the problem and provides an up to date summary of current views on CDAD, with particular reference to community acquired disease. As for all healthcare workers, scrupulous attention to standard infection control procedures and reducing inappropriate antibiotic prescribing are essential to reduce the risks of CDAD, prevent emergence of further resistant strains of microorganisms and maintain the value of the arsenal of antibiotics currently available to us. PMID:26404991

  6. Structural Determinants of Clostridium difficile Toxin A Glucosyltransferase Activity

    SciTech Connect

    Pruitt, Rory N.; Chumbler, Nicole M.; Rutherford, Stacey A.; Farrow, Melissa A.; Friedman, David B.; Spiller, Ben; Lacy, D. Borden

    2012-03-28

    The principle virulence factors in Clostridium difficile pathogenesis are TcdA and TcdB, homologous glucosyltransferases capable of inactivating small GTPases within the host cell. We present crystal structures of the TcdA glucosyltransferase domain in the presence and absence of the co-substrate UDP-glucose. Although the enzymatic core is similar to that of TcdB, the proposed GTPase-binding surface differs significantly. We show that TcdA is comparable with TcdB in its modification of Rho family substrates and that, unlike TcdB, TcdA is also capable of modifying Rap family GTPases both in vitro and in cells. The glucosyltransferase activities of both toxins are reduced in the context of the holotoxin but can be restored with autoproteolytic activation and glucosyltransferase domain release. These studies highlight the importance of cellular activation in determining the array of substrates available to the toxins once delivered into the cell.

  7. [New treatment options for infections with Clostridium difficile].

    PubMed

    van Nood, Els; Keller, Josbert J; Kuijper, Ed J; Speelman, Peter

    2013-01-01

    Currently available broad spectrum antibiotics are not sufficiently effective against recurrent Clostridium difficile infections (CDI). Donor faecal microbiota transplantation is a very effective treatment for second and recurrent infection but is time-consuming and requires careful screening of donors. The new narrow spectrum antibiotic fidaxomicin is a good alternative in a first CDI or a first recurrence, but treatment is expensive and there are no data on its effectiveness in a second or later recurrence. Fidaxomicin is less effective against infections caused by the Ribotype 027 strain, a virulent strain that is regularly encountered in the Netherlands. The effectiveness of various other promising narrow spectrum antibiotics is currently being investigated. Medications that support the gut flora or the immune system seem to offer new perspectives. Expectations for the currently available probiotic preparations and toxin binders are not high. PMID:24279951

  8. Recurrent Clostridium difficile Infection: From Colonization to Cure

    PubMed Central

    Shields, Kelsey; Araujo-Castillo, Roger V.; Theethira, Thimmaiah G.; Alonso, Carolyn D.; Kelly, Ciaran

    2015-01-01

    Clostridium difficile infection (CDI) is increasingly prevalent, dangerous and challenging to prevent and manage. Despite intense national and international attention the incidence of primary and of recurrent CDI (PCDI and RCDI, respectively) have risen rapidly throughout the past decade. Of major concern is the increase in cases of RCDI resulting in substantial morbidity, morality and economic burden. RCDI management remains challenging as there is no uniformly effective therapy, no firm consensus on optimal treatment, and reliable data regarding RCDI-specific treatment options is scant. Novel therapeutic strategies are critically needed to rapidly, accurately, and effectively identify and treat patients with, or at-risk for, RCDI. In this review we consider the factors implicated in the epidemiology, pathogenesis and clinical presentation of RCDI, evaluate current management options for RCDI and explore novel and emerging therapies. PMID:25930686

  9. Clostridium difficile infection: New insights into therapeutic options.

    PubMed

    Kachrimanidou, Melina; Sarmourli, Theopisti; Skoura, Lemonia; Metallidis, Symeon; Malisiovas, Nikolaos

    2016-09-01

    Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings and represents a major social and economic burden. The major virulence determinants are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), encoded within the pathogenicity locus. Traditional therapies, such as metronidazole and vancomycin, frequently lead to a vicious circle of recurrences due to their action against normal human microbiome. New disease management strategies together with the development of novel therapeutic and containment approaches are needed in order to better control outbreaks and treat patients. This article provides an overview of currently available CDI treatment options and discusses the most promising therapies under development. PMID:25955884

  10. Clostridium difficile Genome Editing Using pyrE Alleles.

    PubMed

    Ehsaan, Muhammad; Kuehne, Sarah A; Minton, Nigel P

    2016-01-01

    Precise manipulation (in-frame deletions and substitutions) of the Clostridium difficile genome is possible through a two-stage process of single-crossover integration and subsequent isolation of double-crossover excision events using replication-defective plasmids that carry a counterselection marker. Use of a codA (cytosine deaminase) or pyrE (orotate phosphoribosyltransferase) as counter selection markers appears equally effective, but there is considerable merit in using a pyrE mutant as the host as, through the use of allele-coupled exchange (ACE) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high-copy-number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. PMID:27507332

  11. Clostridium difficile PCR Ribotype 018, a Successful Epidemic Genotype

    PubMed Central

    Trovato, Alberto; Bianchini, Valentina; Biancardi, Anna; Cichero, Paola; Mazzotti, Maria; Nizzero, Paola; Moro, Matteo; Ossi, Cristina; Scarpellini, Paolo

    2015-01-01

    Clostridium difficile infection (CDI) became a public health problem for the global spreading of the so-called hypervirulent PCR ribotypes (RTs) 027 and 078, associated with increases in the transmission and severity of the disease. However, especially in Europe, several RTs are prevalent, and the concept of hypervirulence is currently debated. We investigated the toxin and resistance profiles and the genetic relatedness of 312 C. difficile strains isolated in a large Italian teaching hospital during a 5-year period. We evaluated the role of CDI-related antibiotic consumption and infection control practices on the RT predominance in association with their molecular features and transmission capacity. Excluding secondary cases due to nosocomial transmission, RT018 was the predominant genotype (42.4%) followed by RT078 (13.6%), while RT027 accounted for 0.8% of the strains. RT078 was most frequently isolated from patients in intensive care units. Its prevalence significantly increased over time, but its transmission capacity was very low. In contrast, RT018 was highly transmissible and accounted for 95.7% of the secondary cases. Patients with the RT018 genotype were significantly older than those with RT078 and other RTs, indicating an association between epidemic RT and age. We provide here the first epidemiological evidence to consider RT018 as a successful epidemic genotype that deserves more attention in clinical practice. PMID:26041894

  12. Emerging therapies for Clostridium difficile infection – focus on fidaxomicin

    PubMed Central

    Chaparro-Rojas, Fredy; Mullane, Kathleen M

    2013-01-01

    The epidemiology of Clostridium difficile infections (CDI) has evolved during the last decades, with an increase in the reported incidence, severity of cases, and rate of mortality and relapses. These increases have primarily affected some special populations including the elderly, patients requiring concomitant antibiotic therapy, patients with renal failure, and patients with cancer. Until recently, the treatment of CDI was limited to either metronidazole or vancomycin. New therapeutic options have emerged to address the shortcomings of current antibiotic therapy. Fidaxomicin stands out as the first-in-class oral macrocyclic antibiotic with targeted activity against C. difficile and minimal collateral damage on the normal colonic flora. Fidaxomicin has demonstrated performance not inferior to what is considered the “gold standard” available therapy for CDI, vancomycin, in two separate Phase III clinical trials, but with significant advantages, including fewer recurrences and higher rates of sustained clinical cures. Fidaxomicin constitutes an important development in targeted antibiotic therapy for CDI and must be considered as a first-line agent for patients with risk factors known to portend relapse and severe infection. PMID:23843696

  13. Toxinotype V Clostridium difficile in Humans and Food Animals

    PubMed Central

    Thompson, Angela D.; Killgore, George E.; Zukowski, Walter E.; Songer, Glenn; Warny, Michael; Johnson, Stuart; Gerding, Dale N.; McDonald, L. Clifford; Limbago, Brandi M.

    2008-01-01

    Clostridium difficile is a recognized pathogen in neonatal pigs and may contribute to enteritis in calves. Toxinotype V strains have been rare causes of human C. difficile–associated disease (CDAD). We examined toxinotype V in human disease, the genetic relationship of animal and human toxinotype V strains, and in vitro toxin production of these strains. From 2001 through 2006, 8 (1.3%) of 620 patient isolates were identified as toxinotype V; before 2001, 7 (<0.02%) of ≈6,000 isolates were identified as toxinotype V. Six (46.2%) of 13 case-patients for whom information was available had community-associated CDAD. Molecular characterization showed a high degree of similarity between human and animal toxinotype V isolates; all contained a 39-bp tcdC deletion and most produced binary toxin. Further study is needed to understand the epidemiology of CDAD caused by toxinotype V C. difficile, including the potential of foodborne transmission to humans. PMID:18598622

  14. Fecal Microbiota Transplantation for the Treatment of Clostridium difficile Infection

    PubMed Central

    Rao, Krishna; Safdar, Nasia

    2016-01-01

    Clostridium difficile, a major cause of healthcare-associated diarrhea due to perturbation of the normal gastrointestinal microbiome, is responsible for significant morbidity, mortality, and healthcare expenditures. The incidence and severity of C. difficile infection (CDI) is increasing and recurrent disease is common. Recurrent infection can be difficult to manage with conventional antibiotic therapy. Fecal microbiota transplantation (FMT), which involves instillation of stool from a healthy donor into the gastrointestinal tract of the patient, restores the gut microbiome to a healthy state. FMT has emerged as a promising new treatment for CDI. There are limited data on FMT for treatment of primary CDI, but FMT appears safe and effective for recurrent CDI. The safety and efficacy of FMT in patients with severe primary or recurrent CDI has not been established. Patients with inflammatory bowel disease (IBD) who undergo FMT for CDI may be at increased risk of IBD flare and caution should be exercised with use of FMT in that population. The long-term safety of FMT is unknown; thus, rigorously conducted prospective studies are needed. PMID:26344412

  15. Antimicrobial susceptibility of equine and environmental isolates of Clostridium difficile.

    PubMed

    Båverud, V; Gunnarsson, A; Karlsson, M; Franklin, A

    2004-01-01

    The antimicrobial susceptibility of 50 Clostridium difficile isolates, 36 of them from horse feces and 14 from environmental sites, was determined by broth microdilution. The antimicrobial agents tested were avilamycin, cephalothin, chloramphenicol, clindamycin, erythromycin, gentamicin, neomycin, oxacillin, oxytetracycline, penicillin, spiramycin, streptomycin, trimethoprim/sulfamethoxazole, vancomycin, and virginiamycin. All isolates were susceptible to vancomycin (MIC 16 microg/ml), oxytetracycline (MIC >/=32 microg/ml), spiramycin (MIC > 16 microg/ml), and virginiamycin (MIC 8-16 microg/ml) were higher for 18 isolates. Those were mainly isolated from horses at animal hospitals and further from environmental sites at a stud farm. In contrast, all isolates, except one, from healthy foals had low MICs of erythromycin, spiramycin, virginiamycin, and oxytetracycline. The isolates from soil in public parks had also low MICs of these antimicrobial agents. Broth microdilution appeared both reliable and reproducible for susceptibility testing of C. difficile. The method was also readily performed and the MIC endpoints were easily read. PMID:15140395

  16. Ridinilazole: a novel therapy for Clostridium difficile infection.

    PubMed

    Vickers, Richard J; Tillotson, Glenn; Goldstein, Ellie J C; Citron, Diane M; Garey, Kevin W; Wilcox, Mark H

    2016-08-01

    Clostridium difficile infection (CDI) is the leading cause of infectious healthcare-associated diarrhoea. Recurrent CDI increases disease morbidity and mortality, posing a high burden to patients and a growing economic burden to the healthcare system. Thus, there exists a significant unmet and increasing medical need for new therapies for CDI. This review aims to provide a concise summary of CDI in general and a specific update on ridinilazole (formerly SMT19969), a novel antibacterial currently under development for the treatment of CDI. Owing to its highly targeted spectrum of activity and ability to spare the normal gut microbiota, ridinilazole provides significant advantages over metronidazole and vancomycin, the mainstay antibiotics for CDI. Ridinilazole is bactericidal against C. difficile and exhibits a prolonged post-antibiotic effect. Furthermore, treatment with ridinilazole results in decreased toxin production. A phase 1 trial demonstrated that oral ridinilazole is well tolerated and specifically targets clostridia whilst sparing other faecal bacteria. Phase 2 and 3 trials will hopefully further our understanding of the clinical utility of ridinilazole for the treatment of CDI. PMID:27283730

  17. Comparison of GenomEra C. difficile and Xpert C. difficile as Confirmatory Tests in a Multistep Algorithm for Diagnosis of Clostridium difficile Infection

    PubMed Central

    Reigadas, Elena; Marín, Mercedes; Fernández-Chico, Antonia; Catalán, Pilar; Bouza, Emilio

    2014-01-01

    We compared two multistep diagnostic algorithms based on C. Diff Quik Chek Complete and, as confirmatory tests, GenomEra C. difficile and Xpert C. difficile. The sensitivity, specificity, positive predictive value, and negative predictive value were 87.2%, 99.7%, 97.1%, and 98.3%, respectively, for the GenomEra-based algorithm and 89.7%, 99.4%, 95.5%, and 98.6%, respectively, for the Xpert-based algorithm. GenomEra represents an alternative to Xpert as a confirmatory test of a multistep algorithm for Clostridium difficile infection (CDI) diagnosis. PMID:25392360

  18. Overdiagnosis of Clostridium difficile Infection in the Molecular Test Era

    PubMed Central

    Polage, Christopher R.; Gyorke, Clare E.; Kennedy, Michael A.; Leslie, Jhansi L.; Chin, David L.; Wang, Susan; Nguyen, Hien H.; Huang, Bin; Tang, Yi-Wei; Lee, Lenora W.; Kim, Kyoungmi; Taylor, Sandra; Romano, Patrick S.; Panacek, Edward A.; Goodell, Parker B.; Solnick, Jay V.; Cohen, Stuart H.

    2016-01-01

    IMPORTANCE Clostridium difficile is a major cause of health care–associated infection, but disagreement between diagnostic tests is an ongoing barrier to clinical decision making and public health reporting. Molecular tests are increasingly used to diagnose C difficile infection (CDI), but many molecular test-positive patients lack toxins that historically defined disease, making it unclear if they need treatment. OBJECTIVE To determine the natural history and need for treatment of patients who are toxin immunoassay negative and polymerase chain reaction (PCR) positive (Tox−/PCR+) for CDI. DESIGN, SETTING, AND PARTICIPANTS Prospective observational cohort study at a single academic medical center among 1416 hospitalized adults tested for C difficile toxins 72 hours or longer after admission between December 1, 2010, and October 20, 2012. The analysis was conducted in stages with revisions from April 27, 2013, to January 13, 2015. MAIN OUTCOMES AND MEASURES Patients undergoing C difficile testing were grouped by US Food and Drug Administration–approved toxin and PCR tests as Tox+/PCR+, Tox−/PCR+, or Tox−/PCR−. Toxin results were reported clinically. Polymerase chain reaction results were not reported. The main study outcomes were duration of diarrhea during up to 14 days of treatment, rate of CDI-related complications (ie, colectomy, megacolon, or intensive care unit care) and CDI-related death within 30 days. RESULTS Twenty-one percent (293 of 1416) of hospitalized adults tested for C difficile were positive by PCR, but 44.7% (131 of 293) had toxins detected by the clinical toxin test. At baseline, Tox−/PCR+ patients had lower C difficile bacterial load and less antibiotic exposure, fecal inflammation, and diarrhea than Tox+/PCR+ patients (P < .001 for all). The median duration of diarrhea was shorter in Tox−/PCR+ patients (2 days; interquartile range, 1-4 days) than in Tox+/PCR+ patients (3 days; interquartile range, 1-6 days) (P = .003) and was

  19. Effect on diagnostic yield of repeated stool testing during outbreaks of Clostridium difficile-associated disease.

    PubMed

    Debast, S B; van Kregten, E; Oskam, K M G; van den Berg, T; Van den Berg, R J; Kuijper, E J

    2008-06-01

    The effect on diagnostic yield of testing sequential stools was assessed during two hospital epidemics of Clostridium difficile. Using a rapid immunoassay, C. difficile-associated disease was diagnosed in 237 diarrhoeal patients, of whom 204 (86%) were diagnosed from the first faeces sample and 12 (5%) were diagnosed from follow-up samples obtained within 1 week. The remaining 21 (9%) patients yielded a positive test from stools obtained >1 week after the initial negative sample. It was concluded that repeated testing of stools for C. difficile toxin is of value in controlling outbreaks of C. difficile infection. PMID:18393996

  20. Evolution of Testing Algorithms at a University Hospital for Detection of Clostridium difficile Infections

    PubMed Central

    Culbreath, Karissa; Ager, Edward; Nemeyer, Ronald J.; Kerr, Alan

    2012-01-01

    We present the evolution of testing algorithms at our institution in which the C. Diff Quik Chek Complete immunochromatographic cartridge assay determines the presence of both glutamate dehydrogenase and Clostridium difficile toxins A and B as a primary screen for C. difficile infection and indeterminate results (glutamate dehydrogenase positive, toxin A and B negative) are confirmed by the GeneXpert C. difficile PCR assay. This two-step algorithm is a cost-effective method for highly sensitive detection of toxigenic C. difficile. PMID:22718938

  1. Faecal microbiota transplantation for severe Clostridium difficile infection in the intensive care unit.

    PubMed

    Trubiano, Jason A; Gardiner, Bradley; Kwong, Jason C; Ward, Peter; Testro, Adam G; Charles, Patrick G P

    2013-02-01

    We describe a case of faecal microbiota transplantation (FMT) used for severe binary toxin-positive Clostridium difficile infection in an intensive care setting. The patient was admitted to the ICU of a tertiary hospital and failed traditional maximal pharmacological management. Adjunctive therapy with FMT given through gastroscopy resulted in resolution of the C. difficile-related symptoms. Although there is a growing experience with FMT for recurrent C. difficile infection, published evidence in severe disease is very limited. In a landscape of increasingly severe C. difficile infection, adjunctive FMT may be considered a useful early treatment option. PMID:23117471

  2. New PCR ribotypes of Clostridium difficile detected in children in Brazil: prevalent types of Clostridium difficile in Brazil.

    PubMed

    Alcides, Ana P P; Brazier, Jon S; Pinto, Leandro J F; Balassiano, Ilana T; Boente, Renata F; de Paula, Geraldo R; Ferreira, Eliane O; Avelar, Kátia E S; Miranda, Karla R; Ferreira, M Candida S; Domingues, Regina M C P

    2007-07-01

    A total of 35 Brazilian isolates of Clostridium difficile from faecal stools and four isolates from hospital environments were analyzed by PCR ribotyping. A whole cell protein profile (as an alternative for serogrouping), in vitro toxin production and susceptibility to vancomycin, metronidazole and clindamycin were also investigated. All strains were typeable by both phenotypic and genotypic methods, and a total of 13 different PCR ribotypes were identified, of which seven (132, 133, 134, 135, 136, 142 and 143) were considered new types and accounted for 78.5% of all samples evaluated (including hospital environments). A non-toxigenic C. difficile PCR ribotype 133 was detected in all children groups examined (inpatients, outpatients and healthy children), whilst toxigenic PCR ribotypes 015, 131, 134 and 135 were associated mostly with symptomatic children. Serogroups G and D were disseminated both in patients from the community and from the pediatric hospital, with group G prevalent among outpatient children. All strains were susceptible to vancomycin and metronidazole but high levels of resistance to clindamycin were found, especially among serogroups G and D. Co-existence of different ribotypes and serogroups in the same individual was observed. The new seven ribotypes found in this investigation may represent strains characteristic of this region of Brazil. PMID:17252315

  3. Multicenter evaluation of the Verigene Clostridium difficile nucleic acid assay.

    PubMed

    Carroll, Karen C; Buchan, Blake W; Tan, Sokha; Stamper, Paul D; Riebe, Katherine M; Pancholi, Preeti; Kelly, Cheryl; Rao, Arundhati; Fader, Robert; Cavagnolo, Robert; Watson, Wendy; Goering, Richard V; Trevino, Ernest A; Weissfeld, Alice S; Ledeboer, Nathan A

    2013-12-01

    The Verigene Clostridium difficile Nucleic Acid test (Verigene CDF test) (Nanosphere, Northbrook, IL) is a multiplex qualitative PCR assay that utilizes a nanoparticle-based array hybridization method to detect C. difficile tcdA and tcdB in fecal specimens. In addition, the assay detects binary toxin gene sequences and the single base pair deletion at nucleotide 117 (Δ 117) in tcdC to provide a presumptive identification of the epidemic strain 027/NAP1/BI (referred to here as ribotype 027). This study compared the Verigene CDF test with anaerobic direct and enriched toxigenic culture on stool specimens from symptomatic patients among five geographically diverse laboratories within the United States. The Verigene CDF test was performed according to the manufacturer's instructions, and the reference methods performed by a central laboratory included direct culture onto cycloserine cefoxitin fructose agar (CCFA) and enriched culture using cycloserine cefoxitin mannitol broth with taurocholate and lysozyme. Recovered isolates were identified as C. difficile using gas liquid chromatography and were tested for toxin using a cell culture cytotoxicity neutralization assay. Strains belonging to ribotype 027 were determined by PCR ribotyping and bidirectional sequencing for Δ 117 in tcdC. A total of 1,875 specimens were evaluable. Of these, 275 specimens (14.7%) were culture positive by either direct or enriched culture methods. Compared to direct culture alone, the overall sensitivity, specificity, positive predictive value, and negative predictive value for the Verigene CDF test were 98.7%, 87.5%, 42%, and 99.9%, respectively. Compared to combined direct and enriched culture results, the sensitivity, specificity, positive predictive value, and negative predictive values of the Verigene CDF test were 90.9%, 92.5%, 67.6%, and 98.3%, respectively. Of the 250 concordantly culture-positive specimens, 59 (23.6%) were flagged as "hypervirulent"; 53 were confirmed as ribotype

  4. Multicenter Evaluation of the Verigene Clostridium difficile Nucleic Acid Assay

    PubMed Central

    Buchan, Blake W.; Tan, Sokha; Stamper, Paul D.; Riebe, Katherine M.; Pancholi, Preeti; Kelly, Cheryl; Rao, Arundhati; Fader, Robert; Cavagnolo, Robert; Watson, Wendy; Goering, Richard V.; Trevino, Ernest A.; Weissfeld, Alice S.; Ledeboer, Nathan A.

    2013-01-01

    The Verigene Clostridium difficile Nucleic Acid test (Verigene CDF test) (Nanosphere, Northbrook, IL) is a multiplex qualitative PCR assay that utilizes a nanoparticle-based array hybridization method to detect C. difficile tcdA and tcdB in fecal specimens. In addition, the assay detects binary toxin gene sequences and the single base pair deletion at nucleotide 117 (Δ 117) in tcdC to provide a presumptive identification of the epidemic strain 027/NAP1/BI (referred to here as ribotype 027). This study compared the Verigene CDF test with anaerobic direct and enriched toxigenic culture on stool specimens from symptomatic patients among five geographically diverse laboratories within the United States. The Verigene CDF test was performed according to the manufacturer's instructions, and the reference methods performed by a central laboratory included direct culture onto cycloserine cefoxitin fructose agar (CCFA) and enriched culture using cycloserine cefoxitin mannitol broth with taurocholate and lysozyme. Recovered isolates were identified as C. difficile using gas liquid chromatography and were tested for toxin using a cell culture cytotoxicity neutralization assay. Strains belonging to ribotype 027 were determined by PCR ribotyping and bidirectional sequencing for Δ 117 in tcdC. A total of 1,875 specimens were evaluable. Of these, 275 specimens (14.7%) were culture positive by either direct or enriched culture methods. Compared to direct culture alone, the overall sensitivity, specificity, positive predictive value, and negative predictive value for the Verigene CDF test were 98.7%, 87.5%, 42%, and 99.9%, respectively. Compared to combined direct and enriched culture results, the sensitivity, specificity, positive predictive value, and negative predictive values of the Verigene CDF test were 90.9%, 92.5%, 67.6%, and 98.3%, respectively. Of the 250 concordantly culture-positive specimens, 59 (23.6%) were flagged as “hypervirulent”; 53 were confirmed as

  5. Diagnosis of Clostridium difficile Infection: an Ongoing Conundrum for Clinicians and for Clinical Laboratories

    PubMed Central

    Carroll, Karen C.

    2013-01-01

    SUMMARY Clostridium difficile is a formidable nosocomial and community-acquired pathogen, causing clinical presentations ranging from asymptomatic colonization to self-limiting diarrhea to toxic megacolon and fulminant colitis. Since the early 2000s, the incidence of C. difficile disease has increased dramatically, and this is thought to be due to the emergence of new strain types. For many years, the mainstay of C. difficile disease diagnosis was enzyme immunoassays for detection of the C. difficile toxin(s), although it is now generally accepted that these assays lack sensitivity. A number of molecular assays are commercially available for the detection of C. difficile. This review covers the history and biology of C. difficile and provides an in-depth discussion of the laboratory methods used for the diagnosis of C. difficile infection (CDI). In addition, strain typing methods for C. difficile and the evolving epidemiology of colonization and infection with this organism are discussed. Finally, considerations for diagnosing C. difficile disease in special patient populations, such as children, oncology patients, transplant patients, and patients with inflammatory bowel disease, are described. As detection of C. difficile in clinical specimens does not always equate with disease, the diagnosis of C. difficile infection continues to be a challenge for both laboratories and clinicians. PMID:23824374

  6. Clonal Spread of a Clostridium difficile Strain with a Complete Set of Toxin A, Toxin B, and Binary Toxin Genes among Polish Patients with Clostridium difficile-Associated Diarrhea

    PubMed Central

    Pituch, Hanna; Kreft, Deborah; Obuch-Woszczatyński, Piotr; Wultańska, Dorota; Meisel-Mikołajczyk, Felicja; Łuczak, Mirosław; van Belkum, Alex

    2005-01-01

    Clinically relevant Clostridium difficile strains usually produce toxins A and B. Some C. difficile strains can produce an additional binary toxin. We report clonality among five strains carrying all toxin genes from Polish patients with C. difficile-associated diarrhea. In another strain, possible recombination between binary toxin genes is documented. PMID:15635019

  7. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance

    PubMed Central

    Johanesen, Priscilla A.; Mackin, Kate E.; Hutton, Melanie L.; Awad, Milena M.; Larcombe, Sarah; Amy, Jacob M.; Lyras, Dena

    2015-01-01

    Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology. PMID:26703737

  8. Clostridium difficile Drug Pipeline: Challenges in Discovery and Development of New Agents

    PubMed Central

    2015-01-01

    In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization. PMID:25760275

  9. Clostridium difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in Hesse, Germany.

    PubMed

    Arvand, M; Hauri, A M; Zaiss, N H; Witte, W; Bettge-Weller, G

    2009-01-01

    From January 2008 to April 2009, 72 cases of severe Clostridium difficile infection were reported from 18 different districts in the state of Hesse, Germany. A total of 41 C. difficile isolates from 41 patients were subjected to PCR ribotyping. PCR ribotype (RT) 027 was the most prevalent strain accounting for 24 of 41 (59%) of typed isolates, followed by RT 001 (eight isolates, 20%), RT 017 and 042 (two isolates each), and RT 003, 066, 078, 081, and RKI-034 (one isolate each). Eighteen patients had died within 30 days after admission. C. difficile was reported as underlying cause of or contributing to death in 14 patients, indicating a case fatality rate of 19%. The patients with lethal outcome attributable to C. difficile were 59-89 years-old (median 78 years). Ribotyping results were available for seven isolates associated with lethal outcome, which were identified as RT 027 in three and as RT 001 and 017 in two cases each. Our data suggest that C. difficile RT 027 is prevalent in some hospitals in Hesse and that, in addition to the possibly more virulent RT 027, other toxigenic C. difficile strains like RT 001 and 017 are associated with lethal C. difficile infections in this region. PMID:19941785

  10. Clostridium difficile infection in Chilean patients submitted to hematopoietic stem cell transplantation

    PubMed Central

    Pilcante, Javier; Rojas, Patricio; Ernst, Daniel; Sarmiento, Mauricio; Ocqueteau, Mauricio; Bertin, Pablo; García, Maria; Rodriguez, Maria; Jara, Veronica; Ajenjo, Maria; Ramirez, Pablo

    2015-01-01

    Introduction Patients submitted to hematopoietic stem cell transplantation have an increased risk of Clostridium difficile infection and multiple risk factors have been identified. Published reports have indicated an incidence from 9% to 30% of transplant patients however to date there is no information about infection in these patients in Chile. Methods A retrospective analysis was performed of patients who developed C. difficile infection after hematopoietic stem cell transplantations from 2000 to 2013. Statistical analysis used the Statistical Package for the Social Sciences software. Results Two hundred and fifty patients were studied (mean age: 39 years; range: 17–69), with 147 (59%) receiving allogeneic transplants and 103 (41%) receiving autologous transplants. One hundred and ninety-two (77%) patients had diarrhea, with 25 (10%) cases of C. difficile infection being confirmed. Twenty infected patients had undergone allogeneic transplants, of which ten had acute lymphoblastic leukemia, three had acute myeloid leukemia and seven had other diseases (myelodysplastic syndrome, chronic myeloid leukemia, severe aplastic anemia). In the autologous transplant group, five patients had C. difficile infection; two had multiple myeloma, one had amyloidosis, one had acute myeloid leukemia and one had germinal carcinoma. The overall incidence of C. difficile infection was 4% within the first week, 6.4% in the first month and 10% in one year, with no difference in overall survival between infected and non-infected groups (72.0% vs. 67.6%, respectively; p-value = 0.56). Patients infected after allogeneic transplants had a slower time to neutrophil engraftment compared to non-infected patients (17.5 vs. 14.9 days, respectively; p-value = 0.008). In the autologous transplant group there was no significant difference in the neutrophil engraftment time between infected and non-infected patients (12.5 days vs. 11.8 days, respectively; p-value = 0.71). In the allogeneic

  11. NAP1 Strain Type Predicts Outcomes from Clostridium difficile Infection

    PubMed Central

    See, Isaac; Mu, Yi; Cohen, Jessica; Beldavs, Zintars G.; Winston, Lisa G.; Dumyati, Ghinwa; Holzbauer, Stacy; Dunn, John; Farley, Monica M.; Lyons, Carol; Johnston, Helen; Phipps, Erin; Perlmutter, Rebecca; Anderson, Lydia; Gerding, Dale N.; Lessa, Fernanda C.

    2015-01-01

    Background Studies conflict regarding the importance of the fluoroquinolone-resistant North American pulsed-field gel electrophoresis type 1 (NAP1) strain in Clostridium difficile infection (CDI) outcome. We describe strain types causing CDI and evaluate their association with patient outcomes. Methods CDI cases were identified from population-based surveillance. Multivariate regression models were used to evaluate the associations of strain type with severe disease (ileus, toxic megacolon, or pseudomembranous colitis within 5 days; or white blood cell count ≥15,000/mm3 within one day of positive test), severe outcome (intensive care unit admission after positive test, colectomy for C. difficile infection, or death within 30 days of positive test), and death within 14 days of positive test. Results Strain typing results were available for 2,057 cases. Severe disease occurred in 363 (17.7%) cases, severe outcome in 100 (4.9%), and death within 14 days in 56 (2.7%). The most common strain types were NAP1 (28.4%), NAP4 (10.2%) and NAP11 (9.1%). In unadjusted analysis, NAP1 was associated with greater odds of severe disease than other strains. After controlling for patient risk factors, healthcare exposure, and antibiotic use, NAP1 was associated with severe disease (adjusted odds ratio [aOR] 1.74, 95% confidence interval [CI], 1.36–2.22), severe outcome (aOR 1.66, 95% CI, 1.09–2.54), and death within 14 days (aOR 2.12, 95% CI, 1.22–3.68). Conclusion NAP1 was the most prevalent strain and a predictor of severe disease, severe outcome, and death. Strategies to reduce NAP1 prevalence, such as antibiotic stewardship to reduce fluoroquinolone use, might reduce CDI morbidity. PMID:24604900

  12. Clinical Clostridium difficile: clonality and pathogenicity locus diversity.

    PubMed

    Dingle, Kate E; Griffiths, David; Didelot, Xavier; Evans, Jessica; Vaughan, Alison; Kachrimanidou, Melina; Stoesser, Nicole; Jolley, Keith A; Golubchik, Tanya; Harding, Rosalind M; Peto, Tim E; Fawley, Warren; Walker, A Sarah; Wilcox, Mark; Crook, Derrick W

    2011-01-01

    Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings. The major virulence determinants are large clostridial toxins, toxin A (tcdA) and toxin B (tcdB), encoded within the pathogenicity locus (PaLoc). Isolates vary in pathogenicity from hypervirulent PCR-ribotypes 027 and 078 with high mortality, to benign non-toxigenic strains carried asymptomatically. The relative pathogenicity of most toxigenic genotypes is still unclear, but may be influenced by PaLoc genetic variant. This is the largest study of C. difficile molecular epidemiology performed to date, in which a representative collection of recent isolates (n = 1290) from patients with CDI in Oxfordshire, UK, was genotyped by multilocus sequence typing. The population structure was described using NeighborNet and ClonalFrame. Sequence variation within toxin B (tcdB) and its negative regulator (tcdC), was mapped onto the population structure. The 69 Sequence Types (ST) showed evidence for homologous recombination with an effect on genetic diversification four times lower than mutation. Five previously recognised genetic groups or clades persisted, designated 1 to 5, each having a strikingly congruent association with tcdB and tcdC variants. Hypervirulent ST-11 (078) was the only member of clade 5, which was divergent from the other four clades within the MLST loci. However, it was closely related to the other clades within the tcdB and tcdC loci. ST-11 (078) may represent a divergent formerly non-toxigenic strain that acquired the PaLoc (at least) by genetic recombination. This study focused on human clinical isolates collected from a single geographic location, to achieve a uniquely high density of sampling. It sets a baseline of MLST data for future comparative studies investigating genotype virulence potential (using clinical severity data for these isolates), possible reservoirs of human CDI, and the evolutionary origins of hypervirulent strains

  13. Outcome of ICU patients with Clostridium difficile infection

    PubMed Central

    2012-01-01

    Introduction As data from Clostridium difficile infection (CDI) in intensive care unit (ICU) are still scarce, our objectives were to assess the morbidity and mortality of ICU-acquired CDI. Methods We compared patients with ICU-acquired CDI (watery or unformed stools occurring ≥ 72 hours after ICU admission with a stool sample positive for C. difficile toxin A or B) with two groups of controls hospitalized at the same time in the same unit. The first control group comprised patients with ICU-acquired diarrhea occurring ≥ 72 hours after ICU admission with a stool sample negative for C. difficile and for toxin A or B. The second group comprised patients without any diarrhea. Results Among 5,260 patients, 512 patients developed one episode of diarrhea. Among them, 69 (13.5%) had a CDI; 10 (14.5%) of them were community-acquired, contrasting with 12 (17.4%) that were hospital-acquired and 47 (68%) that were ICU-acquired. A pseudomembranous colitis was associated in 24/47 (51%) ICU patients. The median delay between diagnosis and metronidazole administration was one day (25th Quartile; 75th Quartile (0; 2) days). The case-fatality rate for patients with ICU-acquired CDI was 10/47 (21.5%), as compared to 112/443 (25.3%) for patients with negative tests. Neither the crude mortality (cause specific hazard ratio; CSHR = 0.70, 95% confidence interval; CI 0.36 to 1.35, P = 0.3) nor the adjusted mortality to confounding variables (CSHR = 0.81, 95% CI 0.4 to 1.64, P = 0.6) were significantly different between CDI patients and diarrheic patients without CDI. Compared to the general ICU population, neither the crude mortality (SHR = 0.64, 95% CI 0.34 to 1.21, P = 0.17), nor the mortality adjusted to confounding variables (CSHR = 0.71, 95% confidence interval (CI) 0.38 to 1.35, P = 0.3), were significantly different between the two groups. The estimated increase in the duration of stay due to CDI was 8.0 days ± 9.3 days, (P = 0.4) in comparison to the diarrheic population

  14. Occurrence of Clostridium difficile in two types of wastewater treatment plants.

    PubMed

    Nikaeen, Mahnaz; Aghili Dehnavi, Hajar; Hssanzadeh, Akbar; Jalali, Mohammad

    2015-07-01

    Wastewater is a potential environmental source of Clostridium difficile, although a direct link with community-acquired C. difficile infection (CA-CDI) in humans has not yet been established. The present study was performed to determine the occurrence of C. difficile in two types of wastewater treatment plants (WWTPs) in Isfahan, Iran. A total of 95 samples were taken from a conventional activated sludge treatment plant and a waste stabilization ponds system, and analyzed for the presence of C. difficile. C. difficile was found in 13.6% (3/22) of digested sludge samples. However, no C. difficile was detected in inlet and outlet samples or in raw sludge of activated sludge. C. difficile was also detected in 5% (2/40) of the samples from waste stabilization ponds. Polymerase chain reaction (PCR) analysis showed that all strains of C. difficile detected were toxigenic (tcdB gene positive). This study shows that C. difficile was present in WWTPs, which might constitute a potential source of community-acquired C. difficile infection. PMID:25957122

  15. Evaluation of the Qiagen artus C. difficile QS-RGQ Kit for Detection of Clostridium difficile Toxins A and B in Clinical Stool Specimens

    PubMed Central

    Wiegel, Pia; Ličanin, Božica; Plum, Georg

    2015-01-01

    We compared the Qiagen artus C. difficile QS-RGQ kit, a new nucleic acid amplification test for the detection of Clostridium difficile toxins in stool specimens, with the Cepheid Xpert C. difficile test. The sensitivity, specificity, positive predictive value, and negative predictive value for the Qiagen artus C. difficile QS-RGQ test were 100%, 89.5%, 60.9%, and 100%, and those for the Cepheid Xpert C. difficile test were 100%, 90%, 62.2%, and 100%, respectively. PMID:25809977

  16. Clostridium difficile ribotype 027 is not evenly distributed in Hesse, Germany.

    PubMed

    Arvand, Mardjan; Bettge-Weller, Gudrun

    2016-08-01

    Clostridium difficile-isolates associated with CDI in different healthcare facilities in Hesse were analysed. The most common ribotypes were 001 (31.1%) and 027 (27.0%). The proportion of ribotype 027 among regional C. difficile-isolates was 10.8% in North Hesse, 17.2% in Middle Hesse, and 33.5% in the Rhine-Main Metropolitan Area. In the latter region, ribotype 027 was the most prevalent ribotype. PMID:27063988

  17. Gas chromatographic identification of Clostridium difficile and detection of cytotoxin from a modified selective medium.

    PubMed Central

    Levett, P N; Phillips, K D

    1985-01-01

    A modification of an existing selective medium for Clostridium difficile is described. Inclusion in the medium of DL nor-leucine and p-hydroxyphenylacetic acid enables identification of C difficile to be made directly from primary isolation plates by gas chromatographic detection of caproic acid and p-cresol. Plugs of agar withdrawn from the selective medium also allow the detection of cytotoxin production in vitro. PMID:3968212

  18. WSES guidelines for management of Clostridium difficile infection in surgical patients.

    PubMed

    Sartelli, Massimo; Malangoni, Mark A; Abu-Zidan, Fikri M; Griffiths, Ewen A; Di Bella, Stefano; McFarland, Lynne V; Eltringham, Ian; Shelat, Vishal G; Velmahos, George C; Kelly, Ciarán P; Khanna, Sahil; Abdelsattar, Zaid M; Alrahmani, Layan; Ansaloni, Luca; Augustin, Goran; Bala, Miklosh; Barbut, Frédéric; Ben-Ishay, Offir; Bhangu, Aneel; Biffl, Walter L; Brecher, Stephen M; Camacho-Ortiz, Adrián; Caínzos, Miguel A; Canterbury, Laura A; Catena, Fausto; Chan, Shirley; Cherry-Bukowiec, Jill R; Clanton, Jesse; Coccolini, Federico; Cocuz, Maria Elena; Coimbra, Raul; Cook, Charles H; Cui, Yunfeng; Czepiel, Jacek; Das, Koray; Demetrashvili, Zaza; Di Carlo, Isidoro; Di Saverio, Salomone; Dumitru, Irina Magdalena; Eckert, Catherine; Eckmann, Christian; Eiland, Edward H; Enani, Mushira Abdulaziz; Faro, Mario; Ferrada, Paula; Forrester, Joseph Derek; Fraga, Gustavo P; Frossard, Jean Louis; Galeiras, Rita; Ghnnam, Wagih; Gomes, Carlos Augusto; Gorrepati, Venkata; Ahmed, Mohamed Hassan; Herzog, Torsten; Humphrey, Felicia; Kim, Jae Il; Isik, Arda; Ivatury, Rao; Lee, Yeong Yeh; Juang, Paul; Furuya-Kanamori, Luis; Karamarkovic, Aleksandar; Kim, Peter K; Kluger, Yoram; Ko, Wen Chien; LaBarbera, Francis D; Lee, Jae Gil; Leppaniemi, Ari; Lohsiriwat, Varut; Marwah, Sanjay; Mazuski, John E; Metan, Gokhan; Moore, Ernest E; Moore, Frederick Alan; Nord, Carl Erik; Ordoñez, Carlos A; Júnior, Gerson Alves Pereira; Petrosillo, Nicola; Portela, Francisco; Puri, Basant K; Ray, Arnab; Raza, Mansoor; Rems, Miran; Sakakushev, Boris E; Sganga, Gabriele; Spigaglia, Patrizia; Stewart, David B; Tattevin, Pierre; Timsit, Jean Francois; To, Kathleen B; Tranà, Cristian; Uhl, Waldemar; Urbánek, Libor; van Goor, Harry; Vassallo, Angela; Zahar, Jean Ralph; Caproli, Emanuele; Viale, Pierluigi

    2015-01-01

    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients. PMID:26300956

  19. Sporicidal activity of two disinfectants against Clostridium difficile spores.

    PubMed

    Wheeldon, L J; Worthington, T; Hilton, A C; Lambert, P A; Elliott, T S J

    The sporicidal activity of an odour-free peracetic acid-based disinfectant (Wofasteril) and a widely-used dichloroisocyanurate preparation (Chlor-clean) was assessed against spores of the hyper-virulent strain of Clostridium difficile (ribotype 027), in the presence and absence of organic matter. In environmentally clean conditions, dichloroisocyanurate achieved a >3 log10 reduction in 3 minutes, but a minimum contact time of 9 minutes was required to reduce the viable spore load to below detection levels. Peracetic acid achieved a >3 log10 reduction in 30 minutes and was overall significantly less effective (P<0.05). However, in the presence of organic matter - which reflects the true clinical environment - there was no significant difference between the sporicidal activity of dichloroisocyanurate and peracetic acid over a 60-minute period (P=0.188). Given the greater occupational health hazards generally associated with chlorine-releasing agents, odour-free peracetic acid-based disinfectants may offer a suitable alternative for environmental disinfection. PMID:18414294

  20. The Systemic Inflammatory Response to Clostridium difficile Infection

    PubMed Central

    Rao, Krishna; Erb-Downward, John R.; Walk, Seth T.; Micic, Dejan; Falkowski, Nicole; Santhosh, Kavitha; Mogle, Jill A.; Ring, Cathrin; Young, Vincent B.; Huffnagle, Gary B.; Aronoff, David M.

    2014-01-01

    Background The systemic inflammatory response to Clostridium difficile infection (CDI) is incompletely defined, particularly for patients with severe disease. Methods Analysis of 315 blood samples from 78 inpatients with CDI (cases), 100 inpatients with diarrhea without CDI (inpatient controls), and 137 asymptomatic outpatient controls without CDI was performed. Serum or plasma was obtained from subjects at the time of CDI testing or shortly thereafter. Severe cases had intensive care unit admission, colectomy, or death due to CDI within 30 days after diagnosis. Thirty different circulating inflammatory mediators were quantified using an antibody-linked bead array. Principal component analysis (PCA), multivariate analysis of variance (MANOVA), and logistic regression were used for analysis. Results Based on MANOVA, cases had a significantly different inflammatory profile from outpatient controls but not from inpatient controls. In logistic regression, only chemokine (C-C motif) ligand 5 (CCL5) levels were associated with cases vs. inpatient controls. Several mediators were associated with cases vs. outpatient controls, especially hepatocyte growth factor, CCL5, and epithelial growth factor (inversely associated). Eight cases were severe and associated with elevations in IL-8, IL-6, and eotaxin. Conclusions A broad systemic inflammatory response occurs during CDI and severe cases appear to differ from non-severe infections. PMID:24643077

  1. Survey of Clostridium difficile infection surveillance systems in Europe, 2011.

    PubMed

    Kola, Axel; Wiuff, Camilla; Akerlund, Thomas; van Benthem, Birgit H; Coignard, Bruno; Lyytikäinen, Outi; Weitzel-Kage, Doris; Suetens, Carl; Wilcox, Mark H; Kuijper, Ed J; Gastmeier, Petra

    2016-07-21

    To develop a European surveillance protocol for Clostridium difficile infection (CDI), existing national CDI surveillance systems were assessed in 2011. A web-based electronic form was provided for all national coordinators of the European CDI Surveillance Network (ECDIS-Net). Of 35 national coordinators approached, 33 from 31 European countries replied. Surveillance of CDI was in place in 14 of the 31 countries, comprising 18 different nationwide systems. Three of 14 countries with CDI surveillance used public health notification of cases as the route of reporting, and in another three, reporting was limited to public health notification of cases of severe CDI. The CDI definitions published by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the European Centre for Disease Prevention and Control (ECDC) were widely used, but there were differing definitions to distinguish between community- and healthcare-associated cases. All CDI surveillance systems except one reported annual national CDI rates (calculated as number of cases per patient-days). Only four surveillance systems regularly integrated microbiological data (typing and susceptibility testing results). Surveillance methods varied considerably between countries, which emphasises the need for a harmonised European protocol to allow consistent monitoring of the CDI epidemiology at European level. The results of this survey were used to develop a harmonised EU-wide hospital-based CDI surveillance protocol. PMID:27469420

  2. Clostridium difficile infection in a French university hospital

    PubMed Central

    Khanafer, Nagham; Oltra, Luc; Hulin, Monique; Dauwalder, Olivier; Vandenesch, Francois; Vanhems, Philippe

    2016-01-01

    Abstract The epidemiology of Clostridium difficile infection (CDI) has changed with an increase in incidence and severity. Prospective surveillance was therefore implemented in a French university hospital to monitor the characteristics of patients at risk and to recognize local trends. Between 2007 and 2014, all hospitalized patients (≥18 years) with CDI were included. During the survey, the mean incidence rate of CDI was 2.9 per 10,000 hospital-days. In all, 590 patients were included. Most of the episodes were healthcare-associated (76.1%). The remaining cases were community-acquired (18.1%) and unknown (5.9%). The comparison with healthcare-associated cases showed that the community-acquired group had a lower rate of antimicrobial exposure (P < 0.001), proton pump inhibitor (P < 0.001), and immunosuppressive drugs (P = 0.02). Over the study period, death occurred in 61 patients (10.3%), with 18 (29.5%) being related to CDI according to the physician in charge of the patient. Active surveillance of CDI is required to obtain an accurate picture of the real dimensions of CDI. PMID:27281101

  3. Fecal microbiota transplant for Clostridium difficile infection in older adults

    PubMed Central

    Tauxe, William M.; Haydek, John P.; Rebolledo, Paulina A.; Neish, Emma; Newman, Kira L.; Ward, Angela; Dhere, Tanvi; Kraft, Colleen S.

