Science.gov

Sample records for chronic elevated ozone

  1. Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum.

    PubMed

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan, Armando Molina; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2014-02-01

    Ozone (O3) is one of the most harmful air pollutants to crops, contributing to high losses on crop yield. Tropospheric O3 background concentrations have increased since pre-industrial times reaching phytotoxic concentrations in many world regions. Capsicum peppers are the second most traded spice in the world, but few studies concerning the O3 effects in this genus are known. Thereby, the aim of this work was to evaluate the effects of chronic exposure to elevated O3 concentrations in red pepper plant Capsicum baccatum L. var. pendulum with especial considerations on the leaf redox state and fruit yield. Fifteen C. baccatum plants were exposed to O3 in open-top chambers during fruit ripening (62 days) at a mean concentration of 171.6 µg/m(3) from 10:00 am to 4:00 pm. We found that O3 treated plants significantly decreased the amount and the total weight of fruits, which were probably a consequence of the changes on leaf oxidative status induced by ozone exposure. Ozone exposed plants increased the reactive oxygen species (ROS) levels on the leaves, which may be associated with the observed decrease on the activity of enzymatic antioxidant defense system, as well with lower levels of polyphenol and reduced thiol groups. Enhanced ROS production and the direct O3 reaction lead to biomacromolecules damages as seen in the diminished chlorophyll content and in the elevated lipid peroxidation and protein carbonylation levels. Through a correlation analysis it was possible to observe that polyphenols content was more important to protect pepper plants against oxidative damages to lipids than to proteins. PMID:24238720

  2. Differential Effects of Elevated Ozone on Two Hybrid Aspen Genotypes Predisposed to Chronic Ozone Fumigation. Role of Ethylene and Salicylic Acid1

    PubMed Central

    Vahala, Jorma; Keinänen, Markku; Schützendübel, Andres; Polle, Andrea; Kangasjärvi, Jaakko

    2003-01-01

    The role of ethylene (ET) signaling in the responses of two hybrid aspen (Populus tremula L. × P. tremuloides Michx.) clones to chronic ozone (O3; 75 nL L−1) was investigated. The hormonal responses differed between the clones; the O3-sensitive clone 51 had higher ET evolution than the tolerant clone 200 during the exposure, whereas the free salicylic acid concentration in clone 200 was higher than in clone 51. The cellular redox status, measured as glutathione redox balance, did not differ between the clones suggesting that the O3 lesions were not a result of deficient antioxidative capacity. The buildup of salicylic acid during chronic O3 exposure might have prevented the up-regulation of ET biosynthesis in clone 200. Blocking of ET perception with 1-methylcyclopropene protected both clones from the decrease in net photosynthesis during chronic exposure to O3. After a pretreatment with low O3 for 9 d, an acute 1.5-fold O3 elevation caused necrosis in the O3-sensitive clone 51, which increased substantially when ET perception was blocked. The results suggest that in hybrid aspen, ET signaling had a dual role depending on the severity of the stress. ET accelerated leaf senescence under low O3, but under acute O3 elevation, ET signaling seemed to be required for protection from necrotic cell death. PMID:12746525

  3. Effects of Chronic Elevated Ozone Concentration on Antioxidant Capacity, Photosynthesis and Seed Yield of 10 Soybean Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crops losses due to ozone (O3) in the United States are estimated to cost $1-3 billion annually, making it the most damaging air pollutant to plants. This challenge to crop production is expected to increase as O3 levels rise over the next half-century, particularly in sensitive crop species like so...

  4. Elevated Wintertime Ozone in Utah's Uinta Basin

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Moore, K. D.; Hill, S.; Harper, K.

    2011-12-01

    Seemingly anomalous elevated wintertime ozone (O3) levels were first observed in Wyoming's Upper Green River Basin (UGRB) in 2005 and have been recorded most in subsequent winters. While research continues, it has been hypothesized that the unacceptable levels are a unique combination of stagnant meteorology, enhanced insolation due to relatively high elevations and snow increased albedo, and abundant precursor sources owing to the region's recent rapid expansion of oil and gas exploration and production. The UGRB area has over 4,700 recorded gas/oil wells and sits mostly in rural Sublette County which has an estimated population of 7,925, an area of 12,644 km2, and a basin floor elevation around 2200 m asl, surrounded on three sides with mountains up to 4,200 km asl. Similarly, the Uinta Basin in northeastern Utah is a rural area prone to frequent low-level wintertime inversion episodes and persistent snow cover, with an expanding economy significantly based on gas and oil development and production (approximately 11,500 wells, with an estimated 17,000 more planned in the future years). The Basin lies primarily in Duchesne and Uintah Counties which have a combined population of approximately 51,200 and an area of about 19,982 km2. The floor of the Basin has a typical elevation around 1,560 m asl and is surrounded by mountains up to 4,120 m asl. Ambient measurements at four sites in the winter of 2009-2010 found many instances of ozone concentrations well above the current U.S. National Ambient Air Quality Standard (NAAQS; 75 ppb, 8-hr average, 4th highest value). To more fully characterize the behavior and geographical extent of the Uinta Basin's wintertime O3 issue, the Uintah Impact Mitigation Special Service District (UIMSSD) funded a study which included deploying 10 portable O3 monitors (2B Technologies, Inc., Model 205, Dual Beam) throughout the Basin. Furthermore, cooperative partners including the USEPA, BLM, UDAQ, NPS, and Golder Associates provided

  5. TOWARDS RELIABLE AND COST-EFFECTIVE OZONE EXPOSURE ASSESSMENT: PARAMETER EVALUATION AND MODEL VALIDATION USING THE HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    EPA Science Inventory

    Accurate assessment of chronic human exposure to atmospheric criteria pollutants, such as ozone, is critical for understanding human health risks associated with living in environments with elevated ambient pollutant concentrations. In this study, we analyzed a data set from a...

  6. Elevated Tropospheric Ozone over the Atlantic

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Ziemke, J. R.; Tie, X.

    2003-01-01

    Tropospheric column ozone (TCO) is derived from differential measurements of TOMS total column ozone and Microwave Limb Sounder stratospheric column ozone. It is shown that TCO during summer months over the Atlantic and Pacific Oceans in northern midlatitudes is about the same (50 to 60 Dobson Units) as over the continents of North America, Europe, and Asia, where surface emissions of nitrogen oxides from industrial sources, biomass and biofuel burning and biogenic emissions are significantly larger. This nearly uniform zonal variation in TCO is modulated by surface topography of the Rocky and Himalayan mountains, and Tibetan plateau where TCO is reduced by 20 to 30 Dobson Units. The zonal variation in TCO is well simulated by a global chemical transport model called MOZART-2 (Model of Ozone and Related Chemical Tracers, version 2). The model results are analyzed to delineate the relative importance of various processes contributing to observed zonal characteristics of TCO.

  7. Examining acute health outcomes due to ozone exposure and their subsequent relationship to chronic disease outcomes

    SciTech Connect

    Ostro, B.D.

    1993-12-01

    Current evidence indicates that individuals exposed to short term elevations in ambient ozone may experience both upper and lower respiratory effects. Some respiratory symptoms and spirometric changes are mild and reversible in nature, while others involve more severe outcomes, including hospital admissions and emergency room visits. However, many questions remain about the effects of acute ozone exposure and the implications of this exposure for chronic disease outcomes. For example, the identification of sensitive subgroups, the delineation of the entire spectrum of health effects due to exposure to ozone, the potential synergy between viral infections and ozone exposure, and the nature of adaptation to ozone are not well characterized. In addition, studies that examine the association between acute responses to ozone and potential biological indicators of a chronic disease process would be desirable. This paper serves to provide an overview of the types of epidemiologic studies that may be appropriate and factors to consider in addressing these questions. 23 refs.

  8. Elevated Ozone Alters Soybean-Virus Interaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examine the effects of elevated O3 and elevated CO2, two major components of global change, on the interaction between soybean and Soybean Mosaic Virus (SMV) by measuring molecular, cellular, and physiological processes, in natural field conditions and in controlled environment. In natural field ...

  9. CHRONIC EXPOSURE TO OZONE CAUSES RESTRICTIVE LUNG DISEASE

    EPA Science Inventory

    A chronic study to determine the progression and or/reversibility of ozone-induced lung disease was conducted. ale rats were exposed to a diurnal pattern of ozone (O3) for 1 wk, 3 wk, 3 mo, 12 mo, or 18 mo. he occurrence of chronic lung disease was determined by structural and fu...

  10. PULMONARY FUNCTION ADAPTATION TO OZONE IN SUBJECTS WITH CHRONIC BRONCHITIS

    EPA Science Inventory

    Twenty smokers with chronic bronchitis were exposed to 0.41 ppm ozone for 3 hr-day for 5 consecutive days and reexposed 4 days later to determine (1) if they are sensitive to ozone, (2) if they adapt, and (3) if the adaptation lasts longer than 4 days. There were significant decr...

  11. Elevated ozone in boreal fire plumes - the 2013 smoke season

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Vogelmann, H.; Flentje, H.; Ries, L.

    2015-05-01

    In July 2013 very strong boreal fire plumes were observed at the northern rim of the Alps by lidar and ceilometer measurements of aerosol, ozone and water vapour for about three weeks. In addition, some of the lower-tropospheric components of these layers were analyzed at the Global Atmosphere Watch laboratory at the Schneefernerhaus high-altitude research station (2650 m a.s.l., located a few hundred metres south-west of the Zugspitze summit). The high amount of particles confirms our hypothesis that fires in the Arctic regions of North America have a much stronger impact on the Central European atmosphere than the multitude of fires in the United States. This has been ascribed to the prevailing anticyclonic advection pattern during favourable periods and subsidence, in contrast to warm-conveyor-belt export, rainout and dilution frequently found for lower latitudes. A high number of the pronounced aerosol structures were positively correlated with elevated ozone. Chemical ozone formation in boreal fire plumes is known to be rather limited. Indeed, these air masses could be attributed to stratospheric air intrusions over remote high latitude regions obviously picking up the aerosol on their way across Canada. In one case subsidence from the stratosphere over Siberia over as many as 15 to 20 days without increase in humidity was observed although a significant amount of Canadian smoke was trapped. These coherent air streams lead to rather straight and rapid transport of the particles to Europe.

  12. Potential Source Regions for Elevated Ozone Events in Denmark

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Nuterman, Roman; Petrova, Irina

    2010-05-01

    In our study, three Danish measurement sites having the longest time-series of ozone measurements (with a time resolution of 1 hour and starting in early 1990s) records were selected - Ulborg (DK31; 56.28°N, 8.43°E) and Frederiksborg (DK32; 55.97°N, 12.33°E) and Lille Valby (DK41; 55.69°N, 12.13°E) located on Jutland Peninsula and Zealand Island of Denmark, respectively. The measurements with high ozone level (threshold as 150 µg/m3) were selected accounting in total for more than 500 cases for these 3 locations. Note, that among these, 42 (for DK41) and 59 (for DK31 and DK32) cases showed very high ozone concentrations (i.e. above 180 µg/m3). For all these cases, at first, the trajectory modelling approach was applied in order to estimate atmospheric transport pathway of air mass arrival at the measurement sites and potential source regions from where the elevated ozone level can be associated. In our study the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model using REANALYSIS meteorological dataset (global, 1948-present) was run to calculate a set of backward trajectories (in with duration of 5 day backward in time and arriving at altitude of 100 m) and divide into groups with respect to potential source regions and dominating atmospheric transport pathways using cluster analysis technique. Analyzing distribution of trajectories (associated with elevated ozone concentrations measured at the Danish sites) as a function of the sector and pathway for the atmospheric transport, the percentage of trajectories had varied among 3 locations and ranged between 11-18% (from the eastern sector), 6-13% (from SW), 10-22% (S), 7-22% (SE), 25-39% (NW), 7-13% (N); with some trajectories having no clear identification. Among trajectories there are those passing through inland (i.e. through the Baltic States, Russia, Poland, Germany, France, Benelux and Scandinavian countries) as well water areas (i.e. transport from the Atlantic Ocean, Baltic

  13. INFLUENCE OF ELEVATED OZONE AND CARBON DIOXIDE ON INSECT DENSITIES.

    SciTech Connect

    DELUCIA, E.; DERMODY, O.; O'NEILL, B.; ALDEA, M.; HAMILTON, J.; ZANGERL, A.; ROGER, A.; BERENBAUM, M.

    2005-01-05

    The combustion of fossil fuels is profoundly altering the chemical composition of the atmosphere. Beginning with the Industrial Revolution, the concentration of carbon dioxide in the atmosphere has increased from approximately 280 to 370 {micro}l l{sup -1} in 2004, and it is expected to exceed 550 {micro}l l{sup -1} by 2050. Tropospheric ozone has risen even more rapidly than CO{sub 2} and average summer concentrations in the Northern Hemisphere are expected to continue to increase by 0.5-2.5% per year over the next 30 years. Although elevated CO{sub 2} stimulates photosynthesis and productivity of terrestrial ecosystems, ozone (O{sub 3}) is deleterious. In addition to directly affecting the physiology and productivity of crops, increased concentrations of tropospheric CO{sub 2} and O{sub 3} are predicted to lower the nutritional quality of leaves, which has the potential to increase herbivory as insects eat more to meet their nutritional demands. We tested the hypothesis that changes in tropospheric chemistry affect the relationship between plants and insect herbivores by changing leaf quality. The susceptibility to herbivory of soybean grown in elevated CO{sub 2} or O{sub 3} was examined using free air gas concentration enrichment (SoyFACE). FACE technology has the advantage that plants are cultivated under realistic field conditions with no unwanted alteration of microclimate or artificial constraints on the insect community.

  14. Pulmonary function adaptation to ozone in subjects with chronic bronchitis

    SciTech Connect

    Kulle, T.J.; Milman, J.H.; Sauder, L.R.; Kerr, H.D.; Farrell, B.P.

    1984-01-01

    Twenty smokers with chronic bronchitis were exposed to 0.41 ppm ozone for 3 hr-day for 5 consecutive days and reexposed 4 days later to determine (1) if they are sensitive to ozone, (2) if they adapt, and (3) if the adaptation lasts longer than 4 days. There were significant decrements in forced vital capacity (FVC) and forced expiratory volume in 3 sec (FEV3) on the first day of the 5-day repeated exposures and also on reexposure 4 days following cessation of the sequential exposures. Symptoms experienced were mild and did not predominate on any exposure days. These results suggest that individuals with chronic bronchitis adapt rapidly to ozone and lose the adaptive phenomenon within 4 days. The small decreases seen in FVC and FEV3 appear to impose no more than minimal limitations on their daily activities.

  15. Pulmonary function adaptation to ozone in subjects with chronic bronchitis

    SciTech Connect

    Kulle, T.J.; Milman, J.H.; Sauder, L.R.; Kerr, H.D.; Farrell, B.P.; Miller W.R.

    1984-06-01

    Twenty smokers with chronic bronchitis were exposed to 0.41 ppm ozone for 3 hr-day for 5 consecutive days and reexposed 4 days later to determine (1) if they are sensitive to ozone, (2) if they adapt, and (3) if the adaptation lasts longer than 4 days. There were significant decrements in forced vital capacity (FVC) and forced expiratory volume in 3 sec (FEV/sub 3/) on the first day of the 5-day repeated exposures and also on reexposure 4 days following cessation of the sequential exposures. Symptoms experienced were mild and did not predominate on any exposure days. These results suggest that individuals with chronic bronchitis adapt rapidly to ozone and lose this adaptive phenomenon within 4 days. The small decreases seen in FVC and FEV/sub 3/ ( less than or equal to 3%) appear to impose no more than minimal limitations on their daily activities.

  16. Soybean Cultivar Variation in Response to Elevated Ozone Concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop losses to ozone damage are conservatively estimated to cost $1 to $3 billion in the U.S. These costs will rise as surface-level ozone increases over this century. A critical step in maximizing soybean yield in a future of rising tropospheric ozone is identifying variation in cultivar responses,...

  17. DOES CHRONIC OZONE EXPOSURE LEAD TO LUNG DISEASE?

    EPA Science Inventory

    The potential role of ozone in the induction of chronic lung diseases remains unclear. sing an ambient profile adopted from aerometric data from the Southwest Air Basin, rats were exposed to O3 for up to 18 months before assessments of pulmonary structure, function and biochemist...

  18. Spring leaf flush in aspen (Populus tremuloides) clones is altered by growth at elevated carbon dioxide and elevated ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early spring leaf out is important to the success of trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how elevated carbon dioxide concentration and elevated ozone concentration altered leaf area index development in a clos...

  19. Process-scale modeling of elevated wintertime ozone in Wyoming.

    SciTech Connect

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  20. Spatial and temporal variability in surface ozone at a high elevation remote site in Nepal

    NASA Astrophysics Data System (ADS)

    Moore, G. W. K.; Abernethy, S.; Semple, J. L.

    2009-07-01

    Ozone is an important atmospheric constituent due to its role as both a greenhouse gas and an oxidant. Recent measurements in the Mount Everest region indicate the presence of ozone at elevations from 5000 to 9000 m a.s.l. that are the result of both stratospheric and tropospheric sources. Here we examine the temporal variability in the surface ozone concentration measurements from the ABC-Pyramid Observatory in the Mount Everest region during 2006 and compare it to the total column ozone data from the OMI instrument as well as meteorological fields from the ECMWF Interim Reanalysis. Both the surface ozone at and the total column ozone over the ABC-Pyramid Observatory site have maxima in the pre-monsoon period. We show that during this period, there is a statistically significant correlation between the two suggesting that the stratosphere was an important contributor to the high levels of ozone observed during the period. There was a hiatus in the monsoon in June that resulted in a return of westerlies over northern Indian and southern Tibet and as a result, the aforementioned correlation extended into June. No such correlation exists during the monsoon and post-monsoon periods. Spatial correlation maps between the surface ozone and total column ozone as well as meteorological fields from the ECMWF Interim Reanalysis support the contention that there is a significant stratospheric contribution in the pre-monsoon period that is absent during and after the monsoon.

  1. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    PubMed

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI). PMID:24483064

  2. Chronic exposure to ozone causes restrictive lung disease

    SciTech Connect

    Grose, E.C.; Costa, D.L.; Hatch, G.E.; Miller, F.J.; Graham, J.A.

    1989-01-01

    A chronic study to determine the progression and/or reversibility of ozone-induced lung disease was conducted. Male rats were exposed to a diurnal pattern of ozone (O{sub 3}) for 1 week, 3 weeks, 3 months, 12 months, or 18 months. The occurrence of chronic lung disease was determined by structural and functional endpoints. Structurally, a biphasic response was observed with an initial acute inflammatory response after 1 week of exposure, a reduced acute response after 3 weeks of exposure, and an epithelial and interstitial response observed after 3 months which persisted or increased in intensity up to 18 months of exposure. Functional studies showed a persistence of decreased total lung capacity and residual volumes at 3, 12, and 18 months of exposure, a response indicative of restrictive lung disease. Biochemical changes in antioxidant metabolism were also observed after 12 and 18 months of exposure. Most significant changes were resolved after the clean-air recovery period. The study has shown that chronic exposure to O{sub 3} causes restrictive lung disease as characterized by the development of focal interstitial fibrosis.

  3. [Chronic elevation of enzymes of pancreatic origin in asymptomatic patients].

    PubMed

    Quílez, C; Martínez, J; Gómez, A; Trigo, C; Palazón, J M; Belda, G; Pérez-Mateo, M

    1998-05-01

    Chronic asymptomatic elevation of pancreatic enzymes is a well known entity although little has been reported. In most cases chronic asymptomatic elevation of amylase is due to a salival isoamylase increase or macroamylasemia. However, we have studied 10 cases with an increase in amylases due to pancreatic isoamylase and an increase in the remaining pancreatic enzymes which remained elevated during the follow up period ranging from 2 to 60 months. The amylase values ranged from 186 to 1,600; the lipase from 176 to 3,989, trypsin from 476 to 2,430 and pancreatic isoamylase from 122 to 1,263. In all patients CT and echography were carried out, which discarded structural damage. Nonetheless, an indirect test of pancreatic function presented unexplained pathologic values in 4 out of 10 patients. In conclusion, we suggest that chronic asymptomatic elevation of pancreatic enzymes is of unknown etiology with no associated structural pancreatic pathology demonstrable by the usual study methods. PMID:9644872

  4. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max)

    SciTech Connect

    Gillespie, K.M.; Rogers, A.; Ainsworth, E. A.

    2011-01-31

    Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO{sub 2}]) or chronic elevated ozone concentration ([O{sub 3}]; 90 ppb), and then exposed to an acute O{sub 3} stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O{sub 3} treatment. Growth at chronic elevated [O{sub 3}] increased the total antioxidant capacity of plants, while growth at elevated [CO{sub 2}] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O{sub 3} stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O{sub 3}]. Growth at elevated [CO{sub 2}] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO{sub 2}] and [O{sub 3}] will differentially affect the antioxidant system.

  5. Elevated Tropospheric Ozone Over the South Tropical Atlantic in January-February 1999: An Ozone Paradox Due to Interhemispheric Transport, Lightning, or Stratospheric Exchange?

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Doddridge, Bruce G.; Witte, Jacquelyn C.; Hudson, Robert D.; Luke, Winston T.; Johnson, James E.; Johnson, Bryan J.; Oltmans, Samuel J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On this first North American to southern African oceanographic cruise with ozonesonde launches (January and February 1999 on board the NOAA Research Vessel Ronald H Brown between Norfolk, VA, and Cape Town, South Africa) we found: (1) high ozone, CO, and aerosols off northern equatorial Africa from biomass burning, but even higher ozone concentrations off southern Africa which was not burning - an "ozone paradox"; (2) TOMS satellite evidence that south Atlantic elevated ozone in January-February 1999 was a regional feature similar in extent to the well-known September-October ozone maximum. Several mechanisms are considered to explain the "ozone paradox." Convection transporting air from the lower troposphere rich in ozone and/or ozone precursors to the upper troposphere through the ITCZ (intertropical Convergence Zone) may lead to cross-hemisphere transport of pollution. This is supported by trajectory linkage of lower-tropospheric ozone maxima with smoke seen by the TOMS satellite. Lightning-generated NO (nitric oxide) leading to ozone peaks of > 100 ppbv observed at 7-10 km altitude is another explanation. The TRMM (Tropical Rainfall Measuring Mission) Lightning Imaging Sounder shows many lightning flashes over southern Africa, which trajectories link to the high-ozone layers south of the ITCZ. The highest ozone peaks in the middle troposphere correspond to very low water vapor, which may point to photochemical destruction of ozone or subsidence from the upper troposphere which had interacted with stratospheric ozone.

  6. Elevated Ozone Modulates Herbivore-Induced Volatile Emissions of Brassica nigra and Alters a Tritrophic Interaction.

    PubMed

    Khaling, Eliezer; Li, Tao; Holopainen, Jarmo K; Blande, James D

    2016-05-01

    Plants damaged by herbivores emit volatile organic compounds (VOCs) that are used by parasitoids for host location. In nature, however, plants are exposed to multiple abiotic and biotic stresses of varying intensities, which may affect tritrophic interactions. Here, we studied the effects of ozone exposure and feeding by Pieris brassicae larvae on the VOCs emitted by Brassica nigra and the effects on oriented flight of the parasitoid Cotesia glomerata. We also investigated the oriented flight of C. glomerata in a wind-tunnel with elevated ozone levels. Herbivore-feeding induced the emission of several VOCs, while ozone alone had no significant effect. However, exposure to 120 ppb ozone, followed by 24 hr of herbivore-feeding, induced higher emissions of all VOCs as compared to herbivore-feeding alone. In accordance, herbivore-damaged plants elicited more oriented flights than undamaged plants, whereas plants exposed to 120 ppb ozone and 24 hr of herbivore-feeding elicited more oriented flights than plants subjected to herbivore-feeding alone. Ozone enrichment of the wind-tunnel air appeared to negatively affect orientation of parasitoids at 70 ppb, but not at 120 ppb. These results suggest that the combination of ozone and P. brassicae-feeding modulates VOC emissions, which significantly influence foraging efficiency of C. glomerata. PMID:27167383

  7. COMBINED EFFECTS OF ELEVATED ATMOSPHERIC CARBON DIOXIDE AND OZONE ON SOYBEAN WHOLE-PLANT WATER USE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With increasing atmospheric concentrations of trace gases such as carbon dioxide and ozone, a critical issue is how these changes will affect agricultural hydrologic cycles. To address an important part of this question, a study was undertaken to test the effects of elevated atmospheric carbon diox...

  8. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    NASA Astrophysics Data System (ADS)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  9. Long-Term Trends in High Elevation Tropospheric Ozone in the Northeastern US: Implications for Ozone Uptake in Red Spruce-Dominated Ecosystems

    NASA Astrophysics Data System (ADS)

    Bergweiler, C.

    2009-12-01

    Despite state and national air quality initiatives ground-level ozone continues to affect vegetation in natural, urban, and agro-ecosystems, causing a variety of damage to susceptible crops, trees, herbs and shrubs. Although the summer of 2009 experienced a (positive) air quality anomaly in the Northeast, at least 56 elevated ozone events occurred in 2008 between April and September in New England alone. Summertime ozone persistence at remote higher elevations is characterized by well-documented level diel (nocturnally stable) exposures, versus the typical diurnal formation and fate observed at lower elevations. Primary goals of this study were i) to assess ozone exposure trends based on up to 18 years of archival data and ii) to define how controlling mechanisms of ozone uptake differ for red spruce in alpine environments from those at lower elevation. Preliminary findings show that air quality at surveyed high elevation sites shows neither improvement nor deterioration at either southern or northern New England locations. A substantial proportion of ozone distribution in the highest concentration ranges (≥80 ppb) occurs nocturnally at higher elevations, often exceeding valley locations. Commonly applied cumulative ozone concentration exposure metrics AOT40 (EU) and SUM60 (US EPA) were calculated and it was determined that nighttime ozone exposures can exceed daytime exposures in southern New England. Monthly average exposures tended to be highest in spring, but it is unclear if physiological age of red spruce saplings is protective against ozone injury, i.e. current-year needles have not entered the phase of seasonal maximum stomatal conductance (gmax).

  10. Effects of chronic doses of ozone on loblolly pine: Photosynthetic characteristics in the third growing season

    SciTech Connect

    Sasek, T.W.; Richardson, C.J. )

    1989-09-01

    Gas exchange characteristics of loblolly pine seedlings were measured in the third growing season of ozone fumigations to determine the effects of long-term ozone exposure on photosynthetic capacity. Light and CO{sub 2} response curves indicated significant decreases of 21% and 27%, respectively, in light-saturated and CO{sub 2}-saturated photosynthetic capacities at 2 {times} ambient ozone compared to charcoal-filtered (CF) air, approximately 0.5 {times} ambient ozone. Differences in the response curves suggest changes in light-harvesting and biochemical efficiencies as well as changes in the activity of RuBP carboxylase and the regeneration rate of RuBP. Chlorophyll and carotenoid conditions per unit leaf area were decreased at the high ozone treatment in older flushes. Stomatal resistance limited photosynthesis by about 29% in both CF and 2 {times} ambient ozone treated plants, suggesting that chronic ozone exposure did not affect stomatal control in loblolly pine.