    2015-01-01

    Background: The objective of this study was to describe the safety of fecal microbiota transplant (FMT) for Clostridium difficile infection (CDI) among older adults. Methods: We performed a case review of all FMT recipients aged 65 or older treated at Emory University Hospital, a tertiary care and referral center for Georgia and surrounding states. Results: CDI resolved in 27 (87%) of 31 respondents, including three individuals who received multiple FMTs. Among four whose CDI was not resolved at follow up, three respondents did well initially before CDI recurred, and one individual never eradicated his CDI despite repeating FMT. During the study, five deaths and eight serious adverse events requiring hospitalization were reported within the study group during the follow-up period. Fecal transplant was not a causative factor in these events. The most common adverse event reported in 4 (13%) of 31 respondents was subjective worsening of arthritis. Conclusion: FMT is a generally safe and effective treatment option for older adults with CDI. PMID:27134658

  4. Reannotation of the genome sequence of Clostridium difficile strain 630.

    PubMed

    Monot, Marc; Boursaux-Eude, Caroline; Thibonnier, Marie; Vallenet, David; Moszer, Ivan; Medigue, Claudine; Martin-Verstraete, Isabelle; Dupuy, Bruno

    2011-08-01

    A regular update of genome annotations is a prerequisite step to help maintain the accuracy and relevance of the information they contain. Five years after the first publication of the complete genome sequence of Clostridium difficile strain 630, we manually reannotated each of the coding sequences (CDSs), using a high-level annotation platform. The functions of more than 500 genes annotated previously with putative functions were reannotated based on updated sequence similarities to proteins whose functions have been recently identified by experimental data from the literature. We also modified 222 CDS starts, detected 127 new CDSs and added the enzyme commission numbers, which were not supplied in the original annotation. In addition, an intensive project was undertaken to standardize the names of genes and gene products and thus harmonize as much as possible with the HAMAP project. The reannotation is stored in a relational database that will be available on the MicroScope web-based platform (https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?S_id=752&wwwpkgdb=a78e3466ad5db29aa8fe49e8812de8a7). The original submission stored in the (International Nucleotide Sequence Database Collaboration) INSDC nucleotide sequence databases was also updated. PMID:21349987

  5. Prospective assessment of two-stage testing for Clostridium difficile.

    PubMed

    Arnold, A; Pope, C; Bray, S; Riley, P; Breathnach, A; Krishna, S; Planche, T

    2010-09-01

    Commonly used immunoassays have limitations as stand-alone tests for the diagnosis of Clostridium difficile infection (CDI). In particular, the specificity of these assays means that these tests generate a relatively large number of false-positive results. We introduced a two-stage regimen for CDI as routine. Unformed stool samples received in our laboratory were initially tested with a Meridian Premier enzyme immunoassay (EIA) and positive samples were retested with reference testing methods (toxigenic culture and cell cytotoxicity assay). Clinicians received diagnostically useful information on the day that the sample arrived in the laboratory, with definitive negative and provisional positive results made available. We reviewed the first 3643 unformed stool specimens of which 158/3643 (4.3%) were provisionally positive by EIA. Of the 158 samples that were EIA positive, 119 were confirmed as being positive by at least one of the reference methods, giving a positive predictive value in this population of 75% (95% confidence interval: 67.6-81.7%). Comparison of the optical density values of the EIA lying between true and false-positive results suggests that the introduction of a second cut-off value would improve diagnostics. A test with two cut-offs would give the following results: 'positive', 'negative' and 'indeterminate result, please perform confirmatory test'. This algorithm was a simple and cost-effective method to immediately improve diagnostics, but there is an urgent need for further research in laboratory diagnosis for CDI. PMID:20638749

  6. Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania.

    PubMed

    Varshney, Jyotika B; Very, Katherine J; Williams, Jen L; Hegarty, John P; Stewart, David B; Lumadue, Jeanne; Venkitanarayanan, Kumar; Jayarao, Bhushan M

    2014-10-01

    A study was conducted to determine the prevalence of Clostridium difficile and characterize C. difficile isolates from human stool and retail grocery meat samples. Human stool samples (n=317) were obtained from a clinical laboratory and meat samples (n=303) were collected from 8 retail grocery stores from October 2011 through September 2012 from Centre County of Pennsylvania and were examined for C. difficile. C. difficile was isolated from 16.7% of stool samples (n=317) and 6.9%, 11.5%, 14.5%, and 7.8% of beef (n=72), pork (n=78), turkey (n=76), and chicken (n=77) samples, respectively. Six different toxin gene profiles were detected in all human and meat isolates of C. difficile based on the presence or absence of toxin genes tcdA, tcdB, and cdtA and cdtB. Interestingly, 75.6% of the human C. difficile isolates lacked any deletion in the tcdC gene (139-bp), whereas a 39-bp deletion was observed in 61.3% of the C. difficile strains isolated from meat samples. C. difficile from meat samples were more susceptible to clindamycin, moxifloxacin, vancomycin, and metronidazole than C. difficile isolates from human samples. Twenty-five different ribotypes were identified in human and meat C. difficile isolates. In conclusion, significant genotypic and phenotypic differences were observed between human and meat isolates of C. difficile; however, a few C. difficile isolates from meat-in particular ribotypes 078, PA01, PA05, PA16, and PA22 with unique profiles (toxin gene, tcdC gene size and antimicrobial resistance profiles)-were similar to human C. difficile isolates. PMID:25269079

  7. A Review of Management of Clostridium difficile Infection: Primary and Recurrence

    PubMed Central

    Vincent, Yasmeen; Manji, Arif; Gregory-Miller, Kathleen; Lee, Christine

    2015-01-01

    Clostridium difficile infection (CDI) is a potentially fatal illness, especially in the elderly and hospitalized individuals. The recurrence and rates of CDI are increasing. In addition, some cases of CDI are refractory to the currently available antibiotics. The search for improved modalities for the management of primary and recurrent CDI is underway. This review discusses the current antibiotics, fecal microbiota transplantation (FMT) and other options such as immunotherapy and administration of non-toxigenic Clostridium difficile (CD) for the management of both primary and recurrent CDI. PMID:27025632

  8. Clostridium difficile in the Long-Term Care Facility: Prevention and Management

    PubMed Central

    Jump, Robin L. P.; Donskey, Curtis J.

    2014-01-01

    Residents of long-term care facilities are at high risk for Clostridium difficile infection due to frequent antibiotic exposure in a population already rendered vulnerable to infection due to advanced age, multiple comorbid conditions and communal living conditions. Moreover, asymptomatic carriage of toxigenic C. difficile and recurrent infections are prevalent in this population. Here, we discuss epidemiology and management of C. difficile infection among residents of long-term care facilities. Also, recognizing that both the population and culture differs significantly from that of hospitals, we also address prevention strategies specific to LTCFs. PMID:25685657

  9. Implementation of a Clinical Decision Support Alert for the Management of Clostridium difficile Infection

    PubMed Central

    Revolinski, Sara

    2015-01-01

    Clostridium difficile infections are common in hospitalized patients and can result in significant morbidity and mortality. It is imperative to optimize the management of C. difficile infections to help minimize disease complications. Antimicrobial stewardship techniques including guidelines, order sets and other clinical decision support functionalities may be utilized to assist with therapy optimization. We implemented a novel alert within our electronic medical record to direct providers to the C. difficile order set in order to assist with initiating therapy consistent with institutional guideline recommendations. The alert succeeded in significantly increasing order set utilization, but guideline compliance was unchanged. PMID:27025646

  10. Use of Purified Clostridium difficile Spores To Facilitate Evaluation of Health Care Disinfection Regimens▿ †

    PubMed Central

    Lawley, Trevor D.; Clare, Simon; Deakin, Laura J.; Goulding, David; Yen, Jennifer L.; Raisen, Claire; Brandt, Cordelia; Lovell, Jon; Cooke, Fiona; Clark, Taane G.; Dougan, Gordon

    2010-01-01

    Clostridium difficile is a major cause of antibiotic-associated diarrheal disease in many parts of the world. In recent years, distinct genetic variants of C. difficile that cause severe disease and persist within health care settings have emerged. Highly resistant and infectious C. difficile spores are proposed to be the main vectors of environmental persistence and host transmission, so methods to accurately monitor spores and their inactivation are urgently needed. Here we describe simple quantitative methods, based on purified C. difficile spores and a murine transmission model, for evaluating health care disinfection regimens. We demonstrate that disinfectants that contain strong oxidizing active ingredients, such as hydrogen peroxide, are very effective in inactivating pure spores and blocking spore-mediated transmission. Complete inactivation of 106 pure C. difficile spores on indicator strips, a six-log reduction, and a standard measure of stringent disinfection regimens require at least 5 min of exposure to hydrogen peroxide vapor (HPV; 400 ppm). In contrast, a 1-min treatment with HPV was required to disinfect an environment that was heavily contaminated with C. difficile spores (17 to 29 spores/cm2) and block host transmission. Thus, pure C. difficile spores facilitate practical methods for evaluating the efficacy of C. difficile spore disinfection regimens and bringing scientific acumen to C. difficile infection control. PMID:20802075

  11. Tracing the Spread of Clostridium difficile Ribotype 027 in Germany Based on Bacterial Genome Sequences

    PubMed Central

    Steglich, Matthias; Nitsche, Andreas; von Müller, Lutz; Herrmann, Mathias; Kohl, Thomas A.; Niemann, Stefan; Nübel, Ulrich

    2015-01-01

    We applied whole-genome sequencing to reconstruct the spatial and temporal dynamics underpinning the expansion of Clostridium difficile ribotype 027 in Germany. Based on re-sequencing of genomes from 57 clinical C. difficile isolates, which had been collected from hospitalized patients at 36 locations throughout Germany between 1990 and 2012, we demonstrate that C. difficile genomes have accumulated sequence variation sufficiently fast to document the pathogen's spread at a regional scale. We detected both previously described lineages of fluoroquinolone-resistant C. difficile ribotype 027, FQR1 and FQR2. Using Bayesian phylogeographic analyses, we show that fluoroquinolone-resistant C. difficile 027 was imported into Germany at least four times, that it had been widely disseminated across multiple federal states even before the first outbreak was noted in 2007, and that it has continued to spread since. PMID:26444881

  12. Fecal Transplantation using a Nasoenteric Tube during an Initial Episode of Severe Clostridium difficile Infection

    PubMed Central

    Hong, Namki; Kim, Jung Ho; Park, Se Hee; Kim, Sung Bae; Song, In Ji; Ann, Hea Won; Ahn, Jin Young; Kim, Sun Bean; Ku, Nam Su; Lee, Kyungwon; Yong, Dongeun; Kim, June Myung

    2016-01-01

    The incidence of Clostridium difficile infection is increasing worldwide, and its severity and resulting mortality are also on the rise. Metronidazole and oral vancomycin remain the treatments of choice, but there are concerns about treatment failure and the appearance of resistant strains. Furthermore, antibiotic therapy results in recurrence rates of at least 20%. Fecal transplantation may be a feasible treatment option for recurrent C. difficile infection; moreover, it may be an early treatment option for severe C. difficile infection. We report a case of severe C. difficile infection treated with fecal transplantation using a nasoenteric tube during an initial episode. This is the first reported case of fecal transplantation using a nasoenteric tube during an initial episode of C. difficile infection in Korea. PMID:27104013

  13. Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d'Ivoire and their antimicrobial susceptibility.

    PubMed

    Kouassi, Kra Athanase; Dadie, Adjéhi Thomas; N'Guessan, Kouadio Florent; Dje, Koffi Marcellin; Loukou, Yao Guillaume

    2014-08-01

    The aim of this study was to evaluate the prevalence of Clostridium difficile and Clostridium perfringens in cooked beef sold in the streets in Côte d'Ivoire and their antimicrobial susceptibility. A total of 395 kidney and flesh samples of cooked beef were collected from vendors at Abidjan and subjected to C. difficile and C. perfringens isolation and identification by using biochemical tests, API 20A system and PCR detection. Subsequently, the antimicrobial susceptibility test was performed for confirmed isolates. Our results showed the prevalence of 12.4% for C. difficile (11.04% in kidney and 13.45% in flesh) and 5.06% for C. perfringens (2.32% in kidney and 7.17% in flesh). Metronidazole and vancomycin remained the most potent antimicrobial agents against C. difficile while metronidazole and penicillin G were the most potent agents against C. perfringens. The resistance rates to tetracycline, doxycycline, chloramphenicol and erythromycin against C. difficile and C. perfringens isolates ranged from 2.05% to 8.16% and from 20% to 50%, respectively. Among all antimicrobial agents tested against C. difficile, percentages of resistance to quinolones ciprofloxacin, norfloxacin and nalidixic acid as well as to gentamicin and cefotaxime were the highest. Eight resistant phenotypes were defined for C. difficile isolates and eleven resistant phenotypes for C. perfringens isolates. Clindamycin/gentamicin/cefotaxime/ciprofloxacin/norfloxacin/nalidixic acid resistance was the most common phenotype for C. difficile (55.10% of isolates) while norfloxacin/nalidixic acid resistance was the most common phenotype for C. perfringens (20% of isolates). PMID:24944124

  14. Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile.

    PubMed

    McBride, Shonna M; Sonenshein, Abraham L

    2011-01-01

    Clostridium difficile causes chronic intestinal disease, yet little is understood about how the bacterium interacts with and survives in the host. To colonize the intestine and cause persistent disease, the bacterium must circumvent killing by host innate immune factors, such as cationic antimicrobial peptides (CAMPs). In this study, we investigated the effect of model CAMPs on growth and found that C. difficile is not only sensitive to these compounds but also responds to low levels of CAMPs by expressing genes that lead to CAMP resistance. By plating the bacterium on medium containing the CAMP nisin, we isolated a mutant capable of growing in three times the inhibitory concentration of CAMPs. This mutant also showed increased resistance to the CAMPs gallidermin and polymyxin B, demonstrating tolerance to different types of antimicrobial peptides. We identified the mutated gene responsible for the resistance phenotype as CD1352. This gene encodes a putative orphan histidine kinase that lies adjacent to a predicted ABC transporter operon (CD1349 to CD1351). Transcriptional analysis of the ABC transporter genes revealed that this operon was upregulated in the presence of nisin in wild-type cells and was more highly expressed in the CD1352 mutant. The insertional disruption of the CD1349 gene resulted in significant decreases in resistance to the CAMPs nisin and gallidermin but not polymyxin B. Because of their role in cationic antimicrobial peptide resistance, we propose the designation cprABC for genes CD1349 to CD1351 and cprK for the CD1352 gene. These results provide the first evidence of a C. difficile gene associated with antimicrobial peptide resistance. PMID:20974818

  15. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A

    PubMed Central

    Liu, Ji; Ma, Yi; Sun, Chun-Li

    2016-01-01

    High Mobility Group Box1 (HMGB1), a damage-associated inflammatory factor, plays an important role in the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, the role of the HMGB1 in TcdA-induced ER stress was identified. Clostridium difficile toxin A is one of the major virulence factors of C. difficile infection (CDI) and has been proved to induce apoptotic cell death through ER stress. Our results showed that HMGB1 might play an important role in the TcdA-induced ER stress and unfolded protein response. HMGB1 activated molecular markers and induced the C/EBP homologous protein upregulation (CHOP). This study may provide the essential information for better understanding of the molecular mechanisms involved in CDI. PMID:27579314

  16. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A.

    PubMed

    Liu, Ji; Ma, Yi; Sun, Chun-Li; Li, Shan; Wang, Ju-Fang

    2016-01-01

    High Mobility Group Box1 (HMGB1), a damage-associated inflammatory factor, plays an important role in the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, the role of the HMGB1 in TcdA-induced ER stress was identified. Clostridium difficile toxin A is one of the major virulence factors of C. difficile infection (CDI) and has been proved to induce apoptotic cell death through ER stress. Our results showed that HMGB1 might play an important role in the TcdA-induced ER stress and unfolded protein response. HMGB1 activated molecular markers and induced the C/EBP homologous protein upregulation (CHOP). This study may provide the essential information for better understanding of the molecular mechanisms involved in CDI. PMID:27579314

  17. Persistence of Clostridium difficile RT 237 infection in a Western Australian piggery.

    PubMed

    Moono, Peter; Putsathit, Papanin; Knight, Daniel R; Squire, Michele M; Hampson, David J; Foster, Niki F; Riley, Thomas V

    2016-02-01

    Clostridium difficile is commonly associated with healthcare-related infections in humans, and is an emerging pathogen in food animal species. There is potential for transmission of C. difficile from animals or animal products to humans. This study aimed to determine if C. difficile RT 237 had persisted in a Western Australian piggery or if there had been a temporal change in C. difficile diversity. C. difficile carriage in litters with and without diarrhea was investigated, as was the acquisition of C. difficile over time using cohort surveys. Rectal swabs were obtained from piglets aged 1-10 days to determine prevalence of C. difficile carriage and samples were obtained from 20 piglets on days 1, 7, 13, 20, and 42 of life to determine duration of shedding. Isolation of C. difficile from feces was achieved by selective enrichment culture. All isolates were characterized by standard molecular typing. Antimicrobial susceptibility testing was performed on selected isolates (n = 29). Diarrheic piglets were more likely to shed C. difficile than the non-diseased (p = 0.0124, χ2). In the cohort study, C. difficile was isolated from 40% samples on day 1, 50% on day 7, 20% on day 13, and 0% on days 20 and 42. All isolates were RT 237 and no antimicrobial resistance was detected. The decline of shedding of C. difficile to zero has public health implications because slaughter age pigs have a low likelihood of spreading C. difficile to consumers via pig meat. PMID:26679487

  18. Depression, antidepressant medications, and risk of Clostridium difficile infection

    PubMed Central

    2013-01-01

    Background An ancillary finding in previous research has suggested that the use of antidepressant medications increases the risk of developing Clostridium difficile infection (CDI). Our objective was to evaluate whether depression or the use of anti-depressants altered the risk of developing CDI, using two distinct datasets and study designs. Methods In Study 1, we conducted a longitudinal investigation of a nationally representative sample of older Americans (n = 16,781), linking data from biennial interviews to physician and emergency department visits, stays in hospital and skilled nursing facilities, home health visits, and other outpatient visits. In Study 2, we completed a clinical investigation of hospitalized adults who were tested for C. difficile (n = 4047), with cases testing positive and controls testing negative. Antidepressant medication use prior to testing was ascertained. Results The population-based rate of CDI in older Americans was 282.9/100,000 person-years (95% confidence interval (CI)) 226.3 to 339.5) for individuals with depression and 197.1/100,000 person-years for those without depression (95% CI 168.0 to 226.1). The odds of CDI were 36% greater in persons with major depression (95% CI 1.06 to 1.74), 35% greater in individuals with depressive disorders (95% CI 1.05 to 1.73), 54% greater in those who were widowed (95% CI 1.21 to 1.95), and 25% lower in adults who did not live alone (95% CI 0.62 to 0.92). Self-reports of feeling sad or having emotional, nervous or psychiatric problems at baseline were also associated with the later development of CDI. Use of certain antidepressant medications during hospitalization was associated with altered risk of CDI. Conclusions Adults with depression and who take specific anti-depressants seem to be more likely to develop CDI. Older adults who are widowed or who live alone are also at greater risk of CDI. PMID:23647647

  19. Varied prevalence of Clostridium difficile in an integrated swine operation.

    PubMed

    Norman, K N; Harvey, R B; Scott, H M; Hume, M E; Andrews, K; Brawley, A D

    2009-12-01

    The objectives of this study were to compare the prevalence of Clostridium difficile (Cd) among different age and production groups of swine in a vertically integrated swine operation in Texas in 2006 and to compare our isolates to other animal and human isolates. Results are based on 131 Cd isolates from 1008 swine fecal samples and pork trim samples (overall prevalence of 13%). The prevalence (number positive/number tested in production type) of Cd was different between the groups (P

  20. Procalcitonin Levels Associate with Severity of Clostridium difficile Infection

    PubMed Central

    Rao, Krishna; Walk, Seth T.; Micic, Dejan; Chenoweth, Elizabeth; Deng, Lili; Galecki, Andrzej T.; Jain, Ruchika; Trivedi, Itishree; Yu, Marie; Santhosh, Kavitha; Ring, Cathrin; Young, Vincent B.; Huffnagle, Gary B.; Aronoff, David M.

    2013-01-01

    Objective Clostridium difficile infection (CDI) is a major cause of morbidity and biomarkers that predict severity of illness are needed. Procalcitonin (PCT), a serum biomarker with specificity for bacterial infections, has been little studied in CDI. We hypothesized that PCT associated with CDI severity. Design Serum PCT levels were measured for 69 cases of CDI. Chart review was performed to evaluate the presence of severity markers and concurrent acute bacterial infection (CABI). We defined the binary variables clinical score as having fever (T >38°C), acute organ dysfunction (AOD), and/or WBC >15,000 cells/mm3 and expanded score, which included the clinical score plus the following: ICU admission, no response to therapy, colectomy, and/or death. Results In univariate analysis log10 PCT associated with clinical score (OR 3.13, 95% CI 1.69–5.81, P<.001) and expanded score (OR 3.33, 95% CI 1.77–6.23, P<.001). In a multivariable model including the covariates log10 PCT, enzyme immunoassay for toxin A/B, ribotype 027, age, weighted Charlson-Deyo comorbidity index, CABI, and extended care facility residence, log10 PCT associated with clinical score (OR 3.09, 95% CI 1.5–6.35, P = .002) and expanded score (OR 3.06, 95% CI 1.49–6.26, P = .002). PCT >0.2 ng/mL was 81% sensitive/73% specific for a positive clinical score and had a negative predictive value of 90%. Conclusion An elevated PCT level associated with the presence of CDI severity markers and CDI was unlikely to be severe with a serum PCT level below 0.2 ng/mL. The extent to which PCT changes during CDI therapy or predicts recurrent CDI remains to be quantified. PMID:23505476

  1. Molecular characterization of the Clostridium difficile toxin A gene.

    PubMed Central

    Dove, C H; Wang, S Z; Price, S B; Phelps, C J; Lyerly, D M; Wilkins, T D; Johnson, J L

    1990-01-01

    The gene encoding the toxin A protein of Clostridium difficile (strain VPI 10463) was cloned and sequenced. The coding region of 8,133 base pairs had a mol% G + C of 26.9 and encodes 2,710 amino acids. The deduced polypeptide has a molecular mass of ca. 308 kilodaltons. Nearly a third of the gene, at the 3' end, consists of 38 repeating sequences. The repeating units were grouped into two classes, I and II, on the basis of length and the low levels of DNA sequence similarities between them. There were seven class I repeating units, each containing 90 nucleotides, and 31 class II units, which, with two exceptions, were either 60 or 63 nucleotides in length. On the basis of DNA sequence similarities, the class II repeating units were further segregated into subclasses: 7 class IIA, 13 class IIB, 5 class IIC, and 6 class IID. The dipeptide tyrosine-phenylalanine was found in all 38 repeating units, and other amino acid sequences were unique to a specific class or subclass. This region of the protein has epitopes for the monoclonal antibody PCG-4 and includes the binding region for the Gal alpha 1-3Gal beta 1-4GlcNAc carbohydrate receptor. Located 1,350 base pairs upstream from the toxin A translation start site is the 3' end of the toxin B gene. Between the two toxin genes is a small open reading frame, which encodes a deduced polypeptide of ca. 16 or 19 kilodaltons. The role of this open reading frame is unknown. PMID:2105276

  2. Fecal Microbiota Transplantation for Clostridium difficile Infection: The Ochsner Experience

    PubMed Central

    Ray, Arnab; Smith, Robert; Breaux, Jacob

    2014-01-01

    Background Clostridium difficile infection (CDI) accounts for 20%-30% of cases of antibiotic-associated diarrhea and is the most commonly recognized cause of infectious diarrhea in healthcare settings. The incidence of CDI is rising, while the effectiveness of antibiotics for treatment decreases with recurrent episodes. The use of fecal microbiota transplantation (FMT) for cure of CDI has been reported since 1958, and the worldwide cure rate is reported to be 93%. We report our experience with FMT for the treatment of CDI. Methods We performed a retrospective chart review of patients undergoing FMT for CDI at Ochsner Clinic Foundation from August 2012 to November 2013. FMT was administered via colonoscopy for patients with recurrent or severe CDI. Stool donors were screened for infections in the majority of cases. Results FMT was performed in 20 CDI patients. The 16 female and 4 male patients ranged in age from 27 to 89 years (mean 62 years). The average duration of illness from diagnosis to treatment was 49.6 weeks, based on available data. Only 3 donors were unscreened for infectious pathogens. Nine donors were related to the recipients by blood; most of the other donors were spouses. The average length of follow-up after FMT was 3 months. No recurrences of CDI after treatment have been documented. Adverse events reported after treatment included abdominal cramping, bloating, flatulence, and nausea that resolved. Conclusion Although the US Food and Drug Administration currently considers FMT an experimental therapy, we demonstrate that FMT is safe, well tolerated, and effective for recurrent and severe CDI. PMID:25598718

  3. Functional Characterization of Clostridium difficile Spore Coat Proteins

    PubMed Central

    Permpoonpattana, Patima; Phetcharaburanin, Jutarop; Mikelsone, Anna; Dembek, Marcin; Tan, Sisareuth; Brisson, Marie-Clémence; La Ragione, Roberto; Brisson, Alain R.; Fairweather, Neil; Hong, Huynh A.

    2013-01-01

    Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. PMID:23335421

  4. Role of volatile fatty acids in colonization resistance to Clostridium difficile in gnotobiotic mice.

    PubMed Central

    Su, W J; Waechter, M J; Bourlioux, P; Dolegeal, M; Fourniat, J; Mahuzier, G

    1987-01-01

    Clostridium difficile is an agent involved in the development of antibiotic-associated pseudomembranous colitis. The purpose of this work was to investigate the role of volatile fatty acids (VFAs) in resistance to colonization by C. difficile by using a gnotobiotic animal model. Accordingly, germfree mice were associated with different hamster flora, and the VFAs in their cecal contents were measured by gas chromatography. The results showed that VFAs were produced mainly by the intestinal flora, especially by the strictly anaerobic bacteria. In these associated mice, the concentrations of acetic, propionic, and butyric acids were higher than those of other acids, but at pH 6.8 the MICs of these three acids in vitro for C. difficile were more than 200 mu eq/ml. In gnotobiotic mice monoassociated with C. difficile and in the isolated ceca of these mice, VFAs did not inhibit the growth of C. difficile. In gnotobiotic mice which were diassociated with C. difficile and C. butyricum and given drinking water with a lactose concentration of 20%, the cecal contents included about the same amount of butyric acid as did those of the monoassociated mice, although the population of C. difficile remained the same. Therefore, it is suggested that VFAs alone cannot inhibit intestinal colonization by C. difficile and that, consequently, other inhibitory mechanisms are also present. PMID:3596806

  5. Rifaximin therapy for metronidazole-unresponsive Clostridium difficile infection: a prospective pilot trial

    PubMed Central

    Patrick Basu, P.; Dinani, Amreen; Rayapudi, Krishna; Pacana, Tommy; Shah, Niraj James; Hampole, Hemant; Krishnaswamy, N. V.; Mohan, Vinod

    2010-01-01

    Background: Clostridium difficile infection (CDI) is a recent epidemic in the United States, particularly in the hospital setting. Oral metronidazole is standard therapy for C. difficile infection, but resistance to metronidazole is becoming a clinical challenge. Methods: We evaluated the efficacy of the nonsystemic oral antibiotic rifaximin for the treatment of metronidazole-resistant C. difficile infection. Twenty-five patients with C. difficile infection were enrolled in the study. All had mild-to-moderate C. difficile infection (5–10 bowel movements a day without sepsis) unresponsive to metronidazole (i.e. stools positive for toxins A and B after oral metronidazole 500 mg three times daily [t.i.d.] for 5 days). After discontinuation of metronidazole, rifaximin 400 mg t.i.d. for 14 days was prescribed. Patients were followed for 56 days and stool was tested for C. difficile using polymerase chain reaction (PCR) to assess the effect of treatment. A negative PCR test result was interpreted as a favorable response to rifaximin. Results: Sixteen of 22 patients (73%) were eligible for study inclusion and completed rifaximin therapy experienced eradication of infection (stool negative for C. difficile) immediately after rifaximin therapy and 56 days post-treatment. Three patients (12%) discontinued therapy because of abdominal distention. Rifaximin was generally well tolerated. Conclusions: In conclusion, rifaximin may be considered for treatment of mild-to-moderate C. difficile infection that is resistant to metronidazole. Larger randomized trials are needed to confirm these positive findings. PMID:21180604

  6. The first case of antibiotic-associated colitis by Clostridium difficile PCR ribotype 027 in Korea.

    PubMed

    Tae, Chung Hyun; Jung, Sung-Ae; Song, Hyun Joo; Kim, Seong-Eun; Choi, Hee Jung; Lee, Miae; Hwang, Yusun; Kim, Heejung; Lee, Kyungwon

    2009-06-01

    Clostridium difficile (C. difficile) is a common causative agent of pseudomembranous colitis (PMC). C. difficile-associated diarrhea (CDAD) ranges from mild diarrhea to life threatening PMC. Recently, a highly virulent strain of C. difficile polymerase chain reaction ribotype 027 was found in North America, Europe, and Japan. A 52-yr-old woman with anti-tuberculosis medication and neurogenic bladder due to traffic accident experienced five episodes of C. difficile PMC after taking antibiotics for pneumonia along with septic shock and acute renal failure. She was readmitted to the intensive care unit and treated with oral vancomycin with refractory of oral metronidazole, inotropics and probiotics for over 60 days. C. difficile isolated both at the first and the last admission was identified as C. difficile ribotype 027 by ribotyping, toxinotyping, and tcdC gene sequencing, which turned out the same pathogen as the epidemic hypervirulent B1/NAP1 strain. This is the first case of C. difficile PCR ribotype 027 in Korea. After discharge, she was maintained on probiotics and rifaximin for 3 weeks. She had no relapse for 6 months. PMID:19543521

  7. Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms.

    PubMed

    Bandelj, Petra; Blagus, Rok; Briski, France; Frlic, Olga; Vergles Rataj, Aleksandra; Rupnik, Maja; Ocepek, Matjaz; Vengust, Modest

    2016-01-01

    Farm animals have been suggested to play an important role in the epidemiology of Clostridium difficile infection (CDI) in the community. The purpose of this study was to evaluate risk factors associated with C. difficile dissemination in family dairy farms, which are the most common farming model in the European Union. Environmental samples and fecal samples from cows and calves were collected repeatedly over a 1 year period on 20 mid-size family dairy farms. Clostridium difficile was detected in cattle feces on all farms using qPCR. The average prevalence between farms was 10% (0-44.4%) and 35.7% (3.7-66.7%) in cows and calves, respectively. Bacterial culture yielded 103 C. difficile isolates from cattle and 61 from the environment. Most C. difficile isolates were PCR-ribotype 033. A univariate mixed effect model analysis of risk factors associated dietary changes with increasing C. difficile prevalence in cows (P = 0.0004); and dietary changes (P = 0.004), breeding Simmental cattle (P = 0.001), mastitis (P = 0.003) and antibiotic treatment (P = 0.003) in calves. Multivariate analysis of risk factors found that dietary changes in cows (P = 0.0001) and calves (P = 0.002) increase C. difficile prevalence; mastitis was identified as a risk factor in calves (P = 0.001). This study shows that C. difficile is common on dairy farms and that shedding is more influenced by farm management than environmental factors. Based on molecular typing of C. difficile isolates, it could also be concluded that family dairy farms are currently not contributing to increased CDI incidence. PMID:26968527

  8. Differential Immunodetection of Toxin B from Highly Virulent Clostridium difficile BI/NAP-1/027

    PubMed Central

    Song, Linan; Zhao, Mingwei; Duffy, David C.; Chen, Xinhua; Sambol, Susan P.; Gerding, Dale N.; Kelly, Ciarán P.

    2015-01-01

    We developed a simple immunoassay capable of differentially detecting toxin B from highly virulent strains of Clostridium difficile (BI/NAP-1/027) in stool. This assay can simultaneously confirm the presence of in vivo toxin production and provide strain-related information relevant to infection control epidemiology and disease prognosis. PMID:25716449

  9. Modifications of Commercial Toxigenic Clostridium difficile PCR Resulting in Improved Economy and Workflow Efficiency▿

    PubMed Central

    Munson, Erik; Bilbo, Dorothy; Paul, Mary; Napierala, Maureen; Hryciuk, Jeanne E.

    2011-01-01

    Expense inherent to molecular diagnostics may prevent laboratories from utilizing real-time PCR for Clostridium difficile infection. Frozen master mix and overnight aliquot modifications of the BD GeneOhm Cdiff assay failed to impact performance indices compared to the package insert protocol (P ≥ 0.31), provided accurate results, and decreased reagent expenditure. PMID:21450967

  10. Use of hypochlorite solution to decrease rates of Clostridium difficile-associated diarrhea.

    PubMed

    McMullen, Kathleen M; Zack, Jeanne; Coopersmith, Craig M; Kollef, Marin; Dubberke, Erik; Warren, David K

    2007-02-01

    An increased rate of Clostridium difficile-associated diarrhea (CDAD) was noted in 2 intensive care units of a university-affiliated tertiary care facility. One unit instituted enhanced environmental cleaning with a hypochlorite solution in all rooms, whereas the other unit used hypochlorite solution only in rooms of patients with CDAD. The CDAD rates decreased in both units. PMID:17265404

  11. Prevalence of Clostridium difficile in pork and retail meat in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile (Cd) have increased in hospitals in North America from the emergence of newer, more virulent strains of Cd. Toxigenic Cd has been isolated from food animals and retail meat with potential implications of transfer ...

  12. Effect of a Clostridium difficile Infection Prevention Initiative in Veterans Affairs Acute Care Facilities.

    PubMed

    Evans, Martin E; Kralovic, Stephen M; Simbartl, Loretta A; Jain, Rajiv; Roselle, Gary A

    2016-06-01

    Rates of clinically confirmed hospital-onset healthcare facility-associated Clostridium difficile infections from July 1, 2012, through March 31, 2015, in 127 acute care Veterans Affairs facilities were evaluated. Quarterly pooled national standardized infection ratios decreased 15% from baseline by the final quarter of the analysis period (P=.01, linear regression). Infect Control Hosp Epidemiol 2016;37:720-722. PMID:26864803

  13. Detecting Clostridium difficile spores from inanimate surfaces of the hospital environment: which method is best?

    PubMed

    Claro, Tânia; Daniels, Stephen; Humphreys, Hilary

    2014-09-01

    The recovery of Clostridium difficile spores from hospital surfaces was assessed using rayon swabs, flocked swabs, and contact plates. The contact plate method was less laborious, achieved higher recovery percentages, and detected spores at lower inocula than swabs. Rayon swabs were the least efficient method. However, further studies are required in health care settings. PMID:25009047

  14. Multidisciplinary Analysis of a Nontoxigenic Clostridium difficile Strain with Stable Resistance to Metronidazole

    PubMed Central

    Moura, Ines; Monot, Marc; Tani, Chiara; Barbanti, Fabrizio; Norais, Nathalie; Dupuy, Bruno; Bouza, Emilio; Mastrantonio, Paola

    2014-01-01

    Stable resistance to metronidazole in a nontoxigenic Clostridium difficile strain was investigated at both the genomic and proteomic levels. Alterations in the metabolic pathway involving the pyruvate-ferredoxin oxidoreductase were found, suggesting that reduction of metronidazole, required for its activity, may be less efficient in this strain. Proteomic studies also showed a cellular response to oxidative stress. PMID:24913157

  15. Multidisciplinary analysis of a nontoxigenic Clostridium difficile strain with stable resistance to metronidazole.

    PubMed

    Moura, Ines; Monot, Marc; Tani, Chiara; Spigaglia, Patrizia; Barbanti, Fabrizio; Norais, Nathalie; Dupuy, Bruno; Bouza, Emilio; Mastrantonio, Paola

    2014-08-01

    Stable resistance to metronidazole in a nontoxigenic Clostridium difficile strain was investigated at both the genomic and proteomic levels. Alterations in the metabolic pathway involving the pyruvate-ferredoxin oxidoreductase were found, suggesting that reduction of metronidazole, required for its activity, may be less efficient in this strain. Proteomic studies also showed a cellular response to oxidative stress. PMID:24913157

  16. State law mandates for reporting of healthcare-associated Clostridium difficile infections in hospitals.

    PubMed

    Reagan, Julie; Herzig, Carolyn T A; Pogorzelska-Maziarz, Monika; Dick, Andrew W; Stone, Patricia W; Divya Srinath, Jd

    2015-03-01

    US state and territorial laws were reviewed to identify Clostridium difficile infection reporting mandates. Twenty states require reporting either under state law or by incorporating federal Centers for Medicare & Medicaid Services' reporting requirements. Although state law mandates are more common, the incorporation of federal reporting requirements has been increasing. PMID:25695178

  17. Flooding and Health Care Visits for Clostridium Difficile Infection: A Case-Crossover Analysis

    EPA Science Inventory

    Floods can contaminate potable water and other resources, thus increasing the potential for fecal-oral transmission of pathogens. Clostridium difficile is a bacterium that can spread by water and cause acute gastrointestinal illness. It often affects older adults who are hospital...

  18. Prevalence of Clostridium difficile from Commercial Beef Processing Plants in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium difficile-associated disease has recently increased in both illness and relapse rates in North American and European countries. This increase has been attributed to the emergence of a toxigenic strain designated as North America pulsed-field gel electrophoresis type 1 or NAP-1. The NAP-1...

  19. Isolation and characterization of Clostridium difficile associated with beef cattle and commercially produced ground beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence of Clostridium difficile infection has recently increased in North American and European countries. This pathogen has been isolated from retail pork, turkey, and beef products and reported associated with human illness. This increase in infections has been attributed to the emergence o...

  20. Risk Factors for Acquisition and Loss of Clostridium difficile Colonization in Hospitalized Patients

    PubMed Central

    Reske, Kimberly A.; Seiler, Sondra; Hink, Tiffany; Kwon, Jennie H.; Burnham, Carey-Ann D.

    2015-01-01

    Asymptomatic colonization may contribute to Clostridium difficile transmission. Few data identify which patients are at risk for colonization. We performed a prospective cohort study of C. difficile colonization and risk factors for C. difficile acquisition and loss in hospitalized patients. Patients admitted to medical or surgical wards at a tertiary care hospital were enrolled; interviews and chart review were performed to determine patient demographics, C. difficile infection (CDI) history, medications, and health care exposures. Stool samples/rectal swabs were collected at enrollment and discharge; stool samples from clinical laboratory tests were also included. Samples were cultured for C. difficile, and the isolates were tested for toxins A and B and ribotyped. Chi-square tests and univariate logistic regression were used for the analyses. Two hundred thirty-five patients were enrolled. Of the patients, 21% were colonized with C. difficile (toxigenic and nontoxigenic) at admission and 24% at discharge. Ribotype 027 accounted for 6% of the strains at admission and 12% at discharge. Of the patients colonized at admission, 78% were also colonized at discharge. Cephalosporin use was associated with C. difficile acquisition (47% of patients who acquired C. difficile versus 25% of patients who did not; P = 0.03). β-lactam–β-lactamase inhibitor combinations were associated with a loss of C. difficile colonization (36% of patients who lost C. difficile colonization versus 8% of patients colonized at both admission and discharge; P = 0.04), as was metronidazole (27% versus 3%; P = 0.03). Antibiotic use affects the epidemiology of asymptomatic C. difficile colonization, including acquisition and loss, and it requires additional study. PMID:25987626

  1. Recurrent refractory Clostridium difficile colitis treated successfully with rifaximin and tigecycline: a case report and review of the literature.

    PubMed

    El-Herte, Rima I; Baban, Tania A; Kanj, Souha S

    2012-03-01

    Clostridium difficile colitis infection is on the rise and is considerably increasing the duration of hospital stay, as well as healthcare costs. The management of C. difficile colitis has become more challenging with the increasing failure of therapeutic response to metronidazole and oral vancomycin. Tigecycline is a new glycylcycline that has shown in vitro activity against C. difficile. We report herein a case of C. difficile colitis that failed to improve on a combination of metronidazole and oral vancomycin. The patient subsequently developed a surgical abdomen secondary to refractory C. difficile colitis, but was successfully treated with a combination of rifaximin and tigecycline after she refused to undergo surgical treatment. PMID:22077098

  2. Fecal Microbiota Transplantation for Refractory Clostridium difficile Colitis in Solid Organ Transplant Recipients

    PubMed Central

    Friedman-Moraco, R. J.; Mehta, A. K.; Lyon, G. M.; Kraft, C. S.

    2015-01-01

    Fecal microbiota transplantation (FMT) has been shown to be safe and efficacious in individuals with refractory Clostridium difficile . It has not been widely studied in individuals with immunosuppression due to concerns about infectious complications. We describe two solid organ transplant recipients, one lung and one renal, in this case report that both had resolution of their diarrhea caused by C. difficile after FMT. Both recipients required two FMTs to achieve resolution of their symptoms and neither had infectious complications. Immunosuppressed individuals are at high risk for acquisition of C. difficile and close monitoring for infectious complications after FMT is necessary, but should not preclude its use in patients with refractory disease due to C. difficile . Sequential FMT may be used to achieve cure in these patients with damaged microbiota from antibiotic use and immunosuppression. PMID:24433460

  3. An update on antibody-based immunotherapies for Clostridium difficile infection

    PubMed Central

    Hussack, Greg; Tanha, Jamshid

    2016-01-01

    Clostridium difficile continues to be one of the most prevalent hospital-acquired bacterial infections in the developed world, despite the recent introduction of a novel and effective antibiotic agent (fidaxomicin). Alternative approaches under investigation to combat the anaerobic Gram-positive bacteria include fecal transplantation therapy, vaccines, and antibody-based immunotherapies. In this review, we catalog the recent advances in antibody-based approaches under development and in the clinic for the treatment of C. difficile infection. By and large, inhibitory antibodies that recognize the primary C. difficile virulence factors, toxin A and toxin B, are the most popular passive immunotherapies under investigation. We provide a detailed summary of the toxin epitopes recognized by various antitoxin antibodies and discuss general trends on toxin inhibition efficacy. In addition, antibodies to other C. difficile targets, such as surface-layer proteins, binary toxin, motility factors, and adherence and colonization factors, are introduced in this review. PMID:27536153

  4. Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection

    PubMed Central

    Vincent, Caroline; Manges, Amee R.

    2015-01-01

    Clostridium difficile infection (CDI) is the most important cause of nosocomial diarrhea. Broad-spectrum antimicrobials have profound detrimental effects on the structure and diversity of the indigenous intestinal microbiota. These alterations often impair colonization resistance, allowing the establishment and proliferation of C. difficile in the gut. Studies involving animal models have begun to decipher the precise mechanisms by which the intestinal microbiota mediates colonization resistance against C. difficile and numerous investigations have described gut microbiota alterations associated with C. difficile colonization or infection in human subjects. Fecal microbiota transplantation (FMT) is a highly effective approach for the treatment of recurrent CDI that allows the restoration of a healthy intestinal ecosystem via infusion of fecal material from a healthy donor. The recovery of the intestinal microbiota after FMT has been examined in a few reports and work is being done to develop custom bacterial community preparations that could be used as a replacement for fecal material. PMID:27025623

  5. Identification and characterization of the surface proteins of Clostridium difficile

    SciTech Connect

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  6. Clinical importance and representation of toxigenic and non-toxigenic Clostridium difficile cultivated from stool samples of hospitalized patients

    PubMed Central

    Predrag, Stojanovic; Branislava, Kocic; Miodrag, Stojanovic; Biljana, Miljkovic – Selimovic; Suzana, Tasic; Natasa, Miladinovic – Tasic; Tatjana, Babic

    2012-01-01

    The aim of this study was to fortify the clinical importance and representation of toxigenic and non-toxigenic Clostridium difficile isolated from stool samples of hospitalized patients. This survey included 80 hospitalized patients with diarrhea and positive findings of Clostridium difficile in stool samples, and 100 hospitalized patients with formed stool as a control group. Bacteriological examination of a stool samples was conducted using standard microbiological methods. Stool sample were inoculated directly on nutrient media for bacterial cultivation (blood agar using 5% sheep blood, Endo agar, selective Salmonella Shigella agar, Selenite-F broth, CIN agar and Skirrow’s medium), and to selective cycloserine-cefoxitin-fructose agar (CCFA) (Biomedics, Parg qe tehnicologico, Madrid, Spain) for isolation of Clostridium difficile. Clostridium difficile toxin was detected by ELISA-ridascreen Clostridium difficile Toxin A/B (R-Biopharm AG, Germany) and ColorPAC ToxinA test (Becton Dickinson, USA). Examination of stool specimens for the presence of parasites (causing diarrhea) was done using standard methods (conventional microscopy), commercial concentration test Paraprep S Gold kit (Dia Mondial, France) and RIDA®QUICK Cryptosporidium/Giardia Combi test (R-Biopharm AG, Germany). Examination of stool specimens for the presence of fungi (causing diarrhea) was performed by standard methods. All stool samples positive for Clostridium difficile were tested for Rota, Noro, Astro and Adeno viruses by ELISA – ridascreen (R-Biopharm AG, Germany). In this research we isolated 99 Clostridium difficile strains from 116 stool samples of 80 hospitalized patients with diarrhea. The 53 (66.25%) of patients with diarrhea were positive for toxins A and B, one (1.25%) were positive for only toxin B. Non-toxigenic Clostridium difficile isolated from samples of 26 (32.5%) patients. However, other pathogenic microorganisms of intestinal tract cultivated from samples of 16 patients

  7. Ferric Uptake Regulator Fur Control of Putative Iron Acquisition Systems in Clostridium difficile

    PubMed Central

    Ellermeier, Craig D.

    2015-01-01

    ABSTRACT Clostridium difficile is an anaerobic, Gram-positive, spore-forming opportunistic pathogen and is the most common cause of hospital-acquired infectious diarrhea. Although iron acquisition in the host is a key to survival of bacterial pathogens, high levels of intracellular iron can increase oxidative damage. Therefore, expression of iron acquisition mechanisms is tightly controlled by transcriptional regulators. We identified a C. difficile homologue of the master bacterial iron regulator Fur. Using targetron mutagenesis, we generated a fur insertion mutant of C. difficile. To identify the genes regulated by Fur in C. difficile, we used microarray analysis to compare transcriptional differences between the fur mutant and the wild type when grown in high-iron medium. The fur mutant had increased expression of greater than 70 transcriptional units. Using quantitative reverse transcriptase PCR (qRT-PCR), we analyzed several of the Fur-regulated genes identified by the microarray and verified that they are both iron and Fur regulated in C. difficile. Among those Fur- and iron-repressed genes were C. difficile genes encoding 7 putative cation transport systems of different classes. We found that Fur was able to bind the DNA upstream of three Fur-repressed genes in electrophoretic mobility shift assays. We also demonstrate that expression of Fur-regulated putative iron acquisition systems was increased during C. difficile infection using the hamster model. Our data suggest that C. difficile expresses multiple iron transport mechanisms in response iron depletion in vitro and in vivo. IMPORTANCE Clostridium difficile is the most common cause of hospital-acquired infectious diarrhea and has been recently classified as an “urgent” antibiotic resistance threat by the CDC. To survive and cause disease, most bacterial pathogens must acquire the essential enzymatic cofactor iron. While import of adequate iron is essential for most bacterial growth, excess

  8. The Ecology and Pathobiology of Clostridium difficile Infections: An Interdisciplinary Challenge

    PubMed Central

    Dubberke, Erik R.; Haslam, David B.; Lanzas, Cristina; Bobo, Linda D.; Burnham, Carey-Ann D.; Gröhn, Yrjö T.; Tarr, Phillip I.

    2013-01-01

    Summary Clostridium difficile is a well recognized pathogen of humans and animals. Although C. difficile was first identified over 70 years ago, much remains unknown in regards to the primary source of human acquisition and its pathobiology. These deficits in our knowledge have been intensified by dramatic increases in both the frequency and severity of disease in humans over the last decade. The changes in C. difficile epidemiology might be due to the emergence of a hypervirulent stain of C. difficile, aging of the population, altered risk of developing infection with newer medications, and/or increased exposure to C. difficile outside of hospitals. In recent years there have been numerous reports documenting C. difficile contamination of various foods, and reports of similarities between strains that infect animals and strains that infect humans as well. The purposes of this review are to highlight the many challenges to diagnosing, treating, and preventing C. difficile infection in humans, and to stress that collaboration between human and veterinary researchers is needed to control this pathogen. PMID:21223531

  9. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in children

    NASA Astrophysics Data System (ADS)

    Ling, Zongxin; Liu, Xia; Jia, Xiaoyun; Cheng, Yiwen; Luo, Yueqiu; Yuan, Li; Wang, Yuezhu; Zhao, Chunna; Guo, Shu; Li, Lanjuan; Xu, Xiwei; Xiang, Charlie

    2014-12-01

    Increasing evidence suggests that altered intestinal microbial composition and function result in an increased risk of Clostridium difficile-associated diarrhoea (CDAD); however, the specific changes of intestinal microbiota in children suffering from CDAD and their associations with C. difficile strain toxigenicity are poorly understood. High-throughput pyrosequencing showed that reduced faecal bacterial diversity and dramatic shifts of microbial composition were found in children with CDAD. The Firmicutes/Bacteroidetes ratio was increased significantly in patients with CDAD, which indicated that dysbiosis of faecal microbiota was closely associated with CDAD. C. difficile infection resulted in an increase in lactate-producing phylotypes, with a corresponding decrease in butyrate-producing bacteria. The decrease in butyrate and lactate buildup impaired intestinal colonisation resistance, which increased the susceptibility to C. difficile colonisation. Strains of C. difficile which were positive for both toxin A and toxin B reduced faecal bacterial diversity to a greater degree than strains that were only toxin B-positive, and were associated with unusually abundant Enterococcus, which implies that the C. difficile toxins have different impacts on the faecal microbiota of children. Greater understanding of the relationships between disruption of the normal faecal microbiota and colonisation with C. difficile that produces different toxins might lead to improved treatment.

  10. Prevalence of human norovirus and Clostridium difficile coinfections in adult hospitalized patients

    PubMed Central

    Stokely, Janelle N; Niendorf, Sandra; Taube, Stefan; Hoehne, Marina; Young, Vincent B; Rogers, Mary AM; Wobus, Christiane E

    2016-01-01

    Objective Human norovirus (HuNoV) and Clostridium difficile are common causes of infectious gastroenteritis in adults in the US. However, limited information is available regarding HuNoV and C. difficile coinfections. Our study was designed to evaluate the prevalence of HuNoV and C. difficile coinfections among adult patients in a hospital setting and disease symptomatology. Study design and setting For a cross-sectional analysis, 384 fecal samples were tested for the presence of C. difficile toxins from patients (n=290), whom the provider suspected of C. difficile infections. Subsequent testing was then performed for HuNoV genogroups I and II. Multinomial logistic regression was performed to determine symptoms more frequently associated with coinfections. Results The final cohort consisted of the following outcome groups: C. difficile (n=196), C. difficile + HuNoV coinfection (n=40), HuNoV only (n=12), and neither (n=136). Coinfected patients were more likely to develop nausea, gas, and abdominal pain and were more likely to seek treatment in the winter season compared with individuals not infected or infected with either pathogen alone. Conclusion Our study revealed that patients with coinfection are more likely to experience certain gastrointestinal symptoms, in particular abdominal pain, suggesting an increased severity of disease symptomatology in coinfected patients. PMID:27418856

  11. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in children

    PubMed Central

    Ling, Zongxin; Liu, Xia; Jia, Xiaoyun; Cheng, Yiwen; Luo, Yueqiu; Yuan, Li; Wang, Yuezhu; Zhao, Chunna; Guo, Shu; Li, Lanjuan; Xu, Xiwei; Xiang, Charlie

    2014-01-01

    Increasing evidence suggests that altered intestinal microbial composition and function result in an increased risk of Clostridium difficile-associated diarrhoea (CDAD); however, the specific changes of intestinal microbiota in children suffering from CDAD and their associations with C. difficile strain toxigenicity are poorly understood. High-throughput pyrosequencing showed that reduced faecal bacterial diversity and dramatic shifts of microbial composition were found in children with CDAD. The Firmicutes/Bacteroidetes ratio was increased significantly in patients with CDAD, which indicated that dysbiosis of faecal microbiota was closely associated with CDAD. C. difficile infection resulted in an increase in lactate-producing phylotypes, with a corresponding decrease in butyrate-producing bacteria. The decrease in butyrate and lactate buildup impaired intestinal colonisation resistance, which increased the susceptibility to C. difficile colonisation. Strains of C. difficile which were positive for both toxin A and toxin B reduced faecal bacterial diversity to a greater degree than strains that were only toxin B-positive, and were associated with unusually abundant Enterococcus, which implies that the C. difficile toxins have different impacts on the faecal microbiota of children. Greater understanding of the relationships between disruption of the normal faecal microbiota and colonisation with C. difficile that produces different toxins might lead to improved treatment. PMID:25501371

  12. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    PubMed Central

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  13. Modulation of toxin production by the flagellar regulon in Clostridium difficile.

    PubMed

    Aubry, Annie; Hussack, Greg; Chen, Wangxue; KuoLee, Rhonda; Twine, Susan M; Fulton, Kelly M; Foote, Simon; Carrillo, Catherine D; Tanha, Jamshid; Logan, Susan M

    2012-10-01

    We show in this study that toxin production in Clostridium difficile is altered in cells which can no longer form flagellar filaments. The impact of inactivation of fliC, CD0240, fliF, fliG, fliM, and flhB-fliR flagellar genes upon toxin levels in culture supernatants was assessed using cell-based cytotoxicity assay, proteomics, immunoassay, and immunoblotting approaches. Each of these showed that toxin levels in supernatants were significantly increased in a fliC mutant compared to that in the C. difficile 630 parent strain. In contrast, the toxin levels in supernatants secreted from other flagellar mutants were significantly reduced compared with that in the parental C. difficile 630 strain. Transcriptional analysis of the pathogenicity locus genes (tcdR, tcdB, tcdE, and tcdA) revealed a significant increase of all four genes in the fliC mutant strain, while transcription of all four genes was significantly reduced in fliM, fliF, fliG, and flhB-fliR mutants. These results demonstrate that toxin transcription in C. difficile is modulated by the flagellar regulon. More significantly, mutant strains showed a corresponding change in virulence compared to the 630 parent strain when tested in a hamster model of C. difficile infection. This is the first demonstration of differential flagellum-related transcriptional regulation of toxin production in C. difficile and provides evidence for elaborate regulatory networks for virulence genes in C. difficile. PMID:22851750

  14. Fecal Microbiota Transplantation Eliminates Clostridium difficile in a Murine Model of Relapsing Disease

    PubMed Central

    Seekatz, Anna M.; Theriot, Casey M.; Molloy, Caitlyn T.; Wozniak, Katherine L.; Bergin, Ingrid L.

    2015-01-01

    Recurrent Clostridium difficile infection (CDI) is of particular concern among health care-associated infections. The role of the microbiota in disease recovery is apparent given the success of fecal microbiota transplantation (FMT) for recurrent CDI. Here, we present a murine model of CDI relapse to further define the microbiota recovery following FMT. Cefoperazone-treated mice were infected with C. difficile 630 spores and treated with vancomycin after development of clinical disease. Vancomycin treatment suppressed both C. difficile colonization and cytotoxin titers. However, C. difficile counts increased within 7 days of completing treatment, accompanied by relapse of clinical signs. The administration of FMT immediately after vancomycin cleared C. difficile and decreased cytotoxicity within 1 week. The effects of FMT on the gut microbiota community were detectable in recipients 1-day posttransplant. Conversely, mice not treated with FMT remained persistently colonized with high levels of C. difficile, and the gut microbiota in these mice persisted at low diversity. These results suggest that full recovery of colonization resistance against C. difficile requires the restoration of a specific community structure. PMID:26169276

  15. Tracking Inhibitory Alterations during Interstrain Clostridium difficile Interactions by Monitoring Cell Envelope Capacitance

    PubMed Central

    2016-01-01

    Global threats arising from the increasing use of antibiotics coupled with the high recurrence rates of Clostridium difficile (C. difficile) infections (CDI) after standard antibiotic treatments highlight the role of commensal probiotic microorganisms, including nontoxigenic C. difficile (NTCD) strains in preventing CDI due to highly toxigenic C. difficile (HTCD) strains. However, optimization of the inhibitory permutations due to commensal interactions in the microbiota requires probes capable of monitoring phenotypic alterations to C. difficile cells. Herein, by monitoring the field screening behavior of the C. difficile cell envelope with respect to cytoplasmic polarization, we demonstrate that inhibition of the host-cell colonization ability of HTCD due to the S-layer alterations occurring after its co-culture with NTCD can be quantitatively tracked on the basis of the capacitance of the cell envelope of co-cultured HTCD. Furthermore, it is shown that effective inhibition requires the dynamic contact of HTCD cells with freshly secreted extracellular factors from NTCD because contact with the cell-free supernatant causes only mild inhibition. We envision a rapid method for screening the inhibitory permutations to arrest C. difficile colonization by routinely probing alterations in the HTCD dielectrophoretic frequency response due to variations in the capacitance of its cell envelope.

  16. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination.

    PubMed

    Le Lay, Christophe; Dridi, Larbi; Bergeron, Michel G; Ouellette, Marc; Fliss, Ismaı L

    2016-02-01

    Clostridium difficile is the most frequently identified enteric pathogen in patients with nosocomial antibiotic-associated diarrhoea and pseudomembranous colitis. Several clinically isolated C. difficile strains are resistant to antibiotics other than metronidazole and vancomycin. Recently, bacteriocins of lactic acid bacteria have been proposed as an alternative or complementary treatment. The aim of this study was to investigate the inhibitory effect of nisin, a bacteriocin produced by several strains of Lactococcus lactis, against clinical isolates of C. difficile. Nisin Z obtained from culture of L. lactis subsp. lactis biovar. diacetylactis was tested along with commercial nisin A. The effect of nisin A on C. difficile spores was also examined. Nisin A and Z both inhibited the growth of all C. difficile isolates, and MICs were estimated at 6.2 μg ml(-1) for nisin Z and 0.8 μg ml(-1) for nisin A. In addition, C. difficile spores were also susceptible to nisin A (25.6 μg ml(-1)), which reduced spore viability by 40-50%. These results suggested that nisin and hence nisin-producing Lactococcus strains could be used to treat C. difficile-associated diarrhoea. PMID:26555543

  17. The HtrA-Like Protease CD3284 Modulates Virulence of Clostridium difficile

    PubMed Central

    Bakker, Dennis; Buckley, Anthony M.; de Jong, Anne; van Winden, Vincent J. C.; Verhoeks, Joost P. A.; Kuipers, Oscar P.; Douce, Gillian R.; Kuijper, Ed J.

    2014-01-01

    In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis. Besides the two main virulence factors toxin A and toxin B, other virulence factors are likely to play a role in the pathogenesis of the disease. In other Gram-positive and Gram-negative pathogenic bacteria, conserved high-temperature requirement A (HtrA)-like proteases have been shown to have a role in protein homeostasis and quality control. This affects the functionality of virulence factors and the resistance of bacteria to (host-induced) environmental stresses. We found that the C. difficile 630 genome encodes a single HtrA-like protease (CD3284; HtrA) and have analyzed its role in vivo and in vitro through the creation of an isogenic ClosTron-based htrA mutant of C. difficile strain 630Δerm (wild type). In contrast to the attenuated phenotype seen with htrA deletion in other pathogens, this mutant showed enhanced virulence in the Golden Syrian hamster model of acute C. difficile infection. Microarray data analysis showed a pleiotropic effect of htrA on the transcriptome of C. difficile, including upregulation of the toxin A gene. In addition, the htrA mutant showed reduced spore formation and adherence to colonic cells. Together, our data show that htrA can modulate virulence in C. difficile. PMID:25047848

  18. Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC

    PubMed Central

    Ghose, Chandrabali; Eugenis, Ioannis; Sun, Xingmin; Edwards, Adrianne N; McBride, Shonna M; Pride, David T; Kelly, Ciarán P; Ho, David D

    2016-01-01

    Clostridium difficile is a Gram-positive bacillus and is the leading cause of toxin-mediated nosocomial diarrhea following antibiotic use. C. difficile flagella play a role in colonization, adherence, biofilm formation, and toxin production, which might contribute to the overall virulence of certain strains. Human and animal studies indicate that anti-flagella immune responses may play a role in protection against colonization by C. difficile and subsequent disease outcome. Here we report that recombinant C. difficile flagellin (FliC) is immunogenic and protective in a murine model of C. difficile infection (CDI) against a clinical C. difficile strain, UK1. Passive protection experiments using anti-FliC polyclonal serum in mice suggest this protection to be antibody-mediated. FliC immunization also was able to afford partial protection against CDI and death in hamsters following challenge with C. difficile 630Δerm. Additionally, immunization against FliC does not have an adverse effect on the normal gut flora of vaccinated hamsters as evidenced by comparing the fecal microbiome of vaccinated and control hamsters. Therefore, the use of FliC as a vaccine candidate against CDI warrants further testing. PMID:26839147

  19. The spore differentiation pathway in the enteric pathogen Clostridium difficile.

    PubMed

    Pereira, Fátima C; Saujet, Laure; Tomé, Ana R; Serrano, Mónica; Monot, Marc; Couture-Tosi, Evelyne; Martin-Verstraete, Isabelle; Dupuy, Bruno; Henriques, Adriano O

    2013-01-01

    Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F) in the forespore, and σ(E) in the mother cell control early stages of development and are replaced, at later stages, by σ(G) and σ(K), respectively. Starting with σ(F), the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E) is partially independent of σ(F), that σ(G) activity is not dependent on σ(E), and that the activity of σ(K) does not require σ(G). We also show that σ(K) is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F)-to-σ(E), σ(E)-to-σ(G), and σ(G)-to-σ(K) cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum. PMID

  20. The Spore Differentiation Pathway in the Enteric Pathogen Clostridium difficile

    PubMed Central

    Pereira, Fátima C.; Saujet, Laure; Tomé, Ana R.; Serrano, Mónica; Monot, Marc; Couture-Tosi, Evelyne; Martin-Verstraete, Isabelle; Dupuy, Bruno; Henriques, Adriano O.

    2013-01-01

    Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σF in the forespore, and σE in the mother cell control early stages of development and are replaced, at later stages, by σG and σK, respectively. Starting with σF, the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σE is partially independent of σF, that σG activity is not dependent on σE, and that the activity of σK does not require σG. We also show that σK is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σF-to-σE, σE-to-σG, and σG-to-σK cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum. PMID:24098139

  1. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B

    PubMed Central

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the “Large clostridial glycosylating toxins.” These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB—together with Toxin A (TcdA)—is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn2+ > Co2+ > Mg2+ >> Ca2+, Cu2+, Zn2+. TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn2+ and 180 µM for Mg2+. TcsL and TcdB further require co-stimulation by monovalent K+ (not by Na+). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K+ and Mg2+ (rather than Mn2+) in mammalian target cells. PMID:27089365

  2. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B.

    PubMed

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the "Large clostridial glycosylating toxins." These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB-together with Toxin A (TcdA)-is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn(2+) > Co(2+) > Mg(2+) > Ca(2+), Cu(2+), Zn(2+). TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn(2+) and 180 µM for Mg(2+). TcsL and TcdB further require co-stimulation by monovalent K⁺ (not by Na⁺). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K⁺ and Mg(2+) (rather than Mn(2+)) in mammalian target cells. PMID:27089365

  3. Efficacy of Oral Vancomycin in Preventing Recurrent Clostridium difficile Infection in Patients Treated With Systemic Antimicrobial Agents.

    PubMed

    Van Hise, Nicholas W; Bryant, Alex M; Hennessey, Erin K; Crannage, Andrew J; Khoury, Jad A; Manian, Farrin A

    2016-09-01

    We compared rates of recurrent Clostridium difficile infection in patients receiving or not receiving oral vancomycin prophylaxis with systemic antimicrobial therapy. The incidence of C. difficile infection was significantly lower in patients receiving prophylaxis (4.2% vs 26.6% in those without prophylaxis; odds ratio, 0.12; 95% confidence interval, .04-.4; P < .001). PMID:27318333

  4. Usefulness of Adjunctive Fecal Calprotectin and Serum Procalcitonin in Individuals Positive for Clostridium difficile Toxin Gene by PCR Assay.

    PubMed

    Popiel, Kristin Y; Gheorghe, Romina; Eastmond, Jennifer; Miller, Mark A

    2015-11-01

    In 54/64 subjects with nosocomial diarrhea, fecal calprotectin levels correlated with the results of stool samples tested for Clostridium difficile toxin gene by PCR. Fecal calprotectin levels can be used as an adjunctive measure to PCR to support the diagnosis of C. difficile infection. PMID:26354814

  5. Usefulness of Adjunctive Fecal Calprotectin and Serum Procalcitonin in Individuals Positive for Clostridium difficile Toxin Gene by PCR Assay

    PubMed Central

    Gheorghe, Romina; Eastmond, Jennifer; Miller, Mark A.

    2015-01-01

    In 54/64 subjects with nosocomial diarrhea, fecal calprotectin levels correlated with the results of stool samples tested for Clostridium difficile toxin gene by PCR. Fecal calprotectin levels can be used as an adjunctive measure to PCR to support the diagnosis of C. difficile infection. PMID:26354814

  6. Clostridium difficile ribotype 033 colitis in a patient following broad-spectrum antibiotic treatment for KPCproducing Klebsiella pneumoniae infection, Italy.

    PubMed

    Grandesso, Stefano; Arena, Fabio; Eseme, Franklin Esoka; Panese, Sandro; Henrici De Angelis, Lucia; Spigaglia, Patrizia; Barbanti, Fabrizio; Rossolini, Gian Maria

    2016-09-01

    This report describes a case of Clostridium difficile ribotype 033 colitis in a patient treated with multiple antibiotics for KPC-producing Klebsiella pneumoniae pancreatitis. Diagnostic, clinical and therapeutic features are discussed. To the best of our knowledge, this is the first case of C. difficile ribotype 033 clinical infection reported from Italy. PMID:27602425

  7. A Novel, Sporicidal Formulation of Ethanol for Glove Decontamination to Prevent Clostridium difficile Hand Contamination During Glove Removal.

    PubMed

    Tomas, Myreen E; Nerandzic, Michelle M; Cadnum, Jennifer L; Mana, Thriveen S C; Jencson, Annette; Sunskesula, Venkata; Kundrapu, Sirisha; Wilson, Brigid M; Donskey, Curtis J

    2016-03-01

    Decontamination of gloves before removal could reduce the risk for contamination of hands of personnel caring for patients with Clostridium difficile infection. We demonstrated that a novel sporicidal formulation of ethanol rapidly reduced C. difficile spores on gloved hands without adverse odor, respiratory irritation, or staining of clothing. PMID:26679745

  8. Antimicrobial Resistance and Reduced Susceptibility in Clostridium difficile: Potential Consequences for Induction, Treatment, and Recurrence of C. difficile Infection

    PubMed Central

    Baines, Simon D.; Wilcox, Mark H.

    2015-01-01

    Clostridium difficile infection (CDI) remains a substantial burden on healthcare systems and is likely to remain so given our reliance on antimicrobial therapies to treat bacterial infections, especially in an aging population in whom multiple co-morbidities are common. Antimicrobial agents are a key component in the aetiology of CDI, both in the establishment of the infection and also in its treatment. The purpose of this review is to summarise the role of antimicrobial agents in primary and recurrent CDI; assessing why certain antimicrobial classes may predispose to the induction of CDI according to a balance between antimicrobial activity against the gut microflora and C. difficile. Considering these aspects of CDI is important in both the prevention of the infection and in the development of new antimicrobial treatments. PMID:27025625

  9. TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm.

    PubMed

    Bakker, Dennis; Smits, Wiep Klaas; Kuijper, Ed J; Corver, Jeroen

    2012-01-01

    In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis, sometimes resulting in colectomy or death. The main virulence factors of C. difficile are toxin A and toxin B. Besides the genes encoding these toxins (tcdA and tcdB), the pathogenicity locus (PaLoc) also contains genes encoding a sigma factor (tcdR) and a putative anti-sigma factor (tcdC). The important role of TcdR as a sigma factor for toxin expression is undisputed, whereas the role of TcdC as an anti-sigma factor, inhibiting toxin expression, is currently the subject of debate. To clarify the role of TcdC in toxin expression, we generated an isogenic ClosTron-based mutant of tcdC in Clostridium difficile strain 630Δ Erm (CT::tcdC) and determined the transcription levels of the PaLoc genes and the expression levels of the toxins in the wild type strain and the tcdC mutant strain. We found only minor differences in transcription levels of the PaLoc genes between the wild type and CT::tcdC strains and total toxin levels did not significantly differ either. These results suggest that in C. difficile 630Δerm TcdC is not a major regulator of toxin expression under the conditions tested. PMID:22912837

  10. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects

    PubMed Central

    Di Bella, Stefano; Ascenzi, Paolo; Siarakas, Steven; Petrosillo, Nicola; di Masi, Alessandra

    2016-01-01

    Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies. PMID:27153087

  11. Specific detection of toxigenic strains of Clostridium difficile in stool specimens.

    PubMed Central

    Gumerlock, P H; Tang, Y J; Weiss, J B; Silva, J

    1993-01-01

    Clostridium difficile is the infectious agent responsible for antibiotic-associated colitis. We report the use of the polymerase chain reaction technique to identify toxigenic strains of C. difficile in human stool specimens. A set of primers based on the nucleotide sequence of the toxin B gene, which amplified a 399-bp fragment from isolates producing toxin B, was designed. We examined 28 known toxigenic strains, which were all positive by this assay. DNAs from the nontoxigenic strains examined and from strains of Clostridium sordellii and C. bifermentans were not amplified with these primers. The sensitivity of this assay allowed us to identify as little as 10% toxigenic C. difficile cells in the presence of 90% nontoxigenic cells and to detect the toxin B gene in 1 pg of DNA from a toxigenic strain. DNAs extracted from 18 clinical stool specimens that were positive for toxin B by the tissue culture cytotoxicity assay were also positive by this assay. In addition, we detected toxin B sequences in DNA from 2 of 18 stool specimens that were negative for toxin B by the cytotoxicity assay. These two stool specimens were from patients who had a clinical pattern of colitis that was compatible with C. difficile causation. This rapid, sensitive assay will be useful for specific identification of toxigenic C. difficile and for revealing cases that are undetected by analysis of fecal samples for toxin B alone. Images PMID:8458943

  12. Clostridium difficile in retail baskets, trolleys, conveyor belts, and plastic bags in Saudi Arabia

    PubMed Central

    Alqumber, Mohammed A.

    2014-01-01

    Objectives: To determine Clostridium difficile (C. difficile) prevalence on retail surfaces and shoppers plastic bags. Methods: From 20 June to 10 August 2011, in a cross-sectional epidemiological study, 17 supermarkets from 2 cities, Albaha and Altaif, Saudi Arabia were sampled. A total of 800 samples, which comprised 200 samples per surveyed surface, were studied. These included baskets, trolleys, conveyer belts, and outgoing shoppers’ plastic bags. Clostridium difficile strains were isolated. The isolates were characterized using ribotyping and polymerase chain reaction for the detection of toxin A (tcdA), toxin B (tcdB), binary toxin (cdtB), and toxin C (tcdC) genes. Susceptibility to antibiotics was determined on a Muller-Hinton agar with 5% sheep blood agar using E-tests. Results: Overall, the C. difficile prevalence on sampled surfaces was 0.75%. The highest prevalence was found on retail baskets and trolleys, followed by plastic bags. A total of 5 different ribotypes were identified. Alterations in tcdC were detected in ribotype 027 and BT1. All the identified isolates were susceptible to vancomycin, but resistant to levofloxacin. Conclusion: In this study, C. difficile was present at a rate of 0.75% on supermarket surfaces. Spore disinfection of implicated surfaces may be necessary to control any community-acquired infections caused by this pathogen. PMID:25316477

  13. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile

    PubMed Central

    Buffie, Charlie G.; Bucci, Vanni; Stein, Richard R.; McKenney, Peter T.; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R. M.; Jenq, Robert R.; Taur, Ying; Sander, Chris; Cross, Justin; Toussaint, Nora C.; Xavier, Joao B.; Pamer, Eric G.

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens1. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens2. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhea, greatly increases morbidity and mortality in hospitalized patients3. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. By treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile, we correlated loss of specific bacterial taxa with development of infection. Mathematical modeling augmented by microbiota analyses of hospitalized patients identified resistance-associated bacteria common to mice and humans. Using these platforms, we determined that Clostridium scindens, a bile acid 7-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid-dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses and mathematical modeling, we identified a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk for C. difficile infection. PMID:25337874

  14. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile

    NASA Astrophysics Data System (ADS)

    Buffie, Charlie G.; Bucci, Vanni; Stein, Richard R.; McKenney, Peter T.; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R. M.; Jenq, Robert R.; Taur, Ying; Sander, Chris; Cross, Justin R.; Toussaint, Nora C.; Xavier, Joao B.; Pamer, Eric G.

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.

  15. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase

    PubMed Central

    Donnelly, M. Lauren; Fimlaid, Kelly A.

    2016-01-01

    ABSTRACT The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes. IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized

  16. [Recent epidemiology of Clostridium difficile infection in Japan].

    PubMed

    Yamagishi, Yuka; Mikamo, Hiroshige

    2015-12-01

    Clostridium difficile (C. difficile) is a major pathogen for diarrhea in hospitalized patients and because of outbreak of highly virulent strain in EU and US, increased length of hospital stay and increased numbers of severe patients and deaths have become major challenges. In recent years, transmissions through community-acquired or food-borne infections are reported. National surveillance has been already performed overseas. Guidelines for preventing C. difficile infection (CDI) is available, and education activities are promoted for preventing the infection spread. Meanwhile, in Japan, medical hospitals are reporting individual CDI incidence, however, a large-scale research has not been conducted up to the present date and therefore the entire status of CDI including infection of the highly virulent strain has yet to be revealed. This time, we performed a questionnaire-based survey at 2,537 hospitals nationwide between April 15, 2013 and May 31, 2013 to investigate CDI incidence, diagnosis and treatment. Valid responses were obtained from 321 hospitals. Regarding the annual number of CDI patients at all the hospitals, the highest group of hospitals responding "1 to 5 patients a year" was 17.8%, and the second highest group of hospitals responding "no patients a year" was 13.1%. In contrast, there was a group of hospitals with "more than 101 patients a year", which was 3.1%. This indicates that there was the difference in the CDI incidences among hospitals. According to the questionnaire results, a highest group of hospitals responding "0-20%" for CDI patients with serious complication such as toxic megacolon, gastrointestinal perforation, ileus paralytic, bacteremia, sepsis, crohn's disease, and ulcerative colitis was 62.6%, and for CDI patients with recurrence more than one, a group of hospitals answering "0 to 20%" was 56.4%, which was the highest. This suggested that there was only a small number of serious CDI patients and recurrence CDI patients in Japan

  17. Impact of Clinical Symptoms on Interpretation of Diagnostic Assays for Clostridium difficile Infections▿

    PubMed Central

    Dubberke, Erik R.; Han, Zhuolin; Bobo, Linda; Hink, Tiffany; Lawrence, Brenda; Copper, Susan; Hoppe-Bauer, Joan; Burnham, Carey-Ann D.; Dunne, William Michael

    2011-01-01

    Asymptomatic Clostridium difficile colonization is common in hospitalized patients. Existing C. difficile assay comparisons lack data on severity of diarrhea or patient outcomes, limiting the ability to interpret their results in regard to the diagnosis of C. difficile infection (CDI). The objective of this study was to measure how including patient presentation with the C. difficile assay result impacted assay performance to diagnose CDI. Stool specimens from 150 patients that met inclusion and exclusion criteria were selected. Nine methods to detect C. difficile in stool were evaluated. All patients were interviewed prospectively to assess diarrhea severity. We then assessed how different reference standards, with and without the inclusion of patient presentation, impact the sensitivity, specificity, and positive and negative predictive values of the assays to diagnose CDI. There were minimal changes in sensitivity; however, specificity was significantly lower for the assays Tox A/B II, C. diff Chek-60, BD GeneOhm Cdiff, Xpert C. difficile, and Illumigene C. difficile and for toxigenic culture (P was <0.01 for all except Tox A/B II from fresh stool, for which the P value was 0.016) when the reference standard was recovery of toxigenic C. difficile from stool plus the presence of clinically significant diarrhea compared to when the reference standard was having at least four assays positive while ignoring diarrhea severity. There were 15 patients whose assay result was reported as negative but subsequently found to be positive by at least four assays in the comparison. None suffered from any CDI-related adverse events. In conclusion, clinical presentation is important when interpreting C. difficile diagnostic assays. PMID:21697328

  18. Clostridium difficile infection: Early history, diagnosis and molecular strain typing methods.

    PubMed

    Rodriguez, C; Van Broeck, J; Taminiau, B; Delmée, M; Daube, G

    2016-08-01

    Recognised as the leading cause of nosocomial antibiotic-associated diarrhoea, the incidence of Clostridium difficile infection (CDI) remains high despite efforts to improve prevention and reduce the spread of the bacterium in healthcare settings. In the last decade, many studies have focused on the epidemiology and rapid diagnosis of CDI. In addition, different typing methods have been developed for epidemiological studies. This review explores the history of C. difficile and the current scope of the infection. The variety of available laboratory tests for CDI diagnosis and strain typing methods are also examined. PMID:27238460

  19. First isolation of Clostridium difficile PCR-ribotype 027/toxinotype III in Poland.

    PubMed

    Pituch, Hanna; Bakker, Dennis; Kuijper, Ed; Obuch-Woszczatyński, Piotr; Wultańska, Dorota; Nurzyńska, Grazyna; Bielec, Anna; Bar-Andziak, Ewa; Łuczak, Mirosław

    2008-01-01

    Of 175 Clostridium difficile strains isolated from patient hospitalized in one academic hospital in Warsaw between 2005-2006, one isolate belonged to PCR-ribotype 027/toxinotype III. This isolate had tcdA, tcdB, binary toxin genes (cdtA and cdtB), a 18-bp deletion and a 1 bp deletion at 117 position in the tcdC gene. Antimicrobial susceptibility tests revealed high level resistance to erythromycin, moxifloxacin and gatifloxacin. This is a first report of the 027 strain of C. difficile in Poland. PMID:19004250

  20. Ultrasensitive Detection and Quantification of Toxins for Optimized Diagnosis of Clostridium difficile Infection

    PubMed Central

    2015-01-01

    Recently developed ultrasensitive and quantitative methods for detection of Clostridium difficile toxins provide new tools for diagnosis and, potentially, for management of C. difficile infection (CDI). Compared to methods that detect toxigenic organism, ultrasensitive toxin detection may allow diagnosis of CDI with increased clinical specificity, without sacrificing clinical sensitivity; measurement of toxin levels may also provide information relevant to disease prognosis. This minireview provides an overview of these new toxin detection technologies and considers what these new tools might add to the field. PMID:26659205

  1. Comparative Microbiological Studies of Transcription Inhibitors Fidaxomicin and the Rifamycins in Clostridium difficile

    PubMed Central

    Seddon, Jaime; Sears, Pamela

    2014-01-01

    Fidaxomicin (FDX) is a narrow-spectrum antibiotic for the treatment of Clostridium difficile-associated diarrhea. While FDX and rifamycins share the same target (RNA polymerase), FDX exhibits a unique mode of action distinct from that of rifamycins. In comparative microbiological studies with C. difficile, FDX interacted synergistically with rifamycins, demonstrated a lower propensity for the development of resistance to rifamycins, and exhibited no cross-resistance with rifamycins. These results highlight differences in the mechanisms of action of FDX and rifamycins. PMID:24550338

  2. Information about the Current Strain of Clostridium difficile

    MedlinePlus

    ... Buttons and Badges Additional CDC Patient Safety Websites Antibiotic Resistance Blood Safety Dialysis Safety Get Smart for Healthcare ... for C. difficile infection includes, if possible, stopping antibiotics being ... resistance in enterococci, current guidelines recommend the first-line ...

  3. Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey.

    PubMed

    Indra, Alexander; Schmid, Daniela; Huhulescu, Steliana; Simons, Erica; Hell, Markus; Stickler, Karl; Allerberger, Franz

    2015-08-01

    A prospective, noninterventional survey was conducted among Clostridium difficile positive patients identified in the time period of July until October 2012 in 18 hospitals distributed across all nine Austrian provinces. Participating hospitals were asked to send stool samples or isolates from ten successive patients with C.difficile infection to the National Clostridium difficile Reference Laboratory at the Austrian Agency for Health and Food Safety for PCR-ribotyping and in vitro susceptibility testing. A total of 171 eligible patients were identified, including 73 patients with toxin-positive stool specimens and 98 patients from which C. difficile isolates were provided. Of the 159 patients with known age, 127 (74.3%) were 65 years or older, the median age was 76 years (range: 9-97 years), and the male to female ratio 2.2. Among these patients, 73% had health care-associated and 20% community-acquired C. difficile infection (indeterminable 7%). The all-cause, 30-day mortality was 8.8% (15/171). Stool samples yielded 46 different PCR-ribotypes, of which ribotypes 027 (20%), 014 (15.8%), 053 (10.5%), 078 (5.3%), and 002 (4.7%) were the five most prevalent. Ribotype 027 was found only in the provinces Vienna, Burgenland, and Lower Austria. Severe outcome of C. difficile infection was found to be associated with ribotype 053 (prevalence ratio: 3.04; 95% CI: 1.24, 7.44), not with the so-called hypervirulent ribotypes 027 and 078. All 027 and 053 isolates exhibited in vitro resistance against moxifloxacin. Fluoroquinolone use in the health care setting must be considered as a factor favoring the spread of these fluoroquinolone resistant C. difficile clones. PMID:26156942

  4. Prevalence of Clostridium difficile in raw beef, cow, sheep, goat, camel and buffalo meat in Iran

    PubMed Central

    2014-01-01

    Background Clostridium difficile has been shown to be a nosocomial pathogen associated with diarrhoea and pseudomembranous colitis in hospitalised patients and the infection is believed to be acquired nosocomially. Recent studies have shown the occurrence of C. difficile in food animals which may act as a source of infection to humans.The aim of this study was to determine the occurrence of C. difficile in retail raw beef, cow, sheep, goat, camel and buffalo meat in Iran. Method From April to October 2012, a total of 660 raw meat samples from beef, cow, sheep, goat, camel and buffalo were purchased from 49 butcheries in Isfahan and Khuzestan provinces, Iran, and were evaluated for the presence of C. difficile using a method including selective enrichment in C. difficile broth, subsequent alcohol shock-treatment and plating onto C. difficile selective medium. C. difficile isolates were tested for the presence of toxin genes and were typed using PCR ribotyping. Results In this study, 13 of 660 meat samples (2%) were contaminated with C. difficile. The highest prevalence of C. difficile was found in buffalo meat (9%), followed by goat meat (3.3%), beef meat (1.7%), cow (0.94%) and sheep meat (0.9%). Seven of the 13C. difficile strains (53.9%) were positive for tcdA, tcdB and cdtB toxin genes and were classified as ribotype 078. Four strains (30.8%) were positive tcdA, and tcdB, and one strain (7.7%) was possessed only tcdB. The remaining isolate was non-toxigenic. Susceptibilities of 13C. difficile isolates were determined for 11 antimicrobial drugs using the disk diffusion assay. Resistance to clindamycin, gentamycin, and nalidixic acid was the most common finding. Conclusions To our knowledge, the present study is the first report of the isolation of C. difficile from raw buffalo meat. This study indicates the potential importance of food, including buffalo meat, as a source of transmission of C. difficile to humans. PMID:24499381

  5. Structure and function of a Clostridium difficile sortase enzyme

    PubMed Central

    Chambers, Christopher J.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2015-01-01

    Sortase enzymes are responsible for covalent anchoring of specific proteins to the peptidoglycan of the cell wall of gram-positive bacteria. In some gram-positive bacteria (e.g. Staphylococcus aureus), sortases have been found to be essential for pathogenesis and their inhibitors are under development as potential novel therapeutics. Here we provide the first report on the structural characterisation of the C. difficile sortase. An active site mutant was crystallised and its structure determined to 2.55 Å by X-ray diffraction to provide structural insight into its catalytic mechanism. In order to elucidate the role of the sortase in the cell wall biogenesis, a C. difficile sortase knockout strain was constructed by intron mutagenesis. Characterisation of this mutant led to the discovery that the putative adhesin CD0386 is anchored to the peptidoglycan of C. difficile by the sortase SrtB and that an SPKTG peptide motif is involved in the transpeptidation reaction with the C. difficile peptidoglycan. In an animal model for C. difficile infection, the SrtB mutant caused disease at a similar rate of onset as the wild type strain. In conclusion, our detailed study shows that the SrtB enzyme from C. difficile does not play an essential role in pathogenesis. PMID:25801974

  6. Community-acquired Clostridium difficile infection: an increasing public health threat

    PubMed Central

    Gupta, Arjun; Khanna, Sahil

    2014-01-01

    There has been a startling shift in the epidemiology of Clostridium difficile infection over the last decade worldwide, and it is now increasingly recognized as a cause of diarrhea in the community. Classically considered a hospital-acquired infection, it has now emerged in populations previously considered to be low-risk and lacking the traditional risk factors for C. difficile infection, such as increased age, hospitalization, and antibiotic exposure. Recent studies have demonstrated great genetic diversity for C. difficile, pointing toward diverse sources and a fluid genome. Environmental sources like food, water, and animals may play an important role in these infections, apart from the role symptomatic patients and asymptomatic carriers play in spore dispersal. Prospective strain typing using highly discriminatory techniques is a possible way to explore the suspected diverse sources of C. difficile infection in the community. Patients with community-acquired C. difficile infection do not necessarily have a good outcome and clinicians should be aware of factors that predict worse outcomes in order to prevent them. This article summarizes the emerging epidemiology, risk factors, and outcomes for community-acquired C. difficile infection. PMID:24669194

  7. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins

    PubMed Central

    Chen, Shuyi; Sun, Chunli; Wang, Haiying; Wang, Jufang

    2015-01-01

    Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea prevailing in hospital settings. In the past decade, the morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Toxin A (TcdA) and toxin B (TcdB), the two exotoxins of C. difficile, are the major virulence factors of CDI. The common mode of action of TcdA and TcdB is elicited by specific glucosylation of Rho-GTPase proteins in the host cytosol using UDP-glucose as a co-substrate, resulting in the inactivation of Rho proteins. Rho proteins are the key members in many biological processes and signaling pathways, inactivation of which leads to cytopathic and cytotoxic effects and immune responses of the host cells. It is supposed that Rho GTPases play an important role in the toxicity of C. difficile toxins. This review focuses on recent progresses in the understanding of functional consequences of Rho GTPases glucosylation induced by C. difficile toxins and the role of Rho GTPases in the toxicity of TcdA and TcdB. PMID:26633511

  8. Clostridium difficile glutamate dehydrogenase is a secreted enzyme that confers resistance to H2O2

    PubMed Central

    Girinathan, Brintha Prasummanna; Braun, Sterling E.

    2014-01-01

    Clostridium difficile produces an NAD-specific glutamate dehydrogenase (GDH), which converts l-glutamate into α-ketoglutarate through an irreversible reaction. The enzyme GDH is detected in the stool samples of patients with C. difficile-associated disease and serves as one of the diagnostic tools to detect C. difficile infection (CDI). We demonstrate here that supernatant fluids of C. difficile cultures contain GDH. To understand the role of GDH in the physiology of C. difficile, an isogenic insertional mutant of gluD was created in strain JIR8094. The mutant failed to produce and secrete GDH as shown by Western blot analysis. Various phenotypic assays were performed to understand the importance of GDH in C. difficile physiology. In TY (tryptose yeast extract) medium, the gluD mutant grew slower than the parent strain. Complementation of the gluD mutant with the functional gluD gene reversed the growth defect in TY medium. The presence of extracellular GDH may have a functional role in the pathogenesis of CDI. In support of this assumption we found higher sensitivity to H2O2 in the gluD mutant as compared to the parent strain. Complementation of the gluD mutant with the functional gluD gene reversed the H2O2 sensitivity. PMID:24145018

  9. Gastrointestinal carriage of Clostridium difficile in cats and dogs attending veterinary clinics.

    PubMed

    Riley, T V; Adams, J E; O'Neill, G L; Bowman, R A

    1991-12-01

    Cats and dogs being treated at two veterinary clinics were investigated for gastrointestinal carriage of Clostridium difficile using selective solid and enrichment media. Thirty-two (39.5%) of 81 stool samples yielded C. difficile. There were significant differences in isolation rates between clinics, 61.0% of animals being positive at one clinic compared to 17.5% at the other (Chi-square, P less than 0.005). Of 29 animals receiving antibiotics, 15 (52.0%) harboured C. difficile while 11 (23.9%) of 46 animals not receiving antibiotics were positive (Chi-square, P less than 0.01). There was no difference in carriage rate between cats (38.1%) and dogs (40.0%). The environment at both veterinary clinics was surveyed for the presence of C. difficile. Fifteen of 20 sites at one clinic were positive compared to 6 of 14 sites at the other clinic. Both cytotoxigenic and noncytotoxigenic isolates of C. difficile were recovered from animals and environmental sites. These findings suggest that household pets may be a potentially significant reservoir of infection with C. difficile. PMID:1752313

  10. Isolation of Clostridium difficile from the environment and contacts of patients with antibiotic-associated colitis

    SciTech Connect

    Kim, K.H.; Fekety, R.; Batts, D.H.; Brown, D.; Cudmore, M.; Silva, J. Jr.; Waters, D.

    1981-01-01

    Clostridium difficile is the most important cause of antibiotic-associated colitis, but its epidemiology remains unknown. Using a selective medium for the isolation of C. difficile, cultures were obtained from the environment and contacts of hospitalized patients carrying C. difficile in their stools. In areas where carriers had diarrhea, 85 (9.3%) of 910 cultures of floors and other surfaces, especially those subject to fecal contamination, were positive. In areas where there were no known carriers, only 13 (2.6%) of 497 cultures of similar sites were positive (P less than 0.005). C difficile was isolated from hands and stools of asymptomatic hospital personnel, from sewage and soil, and from the home of a patient. Environmental isolates were toxigenic. C. difficile inoculated onto a floor persisted there for five months. Further studies are needed to document how often floor persisted there for five months. Further studies are needed to document how often C. difficile shed by patients with antibiotic-associated colitis is acquired by other persons and whether isolation precautions are capable of limiting the organism's spread.

  11. Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB.

    PubMed

    Wasels, François; Monot, Marc; Spigaglia, Patrizia; Barbanti, Fabrizio; Ma, Laurence; Bouchier, Christiane; Dupuy, Bruno; Mastrantonio, Paola

    2014-12-01

    Resistance to the macrolide-lincosamide-streptogramin B group of antibiotics in Clostridium difficile is generally due to erm(B) genes. Tn6194, a conjugative transposon initially detected in PCR-ribotype 027 isolates, is an erm(B)-containing element also detected in other relevant C. difficile PCR-ribotypes. In this study, the genome of a C. difficile PCR-ribotype 001 strain was sequenced, and an element with two nucleotidic changes compared to Tn6194 was detected. This element was transferred by filter mating assays to recipient strains of C. difficile belonging to PCR-ribotype 009 and 027 and to a recipient strain of Enterococcus faecalis. Transconjugants were characterized by Southern blotting and genome sequencing, and integration sites in all transconjugants were identified. The element integrated the genome of C. difficile at different sites and the genome of E. faecalis at a unique site. This study is the first molecular characterization of an erm(B)-containing conjugative transposon in C. difficile and provides additional evidence of the antibiotic resistance transmission risk among pathogenic bacteria occupying the same human intestinal niche. PMID:25055190

  12. Pleiotropic role of the RNA chaperone protein Hfq in the human pathogen Clostridium difficile.

    PubMed

    Boudry, P; Gracia, C; Monot, M; Caillet, J; Saujet, L; Hajnsdorf, E; Dupuy, B; Martin-Verstraete, I; Soutourina, O

    2014-09-01

    Clostridium difficile is an emergent human pathogen and the most common cause of nosocomial diarrhea. Our recent data strongly suggest the importance of RNA-based mechanisms for the control of gene expression in C. difficile. In an effort to understand the function of the RNA chaperone protein Hfq, we constructed and characterized an Hfq-depleted strain in C. difficile. Hfq depletion led to a growth defect, morphological changes, an increased sensitivity to stresses, and a better ability to sporulate and to form biofilms. The transcriptome analysis revealed pleiotropic effects of Hfq depletion on gene expression in C. difficile, including genes encoding proteins involved in sporulation, stress response, metabolic pathways, cell wall-associated proteins, transporters, and transcriptional regulators and genes of unknown function. Remarkably, a great number of genes of the regulon dependent on sporulation-specific sigma factor, SigK, were upregulated in the Hfq-depleted strain. The altered accumulation of several sRNAs and interaction of Hfq with selected sRNAs suggest potential involvement of Hfq in these regulatory RNA functions. Altogether, these results suggest the pleiotropic role of Hfq protein in C. difficile physiology, including processes important for the C. difficile infection cycle, and expand our knowledge of Hfq-dependent regulation in Gram-positive bacteria. PMID:24982306

  13. Prospects for flavonoid and related phytochemicals as nature-inspired treatments for Clostridium difficile infection

    PubMed Central

    Wu, Xiaoqian; Alam, Zahidul; Feng, Li; Tsutsumi, Lissa S.; Sun, Dianqing; Hurdle, Julian G.

    2013-01-01

    Aims There is a need for novel treatments for Clostridium difficile infection (CDI). Antibacterial flavonoids are part of a large family of polyphenol phytochemicals with a long history of use in ethnomedicine, but are unexamined against C. difficile. We explored their anti-difficile properties. Methods and Results Anti-difficile activities were determined for several naturally occurring flavonoids, olympicin A and synthetic 4-chromanone and chalcone analogs. With the exception of olympicin A, most naturally occurring phytochemicals tested were poorly active. Diversified synthetic flavonoids resembling olympicin A retained anti-difficile activity, suggesting olympicin A could act as a pharmacophore to obtain novel agents. They also demonstrated concentration dependent killing of logarithmic and stationary phase cultures and reduced sporulation and toxin production. Olympicin A and some synthetic flavonoids dissipated the bacterial transmembrane potential. Interestingly, mutants could only be selected with the analog 207 at a frequency of 10-9. Conclusions Based on the potent anti-difficile properties of olympicin A and modified flavonoids, further exploration of this class of phytochemicals is warranted. Significance and Impact of the Study CDI is a major problem in developed countries. These studies point to there being an avenue for optimizing plant-derived flavonoids, and related antibacterial phytochemicals, as nature-inspired approaches to treat CDI. PMID:24479135

  14. Pleiotropic Role of the RNA Chaperone Protein Hfq in the Human Pathogen Clostridium difficile

    PubMed Central

    Boudry, P.; Gracia, C.; Monot, M.; Caillet, J.; Saujet, L.; Hajnsdorf, E.; Dupuy, B.; Martin-Verstraete, I.