  11. Changes to Extractable Soil Amino Compounds Under Elevated CO2 and Ozone in an Aspen Plantation

    NASA Astrophysics Data System (ADS)

    Top, S. M.; Filley, T. R.; Zhang, X.

    2011-12-01

    Forests growing under elevated concentrations of atmospheric CO2 and ozone exhibit changes to root and foliar chemistry and quality that are related to changes in physiology, N limitation, and leaf damage. Additionally, there are documented changes to the activity of some understory invertebrate populations, and a variety of responses to soil organic matter ranging from accrual in the upper few centimeters to loss of soil C and N over the upper 20 cm. Under such conditions, however, the cycling of specific amino compounds is poorly understood. Knowledge of the role that new plant N plays in supporting soil microbial populations and soil C and N dynamics is important to fully understand relationships between N limitation under elevated CO2-induced productivity increases and available organic N pools in soil. We investigated the composition and concentration of hydrolysable amino compounds (amino acids and amino sugars) in litter, roots, soil, and earthworm fecal matter from the free-air CO2 enrichment (FACE) sites at Rhinelander, WI. Under elevated CO2 amino acids, when normalized to total N, exhibited change in both amount (decrease) and composition among roots (<2mm) with depth over the upper 25 cm, however, root amino acids showed only minor changes with depth in the ambient and ozone treatments. Ozonated rings exhibited a lower release of amino compounds (with respect to total N) compared to ambient and elevated CO2, which may suggest poorer quality input. For soil organic matter extractable amino acids (normalized to total soil N) exhibited changes similar to roots among the treatment. These results indicate that CO2 and ozone significantly influence amino compound dynamics in both soil and input which should impact the overall ability to decompose and preserve soils in such environments.

  12. Impact of elevated ozone on growth, physiology and yield of wheat (Triticum aestivum L.): A meta-analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We quantitatively evaluated the effects of elevated ozone (O3) on growth, leaf chemistry, gas exchange, grain yield and grain quality by means of meta-analysis of published data. Our database consisted of 53 peer-reviewed studies published between 1980 and 2007, taking into account wheat type, ozone...

  13. Forest Thinning Dramatically Enhances Ozone Flux due to Reactions With Elevated Emissions of Biogenic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Goldstein, A. H.; McKay, M.; Kurpius, M. R.; Schade, G. W.

    2003-12-01

    Forests are routinely managed for timber production and fire suppression by thinning and harvesting. The impact of these activities on biosphere-atmosphere exchange of reactive trace gases is profound, but has rarely been studied in the field. Here we present simultaneous observations of ozone and terpene fluxes before, during, and after pre-commercial thinning of a ponderosa pine plantation at Blodgett Forest (1300 m elevation on the western slope of the Sierra Nevada Mountains, CA). We previously reported that monoterpene emissions increased by an order of magnitude during and following forest thinning (Schade and Goldstein, GRL 2003). We also previously reported that half the daytime ozone flux to this ecosystem under normal summertime conditions (no disturbance) was due to gas-phase chemical loss, and we suggested that this ozone loss was occurring by reactions with biogenically emitted terpenes whose lifetime was short enough that they reacted before escaping the forest canopy (Kurpius and Goldstein, GRL 2003). Here we report that ozone loss was also dramatically enhanced during and following thinning, and we link these observations to confirm that the chemical ozone loss in the canopy was indeed due to reaction with biogenically emitted compounds whose emission was enhanced by disturbance. Based on the magnitudes of ozone flux due to chemical loss and the measured terpene fluxes, we infer that the emissions of previously undetected short-lived terpenes are approximately 15-20 times those of a-pinene during thinning, and 30-50 times those of a-pinene during summer and fall. Since a-pinene accounts for approximately 25% of the total monoterpenes we routinely measure with our automated in-situ GC instrumentation, we conclude that emissions of highly reactive terpenoid compounds could have been drastically under measured in previous field campaigns and that emissions of unidentified reactive terpenes could be 5-10 times larger than emissions of total terpenes

  14. Growth at Elevated Ozone or Elevated Carbon Dioxide Concentration Alters Antioxidant Capacity and Response to Acute Oxidative Stress in Soybean (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to test the hypothesis that atmospheric environment alters total antioxidant capacity of plants and their capacity to respond to acute oxidative stress, soybeans were grown under at elevated carbon dioxide concentration ([CO2]) or elevated ozone concentration ([O3]), and then exposed to an ...

  15. Chronic bronchiolitis in nonhuman primates after prolonged ozone exposure

    SciTech Connect

    Eustis, S.L.; Schwartz, L.W.; Kosch, P.C.; Dungworth, D.L.

    1981-01-01

    Bonnet monkeys (Macaca radiata) were exposed to 0.0, 0.5, or 0.8 ppm ozone for 7, 28, or 90 consecutive days, 8 hours per day. The pulmonary response was evaluated by means of pulmonary function testing, light microscopy, scanning electron microscopy, transmission microscopy, autoradiography, and morphometry. Pulmonary function values obtained before exposure did not statistically differ from values obtained after exposure. A general trend of increased quasistatic compliance of the lung was observed in both groups of exposed monkeys. Morphologic changes were principally characterized as low-grade chronic respiratory bronchiolitis. Tritiated thymidine labeling and counts of respiratory bronchiolar epithelium demonstrated up to a 37-fold increase in labeling index at 7 days but only a sevenfold increase at 90 days. Differential cell counts demonstrated an increase in the proportion of cuboidal bronchiolar cells constituting the respiratory bronchiolar epithelium. In control monkeys, 60% of the epithelial cells were cuboidal bronchiolar cells. At 90 days of exposure, more than 90% of the respiratory bronchiolar cells were cuboidal in appearance. The cuboidal bronchiolar cell in control monkeys does not appear secretory, but membrane-bound electron-dense secretory granules are present in this cell type from exposed monkeys. Epithelial hyperplasia (increased number of cells per millimeter of airway length) persisted through 90 days of exposure at a level slightly above that present at 7 days.

  16. Influence of Emissions from Oil and Gas Development on Elevated Ozone in the Northern Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Evans, J. M.; Helmig, D.; Thompson, C. R.

    2014-12-01

    The Northern Colorado Front Range (NCFR) region has been in exceedance of the ozone National Ambient Air Quality Standard (NAAQS) since 2004. Rapidly growing oil and natural gas (O&NG) operations in the Denver-Julesberg Basin, NNE of the Denver metropolitan area, continue to be one of the largest volatile organic compound emitting sources in the region. Trend analysis of the last 13 years of Denver/NCFR ozone monitoring from five sites does not show any statistically significant decrease in annual regulated ozone maxima despite state efforts to mitigate ozone precursor emissions. In this work, we investigate the contribution of O&NG emissions to continued exceedances of the ozone NAAQS. We use surface ozone and wind data from two sites near Boulder, Colorado, to investigate the climatology of ozone in the NCFR region. Transport analyses show a preponderance of elevated ozone events associated with transport from the O&NG operations area in the N-ESE sector, rather than from the more densely populated Denver metro area to the SE-S. On average, between the two sites, air transport from areas associated with dense O&NG operations accounts for 65% of 1-hr averaged elevated ozone (>75 ppbv), while transport from the densely populated Denver metropolitan area accounts for only 9%.

  17. Elevated hair cortisol levels in chronically stressed dementia caregivers.

    PubMed

    Stalder, Tobias; Tietze, Antje; Steudte, Susann; Alexander, Nina; Dettenborn, Lucia; Kirschbaum, Clemens

    2014-09-01

    Hair cortisol concentrations (HCC) are assumed to reflect integrated long-term cortisol levels and have been proposed as a promising endocrine marker of chronic psychological stress. The current study examined HCC in relation to caregiving burden, a well-established naturalistic model of chronic stress in humans. HCC and relevant psychosocial data were examined in 20 caregivers of relatives with dementia and 20 non-caregiver controls matched for age and sex. Results revealed elevated HCC in dementia caregivers compared to non-caregiver controls (F(1,38)=4.4, p=.04, ηp2=.10). Further, within caregivers, a trend for a positive association of HCC with self-reported caregiving burden (r=.43, p=.058) and a positive association with depressiveness (r=.48, p=.045) were observed. No other associations between HCC and subjective measures were seen. These findings concur with the notion that HCC sensitively capture endocrine aberrations in stress-exposed groups. PMID:25001953

  18. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    PubMed

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  19. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone.

    PubMed

    Riikonen, Johanna; Kontunen-Soppela, Sari; Vapaavuori, Elina; Tervahauta, Arja; Tuomainen, Marjo; Oksanen, Elina

    2013-03-01

    The effects of slightly elevated temperature (+0.8 °C), ozone (O3) concentration (1.3 × ambient O3 concentration) and their combination on over-wintering buds of Betula pendula Roth were studied after two growing seasons of exposure in the field. Carbohydrate concentrations, freezing stress resistance (FSR), bud dry weight to fresh weight ratio, and transcript levels of cytochrome oxidase (COX), alternative oxidase (AOX) and dehydrin (LTI36) genes were studied in two clones (clones 12 and 25) in December. Elevated temperature increased the bud dry weight to fresh weight ratio and the ratio of raffinose family oligosaccharides to sucrose and the transcript levels of the dehydrin (LTI36) gene (in clone 12 only), but did not alter the FSR of the buds. Genotype-specific alterations in carbohydrate metabolism were found in the buds grown under elevated O3. The treatments did not significantly affect the transcript level of the COX or AOX genes. No clear pattern of an interactive effect between elevated temperature and O3 concentration was found. According to these data, the increase in autumnal temperatures and slightly increasing O3 concentrations do not increase the risk for freeze-induced damage in winter in silver birch buds, although some alterations in bud physiology occur. PMID:23425688

  20. Superficially, longer, intermittent ozone theraphy in the treatment of the chronic, infected wounds.

    PubMed

    Białoszewski, Dariusz; Kowalewski, Michał

    2003-10-30

    Background. Ozone therapy - i.e. the treatment of patients by a mixture of oxygen and ozone - has been used for many years as a method ancillary to basic treatment, especially in those cases in which traditional treatment methods do not give satisfactory results, e.g. skin loss in non-healing wounds, ulcers, pressure sores, fistulae, etc. Material and methods. In the Department of Phisiotherapy of the Medical Faculty and the Department of the Orthopedics and Traumatology of the Locomotor System at the Medical University of Warsaw in the period from January 2001 until November 2002, 23 patients with heavy,chronic, antibiotic resistants septic complications after trauma, surgical procedures and secundary skin infetions were treated with ozone. The ozone therapy was administered using an authorial technique of superficially, longer, intermittent ozone application. Results. In the wounds of the all experienced patients the inhibition of septic processes and wound healing was much faster than normal. Conclusions. Our data confirm the advantages wich result from the technique of superficially, longer, intermittent ozone theraphy in combined treatment for septic complications in the soft tissue, especially in the locomotor system. These technique makes posttraumatic infections and promotes quicker healing of post-surgical and post-traumal complications - chronic septic infections. This method also lowers the cost of antibiotic therapy and is sometimes the only available auxiliary technique to support surgical procedures. PMID:17679848

  1. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone.

    PubMed

    Pregitzer, Kurt; Loya, Wendy; Kubiske, Mark; Zak, Donald

    2006-06-01

    The aspen free-air CO2 and O3 enrichment (FACTS II-FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3) in a replicated, factorial, field experiment. Soil respiration is the second largest flux of carbon (C) in these ecosystems, and the objective of this study was to understand how soil respiration responded to the experimental treatments as these fast-growing stands of pure aspen and birch + aspen approached maximum leaf area. Rates of soil respiration were typically lowest in the elevated O3 treatment. Elevated CO2 significantly stimulated soil respiration (8-26%) compared to the control treatment in both community types over all three growing seasons. In years 6-7 of the experiment, the greatest rates of soil respiration occurred in the interaction treatment (CO2 + O3), and rates of soil respiration were 15-25% greater in this treatment than in the elevated CO2 treatment, depending on year and community type. Two of the treatments, elevated CO2 and elevated CO2 + O3, were fumigated with 13C-depleted CO2, and in these two treatments we used standard isotope mixing models to understand the proportions of new and old C in soil respiration. During the peak of the growing season, C fixed since the initiation of the experiment in 1998 (new C) accounted for 60-80% of total soil respiration. The isotope measurements independently confirmed that more new C was respired from the interaction treatment compared to the elevated CO2 treatment. A period of low soil moisture late in the 2003 growing season resulted in soil respiration with an isotopic signature 4-6 per thousand enriched in 13C compared to sample dates when the percentage soil moisture was higher. In 2004, an extended period of low soil moisture during August and early September, punctuated by a significant rainfall event, resulted in soil

  2. Ozone

    MedlinePlus

    ... Earth's surface. It shields us from the sun's ultraviolet rays. Part of the good ozone layer is ... enough good ozone, people may get too much ultraviolet radiation. This may increase the risk of skin ...

  3. Ozone

    MedlinePlus

    ... reactive form of oxygen. In the upper atmosphere, ozone forms a protective layer that shields us from the sun’s ultraviolet rays. At ground level, ozone is a harmful air pollutant and a primary ...

  4. RESPONSES OF SUBJECTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE AFTER EXPOSURES TO 0.3 PPM OZONE

    EPA Science Inventory

    The authors previously reported (1982) that the respiratory mechanics of intermittently exercising persons with chronic obstructive pulmonary disease (COPD) were unaffected by a 2-h exposure to 0.2 ppm ozone. Employing a single-blind cross-over design protocol, 13 white men with ...

  5. THE ACUTE EFFECTS OF 0.2 PPM OZONE IN PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE

    EPA Science Inventory

    Epidemiologic data suggest that patients with chronic obstructive pulmonary disease (COPD) might be more sensitive than normal persons to the respiratory effects of oxidant pollutant exposure. The study was designed to determine the response of patients with COPD to ozone. Thirte...

  6. RESPONSE OF TURNIPS TO CHRONIC DOSES OF OZONE IN OPEN-TOP FIELD CHAMBERS

    EPA Science Inventory

    Turnips Brassica rapa L., were exposed to chronic doses of ozone(O3) by adding different amounts of O3 for 7 h a day to non-filtered air in open-top field chambers. One cultivar(Tokyo Cross) was tested in 1979 and four cultivars (Tokyo Cross, Shogoin, Purple Top White Globe and J...

  7. EFFECT OF EXPOSURE TO PAN AND OZONE ON SUSCEPTIBILITY TO CHRONIC BACTERIAL INFECTION

    EPA Science Inventory

    The effects of peroxyacetyl nitrate (PAN) and ozone (O3) on susceptibility of mice and guinea pigs to chronic and acute respiratory infections were studied. The agent used for the acute infectious disease was Streptococcus sp. whereas Mycobacterium tuberculosis served as the agen...

  8. Ozone

    MedlinePlus

    Ozone is a gas. It can be good or bad, depending on where it is. "Good" ozone occurs naturally about 10 to 30 miles above ... the sun's ultraviolet rays. Part of the good ozone layer is gone. Man-made chemicals have destroyed ...

  9. Diurnal and elevational variations in ozone and aerosol concentrations in New Hampshire`s Class-I Airsheds

    SciTech Connect

    Hill, L.B.; Allen, G.A.

    1994-12-31

    Ozone and fine mass aerosol concentrations on New Hampshire`s Mount Washington, situated adjacent to both the Presidential/Dry River and Great Gulf Wilderness Class-I Airsheds, exhibit distinct diurnal and elevational patterns. These patterns are attributed to regional pollutant transport dynamics, nocturnal atmospheric stratification, mountain meteorological phenomena and scavenging. A well-defined planetary boundary layer (PBL) forms at about 1 km elevation at night as demonstrated by nocturnal ozone monitoring along the Mount Washington Auto Road. The PBL provides an effective elevational barrier at night, isolating the valleys from the regionally transported air pollutants present above the mixing layer. During the daytime, the PBL breaks up due to convective processes and katabatic winds resulting from solar heating in the valley. This process creates a diurnal mixing cycle with ozone maxima recorded near mid-day in the adjacent valley. In contrast, fine mass concentrations are higher at the valley site, attributed to local source inputs, and the lack of strong nocturnal scavenging processes, compared with ozone. How aerosol concentrations are related to the PBL and how they are affected by diurnal mixing remains unclear largely due to current sampling methods. Exposure to ozone is generally greater above the treeline in the two airsheds.

  10. Differential Responses in Two Varieties of Winter Wheat to Elevated Ozone Concentration Under Fully Open-air Field Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two modern cultivars (Yangmai16 (Y16) and Yangfumai 2 (Y2)) of winter wheat (Triticum aestivum L.) of almost identical phenology were investigated for impacts of elevated ozone concentration (E-O3) on physiological characters related to photosynthesis under fully open-air field conditions in China. ...

  11. Effects of chronic exposure to ozone on collagen in rat lung

    SciTech Connect

    Wright, E.S.; Kehrer, J.P.; White, D.M.; Smiler, K.L.

    1988-03-15

    Pulmonary fibrosis is a consequence of severe injury from some toxic agents including high doses of ozone. It is not known, however, whether chronic exposure to low doses of ozone, such as those encountered in polluted ambient atmospheres, could also result in abnormal accumulations of lung collagen. Rats were exposed to ozone for 20 hr per day, 7 days per week for 3, 6, 12, and 18 months at concentrations of 0.12, 0.25, or 0.50 ppm. Controls were exposed under identical conditions to purified air. Upon removal from the chambers, rats were euthanized and lung tissue slices incubated with (14C)proline. The incorporation of 14C into hydroxyproline and the total hydroxyproline content of lung tissue were measured as estimates of lung collagen synthesis and content, respectively. The formation of labeled hydroxyproline tended to decrease significantly with time in controls and at the three ozone doses. There were, however, no significant dose-related changes at any of the time points tested. Total lung hydroxyproline increased with age in all groups, but no dose-related changes were detected at any time point. It was concluded that chronic exposure of rats to ozone at concentrations which approximate ambient urban concentrations did not affect normal age-related changes in either synthesis or accumulation of lung collagen.

  12. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    NASA Astrophysics Data System (ADS)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l -1 of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While α-pinene emissions decreased with ozone fumigation in Olea europaea, α-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95%) and total VOC (45

  13. Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated ozone (O3) and limiting soil nitrogen (N) availability both negatively affect crop performance. However, little is known about how the combination of elevated O3 and limiting N affect crop growth and metabolism. In this study, we grew tobacco (Nicotiana sylvestris) in ambient and elevated O...

  14. Responses of subjects with chronic obstructive pulmonary disease after exposures to 0. 3 ppm ozone

    SciTech Connect

    Kehrl, H.R.; Hazucha, M.J.; Solic, J.J.; Bromberg, P.A.

    1985-05-01

    The authors previously reported that the respiratory mechanics of intermittently exercising persons with chronic obstructive pulmonary disease (COPD) were unaffected by a 2-h exposure to 0.2 ppm ozone. Employing a single-blind, cross-over design protocol, 13 white men with nonreversible COPD (9 current smokers; mean FEV1/FVC, 56%) were randomly exposed on 2 consecutive days for 2 h to air and 0.3 ppm ozone. During exposures, subjects exercised (minute ventilation, 26.4 +/- 3.0 L/min) for 7.5 min every 30 min; ventilation and gas exchange measured during exercise showed no difference between exposure days. Pulmonary function tests (spirometry, body plethysmography) obtained before and after exposures were unchanged on the air day. On the ozone day the mean airway resistance and specific airway resistance showed the largest (25 and 22%) changes (p = 0.086 and 0.058, respectively). Arterial oxygen saturation (SaO/sub 2/) obtained in 8 subjects during the last exercise interval showed a mean decrement of 0.95% on the ozone exposure day; this change did not attain significance (p = 0.074). Nevertheless, arterial oxygen desaturation may be a true consequence of low-level ozone exposure in this compromised patient group. As normal subjects undergoing exposures to ozone with slightly higher exercise intensities show a threshold for changes in their respiratory mechanics at approximately 0.3 ppm, these data indicate that persons with COPD are not unduly sensitive to the effects of low-level ozone exposure.

  15. An investigation of the effects of simulated acid rain and elevated ozone on the physiology of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings and mature trees

    SciTech Connect

    Momen, B.

    1993-12-31

    This study investigated the combined effects of simulated acid rain and ozone on foliar water relations, carbon and nitrogen contents, gas exchange, and respiration of ponderosa pine seedlings and mature trees grown in the field at the USDA Forest Service Tree Improvement Center in Chico, California. Acid rain levels (pH 5.1 and 3) were applied weekly on foliage only, from January to April, 1992. Plants were exposed to ozone levels (ambient and twice ambient) during the day only, from August to December, 1990, and from September to November, 1992. Results suggested that elevated ozone, particularly in combination with strong acid, caused osmotic adjustment that may benefit plants during drought. The observed effects of pollutants are similar to the reported effects of drought on plant water relations. Elevated ozone decreased foliar nitrogen content and thus increased the C:N ratio, particularly in seedlings. Stomatal conductance was not affected by pollutants but net photosynthesis was decreased by elevated ozone, especially in mature trees. The greater sensitivity of net photosynthesis of mature trees to elevated ozone was contrary to all other plant characteristics investigated. Elevated ozone increased seedling respiration. Under controlled, temperature, light, and vapor pressure deficit conditions, net photosynthesis responded positively to increases in plant age, light intensity, and rain pH, but negatively to increases in tissue age, heat, and ozone concentration. Overall results indicated that acid rain and elevated ozone declined the carbon pool of ponderosa pine due to increased respiration and decreased net photosynthesis. Pollutant effects were more profound in mid-summer when ozone concentrations were highest. On many occasions the effects of acid rain and ozone levels interacted. Seedlings were more sensitive to pollutants than mature trees.

  16. Field assessment of a snap bean ozone bioindicator system under elevated ozone and carbon dioxide in a free air system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone-sensitive (S156) and -tolerant (R123 and R331) genotypes of snap bean (Phaseolus vulgaris L.) were tested as a plant bioindicator system for detecting O3 effects at current and future levels of tropospheric O3 and atmospheric CO2 under field conditions. Plants were exposed to reciprocal combi...

  17. Foliar Sterols in Soybeans Exposed to Chronic Levels of Ozone 1

    PubMed Central

    Grunwald, Claus; Endress, Anton G.

    1985-01-01

    Soybeans (Glycine max) exposed to chronic levels of ozone showed a linear decrease in biomass with increasing concentration. The foliar free sterols increased while the steryl ester, and the steryl glycosides, a minor component, decreased with increasing pollutant concentration. Of the free sterols, stigmasterol showed the largest increase, followed by sitosterol; campesterol, however, decreased. All steryl esters decreased; sitosterol showed the largest decrease and campesterol the least. PMID:16664020

  18. The combined effects of elevated carbon dioxide and ozone on crop systems

    SciTech Connect

    Miller, J.E.; Heagle, A.S.; Shafer, S.R.; Heck, W.W. |

    1994-12-31

    Concentrations of carbon dioxide (CO{sub 2}) and ozone (O{sub 3}) in the troposphere have risen in the last century due to industrialization. Current levels of tropospheric O{sub 3} suppress growth of crops and other plants, and O{sub 3} concentrations may continue to rise with changes in global climate. On the other hand, projected increases in atmospheric concentrations of CO{sub 2} in the next 50 to 100 years are expected to cause significant increases in growth of most species. Since elevated concentrations of these gases will co-occur, it is important to understand their joint action. Until recently, however, the combined effects of O{sub 3} and CO{sub 2} have received little attention. Most publications on combined CO{sub 2} and O{sub 3} effects have described experiments conducted in greenhouse or controlled-environment facilities. To date, data on responses of agricultural species to the combined gases have come from experiments with radish, tomato, white clover, tobacco, or wheat. In most cases, CO{sub 2} stimulated and O{sub 3} suppressed growth of the plant tissues studied, and CO{sub 2} usually attenuated development of O{sub 3}-induced visible injury. Some data have indicated a tendency for CO{sub 2}, in concentrations up to double the current ambient level, to attenuate effects of O{sub 3} on growth, but statistical analyses of such data often have not supported such a conclusion. In this paper, the results of a recent field experiment with soybean are reported, and the results are compared to other similar research with elevated atmospheric concentrations of both O{sub 3} and CO{sub 2}.

  19. Inter- and intra-specific responses to elevated ozone and chamber climate in northern birches.

    PubMed

    Manninen, S; Huttunen, S; Vanhatalo, M; Pakonen, T; Hämäläinen, A

    2009-05-01

    We studied the responses of micropropagated, northern provenances of downy, mountain and silver birches to elevated ozone (O(3)) and changing climate using open-top chambers (OTCs). Contrary to our hypothesis, northern birches were sensitive to O(3), i.e. O(3) levels of 31-36 ppb reduced the leaf and root biomasses by -10%, whereas wood biomass was affected to a lesser extent. The warmer and drier OTC climate enhanced growth in general, though there were differences among the species and clones, e.g. in bud burst and biomass production. Inter- and intra-specific responses to O(3) and changing climate relate to traits such as allocation patterns between the above- and belowground parts (i.e. root/shoot ratio), which further relate to nutrient and water economy. Our experiments may have mimicked future conditions quite well, but only long-term field studies can yield the information needed to forecast responses at both tree and ecosystem levels. PMID:19147261

  20. Ozone risk assessment utilities (ORAMUS) user's manual and tutorial : Volume 2, Chronic health endpoints.

    SciTech Connect

    Clemmons, M. A.; Jusko, M. J.; Whitfield, R. G.

    1998-12-16

    The primary purpose of this manual is to provide instructions on how to install and use the ORAMUS (Ozone Risk AssessMent UtilitieS) software. ORAMUS is a DOS-based software system that allows you to calculate and view risk estimates for health effects attributable to short- and long-term exposure to tropospheric ozone. The system combines exposure estimates with exposure-response relationships and then calculates and displays estimates of the overall risk in the form of probability distributions. ORAMUS allows you to select from three basic models: headcount risk, benchmark risk, and hospital admissions. It calculates a wide range of risk results for 27 air quality scenarios, 9 urban areas, 33 acute health endpoints, 4 chronic health endpoints, and 3 populations of interest. This manual is a tutorial designed to guide you through a series of steps that will familiarize you with the features of the system. The manual consists of two volumes. Volume 1 addresses acute health endpoints, and Volume 2 covers chronic health endpoints. Acute results were used during the National Ambient Air Quality Standards review process for ozone. Chronic results were not used.