    2014-01-01

    Clostridium difficile is an emergent human pathogen and the most common cause of nosocomial diarrhea. Our recent data strongly suggest the importance of RNA-based mechanisms for the control of gene expression in C. difficile. In an effort to understand the function of the RNA chaperone protein Hfq, we constructed and characterized an Hfq-depleted strain in C. difficile. Hfq depletion led to a growth defect, morphological changes, an increased sensitivity to stresses, and a better ability to sporulate and to form biofilms. The transcriptome analysis revealed pleiotropic effects of Hfq depletion on gene expression in C. difficile, including genes encoding proteins involved in sporulation, stress response, metabolic pathways, cell wall-associated proteins, transporters, and transcriptional regulators and genes of unknown function. Remarkably, a great number of genes of the regulon dependent on sporulation-specific sigma factor, SigK, were upregulated in the Hfq-depleted strain. The altered accumulation of several sRNAs and interaction of Hfq with selected sRNAs suggest potential involvement of Hfq in these regulatory RNA functions. Altogether, these results suggest the pleiotropic role of Hfq protein in C. difficile physiology, including processes important for the C. difficile infection cycle, and expand our knowledge of Hfq-dependent regulation in Gram-positive bacteria. PMID:24982306

  15. A Diagnostic Algorithm for the Detection of Clostridium difficile-Associated Diarrhea

    PubMed Central

    Yoldaş, Özlem; Altındiş, Mustafa; Cufalı, Davut; Aşık, Gülşah; Keşli, Recep

    2016-01-01

    Background: Clostridium difficile is a common cause of hospital-acquired diarrhea, which is usually associated with previous antibiotic use. The clinical manifestations of C. difficile infection (CDI) may range from mild diarrhea to fulminant colitis. Clostridium difficile should be considered in diarrhea cases with a history of antibiotic use within the last 8 weeks (community-associated CDI) or with a hospital stay of at least 3 days, regardless of the duration of antibiotic use (hospital-acquired CDI). Aims: This study investigated the frequency of CDI in diarrheic patients and evaluated the efficacy of the triple diagnostic algorithm that is proposed here for C. difficile detection. Study Design: Cross-sectional study. Methods: In this study, we compared three methods currently employed for C. difficile detection using 95 patient stool samples: an enzyme immunoassay (EIA) for toxin A/B (C. diff Toxin A+B; Diagnostic Automation Inc.; Calabasas, CA, USA), an EIA for glutamate dehydrogenase (GDH) (C. DIFF CHEK-60TM, TechLab Inc.; Blacksburg, VA, USA), and a polymerase chain reaction (PCR)-based assay (GeneXpert® C. difficile; Cepheid, Sunnyvale, CA, USA) that detects C. difficile toxin genes and conventional methods as well. In this study, 50.5% of the patients were male, 50 patients were outpatients, 32 were from inpatient clinics and 13 patients were from the intensive care unit. Results: Of the 95 stool samples tested for GDH, 28 were positive. Six samples were positive by PCR, while nine samples were positive for toxin A/B. The hypervirulent strain NAP-1 and binary toxin was not detected. The rate of occurrence of toxigenic C. difficile was 5.1% in the samples. Cefaclor, ampicillin-sulbactam, ertapenem, and piperacillin-tazobactam were the most commonly used antibiotics by patients preceding the onset of diarrhea. Among the patients who were hospitalized in an intensive care unit for more than 7 days, 83.3% were positive for CDI by PCR screening. If the PCR

  16. Toxin-Specific Antibodies for the Treatment of Clostridium difficile: Current Status and Future Perspectives †

    PubMed Central

    Hussack, Greg; Tanha, Jamshid

    2010-01-01

    Therapeutic agents targeting bacterial virulence factors are gaining interest as non-antibiotic alternatives for the treatment of infectious diseases. Clostridium difficile is a Gram-positive pathogen that produces two primary virulence factors, enterotoxins A and B (TcdA and TcdB), which are responsible for Clostridium difficile-associated disease (CDAD) and are targets for CDAD therapy. Antibodies specific for TcdA and TcdB have been shown to effectively treat CDAD and prevent disease relapse in animal models and in humans. This review summarizes the various toxin-specific antibody formats and strategies under development, and discusses future directions for CDAD immunotherapy, including the use of engineered antibody fragments with robust biophysical properties for systemic and oral delivery. PMID:22069622

  17. A novel regulator controls Clostridium difficile sporulation, motility and toxin production.

    PubMed

    Edwards, Adrianne N; Tamayo, Rita; McBride, Shonna M

    2016-06-01

    Clostridium difficile is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gene CD3668 reduces sporulation and increases toxin production and motility. This mutant was more virulent and exhibited increased toxin gene expression in the hamster model of infection. Based on these phenotypes, we have renamed this locus rstA, for regulator of sporulation and toxins. Our data demonstrate that RstA is a bifunctional protein that upregulates sporulation through an unidentified pathway and represses motility and toxin production by influencing sigD transcription. Conserved RstA orthologs are present in other pathogenic and industrial Clostridium species and may represent a key regulatory protein controlling clostridial sporulation. PMID:26915493

  18. [Treatment of a severe Clostridium difficile infection with colonic lavages. Report of one case].

    PubMed

    Quezada, Felipe; Castillo, Richard; Villalón, Constanza; Zúñiga, José Miguel; Manterola, Carla; Molina, María Elena; Bellolio, Felipe; Urrejola, Gonzalo

    2015-05-01

    A loop ileostomy with intraoperative anterograde colonic lavage has been described as an alternative to colectomy in the management of cases of Clostridium difficile infection refractory to medical treatment. We report a 69 years old diabetic women admitted with a septic shock. An abdominal CAT scan showed a pan-colitis that seemed to be infectious. A polymerase chain reaction was positive for Clostridium Difficile. Due to the failure to improve after full medical treatment, a derivative loop ileostomy and intra-operatory colonic lavage were performed, leaving a Foley catheter in the proximal colon. In the postoperative period, anterograde colonic instillations of Vancomycin flushes through the catheter were performed every 6 hours. Forty eight hours after surgery, the patient improved. A colonoscopy prior to discharge showed resolution of the pseudomembranous colitis. PMID:26203580

  19. Initiation of Sporulation in Clostridium difficile: a Twist on the Classic Model

    PubMed Central

    Edwards, Adrianne N.; McBride, Shonna M.

    2014-01-01

    The formation of dormant endospores is a complex morphological process that permits long-term survival in inhospitable environments for many Gram-positive bacteria. Sporulation for the anaerobic gastrointestinal pathogen Clostridium difficile is necessary for survival outside of the gastrointestinal tract of its host. While the developmental stages of spore formation are largely conserved amongst endospore-forming bacteria, the genus Clostridium appears to be missing a number of conserved regulators required for efficient sporulation in other spore forming bacteria. Several recent studies have discovered novel mechanisms and distinct regulatory pathways that control the initiation of sporulation and early sporulation-specific gene expression. These differences in regulating the decision to undergo sporulation reflects the unique ecological niche and environmental conditions that C. difficile inhabits and encounters within the mammalian host. PMID:24910370

  20. Ion-Exchange Chromatography to Analyze Components of a Clostridium difficile Vaccine.

    PubMed

    Rustandi, Richard R; Wang, Feng; Lancaster, Catherine; Kristopeit, Adam; Thiriot, David S; Heinrichs, Jon H

    2016-01-01

    Ion-exchange (IEX) chromatography is one of many separation techniques that can be employed to analyze proteins. The separation mechanism is based on a reversible interaction between charged amino acids of a protein to the charged ligands attached to a column at a given pH. This interaction depends on both the pI and conformation of the protein being analyzed. The proteins are eluted by increasing the salt concentration or pH gradient. Here we describe the use of this technique to characterize the charge variant heterogeneities and to monitor stability of four protein antigen components of a Clostridium difficile vaccine. Furthermore, the IEX technique can be used to monitor reversion to toxicity for formaldehyde-treated Clostridium difficile toxins. PMID:27507348

  1. The potential for airborne dispersal of Clostridium difficile from symptomatic patients.

    PubMed

    Best, Emma L; Fawley, Warren N; Parnell, Peter; Wilcox, Mark H

    2010-06-01

    BACKGROUND. The high transmissibility and widespread environmental contamination by Clostridium difficile suggests the possibility of airborne dissemination of spores. We measured airborne and environmental C. difficile adjacent to patients with symptomatic C. difficile infection (CDI). METHODS. We conducted air sampling adjacent to 63 patients with CDI for 180 h in total and for 101 h in control settings. Environmental samples were obtained from surfaces adjacent to the patient and from communal areas of the ward. C. difficile isolates were characterized by ribotyping and multilocus variable-number tandem-repeat analysis to determine relatedness. RESULTS. Of the first 50 patients examined (each for 1 h), only 12% had positive air samples, most frequently those with active symptoms of CDI (10%, vs 2% for those with no symptoms). We intensively sampled the air around 10 patients with CDI symptoms, each for 10 h over 2 days, as well as a total of 346 surface sites. C. difficile was isolated from the air in the majority of these cases (7 of 10 patients tested) and from the surfaces around 9 of the patients; 60% of patients had both air and surface environments that were positive for C. difficile. Molecular characterization confirmed an epidemiological link between airborne dispersal, environmental contamination, and CDI cases. CONCLUSIONS. Aerosolization of C. difficile occurs commonly but sporadically in patients with symptomatic CDI. This may explain the widespread dissemination of epidemic strains. Our results emphasize the importance of single-room isolation as soon as possible after the onset of diarrhea to limit the dissemination of C. difficile. PMID:20415567

  2. New Role for Human α-Defensin 5 in the Fight against Hypervirulent Clostridium difficile Strains

    PubMed Central

    Baldan, Rossella; Bianchini, Valentina; Ossi, Cristina; Cichero, Paola; Cirillo, Daniela M.

    2014-01-01

    Clostridium difficile infection (CDI), one of the most common hospital-acquired infections, is increasing in incidence and severity with the emergence and diffusion of hypervirulent strains. CDI is precipitated by antibiotic treatment that destroys the equilibrium of the gut microbiota. Human α-defensin 5 (HD5), the most abundant enteric antimicrobial peptide, is a key regulator of gut microbiota homeostasis, yet it is still unknown if C. difficile, which successfully evades killing by other host microbicidal peptides, is susceptible to HD5. We evaluated, by means of viability assay, fluorescence-activated cell sorter (FACS) analysis, and electron microscopy, the antimicrobial activities of α-defensins 1 and 5 against a panel of C. difficile strains encompassing the most prevalent epidemic and hypervirulent PCR ribotypes in Europe (012, 014/020, 106, 018, 027, and 078). Here we show that (i) concentrations of HD5 within the intestinal physiological range produced massive C. difficile cell killing; (ii) HD5 bactericidal activity was mediated by membrane depolarization and bacterial fragmentation with a pattern of damage peculiar to C. difficile bacilli, compared to commensals like Escherichia coli and Enterococcus faecalis; and (iii) unexpectedly, hypervirulent ribotypes were among the most susceptible to both defensins. These results support the notion that HD5, naturally present at very high concentrations in the mucosa of the small intestine, could indeed control the very early steps of CDI by killing C. difficile bacilli at their germination site. As a consequence, HD5 can be regarded as a good candidate for the containment of hypervirulent C. difficile strains, and it could be exploited in the therapy of CDI and relapsing C. difficile-associated disease. PMID:25547793

  3. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection

    PubMed Central

    2016-01-01

    Clostridium difficile epidemiology has changed in recent years, with the emergence of highly virulent types associated with severe infections, high rates of recurrences and mortality. Antibiotic resistance plays an important role in driving these epidemiological changes and the emergence of new types. While clindamycin resistance was driving historical endemic types, new types are associated with resistance to fluoroquinolones. Furthermore, resistance to multiple antibiotics is a common feature of the newly emergent strains and, in general, of many epidemic isolates. A reduced susceptibility to antibiotics used for C. difficile infection (CDI) treatment, in particular to metronidazole, has recently been described in several studies. Furthermore, an increased number of strains show resistance to rifamycins, used for the treatment of relapsing CDI. Several mechanisms of resistance have been identified in C. difficile, including acquisition of genetic elements and alterations of the antibiotic target sites. The C. difficile genome contains a plethora of mobile genetic elements, many of them involved in antibiotic resistance. Transfer of genetic elements among C. difficile strains or between C. difficile and other bacterial species can occur through different mechanisms that facilitate their spread. Investigations of the fitness cost in C. difficile indicate that both genetic elements and mutations in the molecular targets of antibiotics can be maintained regardless of the burden imposed on fitness, suggesting that resistances may persist in the C. difficile population also in absence of antibiotic selective pressure. The rapid evolution of antibiotic resistance and its composite nature complicate strategies in the treatment and prevention of CDI. The rapid identification of new phenotypic and genotypic traits, the implementation of effective antimicrobial stewardship and infection control programs, and the development of alternative therapies are needed to prevent and

  4. Molecular characterization and antimicrobial susceptibility of Clostridium difficile isolated from rabbits raised for meat production.

    PubMed

    Drigo, Ilenia; Mazzolini, Elena; Bacchin, Cosetta; Tonon, Elena; Puiatti, Cinzia; Bano, Luca; Spigaglia, Patrizia; Barbanti, Fabrizio; Agnoletti, Fabrizio

    2015-12-31

    Clostridium difficile is an important cause of enteric disease in humans and animals. Recent studies demonstrated a genetic overlap between C. difficile isolated from animals and humans suggesting animals as possible reservoir for human pathogenic strains. This study was a preliminary investigation on the occurrence of C. difficile in rabbits raised in industrial holdings for food production and aimed to characterise isolates and estimate their antimicrobial susceptibility. C. difficile isolates were characterized by toxin profiles, toxinotyping and PCR-ribotyping. The MICs of six antibiotics were determined using E-test. Between 2007 and 2013, 285 industrial holdings (representing 40% of the national census) submitted rabbits to our laboratory for diagnostic purposes, among these holdings, groups of three to five post-weaned rabbits were sampled once by convenience. 1279 samples of caecal content were collected. The overall isolation rate of C. difficile from the enteric specimen was 3% (38/1279), with no difference among animals affected or not by enteric disorders. Among isolates 66% (25/38) were toxigenic. Sixteen different PCR-ribotypes (RTs) were identified. Among the toxigenic strains RT-014/020, RT-078 and RT-012 were found in at least three rabbit holdings. According to the ECOFF threshold, 82% (31/38) C. difficile isolates displayed a reduced susceptibility to at least one and 18% (7/38) to three tested antimicrobials. Rabbits are colonized by heterogeneous C. difficile ribotypes many of which are commonly isolated in humans. One third of isolates displayed a reduced susceptibility to MTZ, the first choice antimicrobial for human CDI treatment. According to our findings rabbits are a potential source of C. difficile for humans. PMID:26507420

  5. Environmental Contamination in Households of Patients with Recurrent Clostridium difficile Infection.

    PubMed

    Shaughnessy, Megan K; Bobr, Aleh; Kuskowski, Michael A; Johnston, Brian D; Sadowsky, Michael J; Khoruts, Alexander; Johnson, James R

    2016-05-01

    Recurrent Clostridium difficile infection (R-CDI) is common and difficult to treat, potentially necessitating fecal microbiota transplantation (FMT). Although C. difficilespores persist in the hospital environment and cause infection, little is known about their potential presence or importance in the household environment. Households of R-CDI subjects in the peri-FMT period and of geographically matched and age-matched controls were analyzed for the presence ofC. difficile Household environmental surfaces and fecal samples from humans and pets in the household were examined. Households of post-FMT subjects were also examined (environmental surfaces only). Participants were surveyed regarding their personal history and household cleaning habits. Species identity and molecular characteristics of presumptive C. difficile isolates from environmental and fecal samples were determined by using the Pro kit (Remel, USA), Gram staining, PCR, toxinotyping, tcdC gene sequencing, and pulsed-field gel electrophoresis (PFGE). Environmental cultures detected C. difficile on ≥1 surface in 8/8 (100%) peri-FMT households, versus 3/8 (38%) post-FMT households and 3/8 (38%) control households (P= 0.025). The most common C. difficile-positive sites were the vacuum (11/27; 41%), toilet (8/30; 27%), and bathroom sink (5/29; 17%).C. difficile was detected in 3/36 (8%) fecal samples (two R-CDI subjects and one household member). Nine (90%) of 10 households with multiple C. difficile-positive samples had a single genotype present each. In conclusion,C. difficile was found in the household environment of R-CDI patients, but whether it was found as a cause or consequence of R-CDI is unknown. If household contamination leads to R-CDI, effective decontamination may be protective. PMID:26921425

  6. Analysis of Bacterial Communities during Clostridium difficile Infection in the Mouse

    PubMed Central

    Semenyuk, Ekaterina G.; Poroyko, Valeriy A.; Johnston, Pehga F.; Jones, Sara E.; Knight, Katherine L.; Gerding, Dale N.

    2015-01-01

    Clostridium difficile infection (CDI) is a major cause of health care-associated disease. CDI initiates with ingestion of C. difficile spores, germination in the gastrointestinal (GI) tract, and then colonization of the large intestine. The interactions between C. difficile cells and other bacteria and with host mucosa during CDI remain poorly understood. Here, we addressed the hypothesis that, in a mouse model of CDI, C. difficile resides in multicellular communities (biofilms) in association with host mucosa. To do this, we paraffin embedded and then sectioned the GI tracts of infected mice at various days postinfection (p.i.). We then used fluorescent in situ hybridization (FISH) with 16S rRNA probes targeting most bacteria as well as C. difficile specifically. The results revealed that C. difficile is present as a minority member of communities in the outer (loose) mucus layer, in the cecum and colon, starting at day 1 p.i. To generate FISH probes that identify bacteria within mucus-associated communities harboring C. difficile, we characterized bacterial populations in the infected mouse GI tract using 16S rRNA gene sequence analysis of bacterial DNA prepared from intestinal content. This analysis revealed the presence of genera of several families belonging to Bacteroidetes and Firmicutes. These data suggest that formation of multispecies communities associated with the mucus of the cecum and colon is an important early step in GI tract colonization. They raise the possibility that other bacterial species in these communities modulate the ability of C. difficile to successfully colonize and, thereby, cause disease. PMID:26324536

  7. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite.

    PubMed

    Lim, Su-Chen; Foster, Niki F; Riley, Thomas V

    2016-02-01

    Clostridium difficile is an important enteric pathogen of humans and food animals. Recently it has been isolated from retail foods with prevalences up to 42%, prompting concern that contaminated foods may be one of the reasons for increased community-acquired C. difficile infection (CA-CDI). A number of studies have examined the prevalence of C. difficile in raw meats and fresh vegetables; however, fewer studies have examined the prevalence of C. difficile in ready-to-eat meat. The aim of this study was to investigate the in vitro susceptibility of 11 C. difficile isolates of food animal and retail food origins to food preservatives commonly used in ready-to-eat meats. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for sodium nitrite, sodium nitrate and sodium metabisulphite against C. difficile. Checkerboard assays were used to investigate the combined effect of sodium nitrite and sodium nitrate, commonly used in combination in meats. Modal MIC values for sodium nitrite, sodium nitrate and sodium metabisulphite were 250 μg/ml, >4000 μg/ml and 1000 μg/ml, respectively. No bactericidal activity was observed for all three food preservatives. The checkerboard assays showed indifferent interaction between sodium nitrite and sodium nitrate. This study demonstrated that C. difficile can survive in the presence of food preservatives at concentrations higher than the current maximum permitted levels allowed in ready-to-eat meats. The possibility of retail ready-to-eat meats contaminated with C. difficile acting as a source of CDI needs to be investigated. PMID:26700884

  8. Clinical Utility of Laboratory Detection of Clostridium difficile Strain BI/NAP1/027

    PubMed Central

    Gerding, Dale N.

    2015-01-01

    Clostridium difficile strain BI/NAP1/027 is associated with increased C. difficile infection (CDI) rates and severity, and the efficacy of some CDI therapies may be strain dependent. Although cultured C. difficile isolates can be reliably subtyped by various methods, the long turnaround times, high cost, and limited availability of strain typing preclude their routine use. Nucleic acid amplification tests identify BI/NAP1/027 rapidly from stool, but the emergence of closely related strains compromises test specificity. Although detection of epidemiologically significant pathogens is generally useful for infection control programs, specific data supporting use of rapid detection of BI/NAP1/027 as an infection control tool are still awaited. PMID:26511742

  9. Equine colitis X associated with infection by Clostridium difficile NAP1/027.

    PubMed

    Songer, J Glenn; Trinh, H T; Dial, Sharon M; Brazier, Jon S; Glock, Robert D

    2009-05-01

    A 14-year-old Quarter Horse with a 48-hr history of colic was euthanized after failure to respond to treatment. At necropsy, cecal and colonic mucosae were congested throughout, and there was segmental edema and significant thickening of the intestinal wall. Excessive numbers of mononuclear cells were found in mucosal lamina propria. Submucosal hemorrhage was diffuse and extensive, and Clostridium difficile toxins A and B were detected. Large numbers of C. difficile were isolated, and genetic characterization revealed them to be North American pulsed-field gel electrophoresis type 1, polymerase chain reaction ribotype 027, and toxinotype III. Genes for the binary toxin were present, and toxin negative-regulator tcdC contained an 18-bp deletion. This genotype comprises the current human "epidemic strain," which is associated with human C. difficile-associated disease of greater than historical severity. The diagnosis was peracute typhlocolitis, with lesions and history typical of those attributed to colitis X. PMID:19407094

  10. A novel subtyping assay for detection of Clostridium difficile virulence genes.

    PubMed

    Angione, Stephanie L; Sarma, Aartik A; Novikov, Aleksey; Seward, Leah; Fieber, Jennifer H; Mermel, Leonard A; Tripathi, Anubhav

    2014-03-01

    This proof-of-concept study demonstrates the application of a novel nucleic acid detection platform to detect Clostridium difficile in subjects presenting with acute diarrheal symptoms. This method amplifies three genes associated with C. difficile infection, including genes and deletions (cdtB and tcdC) associated with hypervirulence attributed to the NAP1/027/BI strain. Amplification of DNA from the tcdB, tcdC, and cdtB genes was performed using a droplet-based sandwich platform with quantitative real-time PCR in microliter droplets to detect and identify the amplified fragments of DNA. The device and identification system are simple in design and can be integrated as a point-of-care test to help rapidly detect and identify C. difficile strains that pose significant health threats in hospitals and other health-care communities. PMID:24434086

  11. Structure of Clostridium difficile PilJ Exhibits Unprecedented Divergence from Known Type IV Pilins*

    PubMed Central

    Piepenbrink, Kurt H.; Maldarelli, Grace A.; de la Peña, Claudia F. Martinez; Mulvey, George L.; Snyder, Greg A.; De Masi, Leon; von Rosenvinge, Erik C.; Günther, Sebastian; Armstrong, Glen D.; Donnenberg, Michael S.; Sundberg, Eric J.

    2014-01-01

    Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, cellular adhesion, and colonization. Recently, there has been an increased appreciation of the ability of Gram-positive species, including Clostridium difficile, to produce Type IV pili. Here we report the first three-dimensional structure of a Gram-positive Type IV pilin, PilJ, demonstrate its incorporation into Type IV pili, and offer insights into how the Type IV pili of C. difficile may assemble and function. PilJ has several unique structural features, including a dual-pilin fold and the incorporation of a structural zinc ion. We show that PilJ is incorporated into Type IV pili in C. difficile and present a model in which the incorporation of PilJ into pili exposes the C-terminal domain of PilJ to create a novel interaction surface. PMID:24362261

  12. Characterisation of Clostridium difficile Biofilm Formation, a Role for Spo0A

    PubMed Central

    Faulds-Pain, Alexandra; Donahue, Elizabeth H.; Wren, Brendan W.

    2012-01-01

    Clostridium difficile is a Gram-positive anaerobic, spore-forming bacillus that is the leading cause of nosocomial diarrhoea worldwide. We demonstrate that C. difficile aggregates and forms biofilms in vitro on abiotic surfaces. These polymicrobial aggregates are attached to each other and to an abiotic surface by an extracellular polymeric substance (EPS). The EPS matrix provides the scaffold bonding together vegetative cells and spores, as well as forming a protective barrier for vegetative cells against oxygen stress. The master regulator of sporulation, Spo0A, may play a key role in biofilm formation, as genetic inactivation of spo0A in strain R20291 exhibits decreased biofilm formation. Our findings highlight an important attribute of C. difficile pathogenesis, which may have significant implications for infection, treatment and relapse. PMID:23236376

  13. Quantitative Lipoproteomics in Clostridium difficile Reveals a Role for Lipoproteins in Sporulation.

    PubMed

    Charlton, Thomas M; Kovacs-Simon, Andrea; Michell, Stephen L; Fairweather, Neil F; Tate, Edward W

    2015-11-19

    Bacterial lipoproteins are surface exposed, anchored to the membrane by S-diacylglyceryl modification of the N-terminal cysteine thiol. They play important roles in many essential cellular processes and in bacterial pathogenesis. For example, Clostridium difficile is a Gram-positive anaerobe that causes severe gastrointestinal disease; however, its lipoproteome remains poorly characterized. Here we describe the application of metabolic tagging with alkyne-tagged lipid analogs, in combination with quantitative proteomics, to profile protein lipidation across diverse C. difficile strains and on inactivation of specific components of the lipoprotein biogenesis pathway. These studies provide the first comprehensive map of the C. difficile lipoproteome, demonstrate the existence of two active lipoprotein signal peptidases, and provide insights into lipoprotein function, implicating the lipoproteome in transmission of this pathogen. PMID:26584780

  14. A Novel Subtyping Assay for Detection of Clostridium difficile Virulence Genes

    PubMed Central

    Angione, Stephanie L.; Sarma, Aartik A.; Novikov, Aleksey; Seward, Leah; Fieber, Jennifer H.; Mermel, Leonard A.; Tripathi, Anubhav

    2015-01-01

    This proof-of-concept study demonstrates the application of a novel nucleic acid detection platform to detect Clostridium difficile in subjects presenting with acute diarrheal symptoms. This method amplifies three genes associated with C. difficile infection, including genes and deletions (cdtB and tcdC) associated with hypervirulence attributed to the NAP1/027/BI strain. Amplification of DNA from the tcdB, tcdC, and cdtB genes was performed using a droplet-based sandwich platform with quantitative real-time PCR in microliter droplets to detect and identify the amplified fragments of DNA. The device and identification system are simple in design and can be integrated as a point-of-care test to help rapidly detect and identify C. difficile strains that pose significant health threats in hospitals and other health-care communities. PMID:24434086

  15. Clinical Utility of Laboratory Detection of Clostridium difficile Strain BI/NAP1/027.

    PubMed

    Kociolek, Larry K; Gerding, Dale N

    2016-01-01

    Clostridium difficile strain BI/NAP1/027 is associated with increased C. difficile infection (CDI) rates and severity, and the efficacy of some CDI therapies may be strain dependent. Although cultured C. difficile isolates can be reliably subtyped by various methods, the long turnaround times, high cost, and limited availability of strain typing preclude their routine use. Nucleic acid amplification tests identify BI/NAP1/027 rapidly from stool, but the emergence of closely related strains compromises test specificity. Although detection of epidemiologically significant pathogens is generally useful for infection control programs, specific data supporting use of rapid detection of BI/NAP1/027 as an infection control tool are still awaited. PMID:26511742

  16. Bacteriotherapy for the treatment of intestinal dysbiosis caused by Clostridium difficile infection☆

    PubMed Central

    Adamu, Blessing O; Lawley, Trevor D

    2013-01-01

    Faecal microbiota transplantation (FMT) has been used for more than five decades to treat a variety of intestinal diseases associated with pathological imbalances within the resident microbiota, termed dysbiosis. FMT has been particularly effective for treating patients with recurrent Clostridium difficile infection who are left with few clinical options other than continued antibiotic therapy. Our increasing knowledge of the structure and function of the human intestinal microbiota and C. difficile pathogenesis has led to the understanding that FMT promotes intestinal ecological restoration and highlights the microbiota as a viable therapeutic target. However, the use of undefined faecal samples creates a barrier for widespread clinical use because of safety and aesthetic issues. An emerging concept of bacteriotherapy, the therapeutic use of a defined mixture of harmless, health-associated bacteria, holds promise for the treatment of patients with severe C. difficile infection, and possibly represents a paradigm shift for the treatment of diseases linked to intestinal dysbiosis. PMID:23866975

  17. Epidemiology of Clostridium difficile colonization in newborns: results using a bacteriophage and bacteriocin typing system.

    PubMed

    Bacon, A E; Fekety, R; Schaberg, D R; Faix, R G

    1988-08-01

    We used a typing system based on bacteriophage and bacteriocin susceptibility to study the epidemiology of Clostridium difficile colonization of newborn infants. C. difficile was found in the stools of 30 (16.0%) of 187 infants who were screened. Increased length of stay in the nursery (P less than .001) and delivery by cesarian section (P less than .001) were associated with higher rates of colonization. The isolates initially detected from the environment and the infants were strain B1811-1700. Strain B1537/Cld7 became the predominant isolate obtained from the infants; positive cultures were also obtained from the environment and the hands of personnel who worked in the nursery and had strain B1537/Cld7. Our results suggest that the infants acquired C. difficile through transfer from the hands of hospital staff. PMID:3403992

  18. Antimicrobial susceptibility of Clostridium difficile isolated from neonatal pigs with enteritis.

    PubMed

    Post, Karen W; Songer, J Glenn

    2004-02-01

    The minimum inhibitory concentration (MIC) of eight antimicrobial agents was determined by the agar dilution method for 80 isolates of Clostridium difficile from neonatal pigs with enteritis. MICs(50) for erythromycin, tilmicosin, and tylosin were relatively low (0.25-0.50 microg/mL), but MICs(90) (64 or > or =256 microg/mL) suggest in vivo resistance of a proportion of isolates. Susceptibility to tetracycline varied widely, with MIC(50) and MIC(90) of 8 and 32 microg/mL, respectively. The MICs(90) for tiamulin (8 microg/mL) and virginiamycin (16 microg/mL) suggest moderate susceptibility. Bacitracin and ceftiofur (MICs(90) > or =256 microg/mL) have little activity against C. difficile. Tiamulin and virginiamycin may decrease fecal shedding of C. difficile by sows, and erythromycin, tetracycline, and tylosin may be useful for treatment of infected piglets. PMID:16701500

  19. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen

    PubMed Central

    Awad, Milena M; Johanesen, Priscilla A; Carter, Glen P; Rose, Edward; Lyras, Dena

    2014-01-01

    The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions. PMID:25483328

  20. Bacteriotherapy for the treatment of intestinal dysbiosis caused by Clostridium difficile infection.

    PubMed

    Adamu, Blessing O; Lawley, Trevor D

    2013-10-01

    Faecal microbiota transplantation (FMT) has been used for more than five decades to treat a variety of intestinal diseases associated with pathological imbalances within the resident microbiota, termed dysbiosis. FMT has been particularly effective for treating patients with recurrent Clostridium difficile infection who are left with few clinical options other than continued antibiotic therapy. Our increasing knowledge of the structure and function of the human intestinal microbiota and C. difficile pathogenesis has led to the understanding that FMT promotes intestinal ecological restoration and highlights the microbiota as a viable therapeutic target. However, the use of undefined faecal samples creates a barrier for widespread clinical use because of safety and aesthetic issues. An emerging concept of bacteriotherapy, the therapeutic use of a defined mixture of harmless, health-associated bacteria, holds promise for the treatment of patients with severe C. difficile infection, and possibly represents a paradigm shift for the treatment of diseases linked to intestinal dysbiosis. PMID:23866975

  1. Comparison of Clostridium difficile detection by monolayer and by inhibition of nucleoside uptake

    SciTech Connect

    Fuhr, J.E.; Trent, D.J.; Collmann, I.R.

    1987-02-01

    Detection and identification of Clostridium difficile toxin by traditional monolayer assay were compared with results obtained by a new procedure based on toxin-dependent inhibition of target cell uptake of a radioactive nucleoside. A high degree of correlation was noted between the two determinations. Although the new procedure was quantitative and objective, its value is seen at present as a rapid screen that may support results obtained in monolayers and as a potential assay for other, currently unidentified, toxins.

  2. Comparison of Whole-Genome Sequencing and Molecular-Epidemiological Techniques for Clostridium difficile Strain Typing.

    PubMed

    Dominguez, Samuel R; Anderson, Lydia J; Kotter, Cassandra V; Littlehorn, Cynthia A; Arms, Lesley E; Dowell, Elaine; Todd, James K; Frank, Daniel N

    2016-09-01

    We analyzed in parallel 27 pediatric Clostridium difficile isolates by repetitive sequence-based polymerase chain reaction (RepPCR), pulsed-field gel electrophoresis (PFGE), and whole-genome next-generation sequencing. Next-generation sequencing distinguished 3 groups of isolates that were indistinguishable by RepPCR and 1 isolate that clustered in the same PFGE group as other isolates. PMID:26407257

  3. Administration of probiotic kefir to mice with Clostridium difficile infection exacerbates disease.

    PubMed

    Spinler, Jennifer K; Brown, Aaron; Ross, Caná L; Boonma, Prapaporn; Conner, Margaret E; Savidge, Tor C

    2016-08-01

    Lifeway(®) kefir, a fermented milk product containing 12 probiotic organisms, is reported to show promise as an alternative to fecal microbiota transplantation for recurrent Clostridium difficile infection (CDI). We employed a murine CDI model to study the probiotic protective mechanisms and unexpectedly determined that kefir drastically increased disease severity. Our results emphasize the need for further independent clinical testing of kefir as alternative therapy in recurrent CDI. PMID:27180007

  4. Complications of Hospital-Onset Healthcare Facility-Associated Clostridium difficile Infections Among Veterans.

    PubMed

    Evans, Martin E; Kralovic, Stephen M; Simbartl, Loretta A; Whitlock, Judith L; Jain, Rajiv; Roselle, Gary A

    2016-06-01

    Complications within 30 days of a clinically confirmed hospital-onset Clostridium difficile infection diagnosis from July 1, 2012, through June 30, 2015, in 127 acute care Veterans Health Administration facilities were evaluated. Pooled rates for attributable intensive care unit admissions, colectomies, and deaths were 2.7%, 0.5%, and 0.4%, respectively. Infect Control Hosp Epidemiol 2016;37:717-719. PMID:26880482

  5. Fluoroquinolone Resistance Does Not Impose a Cost on the Fitness of Clostridium difficile In Vitro

    PubMed Central

    Wasels, François; Kuehne, Sarah A.; Cartman, Stephen T.; Barbanti, Fabrizio; Minton, Nigel P.; Mastrantonio, Paola

    2014-01-01

    Point mutations conferring resistance to fluoroquinolones were introduced in the gyr genes of the reference strain Clostridium difficile 630. Only mutants with the substitution Thr-82→Ile in GyrA, which characterizes the hypervirulent epidemic clone III/027/NAP1, were resistant to all fluoroquinolones tested. The absence of a fitness cost in vitro for the most frequent mutations detected in resistant clinical isolates suggests that resistance will be maintained even in the absence of antibiotic pressure. PMID:25534738

  6. Specific binding of nucleotides and NAD+ to Clostridium difficile toxin A.

    PubMed

    Lobban, M D; Borriello, S P

    1992-02-24

    Binding of nucleotides, a tetrapolyphosphate, and NAD+ to purified toxin A of Clostridium difficile was determined by monitoring changes in intrinsic fluorescence following excitation at 280 nm, and recording emissions at 340 nm. Binding was specific for concentrations over the range 5 to 100 microM for ATP, GTP, and their respective non-hydrolysable analogues AMP-PNP and Gpp(NH)p, tetrapolyphosphate and NAD+. PMID:1544441

  7. Clostridium difficile PCR ribotypes 001 and 176 - the common denominator of C. difficile infection epidemiology in the Czech Republic, 2014.

    PubMed

    Krutova, Marcela; Matejkova, Jana; Kuijper, Ed J; Drevinek, Pavel; Nyc, Otakar

    2016-07-21

    In 2014, 18 hospitals in the Czech Republic participated in a survey of the incidence of Clostridium difficile infections (CDI) in the country. The mean CDI incidence was 6.1 (standard deviation (SD):7.2) cases per 10,000 patient bed-days and 37.8 cases (SD: 41.4) per 10,000 admissions. The mean CDI testing frequency was 39.5 tests (SD: 25.4) per 10,000 patient bed-days and 255.8 tests (SD: 164.0) per 10,000 admissions. A total of 774 C. difficile isolates were investigated, of which 225 (29%) belonged to PCR ribotype 176, and 184 isolates (24%) belonged to PCR ribotype 001. Multilocus variable-number tandem repeat analysis (MLVA) revealed 27 clonal complexes formed by 84% (190/225) of PCR ribotype 176 isolates, and 14 clonal complexes formed by 77% (141/184) of PCR ribotype 001 isolates. Clonal clusters of PCR ribotypes 176 and 001 were observed in 11 and 7 hospitals, respectively. Our data demonstrate the spread of two C. difficile PCR ribotypes within 18 hospitals in the Czech Republic, stressing the importance of standardising CDI testing protocols and implementing mandatory CDI surveillance in the country. PMID:27484171

  8. Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage.

    PubMed

    Rothenbacher, Francesca P; Suzuki, Motoo; Hurley, Jennifer M; Montville, Thomas J; Kirn, Thomas J; Ouyang, Ming; Woychik, Nancy A

    2012-07-01

    Clostridium difficile is an important, emerging nosocomial pathogen. The transition from harmless colonization to disease is typically preceded by antimicrobial therapy, which alters the balance of the intestinal flora, enabling C. difficile to proliferate in the colon. One of the most perplexing aspects of the C. difficile infectious cycle is its ability to survive antimicrobial therapy and transition from inert colonization to active infection. Toxin-antitoxin (TA) systems have been implicated in facilitating persistence after antibiotic treatment. We identified only one TA system in C. difficile strain 630 (epidemic type X), designated MazE-cd and MazF-cd, a counterpart of the well-characterized Escherichia coli MazEF TA system. This E. coli MazF toxin cleaves mRNA at ACA sequences, leading to global mRNA degradation, growth arrest, and death. Likewise, MazF-cd expression in E. coli or Clostridium perfringens resulted in growth arrest. Primer extension analysis revealed that MazF-cd cleaved RNA at the five-base consensus sequence UACAU, suggesting that the mRNAs susceptible to cleavage comprise a subset of total mRNAs. In agreement, we observed differential cleavage of several mRNAs by MazF-cd in vivo, revealing a direct correlation between the number of cleavage recognition sites within a given transcript and its susceptibility to degradation by MazF-cd. Interestingly, upon detailed statistical analyses of the C. difficile transcriptome, the major C. difficile virulence factor toxin B (TcdB) and CwpV, a cell wall protein involved in aggregation, were predicted to be significantly resistant to MazF-cd cleavage. PMID:22544268

  9. Detection of Clostridium difficile in small and medium-sized wild Mammals in Southern Ontario, Canada.

    PubMed

    Jardine, Claire M; Reid-Smith, Richard J; Rousseau, Joyce; Weese, J Scott

    2013-04-01

    We sampled 325 small and medium-sized wild mammals in Ontario, Canada in 2007 and 2010 to determine the prevalence and characteristics of Clostridium difficile in wild mammals living in proximity to captive wildlife and livestock. Clostridium difficile was isolated from five of 109 animals (4.6%) on four of 25 farms (16%), but was not isolated from any of the 216 samples from raccoons (Procyon lotor) living on the grounds of the Toronto Zoo. The positive animals included two raccoons from one beef farm, one raccoon from a different beef farm, one raccoon from a swine farm, and a shrew (Blarina brevicauda) from a dairy farm. None had evidence of gastrointestinal disease. Three of the five isolates were toxinotype variants (II, IV, and XIII) that are rarely identified in humans and domestic animals. The other two were toxinotype 0, a common toxinotype in humans and animals; however, all five isolates were of different ribotypes. None of the recovered ribotypes were recognized as ribotypes present in the authors' reference library of over 3,000 human and domestic animal C. difficile isolates. Neither the public health nor the animal health relevance of these findings is clear. It is not known whether C. difficile is a pathogen of small and medium-sized wild mammals, although the susceptibility of various laboratory species suggests it could cause disease. PMID:23568920

  10. [Specific antisepsis and environmental disinfection in preventing "Clostridium difficile associated diarrhea"].

    PubMed

    Agolini, G; Protano, C; Puro, V; Raitano, A; Ferraro, F; Vitali, M

    2009-01-01

    In the last years, Clostridium difficile acquired great interest for public health because of constant increase of Clostridium difficile associated diarrhea (CDAD), especially in nosocomial field and as a consequences of its pathogenicity and virulence. Oro-faecal transmission and great environmental persistence of Clostridium difficile indicate hand hygiene of health care workers and environmental disinfection practices as key interventions for prevention and control of nosocomial CDAD. The current indications relative to the hand hygiene suggest the use of soap and water for hand washing and, to achieve a better compliance of health care workers to this treatment, the alternative use of sodium dichloroisocyanurate or alcohol-based solution or gel waterless. Regard to environmental disinfection, to avoid high concentrations of sodium hypochlorite (in the magnitude of 5.000-6.000 ppm), necessary to reduce microbic load of dirty environment, the most appropriate treatment should consist of 2 phases: preliminary cleaning with water and detergents or polyphenol, followed by treatment with solution containing 1.000 ppm available chlorine, obtained from sodium hypochlorite or sodium dichloroisocyanurate. PMID:20169831

  11. Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection

    PubMed Central

    Moya, Andrés; Vázquez-Castellanos, Jorge F.; Artacho, Alejandro; Chen, Xinhua; Kelly, Ciaran

    2016-01-01

    ABSTRACT The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCE C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin

  12. Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection.

    PubMed

    Džunková, Mária; Moya, Andrés; Vázquez-Castellanos, Jorge F; Artacho, Alejandro; Chen, Xinhua; Kelly, Ciaran; D'Auria, Giuseppe

    2016-01-01

    The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCE C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin A (SIg

  13. Epidemic Clostridium difficile Strains Demonstrate Increased Competitive Fitness Compared to Nonepidemic Isolates

    PubMed Central

    Robinson, Catherine D.; Auchtung, Jennifer M.; Collins, James

    2014-01-01

    Clostridium difficile infection is the most common cause of severe cases of antibiotic-associated diarrhea (AAD) and is a significant health burden. Recent increases in the rate of C. difficile infection have paralleled the emergence of a specific phylogenetic clade of C. difficile strains (ribotype 027; North American pulsed-field electrophoresis 1 [NAP1]; restriction endonuclease analysis [REA] group BI). Initial reports indicated that ribotype 027 strains were associated with increased morbidity and mortality and might be hypervirulent. Although subsequent work has raised some doubt as to whether ribotype 027 strains are hypervirulent, the strains are considered epidemic isolates that have caused severe outbreaks across the globe. We hypothesized that one factor that could lead to the increased prevalence of ribotype 027 strains would be if these strains had increased competitive fitness compared to strains of other ribotypes. We developed a moderate-throughput in vitro model of C. difficile infection and used it to test competition between four ribotype 027 clinical isolates and clinical isolates of four other ribotypes (001, 002, 014, and 053). We found that ribotype 027 strains outcompeted the strains of other ribotypes. A similar competitive advantage was observed when two ribotype pairs were competed in a mouse model of C. difficile infection. Based upon these results, we conclude that one possible mechanism through which ribotype 027 strains have caused outbreaks worldwide is their increased ability to compete in the presence of a complex microbiota. PMID:24733099

  14. Transmission of Clostridium difficile During Hospitalization for Allogeneic Stem Cell Transplant

    PubMed Central

    Kamboj, Mini; Sheahan, Anna; Sun, Janet; Taur, Ying; Robilotti, Elizabeth; Babady, Esther; Papanicolaou, Genovefa; Jakubowski, Ann; Pamer, Eric; Sepkowitz, Kent

    2016-01-01

    OBJECTIVE To determine the role of unit-based transmission that accounts for cases of early Clostridium difficile infection (CDI) during hospitalization for allogeneic stem cell transplant. SETTING Stem cell transplant unit at a tertiary care cancer center. METHODS Serially collected stool from patients admitted for transplant was screened for toxigenic C. difficile through the hospital stay and genotyping was performed by multilocus sequence typing. In addition, isolates retrieved from cases of CDI that occurred in other patients hospitalized on the same unit were similarly characterized. Transmission links were established by time-space clustering of cases and carriers of shared toxigenic C. difficile strains. RESULTS During the 27-month period, 1,099 samples from 264 patients were screened, 69 of which had evidence of toxigenic C. difficile; 52 patients developed CDI and 17 were nonsymptomatic carriers. For the 52 cases, 41 had evidence of toxigenic C. difficile on the first study sample obtained within a week of admission, among which 22 were positive within the first 48 hours. A total of 24 sequence types were isolated from this group; 1 patient had infection with the NAP1 strain. A total of 11 patients had microbiologic evidence of acquisition; donor source could be established in half of these cases. CONCLUSIONS Most cases of CDI after stem cell transplant represent delayed onset disease in nonsymptomatic carriers. Transmission on stem cell transplant unit was confirmed in 19% of early CDI cases in our cohort with a probable donor source established in half of the cases. PMID:26486102

  15. Evaluation of a Chromogenic Culture Medium for the Detection of Clostridium difficile

    PubMed Central

    Yang, John Jeongseok; Nam, You Sun; Kim, Min Jin; Cho, Sun Young; You, Eunkyung; Soh, Yun Soo

    2014-01-01

    Purpose Clostridium difficile (C. difficile) is an important cause of nosocomial diarrhea. Diagnostic methods for detection of C. difficile infection (CDI) are shifting to molecular techniques, which are faster and more sensitive than conventional methods. Although recent advances in these methods have been made in terms of their cost-benefit, ease of use, and turnaround time, anaerobic culture remains an important method for detection of CDI. Materials and Methods In efforts to evaluate a novel chromogenic medium for the detection of C. difficile (chromID CD agar), 289 fecal specimens were analyzed using two other culture media of blood agar and cycloserine-cefoxitin-fructose-egg yolk agar while enzyme immunosorbent assay and polymerase chain reaction-based assay were used for toxin detection. Results ChromID showed the highest detection rate among the three culture media. Both positive rate and sensitivity were higher from chromID than other culture media. ChromID was better at detecting toxin producing C. difficile at 24 h and showed the highest detection rate at both 24 h and 48 h. Conclusion Simultaneous use of toxin assay and anaerobic culture has been considered as the most accurate and sensitive diagnostic approach of CDI. Utilization of a more rapid and sensitive chromogenic medium will aid in the dianogsis of CDI. PMID:24954329

  16. Tigecycline suppresses toxin A and B production and sporulation in Clostridium difficile

    PubMed Central

    Aldape, Michael John; Heeney, Dustin Delaney; Bryant, Amy Evelyn; Stevens, Dennis Leroy

    2015-01-01

    Background Clostridium difficile infection (CDI) is mediated by potent extracellular toxins and is spread largely via bacterial spores. We and others have shown that some antibiotics stimulate C. difficile toxin production in a strain-specific manner; however, the effects of newer anti-C. difficile antibiotics on this process remain to be investigated. Methods The effects of the protein synthesis inhibitor tigecycline on sporulation and toxin A and toxin B production were compared in historical (strain 9689) and hypervirulent BI/NAP1/027 (strain 5325) isolates of C. difficile in vitro. Results Tigecycline at 1/4× MIC stimulated an increased and earlier toxin A and/or B gene expression in both the historical and the hypervirulent strains, although a commensurate increase in toxin protein production was observed only in the 9689 strain. In fact, in the hypervirulent 5325 strain, toxin production was dramatically suppressed. By comparison, subinhibitory concentrations of vancomycin and metronidazole also stimulated increased protein toxin production by the historical, but not the hypervirulent, strain. In addition, tigecycline dose-dependently reduced viable spore production by both the 9689 and 5325 strains. Vancomycin treatment also suppressed spore formation in both C. difficile strains; however, metronidazole, while reducing spore formation in the 9689 strain, stimulated a near 2 log increase in spore production by the 5325 isolate. Conclusions In summary, these findings suggest that the treatment of CDI patients with tigecycline could effectively both control disease progression and limit its spread by disrupting sporulation. PMID:25151204

  17. Characterisation of Clostridium difficile isolates by slpA and tcdC gene sequencing.

    PubMed

    Joost, Insa; Speck, Katja; Herrmann, Mathias; von Müller, Lutz

    2009-03-01

    The genotyping of Clostridium difficile is generally performed by the analysis of fragment- or amplification-length polymorphism by pulsed field gel electrophoresis (PFGE) or polymerase chain reaction (PCR) ribotyping. However, sequence-based methods allow typing technique standardisation and data comparison. In the present study 100 C. difficile isolates, obtained from various institutions in the state of Saarland, Germany, were prospectively analyzed by surface layer protein A single locus sequence typing (slpAST). A high proportion (52%) of isolates attributable to ribotype 027 (RT027) was found indicating that the new outbreak strain has become endemic, at least in parts of Germany. RT027 strains displayed characteristic mutations of the potential toxin repressor gene tcdC and antibiotic resistance to macrolides and fluoroquinolones. C. difficile isolates attributable to ribotypes RT001 (27%), RT014/066 (5%), RT078 (4%), to the smz genotype (3%), and to more sporadic genotypes were also identified. Overall, the prevalence of strains with resistance to macrolides or fluoroquinolones was >80%. slpAST allows the comprehensive identification of C. difficile strains by global data comparison, exemplified here by our identification of smz strains previously identified by slpAST of a Japanese outbreak. In conclusion, slpAST appears to be a powerful discriminative tool for the straightforward, standardised genotyping of C. difficile isolates. PMID:19303562

  18. Confocal Laser Endomicroscopy for In Vivo Diagnosis of Clostridium difficile Associated Colitis — A Pilot Study

    PubMed Central

    Neumann, Helmut; Günther, Claudia; Vieth, Michael; Grauer, Martin; Wittkopf, Nadine; Mudter, Jonas; Becker, Christoph; Schoerner, Christoph; Atreya, Raja; Neurath, Markus F.

    2013-01-01

    Background Clostridium difficile infection (CDI) is one of the most dreaded causes of hospital-acquired diarrhea. Main objective was to investigate whether confocal laser endomicroscopy (CLE) has the capability for in vivo diagnosis of C. difficile associated histological changes. Second objective was to prove the presence of intramucosal bacteria using CLE. Methods 80 patients were prospectively included, 10 patients were diagnosed with CDI based on toxigenic culture. To validate the presence of intramucosal bacteria ex vivo, CLE was performed in pure C. difficile culture; additionally fluorescence in situ hybridization (FISH) was performed. Finally, CLE with fluorescence labelled oligonucleotide probe specific for C. difficile was performed ex vivo in order to prove the presence of bacteria. Results CLE identified CDI-associated histological changes in vivo (sensitivity and accuracy of 88.9% and 96.3%). In addition, intramucosal bacteria were visualized. The presence of these bacteria could be proven by CLE with labeled, specific molecular C. difficile probe and FISH-technique. Based on comparison between CLE and FISH analyses, sensitivity and specificity for the presence of intramucosal bacteria were 100%. Conclusion CLE has the potential for in vivo diagnosis of CDI associated colitis. In addition, CLE allowed the detection of intramucosal bacteria in vivo. PMID:23527018

  19. Role of Leptin-Mediated Colonic Inflammation in Defense against Clostridium difficile Colitis

    PubMed Central

    Madan, Rajat; Guo, Xiaoti; Naylor, Caitlin; Buonomo, Erica L.; Mackay, Donald; Noor, Zannatun; Concannon, Patrick; Scully, Kenneth W.; Pramoonjago, Patcharin; Kolling, Glynis L.; Warren, Cirle A.; Duggal, Priya

    2014-01-01

    The role of leptin in the mucosal immune response to Clostridium difficile colitis, a leading cause of nosocomial infection, was studied in humans and in a murine model. Previously, a mutation in the receptor for leptin (LEPR) was shown to be associated with susceptibility to infectious colitis and liver abscess due to Entamoeba histolytica as well as to bacterial peritonitis. Here we discovered that European Americans homozygous for the same LEPR Q223R mutation (rs1137101), known to result in decreased STAT3 signaling, were at increased risk of C. difficile infection (odds ratio, 3.03; P = 0.015). The mechanism of increased susceptibility was studied in a murine model. Mice lacking a functional leptin receptor (db/db) had decreased clearance of C. difficile from the gut lumen and diminished inflammation. Mutation of tyrosine 1138 in the intracellular domain of LepRb that mediates signaling through the STAT3/SOCS3 pathway also resulted in decreased mucosal chemokine and cell recruitment. Collectively, these data support a protective mucosal immune function for leptin in C. difficile colitis partially mediated by a leptin-STAT3 inflammatory pathway that is defective in the LEPR Q223R mutation. Identification of the role of leptin in protection from C. difficile offers the potential for host-directed therapy and demonstrates a connection between metabolism and immunity. PMID:24166957

  20. Role of leptin-mediated colonic inflammation in defense against Clostridium difficile colitis.

    PubMed

    Madan, Rajat; Guo, Xiaoti; Naylor, Caitlin; Buonomo, Erica L; Mackay, Donald; Noor, Zannatun; Concannon, Patrick; Scully, Kenneth W; Pramoonjago, Patcharin; Kolling, Glynis L; Warren, Cirle A; Duggal, Priya; Petri, William A

    2014-01-01

    The role of leptin in the mucosal immune response to Clostridium difficile colitis, a leading cause of nosocomial infection, was studied in humans and in a murine model. Previously, a mutation in the receptor for leptin (LEPR) was shown to be associated with susceptibility to infectious colitis and liver abscess due to Entamoeba histolytica as well as to bacterial peritonitis. Here we discovered that European Americans homozygous for the same LEPR Q223R mutation (rs1137101), known to result in decreased STAT3 signaling, were at increased risk of C. difficile infection (odds ratio, 3.03; P = 0.015). The mechanism of increased susceptibility was studied in a murine model. Mice lacking a functional leptin receptor (db/db) had decreased clearance of C. difficile from the gut lumen and diminished inflammation. Mutation of tyrosine 1138 in the intracellular domain of LepRb that mediates signaling through the STAT3/SOCS3 pathway also resulted in decreased mucosal chemokine and cell recruitment. Collectively, these data support a protective mucosal immune function for leptin in C. difficile colitis partially mediated by a leptin-STAT3 inflammatory pathway that is defective in the LEPR Q223R mutation. Identification of the role of leptin in protection from C. difficile offers the potential for host-directed therapy and demonstrates a connection between metabolism and immunity. PMID:24166957

  1. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.

    PubMed

    Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith

    2016-01-01

    There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen. PMID:26564276

  2. [Life-threatening infections with a new strain of Clostridium difficile].

    PubMed

    Krausz, S; Bessems, M; Boermeester, M A; Kuijper, E J; Visser, C E; Speelman, P

    2005-09-17

    Three men, aged 39, 73, and 66 years, respectively, developed an infection with a new strain ofClostridium difficile, ribotype 027.C.difficile-associated diarrhoea (CDAD) occurred in two patients after multiple abdominal surgery and in the third patient one week after autologous haematopoietic cell transplantation. Within a few days, despite antibiotic therapy, all three patients developed severe (pseudomembranous) colitis with sepsis for which admission to the Intensive Care Unit was required. Two patients underwent (sub)total colectomy and received an intensive course of oral and/or rectal vancomycin. In all patients who develop diarrhoea in hospital, especially during or after treatment with antibiotics or chemotherapeutic agents, an infection with C. difficile ribotype 027 should be suspected. Recent outbreaks of this hypervirulent strain of C. difficile have been reported in Canada, the United States, United Kingdom, and The Netherlands. Demonstration of C. difficile toxin in faeces confirms the clinical suspicion of CDAD and ribotyping of the strain may reveal whether the 027 strain is present. For treatment of these 027 infections, vancomycin is preferred to metronidazole. After a severe course of colitis or in case of recurrence a 'tapering and pulse' course ofvancomycin can be prescribed; alternatively, treatment with bovine antibody-enriched whey may be considered. The introduction of this hypervirulent strain has led to reinforcement of the hygienic measures in accordance with the recommendations of the Dutch Working Party on Infection Prevention and a policy to deter the use of fluoroquinolones. PMID:16201595

  3. Stool therapy may become a preferred treatment of recurrent Clostridium difficile?

    PubMed Central

    Vyas, Dinesh; L’Esperance, Heidi E; Vyas, Arpita

    2013-01-01

    Fecal enemas were first reported to successfully treat life threatening enterocolitis in 1958, but fecal therapy to treat Clostridium difficile (C. difficile) infection has remained esoteric and not well investigated until recently. In the past few years, systematic reviews of case series and case reports of fecal microbiota transplant for recurrent C. difficile infection have become available and validate use of fecal transplant for C. difficile enterocolitis. Methods of fecal transplant reported in the literature include: nasogastric tube, gastroscope, duodenal tube, colonoscopy, rectal tube, and fecal enemas administered at home; no method has been shown to be superior. A recent randomized study published in New England Journal of Medicine found fecal transplant to be superior to oral vancomycin alone in treatment of recurrent C. difficile enterocolitis. The significance of this trial cannot be underestimated as it lends credibility to the idea of intentionally using microbes to combat disease, providing an alternative to the older paradigm of disease eradication through use of antimicrobials. PMID:23922461

  4. Rapid detection of ermB gene in Clostridium difficile by loop-mediated isothermal amplification.

    PubMed

    Lin, Minyi; Liu, Wei; Wang, Pu; Tan, Jiasheng; Zhou, Youlian; Wu, Peiqun; Zhang, Ting; Yuan, Jing; Chen, Ye

    2015-08-01

    Macrolide-lincosamide-streptogramin B resistance in Clostridium difficile is mostly due to the ermB resistance determinant. Here, we describe a sensitive and rapid molecular method to detect ermB in C. difficile to contribute to the wider epidemiological study. Five sets of loop-mediated isothermal amplification (LAMP) primers were designed and optimized for rapid detection of ermB. The specificity and sensitivity of the primers for ermB were detected, and the ermB LAMP assay was compared to conventional PCR with 80 clinical isolates of C. difficile. Real-time monitoring of turbidity and chromogenic reaction were used to determine negative and positive results. A total of 26 pathogenic bacterial strains of different species were found to be negative for ermB, which indicated the high specificity of the primers. ermB was detected in 78.8 % (63/80) of the clinical isolates by both LAMP and conventional PCR. The detection limit of LAMP was 36.1  pg DNA μl- 1 and its sensitivity was 10-fold greater than that of conventional PCR. This study is the first report regarding the development and application of the LAMP assay for detection of the ermB gene in C. difficile strains. The developed LAMP method is sensitive, specific and provides a user-friendly visual approach for the rapid detection of ermB-bearing C. difficile. PMID:26272634

  5. Accessory Gene Regulator-1 Locus Is Essential for Virulence and Pathogenesis of Clostridium difficile

    PubMed Central

    Odo, Chioma; DuPont, Herbert L.

    2016-01-01

    ABSTRACT Clostridium difficile infection (CDI) is responsible for most of the definable cases of antibiotic- and hospital-associated diarrhea worldwide and is a frequent cause of morbidity and mortality in older patients. C. difficile, a multidrug-resistant anaerobic pathogen, causes disease by producing toxins A and B, which are controlled by an accessory gene regulator (Agr) quorum signaling system. Some C. difficile strains encode two Agr loci in their genomes, designated agr1 and agr2. The agr1 locus is present in all of the C. difficile strains sequenced to date, whereas the agr2 locus is present in a few strains. The functional roles of agr1 and agr2 in C. difficile toxin regulation and pathogenesis were unknown until now. Using allelic exchange, we deleted components of both agr loci and examined the mutants for toxin production and virulence. The results showed that the agr1 mutant cannot produce toxins A and B; toxin production can be restored by complementation with wild-type agr1. Furthermore, the agr1 mutant is able to colonize but unable to cause disease in a murine CDI model. These findings have profound implications for CDI treatment because we have uncovered a promising therapeutic target for the development of nonantibiotic drugs to treat this life-threatening emerging pathogen by targeting the toxins directly responsible for disease. PMID:27531912

  6. Novel High-Molecular-Weight, R-Type Bacteriocins of Clostridium difficile

    PubMed Central

    Gebhart, Dana; Williams, Steven R.; Bishop-Lilly, Kimberly A.; Govoni, Gregory R.; Willner, Kristin M.; Butani, Amy; Sozhamannan, Shanmuga; Martin, David; Fortier, Louis-Charles

    2012-01-01

    Clostridium difficile causes one of the leading nosocomial infections in developed countries, and therapeutic choices are limited. Some strains of C. difficile produce phage tail-like particles upon induction of the SOS response. These particles have bactericidal activity against other C. difficile strains and can therefore be classified as bacteriocins, similar to the R-type pyocins of Pseudomonas aeruginosa. These R-type bacteriocin particles, which have been purified from different strains, each have a different C. difficile-killing spectrum, with no one bacteriocin killing all C. difficile isolates tested. We have identified the genetic locus of these “diffocins” (open reading frames 1359 to 1376) and have found them to be common among the species. The entire diffocin genetic locus of more than 20 kb was cloned and expressed in Bacillus subtilis, and this resulted in production of bactericidal particles. One of the interesting features of these particles is a very large structural protein of ∼200 kDa, the product of gene 1374. This large protein determines the killing spectrum of the particles and is likely the receptor-binding protein. Diffocins may provide an alternate bactericidal agent to prevent or treat infections and to decolonize individuals who are asymptomatic carriers. PMID:22984261

  7. Identification, Immunogenicity and Crossreactivity of Type IV Pilin and Pilin-like Proteins from Clostridium difficile

    PubMed Central

    Maldarelli, Grace A.; De Masi, Leon; von Rosenvinge, Erik C.; Carter, Mihaela; Donnenberg, Michael S.

    2014-01-01

    The Gram-positive anaerobe Clostridium difficile is the major cause of nosocomial diarrhea; manifestations of infection include diarrhea, pseudomembranous colitis, and death. Genes for type IV pili, a bacterial nanofiber often involved in colonization and until relatively recently described only in Gram-negatives, are present in all members of the Clostridiales. We hypothesized that any pilins encoded in the C. difficile genome would be immunogenic, as has been shown with pilins from Gram-negative organisms. We describe nine pilin or pilin-like protein genes, for which we introduce a coherent nomenclature, in the C. difficile R20291 genome. The nine predicted pilin or pilin-like proteins have relatively conserved N-terminal hydrophobic regions, but diverge at their C-termini. Analysis of synonymous and nonsynonymous substitutions revealed evidence of diversifying selective pressure in two pilin genes. Six of the nine identified proteins were purified and used to immunize mice. Immunization of mice with each individual protein generated antibody responses that varied in titer and crossreactivity, a notable result given the low amino acid sequence identity among the pilins. Further studies in other small mammals mirrored our results in mice. Our results illuminate components of the C. difficile type IV pilus, and help identify targets for an anti-C. difficile vaccine. PMID:24550179

  8. Discovery of LFF571: An Investigational Agent for Clostridium difficile Infection

    SciTech Connect

    LaMarche, Matthew J.; Leeds, Jennifer A.; Amaral, Adam; Brewer, Jason T.; Bushell, Simon M.; Deng, Gejing; Dewhurst, Janetta M.; Ding, Jian; Dzink-Fox, JoAnne; Gamber, Gabriel; Jain, Akash; Lee, Kwangho; Lee, Lac; Lister, Troy; McKenney, David; Mullin, Steve; Osborne, Colin; Palestrant, Deborah; Patane, Michael A.; Rann, Elin M.; Sachdeva, Meena; Shao, Jian; Tiamfook, Stacey; Trzasko, Anna; Whitehead, Lewis; Yifru, Aregahegn; Yu, Donghui; Yan, Wanlin; Zhu, Qingming

    2012-11-09

    Clostridium difficile (C. difficile) is a Gram positive, anaerobic bacterium that infects the lumen of the large intestine and produces toxins. This results in a range of syndromes from mild diarrhea to severe toxic megacolon and death. Alarmingly, the prevalence and severity of C. difficile infection are increasing; thus, associated morbidity and mortality rates are rising. 4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for the treatment of C. difficile infection. The medicinal chemistry effort focused on enhancing aqueous solubility relative to that of the natural product and previous development candidates (2, 3) and improving antibacterial activity. Structure-activity relationships, cocrystallographic interactions, pharmacokinetics, and efficacy in animal models of infection were characterized. These studies identified a series of dicarboxylic acid derivatives, which enhanced solubility/efficacy profile by several orders of magnitude compared to previously studied compounds and led to the selection of LFF571 (4) as an investigational new drug for treating C. difficile infection.

  9. The challenge of Clostridium difficile infection: Overview of clinical manifestations, diagnostic tools and therapeutic options.

    PubMed

    Postma, Nynke; Kiers, Dorien; Pickkers, Peter

    2015-12-01

    The most important infectious cause of antibiotic-associated diarrhoea and colitis is Clostridium difficile, which is a Gram-positive, anaerobic, spore-forming, toxin-producing bacillus. In this overview we will discuss the diagnostic and therapeutic management of patients presenting with suspected or proven C. difficile infection (CDI). The clinical spectrum varies from asymptomatic C. difficile carriers to fulminant colitis with multi-organ failure. The onset of symptoms is usually within 2 weeks after initiation of antibiotic treatment. Diagnosis is based on the combination of clinical symptoms and either a positive stool test for C. difficile toxins or endoscopic or histological findings of pseudomembranous colitis. There is no indication for treatment of asymptomatic carriers, but patients with proven CDI should be treated. Treatment consists of cessation of the provoking antibiotic treatment, secondary prevention by infection control strategies, and treatment with metronidazole or vancomycin. Treatment of recurring CDI, severe infection, the need for surgery, and novel alternative potential treatment strategies will be discussed. The concurrent increase in multiresistant colonisation and increasing numbers of asymptomatic carriers of C. difficile will lead to an increase of the situation in which patients with severe infections, treated with broad-spectrum antibiotics, will develop concurrent severe CDI. We will discuss possible therapy strategies for these patients. PMID:26612229

  10. The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains

    PubMed Central

    2011-01-01

    Background Clostridium difficile is the major cause of antibiotic associated diarrhoea and in recent years its increased prevalence has been linked to the emergence of hypervirulent clones such as the PCR-ribotype 027. Characteristically, C. difficile infection (CDI) occurs after treatment with broad-spectrum antibiotics, which disrupt the normal gut microflora and allow C. difficile to flourish. One of the relatively unique features of C. difficile is its ability to ferment tyrosine to para-cresol via the intermediate para-hydroxyphenylacetate (p-HPA). P-cresol is a phenolic compound with bacteriostatic properties which C. difficile can tolerate and may provide the organism with a competitive advantage over other gut microflora, enabling it to proliferate and cause CDI. It has been proposed that the hpdBCA operon, rarely found in other gut microflora, encodes the enzymes responsible for the conversion of p-HPA to p-cresol. Results We show that the PCR-ribotype 027 strain R20291 quantitatively produced more p-cresol in-vitro and was significantly more tolerant to p-cresol than the sequenced strain 630 (PCR-ribotype 012). Tyrosine conversion to p-HPA was only observed under certain conditions. We constructed gene inactivation mutants in the hpdBCA operon in strains R20291 and 630Δerm which curtails their ability to produce p-cresol, confirming the role of these genes in p-cresol production. The mutants were equally able to tolerate p-cresol compared to the respective parent strains, suggesting that tolerance to p-cresol is not linked to its production. Conclusions C. difficile converts tyrosine to p-cresol, utilising the hpdBCA operon in C. difficile strains 630 and R20291. The hypervirulent strain R20291 exhibits increased production of and tolerance to p-cresol, which may be a contributory factor to the virulence of this strain and other hypervirulent PCR-ribotype 027 strains. PMID:21527013

  11. Mutations Associated with Reduced Surotomycin Susceptibility in Clostridium difficile and Enterococcus Species

    PubMed Central

    Adams, Hannah M.; Li, Xiang; Mascio, Carmela; Chesnel, Laurent

    2015-01-01

    Clostridium difficile infection (CDI) is an urgent public health concern causing considerable clinical and economic burdens. CDI can be treated with antibiotics, but recurrence of the disease following successful treatment of the initial episode often occurs. Surotomycin is a rapidly bactericidal cyclic lipopeptide antibiotic that is in clinical trials for CDI treatment and that has demonstrated superiority over vancomycin in preventing CDI relapse. Surotomycin is a structural analogue of the membrane-active antibiotic daptomycin. Previously, we utilized in vitro serial passage experiments to derive C. difficile strains with reduced surotomycin susceptibilities. The parent strains used included ATCC 700057 and clinical isolates from the restriction endonuclease analysis (REA) groups BI and K. Serial passage experiments were also performed with vancomycin-resistant and vancomycin-susceptible Enterococcus faecium and Enterococcus faecalis. The goal of this study is to identify mutations associated with reduced surotomycin susceptibility in C. difficile and enterococci. Illumina sequence data generated for the parent strains and serial passage isolates were compared. We identified nonsynonymous mutations in genes coding for cardiolipin synthase in C. difficile ATCC 700057, enoyl-(acyl carrier protein) reductase II (FabK) and cell division protein FtsH2 in C. difficile REA type BI, and a PadR family transcriptional regulator in C. difficile REA type K. Among the 4 enterococcal strain pairs, 20 mutations were identified, and those mutations overlap those associated with daptomycin resistance. These data give insight into the mechanism of action of surotomycin against C. difficile, possible mechanisms for resistance emergence during clinical use, and the potential impacts of surotomycin therapy on intestinal enterococci. PMID:25941217

  12. Fidaxomicin Inhibits Clostridium difficile Toxin A-Mediated Enteritis in the Mouse Ileum

    PubMed Central

    Koon, Hon Wai; Ho, Samantha; Hing, Tressia C.; Cheng, Michelle; Chen, Xinhua; Ichikawa, Yoshi; Kelly, Ciarán P.

    2014-01-01

    Clostridium difficile infection (CDI) is a common, debilitating infection with high morbidity and mortality. C. difficile causes diarrhea and intestinal inflammation by releasing two toxins, toxin A and toxin B. The macrolide antibiotic fidaxomicin was recently shown to be effective in treating CDI, and its beneficial effect was associated with fewer recurrent infections in CDI patients. Since other macrolides possess anti-inflammatory properties, we examined the possibility that fidaxomicin alters C. difficile toxin A-induced ileal inflammation in mice. The ileal loops of anesthetized mice were injected with fidaxomicin (5, 10, or 20 μM), and after 30 min, the loops were injected with purified C. difficile toxin A or phosphate-buffered saline alone. Four hours after toxin A administration, ileal tissues were processed for histological evaluation (epithelial cell damage, neutrophil infiltration, congestion, and edema) and cytokine measurements. C. difficile toxin A caused histologic damage, evidenced by increased mean histologic score and ileal interleukin-1β (IL-1β) protein and mRNA expression. Treatment with fidaxomicin (20 μM) or its primary metabolite, OP-1118 (120 μM), significantly inhibited toxin A-mediated histologic damage and reduced the mean histology score and ileal IL-1β protein and mRNA expression. Both fidaxomicin and OP-1118 reduced toxin A-induced cell rounding in human colonic CCD-18Co fibroblasts. Treatment of ileal loops with vancomycin (20 μM) and metronidazole (20 μM) did not alter toxin A-induced histologic damage and IL-1β protein expression. In addition to its well known antibacterial effects against C. difficile, fidaxomicin may possess anti-inflammatory activity directed against the intestinal effects of C. difficile toxins. PMID:24890583

  13. Fidaxomicin inhibits Clostridium difficile toxin A-mediated enteritis in the mouse ileum.

    PubMed

    Koon, Hon Wai; Ho, Samantha; Hing, Tressia C; Cheng, Michelle; Chen, Xinhua; Ichikawa, Yoshi; Kelly, Ciarán P; Pothoulakis, Charalabos

    2014-08-01

    Clostridium difficile infection (CDI) is a common, debilitating infection with high morbidity and mortality. C. difficile causes diarrhea and intestinal inflammation by releasing two toxins, toxin A and toxin B. The macrolide antibiotic fidaxomicin was recently shown to be effective in treating CDI, and its beneficial effect was associated with fewer recurrent infections in CDI patients. Since other macrolides possess anti-inflammatory properties, we examined the possibility that fidaxomicin alters C. difficile toxin A-induced ileal inflammation in mice. The ileal loops of anesthetized mice were injected with fidaxomicin (5, 10, or 20 μM), and after 30 min, the loops were injected with purified C. difficile toxin A or phosphate-buffered saline alone. Four hours after toxin A administration, ileal tissues were processed for histological evaluation (epithelial cell damage, neutrophil infiltration, congestion, and edema) and cytokine measurements. C. difficile toxin A caused histologic damage, evidenced by increased mean histologic score and ileal interleukin-1β (IL-1β) protein and mRNA expression. Treatment with fidaxomicin (20 μM) or its primary metabolite, OP-1118 (120 μM), significantly inhibited toxin A-mediated histologic damage and reduced the mean histology score and ileal IL-1β protein and mRNA expression. Both fidaxomicin and OP-1118 reduced toxin A-induced cell rounding in human colonic CCD-18Co fibroblasts. Treatment of ileal loops with vancomycin (20 μM) and metronidazole (20 μM) did not alter toxin A-induced histologic damage and IL-1β protein expression. In addition to its well known antibacterial effects against C. difficile, fidaxomicin may possess anti-inflammatory activity directed against the intestinal effects of C. difficile toxins. PMID:24890583

  14. Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection

    PubMed Central

    Chilton, C. H.; Crowther, G. S.; Śpiewak, K.; Brindell, M.; Singh, G.; Wilcox, M. H.; Monaghan, T. M.

    2016-01-01

    Objectives Clostridium difficile infection (CDI) is a global healthcare problem. Recent evidence suggests that the availability of iron may be important for C. difficile growth. This study evaluated the comparative effects of iron-depleted (1% Fe3+ saturated) bovine apo-lactoferrin (apo-bLf) and iron-saturated (85% Fe3+ saturated) bovine holo-lactoferrin (holo-bLf) in a human in vitro gut model that simulates CDI. Methods Two parallel triple-stage chemostat gut models were inoculated with pooled human faeces and spiked with C. difficile spores (strain 027 210, PCR ribotype 027). Holo- or apo-bLf was instilled (5 mg/mL, once daily) for 35 days. After 7 days, clindamycin was instilled (33.9 mg/L, four times daily) to induce simulated CDI. Indigenous microflora populations, C. difficile total counts and spores, cytotoxin titres, short chain fatty acid concentrations, biometal concentrations, lactoferrin concentration and iron content of lactoferrin were monitored daily. Results In the apo-bLf model, germination of C. difficile spores occurred 6 days post instillation of clindamycin, followed by rapid vegetative cell proliferation and detectable toxin production. By contrast, in the holo-bLf model, only a modest vegetative cell population was observed until 16 days post antibiotic administration. Notably, no toxin was detected in this model. In separate batch culture experiments, holo-bLf prevented C. difficile vegetative cell growth and toxin production, whereas apo-bLf and iron alone did not. Conclusions Holo-bLf, but not apo-bLf, delayed C. difficile growth and prevented toxin production in a human gut model of CDI. This inhibitory effect may be iron independent. These observations suggest that bLf in its iron-saturated state could be used as a novel preventative or treatment strategy for CDI. PMID:26759363

  15. Clostridium difficile heterogeneously impacts intestinal community architecture but drives stable metabolome responses.

    PubMed

    Rojo, David; Gosalbes, María J; Ferrari, Rafaela; Pérez-Cobas, Ana E; Hernández, Ester; Oltra, Rosa; Buesa, Javier; Latorre, Amparo; Barbas, Coral; Ferrer, Manuel; Moya, Andrés

    2015-10-01

    Clostridium difficile-associated diarrhoea (CDAD) is caused by C. difficile toxins A and B and represents a serious emerging health problem. Yet, its progression and functional consequences are unclear. We hypothesised that C. difficile can drive major measurable metabolic changes in the gut microbiota and that a relationship with the production or absence of toxins may be established. We tested this hypothesis by performing metabolic profiling on the gut microbiota of patients with C. difficile that produced (n=6) or did not produce (n=4) toxins and on non-colonised control patients (n=6), all of whom were experiencing diarrhoea. We report a statistically significant separation (P-value <0.05) among the three groups, regardless of patient characteristics, duration of the disease, antibiotic therapy and medical history. This classification is associated with differences in the production of distinct molecules with presumptive global importance in the gut environment, disease progression and inflammation. Moreover, although severe impaired metabolite production and biological deficits were associated with the carriage of C. difficile that did not produce toxins, only previously unrecognised selective features, namely, choline- and acetylputrescine-deficient gut environments, characterised the carriage of toxin-producing C. difficile. Additional results showed that the changes induced by C. difficile become marked at the highest level of the functional hierarchy, namely the metabolic activity exemplified by the gut microbial metabolome regardless of heterogeneities that commonly appear below the functional level (gut bacterial composition). We discuss possible explanations for this effect and suggest that the changes imposed by CDAD are much more defined and predictable than previously thought. PMID:25756679

  16. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile.

    PubMed

    Soutourina, Olga A; Monot, Marc; Boudry, Pierre; Saujet, Laure; Pichon, Christophe; Sismeiro, Odile; Semenova, Ekaterina; Severinov, Konstantin; Le Bouguenec, Chantal; Coppée, Jean-Yves; Dupuy, Bruno; Martin-Verstraete, Isabelle

    2013-05-01

    Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA-seq and differential 5'-end RNA-seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA-based regulation of gene expression in this emergent enteropathogen. PMID:23675309

  17. Adaptive Strategies and Pathogenesis of Clostridium difficile from In Vivo Transcriptomics

    PubMed Central

    Janoir, Claire; Denève, Cécile; Bouttier, Sylvie; Barbut, Frédéric; Hoys, Sandra; Caleechum, Laxmee; Chapetón-Montes, Diana; Pereira, Fátima C.; Henriques, Adriano O.; Collignon, Anne; Monot, Marc

    2013-01-01

    Clostridium difficile is currently the major cause of nosocomial intestinal diseases associated with antibiotic therapy in adults. In order to improve our knowledge of C. difficile-host interactions, we analyzed the genome-wide temporal expression of C. difficile 630 genes during the first 38 h of mouse colonization to identify genes whose expression is modulated in vivo, suggesting that they may play a role in facilitating the colonization process. In the ceca of the C. difficile-monoassociated mice, 549 genes of the C. difficile genome were differentially expressed compared to their expression during in vitro growth, and they were distributed in several functional categories. Overall, our results emphasize the roles of genes involved in host adaptation. Colonization results in a metabolic shift, with genes responsible for the fermentation as well as several other metabolic pathways being regulated inversely to those involved in carbon metabolism. In addition, several genes involved in stress responses, such as ferrous iron uptake or the response to oxidative stress, were regulated in vivo. Interestingly, many genes encoding conserved hypothetical proteins (CHP) were highly and specifically upregulated in vivo. Moreover, genes for all stages of sporulation were quickly induced in vivo, highlighting the observation that sporulation is central to the persistence of C. difficile in the gut and to its ability to spread in the environment. Finally, we inactivated two genes that were differentially expressed in vivo and evaluated the relative colonization fitness of the wild-type and mutant strains in coinfection experiments. We identified a CHP as a putative colonization factor, supporting the suggestion that the in vivo transcriptomic approach can unravel new C. difficile virulence genes. PMID:23897605

  18. Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics.

    PubMed

    Janoir, Claire; Denève, Cécile; Bouttier, Sylvie; Barbut, Frédéric; Hoys, Sandra; Caleechum, Laxmee; Chapetón-Montes, Diana; Pereira, Fátima C; Henriques, Adriano O; Collignon, Anne; Monot, Marc; Dupuy, Bruno

    2013-10-01

    Clostridium difficile is currently the major cause of nosocomial intestinal diseases associated with antibiotic therapy in adults. In order to improve our knowledge of C. difficile-host interactions, we analyzed the genome-wide temporal expression of C. difficile 630 genes during the first 38 h of mouse colonization to identify genes whose expression is modulated in vivo, suggesting that they may play a role in facilitating the colonization process. In the ceca of the C. difficile-monoassociated mice, 549 genes of the C. difficile genome were differentially expressed compared to their expression during in vitro growth, and they were distributed in several functional categories. Overall, our results emphasize the roles of genes involved in host adaptation. Colonization results in a metabolic shift, with genes responsible for the fermentation as well as several other metabolic pathways being regulated inversely to those involved in carbon metabolism. In addition, several genes involved in stress responses, such as ferrous iron uptake or the response to oxidative stress, were regulated in vivo. Interestingly, many genes encoding conserved hypothetical proteins (CHP) were highly and specifically upregulated in vivo. Moreover, genes for all stages of sporulation were quickly induced in vivo, highlighting the observation that sporulation is central to the persistence of C. difficile in the gut and to its ability to spread in the environment. Finally, we inactivated two genes that were differentially expressed in vivo and evaluated the relative colonization fitness of the wild-type and mutant strains in coinfection experiments. We identified a CHP as a putative colonization factor, supporting the suggestion that the in vivo transcriptomic approach can unravel new C. difficile virulence genes. PMID:23897605

  19. Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile

    PubMed Central

    Soutourina, Olga A.; Monot, Marc; Boudry, Pierre; Saujet, Laure; Pichon, Christophe; Sismeiro, Odile; Semenova, Ekaterina; Severinov, Konstantin; Le Bouguenec, Chantal; Coppée, Jean-Yves; Dupuy, Bruno; Martin-Verstraete, Isabelle

    2013-01-01

    Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen. PMID:23675309

  20. Clinical Severity of Clostridium difficile PCR Ribotype 027: A Case-Case Study

    PubMed Central

    Morgan, Oliver W.; Rodrigues, Boaventura; Elston, Tony; Verlander, Neville Q.; Brown, Derek F. J.; Brazier, Jonathan; Reacher, Mark

    2008-01-01

    Background Clostridium difficile is a leading infectious cause of health care associated diarrhoea. Several industrialised countries have reported increased C. difficile infections and outbreaks, which have been attributed to the emergent PCR ribotype 027 strain. Methods and Findings We conducted a case-case study to compare severity of C. difficile disease for patients with 027 versus non-027 ribotypes. We retrospectively collected clinical information about 123/136 patients with C. difficile infections admitted to hospitals in the East of England region in 2006 and from whom stool isolates were cultured and ribotyped as part of an earlier national survey. We defined severe C. difficile disease as having one or more of shock, paralytic ileus, pseudo membranous colitis or toxic megacolon. Patient median age was 83 years old (range 3 to 98, interquartile range 75 to 89), 86% were prescribed antibiotics in the eight weeks before illness onset, 41% had ribotype 027 and 30-day all cause mortality during hospital admission was 21%. Severe disease occurred in 24% (95%CI 13% to 37%) and 17% (95%CI 9% to 27%) of patients with PCR ribotype 027 and non-027 ribotypes respectively. In a multivariable model, ribotype 027 was not associated with severe disease after adjusting for sex, discharge from hospital prior to 60 days of current admission, gastroenteritis on admission, number of initiator antibiotics for C. difficile disease, and hospital where the patient was admitted. Conclusions Our study found no evidence to support previous assertions that ribotype 027 is more virulent than other PCR ribotypes. This finding raises questions about the contribution of this strain to the recent increase in C. difficile disease throughout North America and Europe. PMID:18350149

  1. Isolation and Molecular Characterization of Clostridium difficile Strains from Patients and the Hospital Environment in Belarus

    PubMed Central

    Titov, Leonid; Lebedkova, Natalia; Shabanov, Alexander; Tang, Yajarayma J.; Cohen, Stuart H.; Silva, Joseph

    2000-01-01

    Toxigenic Clostridium difficile is the most common etiologic agent of hospital-acquired diarrhea in developed countries. The role of this pathogen in nosocomial diarrhea in Eastern Europe has not been clearly established. The goal of this study was to determine the prevalence of C. difficile in patients and the hospital environment in Belarus and to characterize these isolates as to the presence of toxin genes and their molecular type. C. difficile was isolated from 9 of 509 (1.8%) patients analyzed and recovered from 28 of 1,300 (2.1%) environmental sites cultured. A multiplex PCR assay was used to analyze the pathogenicity locus (PaLoc) of all isolates, and strain identity was determined by an arbitrarily primed PCR (AP-PCR). The targeted sequences for all the genes in the PaLoc were amplified in all C. difficile strains examined. A predominantly homogenous group of strains was found among these isolates, with five major AP-PCR groups being identified. Eighty-three percent of environmental isolates were classified into two groups, while patient isolates grouped into three AP-PCR types, two of which were also found in the hospital environment. Although no data on the role of C. difficile infection or epidemiology of C. difficile-associated diarrhea (CDAD) in this country exist, the isolation of toxigenic C. difficile from the hospital environment suggests that this pathogen may be responsible for cases of diarrhea of undiagnosed origin and validates our effort to further investigate the significance of CDAD in Eastern Europe. PMID:10699022

  2. Defined Nutrient Diets Alter Susceptibility to Clostridium difficile Associated Disease in a Murine Model

    PubMed Central

    Zaenker, Edna I.; Bolick, David T.; Kolling, Glynis L.; van Opstal, Edward; Noronha, Francisco J. D.; De Medeiros, Pedro H. Q. S.; Rodriguez, Raphael S.; Lima, Aldo A.; Guerrant, Richard L.; Warren, Cirle A.

    2015-01-01

    Background Clostridium difficile is a major identifiable and treatable cause of antibiotic-associated diarrhea. Poor nutritional status contributes to mortality through weakened host defenses against various pathogens. The primary goal of this study was to assess the contribution of a reduced protein diet to the outcomes of C. difficile infection in a murine model. Methods C57BL/6 mice were fed a traditional house chow or a defined diet with either 20% protein or 2% protein and infected with C. difficile strain VPI10463. Animals were monitored for disease severity, clostridial shedding and fecal toxin levels. Select intestinal microbiota were measured in stool and C. difficile growth and toxin production were quantified ex vivo in intestinal contents from untreated or antibiotic-treated mice fed with the different diets. Results C. difficile infected mice fed with defined diets, particularly (and unexpectedly) with protein deficient diet, had increased survival, decreased weight loss, and decreased overall disease severity. C. difficile shedding and toxin in the stool of the traditional diet group was increased compared with either defined diet 1 day post infection. Mice fed with traditional diet had an increased intestinal Firmicutes to Bacteroidetes ratio following antibiotic exposure compared with either a 2% or 20% protein defined nutrient diet. Ex vivo inoculation of cecal contents from antibiotic-treated mice showed decreased toxin production and C. difficile growth in both defined diets compared with a traditional diet. Conclusions Low protein diets, and defined nutrient diets in general, were found to be protective against CDI in mice. Associated diet-induced alterations in intestinal microbiota may influence colonization resistance and clostridial toxin production in a defined nutrient diet compared to a traditional diet, leading to increased survival. However, mechanisms which led to survival differences between 2% and 20% protein defined nutrient diets

  3. Evaluation of the VIDAS glutamate dehydrogenase assay for the detection of Clostridium difficile.

    PubMed

    Shin, Bo-Moon; Lee, Eun Joo; Moon, Jung Wha; Lee, Seon Yeong

    2016-08-01

    We evaluated the performance of the VIDAS GDH assay for the detection of Clostridium difficile. In total, 350 fecal specimens collected from patients clinically suspected of having CDI were analyzed by C. difficile culture and enzyme-linked fluorescent immunoassay (VIDAS GDH); the results were compared with those of toxigenic C. difficile culture (TC), PCR (Xpert C. difficile assay), and toxin AB EIA (VIDAS CDAB). The numbers of culture-positive and culture-negative samples were 108 and 242, respectively. The concordance between the GDH assay and C. difficile culture was 90.3%. With PCR, 12 more samples were found to be positive in GDH-positive/C. difficile culture-negative specimens. Thus, the concordance between GDH assay and C. difficile culture/PCR was 93.7%. The sensitivity, specificity, positive predictive value, and negative predictive value of the VIDAS GDH assay were 97.2%, 87.2%, 77.2%, and 98.6%, respectively, based on the C. difficile culture, and 97.5%, 91.7%, 86.0%, and 98.6%, respectively, based on C. difficile culture/PCR. Positivity rates of the GDH assay were partially associated with those of semi-quantitative C. difficile cultures, which were maximized in grade 3 (>100 colony-forming unit [CFU]) compared with grade 1 (<10 CFU). We evaluated the two-step or three-step algorithm using GDH assay as a first step. No toxin EIA-positive case was found among GDH-negative samples, and 60.8% (48/79) were TC- and/or PCR-positive among the GDH-positive/toxin EIA-negative samples. Thus, approximately 25% of the 350 samples required a confirmatory test (TC or PCR) in the GDH-toxin EIA algorithm, whereas only 2.3% of the total samples in GDH-PCR algorithm was discrepant and required another confirmatory test like TC. PMID:27282799

  4. Determination of the extent of Clostridium difficile colonisation and toxin accumulation in sows and neonatal piglets.

    PubMed

    Grześkowiak, Łukasz; Zentek, Jürgen; Vahjen, Wilfried

    2016-08-01

    Clostridium difficile is an important spore-forming, opportunistic pathogen in animal husbandry and health care. In pig farming, only neonatal piglets are affected, and diarrhoea and necrotising lesions are common symptoms leading to dehydration and in some cases death. This study aimed at the assessment of the quantitative development of C. difficile colonisation in neonatal piglets by determining the shedding of spores and C. difficile toxins A (TcdA) and B (TcdB) concentrations in sow (n = 5-6) and piglet pen faeces (n = 5-6) at different time points. Spores were quantified on selective agar plates and toxins using ELISA method. C. difficile was not detected in the faeces of all but one sow during the perinatal period. Faeces of 2- and 4-day-old piglets contained 0.65 log cells/g and 5.88 log cells/g of C. difficile, respectively. Toxins were detected on day 4 at a concentration of 2.13 log ng/g (TcdA) and 2.06 log ng/g (TcdB). On day 6, concentration of C. difficile reached 6.14 log CFU/g and toxins 2.02 log ng/g (TcdA) and 2.20 log ng/g (TcdB). Two-week-old piglets showed 4.72 log CFU/g of C. difficile but toxins could not be detected. At 21 days of age, both C. difficile and toxins were undetectable. The concentration and the prevalence of C. difficile were positively associated with the prevalence of toxins in piglets. A very short time window for colonisation by C. difficile, including toxin-producing strains can be observed in neonatal piglets. The significance for animal health and the risk of a carrier status need to be addressed in future studies. PMID:27108595

  5. Evaluation of a New Automated Homogeneous PCR Assay, GenomEra C. difficile, for Rapid Detection of Toxigenic Clostridium difficile in Fecal Specimens

    PubMed Central

    Mentula, Silja; Kaukoranta, Suvi-Sirkku

    2013-01-01

    We evaluated a new automated homogeneous PCR assay to detect toxigenic Clostridium difficile, the GenomEra C. difficile assay (Abacus Diagnostica, Finland), with 310 diarrheal stool specimens and with a collection of 33 known clostridial and nonclostridial isolates. Results were compared with toxigenic culture results, with discrepancies being resolved by the GeneXpert C. difficile PCR assay (Cepheid). Among the 80 toxigenic culture-positive or GeneXpert C. difficile assay-positive fecal specimens, 79 were also positive with the GenomEra C. difficile assay. Additionally, one specimen was positive with the GenomEra assay but negative with the confirmatory methods. Thus, the sensitivity and specificity were 98.8% and 99.6%, respectively. With the culture collection, no false-positive or -negative results were observed. The analytical sensitivity of the GenomEra C. difficile assay was approximately 5 CFU per PCR test. The short hands-on (<5 min for 1 to 4 samples) and total turnaround (<1 h) times, together with the high positive and negative predictive values (98.8% and 99.6%, respectively), make the GenomEra C. difficile assay an excellent option for toxigenic C. difficile detection in fecal specimens. PMID:23804386

  6. Investigation of toxin gene diversity and antimicrobial resistance of Clostridium difficile strains

    PubMed Central

    ZHU, SHANSHAN; ZHANG, HUAPING; ZHANG, XINSHENG; WANG, CHAO; FAN, GUANGMING; ZHANG, WEIFENG; SUN, GANG; CHEN, HUIHONG; ZHANG, LIMING; LI, ZHAOYUN

    2014-01-01

    The incidence of Clostridium difficile infection (CDI) has been previously reported in a number of studies. However, data collected from the Chinese population is limited. In the present study, the diversity of the toxin genes, tcdA and tcdB, of 57 Clostridium difficile (C. difficile) isolates from a Chinese population were investigated by polymerase chain reaction (PCR) (38 A+B+, 14 A-B+ and 5 A-B−). Quantitative PCR was used to check the expression of these two genes and it was found that the genes were not expressed by all the strains. The absence of tcdA or tcdB expression in certain strains could be due to the lower expression of tcdD and the higher expression of tcdC, which are positive and negative regulators for these two toxin genes, respectively. In addition, the antimicrobial susceptibilities of 57 isolates were investigated. Therefore, these data would aid in the future prevention of CDI outbreaks and improve the understanding of the infection. PMID:25054021

  7. Investigation of toxin gene diversity and antimicrobial resistance of Clostridium difficile strains.

    PubMed

    Zhu, Shanshan; Zhang, Huaping; Zhang, Xinsheng; Wang, Chao; Fan, Guangming; Zhang, Weifeng; Sun, Gang; Chen, Huihong; Zhang, Liming; Li, Zhaoyun

    2014-09-01

    The incidence of Clostridium difficile infection (CDI) has been previously reported in a number of studies. However, data collected from the Chinese population is limited. In the present study, the diversity of the toxin genes, tcdA and tcdB, of 57 Clostridium difficile (C. difficile) isolates from a Chinese population were investigated by polymerase chain reaction (PCR) (38 A(+)B(+), 14 A(-)B(+) and 5 A(-)B(-)). Quantitative PCR was used to check the expression of these two genes and it was found that the genes were not expressed by all the strains. The absence of tcdA or tcdB expression in certain strains could be due to the lower expression of tcdD and the higher expression of tcdC, which are positive and negative regulators for these two toxin genes, respectively. In addition, the antimicrobial susceptibilities of 57 isolates were investigated. Therefore, these data would aid in the future prevention of CDI outbreaks and improve the understanding of the infection. PMID:25054021

  8. Characterization of Clostridium difficile strains isolated from patients in Ontario, Canada, from 2004 to 2006.

    PubMed

    Martin, H; Willey, B; Low, D E; Staempfli, H R; McGeer, A; Boerlin, P; Mulvey, M; Weese, J S

    2008-09-01

    Clostridium difficile is the bacterium most commonly surmised to cause antimicrobial- and hospital-associated diarrhea in developed countries worldwide, and such infections are thought to be increasing in frequency and severity. A laboratory-based study was carried out to characterize C. difficile strains isolated from persons in Ontario, Canada, during 2004 to 2006 according to toxin type (enterotoxin A, cytotoxin B, and binary toxin [CDT]), tcdC gene characterization, ribotyping, pulsed-field gel electrophoresis, and toxinotyping. Clostridium difficile was isolated from 1,080/1,152 (94%) samples from 21 diagnostic laboratories. Isolates with toxin profiles A(+) B(+) CDT(-), A(+) B(+) CDT(+), A(-) B(+) CDT(-), and A(-) B(+) CDT(+) accounted for 63%, 34%, 2.4%, and 0.6% of isolates, respectively. Alterations in tcdC were detected in six different ribotypes, including ribotype 027. A total of 39 different ribotypes were identified, with ribotype 027/North American pulsotype 1 (NAP1), an internationally recognized outbreak strain associated with severe disease, being the second most common ribotype (19% of isolates). Transient resistance to metronidazole was identified in 19 (1.8%) isolates. While a large number of ribotypes were found, a few predominated across the province. The high prevalence and wide distribution of ribotype 027/NAP1 are disconcerting in view of the severity of disease associated with it. PMID:18650360

  9. Comparison of Illumigene, Simplexa, and AmpliVue Clostridium difficile Molecular Assays for Diagnosis of C. difficile Infection

    PubMed Central

    Miller, S. A.; Humphries, R. M.

    2014-01-01

    We compared the performance of the Simplexa Universal Direct (Focus Diagnostics) and AmpliVue (Quidel Corporation) assays to that of the Illumigene assay (Meridian Bioscience, Inc.) for the diagnosis of Clostridium difficile infection. Two hundred deidentified remnant diarrheal stool specimens were tested by the Simplexa, AmpliVue, and Illumigene methods. Specimens with discrepant results among the three assays and a representative number of concordant specimens were further evaluated by toxigenic culture. The sensitivity and specificity were 98 and 100% and 96 and 100% for the Simplexa Universal Direct and AmpliVue assays, respectively. Both assays are easy to perform, with rapid turn-around-times, supporting their utility in the clinical laboratory as routine diagnostic platforms. PMID:24352999

  10. Method for the typing of Clostridium difficile based on polyacrylamide gel electrophoresis of (/sup 35/S)methionine-labeled proteins

    SciTech Connect

    Tabaqchali, S.; O'Farrell, S.; Holland, D.; Silman, R.

    1986-01-01

    A typing method for Clostridium difficile based on the incorporation of (/sup 35/S)methionine into cellular proteins, their separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their visualization by autoradiography is described. On analysis of the radiolabeled-protein profiles, nine distinct groups were observed (A to E and W to Z). The method, which is simple, reproducible, and readily expandable, has been applied in epidemiological studies to demonstrate cross-infection and hospital acquisition of C. difficile.

  11. High-Throughput Analysis of Gene Essentiality and Sporulation in Clostridium difficile

    PubMed Central

    Dembek, Marcin; Barquist, Lars; Boinett, Christine J.; Cain, Amy K.; Mayho, Matthew; Lawley, Trevor D.; Fagan, Robert P.