  1. Management of Chronic Periodontitis Using Subgingival Irrigation of Ozonized Water: A Clinical and Microbiological Study

    PubMed Central

    Mathew, Jayan Jacob; Ambooken, Majo; Kachappilly, Arun Jose; PK, Ajithkumar; Johny, Thomas; VK, Linith; Samuel, Anju

    2015-01-01

    Introduction Adjunctive use of professional subgingival irrigation with scaling and root planing (SRP) has been found to be beneficial in eradicating the residual microorganisms in the pocket. Objective To evaluate the effect of ozonized water subgingival irrigation on microbiologic parameters and clinical parameters namely Gingival index, probing pocket depth, and clinical attachment level. Materials and Methods Thirty chronic periodontitis patients with probing pocket depth ≥6mm on at least one tooth on contra lateral sides of opposite arches were included in the study. The test sites were subjected to ozonized water subgingival irrigation with subgingival irrigation device fitted with a modified subgingival tip. Control sites were subjected to scaling and root planing only. The following clinical parameters were recorded initially and after 4 weeks at the test sites and control sites. Plaque Index, Gingival Index, probing pocket depth, clinical attachment level. Microbiologic sampling was done for the test at the baseline, after scaling, immediately after ozonized water subgingival irrigation and after 4 weeks. In control sites microbiologic sampling was done at the baseline, after scaling and after 4 weeks. The following observations were made after 4 weeks. The results were statistically analysed using independent t-test and paired t-test. Result Test sites showed a greater reduction in pocket depth and gain in clinical attachment compared to control sites. The total anaerobic counts were significantly reduced by ozonized water subgingival irrigation along with SRP compared to SRP alone. Conclusion Ozonized water subgingival irrigation can improve the clinical and microbiological parameters in patients with chronic periodontitis when used as an adjunct to scaling and root planing. PMID:26436042

  2. Acute effects of 0. 2 ppm ozone in patients with chronic obstructive pulmonary disease

    SciTech Connect

    Solic, J.J.; Hazucha, M.J.; Bromberg, P.A.

    1982-06-01

    Epidemiologic data suggest that patients with chronic obstructive pulmonary disease (COPD) might be more sensitive than normal persons to the respiratory effects of oxidant pollutant exposure. Our study was designed to determine the response of patients with COPD to ozone. Thirteen white men with nonreversible airways obstruction (mean FEV1/FVC, 58%), of whom 8 were current smokers, were randomly exposed for 2 h to air and to 0.2 ppm ozone on 2 consecutive days using a single-blind crossover design. During either exposure, subjects exercised for 7.5 min every 30 min. Measures of respiratory mechanics obtained pre-exposure and postexposure were not significantly affected by either exposure. Similarly, ventilation and gas exchange measured during exercise showed no difference either between exercise periods or exposure days. However, arterial O/sub 2/ saturation (SaO/sub 2/), measured by ear oximetry during the final exercise period each day was lower (94.8%) at the end of O/sub 2/ exposure, than SaO/sub 2/ obtained at the end of air exposure (95.3%), the difference (0.48%) being significant (p . 0.008). Because normal subjects undergoing comparable exposures show a threshold for respiratory mechanical effects at about 0.3 ppm ozone, our data suggest that mild to moderate COPD is not associated with increased sensitivity to low ozone concentrations. However, our data do not rule out the possibility that the response of such subjects might be exaggerated at higher ozone concentrations. The consistent (in 11 of 13 subjects), though small, decrease in SaO/sub 2/ may indicate that indexes of ventilation/perfusion distribution might be more sensitive measures of ozone effect in this compromised patient group than are conventional respiratory mechanics measures.

  3. Photosynthetic Losses and Peroxidase Induction in Field-grown Soybean in Elevated Ground-level Ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In industrialized countries of the northern hemisphere, ozone concentrations [O3]have risen by 0.5-2.5% per year, more rapidly than carbon dioxide [CO2]. Nearly 25% of the earth's surface is currently at risk from ground-level ozone in excess of 60 ppb. The US soybean-corn agricultural system cover...

  4. Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction.

    PubMed

    Hu, Xia; Adebiyi, Morayo G; Luo, Jialie; Sun, Kaiqi; Le, Thanh-Thuy T; Zhang, Yujin; Wu, Hongyu; Zhao, Shushan; Karmouty-Quintana, Harry; Liu, Hong; Huang, Aji; Wen, Yuan Edward; Zaika, Oleg L; Mamenko, Mykola; Pochynyuk, Oleh M; Kellems, Rodney E; Eltzschig, Holger K; Blackburn, Michael R; Walters, Edgar T; Huang, Dong; Hu, Hongzhen; Xia, Yang

    2016-06-28

    The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada(-/-) mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund's adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets. PMID:27320922

  5. Elevated middle and upper troposphere ozone observed downstream of Atlantic tropical cyclones

    NASA Astrophysics Data System (ADS)

    Jenkins, Gregory S.; Robjhon, Miliaritiana L.; Reyes, Ashford; Valentine, Adriel; Neves, Luis

    2015-10-01

    During the peak period of hurricane activity in the summer of 2010, vertical profiles of ozone using ozonesondes were taken downstream of tropical cyclones in the Western and Eastern Atlantic Ocean basin at Barbados and Cape Verde. Measurements are taken for tropical cyclones Danielle, Earl, Fiona, Gaston, Julia and Igor. The measurements show an increase in ozone mixing ratios with air originating from the tropical cyclones at 5-10 km altitude. We suggest that observed lightning activity associated tropical cyclones and the subsequent production of NOX followed by upper level outflow and subsidence ahead of the tropical cyclones and aged continental outflow from West Africa thunderstorms produced observed increases in ozone mixing ratios. Hurricane Danielle showed the largest changes in ozone mixing ratio with values increasing from 25 ppb to 70 ppb between 22 and 25 August in the middle troposphere, near 450 hPa; warming and drying in the middle and lower troposphere. Measurements of ozone mixing ratios in Cape Verde show higher ozone mixing ratios prior to the passage of tropical storm Julia but low ozone mixing ratios and high relative humidity up to 300 hPa when the storm was in close proximity. This is due most likely the vertically transported from the marine boundary layer.

  6. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    PubMed

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter

  7. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China

    PubMed Central

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat

  8. Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah

    NASA Astrophysics Data System (ADS)

    Neemann, E. M.; Crosman, E. T.; Horel, J. D.; Avey, L.

    2015-01-01

    Numerical simulations are used to investigate the meteorological characteristics of the 31 January-6 February 2013 cold-air pool in the Uintah Basin, Utah, and the resulting high ozone concentrations. Flow features affecting cold-air pools and air quality in the Uintah Basin are studied, including the following: penetration of clean air into the basin from across the surrounding mountains, elevated easterlies within the inversion layer, and thermally driven slope and valley flows. The sensitivity of the boundary layer structure to snow cover variations and cloud microphysics are also examined. Snow cover increases boundary layer stability by enhancing the surface albedo, reducing the absorbed solar insolation at the surface, and lowering near-surface air temperatures. Snow cover also increases ozone levels by enhancing solar radiation available for photochemical reactions. Ice-dominant clouds enhance cold-air pool strength compared to liquid-dominant clouds by increasing nocturnal cooling and decreasing longwave cloud forcing.

  9. The Harvard Southern California Chronic Ozone Exposure Study: assessing ozone exposure of grade-school-age children in two Southern California communities.

    PubMed Central

    Geyh, A S; Xue, J; Ozkaynak, H; Spengler, J D

    2000-01-01

    The Harvard Southern California Chronic Ozone Exposure Study measured personal exposure to, and indoor and outdoor ozone concentrations of, approximately 200 elementary school children 6-12 years of age for 12 months (June 1995-May 1996). We selected two Southern California communities, Upland and several towns located in the San Bernardino mountains, because certain characteristics of those communities were believed to affect personal exposures. On 6 consecutive days during each study month, participant homes were monitored for indoor and outdoor ozone concentrations, and participating children wore a small passive ozone sampler to measure personal exposure. During each sampling period, the children recorded time-location-activity information in a diary. Ambient ozone concentration data were obtained from air quality monitoring stations in the study areas. We present ozone concentration data for the ozone season (June-September 1995 and May 1996) and the nonozone season (October 1995-April 1996). During the ozone season, outdoor and indoor concentrations and personal exposure averaged 48.2, 11.8, and 18.8 ppb in Upland and 60.1, 21.4, and 25.4 ppb in the mountain towns, respectively. During the nonozone season, outdoor and indoor concentrations and personal exposure averaged 21.1, 3.2, and 6.2 ppb in Upland, and 35.7, 2.8, and 5.7 ppb in the mountain towns, respectively. Personal exposure differed by community and sex, but not by age group. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10706534

  10. Ozone

    SciTech Connect

    Not Available

    1988-06-01

    The author discusses the debate over whether concern about a hole in the ozone layer in Antarctic is real or science fiction. There is a growing consensus that efforts must be taken to protect the ozone layer. The issue now is not whether chlorofluorocarbons (CFCs) should be controlled and regulated but how much and how soon. The United States has urged that the production of dangerous CFCs, and any other chemicals that affect the ozone layer, be restricted immediately to current levels and that their use be reduced 95 percent over the next decade. The American position was too strong for many European nations and the Japanese. Negotiations at an international conference on the matter broke down. The breakdown is due in part to a more acute concern for environmental matters in the United States than exists in many countries. Meanwhile CFCs are linked to another environmental problem that equally threatens the world - the Greenhouse Effect. The earth is in a natural warming period, but man could be causing it to become even warmer. The Greenhouse Effect could have a catastrophic impact on mankind, although nothing has been proven yet.

  11. Elevated ozone layers in the lower free troposphere during CalNex

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J., II; Banta, R. M.; Brewer, A.; Hardesty, R.; Brioude, J.; Cooper, O. R.

    2010-12-01

    The NOAA ESRL/CSD nadir-viewing ozone and aerosol lidar (TOPAZ) was deployed aboard the NOAA AOC Twin Otter research aircraft during the 2010 CalNex campaign. Ozone measurements were made on a total of 46 research flights covering much of California between 23 May and 18 July 2010. Many of these flights found widespread layers of high ozone (i.e. >100 ppbv) at altitudes between 2 and 4 km above mean sea level in the free troposphere. Potential sources include stratospheric intrusions, orographic lifting, and transport from Asia. The lidar observations are compared to ground-based ozonesonde measurements, and the origins of these layers investigated using the FLEXPART trajectory and particle dispersion model.

  12. Combined cadmium and elevated ozone affect concentrations of cadmium and antioxidant systems in wheat under fully open-air conditions.

    PubMed

    Guo, Hongyan; Tian, Ran; Zhu, Jianguo; Zhou, Hui; Pei, Daping; Wang, Xiaorong

    2012-03-30

    Pollution of the environment with both ozone (O(3)) and heavy metals has been steadily increasing. An understanding of their combined effects on plants, especially crops, is limited. Here we studied the effects of elevated O(3) on oxidative stress and bioaccumulation of cadmium (Cd) in wheat under Cd stress using a free-air concentration enrichment (FACE) system. In this field experiment in Jiangdu (Jiangsu Province, China), wheat plants were grown in pots containing soil with various concentrations of cadmium (0, 2, and 10 mg kg(-1) Cd was added to the soil) under ambient conditions and under elevated O(3) levels (50% higher than the ambient O(3)). Present results showed that elevated O(3) led to higher concentrations of Cd in wheat tissues (shoots, husk and grains) with respect to contaminated soil. Combined exposure to Cd and elevated O(3) levels strongly affected the antioxidant isoenzymes POD, APX and CAT and accelerated oxidative stress in wheat leaves. Our results suggest that elevated O(3) levels cause a reduction in food quality and safety. PMID:22285914

  13. Elevated Ozone in the Troposphere over the Atlantic and Pacific Oceans in the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Ziemke, J. R.; Tie, Xuexi

    2003-01-01

    Tropospheric column ozone (TCO) is derived from differential measurements of total column ozone from Nimus-7 and Earth Probe TOMS, and stratospheric column ozone from the Microwave Limb Sounder instrument on the Upper Atmospheric Research Satellite. It is shown that TCO during summer months over the Atlantic and Pacific Oceans at northern mid-latitudes is about the same (50-60 Dobson Units) as over the continents of North America, Europe and Asia, where surface emissions of nitrogen oxides from industrial sources, biomass and biofuel burning and biogenic emissions are significantly larger. This nearly uniform zonal variation in TCO is modulated by surface topography of the Rocky and Himalayan mountains and Tibetan Plateau where TCO is reduced by 20-30 Dobson Units. The zonal characteristics of TCO derived from satellite measurements are well simulated by a global chemical transport model called MOZART-2 (Model of Ozone and Related Chemical Tracers, version 2). The model results are analyzed to delineate the relative importance of various processes contributing to observed zonal characteristics of TCO, and they are shown that the surface emission of NOx contributes about 50% of the TCO at northern mid-latitudes, especially over the continents of North America, Europe and Asia. The result of TCO derived from TOMS and the analysis from MOZART-2 indicate that TCO is a very useful tool to study tropospheric O3 pollution resulting from surface emissions of pollutants.

  14. PARAMETER EVALUATION AND MODEL VALIDATION OF OZONE EXPOSURE ASSESSMENT USING HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    EPA Science Inventory

    To examine factors influencing long-term ozone exposures by children living in urban communities, we analyzed longitudinal data on personal, indoor, and outdoor ozone concentrations as well as related housing and other questionnaire information collected in the one-year-long Harv...

  15. Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations.

    PubMed

    Meehan, Timothy D; Couture, John J; Bennett, Alison E; Lindroth, Richard L

    2014-10-01

    Anthropogenic changes in atmospheric carbon dioxide (CO2 ) and ozone (O3 ) are known to alter tree physiology and growth, but the cascading effects on herbivore communities and herbivore-mediated nutrient cycling are poorly understood. We sampled herbivore frass, herbivore-mediated greenfall, and leaf-litter deposition in temperate forest stands under elevated CO2 (c. 560 ppm) and O3 (c. 1.5× ambient), analyzed substrate chemical composition, and compared the quality and quantity of fluxes under multiple atmospheric treatments. Leaf-chewing herbivores fluxed 6.2 g m(-2)  yr(-1) of frass and greenfall from the canopy to the forest floor, with a carbon : nitrogen (C : N) ratio 32% lower than that of leaf litter. Herbivore fluxes of dry matter, C, condensed tannins, and N increased under elevated CO2 (35, 32, 63 and 39%, respectively), while fluxes of N decreased (18%) under elevated O3 . Herbivore-mediated dry matter inputs scaled across atmospheric treatments as a constant proportion of leaf-litter inputs. Increased fluxes under elevated CO2 were consistent with increased herbivore consumption and abundance, and with increased plant growth and soil respiration, previously reported for this experimental site. Results suggest that insect herbivory will reinforce other factors, such as photosynthetic rate and fine-root production, impacting C sequestration by forests in future environments. PMID:25078062

  16. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore.

    PubMed

    Kopper, Brian J; Lindroth, Richard L

    2003-01-01

    The purpose of this study was to assess the independent and interactive effects of CO(2), O(3), and plant genotype on the foliar quality of a deciduous tree and the performance of a herbivorous insect. Two trembling aspen (Populus tremuloides Michaux) genotypes differing in response to CO(2) and O(3) were grown at the Aspen FACE (Free Air CO(2) Enrichment) site located in northern Wisconsin, USA. Trees were exposed to one of four atmospheric treatments: ambient air (control), elevated carbon dioxide (+CO(2); 560 microl/l), elevated ozone (+O(3); ambient x1.5), and elevated CO(2)+O(3). We measured the effects of CO(2) and O(3) on aspen phytochemistry and on performance of forest tent caterpillar (Malacosoma disstria Hübner) larvae. CO(2) and O(3) treatments influenced foliar quality for both genotypes, with the most notable effects being that elevated CO(2) reduced nitrogen and increased tremulacin levels, whereas elevated O(3) increased early season nitrogen and reduced tremulacin levels, relative to controls. With respect to insects, the +CO(2) treatment had little or no effect on larval performance. Larval performance improved in the +O(3) treatment, but this response was negated by the addition of elevated CO(2) (i.e., +CO(2)+O(3) treatment). We conclude that tent caterpillars will have the greatest impact on aspen under current CO(2) and high O(3) levels, due to increases in insect performance and decreases in tree growth, whereas tent caterpillars will have the least impact on aspen under high CO(2) and low O(3) levels, due to moderate changes in insect performance and increases in tree growth. PMID:12647186

  17. Troponin elevations in patients with chronic cardiovascular disease: An analysis of current evidence and significance

    PubMed Central

    Martin, Archer K.; Malhotra, Anita K.; Sullivan, Breandan L.; Ramakrishna, Harish

    2016-01-01

    Serum troponin elevation above the 99th percentile of the upper reference limit in healthy subjects (<0.01 ng/ml measured using currently available high-sensitivity cardiac troponin laboratory assays) is required to establish the diagnosis the diagnosis of myocardial necrosis in acute cardiovascular syndromes, as well as guide prognosis and therapy. In the perioperative period, for patients with cardiac disease undergoing noncardiac surgery, it is a particularly critical biomarker universally used to assess the myocardial damage. The value of troponin testing and elevation (as well as its significance) in patients with chronic cardiac valvular, vascular, and renal disease is relatively less well understood. This evidence-based review seeks to examine the currently available data assessing the significance of troponin elevation in certain chronic valvular and other disease states. PMID:27052076

  18. Elevated carbon dioxide and ozone effects on peanut. II. Seed yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric O3 is an air pollutant that is toxic to plants, causing changes in leaf biochemistry and physiology that lead to reductions in growth and yield. In many O3-sensitive crops, the adverse effects of O3 are ameliorated by elevated CO2, although the extent of protection by elevated CO2 vari...

  19. Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture.

    PubMed

    Martin, M J; Host, G E; Lenz, K E; Isebrands, J G

    2001-01-01

    Predicting ozone-induced reduction of carbon sequestration of forests under elevated tropospheric ozone concentrations requires robust mechanistic leaf-level models, scaled up to whole tree and stand level. As ozone effects depend on genotype, the ability to predict these effects on forest carbon cycling via competitive response between genotypes will also be required. This study tests a process-based model that predicts the relative effects of ozone on the photosynthetic rate and growth of an ozone-sensitive aspen clone, as a first step in simulating the competitive response of genotypes to atmospheric and climate change. The resulting composite model simulated the relative above ground growth response of ozone-sensitive aspen clone 259 exposed to square wave variation in ozone concentration. This included a greater effect on stem diameter than on stem height, earlier leaf abscission, and reduced stem and leaf dry matter production at the end of the growing season. Further development of the model to reduce predictive uncertainty is discussed. PMID:11789923

  20. Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season.

    PubMed

    Kanter, Ulrike; Heller, Werner; Durner, Jörg; Winkler, J Barbro; Engel, Marion; Behrendt, Heidrun; Holzinger, Andreas; Braun, Paula; Hauser, Michael; Ferreira, Fatima; Mayer, Klaus; Pfeifer, Matthias; Ernst, Dieter

    2013-01-01

    Climate change and air pollution, including ozone is known to affect plants and might also influence the ragweed pollen, known to carry strong allergens. We compared the transcriptome of ragweed pollen produced under ambient and elevated ozone by 454-sequencing. An enzyme-linked immunosorbent assay (ELISA) was carried out for the major ragweed allergen Amb a 1. Pollen surface was examined by scanning electron microscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and phenolics were analysed by high-performance liquid chromatography. Elevated ozone had no influence on the pollen size, shape, surface structure or amount of phenolics. ATR-FTIR indicated increased pectin-like material in the exine. Transcriptomic analyses showed changes in expressed-sequence tags (ESTs), including allergens. However, ELISA indicated no significantly increased amounts of Amb a 1 under elevated ozone concentrations. The data highlight a direct influence of ozone on the exine components and transcript level of allergens. As the total protein amount of Amb a 1 was not altered, a direct correlation to an increased risk to human health could not be derived. Additional, the 454-sequencing contributes to the identification of stress-related transcripts in mature pollen that could be grouped into distinct gene ontology terms. PMID:23637846

  1. A comparative analysis of transcriptomic, biochemical and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current concentrations of tropospheric ozone (O3) pollution negatively impact plant metabolism, which can result in decreased crop yields. Interspecific variation in the physiological response of plants to elevated [O3] exists; however, the underlying cellular responses explaining species-specific d...

  2. Carbon and nitrogen co-dependence of soil microbial responses to elevated carbon dioxide and ozone in a wheat-soybean agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change factors such as elevated atmospheric CO2 and ozone can exert significant impacts on soil microbes and microbially-mediated ecosystem processes. However, the underlying mechanisms through which soil microbes respond to these environmental changes remain poorly understood. The current ...

  3. Elevated carbon dioxide and ozone effects on above- and belowground growth and decomposition in a no-till soybean-wheat system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated atmospheric carbon dioxide and ozone concentrations often have counteracting influences on many C3 crops depending on the concentration of the gases and sensitivity of the crop although root growth and residue decomposition responses are poorly understood. The objective of this experiment w...

  4. ELEVATED CO2 AND TEMPERATURE ALTER THE RESPONSE OF PINUS PONDEROSA TO OZONE: A SIMULATION ANALYSIS

    EPA Science Inventory

    Forests regulate numerous biogeochemical cycles, storing and cycling large quantities of carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of O3 in combina...

  5. Elevated depressive affect is associated with adverse cardiovascular outcomes among African Americans with chronic kidney disease

    PubMed Central

    Fischer, Michael J.; Kimmel, Paul L.; Greene, Tom; Gassman, Jennifer J.; Wang, Xuelei; Brooks, Deborah H.; Charleston, Jeanne; Dowie, Donna; Thornley-Brown, Denyse; Cooper, Lisa A.; Bruce, Marino A.; Kusek, John W.; Norris, Keith C.; Lash, James P.

    2011-01-01

    This study was designed to examine the impact of elevated depressive affect on health outcomes among participants with hypertensive chronic kidney disease in the African-American Study of Kidney Disease and Hypertension (AASK) Cohort Study. Elevated depressive affect was defined by Beck Depression Inventory II (BDI-II) thresholds of 11 or more, above 14, and by 5-Unit increments in the score. Cox regression analyses were used to relate cardiovascular death/hospitalization, doubling of serum creatinine/end-stage renal disease, overall hospitalization, and all-cause death to depressive affect evaluated at baseline, the most recent annual visit (time-varying), or average from baseline to the most recent visit (cumulative). Among 628 participants at baseline, 42% had BDI-II scores of 11 or more and 26% had a score above 14. During a 5-year follow-up, the cumulative incidence of cardiovascular death/hospitalization was significantly greater for participants with baseline BDI-II scores of 11 or more compared with those with scores <11. The baseline, time-varying, and cumulative elevated depressive affect were each associated with a significant higher risk of cardiovascular death/hospitalization, especially with a time-varying BDI-II score over 14 (adjusted HR 1.63) but not with the other outcomes. Thus, elevated depressive affect is associated with unfavorable cardiovascular outcomes in African Americans with hypertensive chronic kidney disease. PMID:21633409

  6. Chronic renovascular hypertension is associated with elevated levels of neutrophil gelatinase-associated lipocalin

    PubMed Central

    Eirin, Alfonso; Gloviczki, Monika L.; Tang, Hui; Rule, Andrew D.; Woollard, John R.; Lerman, Amir; Textor, Stephen C.; Lerman, Lilach O.

    2012-01-01

    Background Renovascular hypertension (RVH) is characterized by chronic inflammation of the stenotic kidney and progressive renal dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL), an acute phase protein induced in inflammatory conditions and ischemia, is a novel biomarker for acute kidney injury. We hypothesized that chronic RVH would be associated with increased renal and circulating NGAL levels. Methods We prospectively measured renal vein and inferior vena cava (IVC) levels of NGAL and inflammatory cytokines in essential hypertensive (EH) and RVH patients, during constant sodium intake and anti-hypertensive regimens, and compared them with systemic levels in age-matched normotensive subjects (n = 22 each). In addition, we measured urinary NGAL and kidney injury molecule (KIM)-1 in all patients. Results Blood pressure, serum creatinine, estimated glomerular filtration rate (eGFR), lipid panels and medications were similar in RVH and EH. Systemic, stenotic and contralateral renal vein levels of NGAL were all similarly elevated in RVH versus normal hypertension and EH (P < 0.05), as were renal vein levels of inflammatory markers like tumor necrosis factor-α. Furthermore, renal vein NGAL levels inversely correlated with eGFR, and directly with renal vein (but not systemic) levels of inflammatory markers. Urinary levels of NGAL and KIM-1 were elevated in both EH and RVH, as were systemic levels of C-reactive protein. Conclusions Chronic RVH is associated with elevated NGAL levels, likely due to ongoing kidney and systemic inflammation and ischemia. These findings may also imply the occurrence of the inflammation process in chronic RVH, which might contribute to the poorer outcomes of RVH compared with EH patients. PMID:22923545

  7. An examination of utility emissions contributions to elevated ozone concentrations in the Chicago area

    SciTech Connect

    Fernau, M.E.; Guziel, K.A.; South, D.W.

    1993-05-01

    In order to reduce the pollutant load to the atmosphere and subsequent damaging effects, Titles I and IV of the Clean Air Act Amendments of 1990 (CAAAs) require reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and volatile organic compounds (VOCs). Title IV is aimed at reducing acidic deposition and requires utilities to reduce SO{sub 2} and NO{sub x} emissions to specified levels. As a consequence of this, many utilities will have to install SO{sub 2} and NO{sub x} control technologies. Title I is concerned with bringing regions into compliance with the National Ambient Air Quality Standards (NAAQS) for the criteria pollutants, among which is ozone (O{sub 3}). The NAAQS for O{sub 3} is 120 ppb (parts per billion by volume) hourly average concentration, not to be exceeded four times in three years. O{sub 3} is a secondary pollutant formed in the atmosphere when NO{sub x} and VOCs react together in the presence of sunlight. Utilities are a significant source of NO{sub x} and an unimportant source of VOCs. In the past, O{sub 3} control strategy has focused on reducing VOC emissions because of the possibility that reducing NO{sub x} actually might make O{sub 3} concentrations higher. However, this approach has not worked, perhaps because of underestimation of natural and manmade VOC emissions and transport of O{sub 3} from other regions. Computer modeling has shown that for many highly polluted areas massive NO{sub x} reductions may be necessary in addition to or in place of VOC controls. Utilities are a potential source of these NO{sub x} reductions.

  8. An examination of utility emissions contributions to elevated ozone concentrations in the Chicago area

    SciTech Connect

    Fernau, M.E.; Guziel, K.A.; South, D.W.