    2015-01-01

    ABSTRACT Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro. We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen. PMID:25714712

  12. Antimicrobial resistance, toxinotype, and genotypic profiling of Clostridium difficile isolates of swine origin.

    PubMed

    Fry, Pamela R; Thakur, Siddhartha; Abley, Melanie; Gebreyes, Wondwossen A

    2012-07-01

    The occurrence of Clostridium difficile infections in patients that do not fulfill the classical risk factors prompted us to investigate new risk factors of disease. The goal of this study was to characterize strains and associated antimicrobial resistance determinants of C. difficile isolated from swine raised in Ohio and North Carolina. Genotypic approaches used include PCR detection, toxinotyping, DNA sequencing, and pulsed-field gel electrophoresis (PFGE) DNA fingerprinting. Thirty-one percent (37/119) of isolates carried both tetM and tetW genes. The ermB gene was found in 91% of isolates that were resistant to erythromycin (68/75). Eighty-five percent (521/609) of isolates were toxin gene tcdB and tcdA positive. A total of 81% (494/609) of isolates were positive for cdtB and carry a tcdC gene (a toxin gene negative regulator) with a 39-bp deletion. Overall, 88% (196/223) of pigs carry a single C. difficile strain, while 12% (27/223) of pigs carried multiple strains. To the best of our knowledge, this is the first report of individual pigs found to carry more than one strain type of C. difficile. A significant difference in toxinotype profiles in the two geographic locations was noted, with a significantly (P < 0.001) higher prevalence of toxinotype V found in North Carolina (84%; 189/224) than in Ohio (55%; 99/181). Overall, the study findings indicate that significant proportions of C. difficile in swine are toxigenic and often are associated with antimicrobial resistance genes, although they are not resistant to drugs that are used to treat C. difficile infections. PMID:22518873

  13. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms.

    PubMed

    Thitaram, S N; Frank, J F; Siragusa, G R; Bailey, J S; Dargatz, D A; Lombard, J E; Haley, C A; Lyon, S A; Fedorka-Cray, P J

    2016-06-16

    Clostridium difficile is commonly associated with a spectrum of disease in humans referred to as C. difficile-associated disease (CDAD) and use of antimicrobials is considered a risk factor for development of disease in humans. C. difficile can also inhabit healthy food animals and transmission to humans is possible. As a result of the complexity and cost of testing, C. difficile is rarely tested for antimicrobial susceptibility. A total of 376 C. difficile strains (94 each from swine and dairy feces, and 188 from beef cattle feces) were isolated from healthy food animals on farms during studies conducted by the National Animal Health Monitoring System. Using the Etest (AB Biodisk, Solna, Sweden), samples were tested for susceptibility to nine antimicrobials implicated as risk factors for CDAD (linezolid, amoxicillin-clavulanic acid, ampicillin, clindamycin, erythromycin, levofloxacin, metronidazole, rifampicin, and vancomycin). Vancomycin was active against all isolates of C. difficile (MIC90=3.0μg/ml) while almost all isolates (n=369; 98.1%) were resistant to levofloxacin. With the exception of vancomycin, resistance varied by animal species as follows: linezolid (8.5% resistance among swine versus 2.1 and 1.1% resistance among dairy and beef, respectively), clindamycin (56.4% resistance among swine versus 80% and 90.9% resistance among dairy and beef, respectively), and rifampicin (2.1% and 0% resistance among swine and dairy cattle isolates, respectively versus 14.3% resistance among beef isolates). Regardless of species, multiple drug resistance was observed most often to combinations of clindamycin and levofloxacin (n=195; 51.9%) and ampicillin, clindamycin and levofloxacin (n=41; 10.9%). The reason for the variability of resistance between animal species is unknown and requires further research. PMID:27043382

  14. Clostridium difficile Modulates Host Innate Immunity via Toxin-Independent and Dependent Mechanism(s)

    PubMed Central

    Jafari, Nazila V.; Kuehne, Sarah A.; Bryant, Clare E.; Elawad, Mamoun; Wren, Brendan W.; Minton, Nigel P.; Allan, Elaine; Bajaj-Elliott, Mona

    2013-01-01

    Clostridium difficile infection (CDI) is the leading cause of hospital and community-acquired antibiotic-associated diarrhoea and currently represents a significant health burden. Although the role and contribution of C. difficile toxins to disease pathogenesis is being increasingly understood, at present other facets of C. difficile-host interactions, in particular, bacterial-driven effects on host immunity remain less studied. Using an ex-vivo model of infection, we report that the human gastrointestinal mucosa elicits a rapid and significant cytokine response to C. difficile. Marked increase in IFN-γ with modest increase in IL-22 and IL-17A was noted. Significant increase in IL-8 suggested potential for neutrophil influx while presence of IL-12, IL-23, IL-1β and IL-6 was indicative of a cytokine milieu that may modulate subsequent T cell immunity. Majority of C. difficile-driven effects on murine bone-marrow-derived dendritic cell (BMDC) activation were toxin-independent; the toxins were however responsible for BMDC inflammasome activation. In contrast, human monocyte-derived DCs (mDCs) released IL-1β even in the absence of toxins suggesting host-specific mediation. Infected DC-T cell crosstalk revealed the ability of R20291 and 630 WT strains to elicit a differential DC IL-12 family cytokine milieu which culminated in significantly greater Th1 immunity in response to R20291. Interestingly, both strains induced a similar Th17 response. Elicitation of mucosal IFN-γ/IL-17A and Th1/Th17 immunity to C. difficile indicates a central role for this dual cytokine axis in establishing antimicrobial immunity to CDI. PMID:23922820

  15. Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630

    PubMed Central

    Asojo, Oluwatoyin A.; Nelson, Sarah K.; Mootien, Sara; Lee, Yashang; Rezende, Wanderson C.; Hyman, Daniel A.; Matsumoto, Monica M.; Reiling, Scott; Kelleher, Alan; Ledizet, Michel; Koski, Raymond A.; Anthony, Karen G.

    2014-01-01

    Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudo­membranous colitis. The severity of C. difficile infections is exacerbated by the emergence of hypervirulent and multidrug-resistant strains, which are difficult to treat and are often associated with increased mortality rates. Alanine racemase (Alr) is a pyridoxal-5′-phosphate (PLP)-dependent enzyme that catalyzes the reversible racemization of l- and d-alanine. Since d-alanine is an essential component of the bacterial cell-wall peptidoglycan, and there are no known Alr homologs in humans, this enzyme is being tested as an antibiotic target. Cycloserine is an antibiotic that inhibits Alr. In this study, the catalytic properties and crystal structures of recombinant Alr from the virulent and multidrug-resistant C. difficile strain 630 are presented. Three crystal structures of C. difficile Alr (CdAlr), corresponding to the complex with PLP, the complex with cycloserine and a K271T mutant form of the enzyme with bound PLP, are presented. The structures are prototypical Alr homodimers with two active sites in which the cofactor PLP and cycloserine are localized. Kinetic analyses reveal that the K271T mutant CdAlr has the highest catalytic constants reported to date for any Alr. Additional studies are needed to identify the basis for the high catalytic activity. The structural and activity data presented are first steps towards using CdAlr for the development of structure-based therapeutics for C. difficile infections. PMID:25004969

  16. Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection

    PubMed Central

    Leber, Andrew; Viladomiu, Monica; Hontecillas, Raquel; Abedi, Vida; Philipson, Casandra; Hoops, Stefan; Howard, Brad; Bassaganya-Riera, Josep

    2015-01-01

    Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and even death. To better understand the dynamics of mucosal immunity during C. difficile infection from initiation through expansion to resolution, we built a computational model of the mucosal immune response to the bacterium. The model was calibrated using data from a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17 (Th17) effector responses in the colonic lamina propria and luminal commensal bacteria populations in the clearance of C. difficile and colonic pathology, whereas regulatory T (Treg) cells responses are associated with the recovery phase. In addition, the production of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species. Computational simulations suggest that the removal of neutrophil and epithelial cell derived anti-microbial inhibitions, separately and together, on commensal bacterial regrowth promote recovery and minimize colonic inflammatory pathology. Simulation results predict a decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the colonic lamina propria, and length of infection with accelerated commensal bacteria re-growth through altered anti-microbial inhibition. Computational modeling provides novel insights on the therapeutic value of repopulating the colonic microbiome and inducing regulatory mucosal immune responses during C. difficile infection. Thus, modeling mucosal immunity-gut microbiota interactions has the potential to guide the development of targeted fecal transplantation therapies in the context of precision medicine interventions. PMID:26230099

  17. Characterization of a Cell Surface Protein of Clostridium difficile with Adhesive Properties

    PubMed Central

    Waligora, Anne-Judith; Hennequin, Claire; Mullany, Peter; Bourlioux, Pierre; Collignon, Anne; Karjalainen, Tuomo

    2001-01-01

    Our laboratory has previously shown that Clostridium difficile adherence to cultured cells is enhanced after heat shock at 60°C and that it is mediated by a proteinaceous surface component. The present study was undertaken to identify the surface molecules of this bacterium that could play a role in its adherence to the intestine. The cwp66 gene, encoding a cell surface-associated protein of C. difficile 79-685, was isolated by immunoscreening of a C. difficile gene library with polyclonal antibodies against C. difficile heated at 60°C. The Cwp66 protein (66 kDa) contains two domains, each carrying three imperfect repeats and one presenting homologies to the autolysin CwlB of Bacillus subtilis. A survey of 36 strains of C. difficile representing 11 serogroups showed that the 3′ portion of the cwp66 gene is variable; this was confirmed by sequencing of cwp66 from another strain, C-253. Two recombinant protein fragments corresponding to the two domains of Cwp66 were expressed in fusion with glutathione S-transferase in Escherichia coli and purified by affinity chromatography using gluthatione-Sepharose 4B. Antibodies raised against the two domains recognized Cwp66 in bacterial surface extracts. By immunoelectron microscopy, the C-terminal domain was found to be cell surface exposed. When used as inhibitors in cell binding studies, the antibodies and protein fragments partially inhibited adherence of C. difficile to cultured cells, confirming that Cwp66 is an adhesin, the first to be identified in clostridia. PMID:11254569

  18. Regulation of Clostridium difficile Spore Formation by the SpoIIQ and SpoIIIA Proteins

    PubMed Central

    Fimlaid, Kelly A.; Jensen, Owen; Donnelly, M. Lauren; Siegrist, M. Sloan; Shen, Aimee

    2015-01-01

    Sporulation is an ancient developmental process that involves the formation of a highly resistant endospore within a larger mother cell. In the model organism Bacillus subtilis, sporulation-specific sigma factors activate compartment-specific transcriptional programs that drive spore morphogenesis. σG activity in the forespore depends on the formation of a secretion complex, known as the “feeding tube,” that bridges the mother cell and forespore and maintains forespore integrity. Even though these channel components are conserved in all spore formers, recent studies in the major nosocomial pathogen Clostridium difficile suggested that these components are dispensable for σG activity. In this study, we investigated the requirements of the SpoIIQ and SpoIIIA proteins during C. difficile sporulation. C. difficile spoIIQ, spoIIIA, and spoIIIAH mutants exhibited defects in engulfment, tethering of coat to the forespore, and heat-resistant spore formation, even though they activate σG at wildtype levels. Although the spoIIQ, spoIIIA, and spoIIIAH mutants were defective in engulfment, metabolic labeling studies revealed that they nevertheless actively transformed the peptidoglycan at the leading edge of engulfment. In vitro pull-down assays further demonstrated that C. difficile SpoIIQ directly interacts with SpoIIIAH. Interestingly, mutation of the conserved Walker A ATP binding motif, but not the Walker B ATP hydrolysis motif, disrupted SpoIIIAA function during C. difficile spore formation. This finding contrasts with B. subtilis, which requires both Walker A and B motifs for SpoIIIAA function. Taken together, our findings suggest that inhibiting SpoIIQ, SpoIIIAA, or SpoIIIAH function could prevent the formation of infectious C. difficile spores and thus disease transmission. PMID:26465937

  19. Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination

    PubMed Central

    Fimlaid, Kelly A.; Jensen, Owen; Donnelly, M. Lauren; Francis, Michael B.; Sorg, Joseph A.; Shen, Aimee

    2015-01-01

    Clostridium difficile is a Gram-positive spore-forming pathogen and a leading cause of nosocomial diarrhea. C. difficile infections are transmitted when ingested spores germinate in the gastrointestinal tract and transform into vegetative cells. Germination begins when the germinant receptor CspC detects bile salts in the gut. CspC is a subtilisin-like serine pseudoprotease that activates the related CspB serine protease through an unknown mechanism. Activated CspB cleaves the pro-SleC zymogen, which allows the activated SleC cortex hydrolase to degrade the protective cortex layer. While these regulators are essential for C. difficile spores to outgrow and form toxin-secreting vegetative cells, the mechanisms controlling their function have only been partially characterized. In this study, we identify the lipoprotein GerS as a novel regulator of C. difficile spore germination using targeted mutagenesis. A gerS mutant has a severe germination defect and fails to degrade cortex even though it processes SleC at wildtype levels. Using complementation analyses, we demonstrate that GerS secretion, but not lipidation, is necessary for GerS to activate SleC. Importantly, loss of GerS attenuates the virulence of C. difficile in a hamster model of infection. Since GerS appears to be conserved exclusively in related Peptostreptococcaeace family members, our results contribute to a growing body of work indicating that C. difficile has evolved distinct mechanisms for controlling the exit from dormancy relative to B. subtilis and other spore-forming organisms. PMID:26496694

  20. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

    PubMed Central

    Francis, Michael B.; Allen, Charlotte A.

    2015-01-01

    ABSTRACT Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant

  1. Comparison of Diagnostic Algorithms for Detecting Toxigenic Clostridium difficile in Routine Practice at a Tertiary Referral Hospital in Korea

    PubMed Central

    Moon, Hee-Won; Kim, Hyeong Nyeon; Hur, Mina; Shim, Hee Sook; Kim, Heejung; Yun, Yeo-Min

    2016-01-01

    Since every single test has some limitations for detecting toxigenic Clostridium difficile, multistep algorithms are recommended. This study aimed to compare the current, representative diagnostic algorithms for detecting toxigenic C. difficile, using VIDAS C. difficile toxin A&B (toxin ELFA), VIDAS C. difficile GDH (GDH ELFA, bioMérieux, Marcy-l’Etoile, France), and Xpert C. difficile (Cepheid, Sunnyvale, California, USA). In 271 consecutive stool samples, toxigenic culture, toxin ELFA, GDH ELFA, and Xpert C. difficile were performed. We simulated two algorithms: screening by GDH ELFA and confirmation by Xpert C. difficile (GDH + Xpert) and combined algorithm of GDH ELFA, toxin ELFA, and Xpert C. difficile (GDH + Toxin + Xpert). The performance of each assay and algorithm was assessed. The agreement of Xpert C. difficile and two algorithms (GDH + Xpert and GDH+ Toxin + Xpert) with toxigenic culture were strong (Kappa, 0.848, 0.857, and 0.868, respectively). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of algorithms (GDH + Xpert and GDH + Toxin + Xpert) were 96.7%, 95.8%, 85.0%, 98.1%, and 94.5%, 95.8%, 82.3%, 98.5%, respectively. There were no significant differences between Xpert C. difficile and two algorithms in sensitivity, specificity, PPV and NPV. The performances of both algorithms for detecting toxigenic C. difficile were comparable to that of Xpert C. difficile. Either algorithm would be useful in clinical laboratories and can be optimized in the diagnostic workflow of C. difficile depending on costs, test volume, and clinical needs. PMID:27532104

  2. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment.

    PubMed

    Davies, A; Pottage, T; Bennett, A; Walker, J

    2011-03-01

    The recent data for hospital-acquired infections suggest that infection rates for meticillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile are beginning to decrease. However, while there is still pressure to maintain this trend, the resistance of C. difficile spores to standard detergents continues to present a problem for many UK hospitals trying to prevent its spread or control outbreaks. Alternative disinfection technologies such as gaseous decontamination are currently being marketed to the healthcare sector as an alternative/supplement to manual disinfection, and have been shown to be effective in reducing environmental contamination. When used correctly, they offer a complementary technology to manual cleaning that increases the probability of an effective reduction in viability and provides a comparatively uniform distribution of disinfectant. Three gaseous decontamination technologies are examined for their suitability in reducing environmental contamination with C. difficile: gaseous hydrogen peroxide, chlorine dioxide and ozone. Air decontamination and UV-based technologies are also briefly described. We conclude that while there is a role to play for these new technologies in the decontamination of ward surfaces contaminated with C. difficile, the requirement for both a preclean before use and the limited 'in vivo' evidence means that extensive field trials are necessary to determine their cost-effectiveness in a healthcare setting. PMID:21130521

  3. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile

    PubMed Central

    Antunes, Ana; Camiade, Emilie; Monot, Marc; Courtois, Emmanuelle; Barbut, Frédéric; Sernova, Natalia V.; Rodionov, Dmitry A.; Martin-Verstraete, Isabelle; Dupuy, Bruno

    2012-01-01

    The catabolite control protein CcpA is a pleiotropic regulator that mediates the global transcriptional response to rapidly catabolizable carbohydrates, like glucose in Gram-positive bacteria. By whole transcriptome analyses, we characterized glucose-dependent and CcpA-dependent gene regulation in Clostridium difficile. About 18% of all C. difficile genes are regulated by glucose, for which 50% depend on CcpA for regulation. The CcpA regulon comprises genes involved in sugar uptake, fermentation and amino acids metabolism, confirming the role of CcpA as a link between carbon and nitrogen pathways. Using combination of chromatin immunoprecipitation and genome sequence analysis, we detected 55 CcpA binding sites corresponding to ∼140 genes directly controlled by CcpA. We defined the C. difficile CcpA consensus binding site (creCD motif), that is, ‘RRGAAAANGTTTTCWW’. Binding of purified CcpA protein to 19 target creCD sites was demonstrated by electrophoretic mobility shift assay. CcpA also directly represses key factors in early steps of sporulation (Spo0A and SigF). Furthermore, the C. difficile toxin genes (tcdA and tcdB) and their regulators (tcdR and tcdC) are direct CcpA targets. Finally, CcpA controls a complex and extended regulatory network through the modulation of a large set of regulators. PMID:22989714

  4. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile.

    PubMed

    Antunes, Ana; Camiade, Emilie; Monot, Marc; Courtois, Emmanuelle; Barbut, Frédéric; Sernova, Natalia V; Rodionov, Dmitry A; Martin-Verstraete, Isabelle; Dupuy, Bruno

    2012-11-01

    The catabolite control protein CcpA is a pleiotropic regulator that mediates the global transcriptional response to rapidly catabolizable carbohydrates, like glucose in Gram-positive bacteria. By whole transcriptome analyses, we characterized glucose-dependent and CcpA-dependent gene regulation in Clostridium difficile. About 18% of all C. difficile genes are regulated by glucose, for which 50% depend on CcpA for regulation. The CcpA regulon comprises genes involved in sugar uptake, fermentation and amino acids metabolism, confirming the role of CcpA as a link between carbon and nitrogen pathways. Using combination of chromatin immunoprecipitation and genome sequence analysis, we detected 55 CcpA binding sites corresponding to ∼140 genes directly controlled by CcpA. We defined the C. difficile CcpA consensus binding site (cre(CD) motif), that is, 'RRGAAAANGTTTTCWW'. Binding of purified CcpA protein to 19 target cre(CD) sites was demonstrated by electrophoretic mobility shift assay. CcpA also directly represses key factors in early steps of sporulation (Spo0A and SigF). Furthermore, the C. difficile toxin genes (tcdA and tcdB) and their regulators (tcdR and tcdC) are direct CcpA targets. Finally, CcpA controls a complex and extended regulatory network through the modulation of a large set of regulators. PMID:22989714

  5. Single fluorophore melting curve analysis for detection of hypervirulent Clostridium difficile.

    PubMed

    Angione, Stephanie L; Croote, Derek; Leung, Joshua W; Mermel, Leonard A; Tripathi, Anubhav

    2016-01-01

    This study demonstrates a novel detection assay able to identify and subtype strains of Clostridium difficile. Primers carefully designed for melting curve analysis amplify DNA from three C. difficile genes, tcdB, tcdC and cdtB, during quantitative (q)PCR. The tcdB gene allows for confirmation of organism presence, whilst the tcdC and cdtB genes allow for differentiation of virulence status, as deletions in the tcdC gene and the concurrent presence of the cdtB gene, which produces binary toxin, are associated with hypervirulence. Following qPCR, subtyping is then achieved by automated, inline melting curve analysis using only a single intercalating dye and verified by microchip electrophoresis. This assay represents a novel means of distinguishing between toxigenic and hypervirulent C. difficile strains NAP1/027/BI and 078 ribotype, which are highly prevalent hypervirulent strains in humans. This methodology can help rapidly detect and identify C. difficile strains that impose a significant health and economic burden in hospitals and other healthcare settings. PMID:26516039

  6. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    PubMed

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385

  7. Evaluation of an Automated Rapid Diagnostic Test for Detection of Clostridium difficile

    PubMed Central

    Tojo, Masayoshi; Nagamatsu, Maki; Hayakawa, Kayoko; Mezaki, Kazuhisa; Kirikae, Teruo; Ohmagari, Norio

    2014-01-01

    The Verigene Clostridium difficile Nucleic Acid Test (Verigene CDF Test) (Nanosphere, Northbrook, IL, USA) is a new multiplex qualitative polymerase chain reaction (PCR) test used to detect C. difficile toxin genes in fecal specimens. To evaluate the performance of the new method, we tested 69 fecal samples from patients with suspected C. difficile infection using the Verigene CDF test, an enzyme immunoassay (EIA) and PCR following anaerobic fecal culture. The sensitivity, specificity, and accuracy of the Verigene CDF test were 96.7% (29/30), 97.4% (38/39), and 97.1% (67/69) respectively, using PCR following fecal culture as a reference method. We also analyzed the potential clinical impact of the Verigene CDF test using chart reviews of the 69 patients with suspected C. difficile infection and found that 11 of the 69 patients were incorrectly diagnosed, and the Verigene CDF test would have led to them receiving more appropriate management including practice of treatment and contact precaution, although, of the 69 patients, there are two whose samples were incorrectly identified with the Verigene CDF test. The Verigene CDF test will have a positive impact on patient care. PMID:25170836

  8. Clostridium difficile: a problem of concern in developed countries and still a mystery in Latin America.

    PubMed

    Balassiano, I T; Yates, E A; Domingues, R M C P; Ferreira, E O

    2012-02-01

    Clostridium difficile-associated disease (CDAD) is caused by a spore-forming bacterium and can result in highly variable disease, ranging from mild diarrhoea to severe clinical manifestations. Infections are most commonly seen in hospital settings and are often associated with on-going antibiotic therapy. Incidences of CDAD have shown a sustained increase worldwide over the last ten years and a hypervirulent C. difficile strain, PCR ribotype 027/REA type BI/North American pulsed-field (NAP) type 1 (027/BI/NAP-1), has caused outbreaks in North America and Europe. In contrast, only a few reports of cases in Latin America have been published and the hypervirulent strain 027/BI/NAP-1 has, so far, only been reported in Costa Rica. The potential worldwide spread of this infection calls for epidemiological studies to characterize currently circulating strains and also highlights the need for increased awareness and vigilance among healthcare professionals in currently unaffected areas, such as Latin America. This review attempts to summarize reports of C. difficile infection worldwide, especially in Latin America, and aims to provide an introduction to the problems associated with this pathogen for those countries that might face outbreaks of epidemic strains of C. difficile for the first time in the near future. PMID:22116982

  9. International Typing Study of Toxin A-Negative, Toxin B-Positive Clostridium difficile Variants

    PubMed Central

    Johnson, Stuart; Sambol, Susan P.; Brazier, Jon S.; Delmée, Michel; Avesani, V.; Merrigan, Michelle M.; Gerding, Dale N.

    2003-01-01

    Clinically important strains of Clostridium difficile that do not produce toxin A but produce toxin B and are cytotoxic (A−/B+) have been reported from multiple countries. In order to compare the relatedness of these strains, we typed 23 A−/B+ C. difficile isolates from the United Kingdom (6 isolates), Belgium (11 isolates), and the United States (6 isolates) by three well-described typing methods. Restriction endonuclease analysis (REA), PCR ribotyping, and serogrouping differentiated 11, 4, and 3 different strain types, respectively. Twenty-one of the 23 A−/B+ variants had a 1.8-kb truncation of the toxin A gene characteristic of toxinotype VIII strains; 20 of the 21 toxinotype VIII-like strains were PCR type 17. PCR type 17 isolates could be differentiated into two separate strain groups by serogrouping and by REA. REA further discriminated these isolates into eight subgroups (REA types). PCR type 17-serogroup F-REA group CF isolates were recovered from all three countries, and one specific REA type, CF4, was recovered from patients with C. difficile disease in the United Kingdom and the United States. C. difficile A−/B+ variants of apparent clonal origin are widely distributed in Europe and North America. PMID:12682143

  10. DNA detection of Clostridium difficile infection based on real-time resistance measurement.

    PubMed

    Liu, C; Jiang, D N; Xiang, G M; Luo, F K; Liu, L L; Yu, J C; Pu, X Y

    2013-01-01

    We used a newly developed electrochemical method, real-time resistance measurement, based on loop-mediated isothermal amplification (LAMP), with real-time resistance monitoring and derivative analysis. DNA extracted from specimens was amplified through LAMP reaction. The 2 products of LAMP, DNA and pyrophosphate, both are negative ions; they combine with positive dye (crystal violet) and positive ions (Mg(2+)), which leads to an increase in the resistivity of the reaction liquid. The changes of resistivity were measured in real-time with a specially designed resistance electrode, to detect Clostridium difficile DNA. We found that electrochemical detection of C. difficile could be completed in 0.5-1 h, with a detection limit of 10(2) CFU/mL, with high accuracy (95.0%), sensitivity (91.1%), and specificity (97.3%) compared to PCR methods. C. difficile is commonly associated with antibiotic-induced diarrhea. Due to the difficulty in performing anaerobic culture and cytotoxicity neutralization assays, a simple, rapid, sensitive, and accurate method is preferred. We conclude that real-time resistance measurement is a rapid, sensitive, and stable method for the diagnosis of C. difficile infection that could be applied to gene chips and pocket instruments. PMID:24065671

  11. Genetically Diverse Clostridium difficile Strains Harboring Abundant Prophages in an Estuarine Environment

    PubMed Central

    Hargreaves, K. R.; Colvin, H. V.; Patel, K. V.; Clokie, J. J. P.

    2013-01-01

    Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in health care settings across the world. Despite its pathogenic capacity, it can be carried asymptomatically and has been found in terrestrial and marine ecosystems outside hospital environments. Little is known about these environmental strains, and few studies have been conducted on estuarine systems. Although prophage abundance and diversity are known to occur within clinical strains, prophage carriage within environmental strains of C. difficile has not previously been explored. In this study, we isolated C. difficile from sites sampled in two consecutive years in an English estuarine system. Isolates were characterized by PCR ribotype, antibiotic resistance, and motility. The prevalence and diversity of prophages were detected by transmission electron microscopy (TEM) and a phage-specific PCR assay. We show that a dynamic and diverse population of C. difficile exists within these sediments and that it includes isolates of ribotypes which are associated with severe clinical infections and those which are more frequently isolated from outside the hospital environment. Prophage carriage was found to be high (75%), demonstrating that phages play a role in the biology of these strains. PMID:23913427

  12. Pathology and diagnostic criteria of Clostridium difficile enteric infection in horses.

    PubMed

    Diab, S S; Rodriguez-Bertos, A; Uzal, F A

    2013-11-01

    Clostridium difficile is commonly associated with diarrhea and colitis in humans and other mammals, including horses. To this date, the epidemiologic, microbiologic, clinical, and diagnostic aspects of C. difficile-associated disease (CDAD) in horses have been thoroughly described. However, reports describing the enteric pathology of this disease in horses are limited. This study presents a comprehensive description of the pathologic characteristics of CDAD in 21 horses and discusses the criteria for the diagnosis of the disease. Case selection was based on C. difficile A/B toxins detection (enzyme-linked immunosorbent assay) in intestinal content samples accompanied by compatible gross and microscopic enteric lesions. Grossly, multifocal, segmental, or diffuse hemorrhage; congestion; and/or marked gelatinous edema of the intestinal wall with abundant bloody or green watery contents were observed. Histologically, the most common lesion was severe necrotizing or necrohemorrhagic enteritis, colitis, or typhlocolitis, with mucosal and/or submucosal thrombosis and marked submucosal edema. The pathology of CDAD in horses is similar to that caused by other equine enteric pathogens; therefore, a definitive diagnosis requires detection of C. difficile A/B toxins in the intestinal contents. PMID:23686768

  13. Cwp84, a Clostridium difficile cysteine protease, exhibits conformational flexibility in the absence of its propeptide

    SciTech Connect

    Bradshaw, William J.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2015-02-19

    Two structures of Cwp84, a cysteine protease from the S-layer of C. difficile, are presented after propeptide cleavage. They reveal the movement of three loops, two in the active-site groove and one on the surface of the lectin-like domain, exposing a hydrophobic pocket. In recent decades, the global healthcare problems caused by Clostridium difficile have increased at an alarming rate. A greater understanding of this antibiotic-resistant bacterium, particularly with respect to how it interacts with the host, is required for the development of novel strategies for fighting C. difficile infections. The surface layer (S-layer) of C. difficile is likely to be of significant importance to host–pathogen interactions. The mature S-layer is formed by a proteinaceous array consisting of multiple copies of a high-molecular-weight and a low-molecular-weight S-layer protein. These components result from the cleavage of SlpA by Cwp84, a cysteine protease. The structure of a truncated Cwp84 active-site mutant has recently been reported and the key features have been identified, providing the first structural insights into the role of Cwp84 in the formation of the S-layer. Here, two structures of Cwp84 after propeptide cleavage are presented and the three conformational changes that are observed are discussed. These changes result in a reconfiguration of the active site and exposure of the hydrophobic pocket.

  14. SpoIIID-mediated regulation of σK function during Clostridium difficile sporulation

    PubMed Central

    Pishdadian, Keyan; Fimlaid, Kelly A.; Shen, Aimee

    2015-01-01

    Summary The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health-care-associated diarrhea worldwide. Although C. difficile spore formation is essential for disease transmission, the regulatory pathways that control this developmental process have only been partially characterized. In the well-studied spore-former Bacillus subtilis, the highly conserved σE, SpoIIID and σK regulatory proteins control gene expression in the mother cell to ensure proper spore formation. To define the precise requirement for SpoIIID and σK during C. difficile sporulation, we analyzed spoIIID and sigK mutants using heterologous expression systems and RNA-Seq transcriptional profiling. These analyses revealed that expression of sigK from a SpoIIID-independent promoter largely bypasses the need for SpoIIID to produce heat-resistant spores. We also observed that σK is active upon translation, suggesting that SpoIIID primarily functions to activate sigK. SpoIIID nevertheless plays auxiliary roles during sporulation, as it enhances levels of the exosporium morphogenetic protein CdeC in a σK-dependent manner.Analyses of purified spores further revealed that SpoIIID and σK control the adherence of the CotB coat protein to C. difficile spores, indicating that these proteins regulate multiple stages of spore formation. Collectively, these results highlight that diverse mechanisms control spore formation in the Firmicutes. PMID:25393584

  15. Probiotics in Clostridium difficile infection: reviewing the need for a multistrain probiotic.

    PubMed

    Hell, M; Bernhofer, C; Stalzer, P; Kern, J M; Claassen, E

    2013-03-01

    In the past two years an enormous amount of molecular, genetic, metabolomic and mechanistic data on the host-bacterium interaction, a healthy gut microbiota and a possible role for probiotics in Clostridium difficile infection (CDI) has been accumulated. Also, new hypervirulent strains of C. difficile have emerged. Yet, clinical trials in CDI have been less promising than in antibiotic associated diarrhoea in general, with more meta-analysis than primary papers on CDI-clinical-trials. The fact that C. difficile is a spore former, producing at least three different toxins has not yet been incorporated in the rational design of probiotics for (recurrent) CDI. Here we postulate that the plethora of effects of C. difficile and the vast amount of data on the role of commensal gut residents and probiotics point towards a multistrain mixture of probiotics to reduce CDI, but also to limit (nosocomial) transmission and/or endogenous reinfection. On the basis of a retrospective chart review of a series of ten CDI patients where recurrence was expected, all patients on adjunctive probiotic therapy with multistrain cocktail (Ecologic®AAD/OMNiBiOTiC® 10) showed complete clinical resolution. This result, and recent success in faecal transplants in CDI treatment, are supportive for the rational design of multistrain probiotics for CDI. PMID:23434948

  16. Succession in the Gut Microbiome following Antibiotic and Antibody Therapies for Clostridium difficile

    PubMed Central

    Peterfreund, Gregory L.; Vandivier, Lee E.; Sinha, Rohini; Marozsan, Andre J.; Olson, William C.; Zhu, Jun; Bushman, Frederic D.

    2012-01-01

    Antibiotic disruption of the intestinal microbiota may cause susceptibility to pathogens that is resolved by progressive bacterial outgrowth and colonization. Succession is central to ecological theory but not widely documented in studies of the vertebrate microbiome. Here, we study succession in the hamster gut after treatment with antibiotics and exposure to Clostridium difficile. C. difficile infection is typically lethal in hamsters, but protection can be conferred with neutralizing antibodies against the A and B toxins. We compare treatment with neutralizing monoclonal antibodies (mAb) to treatment with vancomycin, which prolongs the lives of animals but ultimately fails to protect them from death. We carried out longitudinal deep sequencing analysis and found distinctive waves of succession associated with each form of treatment. Clindamycin sensitization prior to infection was associated with the temporary suppression of the previously dominant Bacteroidales and the fungus Saccinobaculus in favor of Proteobacteria. In mAb-treated animals, C. difficile proliferated before joining Proteobacteria in giving way to re-expanding Bacteroidales and the fungus Wickerhamomyces. However, the Bacteroidales lineages returning by day 7 were different from those that were present initially, and they persisted for the duration of the experiment. Animals treated with vancomycin showed a different set of late-stage lineages that were dominated by Proteobacteria as well as increased disparity between the tissue-associated and luminal cecal communities. The control animals showed no change in their gut microbiota. These data thus suggest different patterns of ecological succession following antibiotic treatment and C. difficile infection. PMID:23071679

  17. Production and Characterization of Chemically Inactivated Genetically Engineered Clostridium difficile Toxoids.

    PubMed

    Vidunas, Eugene; Mathews, Antony; Weaver, Michele; Cai, Ping; Koh, Eun Hee; Patel-Brown, Sujata; Yuan, Hailey; Zheng, Zi-Rong; Carriere, Marjolaine; Johnson, J Erik; Lotvin, Jason; Moran, Justin

    2016-07-01

    A recombinant Clostridium difficile expression system was used to produce genetically engineered toxoids A and B as immunogens for a prophylactic vaccine against C. difficile-associated disease. Although all known enzymatic activities responsible for cytotoxicity were genetically abrogated, the toxoids exhibited residual cytotoxic activity as measured in an in vitro cell-based cytotoxicity assay. The residual cytotoxicity was eliminated by treating the toxoids with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide. Mass spectrometry and amino acid analysis of the EDC-inactivated toxoids identified crosslinks, glycine adducts, and β-alanine adducts. Surface plasmon resonance analysis demonstrated that modifications resulting from the chemical treatment did not appreciably affect recognition of epitopes by both toxin A- and B-specific neutralizing monoclonal antibodies. Compared to formaldehyde-inactivated toxoids, the EDC/N-hydroxysuccinimide-inactivated toxoids exhibited superior stability in solution with respect to reversion of cytotoxic activity. PMID:27233688

  18. Isolation of a toxigenic and clinical genotype of clostridium difficile in retail meats in Costa Rica.

    PubMed

    Quesada-Gómez, Carlos; Mulvey, Michael R; Vargas, Pablo; Gamboa-Coronado, María del Mar; Rodríguez, César; Rodríguez-Cavillini, Evelyn

    2013-02-01

    We isolated a regional toxigenic genotype of Clostridium difficile, previously found in human infection in 4 of 200 (2%) samples of retail meats for human consumption: 1 of 67 samples of beef, 2 of 66 of pork, and 1 of 67 of poultry meat. These four isolates were positive for the tcdA and tcdB genes but negative for deletion of the tcdC and cdtB genes. All strains induced cytopathic effects in HeLa cells. However, they were susceptible to some antibiotics to which clinical isolates are often resistant. All strains were susceptible to vancomycin, metronidazole, moxifloxacin, and rifampicin but resistant to clindamycin and ciprofloxacin. This first report of isolation of C. difficile in foodstuff from Latin America lends support to the notion that animal products serve as a reservoir for clinical strains of this pathogen in the community. PMID:23433387

  19. Spread of epidemic Clostridium difficile NAP1/027 in Latin America: case reports in Panama.

    PubMed

    López-Ureña, Diana; Quesada-Gómez, Carlos; Miranda, Erick; Fonseca, Mercedes; Rodríguez-Cavallini, Evelyn

    2014-02-01

    The rate and severity of Clostridium difficile infection (CDI) have been linked to the emergence and spread of the hypervirulent toxigenic strain NAP1/027. This strain has been responsible for large outbreaks in healthcare facilities in North America and Europe and most recently in Latin America. This is the first report of the NAP1 strain in Panama. It suggests that the spread of C. difficile NAP1 throughout Latin America could be a possibility as evidenced in the following case reports. Five isolates typed as NAP1 had tcdA, tcdB, binary toxin gene cdtB and tcdC deletion. All isolates were resistant to clindamycin, fluoroquinolones and rifampicin. Under this scenario, surveillance programmes for CDI should be implemented in public health facilities in Latin America and diagnosis of CDI should be considered, especially in patients with predisposing factors. PMID:24287669

  20. Real-time cellular analysis for quantitative detection of functional Clostridium difficile toxin in stool.

    PubMed

    Huang, Bin; Li, Haijing; Jin, Dazhi; Stratton, Charles W; Tang, Yi-Wei

    2014-04-01

    Rapid and accurate diagnosis and monitoring of Clostridium difficile infection (CDI) is critical for patient care and infection control. We will briefly review current laboratory techniques for the diagnosis of CDI and identify aspects needing improvement. We will also introduce a real-time cellular analysis (RTCA) assay developed for the diagnosis and monitoring of CDI using electronic impedance to assess the cell status. The RTCA assay uses impedance measurement to detect minute physiological changes in cells cultured on gold microelectrodes embedded in glass substrates in the bottom of microtiter wells. This assay has been adapted for quantitative detection of C. difficile functional toxin directly from stool specimens. Compared to conventional techniques and molecular assays, the RTCA assay provides a valuable tool for the diagnosis of CDI as well as for the assessment of clinical severity and for monitoring therapeutic efficacies. PMID:24649817

  1. Clinical and Laboratory Characteristics of Clostridium difficile Infection in Patients with Discordant Diagnostic Test Results

    PubMed Central

    Kaltsas, Anna; Simon, Matt; Unruh, Larissa H.; Son, Crystal; Wroblewski, Danielle; Musser, Kimberlee A.; Sepkowitz, Kent; Kamboj, Mini

    2012-01-01

    The aim of this study was to compare the clinical and laboratory characteristics of Clostridium difficile infection (CDI) in patients with discordant test results for the cytotoxin assay (CYT) and PCR assays. A retrospective study from May to August 2008 and March to May 2010 was performed. CDI was diagnosed in 128 patients. PCR increased the yield of C. difficile cases by 2-fold compared to that of the CYT assay. Fifty-six cases (44%) were detected by PCR only (CYT negative). Forty-nine percent of patients with non-NAP1 strains were detected by PCR only, compared to 28% of those infected with NAP1 strains (P < 0.05). No significant differences were found in the clinical severity of illness and outcome among patients that tested positive for CDI by both tests (CYT and PCR) compared to those that tested positive by PCR only. PMID:22238444

  2. Eradication of enteric helicobacters in Mongolian gerbils is complicated by the occurrence of Clostridium difficile enterotoxemia.

    PubMed

    Bergin, Ingrid L; Taylor, Nancy S; Nambiar, Prashant R; Fox, James G

    2005-06-01

    Outbred Mongolian gerbils from a United States commercial source were examined for colonization with naturally occurring enterohepatic Helicobacter spp. Helicobacter spp. were identified in the cecum and colon by culture and by using genus-specific primers in polymerase chain reaction (PCR) assays. Nutritionally balanced triple-antibiotic wafers (containing amoxicillin, metronidazole, and bismuth) used previously to eliminate helicobacter infections in mice were administered in an attempt to eradicate the naturally occurring novel helicobacters in the gerbils. After 7 days of antibiotic treatment, two of the experimental animals died due to Clostridium difficile-associated enterotoxemia. However, at 3 weeks after antibiotic cessation, the surviving three animals had no Helicobacter spp. in the cecum or colon according to PCR analysis. Eradication of Helicobacter spp. using dietary administration of antibiotics was complicated by the presence of toxin-producing C. difficile. An alternate method to develop helicobacter-free gerbils (such as Caesarian rederivation) may be necessary. PMID:16089175

  3. Integration of erm(B)-containing elements through large chromosome fragment exchange in Clostridium difficile

    PubMed Central

    Wasels, François; Spigaglia, Patrizia; Barbanti, Fabrizio; Monot, Marc; Villa, Laura; Dupuy, Bruno; Carattoli, Alessandra; Mastrantonio, Paola

    2015-01-01

    In Clostridium difficile, erm(B) genes are located on mobile elements like Tn5398 and Tn6215. In previous studies, some of these elements were transferred by conjugation-like mechanisms, mobilized in trans by helper conjugative systems. In this study, we analyzed the genomes of several recipient strains that acquired either Tn5398 or Tn6215-like elements. We demonstrated that the integration of the transposons in the genome of the recipient cell was always due to homologous recombination events, involving exchange of large chromosomal segments. We did not observed transposon transfer to a C. difficile strain in presence of DNAse, suggesting that a possible transformation-like mechanism occurred in this recipient.

  4. Efficacy of a diagnostic and therapeutic algorithm for Clostridium difficile infection.

    PubMed

    Marukawa, Yohei; Komura, Takuya; Kagaya, Takashi; Ohta, Hajime; Unoura, Masashi

    2016-08-01

    In July 2012, metronidazole was approved for the treatment of Clostridium difficile infection (CDI). To clarify the selection criteria for the drug in terms of CDI severity, we established a diagnostic and therapeutic algorithm with reference to the SHEA-IDSA Clinical Practice Guidelines. We compared patients whose treatments were guided by the algorithm (29 cases, October 2012-September 2013) with patients treated prior to the development of the algorithm (37 cases, October 2011-September 2012). All cases treated with reference to the algorithm were diagnosed using enzyme immunoassay of C. difficile toxins A and B and glutamate dehydrogenase;an appropriate drug was prescribed in 93.1% of the cases. We found no significant between-group differences in the cure, recurrence, or complication rates. However, drug costs in cases wherein treatments were guided by the algorithm were markedly reduced. We have, thus, shown that algorithm-guided treatment is efficacious and cost-effective. PMID:27498935

  5. Evaluation of Xpert C. difficile, BD MAX Cdiff, IMDx C. difficile for Abbott m2000, and Illumigene C. difficile Assays for Direct Detection of Toxigenic Clostridium difficile in Stool Specimens

    PubMed Central

    Yoo, Sun Mee; Shin, Won Chang

    2016-01-01

    Background We evaluated the performance of four commercial nucleic acid amplification tests (NAATs: Xpert C. difficile, BD MAX Cdiff, IMDx C. difficile for Abbott m2000, and Illumigene C. difficile) for direct and rapid detection of Clostridium difficile toxin genes. Methods We compared four NAATs on the same set of 339 stool specimens (303 prospective and 36 retrospective specimens) with toxigenic culture (TC). Results Concordance rate among four NAATs was 90.3% (306/339). Based on TC results, the sensitivity and specificity were 90.0% and 92.9% for Xpert; 86.3% and 89.3% for Max; 84.3% and 94.4% for IMDx; and 82.4% and 93.7% for Illumigene, respectively. For 306 concordant cases, there were 11 TC-negative/NAATs co-positive cases and 6 TC-positive/NAATs co-negative cases. Among 33 discordant cases, 18 were only single positive in each NAAT (Xpert, 1; Max, 12; IMDx, 1; Illumigene, 4). Positivity rates of the four NAATs were associated with those of semi-quantitative cultures, which were maximized in grade 3 (>100 colony-forming unit [CFU]) compared with grade 1 (<10 CFU). Conclusions Commercial NAATs may be rapid and reliable methods for direct detection of tcdA and/or tcdB in stool specimens compared with TC. Some differences in the sensitivity of the NAATs may partly depend on the number of toxigenic C. difficile in stool specimens. PMID:26709260

  6. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection

    PubMed Central

    Sun, Xingmin; Hirota, Simon A.

    2014-01-01

    Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of Clostridium difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis. PMID:25242213

  7. Tests for the diagnosis of Clostridium difficile infection: the next generation.

    PubMed

    Carroll, Karen C

    2011-08-01

    Clostridium difficile (C. difficile) causes 25-30% of cases of antibiotic associated diarrhea and most cases of pseudomembranous colitis. Patients presenting with diarrhea after hospitalization for 3 or more days should be tested for C. difficile. There are many options available for testing, each of which has inherent advantages and disadvantages. Most laboratories perform toxin testing using an enzyme immunoassay method. In general these tests have sensitivities ranging from 60 to 70% and specificities of 98%. When using these methods, symptomatic patients with negative tests should be tested by another more sensitive method. Until recently, cell culture cytotoxicity neutralization assays (CCNAs) were considered the gold standard in the U.S. A two-step algorithm using an EIA for glutamate dehydrogenase detection followed by testing positives using CCNA, offered an improved alternative until the availability of molecular assays. Although early studies that compared the GDH assay to CCNA demonstrated high sensitivity and negative predictive values, more recent comparisons to toxigenic culture and PCR have shown the sensitivity to be in the mid to high 80's. When testing using a sensitive assay, repeat testing is not cost-effective. Outbreaks caused by a toxin variant epidemic strain have renewed interest in bacterial culture. Toxigenic culture has emerged as the new gold standard against which newer assays should be compared. However, there is no agreed upon standard method for culture performance. At least 4 FDA cleared nucleic acid amplification assays are available to clinical laboratories and several of these have been well evaluated in the literature. Because these assays detect a gene that encodes toxin and not the toxin itself it is important that laboratories test only patients with diarrhea. These molecular assays have been shown to be superior to toxin EIAs, CCNA and 2-step algorithms, but not to toxigenic culture. More studies are needed to assess the

  8. The Clostridium difficile Exosporium Cysteine (CdeC)-Rich Protein Is Required for Exosporium Morphogenesis and Coat Assembly

    PubMed Central

    Barra-Carrasco, Jonathan; Olguín-Araneda, Valeria; Plaza-Garrido, Ángela; Miranda-Cárdenas, Camila; Cofré-Araneda, Glenda; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R.