    1993-01-01

    In order to reduce the pollutant load to the atmosphere and subsequent damaging effects, Titles I and IV of the Clean Air Act Amendments of 1990 (CAAAs) require reductions in emissions of sulfur dioxide (SO[sub 2]), nitrogen oxides (NO[sub x]), and volatile organic compounds (VOCs). Title IV is aimed at reducing acidic deposition and requires utilities to reduce SO[sub 2] and NO[sub x] emissions to specified levels. As a consequence of this, many utilities will have to install SO[sub 2] and NO[sub x] control technologies. Title I is concerned with bringing regions into compliance with the National Ambient Air Quality Standards (NAAQS) for the criteria pollutants, among which is ozone (O[sub 3]). The NAAQS for O[sub 3] is 120 ppb (parts per billion by volume) hourly average concentration, not to be exceeded four times in three years. O[sub 3] is a secondary pollutant formed in the atmosphere when NO[sub x] and VOCs react together in the presence of sunlight. Utilities are a significant source of NO[sub x] and an unimportant source of VOCs. In the past, O[sub 3] control strategy has focused on reducing VOC emissions because of the possibility that reducing NO[sub x] actually might make O[sub 3] concentrations higher. However, this approach has not worked, perhaps because of underestimation of natural and manmade VOC emissions and transport of O[sub 3] from other regions. Computer modeling has shown that for many highly polluted areas massive NO[sub x] reductions may be necessary in addition to or in place of VOC controls. Utilities are a potential source of these NO[sub x] reductions.

  9. Elevated MicroRNA-33 in Sarcoidosis and a Carbon Nanotube Model of Chronic Granulomatous Disease.

    PubMed

    Barna, Barbara P; McPeek, Matthew; Malur, Anagha; Fessler, Michael B; Wingard, Christopher J; Dobbs, Larry; Verbanac, Kathryn M; Bowling, Mark; Judson, Marc A; Thomassen, Mary Jane

    2016-06-01

    We established a murine model of multiwall carbon nanotube (MWCNT)-induced chronic granulomatous disease, which resembles human sarcoidosis pathology. At 60 days after oropharyngeal MWCNT instillation, bronchoalveolar lavage (BAL) cells from wild-type mice exhibit an M1 phenotype with elevated proinflammatory cytokines and reduced peroxisome proliferator-activated receptor γ (PPARγ)-characteristics also present in human sarcoidosis. Based upon MWCNT-associated PPARγ deficiency, we hypothesized that the PPARγ target gene, ATP-binding cassette (ABC) G1, a lipid transporter with antiinflammatory properties, might also be repressed. Results after MWCNT instillation indicated significantly repressed ABCG1, but, surprisingly, lipid transporter ABCA1 was also repressed, suggesting a possible second pathway. Exploration of potential regulators revealed that microRNA (miR)-33, a lipid transporter regulator, was strikingly elevated (13.9 fold) in BAL cells from MWCNT-instilled mice but not sham control mice. Elevated miR-33 was also detected in murine granulomatous lung tissue. In vitro studies confirmed that lentivirus-miR-33 overexpression repressed both ABCA1 and ABCG1 (but not PPARγ) in cultured murine alveolar macrophages. BAL cells of patients with sarcoidosis also displayed elevated miR-33 together with reduced ABCA1 and ABCG1 messenger RNA and protein compared with healthy control subjects. Moreover, miR-33 was elevated within sarcoidosis granulomatous tissue. The findings suggest that alveolar macrophage miR-33 is up-regulated by proinflammatory cytokines and may perpetuate chronic inflammatory granulomatous disease by repressing antiinflammatory functions of ABCA1 and ABCG1 lipid transporters. The results also suggest two possible pathways for transporter dysregulation in granulomatous disease-one associated with intrinsic PPARγ status and the other with miR-33 up-regulation triggered by environmental challenges, such as MWCNT. PMID:26641802

  10. Use of human lung tissue for studies of structural changes associated with chronic ozone exposure: Opportunities and critical issues

    SciTech Connect

    Lippmann, M.

    1993-12-01

    Definitive information on the chronic effects of exposure to ozone (O{sub 3}) in humans is not available. There is a strong concern that ozone could produce chronic lung damage in humans on the basis that exposures are ubiquitous at levels that produce transient symptoms, function deficits, and lung inflammation in humans and chronic lung damage in laboratory animals. Both prospective and national population surveys suggest an association between chronic O{sub 3} exposure and reduced lung function, and a pilot investigation of autopsied lungs of accident victims in Los Angeles reported an unexpectedly high incidence of disease in the centriacinar region, the lung region known to receive the highest dose of inhaled O{sub 3}. This paper discusses the advantages and limitations of further studies of structural changes in human lung tissue in relation to chronic O{sub 3} exposure. The major advantages of such studies are that (a) measurable effects may be related to realistic chronic exposures, (b) the effects may be described quantitatively and compared directly to those obtained in chronic animal inhalation exposures, and (c) evidence for chronic effects may be obtained much more rapidly than in prospective studies. The major limitations are the difficulties in obtaining sufficient reliable information on residential history, physical activity out-of-doors, and smoking and other confounding exposures to lung irritants from next of kin, and limited availability of adequate air quality data for determining ambient concentrations at places of residence and/or outdoor exercise. The paper also discusses approaches to minimizing these limitations in the design of specific studies. 15 refs.

  11. Elevated neutrophil to lymphocyte ratio predicts mortality in medical inpatients with multiple chronic conditions.

    PubMed

    Isaac, Vivian; Wu, Chia-Yi; Huang, Chun-Ta; Baune, Bernhard T; Tseng, Chia-Lin; McLachlan, Craig S

    2016-06-01

    Neutrophil to lymphocyte ratio (NLR) is an easy measurable laboratory marker used to evaluate systemic inflammation. Elevated NLR is associated with poor survival and increased morbidity in cancer and cardiovascular disease. However, the usefulness of NLR to predict morbidity and mortality in a hospital setting for patients with multiple chronic conditions has not been previously examined. In this study, we investigate the association between NLR and mortality in multimorbid medical inpatients. Two hundred thirty medical in-patients with chronic conditions were selected from a single academic medical center in Taiwan. Retrospective NLRs were calculated from routine full blood counts previously obtained during the initial hospital admission and at the time of discharge. Self-rated health (using a single-item question), medical disorders, depressive symptoms, and medical service utilization over a 1-year period were included in the analyses. Mortality outcomes were ascertained by reviewing electronic medical records and follow-up. The mortality rate at 2-year follow-up was 23%. Depression (odds ratio [OR] 1.9 [95% CI 1.0-3.7]), poor self-rated health (OR 2.1 [95% CI 1.1-3.9]), being hospitalized 2 or more times in the previous year (OR 2.3 [95% CI 1.2-4.6]), metastatic cancer (OR 4.7 [95% CI 2.3-9.7]), and chronic liver disease (OR 4.3 [95% CI 1.5-12.1]) were associated with 2-year mortality. The median (interquartile range) NLR at admission and discharge were 4.47 (2.4-8.7) and 3.65 (2.1-6.5), respectively. Two-year mortality rates were higher in patients with an elevated NLR at admission (NLR <3 = 15.5%, NLR >3 = 27.6%) and discharge (NLR < 3 = 14.7%, NLR >3 = 29.1%). Multivariate logistic regression demonstrated that an elevated NLR >3.0 at admission (OR 2.3 [95% CI 1.0-5.2]) and discharge (OR 2.3 [95% CI 1.1-5.0]) were associated with mortality independent of baseline age, sex, education, metastatic cancer, liver disease, depression, and previous

  12. Chronic Stress Is Associated with Pain Precipitation and Elevation in DeltaFosb Expression

    PubMed Central

    Wang, Hang; Tao, Xinrong; Huang, Si-Ting; Wu, Liang; Tang, Hui-Li; Song, Ying; Zhang, Gongliang; Zhang, Yong-Mei

    2016-01-01

    A number of acute or repeated stimuli can induce expression of DeltaFosB (ΔFosB), a transcription factor derived from the fosB gene (an osteosarcoma viral oncogene) via alternative splicing. ΔFosB protein is currently viewed as a ‘molecular switch’ to repeated stimuli that gradually converts acute responses into relatively stable adaptations underlying long-term neural and behavioral plasticity. ΔFosB has received extensive attention in drug addition, depression, and stress adaptation, but changes in ΔFosB protein expression during pain is not fully understood. In this study we explored ΔFosB expression in the medial prefrontal cortex (mPFC) of rats experiencing chronic or acute stress-induced pain. Our data reveal that chronic pain induced by neonatal colorectal distension, chronic constriction injury (CCI) of the sciatic nerve, or maternal separation was associated with an increase in ΔfosB protein expression in mPFC, but acute application of acetic acid or zymosan did not alter the ΔFosB protein expression. ΔFosB expression in the rat visual cortex, a non pain-related brain region, did not change in response to (CCI) of the sciatic nerve and acetic acid treatment. In conclusion, our results indicate that ΔFosB protein expression is significantly elevated in rats that have experienced chronic pain and stress, but not acute pain. The ΔFosB protein may serve as an important transcription factor for chronic stress-induced pain. Further research is needed to improve the understanding of both the upstream signaling leading to ΔFosB protein expression as well as the regulation of ΔFosB gene expression in cortical neurons. PMID:27303299

  13. Elevated expression of ERK 2 in human tumor cells chronically treated with PD98059

    SciTech Connect

    Kanda, Shigeru . E-mail: skanda-jua@umin.net; Kanetake, Hiroshi; Miyata, Yasuyoshi

    2006-07-14

    We examined the effect of chronic exposure of tumor cells to a mitogen-activated protein kinase/extracellular signal-regulated kinases (ERK) kinase inhibitor, PD98059, on cell proliferation was investigated. Human renal carcinoma cells (ACHN) and prostatic carcinoma cells (DU145) were cultured in the presence of PD98059 for more than 4 weeks (denoted ACHN (PD) cells and DU145 (PD) cells, respectively) and proliferation and signal transduction pathways were examined. PD98059 significantly inhibited the proliferation of parental cells. However, PD98059 failed to inhibit proliferation of ACHN (PD) and DU145 (PD) cells significantly. Expression of ERK 1 and 2 was elevated in these cells. These phenotypes were reversible. Downregulation of ERK 2, but not ERK 1, by small interfering RNA significantly inhibited the proliferation of ACHN (PD) and DU145 (PD) cells. Taken together, chronic exposure of tumor cells to PD98059 induced elevated expression of ERK 2, which was associated with decreased sensitivity of cellular proliferation to PD98059.

  14. Pulmonary sensitivity to ozone exposure in sedentary versus chronically trained, female rats.

    PubMed

    Gordon, Christopher J; Phillips, Pamela M; Beasley, Tracey E; Ledbetter, A; Aydin, Cenk; Snow, Samantha J; Kodavanti, Urmila P; Johnstone, Andrew F

    2016-06-01

    Epidemiological data suggest that a sedentary lifestyle may contribute to increased susceptibility for some environmental toxicants. We developed an animal model of active versus sedentary life style by providing female Sprague-Dawley rats with continuous access to running wheels. Sedentary rats were housed in standard cages without wheels. After training for 12 wks, rats were exposed to 0, 0.25, 0.5 or 1.0 ppm ozone [O3 for 5 h/d, 1 d/wk, for 6 wk (N = 10 per group)]. Body composition (%fat, lean and fluid) was monitored noninvasively over the course of the study. Ventilatory parameters [tidal volume, minute ventilation, frequency and enhanced pause (Penh)] were assessed using whole-body plethysmography prior to O3 and 24 h after the 5th O3 exposure. Trained rats lost ∼2% body fat after 12 wk of access to running wheels. Peak wheel activity was reduced by 40% after exposure to 1.0 ppm O3. After the 5th O3 exposure, body weight and %fat were reduced in sedentary but not trained rats. Penh was significantly elevated in sedentary but not trained rats the day after exposure to 1.0 ppm O3. However, lung lavage cell counts and biomarkers of pulmonary inflammation measured 1 day after the final exposure were inconsistently affected by training. Wheel running led to marked physiological responses along with some indication of improved pulmonary recovery from O3 exposure. However, wheel running with O3 exposure may also be a detriment for some pulmonary endpoints. Overall, a sedentary lifestyle may increase susceptibility to O3, but additional studies are needed. PMID:27160658

  15. Elevated Fibroblast Growth Factor 23 Concentration: Prediction of Mortality among Chronic Kidney Disease Patients

    PubMed Central

    Chathoth, Shahanas; Al-Mueilo, Samir; Cyrus, Cyril; Vatte, Chittibabu; Al-Nafaie, Awatif; Al-Ali, Rudaynah; Keating, Brendan J.; Al-Muhanna, Fahad; Al Ali, Amein

    2015-01-01

    Background The osteocyte-derived hormone, fibroblast growth factor 23 (FGF23), regulates the phosphorus metabolism and suppresses 1,25-dihydroxyvitamin D production, thereby mitigating hyperphosphatemia in patients with renal disorders. An elevated FGF23 level is suggested to be an early biomarker of altered phosphorus metabolism in the initial stages of chronic kidney disease (CKD) and acts as a strong predictor of mortality in dialysis patients. In the Saudi population, there is no report on the FGF23 level in CKD patients to date. This study aims to estimate the plasma FGF23 levels in the Saudi population and to correlate it with its clinical manifestations in order to ascertain its role in the pathogenesis of CKD patients. Methods The FGF23 level in the plasma samples was determined using ELISA in a diverse cohort of 89 cases with stage 3-5 CKD and 100 healthy subjects. The plasma FGF23 level was correlated with other biochemical parameters. Results The results revealed that the FGF23 level was markedly elevated among CKD patients compared to the control group, and a significant inverse correlation was observed between the FGF23 level and glomerular filtration rate. FGF23 elevation was approximately 40-fold among stage 5 patients compared to the control, while the elevation of phosphate, parathyroid hormone (PTH) and alkaline phosphatase was 2-, 3- and 8-fold in this stage, respectively. Conclusion Elevated FGF23 levels may have a strong correlation with the disease pathogenesis. In addition, FGF23 might be a future therapeutic target to intervene against the progression of CKD as well as to increase patient survivability. PMID:27194998

  16. Firing probability and mean firing rates of human muscle vasoconstrictor neurones are elevated during chronic asphyxia

    PubMed Central

    Ashley, Cynthia; Burton, Danielle; Sverrisdottir, Yrsa B; Sander, Mikael; McKenzie, David K; Macefield, Vaughan G

    2010-01-01

    Elevated muscle sympathetic nerve activity (MSNA) features in many cardiovascular diseases, but how this sympathoexcitation is brought about differs across pathologies. Unitary recordings from post-ganglionic muscle vasoconstrictor neurones in human subjects have shown that the augmented MSNA in the obstructive sleep apnoea syndrome (OSAS) is associated with an increase in firing probability and mean firing rate, and an increase in multiple within-burst firing. Here we characterize the firing properties of muscle vasoconstrictor neurones in patients with chronic obstructive pulmonary disease (COPD), who are chronically asphyxic. We tested the hypothesis that this elevated chemical drive would shift the firing pattern from that seen in healthy subjects to that seen in OSAS. The mean firing probability (52%) and mean firing rate (0.92 Hz) of 17 muscle vasoconstrictor neurones recorded in COPD were comparable to those previously recorded in OSAS (51% and 0.96 Hz), but significantly higher than those recorded in a group of healthy subjects with high levels of resting MSNA (35% and 0.33 Hz). In COPD single neurones fired once in 63% of cardiac intervals, comparable to OSAS (59%), but significantly lower than in the healthy group (78%). Conversely, single neurones fired twice in 25% of cardiac intervals, similar to OSAS (27%), but significantly higher than in the healthy group (18%). We conclude that the chronic asphyxia associated with COPD results in an increase in the firing probability and mean firing frequency of muscle vasoconstrictor neurones and causes a shift towards multiple firing, reflecting an increase in central muscle vasoconstrictor drive. PMID:20051493

  17. Elevated expression of CC Chemokine ligand 23 in eosinophilic chronic rhinosinusitis with nasal polyps

    PubMed Central

    Poposki, Julie A.; Uzzaman, Ashraf; Nagarkar, Deepti R.; Chustz, Regina T.; Peters, Anju T.; Suh, Lydia A.; Carter, Roderick; Norton, James; Harris, Kathleen E.; Grammer, Leslie C.; Tan, Bruce K.; Chandra, Rakesh K.; Conley, David B.; Kern, Robert C.; Schleimer, Robert P.; Kato, Atsushi

    2011-01-01

    Background Chronic rhinosinusitis (CRS) is a heterogeneous chronic disease characterized by local inflammation of the sinonasal tissues. The pathogenesis of CRS remains controversial but it has been associated with the accumulation of various immune and inflammatory cells in sinus tissue. Objectives The objective of this study was to investigate the expression of chemokine CCL23, known to bind to CCR1 and recruit monocytes, macrophages, and dendritic cells, in patients with CRS. Methods We collected nasal tissue from patients with CRS and control subjects. We assayed mRNA for CCL23 by using real-time PCR and measured CCL23 protein by ELISA, immunohistochemistry and immunofluorescence. Results CCL23 mRNA was significantly elevated in nasal polyps from patients with polypoid CRS (CRSwNP) (p<0.05) compared to inferior turbinate and uncinate tissue from patients with CRS or control subjects. CCL23 protein was also elevated in nasal polyps, although these levels were not statistically significant. Immunohistochemical analysis revealed CCL23 expression in mucosal epithelial cells and inflammatory cells, but accumulation of CCL23 positive inflammatory cells occurred only in nasal polyps. Immunofluorescence data showed CCL23 co-localization with ECP positive eosinophils. The concentration of CCL23 in nasal polyps positively correlated with the concentration of ECP, suggesting that eosinophils are major CCL23 producing cells in nasal polyps. Finally, we found that CCL23 protein was significantly elevated in nasal polyps from patients with CRSwNP with aspirin sensitivity. Conclusion Overproduction of CCL23 in nasal polyps may contribute to the pathogenesis of eosinophilic CRSwNP via the recruitment of CCR1 positive inflammatory cells including monocytes and macrophages, and the amplification of local inflammation. PMID:21497884

  18. Elevated levels of antibodies against sulphatide are present in all chronic chagasic and dilated cardiomyopathy sera.

    PubMed Central

    Avila, J L; Rojas, M; Carrasco, H

    1993-01-01

    A natural anti-sulphatide antibody was found to be present in the serum of every normal individual studied. The reactivity of the antibody was assessed by its interaction with galactosylceramide-I3-sulphate. Antigen-antibody binding was strongly blocked by 1 mM heparin, dextran sulphate and chondroitin sulphate A, and by 5 mM chondroitin sulphate B. Antibodies avidly absorb to rabbit erythrocytes, but discretely to rat erythrocytes, suggesting that they are different from galactocerebroside antibodies. Elevated levels of sulphatide antibodies were present in all of 102 chronic Trypanosoma cruzi-infected patients studied, but not in other patients having cutaneous or visceral leishmaniasis, T. rangeli infection or several other protozoal, helminthic or mycotic infections. Interestingly, 100% of 40 dilated cardiomyopathy patients also have elevated levels of sulphatide antibodies. As T. cruzi is rich in galactocerebroside sulphate, it is proposed that in chagasic patients this glycolipid could act as an immunogen, inducing elevated titres of sulphatide antibodies, which could be important in the pathogenesis of cardiac or peripheral nerve symptoms. PMID:8513577

  19. Elevated presence of myeloid dendritic cells in nasal polyps of patients with chronic rhinosinusitis

    PubMed Central

    Poposki, Julie A.; Peterson, Sarah; Welch, Kate; Schleimer, Robert P.; Hulse, Kathryn E.; Peters, Anju T.; Norton, James; Suh, Lydia A.; Carter, Roderick; Harris, Kathleen E.; Grammer, Leslie C.; Tan, Bruce K.; Chandra, Rakesh K.; Conley, David B.; Kern, Robert C.; Kato, Atsushi

    2015-01-01

    Background Although chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by Th2 inflammation, the mechanism underlying the onset and amplification of this inflammation has not been fully elucidated. Dendritic cells (DCs) are major antigen presenting cells, central inducers of adaptive immunity and critical regulators of many inflammatory diseases. However, the presence of DCs in CRS, especially in nasal polyps (NPs), has not been extensively studied. Objective The objective of this study was to characterize DC subsets in CRS. Methods We used real-time PCR to assess the expression of mRNA for markers of myeloid DCs (mDCs; CD1c), plasmacytoid DCs (pDCs; CD303) and Langerhans cells (LCs; CD1a, CD207) in uncinate tissue (UT) from controls and patients with CRS as well as in NP. We assayed the presence of DCs by immunohistochemistry and flow cytometry. Results Compared to UT from control subjects (n=15) and patients with CRS without NP (CRSsNP) (n=16) and CRSwNP (n=17), mRNAs for CD1a and CD1c were significantly elevated in NPs (n=29). In contrast, CD207 mRNA was not elevated in NPs. Immunohistochemistry showed that CD1c+ cells but not CD303+ cells were significantly elevated in NPs compared to control subjects or patients with CRSsNP. Flow cytometric analysis showed that CD1a+ cells in NPs might be a subset of mDC1s, and that CD45+CD19-CD1c+CD11c+CD141-CD303-HLA-DR+ mDC1s and CD45+CD19-CD11c+CD1c-CD141high mDC2s were significantly elevated in NPs compared to UT from controls and CRSsNP, but CD45+CD11c-CD303+HLA-DR+ pDCs were only elevated in NPs compared to control UT. Conclusion & Clinical Relevance Myeloid DCs are elevated in CRSwNP, especially in NPs. Myeloid DCs thus may indirectly contribute to the inflammation observed in CRSwNP. PMID:25469646

  20. Responses of older men with and without chronic obstructive pulmonary disease to prolonged ozone exposure

    SciTech Connect

    Gong, H. Jr.; Shamoo, D.A.; Anderson, K.R.; Linn, W.S.

    1997-01-01

    We tested responses to ozone (O{sub 3}) under simulated {open_quotes}worst-case{close_quotes} ambient exposure conditions. Subjects included 9 men who had severe chronic obstructive pulmonary disease (COPD) with subnormal carbon monoxide diffusing capacity (i.e., an emphysemic component) and 10 age-matched healthy men. Each subject was exposed to 0.24 ppm O{sub 3} and to clean air (control) in an environmentally controlled chamber at 24{degrees}C and 40% relative humidity. Exposures were randomized, they occurred 1 wk apart, and they lasted 4 h. During each half-hour interval, light exercise occurred (e.e., average ventilation 20 l/mm) for 15 min. during both control and O{sub 3} exposures, group mean symptom intensity and specific airway resistance (SRaw) increased, whereas forced expiratory performance decreased. The healthy subgroup`s mean arterial oxygen saturation (SaO{sub 2}) rose slightly, and the COPD subgroup`s mean SaO{sub 2} declined slightly, during exercise. Group mean forced expiratory volume in 1 s (FEV{sub 1.0}) declined significantly in O{sub 3} exposures, compared with controls (p {approx}.01). Mean excess FEV{sub 1.0} loss after 4 h in O{sub 3} (relative to control) was 8% of the preexposure value in the COPD subgroup, compared with 3% in the healthy subgroup (p > .05 [nonsignificant]). Overall FEV{sub 1.0} loss during O{sub 3} exposures, including exercise effects, averaged 19% in the COPD subgroup, compared with 2% in the healthy subgroup (p < .001). Symptoms, SRaw, and SaO{sub 2} responses, as well as healthy subjects` postexposure bronchial reactivity, differed little between O{sub 3}-exposed and control subjects. We therefore concluded that in older men with or without severe COPD, O{sub 3} causes lung dysfunction under {open_quotes}worst-case{close_quotes} ambient exposure conditions, despite older subjects` comparative unresponsiveness to O{sub 3}. 30 refs., 2 figs., 2 tabs.

  1. Chronic estrogen exposure maintains elevated levels of progesterone receptor mRNA in guinea pig hypothalamus.

    PubMed

    Bayliss, D A; Millhorn, D E

    1991-05-01

    We performed in situ hybridization on hypothalamic sections from ovariectomized guinea pig using a cocktail of three 35S-labeled oligonucleotides complementary to mammalian progesterone receptor (PR) cDNA. PR mRNA was readily detected in hypothalamic neurons from guinea pigs pretreated with 17 beta-estradiol benzoate (E2B), but not from animals which did not receive supplemental E2B. The distribution of PR mRNA-containing cells corresponded well with previous localizations of PR in guinea pig. In contrast to earlier reports of E2B regulation of PR mRNA in rat hypothalamus, however, we found that PR mRNA remained elevated during chronic exposure to E2B (up to 10 days) in guinea pig. PMID:2072827

  2. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    PubMed

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem. PMID:25403809

  3. Are serum hepcidin levels chronically elevated in collegiate female distance runners?

    PubMed

    Ma, Xiaoya; Patterson, Kaitlyn J; Gieschen, Kayla M; Bodary, Peter F

    2013-10-01

    The prevalence of iron deficiency tends to be higher in athletic populations, especially among endurance-trained females. Recent studies have provided evidence that the iron-regulating hormone hepcidin is transiently increased with acute exercise and suggest that this may contribute to iron deficiency anemia in athletes. The purpose of this study was to determine whether resting serum hepcidin is significantly elevated in highly trained female distance runners compared with a low exercise control group. Due to the importance of the monocyte in the process of iron recycling, monocyte expression of hepcidin was also measured. A single fasted blood sample was collected midseason from twenty female distance runners averaging 81.9 ± 14.2 km of running per week. Ten age-, gender-, and BMI-matched low-exercise control subjects provided samples during the same period using identical collection procedures. There was no difference between the runners (RUN) and control subjects (CON) for serum hepcidin levels (p = .159). In addition, monocyte hepcidin gene expression was not different between the two groups (p = .635). Furthermore, no relationship between weekly training volume and serum hepcidin concentration was evident among the trained runners. The results suggest that hepcidin is not chronically elevated with sustained training in competitive collegiate runners. This is an important finding because the current clinical conditions that link hepcidin to anemia include a sustained elevation in serum hepcidin. Nevertheless, additional studies are needed to determine the clinical relevance of the well-documented, transient rise in hepcidin that follows acute sessions of exercise. PMID:23580449

  4. Contribution of elevated intracellular calcium to pulmonary arterial myocyte alkalinization during chronic hypoxia

    PubMed Central

    Luke, Trevor; Shimoda, Larissa A.