    2013-01-01

    Clostridium difficile is an important nosocomial pathogen that has become a major cause of antibiotic-associated diarrhea. There is a general consensus that C. difficile spores play an important role in C. difficile pathogenesis, contributing to infection, persistence, and transmission. Evidence has demonstrated that C. difficile spores have an outermost layer, termed the exosporium, that plays some role in adherence to intestinal epithelial cells. Recently, the protein encoded by CD1067 was shown to be present in trypsin-exosporium extracts of C. difficile 630 spores. In this study, we renamed the CD1067 protein Clostridium difficile exosporium cysteine-rich protein (CdeC) and characterized its role in the structure and properties of C. difficile spores. CdeC is expressed under sporulation conditions and localizes to the C. difficile spore. Through the construction of an ΔcdeC isogenic knockout mutant derivative of C. difficile strain R20291, we demonstrated that (i) the distinctive nap layer is largely missing in ΔcdeC spores; (ii) CdeC is localized in the exosporium-like layer and is accessible to IgGs; (iii) ΔcdeC spores were more sensitive to lysozyme, ethanol, and heat treatment than wild-type spores; and (iv) despite the almost complete absence of the exosporium layer, ΔcdeC spores adhered at higher levels than wild-type spores to intestinal epithelium cell lines (i.e., HT-29 and Caco-2 cells). Collectively, these results indicate that CdeC is essential for exosporium morphogenesis and the correct assembly of the spore coat of C. difficile. PMID:23794627

  9. Observations on the Role of TcdE Isoforms in Clostridium difficile Toxin Secretion

    PubMed Central

    Fitzwater, Leah; Nichols, Rebekah

    2015-01-01

    ABSTRACT Clostridium difficile is a major nosocomial pathogen and the principal causative agent of antibiotic-associated diarrhea. The toxigenic C. difficile strains that cause disease secrete virulence factors, toxin A and toxin B, that cause colonic injury and inflammation. C. difficile toxins have no export signature and are secreted by an unusual mechanism that involves TcdE, a holin-like protein. We isolated a TcdE mutant of the epidemic R20291 strain with impaired toxin secretion, which was restored by complementation with functional TcdE. In the TcdE open reading frame (ORF), we identified three possible translation start sites; each translated isoform may play a specific role in TcdE-controlled toxin release. We created plasmid constructs that express only one of the three TcdE isoforms and complemented the TcdE mutant with these isoforms. Western blot analysis of the complemented strains demonstrated that TcdE is translated efficiently from the start codon at the 25th and 27th positions in the predicted ORF, producing proteins with 142 amino acids (TcdE142) and 140 amino acids (TcdE140), respectively. TcdE166 was not detected when expressed from its own ribosomal binding site (RBS). The effects of all three TcdE isoforms on C. difficile cell viability and toxin release were determined. Among the three isoforms, overexpression of TcdE166 and TcdE142 had a profound effect on cell viability compared to the TcdE140 isoform. Similarly, TcdE166 and TcdE142 facilitated toxin release more efficiently than did TcdE140. The importance of these variations among TcdE isoforms and their role in toxin release are discussed. IMPORTANCE C. difficile is a nosocomial pathogen that has become the most prevalent cause of antibiotic-associated diarrhea in North America and in several countries in Europe. Most strains of C. difficile produce two high-molecular-weight toxins that are regarded as the primary virulence factors. The mechanism by which these large toxins are

  10. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection.

    PubMed

    Reeves, Angela E; Theriot, Casey M; Bergin, Ingrid L; Huffnagle, Gary B; Schloss, Patrick D; Young, Vincent B

    2011-01-01

    Clostridium difficile infection (CDI) arises in the setting of antibiotic administration where disruption of the normal indigenous gut microbiota leads to susceptibility to C. difficile colonization and colitis. Using a murine model of CDI, we demonstrate that changes in the community structure of the indigenous gut microbiota are associated with the loss of colonization resistance against C. difficile. Several antibiotic regimens were tested in combination for the ability to overcome colonization resistance, including a five antibiotic cocktail consisting of kanamycin, gentamicin, colistin, metronidazole, and vancomycin administered in drinking water for three days, a single intraperitoneal dose of clindamycin or 10 days of cefoperazone in drinking water. Following antibiotic treatment animals were challenged with 105 colony forming units of C. difficile strain VPI 10463 via oral gavage. Animals that received the antibiotic cocktail and clindamycin prior to C. difficile challenge followed one of two clinical courses, either becoming clinically ill and moribund within 2-4 days post challenge, or remaining clinically well. Animals that became clinically ill developed histologically severe colitis. These histopathologic findings were significantly less severe in animals that remained clinically well. Analysis of 16S rRNA gene sequences retrieved from gut tissue at necropsy demonstrated that Proteobacteria dominated the gut microbiota in clinically ill animals. In contrast, the gut microbial community of clinically well animals more closely resembled untreated animals, which were dominated by members of the Firmicutes. All animals that received cefoperazone treatment prior to C. difficile challenge were clinically ill and moribund by 2-5 days post challenge in a dose dependent manner. The gut communities in these animals were dominated by C.difficile suggesting that cefoperazone treatment resulted in a greater loss in colonization resistance. Thus, the severity of

  11. First Report of Clostridium difficile NAP1/027 in a Mexican Hospital

    PubMed Central

    Camacho-Ortiz, Adrián; López-Barrera, Daniel; Hernández-García, Raúl; Galván-De los Santos, Alejandra M.; Flores-Treviño, Samantha M.; Llaca-Díaz, Jorge M.; Garza, Héctor J. Maldonado; Bosques-Padilla, Francisco J.; Garza-González, Elvira

    2015-01-01

    Background and Objective Clostridium difficile NAP1/ribotype 027 is associated with severe disease and high mortality rates. Our aim was to determine the prevalence of NAP1/ribotype 027 among C. difficile isolates in a tertiary care hospital, and review the main clinical data. Methods We included 106 stool samples from 106 patients. Samples were tested for A&B toxins and were cultured on CCFA agar. The genes tcdA, tcdB, tcdC, cdtA, and cdtB were amplified using PCR in clinical isolates. The tcdA 3’-end deletion analysis, PCR-ribotyping, and pulsed-field gel electrophoresis (PFGE) were also performed. Stool samples that were positive for culture were tested by the GeneXpert C. difficile assay. Clinical data were collected. Results Thirty-six patients tested positive for A&B toxins; and 22 patients had positive culture for C. difficile, 14 of which tested positive for the A&B toxins and all 22 patients tested positive by the GeneXpert C. difficile assay. Risk factors included an average hospital stay of 16.1 days prior to toxin detection, average antibiotic use for 16.2 days, and a median of 3 antibiotics used. The 30-day crude mortality rate was 8.4%. Six of the 22 patients died, and 3 of those deaths were directly attributed to C. difficile infection. The majority of isolates, 90.9% (20/22), carried genes tcdB, tcdA, cdtA, and cdtB; and these strains carried the corresponding downregulator gene tcdC, with an 18-bp deletion. PFGE was performed on 17 isolates, and one main pattern was observed. Analysis of the ribotyping data showed similar results. Conclusion The above findings represent the clonal spread of C. difficile in our institution, which mainly includes the NAP1/027 strain. This is the first report of C. difficile ribotype NAP1/027 in Mexico. PMID:25915544

  12. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy

    PubMed Central

    Wang, Shiwei; Shen, Aimee; Setlow, Peter

    2015-01-01

    ABSTRACT The Gram-positive spore-forming anaerobe Clostridium difficile is a leading cause of nosocomial diarrhea. Spores of C. difficile initiate infection when triggered to germinate by bile salts in the gastrointestinal tract. We analyzed germination kinetics of individual C. difficile spores using Raman spectroscopy and differential interference contrast (DIC) microscopy. Similar to Bacillus spores, individual C. difficile spores germinating with taurocholate plus glycine began slow leakage of a ∼15% concentration of a chelate of Ca2+ and dipicolinic acid (CaDPA) at a heterogeneous time T1, rapidly released CaDPA at Tlag, completed CaDPA release at Trelease, and finished peptidoglycan cortex hydrolysis at Tlysis. T1 and Tlag values for individual spores were heterogeneous, but ΔTrelease periods (Trelease − Tlag) were relatively constant. In contrast to Bacillus spores, heat treatment did not stimulate spore germination in the two C. difficile strains tested. C. difficile spores did not germinate with taurocholate or glycine alone, and different bile salts differentially promoted spore germination, with taurocholate and taurodeoxycholate being best. Transient exposure of spores to taurocholate plus glycine was sufficient to commit individual spores to germinate. C. difficile spores did not germinate with CaDPA, in contrast to B. subtilis and C. perfringens spores. However, the detergent dodecylamine induced C. difficile spore germination, and rates were increased by spore coat removal although cortex hydrolysis did not follow Trelease, in contrast with B. subtilis. C. difficile spores lacking the cortex-lytic enzyme, SleC, germinated extremely poorly, and cortex hydrolysis was not observed in the few sleC spores that partially germinated. Overall, these findings indicate that C. difficile and B. subtilis spore germination exhibit key differences. IMPORTANCE Spores of the Gram-positive anaerobe Clostridium difficile are responsible for initiating infection

  13. Evaluation of the Cepheid Xpert Clostridium difficile Epi assay for diagnosis of Clostridium difficile infection and typing of the NAP1 strain at a cancer hospital.

    PubMed

    Babady, N Esther; Stiles, Jeffrey; Ruggiero, Phyllis; Khosa, Perminder; Huang, David; Shuptar, Susan; Kamboj, Mini; Kiehn, Timothy E

    2010-12-01

    Clostridium difficile is the most common cause of health care-associated diarrhea. Accurate and rapid diagnosis is essential to improve patient outcome and prevent disease spread. We compared our two-step diagnostic algorithm, an enzyme immunoassay for glutamate dehydrogenase (GDH) followed by the cytotoxin neutralization test (CYT) with a turnaround time of 24 to 48 h, versus the Cepheid Xpert C. difficile Epi assay, a PCR-based assay with a turnaround time of <1 h. In the first phase of the study, only GDH-positive stool samples were tested by both CYT and Xpert PCR. Discordant results were resolved by toxigenic culture. In the second phase, all stool samples were tested by GDH and Xpert PCR. Only GDH-positive stools were further tested by CYT. Genotypic characterization of 45 Xpert PCR-positive stools was performed by sequencing of the tcdC gene and PCR ribotyping. In phase 1, the agreement between the GDH-CYT and the GDH-Xpert PCR was 72%. The sensitivities and specificities of GDH-CYT and GDH-Xpert PCR were 57% and 97% and 100% and 97%, respectively. In phase 2, the agreement between GDH-CYT and Xpert PCR alone was 95%. As in phase 1, sensitivity of the Xpert PCR was higher than that of the GDH-CYT. The correlation between PCR-ribotyping, sequencing, and Xpert PCR for detection of NAP1 strains was excellent (>90%). The excellent sensitivity and specificity and the rapid turnaround time of the Xpert PCR assay as well as its strain-typing capability make it an attractive option for diagnosis of C. difficile infection. PMID:20943860

  14. Evaluation of the Cepheid Xpert Clostridium difficile Epi Assay for Diagnosis of Clostridium difficile Infection and Typing of the NAP1 Strain at a Cancer Hospital ▿

    PubMed Central

    Babady, N. Esther; Stiles, Jeffrey; Ruggiero, Phyllis; Khosa, Perminder; Huang, David; Shuptar, Susan; Kamboj, Mini; Kiehn, Timothy E.

    2010-01-01

    Clostridium difficile is the most common cause of health care-associated diarrhea. Accurate and rapid diagnosis is essential to improve patient outcome and prevent disease spread. We compared our two-step diagnostic algorithm, an enzyme immunoassay for glutamate dehydrogenase (GDH) followed by the cytotoxin neutralization test (CYT) with a turnaround time of 24 to 48 h, versus the Cepheid Xpert C. difficile Epi assay, a PCR-based assay with a turnaround time of <1 h. In the first phase of the study, only GDH-positive stool samples were tested by both CYT and Xpert PCR. Discordant results were resolved by toxigenic culture. In the second phase, all stool samples were tested by GDH and Xpert PCR. Only GDH-positive stools were further tested by CYT. Genotypic characterization of 45 Xpert PCR-positive stools was performed by sequencing of the tcdC gene and PCR ribotyping. In phase 1, the agreement between the GDH-CYT and the GDH-Xpert PCR was 72%. The sensitivities and specificities of GDH-CYT and GDH-Xpert PCR were 57% and 97% and 100% and 97%, respectively. In phase 2, the agreement between GDH-CYT and Xpert PCR alone was 95%. As in phase 1, sensitivity of the Xpert PCR was higher than that of the GDH-CYT. The correlation between PCR-ribotyping, sequencing, and Xpert PCR for detection of NAP1 strains was excellent (>90%). The excellent sensitivity and specificity and the rapid turnaround time of the Xpert PCR assay as well as its strain-typing capability make it an attractive option for diagnosis of C. difficile infection. PMID:20943860

  15. Recent Advances in the Diagnosis and Treatment of Clostridium Difficile Infection

    PubMed Central

    Avila, Meera B.; Avila, Nathaniel P.; Dupont, Andrew W.

    2016-01-01

    Clostridium difficile infection (CDI) has become the most frequently reported health care-associated infection in the United States [1]. As the incidence of CDI rises, so too does the burden it produces on health care and society. In an attempt to decrease the burden of CDI and provide the best outcomes for patients affected by CDI, there have been many recent advancements in the understanding, diagnosis, and management of CDI. In this article, we review the current recommendations regarding CDI testing and treatment strategies. PMID:26918176

  16. Mobile genetic elements in Clostridium difficile and their role in genome function

    PubMed Central

    Mullany, Peter; Allan, Elaine; Roberts, Adam P.

    2015-01-01

    Approximately 11% the Clostridium difficile genome is made up of mobile genetic elements which have a profound effect on the biology of the organism. This includes transfer of antibiotic resistance and other factors that allow the organism to survive challenging environments, modulation of toxin gene expression, transfer of the toxin genes themselves and the conversion of non-toxigenic strains to toxin producers. Mobile genetic elements have also been adapted by investigators to probe the biology of the organism and the various ways in which these have been used are reviewed. PMID:25576774

  17. Microbiome manipulation with faecal microbiome transplantation as a therapeutic strategy in Clostridium difficile infection

    PubMed Central

    Marchesi, J.R.; Thursz, M.R.; Williams, H.R.T.

    2015-01-01

    Faecal microbiome transplantation (FMT) has generated huge recent interest as it presents a potential solution to a significant clinical problem—the increasing incidence of Clostridium difficile infection (CDI). In the short term, however, there remain many practical questions regarding its use, including the optimal selection of donors, material preparation and the mechanics of delivery. In the longer term, enhanced understanding of the mechanisms of action of FMT may potentiate novel therapies, such as targeted manipulation of the microbiome in CDI and beyond. PMID:25193538

  18. Rifamycin Resistance in Clostridium difficile Is Generally Associated with a Low Fitness Burden.

    PubMed

    Dang, Uyen T; Zamora, Idalia; Hevener, Kirk E; Adhikari, Sudip; Wu, Xiaoqian; Hurdle, Julian G

    2016-09-01

    We characterized clinically occurring and novel mutations in the β subunit of RNA polymerase in Clostridium difficile (CdRpoB), conferring rifamycin (including rifaximin) resistance. The Arg505Lys substitution did not impose an in vitro fitness cost, which may be one reason for its dominance among rifamycin-resistant clinical isolates. These observations were supported through the structural modeling of CdRpoB. In general, most mutations lacked in vitro fitness costs, suggesting that rifamycin resistance may in some cases persist in the clinic. PMID:27381389

  19. Antibiotic therapy and Clostridium difficile infection - primum non nocere - first do no harm.

    PubMed

    Crowther, Grace S; Wilcox, Mark H

    2015-01-01

    Treatment options for Clostridium difficile infection (CDI) remain limited despite this usually nosocomial infection posing an urgent threat to public health. A major paradox of the management of CDI is the use of antimicrobial agents to treat infection, which runs the risk of prolonged gut microbiota perturbation and so recurrence of infection. Here, we explore alternative CDI treatment and prevention options currently available or in development. Notably, strategies that aim to reduce the negative effects of antibiotics on gut microbiota offer the potential to alter current antimicrobial stewardship approaches to preventing CDI. PMID:26396535

  20. Evaluation of gas-liquid chromatography for the rapid diagnosis of Clostridium difficile associated disease.

    PubMed Central

    Gianfrilli, P; Pantosti, A; Luzzi, I

    1985-01-01

    Direct gas-liquid chromatography of faecal specimens with isocaproic acid as a marker was used for the rapid diagnosis of Clostridium difficile associated diarrhoeal diseases. Ninety stools were examined and results were compared with conventional culture on selective medium and cytotoxin assay in tissue culture. Using a combined analysis of isocaproic acid and butyric acid peak heights we defined three categories: positive, negative, and indeterminate. When the indeterminate group was excluded, the positive and negative predictive values of gas-liquid chromatography analysis were 86.9% and 85% respectively compared with culture and 71.4% and 95% respectively compared with cytotoxin assay. PMID:4008667

  1. An In Vitro Model of the Human Colon: Studies of Intestinal Biofilms and Clostridium difficile Infection.

    PubMed

    Crowther, Grace S; Wilcox, Mark H; Chilton, Caroline H

    2016-01-01

    The in vitro gut model is an invaluable research tool to study indigenous gut microbiota communities, the behavior of pathogenic organisms, and the therapeutic and adverse effect of antimicrobial administration on these communities. The model has been validated against the intestinal contents of sudden death victims to reflect the physicochemical and microbiological conditions of the proximal to distal colon, and has been extensively used to investigate the interplay between gut microbiota populations, antibiotic exposure, and Clostridium difficile infection. More recently the gut model has been adapted to additionally model intestinal biofilm. Here we describe the structure, assembly, and application of the biofilm gut model. PMID:27507345

  2. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile.

    PubMed

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride ("DQAsomes") have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2'-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription-translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We describe

  3. Comparison of real-time PCR techniques to cytotoxigenic culture methods for diagnosing Clostridium difficile infection.

    PubMed

    Knetsch, C W; Bakker, D; de Boer, R F; Sanders, I; Hofs, S; Kooistra-Smid, A M D; Corver, J; Eastwood, K; Wilcox, M H; Kuijper, E J

    2011-01-01

    In the past decade, the incidence of Clostridium difficile infections (CDI) with a more severe course has increased in Europe and North America. Assays that are capable of rapidly diagnosing CDI are essential. Two real-time PCRs (LUMC and LvI) targeting C. difficile toxin genes (tcdB, and tcdA and tcdB, respectively) were compared with the BD GeneOhm PCR (targeting the tcdB gene), using cytotoxigenic culture as a gold standard. In addition, a real-time PCR targeting the tcdC frameshift mutation at position 117 (Δ117 PCR) was evaluated for detecting toxigenic C. difficile and the presence of PCR ribotype 027 in stool samples. In total, 526 diarrheal samples were prospectively collected and included in the study. Compared with those for cytotoxigenic culture, sensitivity, specificity, positive predicted value (PPV), and negative predicted value (NPV) were for PCR LUMC 96.0%, 88.0%, 66.0%, and 98.9%, for PCR LvI 100.0%, 89.4%, 69.7%, and 100.0%, for PCR Δ117 98.0%, 90.7%, 71.9%, and 99.5%, and for PCR BD GeneOhm 88.3%, 96.9%, 86.5%, and 97.4%. Compared to those with feces samples cultured positive for C. difficile type 027, the sensitivity, specificity, PPV, and NPV of the Δ117 PCR were 95.2%, 96.2%, 87.0%, and 98.7%. We conclude that all real-time PCRs can be applied as a first screening test in an algorithm for diagnosing CDI. However, the low PPVs hinder the use of the assays as stand-alone tests. Furthermore, the Δ117 PCR may provide valuable information for minimizing the spread of the epidemic C. difficile PCR ribotype 027. PMID:20980562

  4. Emergence of an Outbreak-Associated Clostridium difficile Variant with Increased Virulence

    PubMed Central

    Quesada-Gómez, Carlos; López-Ureña, Diana; Acuña-Amador, Luis; Villalobos-Zúñiga, Manuel; Du, Tim; Freire, Rosemayre; Guzmán-Verri, Caterina; Gamboa-Coronado, María del Mar; Lawley, Trevor D.; Moreno, Edgardo; Mulvey, Michael R.; Brito, Gerly Anne de Castro; Rodríguez-Cavallini, Evelyn; Rodríguez, César

    2015-01-01

    The prevalence of Clostridium difficile infections has increased due to the emergence of epidemic variants from diverse genetic lineages. Here we describe the emergence of a novel variant during an outbreak in a Costa Rican hospital that was associated with severe clinical presentations. This C. difficile variant elicited higher white blood cell counts and caused disease in younger patients than did other strains isolated during the outbreak. Furthermore, it had a recurrence rate, a 30-day attributable disease rate, and disease severity as great as those of the epidemic strain NAP1. Pulsed-field gel electrophoresis genotyping indicated that the outbreak strains belong to a previously undescribed variant, designated NAPCR1. Whole-genome sequencing and ribotyping indicated that the NAPCR1 variant belongs to C. difficile ribotype 012 and sequence type 54, as does the reference strain 630. NAPCR1 strains are resistant to fluoroquinolones due to a mutation in gyrA, and they possess an 18-bp deletion in tcdC that is characteristic of the epidemic, evolutionarily distinct, C. difficile NAP1 variant. NAPCR1 genomes contain 10% more predicted genes than strain 630, most of which are of hypothetical function and are present on phages and other mobile genetic elements. The increased virulence of NAPCR1 was confirmed by mortality rates in the hamster model and strong inflammatory responses induced by bacteria-free supernatants in the murine ligated loop model. However, NAPCR1 strains do not synthesize toxin A and toxin B at levels comparable to those in NAP1 strains. Our results suggest that the pathogenic potential of this emerging C. difficile variant is due to the acquisition of hypothetical functions associated with laterally acquired DNA. PMID:25653402

  5. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile.

    PubMed

    Knight, D R; Putsathit, P; Elliott, B; Riley, T V

    2016-03-01

    In North America and Europe, reports of a genetic overlap between toxigenic strains of Clostridium difficile isolated from humans, livestock and retail meat suggest that food-borne transmission may be occurring. We investigated the prevalence, concentration and genetic diversity of C. difficile on the carcasses (n = 300) and in the faeces (n = 30) of neonatal veal calves at three abattoirs in Australia in 2013. Selective culture (both direct and enrichment) was performed, and all isolates were characterized by PCR for the toxin genes tcdA, tcdB and cdtA/B and by PCR ribotyping. Prevalence of C. difficile was 25.3% (76/300) on carcasses and 60.0% (18/30) in faeces. Multiple PCR ribotypes (RT) were detected, with four binary toxin-positive RTs accounting for 70.3% (71/101) of isolates; 127 (A(+), B(+), CDT(+), 32.7%), 288 (A(-), B(-), CDT(+), 28.7%), 033 (A(-), B(-), CDT(+), 6.9%) and 126 (A(+), B(+), CDT(+), 2.0%). Viable counts of a subset of samples revealed detectable numbers of C. difficile in 66.7% (10/15) of faecal samples (range 2.0 × 10(3) to 2.3 × 10(6) CFU/mL, median count 2.5 × 10(4) CFU/mL) and in 16.7% (25/150) of carcase samples (range 3 to 33 CFU/cm(2), median count 7 CFU/cm(2)). These data further confirm that Australian neonatal veal calf carcasses are contaminated with potentially significant strains of C. difficile at slaughter. PMID:26686811

  6. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile

    PubMed Central

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride (“DQAsomes”) have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2′-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription–translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We

  7. CcpA-mediated repression of Clostridium difficile toxin gene expression.

    PubMed

    Antunes, Ana; Martin-Verstraete, Isabelle; Dupuy, Bruno

    2011-02-01

    The presence of glucose or other rapidly metabolizable carbon sources in the bacterial growth medium strongly represses Clostridium difficile toxin synthesis independently of strain origin. In Gram-positive bacteria, carbon catabolite repression (CCR) is generally regarded as a regulatory mechanism that responds to carbohydrate availability. In the C. difficile genome all elements involved in CCR are present. To elucidate in vivo the role of CCR in C. difficile toxin synthesis, we used the ClosTron gene knockout system to construct mutants of strain JIR8094 that were unable to produce the major components of the CCR signal transduction pathway: the phosphotransferase system (PTS) proteins (Enzyme I and HPr), the HPr kinase/phosphorylase (HprK/P) and the catabolite control protein A, CcpA. Inactivation of the ptsI, ptsH and ccpA genes resulted in derepression of toxin gene expression in the presence of glucose, whereas repression of toxin production was still observed in the hprK mutant, indicating that uptake of glucose is required for repression but that phosphorylation of HPr by HprK is not. C. difficile CcpA was found to bind to the regulatory regions of the tcdA and tcdB genes but not through a consensus cre site motif. Moreover in vivo and in vitro results confirmed that HPr-Ser45-P does not stimulate CcpA-dependent binding to DNA targets. However, fructose-1,6-biphosphate (FBP) alone did increase CcpA binding affinity in the absence of HPr-Ser45-P. These results showed that CcpA represses toxin expression in response to PTS sugar availability, thus linking carbon source utilization to virulence gene expression in C. difficile. PMID:21299645

  8. Genome-Based Infection Tracking Reveals Dynamics of Clostridium difficile Transmission and Disease Recurrence

    PubMed Central

    Kumar, Nitin; Miyajima, Fabio; He, Miao; Roberts, Paul; Swale, Andrew; Ellison, Louise; Pickard, Derek; Smith, Godfrey; Molyneux, Rebecca; Dougan, Gordon; Parkhill, Julian; Wren, Brendan W.; Parry, Christopher M.; Pirmohamed, Munir; Lawley, Trevor D.

    2016-01-01

    Background. Accurate tracking of Clostridium difficile transmission within healthcare settings is key to its containment but is hindered by the lack of discriminatory power of standard genotyping methods. We describe a whole-genome phylogenetic-based method to track the transmission of individual clones in infected hospital patients from the epidemic C. difficile 027/ST1 lineage, and to distinguish between the 2 causes of recurrent disease, relapse (same strain), or reinfection (different strain). Methods. We monitored patients with C. difficile infection in a UK hospital over a 2-year period. We performed whole-genome sequencing and phylogenetic analysis of 108 strains isolated from symptomatic patients. High-resolution phylogeny was integrated with in-hospital transfers and contact data to create an infection network linking individual patients and specific hospital wards. Results. Epidemic C. difficile 027/ST1 caused the majority of infections during our sampling period. Integration of whole-genome single nucleotide polymorphism (SNP) phylogenetic analysis, which accurately discriminated between 27 distinct SNP genotypes, with patient movement and contact data identified 32 plausible transmission events, including ward-based contamination (66%) or direct donor–recipient contact (34%). Highly contagious donors were identified who contributed to the persistence of clones within distinct hospital wards and the spread of clones between wards, especially in areas of intense turnover. Recurrent cases were identified between 4 and 26 weeks, highlighting the limitation of the standard <8-week cutoff used for patient diagnosis and management. Conclusions. Genome-based infection tracking to monitor the persistence and spread of C. difficile within healthcare facilities could inform infection control and patient management. PMID:26683317

  9. Clostridium difficile and inflammatory bowel disease: Role in pathogenesis and implications in treatment

    PubMed Central

    Nitzan, Orna; Elias, Mazen; Chazan, Bibiana; Raz, Raul; Saliba, Walid

    2013-01-01

    Clostridium difficile (C. difficile) is the leading cause of antibiotic associated colitis and nosocomial diarrhea. Patients with inflammatory bowel disease (IBD) are at increased risk of developing C. difficile infection (CDI), have worse outcomes of CDI-including higher rates of colectomy and death, and experience higher rates of recurrence. However, it is still not clear whether C. difficile is a cause of IBD or a consequence of the inflammatory state in the intestinal environment. The burden of CDI has increased dramatically over the past decade, with severe outbreaks described in many countries, which have been attributed to a new and more virulent strain. A parallel rise in the incidence of CDI has been noted in patients with IBD. IBD patients with CDI tend be younger, have less prior antibiotic exposure, and most cases of CDI in these patients represent outpatient acquired infections. The clinical presentation of CDI in these patients can be unique-including diversion colitis, enteritis and pouchitis, and typical findings on colonoscopy are often absent. Due to the high prevalence of CDI in patients hospitalized with an IBD exacerbation, and the prognostic implications of CDI in these patients, it is recommended to test all IBD patients hospitalized with a disease flare for C. difficile. Treatment includes general measures such as supportive care and infection control measures. Antibiotic therapy with either oral metronidazole, vancomycin, or the novel antibiotic-fidaxomicin, should be initiated as soon as possible. Fecal macrobiota transplantation constitutes another optional treatment for severe/recurrent CDI. The aim of this paper is to review recent data on CDI in IBD: role in pathogenesis, diagnostic methods, optional treatments, and outcomes of these patients. PMID:24282348

  10. Molecular Characterization of Clostridium difficile Isolates from Human Subjects and the Environment

    PubMed Central

    Tian, Tian-tian; Zhao, Jian-hong; Yang, Jing; Qiang, Cui-xin; Li, Zhi-rong; Chen, Jing; Xu, Kai-yue; Ciu, Qing-qing; Li, Ru-xin

    2016-01-01

    Clostridium difficile is a spore-forming, gram-positive, anaerobic bacillus that can cause C. difficile infection (CDI). However, only a few studies on the prevalence and antibiotic resistance of C. difficile in healthy individuals in China have been reported. We employed a spore enrichment culture to screen for C. difficile in the stool samples of 3699 healthy Chinese individuals who were divided into 4 groups: infants younger than 2 years of age and living at home with their parents; children aged 1 to 8 years of age and attending three different kindergarten schools; community-dwelling healthy adult aged 23–60 years old; and healthcare workers aged 28–80 years old. The C. difficile isolates were analyzed for the presence of toxin genes and typed by PCR ribotyping and multilocus sequence typing (MLST). The minimum inhibitory concentration of 8 antimicrobial agents was determined for all of the isolates using the agar dilution method. The intestinal carriage rate in the healthy children was 13.6% and ranged from 0% to 21% depending on age. The carriage rates in the 1654 community-dwelling healthy adults and 348 healthcare workers were 5.5% and 6.3%, respectively. Among the isolates, 226 were toxigenic (225 tcdA+/tcdB+ and 1 tcdA+/tcdB+ ctdA+/ctdB+). Twenty-four ribotypes were found, with the dominant type accounting for 29.7% of the isolates. The toxigenic isolates were typed into 27 MLST genotypes. All of the strains were susceptible to vancomycin, metronidazole, fidaxomicin, and rifaximin. High resistance to levofloxacin and ciprofloxacin at rates of 39.8% and 98.3%, respectively, were observed. ST37 isolates were more resistant to levofloxacin than the other STs. The PCR ribotypes and sequence types from the healthy populations were similar to those from the adult patients. PMID:27011211

  11. Molecular Characterization of Clostridium difficile Isolates from Human Subjects and the Environment.

    PubMed

    Tian, Tian-tian; Zhao, Jian-hong; Yang, Jing; Qiang, Cui-xin; Li, Zhi-rong; Chen, Jing; Xu, Kai-yue; Ciu, Qing-qing; Li, Ru-xin

    2016-01-01

    Clostridium difficile is a spore-forming, gram-positive, anaerobic bacillus that can cause C. difficile infection (CDI). However, only a few studies on the prevalence and antibiotic resistance of C. difficile in healthy individuals in China have been reported. We employed a spore enrichment culture to screen for C. difficile in the stool samples of 3699 healthy Chinese individuals who were divided into 4 groups: infants younger than 2 years of age and living at home with their parents; children aged 1 to 8 years of age and attending three different kindergarten schools; community-dwelling healthy adult aged 23-60 years old; and healthcare workers aged 28-80 years old. The C. difficile isolates were analyzed for the presence of toxin genes and typed by PCR ribotyping and multilocus sequence typing (MLST). The minimum inhibitory concentration of 8 antimicrobial agents was determined for all of the isolates using the agar dilution method. The intestinal carriage rate in the healthy children was 13.6% and ranged from 0% to 21% depending on age. The carriage rates in the 1654 community-dwelling healthy adults and 348 healthcare workers were 5.5% and 6.3%, respectively. Among the isolates, 226 were toxigenic (225 tcdA+/tcdB+ and 1 tcdA+/tcdB+ ctdA+/ctdB+). Twenty-four ribotypes were found, with the dominant type accounting for 29.7% of the isolates. The toxigenic isolates were typed into 27 MLST genotypes. All of the strains were susceptible to vancomycin, metronidazole, fidaxomicin, and rifaximin. High resistance to levofloxacin and ciprofloxacin at rates of 39.8% and 98.3%, respectively, were observed. ST37 isolates were more resistant to levofloxacin than the other STs. The PCR ribotypes and sequence types from the healthy populations were similar to those from the adult patients. PMID:27011211

  12. Bile Salt Inhibition of Host Cell Damage by Clostridium Difficile Toxins

    PubMed Central

    Darkoh, Charles; Brown, Eric L.; Kaplan, Heidi B.; DuPont, Herbert L.

    2013-01-01

    Virulent Clostridium difficile strains produce toxin A and/or toxin B that are the etiological agents of diarrhea and pseudomembranous colitis. Treatment of C. difficile infections (CDI) has been hampered by resistance to multiple antibiotics, sporulation, emergence of strains with increased virulence, recurrence of the infection, and the lack of drugs that preserve or restore the colonic bacterial flora. As a result, there is new interest in non-antibiotic CDI treatments. The human conjugated bile salt taurocholate was previously shown in our laboratory to inhibit C. difficile toxin A and B activities in an in vitro assay. Here we demonstrate for the first time in an ex vivo assay that taurocholate can protect Caco-2 colonic epithelial cells from the damaging effects of the C. difficile toxins. Using caspase-3 and lactate dehydrogenase assays, we have demonstrated that taurocholate reduced the extent of toxin B-induced apoptosis and cell membrane damage. Confluent Caco-2 cells cultured with toxin B induced elevated caspase-3 activity. Remarkably, addition of 5 mM taurocholate reduced caspase-3 activity in cells treated with 2, 4, 6, and 12 µg/ml of toxin B by 99%, 78%, 64%, and 60%, respectively. Furthermore, spent culture medium from Caco-2 cells incubated with both toxin B and taurocholate exhibited significantly decreased lactate dehydrogenase activity compared to spent culture medium from cells incubated with toxin B only. Our results suggest that the mechanism of taurocholate-mediated inhibition functions at the level of toxin activity since taurocholate did not affect C. difficile growth and toxin production. These findings open up a new avenue for the development of non-antibiotic therapeutics for CDI treatment. PMID:24244530

  13. Emergence of an outbreak-associated Clostridium difficile variant with increased virulence.

    PubMed

    Quesada-Gómez, Carlos; López-Ureña, Diana; Acuña-Amador, Luis; Villalobos-Zúñiga, Manuel; Du, Tim; Freire, Rosemayre; Guzmán-Verri, Caterina; del Mar Gamboa-Coronado, María; Lawley, Trevor D; Moreno, Edgardo; Mulvey, Michael R; de Castro Brito, Gerly Anne; Rodríguez-Cavallini, Evelyn; Rodríguez, César; Chaves-Olarte, Esteban

    2015-04-01

    The prevalence of Clostridium difficile infections has increased due to the emergence of epidemic variants from diverse genetic lineages. Here we describe the emergence of a novel variant during an outbreak in a Costa Rican hospital that was associated with severe clinical presentations. This C. difficile variant elicited higher white blood cell counts and caused disease in younger patients than did other strains isolated during the outbreak. Furthermore, it had a recurrence rate, a 30-day attributable disease rate, and disease severity as great as those of the epidemic strain NAP1. Pulsed-field gel electrophoresis genotyping indicated that the outbreak strains belong to a previously undescribed variant, designated NAPCR1. Whole-genome sequencing and ribotyping indicated that the NAPCR1 variant belongs to C. difficile ribotype 012 and sequence type 54, as does the reference strain 630. NAPCR1 strains are resistant to fluoroquinolones due to a mutation in gyrA, and they possess an 18-bp deletion in tcdC that is characteristic of the epidemic, evolutionarily distinct, C. difficile NAP1 variant. NAPCR1 genomes contain 10% more predicted genes than strain 630, most of which are of hypothetical function and are present on phages and other mobile genetic elements. The increased virulence of NAPCR1 was confirmed by mortality rates in the hamster model and strong inflammatory responses induced by bacteria-free supernatants in the murine ligated loop model. However, NAPCR1 strains do not synthesize toxin A and toxin B at levels comparable to those in NAP1 strains. Our results suggest that the pathogenic potential of this emerging C. difficile variant is due to the acquisition of hypothetical functions associated with laterally acquired DNA. PMID:25653402

  14. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile

    PubMed Central

    Purcell, Erin B.; McKee, Robert W.; Bordeleau, Eric; Burrus, Vincent

    2015-01-01

    ABSTRACT The intestinal pathogen Clostridium difficile is an urgent public health threat that causes antibiotic-associated diarrhea and is a leading cause of fatal nosocomial infections in the United States. C. difficile rates of recurrence and mortality have increased in recent years due to the emergence of so-called “hypervirulent” epidemic strains. A great deal of the basic biology of C. difficile has not been characterized. Recent findings that flagellar motility, toxin synthesis, and type IV pilus (TFP) formation are regulated by cyclic diguanylate (c-di-GMP) reveal the importance of this second messenger for C. difficile gene regulation. However, the function(s) of TFP in C. difficile remains largely unknown. Here, we examine TFP-dependent phenotypes and the role of c-di-GMP in controlling TFP production in the historical 630 and epidemic R20291 strains of C. difficile. We demonstrate that TFP contribute to C. difficile biofilm formation in both strains, but with a more prominent role in R20291. Moreover, we report that R20291 is capable of TFP-dependent surface motility, which has not previously been described in C. difficile. The expression and regulation of the pilA1 pilin gene differs between R20291 and 630, which may underlie the observed differences in TFP-mediated phenotypes. The differences in pilA1 expression are attributable to greater promoter-driven transcription in R20291. In addition, R20291, but not 630, upregulates c-di-GMP levels during surface-associated growth, suggesting that the bacterium senses its substratum. The differential regulation of surface behaviors in historical and epidemic C. difficile strains may contribute to the different infection outcomes presented by these strains. IMPORTANCE How Clostridium difficile establishes and maintains colonization of the host bowel is poorly understood. Surface behaviors of C. difficile are likely relevant during infection, representing possible interactions between the bacterium and the

  15. Multicenter clinical evaluation of the portrait toxigenic C. difficile assay for detection of toxigenic Clostridium difficile strains in clinical stool specimens.

    PubMed

    Buchan, Blake W; Mackey, Tami-Lea A; Daly, Judy A; Alger, Garrison; Denys, Gerald A; Peterson, Lance R; Kehl, Sue C; Ledeboer, Nathan A

    2012-12-01

    We compared the Portrait Toxigenic C. difficile Assay, a new semiautomated sample-to-result molecular test, to a toxigenic bacterial culture/cell cytotoxin neutralization assay (TBC/CCNA) for the detection of toxigenic Clostridium difficile in 549 stool specimens. Stool specimens were also tested by one of three alternative FDA-cleared molecular tests for toxigenic C. difficile (Xpert C. difficile, Illumigene C. difficile, or GeneOhm Cdiff). The sensitivities and specificities of the molecular tests compared to TBC/CCNA were as follows: 98.2% and 92.8% for the Portrait assay, 100% and 91.7% for the Xpert assay, 93.3% and 95.1% for the Illumigene assay, and 97.4% and 98.5% for the GeneOhm assay, respectively. The majority of Portrait false-positive results (20/31; 64.5%) were also positive for C. difficile by an alternative molecular test, suggesting an increased sensitivity compared to the culture-based "gold standard" method. The Portrait test detected an assay input of 30 CFU in 100% of spiked samples and detected an input of 10 CFU in 96.7% of samples tested. PMID:23015667

  16. Multicenter Clinical Evaluation of the Portrait Toxigenic C. difficile Assay for Detection of Toxigenic Clostridium difficile Strains in Clinical Stool Specimens

    PubMed Central

    Buchan, Blake W.; Mackey, Tami-Lea A.; Daly, Judy A.; Alger, Garrison; Denys, Gerald A.; Peterson, Lance R.; Kehl, Sue C.

    2012-01-01

    We compared the Portrait Toxigenic C. difficile Assay, a new semiautomated sample-to-result molecular test, to a toxigenic bacterial culture/cell cytotoxin neutralization assay (TBC/CCNA) for the detection of toxigenic Clostridium difficile in 549 stool specimens. Stool specimens were also tested by one of three alternative FDA-cleared molecular tests for toxigenic C. difficile (Xpert C. difficile, Illumigene C. difficile, or GeneOhm Cdiff). The sensitivities and specificities of the molecular tests compared to TBC/CCNA were as follows: 98.2% and 92.8% for the Portrait assay, 100% and 91.7% for the Xpert assay, 93.3% and 95.1% for the Illumigene assay, and 97.4% and 98.5% for the GeneOhm assay, respectively. The majority of Portrait false-positive results (20/31; 64.5%) were also positive for C. difficile by an alternative molecular test, suggesting an increased sensitivity compared to the culture-based “gold standard” method. The Portrait test detected an assay input of 30 CFU in 100% of spiked samples and detected an input of 10 CFU in 96.7% of samples tested. PMID:23015667

  17. Outbreak of Clostridium difficile 027 infection in Vienna, Austria 2008-2009.

    PubMed

    Indra, A; Huhulescu, S; Fiedler, A; Kernbichler, S; Blaschitz, M; Allerberger, F

    2009-04-30

    From November 2008 to 15 April 2009, 36 isolates of CD027 identified in Austria, all originating from four hospitals in Vienna. All isolates were positive for toxin A, toxin B and the binary toxin, and showed a characteristic 18 bp deletion in the tcdC gene. Clostridium difficile is an anaerobic spore-forming bacterium. Some strains may cause diarrhoea due to formation of toxins. Symptomatic C. difficile infection (CDI) is primarily linked with hospital admission and antibiotic treatment, although antibiotic exposure is neither necessary nor sufficient for CDI [1,2]. In Belgium, for instance, one third of CDI cases reported in the hospital surveillance system are not hospital-associated [3]. Symptoms range from mild diarrhoea to serious manifestations such as pseudomembranous colitis, toxic megacolon or perforation of the colon. C. difficile challenges hygiene standards as it is forms spores. The risk of infection rises with increasing age, underlying disease and immunodeficiency [4]. In recent years, a particularly virulent strain, ribotype 027 (CD027), has emerged in a number of countries, particularly in connection with hospital outbreaks, but also in community-acquired diarrhoea cases [5]. The risk of serious disease and death associated with CD027 exceeds that of other C. difficile strains. The classical CD027 is characterised - among other things - by an increased production of toxins A and B, production of a binary toxin and resistance to newer fluoroquinolones such as moxifloxacin. The first three Austrian cases of CD027 occurred in 2006 and in March 2008 [6,7]. Since August 2006, the Austrian National Reference Centre for C. difficile has ribotyped approximately 2,700 human C. difficile isolates received from all nine Austrian provinces. In recent months, a drastic increase in CD027 cases has been noted, all originating from four hospitals in Vienna. From November 2008 to 15 April 2009, 36 isolates of CD027 were received at the National Reference Centre

  18. [Comparison of susceptibility of spores of Bacillus subtilis and Czech strains of Clostridium difficile to disinfectants].

    PubMed

    Votava, M; Slitrová, B

    2009-02-01

    An important factor in the prevention of nosocomial outbreaks caused by Clostridium difficile ribotype 027 is the disinfection of a patient environment by reliable sporicidal disinfectants. Sporicidal activity of particular agents is tested on spores of Bacillus subtilis. Questions are brought up if the disinfectant which works on B. subtilis spores will be equally effective on the spores of C. difficile. Therefore we have compared the effects of five disinfectants available on the Czech market on the spores of collection strains of both microbes and on the spores of ten C. difficile field strains isolated from feces of hospitalized patients. The effective substances were: disinfectant No. 1 chloramine B, No. 2 chlorine dioxide, No. 3 formaldehyde and ethan-2-dion, No. 4 peracetic and acetic acids and hydrogen peroxide, No. 5 ethanol and propan-2-ol. The testing was performed using the dilution neutralization method according to (SN EN 13704, the agent reducing the number of spores by more than 3 orders was considered sporicidal. In addition to the standard time 60 min a 15-minutes exposition was used and the effect was tested also under the protein burden. Disinfectant No. 1 showed better effect on the C. difficile than B. subtilis spores, even in lower (1%) concentration. Similarly, the sensitivity of the C. difficile spores to disinfectants No. 2 and 3 was somewhat higher. The sporicidity of the disinfectant No. 4 was so high that it reduced the number of spores of all strains within 15 minutes by more than 4 orders; possible difference in the susceptibility of spores was not observed. Whereas the disinfectant No. 5 was not reliably effective on the spores of B. subtilis, surprisingly it showed the sporicidal effect on the spores of field C. difficile strains. We conclude that spores of field C. difficile strains in particular turned out to be more sensitive to disinfectants than the spores of the collection strain ofB. subtilis. Therefore B. subtilis remains

  19. The antimicrobial peptide cathelicidin modulates Clostridium difficile-associated colitis and toxin A-mediated enteritis in mice

    PubMed Central

    Hing, Tressia C; Ho, Samantha; Shih, David Q; Ichikawa, Ryan; Cheng, Michelle; Chen, Jeremy; Chen, Xinhua; Law, Ivy; Najarian, Robert; Kelly, Ciaran P; Gallo, Richard L; Targan, Stephan R; Pothoulakis, Charalabos; Koon, Hon Wai

    2013-01-01

    Background Clostridium difficile mediates intestinal inflammation by releasing toxin A (TxA), a potent enterotoxin. Cathelicidins (Camp as gene name, LL-37 peptide in humans and mCRAMP peptide in mice) are antibacterial peptides that also posses anti-inflammatory properties. Objectives To determine the role of cathelicidins in models of Clostridium difficile infection and TxA-mediated ileal inflammation and cultured human primary monocytes. Design Wild-type (WT) and mCRAMP-deficient (Camp−/−) mice were treated with an antibiotic mixture and infected orally with C difficile. Some mice were intracolonically given mCRAMP daily for 3 days. Ileal loops were also prepared in WT mice and treated with either saline or TxA and incubated for 4 h, while some TxA-treated loops were injected with mCRAMP. Results Intracolonic mCRAMP administration to C difficile-infected WT mice showed significantly reduced colonic histology damage, apoptosis, tissue myeloperoxidase (MPO) and tumour necrosis factor (TNF)α levels. Ileal mCRAMP treatment also significantly reduced histology damage, tissue apoptosis, MPO and TNFα levels in TxA-exposed ileal loops. WT and Camp−/− mice exhibited similar intestinal responses in both models, implying that C difficile/TxA-induced endogenous cathelicidin may be insufficient to modulate C difficile/TxA-mediated intestinal inflammation. Both LL-37 and mCRAMP also significantly reduced TxA-induced TNFα secretion via inhibition of NF-κB phosphorylation. Endogenous cathelicidin failed to control C difficile and/or toxin A-mediated inflammation and even intestinal cathelicidin expression was increased in humans and mice. Conclusion Exogenous cathelicidin modulates C difficile colitis by inhibiting TxA-associated intestinal inflammation. Cathelicidin administration may be a new anti-inflammatory treatment for C difficile toxin-associated disease. PMID:22760006

  20. Epidemiology and factors associated with candidaemia following Clostridium difficile infection in adults within metropolitan Atlanta, 2009-2013.

    PubMed

    Vallabhaneni, S; Almendares, O; Farley, M M; Reno, J; Smith, Z T; Stein, B; Magill, S S; Smith, R M; Cleveland, A A; Lessa, F C

    2016-05-01

    We assessed prevalence of and risk factors for candidaemia following Clostridium difficile infection (CDI) using longitudinal population-based surveillance. Of 13 615 adults with CDI, 113 (0·8%) developed candidaemia in the 120 days following CDI. In a matched case-control analysis, severe CDI and CDI treatment with vancomycin + metronidazole were associated with development of candidaemia following CDI. PMID:26608090

  1. Evaluation of a New Molecular Test, the BD Max Cdiff, for Detection of Toxigenic Clostridium difficile in Fecal Samples

    PubMed Central

    Le Guern, Rémi; Herwegh, Stéphanie; Grandbastien, Bruno; Courcol, René

    2012-01-01

    A new molecular assay detecting toxigenic Clostridium difficile, the BD Max Cdiff (Becton, Dickinson), was evaluated with 360 diarrheal feces samples. It exhibited high sensitivity (97.7%) and specificity (99.7%). The positive (97.7%) and negative (99.7%) predictive values of this test allow an accurate answer within 2 h. PMID:22760042

  2. Comparison of antimicrobial susceptibility among Clostridium difficile isolated from an integrated human and swine population in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium difficile can be a major problem in hospitals because the bacterium primarily affects individuals with an altered gut flora, which largely occurs through prolonged antibiotic use. Proposed sources of increased community-acquired infections are food animals and retail meats. The objecti...

  3. Novel handwashes are superior to soap and water in removal of Clostridium difficile spores from the hands.

    PubMed

    Isaacson, Dylan; Haller, Barbara; Leslie, Hannah; Roemer, Marguerite; Winston, Lisa

    2015-05-01

    We examined the efficacy of 5 experimental handwash formulations in removing nontoxigenic Clostridium difficile spores from the hands of health care workers. Handwashing with sand resulted in an additional 0.5-log reduction in spore recovery compared with the current standard of soap and water. PMID:25952050

  4. Draft Genome Sequence of Clostridium difficile Strain IT1118, an Epidemic Isolate Belonging to the Emerging PCR Ribotype 018

    PubMed Central

    Wasels, François; Barbanti, Fabrizio

    2016-01-01

    Clostridium difficile PCR ribotype 018 has emerged in Italy, South Korea, and Japan, causing severe infections and outbreaks. In this study, we sequenced the genome of IT1118, an Italian clinical isolate, to clarify the molecular features contributing to the success of this epidemic type. PMID:27445391

  5. Combination of culture, antigen and toxin detection, and cytotoxin neutralization assay for optimal Clostridium difficile diagnostic testing

    PubMed Central

    Alfa, Michelle J; Sepehri, Shadi

    2013-01-01

    BACKGROUND: There has been a growing interest in developing an appropriate laboratory diagnostic algorithm for Clostridium difficile, mainly as a result of increases in both the number and severity of cases of C difficile infection in the past decade. A C difficile diagnostic algorithm is necessary because diagnostic kits, mostly for the detection of toxins A and B or glutamate dehydrogenase (GDH) antigen, are not sufficient as stand-alone assays for optimal diagnosis of C difficile infection. In addition, conventional reference methods for C difficile detection (eg, toxigenic culture and cytotoxin neutralization [CTN] assays) are not routinely practiced in diagnostic laboratory settings. OBJECTIVE: To review the four-step algorithm used at Diagnostic Services of Manitoba sites for the laboratory diagnosis of toxigenic C difficile. RESULT: One year of retrospective C difficile data using the proposed algorithm was reported. Of 5695 stool samples tested, 9.1% (n=517) had toxigenic C difficile. Sixty per cent (310 of 517) of toxigenic C difficile stools were detected following the first two steps of the algorithm. CTN confirmation of GDH-positive, toxin A- and B-negative assays resulted in detection of an additional 37.7% (198 of 517) of toxigenic C difficile. Culture of the third specimen, from patients who had two previous negative specimens, detected an additional 2.32% (12 of 517) of toxigenic C difficile samples. DISCUSSION: Using GDH antigen as the screening and toxin A and B as confirmatory test for C difficile, 85% of specimens were reported negative or positive within 4 h. Without CTN confirmation for GDH antigen and toxin A and B discordant results, 37% (195 of 517) of toxigenic C difficile stools would have been missed. Following the algorithm, culture was needed for only 2.72% of all specimens submitted for C difficile testing. CONCLUSION: The overview of the data illustrated the significance of each stage of this four-step C difficile algorithm and

  6. Selection of Nanobodies that Block the Enzymatic and Cytotoxic Activities of the Binary Clostridium Difficile Toxin CDT

    PubMed Central

    Unger, Mandy; Eichhoff, Anna Marei; Schumacher, Lucas; Strysio, Moritz; Menzel, Stephan; Schwan, Carsten; Alzogaray, Vanina; Zylberman, Vanesa; Seman, Michel; Brandner, Johanna; Rohde, Holger; Zhu, Kai; Haag, Friedrich; Mittrücker, Hans-Willi; Goldbaum, Fernando; Aktories, Klaus; Koch-Nolte, Friedrich

    2015-01-01

    The spore-forming gut bacterium Clostridium difficile is the leading cause of antibiotic-associated diarrhea in hospitalized patients. The major virulence factors are two large glucosylating cytotoxins. Hypervirulent strains (e.g. ribotype 027) with higher morbidity and mortality additionally produce the binary CDT toxin (Clostridium difficile transferase) that ADP-ribosylates actin and induces microtubule-based cell protrusions. Nanobodies are robust single domain antibodies derived from camelid heavy chain antibodies. Here we report the generation of functional nanobodies against the enzymatic CDTa and the heptameric receptor binding subunit CDTb. The nanobodies were obtained from a variable-domain repertoire library isolated from llamas immunized with recombinant CDTa or CDTb. Five CDTa-specific nanobodies blocked CDTa-mediated ADP-ribosylation of actin. Three CDTa-specific and two CDTb-specific nanobodies neutralized the cytotoxicity of CDTa+b. These nanobodies hold promise as new tools for research, diagnosis and therapy of C. difficile associated disease. PMID:25597743

  7. Therapeutic Success of Rifaximin for Clostridium difficile Infection Refractory to Metronidazole and Vancomycin

    PubMed Central

    Tannous, George; Neff, Guy; Kemmer, Nyingi

    2010-01-01

    We report the case of a 46-year-old white male with confirmed Clostridium difficile infection for >4 weeks after fluoroquinolone therapy. The patient received two courses of metronidazole 500 mg three times daily (t.i.d.) during which time diarrhea resolved; however, symptoms recurred 14–15 days after treatment termination. He received a 2-week course of vancomycin 125 mg four times daily, with symptoms recurring 10 days after treatment conclusion. The patient then received a pulsed tapering schedule of vancomycin with adjunctive Saccharomyces boulardii. Diarrhea recurred 12 days after treatment completion. He received rifaximin 400 mg t.i.d. while hospitalized for diarrhea-associated complications. Symptoms resolved within 24 h. The patient received a 4-week regimen of rifaximin 400 mg orally t.i.d. after discharge. No further episodes of diarrhea were reported within 6 months after treatment termination. The present case supports the potential benefit of rifaximin for the treatment of recurrent Clostridium difficile infection. PMID:21060709

  8. Clostridium Difficile Infection Worsen Outcome of Hospitalized Patients with Inflammatory Bowel Disease.

    PubMed

    Zhang, Ting; Lin, Qian-Yun; Fei, Jia-Xi; Zhang, Yan; Lin, Min-Yi; Jiang, Shuang-Hong; Wang, Pu; Chen, Ye

    2016-01-01

    The prevalence of Clostridium difficile infection (CDI) in patients suffering from inflammatory bowel disease (IBD) has increased rapidly over the past several decades in North America and Europe. However, the exact global epidemiology remains unclear because of insufficient data from developing countries. A total of 646 hospitalized adult IBD patients were enrolled; and their fresh stool specimens were obtained and used for Clostridium difficile detection. The incidence of CDI in Crohn's disease (CD) patients (12.7%) was significantly lower than that in Ulcerative disease (UC) patients (19.3%). Among the toxin types, A(+)B(+) strain was the most common. Length of stay, hospitalization frequency and bowel surgery rate were significantly higher in the CDI than in the non-CDI group in CD or UC patients. More patients in CDI-CD group were still in active and even clinical moderate or severe CD stage than non-CDI-CD group after 2 years of following-up. Fistula, antibiotics and infliximab usage likely increased the CDI rate in CD patients, Infliximab treatment was considered a risk factor in UC patients. CDI is an exacerbating public health issue that may influence IBD course, increase expenditures, and delay the remission of IBD patients. IBD patients with CDI require urgent attention. PMID:27417996

  9. Recent epidemiology of Clostridium difficile infection during hematopoietic stem cell transplantation

    PubMed Central

    Chopra, Teena; Chandrasekar, Pranatharthi; Salimnia, Hossein; Heilbrun, Lance K.; Smith, Daryn; Alangaden, George J.

    2013-01-01

    Given the limited information on Clostridium difficile infection (CDI) during hematopoietic stem cell transplantation (HSCT), we examined the recent epidemiology of CDI in HSCT recipients at our institution. During the two-yr retrospective study period (2005–2006), 361 transplants were performed: 60% allogeneic and 40% autologous. Among all hospitalized patients in a non-outbreak setting, CDI rates in HSCT recipients were ninefold higher than those in general patients and 1.4-fold higher than those in patients with cancer (24.0 vs. 2.6 vs. 16.8/10 000 patient-days respectively). Sixty-two episodes of CDI occurred in 51 (14%) HSCT recipients: 39 (18%) allogeneic vs. 12 (8%) autologous (p = 0.01). Almost half of CDI episodes occurred within 30 d post-HSCT and 22% before HSCT. Clostridium difficile toxin assay was initially positive in 28% of the first, 31% of the second and 27% of the third stool samples tested. All but one patient responded to therapy with metronidazole or vancomycin. Severe CDI occurred in one patient and recurrent CDI in two patients. CDI is common during HSCT especially in allogeneic transplants during the peri-HSCT period. Prospective studies to better define the epidemiology and identify unique risk factors for CDI and more accurate tests to confirm the diagnosis in this population are needed. PMID:20973823

  10. Significance of a positive Clostridium difficile toxin test after hematopoietic stem cell transplantation.

    PubMed

    Akahoshi, Yu; Kimura, Shun-Ichi; Nakano, Hirofumi; Harada, Naonori; Kameda, Kazuaki; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Ishihara, Yuko; Kawamura, Koji; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Terasako-Saito, Kiriko; Nakasone, Hideki; Kikuchi, Misato; Yamazaki, Rie; Kanda, Junya; Kako, Shinichi; Nishida, Junji; Kanda, Yoshinobu

    2016-06-01

    Patients with hematological malignancies show a high prevalence of asymptomatic colonization with Clostridium difficile (CD colonization). Therefore, it is difficult to distinguish CD colonization with diarrhea induced by a conditioning regimen from true Clostridium difficile infection (CDI) in hematopoietic stem cell transplantation (HSCT) recipients. We retrospectively analyzed 308 consecutive patients who underwent a CD toxin A/B enzyme immunoassay test for diarrhea within 100 d after HSCT from November 2007 to May 2014. Thirty patients (9.7%) had positive CD toxin results, and 11 of these had positive results in subsequent tests after an initial negative result. Allogeneic HSCT, total body irradiation, stem cell source, acute leukemia, and the duration of neutropenia were significantly correlated with positive CD toxin results. In a logistic regression model, allogeneic HSCT was identified as a significant risk factor (odds ratio 18.6, p < 0.01). In an analysis limited to within 30 d after the conditioning regimen, the duration of neutropenia was the sole risk factor (odds ratio 10.4, p < 0.01). There were no distinctive clinical features for CDI, including the onset or duration of diarrhea. In conclusion, although CDI may be overdiagnosed in HSCT recipients, it is difficult to clinically distinguish between CDI and CD colonization. PMID:27019071

  11. Toxin-binding treatment for Clostridium difficile: a review including reports of studies with tolevamer.

    PubMed

    Weiss, Karl

    2009-01-01

    Clostridium difficile represents an increasing threat to patients, mainly as a hospital-acquired infection causing antibiotic-associated colitis (AAC). The emergence of a new more virulent strain in North America and Europe has been linked to increased morbidity and mortality. For a long period of time the only available therapeutic options were oral vancomycin and metronidazole. However, both of these antibiotics have limitations either in terms of efficacy, cost, formulation, side effects or the risk of emerging antibiotic resistance among enterococci. Clostridium difficile produces two powerful toxins (A and B) that are responsible for the entire clinical spectrum associated with AAC. As this is exclusively a toxin-mediated disease, agents with the potential of binding these targets have been tested. Data on polymer-based toxin-binding agents such as cholestyramine, Synsorb 90 and tolevamer, designed to target specific bacterial toxins, will be reviewed. Bovine colostrum and specific human monoclonal antibodies aimed at neutralising toxin A, although still at an early stage of development, are also new avenues to be explored. Non-antibiotic-based therapies might become the best available option for a condition almost always caused by antibiotics. PMID:18804351

  12. Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase (CDT).

    PubMed

    Nölke, Thilo; Schwan, Carsten; Lehmann, Friederike; Østevold, Kristine; Pertz, Olivier; Aktories, Klaus

    2016-07-12

    Hypervirulent Clostridium difficile strains, which are associated with increased morbidity and mortality, produce the actin-ADP ribosylating toxin Clostridium difficile transferase (CDT). CDT depolymerizes actin, causes formation of microtubule-based protrusions, and increases pathogen adherence. Here, we show that septins (SEPT) are essential for CDT-induced protrusion formation. SEPT2, -6, -7, and -9 accumulate at predetermined protrusion sites and form collar-like structures at the base of protrusions. The septin inhibitor forchlorfenuron or knockdown of septins inhibits protrusion formation. At protrusion sites, septins colocalize with the GTPase Cdc42 (cell division control protein 42) and its effector Borg (binder of Rho GTPases), which act as up-stream regulators of septin polymerization. Precipitation and surface plasmon resonance studies revealed high-affinity binding of septins to the microtubule plus-end tracking protein EB1, thereby guiding incoming microtubules. The data suggest that CDT usurps conserved regulatory principles involved in microtubule-membrane interaction, depending on septins, Cdc42, Borgs, and restructuring of the actin cytoskeleton. PMID:27339141

  13. Clostridium Difficile Infection Worsen Outcome of Hospitalized Patients with Inflammatory Bowel Disease

    PubMed Central

    Zhang, Ting; Lin, Qian-Yun; Fei, Jia-Xi; Zhang, Yan; Lin, Min-Yi; Jiang, Shuang-Hong; Wang, Pu; Chen, Ye

    2016-01-01

    The prevalence of Clostridium difficile infection (CDI) in patients suffering from inflammatory bowel disease (IBD) has increased rapidly over the past several decades in North America and Europe. However, the exact global epidemiology remains unclear because of insufficient data from developing countries. A total of 646 hospitalized adult IBD patients were enrolled; and their fresh stool specimens were obtained and used for Clostridium difficile detection. The incidence of CDI in Crohn’s disease (CD) patients (12.7%) was significantly lower than that in Ulcerative disease (UC) patients (19.3%). Among the toxin types, A+B+ strain was the most common. Length of stay, hospitalization frequency and bowel surgery rate were significantly higher in the CDI than in the non-CDI group in CD or UC patients. More patients in CDI-CD group were still in active and even clinical moderate or severe CD stage than non-CDI-CD group after 2 years of following-up. Fistula, antibiotics and infliximab usage likely increased the CDI rate in CD patients, Infliximab treatment was considered a risk factor in UC patients. CDI is an exacerbating public health issue that may influence IBD course, increase expenditures, and delay the remission of IBD patients. IBD patients with CDI require urgent attention. PMID:27417996

  14. Clostridium difficile-associated diarrhoea in primary joint arthroplasty in Aneurin Bevan University Health Board South.

    PubMed

    Blocker, O; Abdulkadir, U; Roberts, P

    2016-03-01

    Introduction The choice of perioperative antibiotics to reduce the prevalence of infection after joint arthroplasty should be considered carefully to minimise the risk of nosocomial infections. Dramatic increases in the incidence and severity of healthcare-associated Clostridium difficile infection with Clostridium difficile-associated diarrhoea (CDAD) have occurred since 2000. Methods A retrospective audit of patients who underwent total hip and total knee replacement between 1 January 2005 and 31 December 2007 was undertaken in Aneurin Bevan University Health Board South (ABHBS). Stool samples from patients who had diarrhoea <12 months of surgery were recorded. Positive samples for CDAD <1 month of surgery were identified. After the change in practice in June 2010, a re-audit linked joint-replacement patients between 1 July 2010 and 26 June 2013 with infection control-records for CDAD-positive cases. Results In the first audit cycle, 1900 joint procedures were carried out in 1845 patients. There were 4 cases of CDAD <1 month of surgery (0.22%). In the re-audit period, 2591 joint procedures were undertaken in 2400 patients: no cases of CDAD <1 month of surgery were recorded. Fisher's exact test gave a two-tailed p=0.036. Conclusions The significant reduction in CDAD cases after the change in perioperative antibiotic regimen for primary joint arthroplasty mirrored a 66% reduction in overall CDAD cases in the ABUHBS between 2008 and 2012. This reduction was accompanied by financial savings in antibiotics and nursing hours. PMID:26836055

  15. Epidemiology, Diagnosis, and Management of Clostridium difficile Infection in Patients with Inflammatory Bowel Disease.

    PubMed

    Rao, Krishna; Higgins, Peter D R

    2016-07-01

    Clostridium difficile infection (CDI) is a major source of morbidity and mortality for the U.S. health care system and frequently complicates the course of inflammatory bowel disease (IBD). Patients with IBD are more likely to be colonized with C. difficile and develop active infection than the general population. They are also more likely to have severe CDI and develop subsequent complications such as IBD flare, colectomy, or death. Even after successful initial treatment and recovery, recurrent CDI is common. Management of CDI in IBD is fraught with diagnostic and therapeutic challenges because the clinical presentations of CDI and IBD flare have considerable overlap. Fecal microbiota transplantation can be successful in curing recurrent CDI when other treatments have failed, but may also trigger IBD flare and this warrants caution. New experimental treatments including vaccines, monoclonal antibodies, and nontoxigenic strains of C. difficile offer promise but are not yet available for clinicians. A better understanding of the complex relationship between the gut microbiota, CDI, and IBD is needed. PMID:27120571

  16. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia.

    PubMed

    Cowardin, Carrie A; Buonomo, Erica L; Saleh, Mahmoud M; Wilson, Madeline G; Burgess, Stacey L; Kuehne, Sarah A; Schwan, Carsten; Eichhoff, Anna M; Koch-Nolte, Friedrich; Lyras, Dena; Aktories, Klaus; Minton, Nigel P; Petri, William A

    2016-01-01

    Clostridium difficile is the most common hospital acquired pathogen in the USA, and infection is, in many cases, fatal. Toxins A and B are its major virulence factors, but expression of a third toxin, known as C. difficile transferase (CDT), is increasingly common. An adenosine diphosphate (ADP)-ribosyltransferase that causes actin cytoskeletal disruption, CDT is typically produced by the major, hypervirulent strains and has been associated with more severe disease. Here, we show that CDT enhances the virulence of two PCR-ribotype 027 strains in mice. The toxin induces pathogenic host inflammation via a Toll-like receptor 2 (TLR2)-dependent pathway, resulting in the suppression of a protective host eosinophilic response. Finally, we show that restoration of TLR2-deficient eosinophils is sufficient for protection from a strain producing CDT. These findings offer an explanation for the enhanced virulence of CDT-expressing C. difficile and demonstrate a mechanism by which this binary toxin subverts the host immune response. PMID:27573114

  17. Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA.

    PubMed

    Ackermann, G; Tang, Y J; Kueper, R; Heisig, P; Rodloff, A C; Silva, J; Cohen, S H

    2001-08-01

    Clostridium difficile is the etiological agent of antibiotic-associated colitis and the most common cause of hospital-acquired infectious diarrhea. Fluoroquinolones such as ciprofloxacin are associated with lower risks of C. difficile-associated diarrhea. In this study, we have analyzed 72 C. difficile isolates obtained from patients with different clinical courses of disease, such as toxic megacolon and relapses; the hospital environment; public places; and horses. They were investigated for their susceptibilities to moxifloxacin (MXF), metronidazole (MEO), and vancomycin (VAN). Mutants highly resistant to fluoroquinolones were selected in vitro by stepwise exposure to increasing concentrations of MXF. The resulting mutants were analyzed for the presence of mutations in the quinolone resistance-determining regions of DNA gyrase (gyrA), the production of toxins A and B, and the epidemiological relationship of these isolates. These factors were also investigated using PCR-based methods. All strains tested were susceptible to MEO and VAN. Twenty-six percent of the clinical isolates (19 of 72) were highly resistant to MXF (MIC > or = 16 microg/ml). Fourteen of these 19 strains contained nucleotide changes resulting in amino acid substitutions at position 83 in the gyrA protein. Resistant strains selected in vitro did not contain mutations at that position. These findings indicate that resistance to MXF in a majority of cases may be due to amino acid substitution in the gyrA gene. PMID:11451695

  18. Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism.

    PubMed

    Karlsson, Sture; Burman, Lars G; Akerlund, Thomas

    2008-11-01

    Certain amino acids, and cysteine in particular, promptly blocked toxin expression in Clostridium difficile strain VPI 10463 when added to late-exponential-phase peptone-yeast cultures, i.e. prior to normal induction of toxins A and B. Glucose reduced toxin yields by 80-fold, but only when supplemented at inoculation. Forty upregulated C. difficile proteins were identified during maximum toxin expression, and most of these were enzymes involved in energy exchange, e.g. succinate, CO/folate and butyrate metabolism. Transcription of tcdA (toxin operon) and folD (CO/folate operon) was induced by 20- and 10-fold, respectively, and with strikingly similar kinetics between OD 0.8 and 1.2. The sigma factors tcdR and sigH were upregulated simultaneously with tcdA and folD (3.5-fold increase of mRNA level), whereas transcription of tcdC, codY, sigB and sigL showed little or no correlation with that of tcdA and folD. The results suggest a connection between toxin expression, alternative energy metabolism and initial sporulation events in C. difficile. PMID:18957596

  19. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC.

    PubMed

    Matamouros, Susana; England, Patrick; Dupuy, Bruno

    2007-06-01

    Clostridium difficile, an emerging nosocomial pathogen of increasing clinical significance, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The precise mechanisms by which toxin synthesis is regulated in response to environmental change have yet to be discovered. The toxin genes (tcdA and tcdB) are located in a pathogenicity locus (PaLoc), along with tcdR and tcdC. TcdR is an alternative RNA polymerase sigma factor that directly activates toxin gene expression, while the inverse relationship between expression of tcdR, tcdA and tcdB genes on the one hand and tcdC on the other has led to the suggestion that TcdC somehow interferes with toxin gene expression. This idea is further supported by the finding that many recent C. difficile epidemic strains in which toxin production is increased carry a common tcdC deletion mutation. In this report we demonstrate that TcdC negatively regulates toxin synthesis both in vivo and in vitro. TcdC destabilizes the TcdR-containing holoenzyme before open complex formation, apparently by interaction with TcdR or TcdR-containing RNA polymerase holoenzyme or both. In addition, we show that the hypertoxigenicity phenotype of C. difficile epidemic strains is not due to their common 18 bp in-frame deletion in tcdC. PMID:17542920

  20. Comparison of toxin and spore production in clinically relevant strains of Clostridium difficile.

    PubMed

    Vohra, Prerna; Poxton, Ian R

    2011-05-01

    Clostridium difficile is a major cause of nosocomial diarrhoea. The toxins that it produces (TcdA and TcdB) are responsible for the characteristic pathology of C. difficile infection (CDI), while its spores persist in the environment, causing its widespread transmission. Many different strains of C. difficile exist worldwide and the epidemiology of the strains is ever-changing: in Scotland, PCR ribotype 012 was once prevalent, but currently ribotypes 106, 001 and 027 are endemic. This study aimed to identify the differences among these ribotypes with respect to their growth, and toxin and spore production in vitro. It was observed that the hypervirulent ribotype 027 produces significantly more toxin than the other ribotypes in the exponential and stationary phases of growth. Further, the endemic strains produce significantly more toxins and spores than ribotype 012. Of note was the observation that tcdC expression did not decrease into the stationary phase of growth, implying that it may have a modulatory rather than repressive effect on toxin production. Further, the increased expression of tcdE in ribotype 027 suggests its importance in the release of the toxins. It can thus be concluded that several genotypic and phenotypic traits might synergistically contribute to the hypervirulence of ribotype 027. These observations might suggest a changing trend towards increased virulence in the strains currently responsible for CDI. PMID:21330434

  1. Clostridium difficile toxin synthesis is negatively regulated by TcdC.

    PubMed

    Dupuy, B; Govind, R; Antunes, A; Matamouros, S

    2008-06-01

    Clostridium difficile toxin synthesis is growth phase-dependent and is regulated by various environmental signals. The toxin genes tcdA and tcdB are located in a pathogenicity locus, which also includes three accessory genes, tcdR, tcdC and tcdE. TcdR has been shown to act as an alternative sigma factor that mediates positive regulation of both the toxin genes and its own gene. The tcdA, tcdB and tcdR genes are transcribed during the stationary growth phase. The tcdC gene, however, is expressed during exponential phase. This expression pattern suggested that TcdC may act as a negative regulator of toxin gene expression. TcdC is a small acidic protein without any conserved DNA-binding motif. It is able to form dimers and its N-terminal region includes a putative transmembrane domain. Genetic and biochemical evidence showed that TcdC negatively regulates C. difficile toxin synthesis by interfering with the ability of TcdR-containing RNA polymerase to recognize the tcdA and tcdB promoters. In addition, the C. difficile NAP1/027 epidemic strains that produce higher levels of toxins have mutations in tcdC. Interestingly, a frameshift mutation at position 117 of the tcdC coding sequence seems to be, at least in part, responsible for the hypertoxigenicity phenotype of these epidemic strains. PMID:18480323

  2. Genomic Organization and Molecular Characterization of Clostridium difficile Bacteriophage ΦCD119

    PubMed Central

    Govind, Revathi; Fralick, Joe A.; Rolfe, Rial D.

    2006-01-01

    In this study, we have isolated a temperate phage (ΦCD119) from a pathogenic Clostridium difficile strain and sequenced and annotated its genome. This virus has an icosahedral capsid and a contractile tail covered by a sheath and contains a double-stranded DNA genome. It belongs to the Myoviridae family of the tailed phages and the order Caudovirales. The genome was circularly permuted, with no physical ends detected by sequencing or restriction enzyme digestion analysis, and lacked a cos site. The DNA sequence of this phage consists of 53,325 bp, which carries 79 putative open reading frames (ORFs). A function could be assigned to 23 putative gene products, based upon bioinformatic analyses. The ΦCD119 genome is organized in a modular format, which includes modules for lysogeny, DNA replication, DNA packaging, structural proteins, and host cell lysis. The ΦCD119 attachment site attP lies in a noncoding region close to the putative integrase (int) gene. We have identified the phage integration site on the C. difficile chromosome (attB) located in a noncoding region just upstream of gene gltP, which encodes a carrier protein for glutamate and aspartate. This genetic analysis represents the first complete DNA sequence and annotation of a C. difficile phage. PMID:16547044

  3. Clostridium difficile infections in a Shanghai hospital: antimicrobial resistance, toxin profiles and ribotypes.

    PubMed

    Huang, Haihui; Wu, Shi; Wang, Minggui; Zhang, Yingyuan; Fang, Hong; Palmgren, Ann-Chatrin; Weintraub, Andrej; Nord, Carl Erik

    2009-04-01

    The incidence of Clostridium difficile infection (CDI) has risen markedly since 2003, however data from China are limited. A 1-year study was conducted at the University Hospital Huashan to characterise clinical isolates of C. difficile. Of 74 isolates, 56 were from the first episode of CDI (43 A(+)B(+) and 13 A(-)B(+)), 5 were from recurrences and 13 were toxin-negative. No binary toxin or TcdC deletion was detected. All strains were susceptible to metronidazole, vancomycin, meropenem and piperacillin/tazobactam. Resistance to moxifloxacin, ciprofloxacin, levofloxacin, erythromycin, clindamycin, tetracycline, rifampicin and fusidic acid was found in 46.4%, 100%, 60.7%, 71.4%, 71.4%, 35.7%, 25.0% and 17.9% of the isolates, respectively. All moxifloxacin-resistant isolates carried a mutation in either gyrA, gyrB or both. Fourteen different polymerase chain reaction ribotypes were identified, with a specific clone (SH II) accounting for 25% of isolates. No isolates belonged to ribotype 027. The present study is the first systematic survey of clinical C. difficile isolates in China. Further surveillance is required to detect clustering of cases and to monitor the emergence of specific highly virulent clones and resistance. PMID:19097757

  4. Cyclic Di-GMP Riboswitch-Regulated Type IV Pili Contribute to Aggregation of Clostridium difficile

    PubMed Central

    Bordeleau, Eric; Purcell, Erin B.; Lafontaine, Daniel A.; Fortier, Louis-Charles; Tamayo, Rita

    2014-01-01

    Clostridium difficile is an anaerobic Gram-positive bacterium that causes intestinal infections with symptoms ranging from mild diarrhea to fulminant colitis. Cyclic diguanosine monophosphate (c-di-GMP) is a bacterial second messenger that typically regulates the switch from motile, free-living to sessile and multicellular behaviors in Gram-negative bacteria. Increased intracellular c-di-GMP concentration in C. difficile was recently shown to reduce flagellar motility and to increase cell aggregation. In this work, we investigated the role of the primary type IV pilus (T4P) locus in c-di-GMP-dependent cell aggregation. Inactivation of two T4P genes, pilA1 (CD3513) and pilB1 (CD3512), abolished pilus formation and significantly reduced cell aggregation under high c-di-GMP conditions. pilA1 is preceded by a putative c-di-GMP riboswitch, predicted to be transcriptionally active upon c-di-GMP binding. Consistent with our prediction, high intracellular c-di-GMP concentration increased transcript levels of T4P genes. In addition, single-round in vitro transcription assays confirmed that transcription downstream of the predicted transcription terminator was dose dependent and specific to c-di-GMP binding to the riboswitch aptamer. These results support a model in which T4P gene transcription is upregulated by c-di-GMP as a result of its binding to an upstream transcriptionally activating riboswitch, promoting cell aggregation in C. difficile. PMID:25512308

  5. Survey of diagnostic and typing capacity for Clostridium difficile infection in Europe, 2011 and 2014.

    PubMed

    van Dorp, Sofie M; Notermans, Daan W; Alblas, Jeroen; Gastmeier, Petra; Mentula, Silja; Nagy, Elisabeth; Spigaglia, Patrizia; Ivanova, Katiusha; Fitzpatrick, Fidelma; Barbut, Frédéric; Morris, Trefor; Wilcox, Mark H; Kinross, Pete; Suetens, Carl; Kuijper, Ed J

    2016-07-21

    Suboptimal laboratory diagnostics for Clostridium difficile infection (CDI) impedes its surveillance and control across Europe. We evaluated changes in local laboratory CDI diagnostics and changes in national diagnostic and typing capacity for CDI during the European C. difficile Infection Surveillance Network (ECDIS-Net) project, through cross-sectional surveys in 33 European countries in 2011 and 2014. In 2011, 126 (61%) of a convenience sample of 206 laboratories in 31 countries completed a survey on local diagnostics. In 2014, 84 (67%) of these 126 laboratories in 26 countries completed a follow-up survey. Among laboratories that participated in both surveys, use of CDI diagnostics deemed 'optimal' or 'acceptable' increased from 19% to 46% and from 10% to 15%, respectively (p  < 0.001). The survey of national capacity was completed by national coordinators of 31 and 32 countries in 2011 and 2014, respectively. Capacity for any C. difficile typing method increased from 22/31 countries in 2011 to 26/32 countries in 2014; for PCR ribotyping from 20/31 countries to 23/32 countries, and specifically for capillary PCR ribotyping from 7/31 countries to 16/32 countries. While our study indicates improved diagnostic capability and national capacity for capillary PCR ribotyping across European laboratories between 2011 and 2014, increased use of 'optimal' diagnostics should be promoted. PMID:27469624

  6. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity

    PubMed Central

    LaFrance, Michelle E.; Farrow, Melissa A.; Chandrasekaran, Ramyavardhanee; Sheng, Jinsong; Rubin, Donald H.; Lacy, D. Borden

    2015-01-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhea in the United States. The two main virulence factors of C. difficile are the large toxins, TcdA and TcdB, which enter colonic epithelial cells and cause fluid secretion, inflammation, and cell death. Using a gene-trap insertional mutagenesis screen, we identified poliovirus receptor-like 3 (PVRL3) as a cellular factor necessary for TcdB-mediated cytotoxicity. Disruption of PVRL3 expression by gene-trap mutagenesis, shRNA, or CRISPR/Cas9 mutagenesis resulted in resistance of cells to TcdB. Complementation of the gene-trap or CRISPR mutants with PVRL3 resulted in restoration of TcdB-mediated cell death. Purified PVRL3 ectodomain bound to TcdB by pull-down. Pretreatment of cells with a monoclonal antibody against PVRL3 or prebinding TcdB to PVRL3 ectodomain also inhibited cytotoxicity in cell culture. The receptor is highly expressed on the surface epithelium of the human colon and was observed to colocalize with TcdB in both an explant model and in tissue from a patient with pseudomembranous colitis. These data suggest PVRL3 is a physiologically relevant binding partner that can serve as a target for the prevention of TcdB-induced cytotoxicity in C. difficile infection. PMID:26038560

  7. Toxigenic Clostridium difficile PCR Ribotypes from Wastewater Treatment Plants in Southern Switzerland

    PubMed Central

    Romano, Vincenza; Krovacek, Karel; Mauri, Federica; Demarta, Antonella; Dumontet, Stefano

    2012-01-01

    The occurrence of Clostridium difficile in nine wastewater treatment plants in the Ticino Canton (southern Switzerland) was investigated. The samples were collected from raw sewage influents and from treated effluents. Forty-seven out of 55 characterized C. difficile strains belonged to 13 different reference PCR ribotypes (009, 010, 014, 015, 039, 052, 053, 066, 070, 078, 101, 106, and 117), whereas 8 strains did not match any of those available in our libraries. The most frequently isolated ribotype (40%) was 078, isolated from six wastewater treatment plants, whereas ribotype 066, a toxigenic emerging ribotype isolated from patients admitted to hospitals in Europe and Switzerland, was isolated from the outgoing effluent of one plant. The majority of the isolates (85%) were toxigenic. Forty-nine percent of them produced toxin A, toxin B, and the binary toxin (toxigenic profile A+ B+ CDT+), whereas 51% showed the profile A+ B+ CDT−. Interestingly, eight ribotypes (010, 014, 015, 039, 066, 078, 101, and 106) were among the riboprofiles isolated from symptomatic patients admitted to the hospitals of the Ticino Canton in 2010. Despite the limitation of sampling, this study highlights that toxigenic ribotypes of C. difficile involved in human infections may occur in both incoming and outgoing biological wastewater treatment plants. Such a finding raises concern about the possible contamination of water bodies that receive wastewater treatment plant effluents and about the safe reuse of treated wastewater. PMID:22798376

  8. Update of Clostridium difficile-associated disease due to PCR ribotype 027 in Europe.

    PubMed

    Kuijper, E J; Coignard, B; Brazier, J S; Suetens, C; Drudy, D; Wiuff, C; Pituch, H; Reichert, P; Schneider, F; Widmer, A F; Olsen, K E; Allerberger, F; Notermans, D W; Barbut, F; Delmée, M; Wilcox, M; Pearson, A; Patel, B C; Brown, D J; Frei, R; Akerlund, T; Poxton, I R; Tüll, P

    2007-06-01

    Recent outbreaks of Clostridium difficile-associated diarrhoea (CDAD) with increased severity, high relapse rate and significant mortality have been related to the emergence of a new, hypervirulent C. difficile strain in North America, Japan and Europe. Definitions have been proposed by the European Centre of Disease Prevention and Control (ECDC) to identify severe cases of CDAD and to differentiate community-acquired cases from nosocomial CDAD (http://www.ecdc.europa.eu/documents/pdf/Cl_dif_v2.pdf). CDAD is mainly known as a healthcare-associated disease, but it is also increasingly recognised as a community-associated disease. The emerging strain is referred to as North American pulsed-field type 1 (NAP1) and PCR ribotype 027. Since 2005, individual countries have developed surveillance studies to monitor the spread of this strain. C. difficile type 027 has caused outbreaks in England and Wales, Ireland, the Netherlands, Belgium, Luxembourg, and France, and has also been detected in Austria, Scotland, Switzerland, Poland and Denmark. Preliminary data indicated that type 027 was already present in historical isolates collected in Sweden between 1997 and 2001. PMID:17991399

  9. Hypervirulent Clostridium difficile PCR-Ribotypes Exhibit Resistance to Widely Used Disinfectants

    PubMed Central

    Dawson, Lisa F.; Valiente, Esmeralda; Donahue, Elizabeth H.; Birchenough, George; Wren, Brendan W.

    2011-01-01

    The increased prevalence of Clostridium difficile infection (CDI) has coincided with enhanced transmissibility and severity of disease, which is often linked to two distinct clonal lineages designated PCR-ribotype 027 and 017 responsible for CDI outbreaks in the USA, Europe and Asia. We assessed sporulation and susceptibility of three PCR-ribotypes; 012, 017 and 027 to four classes of disinfectants; chlorine releasing agents (CRAs), peroxygens, quaternary ammonium compounds (QAC) and biguanides. The 017 PCR-ribotype, showed the highest sporulation frequency under these test conditions. The oxidizing biocides and CRAs were the most efficacious in decontamination of C. difficile vegetative cells and spores, the efficacy of the CRAs were concentration dependent irrespective of PCR-ribotype. However, there were differences observed in the susceptibility of the PCR-ribotypes, independent of the concentrations tested for Virkon®, Newgenn®, Proceine 40® and Hibiscrub®. Whereas, for Steri7® and Biocleanse® the difference observed between the disinfectants were dependent on both PCR-ribotype and concentration. The oxidizing agent Perasafe® was consistently efficacious across all three PCR ribotypes at varying concentrations; with a consistent five Log10 reduction in spore titre. The PCR-ribotype and concentration dependent differences in the efficacy of the disinfectants in this study indicate that disinfectant choice is a factor for llimiting the survival and transmission of C. difficile spores in healthcare settings. PMID:22039420

  10. NQO1-Knockout Mice Are Highly Sensitive to Clostridium Difficile Toxin A-Induced Enteritis.

    PubMed

    Nam, Seung Taek; Hwang, Jung Hwan; Kim, Dae Hong; Lu, Li Fang; Hong, Ji; Zhang, Peng; Yoon, I Na; Hwang, Jae Sam; Chung, Hyo Kyun; Shong, Minho; Lee, Chul-Ho; Kim, Ho

    2016-08-28

    Clostridium difficile toxin A causes acute gut inflammation in animals and humans. It is known to downregulate the tight junctions between colonic epithelial cells, allowing luminal contents to access body tissues and trigger acute immune responses. However, it is not yet known whether this loss of the barrier function is a critical factor in the progression of toxin A-induced pseudomembranous colitis. We previously showed that NADH:quinone oxidoreductase 1 (NQO1) KO (knockout) mice spontaneously display weak gut inflammation and a marked loss of colonic epithelial tight junctions. Moreover, NQO1 KO mice exhibited highly increased inflammatory responses compared with NQO1 WT (wild-type) control mice when subjected to DSS-induced experimental colitis. Here, we tested whether toxin A could also trigger more severe inflammatory responses in NQO1 KO mice compared with NQO1 WT mice. Indeed, our results show that C. difficile toxin A-mediated enteritis is significantly enhanced in NQO1 KO mice compared with NQO1 WT mice. The levels of fluid secretion, villus disruption, and epithelial cell apoptosis were also higher in toxin A-treated NQO1 KO mice compared with WT mice. The previous and present results collectively show that NQO1 is involved in the formation of tight junctions in the small intestine, and that defects in NQO1 enhance C. difficile toxin A-induced acute inflammatory responses, presumably via the loss of epithelial cell tight junctions. PMID:27116994

  11. A novel method for imaging the pharmacological effects of antibiotic treatment on Clostridium difficile.

    PubMed

    Endres, Bradley T; Bassères, Eugénie; Memariani, Ali; Chang, Long; Alam, M Jahangir; Vickers, Richard J; Kakadiaris, Ioannis A; Garey, Kevin W

    2016-08-01

    Clostridium difficile is a significant cause of nosocomial-acquired infection that results in severe diarrhea and can lead to mortality. Treatment options for C. difficile infection (CDI) are limited, however, new antibiotics are being developed. Current methods for determining efficacy of experimental antibiotics on C. difficile involve antibiotic killing rates and do not give insight into the drug's pharmacologic effects. Considering this, we hypothesized that by using scanning electron microscopy (SEM) in tandem to drug killing curves, we would be able to determine efficacy and visualize the phenotypic response to drug treatment. To test this hypothesis, supraMIC kill curves were conducted using vancomycin, metronidazole, fidaxomicin, and ridinilazole. Following collection, cells were either plated or imaged using a scanning electron microscope (SEM). Consistent with previous reports, we found that the tested antibiotics had significant bactericidal activity at supraMIC concentrations. By SEM imaging and using a semi-automatic pipeline for image analysis, we were able to determine that vancomycin and to a lesser extent fidaxomicin and ridinilazole significantly affected the cell wall, whereas metronidazole, fidaxomicin, and ridinilazole had significant effects on cell length suggesting a metabolic effect. While the phenotypic response to drug treatment has not been documented previously in this manner, the results observed are consistent with the drug's mechanism of action. These techniques demonstrate the versatility and reliability of imaging and measurements that could be applied to other experimental compounds. We believe the strategies laid out here are vital for characterizing new antibiotics in development for treating CDI. PMID:27108094

  12. Comparison of two rapid assays for Clostridium difficile Common antigen and a C difficile toxin A/B assay with the cell culture neutralization assay.

    PubMed

    Reller, Megan E; Alcabasa, Romina C; Lema, Clara A; Carroll, Karen C

    2010-01-01

    We compared 3 rapid assays for Clostridium difficile with a cell culture cytotoxicity neutralization assay (CCNA). Of 600 stool samples, 46 were positive for toxigenic C difficile. Both rapid common antigen assays were highly sensitive (91.3%-100%) and, therefore, were appropriate screening tests. The rapid toxin assay had poor sensitivity (61%) but excellent specificity (99.3%). Testing stools for glutamate dehydrogenase (step 1) and those positive with a rapid toxin assay (step 2) would correctly classify 81% of submitted specimens within 2 hours, including during periods of limited staffing (evenings, nights, and weekends). CCNA could then be used as a third step to test rapid toxin-negative samples, thereby providing a final result for the remaining 19% of samples by 48 to 72 hours. The use of rapid assays as outlined could enhance timely diagnosis of C difficile. PMID:20023265

  13. Isolation and characterization of Clostridium difficile in farm animals from slaughterhouse to retail stage in Isfahan, Iran.

    PubMed

    Esfandiari, Zahra; Weese, J Scott; Ezzatpanah, Hamid; Chamani, Mohammad; Shoaei, Parisa; Yaran, Majid; Ataei, Behrooz; Maracy, Mohammad Reza; Ansariyan, Akbar; Ebrahimi, Fatemeh; Jalali, Mohammad

    2015-10-01

    To determine the prevalence of Clostridium difficile in farm animals from slaughterhouse through to retail stage, a total of 750 samples of feces, posteviscerated and washed carcass were collected from cattle, camels, goats, and sheep in Isfahan, Iran. The overall prevalence of C. difficile in feces, posteviscerated and washed carcass were 20 (13.3%), 23 (15.3%), and 11 (7.3%), respectively; while C. difficile was isolated from 79 (26.3%) retail samples. Twenty-nine (3.8%) isolates were toxigenic, with most toxigenic isolates (n = 17, 5.6%) identified from the retail stage. All toxigenic isolates harbored tcdA and tcdB; however, all were negative for cdtB. The 29 isolates were classified into 21 different ribotypes. This study revealed evidence of existence of toxigenic C. difficile in farm animal feces and meat in Iran. PMID:26440207

  14. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection

    PubMed Central

    Theriot, Casey M.; Koenigsknecht, Mark J.; Carlson, Paul E.; Hatton, Gabrielle E.; Nelson, Adam M.; Li, Bo; Huffnagle, Gary B.; Li, Jun; Young, Vincent B.

    2014-01-01

    Antibiotics can have significant and long lasting effects on the gastrointestinal tract microbiota, reducing colonization resistance against pathogens including Clostridium difficile. Here we show that antibiotic treatment induces substantial changes in the gut microbial community and in the metabolome of mice susceptible to C. difficile infection. Levels of secondary bile acids, glucose, free fatty acids, and dipeptides decrease, whereas those of primary bile acids and sugar alcohols increase, reflecting the modified metabolic activity of the altered gut microbiome. In vitro and ex vivo analyses demonstrate that C. difficile can exploit specific metabolites that become more abundant in the mouse gut after antibiotics, including primary bile acid taurocholate for germination, and carbon sources mannitol, fructose, sorbitol, raffinose and stachyose for growth. Our results indicate that antibiotic-mediated alteration of the gut microbiome converts the global metabolic profile to one that favors C. difficile germination and growth. PMID:24445449

  15. PCR amplification of rRNA intergenic spacer regions as a method for epidemiologic typing of Clostridium difficile.

    PubMed Central

    Cartwright, C P; Stock, F; Beekmann, S E; Williams, E C; Gill, V J

    1995-01-01

    From January to March 1993, a suspected outbreak of antibiotic-associated diarrhea occurred on a pediatric oncology ward of the Clinical Center Hospital at the National Institutes of Health. Isolates of Clostridium difficile obtained from six patients implicated in this outbreak were typed by both PCR amplification of rRNA intergenic spacer regions (PCR ribotyping) and restriction endonuclease analysis of genomic DNA. Comparable results were obtained with both methods; five of the six patients were infected with the same strain of C. difficile. Subsequent analysis of 102 C. difficile isolates obtained from symptomatic patients throughout the Clinical Center revealed the existence of 41 distinct and reproducible PCR ribotypes. These data suggest that PCR ribotyping provides a discriminatory, reproducible, and simple alternative to conventional molecular approaches for typing strains of C. difficile. PMID:7699038

  16. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum.

    PubMed Central

    Castagliuolo, I; LaMont, J T; Nikulasson, S T; Pothoulakis, C

    1996-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, is effective in treating some patients with Clostridium difficile diarrhea and colitis. We have previously reported that S. boulardii inhibits rat ileal secretion in response to C. difficile toxin A possibly by releasing a protease that digests the intestinal receptor for this toxin (C. Pothoulakis, C. P. Kelly, M. A. Joshi, N. Gao, C. J. O'Keane, I. Castagliuolo, and J. T. LaMont, Gastroenterology 104: 1108-1115, 1993). The aim of this study was to purify and characterize this protease. S. boulardii protease was partially purified by gel filtration on Sephadex G-50 and octyl-Sepharose. The effect of S. boulardii protease on rat ileal secretion, epithelial permeability, and morphology in response to toxin A was examined in rat ileal loops in vivo. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified S. boulardii protease revealed a major band at 54 kDa. Pretreatment of rat ileal brush border (BB) membranes with partially purified protease reduced specific toxin A receptor binding (by 26%). Partially purified protease digested the toxin A molecule and significantly reduced its binding to BB membranes in vitro (by 42%). Preincubation of toxin A with S. boulardii protease inhibited ileal secretion (46% inhibition, P < 0.01), mannitol permeability (74% inhibition, P < 0.01), and histologic damage caused by toxin A. Thus, S. boulardii protease inhibits the intestinal effects of C. difficile toxin A by proteolysis of the toxin and inhibition of toxin A binding to its BB receptor. Our results may be relevant to the mechanism by which S. boulardii exerts its protective effects in C. difficile infection in humans. PMID:8945570

  17. Phenotypic and Genotypic Analysis of Clostridium difficile Isolates: a Single-Center Study

    PubMed Central

    Zhou, Yanjiao; Burnham, Carey-Ann D.; Hink, Tiffany; Chen, Lei; Shaikh, Nurmohammad; Wollam, Aye; Sodergren, Erica; Weinstock, George M.; Tarr, Phillip I.

    2014-01-01

    Clostridium difficile infections (CDI) are a growing concern in North America, because of their increasing incidence and severity. Using integrated approaches, we correlated pathogen genotypes and host clinical characteristics for 46 C. difficile infections in a tertiary care medical center during a 6-month interval from January to June 2010. Multilocus sequence typing (MLST) demonstrated 21 known and 2 novel sequence types (STs), suggesting that the institution's C. difficile strains are genetically diverse. ST-1 (which corresponds to pulsed-field gel electrophoresis strain type NAP1/ribotype 027) was the most prevalent (32.6%); 43.5% of the isolates were binary toxin gene positive, of which 75% were ST-1. All strains were ciprofloxacin resistant and metronidazole susceptible, and 8.3% and 13.0% of the isolates were resistant to clindamycin and tetracycline, respectively. The corresponding resistance loci, including potential novel mutations, were identified from the whole-genome sequencing (WGS) of the resistant strains. Core genome single nucleotide polymorphisms (SNPs) determining the phylogenetic relatedness of the 46 strains recapitulated MLST types and provided greater interstrain differentiation. The disease severity was greatest in patients infected with ST-1 and/or binary gene-positive strains, but genome-wide SNP analysis failed to provide additional associations with CDI severity within the same STs. We conclude that MLST and core genome SNP typing result in the same phylogenetic grouping of the 46 C. difficile strains collected in a single hospital. WGS also has the capacity to differentiate those strains within STs and allows the comparison of strains at the individual gene level and at the whole-genome level. PMID:25275005

  18. Outbreak of Clostridium difficile PCR ribotype 027 - the recent experience of a regional hospital

    PubMed Central

    2014-01-01

    Background Clostridium difficile infection (CDI) is the leading cause of healthcare-associated diarrhea, and several outbreaks with increased severity and mortality have been reported. In this study we report a C. difficile PCR ribotype 027 outbreak in Portugal, aiming to cont