    2016-01-01

    Abstract In the lung, exposure to chronic hypoxia (CH) causes pulmonary hypertension, a debilitating disease. Development of this condition arises from increased muscularity and contraction of pulmonary vessels, associated with increases in pulmonary arterial smooth muscle cell (PASMC) intracellular pH (pHi) and Ca2+ concentration ([Ca2+]i). In this study, we explored the interaction between pHi and [Ca2+]i in PASMCs from rats exposed to normoxia or CH (3 weeks, 10% O2). PASMC pHi and [Ca2+]i were measured with fluorescent microscopy and the dyes BCECF and Fura-2. Both pHi and [Ca2+]i levels were elevated in PASMCs from hypoxic rats. Exposure to KCl increased [Ca2+]i and pHi to a similar extent in normoxic and hypoxic PASMCs. Conversely, removal of extracellular Ca2+ or blockade of Ca2+ entry with NiCl2 or SKF 96365 decreased [Ca2+]i and pHi only in hypoxic cells. Neither increasing pHi with NH4Cl nor decreasing pHi by removal of bicarbonate impacted PASMC [Ca2+]i. We also examined the roles of Na+/Ca2+ exchange (NCX) and Na+/H+ exchange (NHE) in mediating the elevated basal [Ca2+]i and Ca2+-dependent changes in PASMC pHi. Bepridil, dichlorobenzamil, and KB-R7943, which are NCX inhibitors, decreased resting [Ca2+]i and pHi only in hypoxic PASMCs and blocked the changes in pHi induced by altering [Ca2+]i. Exposure to ethyl isopropyl amiloride, an NHE inhibitor, decreased resting pHi and prevented changes in pHi due to changing [Ca2+]i. Our findings indicate that, during CH, the elevation in basal [Ca2+]i may contribute to the alkaline shift in pHi in PASMCs, likely via mechanisms involving reverse-mode NCX and NHE. PMID:27076907

  5. Contribution of elevated intracellular calcium to pulmonary arterial myocyte alkalinization during chronic hypoxia.

    PubMed

    Undem, Clark; Luke, Trevor; Shimoda, Larissa A

    2016-03-01

    In the lung, exposure to chronic hypoxia (CH) causes pulmonary hypertension, a debilitating disease. Development of this condition arises from increased muscularity and contraction of pulmonary vessels, associated with increases in pulmonary arterial smooth muscle cell (PASMC) intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i). In this study, we explored the interaction between pHi and [Ca(2+)]i in PASMCs from rats exposed to normoxia or CH (3 weeks, 10% O2). PASMC pHi and [Ca(2+)]i were measured with fluorescent microscopy and the dyes BCECF and Fura-2. Both pHi and [Ca(2+)]i levels were elevated in PASMCs from hypoxic rats. Exposure to KCl increased [Ca(2+)]i and pHi to a similar extent in normoxic and hypoxic PASMCs. Conversely, removal of extracellular Ca(2+) or blockade of Ca(2+) entry with NiCl2 or SKF 96365 decreased [Ca(2+)]i and pHi only in hypoxic cells. Neither increasing pHi with NH4Cl nor decreasing pHi by removal of bicarbonate impacted PASMC [Ca(2+)]i. We also examined the roles of Na(+)/Ca(2+) exchange (NCX) and Na(+)/H(+) exchange (NHE) in mediating the elevated basal [Ca(2+)]i and Ca(2+)-dependent changes in PASMC pHi. Bepridil, dichlorobenzamil, and KB-R7943, which are NCX inhibitors, decreased resting [Ca(2+)]i and pHi only in hypoxic PASMCs and blocked the changes in pHi induced by altering [Ca(2+)]i. Exposure to ethyl isopropyl amiloride, an NHE inhibitor, decreased resting pHi and prevented changes in pHi due to changing [Ca(2+)]i. Our findings indicate that, during CH, the elevation in basal [Ca(2+)]i may contribute to the alkaline shift in pHi in PASMCs, likely via mechanisms involving reverse-mode NCX and NHE. PMID:27076907

  6. A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops

    PubMed Central

    Yendrek, Craig R.; Koester, Robert P.

    2015-01-01

    Current concentrations of tropospheric ozone ([O3]) pollution negatively impact plant metabolism, which can result in decreased crop yields. Interspecific variation in the physiological response of plants to elevated [O3] exists; however, the underlying cellular responses explaining species-specific differences are largely unknown. Here, a physiological screen has been performed on multiple varieties of legume species. Three varieties of garden pea (Pisum sativum L.) were resilient to elevated [O3]. Garden pea showed no change in photosynthetic capacity or leaf longevity when exposed to elevated [O3], in contrast to varieties of soybean (Glycine max (L.) Merr.) and common bean (Phaseolus vulgaris L.). Global transcriptomic and targeted biochemical analyses were then done to examine the mechanistic differences in legume responses to elevated [O3]. In all three species, there was an O3-mediated reduction in specific leaf weight and total non-structural carbohydrate content, as well as increased abundance of respiration-related transcripts. Differences specific to garden pea included a pronounced increase in the abundance of GLUTATHIONE REDUCTASE transcript, as well as greater contents of foliar glutathione, apoplastic ascorbate, and sucrose in elevated [O3]. These results suggest that garden pea may have had greater capacity for detoxification, which prevented net losses in CO2 fixation in an elevated [O3] environment. PMID:26324463

  7. A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops.

    PubMed

    Yendrek, Craig R; Koester, Robert P; Ainsworth, Elizabeth A

    2015-12-01

    Current concentrations of tropospheric ozone ([O3]) pollution negatively impact plant metabolism, which can result in decreased crop yields. Interspecific variation in the physiological response of plants to elevated [O3] exists; however, the underlying cellular responses explaining species-specific differences are largely unknown. Here, a physiological screen has been performed on multiple varieties of legume species. Three varieties of garden pea (Pisum sativum L.) were resilient to elevated [O3]. Garden pea showed no change in photosynthetic capacity or leaf longevity when exposed to elevated [O3], in contrast to varieties of soybean (Glycine max (L.) Merr.) and common bean (Phaseolus vulgaris L.). Global transcriptomic and targeted biochemical analyses were then done to examine the mechanistic differences in legume responses to elevated [O3]. In all three species, there was an O3-mediated reduction in specific leaf weight and total non-structural carbohydrate content, as well as increased abundance of respiration-related transcripts. Differences specific to garden pea included a pronounced increase in the abundance of GLUTATHIONE REDUCTASE transcript, as well as greater contents of foliar glutathione, apoplastic ascorbate, and sucrose in elevated [O3]. These results suggest that garden pea may have had greater capacity for detoxification, which prevented net losses in CO2 fixation in an elevated [O3] environment. PMID:26324463

  8. Growth response of two varieties of slash-pine seedlings to chronic ozone exposures

    SciTech Connect

    Hogsett, W.E.; Plocher, M.; Wildman, V.; Tingey, D.T.; Bennett, J.P.

    1985-01-01

    Two geographical varieties of Pinus elliottii (Engelm.) seedlings, elliottii and densa, were exposed continuously to two daily peak exposure profiles of ozone having 7-h seasonal means of 0.104 and 0.076 ppm and charcoal-filtered air over a 112-day period. The profiles represented a daily rise and decline of hourly ozone concentration. They were constructed with a daily hourly maximum, which for one profile (0.126 micro l/l) exceeded the current ozone standard daily; the standard was not exceeded for the other profile (0.094 micro l/l). Destructive harvests at 7-day intervals over the exposure period were employed to assess visible injury and to construct growth curves for stem diameter, plant height, top and root dry weight, and needle number and length.

  9. An In Vivo Analysis of the Effect of Season-Long Open-Air Elevation of Ozone to Anticipated 2050 Levels on Photosynthesis in Soybean1

    PubMed Central

    Morgan, Patrick B.; Bernacchi, Carl J.; Ort, Donald R.; Long, Stephen P.

    2004-01-01

    Rising atmospheric carbon dioxide concentration ([CO2]) is widely recognized, but less appreciated is a concomitant rise in tropospheric ozone concentration ([O3]). In industrialized countries, [O3] has risen by 0.5% to 2.5% per year. Tropospheric [O3] is predicted to reach a global mean of >60 nL L−1 by 2050 with greater averages locally. Previous studies in enclosures suggest that this level of [O3] will decrease leaf photosynthesis, thereby limiting growth and yield of Glycine max L. Merr. SoyFACE (Soybean Free Air gas Concentration Enrichment) is the first facility to elevate atmospheric [O3] (approximately 1.2× current) in replicated plots under completely open-air conditions within an agricultural field. Measurements of gas exchange (assimilation versus light and assimilation versus intercellular [CO2]) were made on excised leaves from control and treatment plots (n = 4). In contrast to expectations from previous chamber studies, elevated [O3] did not alter light-saturated photosynthesis (Asat, P = 0.09), carboxylation capacity (Vc,max, P = 0.82), or maximum electron transport (Jmax, P = 0.66) for the topmost most recently fully expanded leaf at any stage of crop development. Leaves formed during the vegetative growth stage did not show a significant ozone-induced loss of photosynthetic capacity as they aged. Leaves formed during flowering did show a more rapid loss of photosynthetic capacity as they aged in elevated [O3]. Asat, Vc,max, and Jmax (P = 0.04, 0.004, and 0.002, respectively) were decreased 20% to 30% by treatment with ozone. This is noteworthy since these leaves provide photosynthate to the developing grain. In conclusion, a small (approximately 20%) increase in tropospheric [O3] did not significantly alter photosynthetic capacity of newly expanded leaves, but as these leaves aged, losses in photosynthetic carbon assimilation occurred. PMID:15299126

  10. An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean.

    PubMed

    Morgan, Patrick B; Bernacchi, Carl J; Ort, Donald R; Long, Stephen P

    2004-08-01

    Rising atmospheric carbon dioxide concentration ([CO(2)]) is widely recognized, but less appreciated is a concomitant rise in tropospheric ozone concentration ([O(3)]). In industrialized countries, [O(3)] has risen by 0.5% to 2.5% per year. Tropospheric [O(3)] is predicted to reach a global mean of >60 nL L(-1) by 2050 with greater averages locally. Previous studies in enclosures suggest that this level of [O(3)] will decrease leaf photosynthesis, thereby limiting growth and yield of Glycine max L. Merr. SoyFACE (Soybean Free Air gas Concentration Enrichment) is the first facility to elevate atmospheric [O(3)] (approximately 1.2x current) in replicated plots under completely open-air conditions within an agricultural field. Measurements of gas exchange (assimilation versus light and assimilation versus intercellular [CO(2)]) were made on excised leaves from control and treatment plots (n = 4). In contrast to expectations from previous chamber studies, elevated [O(3)] did not alter light-saturated photosynthesis (A(sat), P = 0.09), carboxylation capacity (V(c,max), P = 0.82), or maximum electron transport (J(max), P = 0.66) for the topmost most recently fully expanded leaf at any stage of crop development. Leaves formed during the vegetative growth stage did not show a significant ozone-induced loss of photosynthetic capacity as they aged. Leaves formed during flowering did show a more rapid loss of photosynthetic capacity as they aged in elevated [O(3)]. A(sat), V(c,max), and J(max) (P = 0.04, 0.004, and 0.002, respectively) were decreased 20% to 30% by treatment with ozone. This is noteworthy since these leaves provide photosynthate to the developing grain. In conclusion, a small (approximately 20%) increase in tropospheric [O(3)] did not significantly alter photosynthetic capacity of newly expanded leaves, but as these leaves aged, losses in photosynthetic carbon assimilation occurred. PMID:15299126

  11. THE EFFECT OF CHRONIC OZONE EXPOSURE ON THE METABOLITE CONTENT OF PONDEROSA PINE SEEDLINGS

    EPA Science Inventory

    Ponderosa Pine (Pinus ponderosa Laws.) seedlings grown in field exposure chambers and fumigated with ozone at a concentration of 200 g/cu m 6 h/day; 7 days/wk for variable periods of up to 20 weeks. Pines were harvested at 4 wk intervals to determine the levels of the metabolites...

  12. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps

    PubMed Central

    Takabayashi, Tetsuji; Kato, Atsushi; Peters, Anju T.; Suh, Lydia A.; Carter, Roderick; Norton, James; Grammer, Leslie C.; Tan, Bruce K.; Chandra, Rakesh K.; Conley, David B.; Kern, Robert C.; Fujieda, Shigeharu; Schleimer, Robert P.

    2012-01-01

    Background Although chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by Th2 inflammation, the role of mast cells is poorly understood. Objective The objective of this study was to investigate the presence, localization and phenotype of mast cells in patients with chronic rhinosinusitis (CRS). Methods We collected nasal tissue and nasal lavage fluid from patients with CRS and control subjects. We analyzed mRNA for the mast cell proteases tryptase, chymase and carboxypeptidase A3 (CPA3), using real-time PCR, and measured mast cell protease proteins using ELISA, immunohistochemistry, and immunofluorescence. Results Tryptase mRNA was significantly increased in nasal polyps (NPs) from patients with CRSwNP (P < .001) compared with uncinate tissue (UT) from patients with CRS or control subjects. Tryptase protein was also elevated in NPs and in nasal lavage fluids from patients with CRSwNP. Immnohistochemistry showed increased numbers of mast cells in epithelium and glands but not within the lamina propria in NPs. The mast cells detected in epithelium in NPs were characterized by expression of tryptase and CPA3 but not chymase. Mast cells expressing all three proteases were abundant within glandular epithelium of NPs but were not found in normal glandular structures. Conclusion: Herein we demonstrate a unique localization of mast cells within glandular epithelium of NPs, and show that NPs mast cells have distinct phenotypes that vary by tissue location. Glandular mast cells and the diverse subsets of mast cells detected may contribute to the pathogenesis of CRSwNP. PMID:22534535

  13. Elevated Pulse Pressure is Associated with Hemolysis, Proteinuria and Chronic Kidney Disease in Sickle Cell Disease

    PubMed Central

    Novelli, Enrico M.; Hildesheim, Mariana; Rosano, Caterina; Vanderpool, Rebecca; Simon, Marc; Kato, Gregory J.; Gladwin, Mark T.

    2014-01-01

    A seeming paradox of sickle cell disease is that patients do not suffer from a high prevalence of systemic hypertension in spite of endothelial dysfunction, chronic inflammation and vasculopathy. However, some patients do develop systolic hypertension and increased pulse pressure, an increasingly recognized major cardiovascular risk factor in other populations. Hence, we hypothesized that pulse pressure, unlike other blood pressure parameters, is independently associated with markers of hemolytic anemia and cardiovascular risk in sickle cell disease. We analyzed the correlates of pulse pressure in patients (n  =  661) enrolled in a multicenter international sickle cell trial. Markers of hemolysis were analyzed as independent variables and as a previously validated hemolytic index that includes multiple variables. We found that pulse pressure, not systolic, diastolic or mean arterial pressure, independently correlated with high reticulocyte count (beta  =  2.37, p  =  0.02) and high hemolytic index (beta  =  1.53, p = 0.002) in patients with homozygous sickle cell disease in two multiple linear regression models which include the markers of hemolysis as independent variables or the hemolytic index, respectively. Pulse pressure was also independently associated with elevated serum creatinine (beta  =  3.21, p  =  0.02), and with proteinuria (beta  =  2.52, p  =  0.04). These results from the largest sickle cell disease cohort to date since the Cooperative Study of Sickle Cell Disease show that pulse pressure is independently associated with hemolysis, proteinuria and chronic kidney disease. We propose that high pulse pressure may be a risk factor for clinical complications of vascular dysfunction in sickle cell disease. Longitudinal and mechanistic studies should be conducted to confirm these hypotheses. PMID:25478953

  14. Elevated sputum BPIFB1 levels in smokers with chronic obstructive pulmonary disease: a longitudinal study.

    PubMed

    Gao, J; Ohlmeier, S; Nieminen, P; Toljamo, T; Tiitinen, S; Kanerva, T; Bingle, L; Araujo, B; Rönty, M; Höyhtyä, M; Bingle, C D; Mazur, W; Pulkkinen, V

    2015-07-01

    A previous study involving a proteomic screen of induced sputum from smokers and patients with chronic obstructive pulmonary disease (COPD) demonstrated elevated levels of bactericidal/permeability-increasing fold-containing protein B1 (BPIFB1). The aim of the present study was to further evaluate the association of sputum BPIFB1 levels with smoking and longitudinal changes in lung function in smokers with COPD. Sputum BPIFB1 was characterized by two-dimensional gel electrophoresis and mass spectrometry. The expression of BPIFB1 in COPD was investigated by immunoblotting and immunohistochemistry using sputum and lung tissue samples. BPIFB1 levels were also assessed in induced sputum from nonsmokers (n = 31), smokers (n = 169), and patients with COPD (n = 52) via an ELISA-based method. The longitudinal changes in lung function during the 4-year follow-up period were compared with the baseline sputum BPIFB1 levels. In lung tissue samples, BPIFB1 was localized to regions of goblet cell metaplasia. Secreted and glycosylated BPIFB1 was significantly elevated in the sputum of patients with COPD compared with that of smokers and nonsmokers. Sputum BPIFB1 levels correlated with pack-years and lung function as measured by forced expiratory volume in 1 s (FEV1) % predicted and FEV1/FVC (forced vital capacity) at baseline and after the 4-year follow-up in all participants. The changes in lung function over 4 years were significantly associated with BPIFB1 levels in current smokers with COPD. In conclusion, higher sputum concentrations of BPIFB1 were associated with changes of lung function over time, especially in current smokers with COPD. BPIFB1 may be involved in the pathogenesis of smoking-related lung diseases. PMID:25979078

  15. EPITHELIAL INJURY AND INTERSTITIAL FIBROSIS IN THE PROXIMAL ALVEOLAR REGIONS OF RATS CHRONICALLY EXPOSED TO A SIMULATED PATTERN OF URBAN AMBIENT OZONE

    EPA Science Inventory

    Electron microscopic morphometry was used to study the development of lung injury during and after chronic (78 weeks) exposure to a pattern of ozone designed to simulate high urban ambient concentrations that occur in some environments. he dolly exposure regimen consisted of a 1 ...

  16. Elevation of susceptibility to ozone-induced acute tracheobronchial injury in transgenic mice deficient in Clara cell secretory protein

    SciTech Connect

    Plopper, C.G. . E-mail: cgplopper@ucdavis.edu; Mango, G.W.; Hatch, G.E.; Wong, V.J.; Toskala, E.; Reynolds, S.D.; Tarkington, B.K.; Stripp, B.R.

    2006-05-15

    Increases in Clara cell abundance or cellular expression of Clara cell secretory protein (CCSP) may cause increased tolerance of the lung to acute oxidant injury by repeated exposure to ozone (O{sub 3}). This study defines how disruption of the gene for CCSP synthesis affects the susceptibility of tracheobronchial epithelium to acute oxidant injury. Mice homozygous for a null allele of the CCSP gene (CCSP-/-) and wild type (CCSP+/+) littermates were exposed to ozone (0.2 ppm, 8 h; 1 ppm, 8 h) or filtered air. Injury was evaluated by light and scanning electron microscopy, and the abundance of necrotic, ciliated, and nonciliated cells was estimated by morphometry. Proximal and midlevel intrapulmonary airways and terminal bronchioles were evaluated. There was no difference in airway epithelial composition between CCSP+/+ and CCSP-/- mice exposed to filtered air, and exposure to 0.2 ppm ozone caused little injury to the epithelium of both CCSP+/+ and CCSP-/- mice. After exposure to 1.0 ppm ozone, CCSP-/- mice suffered from a greater degree of epithelial injury throughout the airways compared to CCSP+/+ mice. CCSP-/- mice had both ciliated and nonciliated cell injury. Furthermore, lack of CCSP was associated with a shift in airway injury to include proximal airway generations. Therefore, we conclude that CCSP modulates the susceptibility of the epithelium to oxidant-induced injury. Whether this is due to the presence of CCSP on the acellular lining layer surface and/or its intracellular distribution in the secretory cell population needs to be defined.

  17. Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila.

    PubMed

    Li, Pinghua; Mane, Shrinivasrao P; Sioson, Allan A; Robinet, Cecilia Vasquez; Heath, Lenwood S; Bohnert, Hans J; Grene, Ruth

    2006-05-01

    Arabidopsis thaliana (At) ecotypes Columbia-0 (Col-0), Wassilewskija (WS), Cape Verde Islands (Cvi-0) and a relative, Thellungiella halophila (Th), were exposed to 20-25% over ambient ozone [O3] in a free air concentration enrichment (FACE) experiment (http://www.soyFACE. uiuc.edu), mirroring increases expected in the near future. Col-0 and WS accelerated development and developed lesions within 10 d under increased ozone, while Cvi-0 and Th grew slowly. RNAs were used in microarray hybridizations (Col-0-based 26 000 elements, 70-mer oligonucleotides). A two-step analysis of variance (ANOVA) model, including comparison with values obtained under [O3], was used for analyses. WS showed the greatest number of changes in gene expression in response to ozone. Th showed the least changes, suggesting that its expression state at [O3] was sufficient for resistance at increased ozone. Patterns observed in ambient air controls for Cvi-0 and Col-0 were most similar, while Th showed the greatest number of differences compared with the other controls. Compared with Col-0, however, Cvi-0 showed higher levels of expression of chaperones, receptor kinase-like and photosynthesis-related genes in ambient air. Cvi-0 exhibited ozone-mediated changes in a pathway involving AtSR, a homologue of the mammalian NF kappa B family of redox-sensitive transcription factors, changes in chaperones, WRKY and C2H2 proteins and antioxidants. WS displayed ozone-mediated decreases in the expression of two AtSR/NF kappa B family members, C2-domain proteins and genes associated with cell wall growth and changes in the expression of marker genes for programmed cell death (PCD), among them RCD1, a key regulator in this pathway. Microarray data were verified by reverse transcriptase (RT)-PCR. We relate O3-response diversity across the four lines to different responses among signaling and transcriptional response networks and differences in gene expression at [O3] levels. PMID:17087469

  18. A specific elevation of RANTES in bronchoalveolar lavage fluids of patients with chronic eosinophilic pneumonia.

    PubMed

    Kurashima, K; Mukaida, N; Fujimura, M; Yasui, M; Shinagawa, T; Matsuda, T; Ohmoto, Y; Matsushima, K

    1997-01-01

    Chronic eosinophilic pneumonia (CEP) is a rare, idiopathic lung disorder characterized pathologically by massive eosinophil infiltration into lung. In the bronchoalveolar lavage fluid (BALF) of patients with CEP, eosinophil numbers were markedly increased but returned to normal-levels upon the resolution of clinical symptoms, which suggests the crucial role of eosinophils in the pathogenesis of CEP. To clarify the mechanism of eosinophil accumulation in CEP, we determined the BALF levels of RANTES and macrophage inflammatory protein-1 alpha, two chemokines that predominantly exhibit in vitro eosinophil chemotactic activities. RANTES (106.7 +/- 27.2 pg/mg albumin; n = 16) concentrations in BALF from patients with CEP were significantly elevated in comparison with those of normal control subjects (1.4 pg/mg albumin; n = 13), whereas BALF macrophage inflammatory protein-1 alpha levels were not. In addition, eosinophils, lymphocytes, and macrophages in BALF were positively stained with a specific anti-RANTES antibody, which suggests that RANTES was produced locally in the lungs of CEP patients. Moreover, BALF-RANTES levels correlated significantly with the proportion of eosinophils in BALF. Furthermore, nearly half of the eosinophil chemotactic activities in BALF were abrogated by the anti-RANTES antibody in vitro. Collectively, these data suggest that locally produced RANTES is involved in eosinophil accumulation in the pulmonary alveolus and interstitium of patients with CEP. PMID:9010450

  19. Elevated [11C]-D-Deprenyl Uptake in Chronic Whiplash Associated Disorder Suggests Persistent Musculoskeletal Inflammation

    PubMed Central

    Linnman, Clas; Appel, Lieuwe; Fredrikson, Mats; Gordh, Torsten; Söderlund, Anne; Långström, Bengt; Engler, Henry

    2011-01-01

    There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer 11C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II) and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that 11C-D-deprenyl is a promising tracer for these purposes. PMID:21541010

  20. Elevated [11C]-D-deprenyl uptake in chronic Whiplash Associated Disorder suggests persistent musculoskeletal inflammation.

    PubMed

    Linnman, Clas; Appel, Lieuwe; Fredrikson, Mats; Gordh, Torsten; Söderlund, Anne; Långström, Bengt; Engler, Henry

    2011-01-01

    There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer (11)C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II) and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that (11)C-D-deprenyl is a promising tracer for these purposes. PMID:21541010

  1. Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone.

    PubMed

    Santiago-López, D; Bautista-Martínez, J A; Reyes-Hernandez, C I; Aguilar-Martínez, M; Rivas-Arancibia, S

    2010-09-01

    The purpose of our work was to determine the effects of oxidative stress on the neurodegeneration process in the substantia nigra, and to evaluate dopamine-oxidation metabolites in the plasma using a cyclic voltammetry (CV) technique. We have also studied the correlation between the increases in oxidized dopamine-species levels with the severity of lipid-peroxidation in the plasma. Sixty-four male Wistar rats were divided into four experimental groups and received air (Group I, control) or ozone (0.25 ppm) daily by inhalation for 4h for 15 (Group II), 30 (Group III), and 60 (Group IV) days. The brains were processed for immunohistochemical location of dopamine and p53 in the substantia nigra. Plasma collected from these animals was assayed for oxidized dopamine products using CV and lipid-peroxidation levels were measured. Our results indicate that chronic exposure to low O(3) doses causes that the number of dopaminergic neurons decreased, and p53-immunoreactive cells increases until 30 days; which was a function of the time of exposure to ozone. Oxidative stress produces a significant increase in the levels of the dopamine quinones (DAQs) that correlated well (r=0.962) with lipid peroxides in the plasma during the study period. These results suggest that DAQ could be a reliable, peripheral oxidative indicator of nigral dopaminergic damage in the brain. PMID:20541596

  2. Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice

    PubMed Central

    Nguyen, Cathy; Oglesby, Ericka N.; Pease, Mary E.; Steinhart, Matthew R.; Quigley, Harry A.

    2013-01-01

    Purpose To study changes in scleral structure induced by chronic experimental intraocular pressure elevation in mice. Methods We studied the effect of chronic bead-induced glaucoma on scleral thickness, collagen lamellar structure, and collagen fibril diameter distribution in C57BL/6 (B6) and CD1 mice, and in collagen 8α2 mutant mice (Aca23) and their wild-type littermates (Aca23-WT) using electron and confocal microscopy. Results In unfixed tissue, the control B6 peripapillary sclera was thicker than in CD1 mice (p<0.001). After 6 weeks of glaucoma, the unfixed CD1 and B6 sclera thinned by 9% and 12%, respectively (p<0.001). The fixed sclera, measured by electron microscopy, was significantly thicker in control Aca23 than in B6 or CD1 mice (p<0.05). The difference between fresh and fixed scleral thickness was nearly 68% in untreated control B6 and CD1 mice, but differed by only 10% or less in fresh/fixed glaucoma scleral comparisons. There were 39.3±9.6 lamellae (mean, standard deviation) in control sclera, categorized as 41% cross-section, 24% cellular, 20% oblique, and 15% longitudinal. After glaucoma, mean peripapillary thickness significantly increased in fixed specimens of all mouse strains by 10.3 ±4.8 µm (p=0.001) and the total number of lamellae increased by 18% (p=0.01). The number of cellular and cross-section lamellae increased in glaucoma eyes. After glaucoma, there were more small and fewer large collagen fibrils (p<0.0001). Second harmonic generation imaging showed that the normal circumferential pattern of collagen fibrils in the peripapillary sclera was altered in significantly damaged glaucomatous eyes. Conclusions Dynamic responses of the sclera to experimental mouse glaucoma may be more important than baseline anatomic features in explaining susceptibility to damage. These include decreases in nonfibrillar elements, alterations in lamellar orientation, an increased number of smaller collagen fibrils and fewer larger fibrils, and relative

  3. An investigation of evapotranspiration rates within mid-western agricultural systems in response to elevated carbon dioxide and ozone concentrations and climate change

    NASA Astrophysics Data System (ADS)

    Abdullah, W. F.; Lombardozzi, D.; Levis, S.; Bonan, G. B.

    2013-12-01

    Warith Featherstone Abdullah, Danica Lombardozzi, Samuel Levis and Gordon Bonan Jackson State University Dept. of Physics, Atmospheric Sciences & Geosciences National Center for Atmospheric Research Climate & Global Dynamics Because the human population is expected to surpass 8 billion by the year 2050, food security is a pressing issue. In the face of elevated temperatures associated with climate change (CC), elevated carbon dioxide (CO2) and elevated ozone (O3) concentrations, food productivity is uncertain. Plant stomata must be open to gain carbon which simultaneously causes water loss. Research suggests rising temperatures, elevated CO2 and elevated O3 in the future may impact plant stomata and change the rate plants lose water and take up carbon, affecting plant productivity and crop yields. Evapotranspiration (ET), latent heat fluxes, leaf carbon and net primary productivity (NPP) were analyzed in U.S Mid-west where crop density is greatest. Four simulations were run using the National Center for Atmospheric Research (NCAR) Community Land Model version 4 (CLM4) component of the Community Earth System Model (CESM) with an extended carbon-nitrogen model (CN). Analyses were based on June-July-August seasonal averages through 2080-2100 to compare the individual effects of CC, elevated CO2 and O3, and combined effects of all drivers. Results from model projections show increased ET with CC and all drivers combined, but only small changes from O3 or CO2 alone. Further results show that NPP was reduced with CC and O3 alone, but increased with CO2 alone and only slightly reduced with interacting components. The combined driver simulation, which most accurately represents future global change, suggests deteriorating water usage efficiency, thus potentially decreasing carbon uptake and crop production. However, further research is needed for verification. Midwest seasonal summation estimates for net primary productivity calculated by CLM4CN model. Climate change, CO2

  4. Elevated expression of the chemokine CCL18 in chronic rhinosinusitis with nasal polyps

    PubMed Central

    Peterson, Sarah; Poposki, Julie A.; Nagarkar, Deepti R.; Chustz, Regina T.; Peters, Anju T.; Suh, Lydia A.; Carter, Roderick; Norton, James; Harris, Kathleen E.; Grammer, Leslie C.; Tan, Bruce K.; Chandra, Rakesh K.; Conley, David B.; Kern, Robert C.; Schleimer, Robert P.; Kato, Atsushi

    2011-01-01

    Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is associated with Th2-dominant inflammation including eosinophilia, in contrast to non-polypoid CRS (CRSsNP). Chemokine CCL18/PARC (pulmonary and activation regulated chemokine) is known to recruit naïve T cells, B cells, and immature dendritic cells, as well as activate fibroblasts. CCL18is thought to be involved in Th2-related inflammatory diseases including asthma and atopic dermatitis. Objectives The objective of this study was to investigate the expression of CCL18 in patients with CRS. Methods Using nasal polyp tissue (NP) and uncinate tissue (UT) from controls and patients with CRS, we examined the expression of CCL18 mRNA by real-time PCR and measured CCL18 protein by ELISA, western blot and immunofluorescence. Results Compared to UT tissue in control subjects, CCL18 mRNA was significantly increased in NP (p<0.001) and UT (p<0.05) from patients with CRSwNP but not in UT from patients with CRSsNP. Similarly, CCL18 protein was elevated in NP and UT from CRSwNP and levels were even higher in Samter’s triad patients. Immunohistochemical analysis revealed CCL18 expression in inflammatory cells and CCL18+ cells were significantly increased in NP. Immunofluorescence data showed co-localization of CCL18 in CD68+/CD163+/macrophage mannose receptor+ M2 macrophages and tryptase+ mast cells in NP. Levels of CCL18 correlated with markers of M2 macrophages but not with tryptase, suggesting that M2 macrophages are a major CCL18-producing cells in NP. Conclusion Overproduction of CCL18 might contribute to the pathogenesis of CRSwNP through its known activities, which include recruitment of lymphocytes and dendritic cells, activation of fibroblasts, and initiation of local inflammation. PMID:21943944

  5. Lung tissue proteomics identifies elevated transglutaminase 2 levels in stable chronic obstructive pulmonary disease.

    PubMed

    Ohlmeier, Steffen; Nieminen, Pentti; Gao, Jing; Kanerva, Tinja; Rönty, Mikko; Toljamo, Tuula; Bergmann, Ulrich; Mazur, Witold; Pulkkinen, Ville

    2016-06-01

    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by irreversible airflow limitation. Cigarette smoking represents the main risk factor, but the specific mechanisms of COPD are not completely understood. Our aim was to identify COPD-specific proteomic changes involved in disease onset and severity. A comparative proteomic analysis of 51 lung tissues from nonsmokers, smokers, smokers with mild to moderate (stage I-II) COPD, severe to very severe COPD (stage III-IV), and patients with α-1-antitrypsin deficiency (AATD) and idiopathic pulmonary fibrosis (IPF) was performed by cysteine-specific two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Selected COPD-specific changes were validated by immunoblotting and further by ELISA in 120 induced sputum and plasma samples from nonsmokers, smokers, and patients with COPD (stage I-III). Altogether 82 altered proteins were identified comprising COPD-, AATD-, and IPF-specific, overlapping, and unspecific changes. Cathepsin D (CTSD), dihydropyrimidinase-related protein 2 (DPYSL2), transglutaminase 2 (TGM2), and tripeptidyl-peptidase 1 (TPP1) were validated as COPD-specific. TGM2 was not associated with smoking and correlated with COPD severity in lung tissue. TGM2 levels in sputum and plasma were elevated in patients with COPD (stage II-III) and correlated with lung function. In conclusion, new proteins related to COPD onset and severity could be identified with TGM2 being a novel potential diagnostic and therapeutic target for COPD. Further studies in carefully characterized cohorts are required to validate the identified changes. PMID:27084846

  6. Tibial corticotomy and periosteal elevation induce angiogenesis in chronic critical limb ischaemia.

    PubMed

    El-Awady, Saleh; Ali, Ayman M; Kumber, Osama; El-Maksoud, Sied Abd; Fareed, Mohamed

    2008-12-01

    Corticotomy and periosteal elevation as a surgical procedure for management of chronic critical limb ischaemia is a relatively new technique. The current study aimed at assessing its safety, efficiency and cost/benefit ratio. The procedure was performed in 36patients. Preoperative documentation for age, sex, co-morbidities, ankle systolic pressure, and magnetic resonance contrast angiography was obtained. Early results included evaluation of skin perfusion. Late results involved assessment of wound healing, which was documented with photographs and was graded (healed, healing, resistant, recurrent), pain (intermittent claudication and pain at rest), Kelkar score, procedure morbidity, patient satisfaction and quality of life. Mean age was 68.03 +/- 5.5 years; 23 patients were males (63.9%) and 13 females (36.1%). Twenty (55.6%) patients had ankle systolic pressure < 50 mmHg and 29 (80.5%) had infra-inguinal vascular disease. Skin perfusion improved in 33/36 patients (91.7%). At final follow-up, 34 patients (94.1%) achieved complete wound healing. Relief from ischaemic rest pain and intermittent claudication was achieved in 86.1% and 55.6% respectively, with 20 (55.6%) patients having an excellent Kelkar score. Only one patient required a major amputation. Morbidity was noted in 17.7% of cases. Patient satisfaction scores at 12 months and at final follow-up were 7.1 +/- 1.3, and 8.7 +/- 1.7 respectively, on a scale from 0 to 10. Quality of life was markedly improved as compared to the preoperative status (overall score: p = 0.05, mental health scale: p <0.05 and pain/anxiety domain: p < 0.001). The procedure appears to represent an interesting tool, which should be evaluated in randomised studies. Our findings support the postulated angiogenic effect of the fracture haematoma. PMID:19205331

  7. Is There a Chronic Elevation in Organ-Tissue Sleeping Metabolic Rate in Very Fit Runners?

    PubMed Central

    Midorikawa, Taishi; Tanaka, Shigeho; Ando, Takafumi; Tanaka, Chiaki; Masayuki, Konishi; Ohta, Megumi; Torii, Suguru; Sakamoto, Shizuo

    2016-01-01

    It is unclear whether the resting metabolic rate of individual organ-tissue in adults with high aerobic fitness is higher than that in untrained adults; in fact, this topic has been debated for years using a two-component model. To address this issue, in the present study, we examined the relationship between the measured sleeping energy expenditure (EE) by using an indirect human calorimeter (IHC) and the calculated resting EE (REE) from organ-tissue mass using magnetic resonance imaging, along with the assumed metabolic rate constants in healthy adults. Seventeen healthy male long-distance runners were recruited and grouped according to the median V·O2peak: very fit group (>60 mL/min/kg; n = 8) and fit group (<60 mL/min/kg; n = 9). Participants performed a graded exercise test for determining V·O2peak; X-ray absorptiometry and magnetic resonance imaging were used to determine organ-tissue mass, and IHC was used to determine sleeping EE. The calculated REE was estimated as the sum of individual organ-tissue masses multiplied by their metabolic rate constants. No significant difference was observed in the measured sleeping EE, calculated REE, and their difference, as well as in the slopes and intercepts of the two regression lines between the groups. Moreover, no significant correlation between V·O2peak and the difference in measured sleeping EE and calculated REE was observed for all subjects. Thus, aerobic endurance training does not result in a chronic elevation in the organ-tissue metabolic rate in cases with V·O2peak of approximately 60 mL/min/kg.

  8. Cloudwater and ozone effects upon high elevation red spruce: A summary of study results from Whitetop Mountain, Virginia

    SciTech Connect

    Thornton, F.C.; Joslin, J.D.; Pier, P.A.

    1994-11-01

    This paper integrates the results of a number of studies on the effects of cloudwater and ozone (O{sub 3}) on red spruce (Picea rubens Sarg.) seedlings, saplings, and mature trees at Whitetop Mountain, VA, over a 3-yr period. These investigations consisted of (1) seedling chamber exclusion studies, (2) mature tree branch chamber exclusion studies, and (3) field experiments comparing responses of seedlings, saplings, and mature trees. The studies included treatments that : (1) excluded clouds and O{sub 3} (COE), (2) excluded clouds and had ambient O{sub 3} (CE), and (3) exposed plants to both clouds and O{sub 3} either with (CC) or without (AA) chambers. Seedlings and mature branches in the various treatments were compared with respect to growth rates, gas exchange rates, foliar nutrition, and chlorophyll and wax content. Soil solution, throughfall, and foliar responses of mature trees near the summit, receiving differing amounts of cloud exposure (low cloud and high cloud sites) were also monitored. Ozone was found to have minimal effects on the parameters measured, whereas cloudwater exposure was found to have adverse effects on several response parameters. Chambered seedlings that were exposed to cloudwater (AA and CC), and mature trees at the high cloud site had significantly lower foliar Ca and Mg concentrations than their counterparts, which were protected from exposure (seedlings) or received low cloud exposure (mature). A 3 to 5{degrees}C increase in cold tolerance was also measured in seedlings form which cloudwater was excluded. These findings suggest that cloudwater-mediated effects are currently having a negative impact on the health of red spruce, and may be involved in red spruce decline in the eastern USA. 62 refs., 2 figs., 5 tabs.

  9. The Interactive Effects of Elevated CO2 and Ozone on Leaf Thermotolerance in Field-Grown Glycine Max (Soybean)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human activity is increasing atmospheric CO2, which is increasing both mean global temperatures and acute heat stress (heat waves). Laboratory studies have shown that elevated CO2 can increase tolerance of photosynthesis to acute heat stress in C3 plants. However, human-caused increases in ground-...

  10. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON THE RESPONSE OF PONDEROSA PINE TO OZONE: A SIMULATION ANALYSIS

    EPA Science Inventory

    Forests regulate numerous biogeochemical cycles, storing and cycling carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of increased O3 in combination wit...

  11. Ozone and density affect the response of biomass and seed yield to elevated CO2 in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric O3 reduces growth and yield of many crop species, whereas CO2 ameliorates the negative effects of O3. Thus in a combined elevated CO2 and O3 atmosphere, seed yield is at least restored to that of charcoal-filtered (CF) air at ambient CO2. The CO2-induced yield increase in CF air is hi...

  12. Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male greater Sage-Grouse (Centrocercus urophasianus).

    PubMed

    Blickley, Jessica L; Word, Karen R; Krakauer, Alan H; Phillips, Jennifer L; Sells, Sarah N; Taff, Conor C; Wingfield, John C; Patricelli, Gail L

    2012-01-01

    There is increasing evidence that individuals in many species avoid areas exposed to chronic anthropogenic noise, but the impact of noise on those who remain in these habitats is unclear. One potential impact is chronic physiological stress, which can affect disease resistance, survival and reproductive success. Previous studies have found evidence of elevated stress-related hormones (glucocorticoids) in wildlife exposed to human activities, but the impacts of noise alone are difficult to separate from confounding factors. Here we used an experimental playback study to isolate the impacts of noise from industrial activity (natural gas drilling and road noise) on glucocorticoid levels in greater sage-grouse (Centrocercus urophasianus), a species of conservation concern. We non-invasively measured immunoreactive corticosterone metabolites from fecal samples (FCMs) of males on both noise-treated and control leks (display grounds) in two breeding seasons. We found strong support for an impact of noise playback on stress levels, with 16.7% higher mean FCM levels in samples from noise leks compared with samples from paired control leks. Taken together with results from a previous study finding declines in male lek attendance in response to noise playbacks, these results suggest that chronic noise pollution can cause greater sage-grouse to avoid otherwise suitable habitat, and can cause elevated stress levels in the birds who remain in noisy areas. PMID:23185627

  13. Experimental Chronic Noise Is Related to Elevated Fecal Corticosteroid Metabolites in Lekking Male Greater Sage-Grouse (Centrocercus urophasianus)

    PubMed Central

    Blickley, Jessica L.; Word, Karen R.; Krakauer, Alan H.; Phillips, Jennifer L.; Sells, Sarah N.; Taff, Conor C.; Wingfield, John C.; Patricelli, Gail L.

    2012-01-01

    There is increasing evidence that individuals in many species avoid areas exposed to chronic anthropogenic noise, but the impact of noise on those who remain in these habitats is unclear. One potential impact is chronic physiological stress, which can affect disease resistance, survival and reproductive success. Previous studies have found evidence of elevated stress-related hormones (glucocorticoids) in wildlife exposed to human activities, but the impacts of noise alone are difficult to separate from confounding factors. Here we used an experimental playback study to isolate the impacts of noise from industrial activity (natural gas drilling and road noise) on glucocorticoid levels in greater sage-grouse (Centrocercus urophasianus), a species of conservation concern. We non-invasively measured immunoreactive corticosterone metabolites from fecal samples (FCMs) of males on both noise-treated and control leks (display grounds) in two breeding seasons. We found strong support for an impact of noise playback on stress levels, with 16.7% higher mean FCM levels in samples from noise leks compared with samples from paired control leks. Taken together with results from a previous study finding declines in male lek attendance in response to noise playbacks, these results suggest that chronic noise pollution can cause greater sage-grouse to avoid otherwise suitable habitat, and can cause elevated stress levels in the birds who remain in noisy areas. PMID:23185627

  14. Chronic Q Fever with No Elevation of Inflammatory Markers: A Case Report

    PubMed Central

    Boattini, Matteo; Almeida, André; Moura, Rita Barata; Abreu, João; Santos, Ana Sofia; Toscano Rico, Miguel

    2012-01-01

    We describe the case of a 55-year-old man with a biological prosthetic aortic valve who suffered from epigastrium and right hypochondrium pain associated with intermittent night sweats. Liver biopsy showed infectious hepatitis pattern without pathognomonic features. Coxiella burnetii serology was suggestive of chronic Q fever, and modified Duke's criteria for endocarditis were also fulfilled. The authors present a brief literature review concerning chronic Q fever, emphasizing absent previous reports of chronic Q fever with hepatitis and endocarditis and no increase in inflammatory markers. PMID:22792113

  15. Chronic bronchitis with fungal infection presenting with marked elevation of serum carbohydrate antigen 19-9: a case report

    PubMed Central

    Han, Ping; Yan, Wei; Luo, Yi; Tu, Wei; He, Jia-Yi; Liu, Jing-Mei; Gong, Jin; Wang, Yun-Wu; Li, Meng-Ke; Tian, De-An; Huang, Huan-Jun

    2014-01-01

    Carbohydrate antigen 19-9 (CA19-9) is the most frequently applied serum tumor marker for diagnosis of cancers in the digestive organs. However, some patients with benign diseases can have elevated serum levels of CA19-9 as well. The current study presents a 55-year-old female who was admitted to our hospital for further evaluation of a nodular cavity shadow in the right lower lobe and clarification of the cause of the marked elevation of serum CA19-9 levels. Abdominal MRI and gastrointestinal endoscopy did not find any malignancy. As lung cancer cannot be excluded in this patient, a video-assisted thoracoscopic surgery was carried, intraoperative and postoperative biopsy analysis both suggested chronic bronchitis with fungal infection (due to Histoplasma capsulatum or Penicillium marneffei) and organization. Immunohistochemistry showed marked positive staining for CA19-9 in the damaged lung tissue. The CA19-9 levels quickly returned to the normal range following lobe resection. Therefore, the marked elevation of serum CA19-9 levels, in this case, may have resulted from the chronic bronchitis with fungal infection. PMID:25337284

  16. Short-term respiratory effects of 0. 12 ppm ozone exposure in volunteers with chronic obstructive pulmonary disease

    SciTech Connect

    Linn, W.S.; Fischer, D.A.; Medway, D.A.; Anzar, U.T.; Spier, C.E.; Valencia, L.M.; Venet, T.G.; Hackney, J.D.

    1982-06-01

    Twenty-five volunteers with chronic obstructive pulmonary disease of mild to moderately severe degree underwent 1-h exposures to 0.12 ppm ozone (O/sub 2/) in purified air with intermittent mild exercise. Their responses were assessed in terms of forced expiratory performance, ear oximetry, and reported symptoms. Control studied consisted of similar exposures to purified air alone. Control studies were separated from O/sub 2/ exposures by 1 month, and the order was randomized. All studies took place in a controlled-environment chamber, and were preceded by approximately 1 h of rest in a purified-air environment. No significant disturbances in forced expiratory performance or symptoms attributable to O/sub 2/ exposure were found. A slight but significant tendency to decreased arterial hemoglobin oxygen saturation (SaO/sub 2/) during exercise in O/sub 2/ was observed. The decrement in SaO/sub 2/ with O/sub 2/ relative to clean air (mean 1.3%) was near the limit of resolution of the ear oximeter test and was detected by signal averaging, thus its physiologic or clinical significance is uncertain.

  17. Effects of growth medium and fertilizer rate on the yield response of soybeans exposed to chronic doses of ozone

    SciTech Connect

    Heagle, A.S.; Letchworth, M.B.; Mitchell, C.A.

    1983-01-01

    The objectives were to determine whether wide variation in fertilizer rates or type of growth medium would affect the response of soybeans, Glycine max 'Davis' exposed to chronic doses of ozone (O/sub 3/) in open-top field chambers. Responses to O/sub 3/ were compared for plants grown in the ground or in pots containing an artificial growth medium. In 1977, the yield of plants grown in pots containing soil, sand, and a mixture of perlite, peat moss, and vermiculite was greater than that of plants grown in the ground; in 1978, the reverse was true. However, the percentage yeild loss caused by O/sub 3/ was not affected by the growth medium either year. Separate tests were made for potted plants that received different levels of fertilizer. At moderate fertilizer rates, the yield response to different doses of O/sub 3/ was not significantly affected by fertilizer rate for either year. In 1978, plants with no fertilizer added were severely stunted and even relatively high doses of O/sub 3/ did not further decrease yield. The results suggest that plant response to O/sub 3/ will be fairly uniform over a range of substrate types and fertilizer rates when edaphic conditions are adequate to insure normal plant growth. 17 references, 5 figures, 2 tables.

  18. Elevated IL-23R Expression and Foxp3+Rorgt+ Cells in Intestinal Mucosa During Acute and Chronic Colitis.

    PubMed

    Yang, Jiayin; Xu, Lili

    2016-01-01

    BACKGROUND IL-23/IL-23R signaling plays a pivotal role during the course of inflammatory bowel diseases (IBD). However, the underlying mechanisms are poorly characterized. Foxp3+ regulatory T cells are critical in the maintenance of gut immune homeostasis and therefore are important in preventing the development of IBD. This study was performed to clarify the association between IL-23/IL-23R signaling and Foxp3+ regulatory T cells in colitis. MATERIAL AND METHODS Acute and chronic mouse colitis models were established by administering mice DSS in drinking water. IL-23R, IL-23, IL-I7, and IFN-γ expression level, as well as regulatory T cell, Th17-, and Th1-related transcription factors Foxp3, RORgt, and T-bet were assayed by real-time PCR. The frequency of Foxp3+ RORγt+ cells in a Foxp3+ cell population in colon mucosa during acute and chronic colitis was evaluated through flow cytometry. The signaling pathway mediated by IL-23R in the colon mucosa from acute colitis mice and chronic colitis mice was monitored by Western blot analysis. RESULTS We detected elevated IL-23R, IL-23, and IFN-γ expression in colon mucosa during acute and chronic colitis and found increased IL-17 in acute colitis mice. Transcription factors Foxp3 and T-bet were elevated in colon mucosa during acute and chronic colitis. Phosphorylation of Stat3 was greatly enhanced, indicating the activation of IL-23R function in colitis mice. The percentage of Foxp3+ T cells in acute and chronic colitis mice was comparable to control mice, but there was a 2-fold increase of Foxp3+ RORγt+ cells among the Foxp3+ cell population in acute and chronic colitis mice compared to control mice. CONCLUSIONS These findings indicate that the induction of Foxp3+ RORgt+ T cells could be enhanced during inflammation in the intestine where IL-23R expression is greatly induced. Our study highlights the importance of IL-23R expression level and the instability of Foxp3+ regulatory T cells in the development of

  19. Dietary restriction causes chronic elevation of corticosterone and enhances stress response in red-legged kittiwake chicks

    USGS Publications Warehouse

    Kitaysky, A.S.; Kitaiskaia, E.V.; Wingfield, J.C.; Piatt, J.F.

    2001-01-01

    Release of corticosterone in hungry kittiwake chicks facilitates begging and allows them to restore depleted energy reserves by increasing parental food provisioning. However, in order to avoid detrimental effects of chronic elevation of corticosterone, chicks might suppress adrenocortical activity in response to prolonged food shortages. In this study we examined temporal dynamics of corticosterone release in red-legged kittiwake (Rissa brevirostris) chicks exposed to prolonged restrictions in energy content and/or nutritional quality (low versus high lipid content) of their food. Starting at the age of 15 days, chicks were fed either high- or low-lipid fish at 40%, 65%, and 100% of ad libitum energy intake. Body mass measurements and baseline plasma samples were taken on a weekly basis after beginning of the treatment. After 3 weeks of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where in addition to a baseline sample, three plasma samples were taken at intervals up to 50 min. We found that food-restricted chicks had lower body mass, chronically (during 2-3 weeks) elevated baseline and higher acute stress-induced levels of corticosterone compared to chicks fed ad libitum. Low lipid content of food further exacerbated these effects. An increase in baseline levels of corticosterone was observed within a week after energy requirements of food-restricted chicks exceeded their daily energy intake. A tendency for suppression of adrenocortical activity was observed in treatments fed low-lipid diets only at the end of the experiment. We suggest that nest-bound chicks, if food-stressed, might suffer deleterious effects of chronic elevation of corticosterone.

  20. Chronic Superantigen Exposure Induces Systemic Inflammation, Elevated Bloodstream Endotoxin, and Abnormal Glucose Tolerance in Rabbits: Possible Role in Diabetes

    PubMed Central

    Vu, Bao G.; Stach, Christopher S.; Kulhankova, Katarina; Salgado-Pabón, Wilmara; Klingelhutz, Aloysius J.

    2015-01-01

    ABSTRACT Excessive weight and obesity are associated with the development of diabetes mellitus type 2 (DMII) in humans. They also pose high risks of Staphylococcus aureus colonization and overt infections. S. aureus causes a wide range of severe illnesses in both healthy and immunocompromised individuals. Among S. aureus virulence factors, superantigens are essential for pathogenicity. In this study, we show that rabbits that are chronically exposed to S. aureus superantigen toxic shock syndrome toxin-1 (TSST-1) experience impaired glucose tolerance, systemic inflammation, and elevated endotoxin levels in the bloodstream, all of which are common findings in DMII. Additionally, such DMII-associated findings are also seen through effects of TSST-1 on isolated adipocytes. Collectively, our findings suggest that chronic exposure to S. aureus superantigens facilitates the development of DMII, which may lead to therapeutic targeting of S. aureus and its superantigens. PMID:25714716

  1. Relationships between serum asunaprevir concentration and alanine aminotransferase elevation during daclatasvir plus asunaprevir for chronic HCV genotype 1b infection.

    PubMed

    Akuta, Norio; Sezaki, Hitomi; Suzuki, Fumitaka; Kawamura, Yusuke; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Suzuki, Yoshiyuki; Arase, Yasuji; Ikeda, Kenji; Kumada, Hiromitsu

    2016-03-01

    Alanine aminotransferase (ALT) elevations were the most frequent adverse events during all-oral combinations with daclatasvir and asunaprevir for patients with hepatitis C virus (HCV) infection, but the underline mechanisms are unclear. Seventy patients with chronic HCV genotype 1b infection, who were introduced daclatasvir 60 mg once daily plus asunaprevir 100 mg twice daily for 24 weeks, were measured serum asunaprevir concentrations at the one point or more of 2, 4, and 8 weeks after the start of treatment. In 4 and 8 weeks after the start of treatment, asunaprevir concentrations in patients with albumin levels <3.6 g/dl at baseline were significantly higher than those in patients with albumin levels ≥3.6 g/dl. The baseline factors did not affect to ALT severe elevations (≥300 IU/l). At 2 weeks after the start of treatment, ALT severe elevations with asunaprevir concentrations of ≥800 ng/ml (54.5%) tended to indicate the higher rates than those of <800 ng/ml (17.6%). Furthermore, the discontinuation or reduction of asunaprevir improved ALT levels, regardless the significant decrease of serum asunaprevir concentrations. In conclusion, serum albumin levels affected to serum asunaprevir concentrations, and serum asunaprevir concentrations might partly affect to ALT severe elevations. Further large-scale prospective studies are needed to investigate the impact of the discontinuation or reduction of asunaprevir to help in the design of more effective therapeutic regimens. PMID:26292191

  2. Serum progranulin levels are elevated in patients with chronic hepatitis B virus infection, reflecting viral load.

    PubMed

    Gong, Yi; Zhan, Tingxi; Li, Qing; Zhang, Guozhen; Tan, Bing; Yang, Xiaoliang; Wu, Yan; Que, Wenjuan; Xing, Yan; Liu, Hui; Hu, Xue; Yu, Zebo

    2016-09-01

    Progranulin (PGRN) is implicated in infection, immunity and host defense, but its role in the pathogenesis of HBV infection remains unknown. Here we investigated whether there is dysregulated production and the clinical significance of circulating PGRN in patients with chronic HBV infection. Serum concentrations of PGRN were analyzed by enzyme-linked immunosorbent assay. Serum PGRN levels were significantly higher in patients with chronic HBV infection than healthy subjects. PGRN levels were significantly associated with HBV-DNA levels, but did not correlate with the concentrations of alanine aminotransferase and aspartate aminotransferase. This study demonstrates increased circulating PGRN production and association between PGRN levels and viral loads in patients with chronic HBV infection, suggesting a functional role of PGRN in the pathogenesis of HBV infection. PMID:27281451

  3. Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model.

    PubMed

    Wang, N; Guo, H; Jiang, F; Ling, Z H; Wang, T

    2015-02-01

    Field measurements were simultaneously conducted at a mountain (Mt.) site (Tai Mao Shan, TMS) and an urban site (Tsuen Wan, TW) at the foot of the Mt. TMS in Hong Kong. An interesting event with consecutive high-ozone (O₃) days from 08:00 on 28 Oct. to 23:00 on 03 Nov., 2010 was observed at Mt. TMS, while no such polluted event was found at the foot of the mountain. The Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models were used to understand this event. Model performance evaluation showed that the simulated meteorological parameters and air pollutants were well in agreement with the observations. The index of agreement (IOA) of temperature, relative humidity, wind direction and wind speed were 0.93, 0.83, 0.46 and 0.60, respectively. The multi-day high O₃ episode at Mt. TMS was also reasonably reproduced (IOA=0.68). Horizontally, the photochemical processes determined the O₃ levels in southwestern Pearl River Delta (PRD) and the Pearl River Estuary (PRE), while in eastern and northern PRD, the O₃ destruction was over the production during the event. Vertically, higher O₃ values at higher levels were found at both Mt. TMS and TW, indicating a vertical O₃ gradient over Hong Kong. With the aid of the process analysis module, we found positive contribution of vertical transport including advection and diffusion to O₃ mixing ratios at the two sites, suggesting that O₃ values at lower locations could be affected by O₃ at higher locations via vertical advection and diffusion over Hong Kong. PMID:25461095

  4. Growth, radiation use efficiency, and canopy reflectance of wheat and corn grown under elevated ozone and carbon dioxide atmospheres

    SciTech Connect

    Rudorff, B.F.T.; Mulchi, C.L.; Daughtry, C.S.T.; Lee, E.H.

    1996-02-01

    Estimates of increases in future agricultural production in response to increases in carbon dioxide (CO{sub 2}) concentrations in the atmosphere are often based on the beneficial physiological effect of CO{sub 2} enrichment on plant growth, especially in C{sub 3} plants. However, these estimates fail to consider the negative impact of ozone (O{sub 3}) air pollution on crop production. Increases in tropospheric concentrations of both gases, CO{sub 2} and O{sub 3}, have been observed over the past century, and both are predicted to continue to increase at even higher rates in the near future to levels when they may have a significant impact on agricultural production. Field studies with wheat (Triticum aestivum L.) in 1991 and 1992, and corn (Zea mays L.) in 1991 were conducted using open-top chambers to mimic atmospheric concentrations of CO{sub 2} ({approximately} 500 {micro}L{sup {minus}1} CO{sub 2}) and O{sub 3} ({approximately} 40 nL L{sup {minus}1} O{sub 3} above ambient air [O{sub 3}] during 7 h day{sup {minus}1}, 5 days week{sup {minus}1}) that are predicted to occur at the Earth`s surface during the first half of the 21st century. Wheat and corn (C{sub 3} vs. C{sub 4}) produced clearly different responses to CO{sub 2} enrichment, but similar responses to O{sub 3} exposure. In what, O{sub 3} exposure led to reduced grain yield, biomass, and radiation use efficiency (RUE, phytomass production per unit of energy received); in both years; but reduction in accumulated absorbed photosynthetically active radiation (AAPAR) was observed only in 1991. Conversely, CO{sub 2} enrichment produced greater grain yield, dry biomass, and RUE.

  5. Subalpine grassland carbon dioxide fluxes indicate substantial carbon losses under increased nitrogen deposition, but not at elevated ozone concentration

    NASA Astrophysics Data System (ADS)

    Volk, Matthias; Obrist, Daniel; Novak, Kris; Giger, Robin; Bassin, Seraina; Fuhrer, Jürg

    2010-05-01

    Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may thus change ecosystem C-sink/-source properties. We studied effects of increased background O3 concentrations (up to ambient x 2) and increased N deposition (up to +50 kg ha-1 a-1) on mature, subalpine grassland during the third treatment year. During ten days and 13 nights, covering the vegetation period of 2006, we measured ecosystem-level CO2 exchange using a steady state cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared to differences in soil organic C after five years of treatment. Under high O3 and with unchanged aboveground biomass, both mean Reco and GPP decreased throughout the season. Thus, NEP indicated an unaltered growing season CO2-C balance. Under high N treatment, with a +31% increase in aboveground productivity, mean Reco, but not GPP increased. Consequently, seasonal NEP yielded a 53.9 g C m-2 (± 22.05) C loss compared to control. Independent of treatment, we observed a negative NEP of 146.4 g C m-2 (±15.3). This C loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one-third of that loss.

  6. Some Chronic Rhinosinusitis Patients Have Significantly Elevated Populations of Seven Fungi in their Sinuses

    EPA Science Inventory

    Abstract: Objectives/Hypothesis: To measure the populations of 36 fungi in the homes and sinuses of chronic rhinosinusitis (CRS) and non-CRS patients. Study Design: Single-blind cross-sectional study. Methods: Populations of 36 fungi were measured in sinus samples and in the home...

  7. Plasma biomarkers of chronic inflammation are elevated in overweight Mexican-American children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess body weight is associated with an accumulation of chronic, low-grade inflammation that has been implicated in the pathophysiology of various diseases. The obesity epidemic is more prevalent in certain ethnic groups. Despite this health disparity, few published studies have measured biomarke...

  8. Elevated Serum Levels of Macrophage Migration Inhibitory Factor Are Associated with Progressive Chronic Cardiomyopathy in Patients with Chagas Disease

    PubMed Central

    Cutrullis, Romina A.; Petray, Patricia B.; Schapachnik, Edgardo; Sánchez, Rubén; Postan, Miriam; González, Mariela N.; Martín, Valentina; Corral, Ricardo S.

    2013-01-01

    Clinical symptoms of chronic Chagas disease occur in around 30% of the individuals infected with Trypanosoma cruzi and are characterized by heart inflammation and dysfunction. The pathogenesis of chronic chagasic cardiomyopathy (CCC) is not completely understood yet, partially because disease evolution depends on complex host-parasite interactions. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that promotes numerous pathophysiological processes. In the current study, we investigated the link between MIF and CCC progression. Immunohistochemical analysis demonstrated MIF overexpression in the hearts from chronically T. cruzi-infected mice, particularly those showing intense inflammatory infiltration. We also found that MIF exogenously added to parasite-infected murine macrophage cultures is capable of enhancing the production of TNF-α and reactive oxygen species, both with pathogenic roles in CCC. Thus, the integrated action of MIF and other cytokines and chemokines may account for leukocyte influx to the infected myocardium, accompanied by enhanced local production of multiple inflammatory mediators. We further examined by ELISA the level of MIF in the sera from chronic indeterminate and cardiomyopathic chagasic patients, and healthy subjects. CCC patients displayed significantly higher MIF concentrations than those recorded in asymptomatic T. cruzi-infected and uninfected individuals. Interestingly, increased MIF levels were associated with severe progressive Chagas heart disease, in correlation with elevated serum concentration of high sensitivity C-reactive protein and also with several echocardiographic indicators of left ventricular dysfunction, one of the hallmarks of CCC. Our present findings represent the first evidence that enhanced MIF production is associated with progressive cardiac impairment in chronic human infection with T. cruzi, strengthening the relationship between inflammatory response and parasite

  9. A rare case of persistent troponin elevation in a patient with chronic heart failure.

    PubMed

    Cardoso, Gonçalo; Aguiar, Carlos; Ventosa, António; Rebocho, Maria José; Borges Santos, Miguel; Dores, Hélder; Adragão, Pedro; Mendes, Miguel

    2013-11-01

    We present the case of a woman diagnosed with hypertrophic cardiomyopathy who suffered a myocardial infarction when she was 28 years old, without coronary artery disease on coronary angiography. Two years later, she presented signs of heart failure and left ventricular systolic dysfunction with persistent troponin I elevation, followed by progressive worsening of ventricular dysfunction. PMID:24239396

  10. Growth arrest-specific gene 6 (Gas6) levels are elevated in patients with chronic renal failure

    PubMed Central

    Lee, Iris J.; Hilliard, Brendan; Swami, Abhishek; Madara, John C.; Rao, Swati; Patel, Tapan; Gaughan, John P.; Lee, Jean; Gadegbeku, Crystal A.; Choi, Eric T.; Cohen, Philip L.

    2012-01-01

    Background The TAM receptors (tyro3, axl and mer) and their ligands (vitamin K-dependent proteins—Gas6 and Protein S) are crucial modulators of inflammation, which may be relevant in chronic kidney disease (CKD). Gas6 and axl have multiple roles in mediating vascular atherosclerosis and injury, thrombosis and inflammation, yet nothing is known about the Gas6–axl pathway in humans with CKD. Given the prevalence of chronic inflammation and vascular disease in this population, we measured TAM ligands in patients with various levels of renal function. Methods Gas6 and protein S were quantified in the plasma by ELISA in three patient groups: end-stage renal disease on chronic hemodialysis (HD), CKD and normal controls. Results Significantly increased levels of Gas6 and protein S were found in CKD patients compared with normal controls (P < 0.01 and <0.001, respectively). In HD patients, Gas6 levels were elevated compared with controls (P < 0.001) and positively associated with low albumin (r= 0.33; P = 0.01), dialysis vintage (r= 0.36; P = 0.008) and IV iron administration (r= 0.33; P = 0.01). The levels of Gas6 rose with CKD stage and were inversely associated with estimated GFR (P < 0.0001). Conclusions Dysregulation of circulating Gas6 is associated with renal disease and inversely proportional to renal function. Low albumin and higher IV iron administration were associated with higher Gas6 levels, suggesting a possible connection between inflammation and oxidative stress mediated by iron. Protein S levels were also elevated in CKD patients, but the relevance of this finding needs to be further investigated. PMID:22907951

  11. Effects of ozone applied by spinal endoscopy in patients with chronic pain related to failed back surgery syndrome: a pilot study

    PubMed Central

    de Nêuton, Francisco; Magalhães, Oliveira; Soares, Sandra Correia; Torres, Jaqueline Melo; Ungaretti, Arthur; Cacciacarro, Mariana Fillipi; Teixeira, Manoel Jacobsen; Fonoff, Erich Talamoni

    2013-01-01

    Introduction In the last two decades, ozone has emerged as a treatment for low back pain, applied by means of minimally invasive techniques. Objective The aim of this study is to assess the effect and safety of ozone therapy applied in the epidural space for chronic pain related to failed back surgery syndrome. Methods The investigators studied 13 sequential patients of both sexes, between 18 and 70 years old, with persistent chronic pain (more than six months) in the lumbar region and in the lower limbs related to failed back surgery syndrome (FBSS). Pain was classified as neuropathic and non-neuropathic regarding the topography (lumbar and lower limb), based on the DN4 (Douleur Neuropathique 4) questionnaire. The patients received the ozone gas in the lumbar epidural space via spinal-sacral endoscopy. Clinical evaluation was performed before, immediately after (24 hours), and 1, 3, and 6 months after intervention with visual analog scale and Oswestry Disability Index (ODI). Results Overall, the patients had 43.7% reduction of lumbar pain, 60.9% reduction in leg pain in six months followed by 44.0% of improvement in ODI. The reduction of pain and in the disability index was markedly greater in patients with non-neuropathic predominant pain, 95.2%, 80.6%, and 75.3% improvement in lumbar, leg pain, and ODI respectively, while neuropathic predominant pain patients experienced only 12.5%, 42.4%, and 20.9% improvement, also respectively. No neurological or infectious complications were observed acutely or during the follow-up. The present data suggests that epidural ozone might be a therapeutic option for persistent low back pain, especially in non-neuropathic predominant pain patients, but double-blind controlled studies are still required to prove its efficacy. PMID:24259984

  12. Elevated Pain Sensitivity in Chronic Pain Patients at Risk for Opioid Misuse

    PubMed Central

    Edwards, Robert R.; Wasan, Ajay D.; Michna, Ed; Greenbaum, Seth; Ross, Ed; Jamison, Robert N.

    2011-01-01

    This study employed quantitative sensory testing (QST) to evaluate pain responses in chronic spinal pain patients at low risk and high risk for opioid misuse, with risk classification based on scores on the Screener and Opioid Assessment for Patients with Pain-Revised (SOAPP-R). Patients were further sub-grouped according to current use of prescription opioids. Of the 276 chronic pain patients tested, approximately 65% were taking opioids; a median split was used to further categorize these patients as being on lower or higher doses of opioids. The highrisk group (n= 161) reported higher levels of clinical pain, had lower pressure and thermal pain thresholds at multiple body sites, had lower heat pain tolerance, and rated repetitive mechanical stimuli as more painful relative to the low-risk group (n= 115; p’s< .01). In contrast, QST measures did not differ across opioid groups. Multiple linear regression analysis suggested that indices of pain-related distress (i.e., anxiety and catastrophizing about pain) were also predictive of hyperalgesia, particularly in patients taking opioids. Collectively, regardless of opioid status, the high-risk group was hyperalgesic relative to the low-risk group; future opioid treatment studies may benefit from the classification of opioid risk, and the examination of pain sensitivity and other factors that differentiate high- and low-risk groups. PMID:21680252

  13. Adrenocortical function during prolonged treatment with clobetasone butyrate in children with chronic atopic dermatitis and elevated IgE levels.

    PubMed

    Boner, A L; Richelli, C; De Stefano, G; Antolini, I; Aprili, F; Mengoni, M

    1985-01-01

    Twelve children with chronic atopic dermatitis and elevated IgE levels (age range: 2-13 years; mean age = 8.2 +/- 3.5 years) were selected for the study and treated with clobetasone butyrate (0.05% cream) thrice daily during the first week, then twice daily for three weeks. Adrenocortical function was evaluated at the beginning and the end of treatment period. The results show that there was no statistically significant change in adrenal function during the study period (tetracosactrin test). The results of the immunological studies, namely total IgE using the paper disc radioimmunoassay technique, specific IgE using the radioallergosorbent test and immunoglobulin levels are given. PMID:4018942

  14. Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids with a Significant Elevation of β-2 Microglobulin Levels

    PubMed Central

    Fujisawa, Naoaki; Mori, Harushi; Matsui, Toru

    2015-01-01

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a relapsing-remitting disorder for which steroid administration is a key to control the progression. CLIPPERS can exhibit radiological features similar to malignant lymphoma, whose diagnosis is confounded by prior steroid administration. We report a case of CLIPPERS accompanied by abnormal elevation of β-2 microglobulin in the cerebrospinal fluid (CSF). A 62-year-old man started to experience numbness in all fingers of his left hand one year ago, which gradually extended to his body trunk and legs on both sides. Magnetic resonance imaging demonstrated numerous small enhancing spots scattered in his brain and spinal cord. CSF levels of β-2 microglobulin were elevated; although this often indicates central nervous system involvement in leukemia and lymphoma, the lesions were diagnosed as CLIPPERS based on the pathological findings from a biopsy specimen. We emphasize the importance of biopsy to differentiate between CLIPPERS and malignant lymphoma because the temporary radiological response to steroid might be the same in both diseases but the treatment strategies regarding the use of steroid are quite different. PMID:26713153

  15. An observational retrospective/horizontal study to compare oxygen-ozone therapy and/or global postural re-education in complicated chronic low back pain.

    PubMed

    Apuzzo, Dario; Giotti, Chiara; Pasqualetti, Patrizio; Ferrazza, Paolo; Soldati, Paola; Zucco, Gesualdo M

    2014-01-01

    Acute low back pain (LBP) is the fifth most common reason for physician visits and about nine out of ten adults experience back pain at some point in their life. In a large number of patients LBP is associated with disc herniation (DH). Recently, oxygen-ozone (O2O3) therapy has been used successfully in the treatment of LBP, reducing pain after the failure of other conservative treatments. The aim of this study was to assess the effects of O2O3 therapy in back pain rehabilitation, comparing three groups of patients suffering from chronic back pain associated with DH submitted to three different treatments: intramuscular O2O3 infiltrations, global postural An observational retrospective/horizontal study to compare oxygen-ozone therapy and/or global postural re-education in complicated chronic low back pain re-education (GPR), or a combination of the two (O2O3+GPR). The data show that pain severity before treatment was significantly lower in the patients treated with GPR alone (VAS score 7.4) than in the O2O3+GPR patients (VAS score 8.5) and the O2O3 patients (VAS score 8.6). At the end of treatment, pain severity was lower in the O2O3 patients than in the GPR-alone patients. After some years of follow-up only the difference between O2O3+GPR and GPR-alone remained significant. PMID:25014047

  16. Elevated amygdala responses to emotional faces in youths with chronic irritability or bipolar disorder☆

    PubMed Central

    Thomas, Laura A.; Kim, Pilyoung; Bones, Brian L.; Hinton, Kendra E.; Milch, Hannah S.; Reynolds, Richard C.; Adleman, Nancy E.; Marsh, Abigail A.; Blair, R.J.R.; Pine, Daniel S.; Leibenluft, Ellen

    2013-01-01

    A major controversy in child psychiatry is whether bipolar disorder (BD) presents in children as severe, non-episodic irritability (operationalized here as severe mood dysregulation, SMD), rather than with manic episodes as in adults. Both classic, episodic BD and SMD are severe mood disorders characterized by deficits in processing emotional stimuli. Neuroimaging techniques can be used to test whether the pathophysiology mediating these deficits are similar across the two phenotypes. Amygdala dysfunction during face emotion processing is well-documented in BD, but little is known about amygdala dysfunction in chronically irritable youth. We compared neural activation in SMD (n = 19), BD (n = 19), and healthy volunteer (HV; n = 15) youths during an implicit face-emotion processing task with angry, fearful and neutral expressions. In the right amygdala, both SMD and BD exhibited greater activity across all expressions than HV. However, SMD and BD differed from each other and HV in posterior cingulate cortex, posterior insula, and inferior parietal lobe. In these regions, only SMD showed deactivation in response to fearful expressions, whereas only BD showed deactivation in response to angry expressions. Thus, during implicit face emotion processing, youth with BD and those with SMD exhibit similar amygdala dysfunction but different abnormalities in regions involved in information monitoring and integration. PMID:23977455

  17. Elevated amygdala responses to emotional faces in youths with chronic irritability or bipolar disorder.

    PubMed

    Thomas, Laura A; Kim, Pilyoung; Bones, Brian L; Hinton, Kendra E; Milch, Hannah S; Reynolds, Richard C; Adleman, Nancy E; Marsh, Abigail A; Blair, R J R; Pine, Daniel S; Leibenluft, Ellen

    2013-01-01

    A major controversy in child psychiatry is whether bipolar disorder (BD) presents in children as severe, non-episodic irritability (operationalized here as severe mood dysregulation, SMD), rather than with manic episodes as in adults. Both classic, episodic BD and SMD are severe mood disorders characterized by deficits in processing emotional stimuli. Neuroimaging techniques can be used to test whether the pathophysiology mediating these deficits are similar across the two phenotypes. Amygdala dysfunction during face emotion processing is well-documented in BD, but little is known about amygdala dysfunction in chronically irritable youth. We compared neural activation in SMD (n=19), BD (n=19), and healthy volunteer (HV; n=15) youths during an implicit face-emotion processing task with angry, fearful and neutral expressions. In the right amygdala, both SMD and BD exhibited greater activity across all expressions than HV. However, SMD and BD differed from each other and HV in posterior cingulate cortex, posterior insula, and inferior parietal lobe. In these regions, only SMD showed deactivation in response to fearful expressions, whereas only BD showed deactivation in response to angry expressions. Thus, during implicit face emotion processing, youth with BD and those with SMD exhibit similar amygdala dysfunction but different abnormalities in regions involved in information monitoring and integration. PMID:23977455

  18. Carbon flux to woody tissues in a beech/spruce forest during summer and in response to chronic elevated O3 exposure

    NASA Astrophysics Data System (ADS)

    Ritter, W.; Andersen, C. P.; Matyssek, R.; Grams, T. E. E.

    2011-04-01

    The present study compares the dynamics in carbon (C) allocation of adult deciduous beech (Fagus sylvatica) and evergreen spruce (Picea abies) during summer and in response to seven-year-long exposure with twice-ambient ozone (O3) concentrations (2 × O3). Focus was on the respiratory turn-over and translocation of recent photosynthates at various positions along the stems, coarse roots and soils. The hypotheses tested were that (1) 2 × O3 decreases the allocation of recent photosynthates to CO2 efflux of stems and coarse roots of adult trees, and that (2) according to their different O3 sensitivities this effect is stronger in beech than in spruce. Labeling of whole tree canopies was applied by releasing 13C depleted CO2 (δ13C of -46.9‰) using a free-air stable carbon isotope approach. Canopy air δ13C was reduced for about 2.5 weeks by ca. 8‰ in beech and 6‰ in spruce while the increase in CO2 concentration was limited to about 110 μL L-1 and 80 μL L-1, respectively. At the end of the labeling period, δ13C of stem CO2 efflux and phloem sugars was reduced to a similar extend by ca. 3-4‰ (beech) and ca. 2-3‰ (spruce). The fraction of labeled C (fE,new) in stem CO2 efflux amounted to 0.3 to 0.4, indicating slow C turnover of the respiratory supply system in both species. Elevated O3 slightly stimulated the allocation of recently fixed photosynthates to stem and coarse root respiration in spruce (rejection of hypothesis I for spruce), but resulted in a significant reduction in C flux in beech (acceptance of hypotheses I and II). The distinct decreased in C allocation to beech stems indicates the potential of chronic O3 stress to substantially mitigate the C sink strength of trees on the long-term scale.

  19. Ozone - plant surface reactions an important ozone loss term?

    NASA Astrophysics Data System (ADS)

    Hansel, Armin; Jud, Werner; Fischer, Lukas; Canaval, Eva; Wohlfahrt, Georg; Tissier, Alain

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants responsible for global crop losses with associated economic costs of several billions dollar per year. Plant injuries have been related to the uptake of ozone through stomatal pores and oxidative effects damaging the internal leaf tissue. But a striking question remains: How much ozone enters the plant through open stomata and how much ozone is lost by chemical reactions at the plant surface? Until now surface losses are estimated from measured total ozone deposition fluxes and calculated stomatal conductance values. While stomatal conductance of CO2 and H2O is well understood and extensively used in describing plant atmosphere gas exchange, stomatal conductance of ozone is not well known. Here we use different Nicotiana tabacum varieties and find that surface reactions of ozone with diterpenoids synthesized by glandular trichomes reduce ozone flux through open stomata. Our measurements reveal that fast ozone loss at the plant surface is accompanied with prompt release of oxygenated volatile compounds. In the ozone fumigation experiments of different Nicotiana tabacum varieties the release of specific volatile oxy-VOCs allowed to identify the semi volatile precursor compounds at the plant surface. Ozone fumigation experiments with Norway spruce (Picea abies) and Scots Pine (Pinus sylvestris), two common species in the Northern Hemisphere, show also a significant ozone loss at the plant surface for Picea abies. Fluid dynamic calculations of ozone transport in the diffusive leaf boundary layer reveal a vertical but no horizontal ozone gradient thus reducing ozone fluxes through the pores in case of efficient ozone scavenging plant surfaces. We explain this efficient ozone protection mechanism by the porous surface architecture of plants in combination with unsaturated semi-volatile compounds deposited at the plant surface. These results show that unsaturated semi-volatile compounds at

  20. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity.

    PubMed

    Eells, Jeffrey B; Varela-Stokes, Andrea; Guo-Ross, Shirley X; Kummari, Evangel; Smith, Holly M; Cox, Erin; Lindsay, David S

    2015-01-01

    Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice. PMID:25855987

  1. Chronic Toxoplasma gondii in Nurr1-Null Heterozygous Mice Exacerbates Elevated Open Field Activity

    PubMed Central

    Eells, Jeffrey B.; Varela-Stokes, Andrea; Guo-Ross, Shirley X.; Kummari, Evangel; Smith, Holly M.; Cox, Erin; Lindsay, David S.

    2015-01-01

    Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice. PMID:25855987

  2. Chronic lung injury risk estimates for urban areas having ozone patterns similar to those in the Northeast

    SciTech Connect

    Absil, M.; Narducci, P.; Whitfield, R. ); Richmond, H.M. . Office of Air Quality Planning and Standards)

    1991-01-01

    This paper describes the approach and result of an assessment of health risks associated with long-term exposure to ozone. The health endpoint of interest is the probability of formation of mild lesions in the centriacinar region of the lung among children living in New York City. The risk model incorporates an exposure model and a health model. The exposure model is preliminary results of the probabilistic NAAQS Exposure Model (P-NEM) for ozone, and the health model is the judgments of active researchers about the likelihood of formation of ozone-induced lesions in the human lung. Children and New York City were chosen as the population and city of interest because it is believed that children are more sensitive to ozone than any other group of people, and New York City is more representative of other urban areas than Los Angeles, the other city of which P-NEM exposure results are available. Risk results are presented for ten exposure distributions generated by P-NEM, two air quality scenarios ( as-is'' and attainment''), and two exposure periods (1 and 10 ozone seasons). The results vary across experts, are not very sensitive to variations in P-NEM exposure distributions, are lower for attainment conditions than as-is conditions, and are lower for 1 season of exposure than 10 seasons. Although these results are specific to children living in areas having exposure patterns similar to those found in the Northeast, they are fairly representative of results for outdoor workers in the Northeast and Southern California and for children in Southern California. The reason for this is that many experts believe that children and outdoor workers respond in a similar fashion to the given exposure patterns, or that exposure patterns in the Northeast and Southern California are similar. Some experts held both of these beliefs. These results should help policymakers evaluate alternative national ambient air quality standards for ozone. 4 refs., 9 figs., 3 tabs.

  3. Chronic lung injury risk estimates for urban areas having ozone patterns similar to those in the Northeast

    SciTech Connect

    Absil, M.; Narducci, P.; Whitfield, R.; Richmond, H.M.

    1991-12-31

    This paper describes the approach and result of an assessment of health risks associated with long-term exposure to ozone. The health endpoint of interest is the probability of formation of mild lesions in the centriacinar region of the lung among children living in New York City. The risk model incorporates an exposure model and a health model. The exposure model is preliminary results of the probabilistic NAAQS Exposure Model (P-NEM) for ozone, and the health model is the judgments of active researchers about the likelihood of formation of ozone-induced lesions in the human lung. Children and New York City were chosen as the population and city of interest because it is believed that children are more sensitive to ozone than any other group of people, and New York City is more representative of other urban areas than Los Angeles, the other city of which P-NEM exposure results are available. Risk results are presented for ten exposure distributions generated by P-NEM, two air quality scenarios (``as-is`` and ``attainment``), and two exposure periods (1 and 10 ozone seasons). The results vary across experts, are not very sensitive to variations in P-NEM exposure distributions, are lower for attainment conditions than as-is conditions, and are lower for 1 season of exposure than 10 seasons. Although these results are specific to children living in areas having exposure patterns similar to those found in the Northeast, they are fairly representative of results for outdoor workers in the Northeast and Southern California and for children in Southern California. The reason for this is that many experts believe that children and outdoor workers respond in a similar fashion to the given exposure patterns, or that exposure patterns in the Northeast and Southern California are similar. Some experts held both of these beliefs. These results should help policymakers evaluate alternative national ambient air quality standards for ozone. 4 refs., 9 figs., 3 tabs.

  4. Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response.

    PubMed

    Mishra, Amit Kumar; Agrawal, S B

    2015-05-01

    Surface-level ozone (O3) has been regarded as one of the most significant phytotoxic pollutants worldwide. Investigations addressing adverse impacts of elevated O3 on mung bean (Vigna radiata L.), an important leguminous crop of the Indian subcontinent, are still limited. The present study analyzed the differences on the foliar injury, reactive oxygen species (ROS) generation, antioxidative defense system, physiology, and foliar protein profile of two tropical mung bean cultivars (HUM-2 and HUM-6) exposed to elevated O3 under near-natural conditions. Both cultivars were negatively affected by the pollutant, but the response was cultivar-specific. Results revealed that elevated O3 induced higher levels of ROS (O2 (·-) and H2O2) and lipid peroxidation leading to greater foliar injury in HUM-2 compared to HUM-6. Photosynthetic pigments, photosynthetic rate, stomatal conductance, and photochemical efficiency reduced under elevated O3 exposure and the extent of reduction was higher in HUM-2. Principal component analysis revealed that photosynthetic performance and quantum yield were drastically affected in HUM-2 as compared to HUM-6. Activities of antioxidative enzymes were also stimulated, suggesting generation of oxidative stress under elevated O3. HUM-6 showed higher induction of antioxidative enzymes than HUM-2. One-dimensional gel electrophoresis analysis showed drastic reductions in the abundantly present ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large and small subunits and the decrease was higher in HUM-2. Altogether, results suggested that higher accumulation of ROS and limited induction of antioxidant defense system led to more leaf injury and impairment of photosynthesis in HUM-2 than HUM-6 depicting its higher sensitivity towards elevated O3. PMID:25326391

  5. Damage patterns of retinal nerve fiber layer in acute and chronic intraocular pressure elevation in primary angle closure glaucoma

    PubMed Central

    Liu, Xing; Li, Mei; Zhong, Yi-Min; Xiao, Hui; Huang, Jing-Jing; Kong, Xiang-Yun

    2010-01-01

    AIM To observe the differences of damage patterns of retinal nerve fiber layer (RNFL) between acute and chronic intraocular pressure (IOP) elevation in primary angle closure glaucoma (PACG) using optical coherence tomography (OCT). METHODS Twenty-four patients (48 eyes) with unilateral acute PACG (APACG) attack in the 6 months after admission and 36 patients (64 eyes) with chronic PACG (CPACG) were included in this prospective study. For all cases, IOP has been controlled under 21mmHg after treatment. Using stratus OCT, the RNFL thickness was assessed in eyes with PACG within 3 days, 2 weeks, 1, 3 and 6 months after IOP was controlled. Repeated measures ANOVA was used to examine the changes of RNFL thickness at different time after IOP being controlled in both acute attack eyes and unaffected fellow eyes of APACG and eyes with CPACG. RESULTS The mean RNFL thickness for the APACG-attacked eyes increased significantly within 3 days (121.49±23.84)µm after acute onset and then became thinner along with time [(107.22±24.72)µm at 2 weeks,(93.58±18.37)µm at 1 month, (84.10±19.89)µm at 3 months and (78.98±19.17)µm at 6 months]. In APACG-attacked eyes, there were significant differences of average RNFL thickness at 5 different times after IOP was controlled (P<0.001). In the APACG unaffected fellow eyes and CPACG eyes, there were no significant differences in mean RNFL thickness at 5 different times(F=0.450, P=0.104 in APACG unaffected fellow eyes and F=1.558, P=0.200 in CPACG eyes). There was significant difference for interaction between time periods and groups (F=1.912, P=0.003). CONCLUSION RNFL damage patterns are different under different IOP elevated courses. In APACG, RNFL was found to be swollen and thickening right after acute attack and then becomes thinning and atrophy along with the time, while RNFL was found to be diffused thinness in CPACG. PMID:22553541

  6. Legg-Calvé-Perthes disease produces chronic hip synovitis and elevation of interleukin-6 in the synovial fluid.

    PubMed

    Kamiya, Nobuhiro; Yamaguchi, Ryosuke; Adapala, Naga Suresh; Chen, Elena; Neal, David; Jack, Obrien; Thoveson, Alec; Gudmundsson, Paul; Brabham, Case; Aruwajoye, Olumide; Drissi, Hicham; Kim, Harry K W

    2015-06-01

    Legg-Calvé-Perthes disease (LCPD) is a childhood hip disorder of ischemic osteonecrosis of the femoral head. Hip joint synovitis is a common feature of LCPD, but the nature and pathophysiology of the synovitis remain unknown. The purpose of this study was to determine the chronicity of the synovitis and the inflammatory cytokines present in the synovial fluid at an active stage of LCPD. Serial MRI was performed on 28 patients. T2-weighted and gadolinium-enhanced MR images were used to assess synovial effusion and synovial enhancement (hyperemia) over time. A multiple-cytokine assay was used to determine the levels of 27 inflammatory cytokines and related factors present in the synovial fluid from 13 patients. MRI analysis showed fold increases of 5.0 ± 3.3 and 3.1 ± 2.1 in the synovial fluid volume in the affected hip compared to the unaffected hip at the initial and the last follow-up MRI, respectively. The mean duration between the initial and the last MRI was 17.7 ± 8.3 months. The volume of enhanced synovium on the contrast MRI was increased 16.5 ± 8.5 fold and 6.3 ± 5.6 fold in the affected hip compared to the unaffected hip at the initial MRI and the last follow-up MRI, respectively. In the synovial fluid of the affected hips, IL-6 protein levels were significantly increased (LCPD: 509 ± 519 pg/mL, non-LCPD: 19 ± 22 pg/mL; p = 0.0005) on the multi-cytokine assay. Interestingly, IL-1β and TNF-α levels were not elevated. In the active stage of LCPD, chronic hip synovitis and significant elevation of IL-6 are produced in the synovial fluid. Further studies are warranted to investigate the role of IL-6 on the pathophysiology of synovitis in LCPD and how it affects bone healing. PMID:25556551

  7. Predictors of thromboxane levels in patients with non-ST-elevation acute coronary syndromes on chronic aspirin therapy.

    PubMed

    Niccoli, Giampaolo; Giubilato, Simona; Leo, Andrea; Cosentino, Nicola; Fracassi, Francesco; Cataneo, Leonardo; Porto, Italo; Leone, Antonio Maria; Burzotta, Francesco; Trani, Carlo; Biasucci, Luigi Marzio; Narducci, Maria Lucia; Pulcinelli, Fabio Maria; Crea, Filippo

    2012-07-01

    High levels of thromboxane A2 (TxA2), a key mediator of platelet activation and aggregation, are associated with an increased risk of cardiovascular events. We aimed at assessing the predictors of higher plasma levels of TxB2, the stable metabolite of TxA2, in consecutive patients presenting with non-ST-elevation acute coronary syndrome (NSTE-ACS) on previous aspirin (ASA) treatment undergoing coronary angiography. Ninety-eight consecutive patients (age 61 ± 11, 75% males) with NSTE-ACS, on previous chronic ASA treatment, were prospectively enrolled in this study. Coronary disease extent was assessed by angiography according to the Bogaty score. In all patients, admission plasma levels of TxB2 (pg/ml) were measured by enzyme-linked immunosorbent assay, and patients showing TxB2 levels in the fourth quartile were compared to patients showing TxB2 levels in the lower quartiles. Multivariable logistic regression analysis showed that platelet count (odds ratio [OR] 1.18, 95% confidence interval [CI] 1.02-1.63, p=0.04), multivessel coronary disease (OR 1.37, 95% CI 1.13-3.67, p=0.03), and coronary atherosclerosis extent index (OR 1.91, 95% CI 1.45-6.79, p=0.001) were independent predictors of TxB2 level upper quartile. Of note, C-reactive protein serum levels were similar in patients with TxB2 levels in the upper quartile as compared to those in the lower quartiles (p=0.49). In conclusion, NSTE-ACS patients with severe coronary atherosclerosis may have incomplete suppression of TxA2 production despite chronic ASA therapy. This finding suggests that additional efforts should be made to lower TxA2 levels in patients with widespread coronary artery disease. PMID:22535468

  8. CANOPY REFLECTANCE OF SOYBEAN AS AFFECTED BY CHRONIC DOSES OF OZONE IN OPEN-TOP FIELD CHAMBERS

    EPA Science Inventory

    The relationship between canopy reflectance and ozone (03) treatment was investigated in a field experiment with soybean growing in 3-m diameter, 2.4-m high open-top exposure chambers. he objectives were to develop an understanding of the pattern of reflectance changes induced by...

  9. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    PubMed

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. PMID:26819206

  10. Growth response to a changing environment-Impacts of tropospheric ozone dose on photosynthesis of Norway spruce forests in Austria

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhen; Pietsch, Stephan; Hasenauer, Hubert

    2010-05-01

    Tropospheric ozone is an important air pollutant, although plants have active defense strategies (e.g. antioxidants), the cumulative ozone dose may lead to chronic damages to plant tissues. Ozone enters into plants through stomata and reacts with other chemicals to create toxic compounds. This affects plant photosynthesis and may reduce CO2 fixation, and consequently growth. Open top cambers (OTC) are usually used to study the effects of elevated ozone levels on photosynthesis; whereas field studies with on site occurring ozone levels are rare. A recent modelling study on Norway spruce stands in Austria exhibited trends in model errors indicating that an increase in ozone dose leads to a reduction in volume increment. This study aims to explore how different ozone doses affect photosynthesis under field conditions and may translate into growth response for 12 stands of Norway spruce, distributed along an ozone concentration gradient across Austria. A LI-6400xt photosynthesis system was utilized to collect physiological parameters including net photosynthesis, stomata conductance, internal CO2 concentration, transpiration, etc. Chlorophyll fluorescence data was collected by using a PEA chlorophyll fluorescence meter, and chlorophyll content was measured. Morphological characteristics and soil samples were also analyzed. Ozone dose to leaf tissue was calculated from external ozone concentration, the conductance of the stomata to ozone, the leaf area index and the time span of the day when ozone uptake takes place. Our results confirm that increasing cumulative ozone dose reduces maximum assimilation rate and carboxylation efficiency under field conditions. Our final goal is to quantify how far this ozone induced reduction in assimilation power ultimately translates into a growth reduction of Norway spruce in Austria.

  11. Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior

    PubMed Central

    Otte, David-Marian; Barcena de Arellano, Maria Luisa; Bilkei-Gorzo, Andras; Albayram, Önder; Imbeault, Sophie; Jeung, Haang; Alferink, Judith; Zimmer, Andreas

    2013-01-01

    NMDA receptors are activated after binding of the agonist glutamate to the NR2 subunit along with a co-agonist, either L-glycine or D-serine, to the NR1 subunit. There is substantial evidence to suggest that D-serine is the most relevant co-agonist in forebrain regions and that alterations in D-serine levels contribute to psychiatric disorders. D-serine is produced through isomerization of L-serine by serine racemase (Srr), either in neurons or in astrocytes. It is released by astrocytes by an activity-dependent mechanism involving secretory vesicles. In the present study we generated transgenic mice (SrrTg) expressing serine racemase under a human GFAP promoter. These mice were biochemically and behaviorally analyzed using paradigms of anxiety, depression and cognition. Furthermore, we investigated the behavioral effects of long-term administration of D-serine added to the drinking water. Elevated brain D-serine levels in SrrTg mice resulted in specific behavioral phenotypes in the forced swim, novelty suppression of feeding and olfactory bulbectomy paradigms that are indicative of a reduced proneness towards depression-related behavior. Chronic dietary D-serine supplement mimics the depression-related behavioral phenotype observed in SrrTg mice. Our results suggest that D-serine supplementation may improve mood disorders. PMID:23805296

  12. Changes in southern Piedmont grassland community structure and nutritive quality with future climate scenarios of elevated tropospheric ozone and altered rainfall patterns.

    PubMed

    Gilliland, N J; Chappelka, A H; Muntifering, R B; Ditchkoff, S S

    2016-01-01

    Forage species common to the southern USA Piedmont region, Lolium arundinacea, Paspalum dilatatum, Cynodon dactylon and Trifolium repens, were established in a model pasture system to test the future climate change scenario of increasing ozone exposure in combination with varying rainfall amounts on community structure and nutritive quality. Forages were exposed to two levels of ozone [ambient (non-filtered; NF) and twice ambient (2×) concentrations] with three levels of precipitation (average or ±20% of average) in modified open-top chambers (OTCs) from June to September 2009. Dry matter (DM) yield did not differ over the growing season between forage types, except in primary growth grasses where DM yield was higher in 2× than NF treatment. Primary growth clover decreased in nutritive quality in 2× ozone because of increased concentrations of neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL). Re-growth clover exhibited the largest decrease in nutritive quality, whereas grasses were not adversely affected in 2× ozone. Re-growth grasses responded positively to 2× ozone exposure, as indicated in increased relative food value (RFV) and percentage crude protein (CP) than NF-exposed re-growth grasses. Effects of precipitation were not significant over the growing season for primary or re-growth forage, except in primary growth grasses where DM yield was higher in chambers with above average (+20%) precipitation. Total canopy cover was significantly higher over the growing season in chambers receiving above average precipitation, but no significant effects were observed with ozone. Results indicate shifts in plant community structure and functioning related to mammalian herbivore herbivory in future climate change scenarios. PMID:25727344

  13. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    NASA Astrophysics Data System (ADS)

    Hodnebrog, Ø.; Solberg, S.; Stordal, F.; Svendby, T. M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G. G.; Turquety, S.; Richter, A.; Burrows, J. P.; Denier van der Gon, H. A. C.

    2012-09-01

    The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research. The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements. Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on ozone was through the temperature dependence of the biogenic emissions

  14. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats.

    PubMed

    Miller, Desinia B; Snow, Samantha J; Henriquez, Andres; Schladweiler, Mette C; Ledbetter, Allen D; Richards, Judy E; Andrews, Debora L; Kodavanti, Urmila P

    2016-09-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25ppm or 1.00ppm ozone, 5h/day, 3 consecutive days/week (wk) for 13wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13wk or following a 1wk recovery period (13wk+1wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13wk, however, these responses were largely reversible following a 1wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. PMID:27368153

  15. Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events.

    PubMed

    Kim, Richard B; Morse, Bridget L; Djurdjev, Ognjenka; Tang, Mila; Muirhead, Norman; Barrett, Brendan; Holmes, Daniel T; Madore, Francois; Clase, Catherine M; Rigatto, Claudio; Levin, Adeera

    2016-05-01

    Cardiovascular disease is more common in patients with chronic kidney disease (CKD), and traditional risk factors do not adequately predict those at risk for cardiovascular (CV) events. Recent evidence suggests elevated trimethylamine N-oxide (TMAO), created by gut microflora from dietary L-carnitine and choline, is associated with CV events. We investigated the relationship of TMAO levels in patients with stages 3b and 4 CKD to ischemic CV events using the CanPREDDICT cohort, a Canada-wide observational study with prospective 3-year follow-up of adjudicated CV events. Baseline samples were obtained for 2529 CKD patients. TMAO, choline, and L-carnitine levels were measured using tandem mass spectrometry. Baseline median TMAO level was high for the whole cohort (20.41 μM; interquartile range [IQR]: 12.82-32.70 μM). TMAO was independently associated with CV events (hazard ratio 1.23; 95% confidence interval: 1.06-1.42 / 1 SD lnTMAO) after adjusting for all potential CV risk factors. Those in the highest TMAO quartile had significantly higher risk of CV events (adjusted hazard ratio 1.59; 95% confidence interval: 1.04-2.43; P = 0.0351) in the analysis of recurring ischemic events. Among those with stage 3b CKD (hazard ratio 1.45; 95% confidence interval: 1.12-1.87 / 1 SD lnTMAO), independent of kidney function, TMAO levels identified those at highest risk for events. Our results suggest that TMAO may represent a new potentially modifiable CV risk factor for CKD patients. Further studies are needed to determine sources of variability and if lowering of TMAO reduces CV risk in CKD. PMID:27083288

  16. Coronary Stents in Patients with ST-Elevation Myocardial Infarction and Chronic Kidney Disease Undergoing Primary Percutaneous Coronary Intervention

    PubMed Central

    Ahmed, Khurshid; Chakraborty, Rabin; Ahmed, Sumera; Hong, Young Joon; Sim, Doo Sun; Park, Keun Ho; Kim, Ju Han; Ahn, Youngkeun; Kang, Jung Chaee; Cho, Myeong Chan; Kim, Chong Jin; Kim, Young Jo

    2012-01-01

    Background and Objectives Chronic kidney disease (CKD) is associated with poor outcomes after percutaneous coronary intervention (PCI). We sought to compare different coronary stents used during primary PCI in patients with ST-elevation myocardial infarction (STEMI) and CKD. Subjects and Methods We selected 2408 consecutive STEMI patients with CKD (estimated glomerular filtration rate <60 mL/min/1.73 m2) undergoing primary PCI and divided them into 5 groups based on the type of stent implanted: 1) bare metal stent (BMS), 2) paclitaxel-eluting stent (PES), 3) sirolimus-eluting stent (SES), 4) zotarolimus-eluting stent (ZES), or 5) everolimus-eluting stent (EES). The study endpoint was the number of major adverse cardiac events (MACE) at 12 months. Results There was no significant difference in the incidence of 12-month myocardial infarction, target lesion revascularization, or target vessel revascularization between stent groups; however, the overall rate of repeat revascularization differed significantly between groups. All-cause death differed significantly among the groups. The incidence of 12-month MACE in BMS, PES, SES, ZES, and EES was 8.3%, 9.8%, 8.6%, 5.5%, and 2.6%, respectively (p<0.001). Kaplan-Meier analysis did not show a significant differences in 12-month MACE-free survival among the groups (log-rank p=0.076). This finding remained the same after adjusting for multiple confounders (p=0.147). Conclusion Any of the 5 stents can be used to treat STEMI patients with CKD undergoing primary PCI; all have similar risk of 12-month MACE. This result is hypothesis-generating and warrants further evaluation with a long-term randomized study. PMID:23323121

  17. Influences of elevated carbon dioxide and ozone on soil respiration and carbon accumulation in a no-till soybean-wheat system after six years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric carbon dioxide and ozone often have counteracting influences on many C3 crops depending on the concentration of the gases and sensitivity of the crop and variety, but effects of these gases on plant-soil processes are poorly understood. The objective of this six-year experiment was to d...

  18. The impact of SO/sub 2/ on potatoes chronically stressed with ozone. Final report April 1978-August 1979

    SciTech Connect

    Foster, K.W.

    1980-11-01

    Potato crops in the San Joaquin Valley of California may be damaged by air pollution, specifically ozone and/or sulfur dioxide. Experiments at the University of California, Riverside, were conducted to examine the effects of four levels of ambient oxidant treatment in factorial combination with two levels of sulfur dioxide treatment on yield and quality of 'Centennial', a russet-skinned cultivar. Root and shoot dry weights and tuber yield were linearly reduced by oxidant treatments. Sulfur dioxide effects were less marked but of possible importance. No treatment effects on dry matter or sugar contents of tubers were observed.

  19. Seasonal variability of surface ozone in Korea

    NASA Astrophysics Data System (ADS)

    Wie, J.; Moon, B. K.; Choi, H.

    2015-12-01

    Tropospheric ozone around East Asia include Korea impacts on air quality and climate, and has been increased with rapid economic growth. To better understanding, we analyzed seasonal variability of tropospheric ozone simulated by using GEOS-Chem. Surface ozone concentration in Korea has double peaks in April and September. Tropospheric ozone increases primarily associated with westerly wind anomaly in spring, with warming in summer and autumn, and with cloud depletion in winter. Surface ozone in spring elevated after mature-phase El Niño winters. Key words: surface ozone, seasonal variability, Korea, East Asia Acknowledgements This work was supported by Korea Ministry of Environment as "Climate Change Correspondence Program."

  20. Elevated serum interleukin-38 level at baseline predicts virological response in telbivudine-treated patients with chronic hepatitis B

    PubMed Central

    Wang, Hong-Juan; Jiang, Yan-Fang; Wang, Xin-Rui; Zhang, Man-Li; Gao, Pu-Jun

    2016-01-01

    AIM: To investigate serum interleukin (IL)-38 level and its clinical role in predicting virological response (VR) to telbivudine (LdT) in patients with chronic hepatitis B (CHB). METHODS: The study participants were divided into two groups; one group consisted of 43 healthy controls (HCs) and the other group consisted of 46 patients with hepatitis B e antigen-positive CHB. All patients were administered 600 mg of oral LdT daily for 52 wk, and they visited physicians every 12 wk for physical examination and laboratory tests. Serum IL-38 levels were determined using ELISA. The concentrations of serum Th1- and Th2-type cytokines were measured using the cytometric bead array (CBA) method. RESULTS: Serum levels of IL-38 at baseline in all patients were higher than those in HCs [306.97 (123.26-492.79) pg/mL vs 184.50 (135.56-292.16) pg/mL, P = 0.019]; the levels returned to normal after the first 12 wk of treatment with LdT [175.51 (103.90-331.91) pg/mL vs 184.50 (135.56-292.16) pg/mL, P > 0.05]. Serum IL-38 levels at baseline were positively associated with serum aspartate aminotransferase levels in patients with CHB (r = 0.311, P = 0.036). Higher levels of serum IL-38 at baseline were associated with a greater probability of VR to LdT treatment at 24 wk (48.15% vs 15.79%, P = 0.023) and 52 wk (66.67% vs 36.84%, P = 0.044). The levels of serum IL-38 in patients with primary non-response at week 12 after treatment initiation were lower than those in patients with primary response [64.44 (49.85-172.08) pg/mL vs 190.54 (121.35-355.28) pg/mL, P = 0.036]. Serum IL-38 levels were correlated with serum IL-6 and IL-12 levels in patients with CHB during treatment with LdT. CONCLUSION: Elevated serum IL-38 levels in untreated CHB patients reflect ongoing liver injury. Higher serum IL-38 levels before treatment indicate a greater probability of VR to LdT treatment. PMID:27182162

  1. The tumor suppressor p53 guides GluA1 homeostasis through Nedd4-2 during chronic elevation of neuronal activity.

    PubMed

    Jewett, Kathryn A; Zhu, Jiuhe; Tsai, Nien-Pei

    2015-10-01

    Chronic activity perturbation in neurons can trigger homeostatic mechanisms to restore the baseline function. Although the importance and dysregulation of neuronal activity homeostasis has been implicated in neurological disorders such as epilepsy, the complete signaling by which chronic changes in neuronal activity initiate the homeostatic mechanisms is unclear. We report here that the tumor suppressor p53 and its signaling are involved in neuronal activity homeostasis. Upon chronic elevation of neuronal activity in primary cortical neuron cultures, the ubiquitin E3 ligase, murine double minute- 2 (Mdm2), is phosphorylated by the kinase Akt. Phosphorylated Mdm2 triggers the degradation of p53 and subsequent induction of a p53 target gene, neural precursor cell expressed developmentally down-regulated gene 4-like (Nedd4-2). Nedd4-2 encodes another ubiquitin E3 ligase. We identified glutamate receptor subunit 1 (GluA1), subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as a novel substrate of Nedd4-2. The regulation of GluA1 level is known to be crucial for neuronal activity homeostasis. We confirmed that, by pharmacologically inhibiting Mdm2-mediated p53 degradation or genetically reducing Nedd4-2 in a mouse model, the GluA1 ubiquitination and down-regulation induced by chronically elevated neuronal activity are both attenuated. Our findings demonstrate the first direct function of p53 in neuronal homeostasis and elucidate a new mechanism by which cortical neurons respond to chronic activity perturbation. PMID:26250624

  2. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model

    PubMed Central

    2014-01-01

    Background Dendrites of retinal ganglion cells (RGCs) synapse with axon terminals of bipolar cells in the inner plexiform layer (IPL). Changes in RGC dendrites and synapses between bipolar cells in the inner retinal layer may critically alter the function of RGCs in glaucoma. Recently, synaptic plasticity has been observed in the adult central nervous system, including the outer retinal layers. However, few studies have focused on changes in the synapses between RGCs and bipolar cells in glaucoma. In the present study, we used a rat model of ocular hypertension induced by episcleral vein cauterization to investigate changes in synaptic structure and protein expression in the inner retinal layer at various time points after moderate intraocular pressure (IOP) elevation. Results Synaptophysin, a presynaptic vesicle protein, increased throughout the IPL, outer plexiform layer, and outer nuclear layer after IOP elevation. Increased synaptophysin after IOP elevation was expressed in bipolar cells in the innermost IPL. The RGC marker, SMI-32, co-localized with synaptophysin in RGC dendrites and were significantly increased at 1 week and 4 weeks after IOP elevation. Both synaptophysin and postsynaptic vesicle protein, PSD-95, were increased after IOP elevation by western blot analysis. Ribbon synapses in the IPL were quantified and structurally evaluated in retinal sections by transmission electron microscopy. After IOP elevation the total number of ribbon synapses decreased. There were increases in synapse diameter and synaptic vesicle number and decreases in active zone length and the number of docked vesicles after IOP elevation. Conclusions Although the total number of synapses decreased as RGCs were lost after IOP elevation, there are attempts to increase synaptic vesicle proteins and immature synapse formation between RGCs and bipolar cells in the inner retinal layers after glaucoma induction. PMID:25116810

  3. An observational retrospective/horizontal study to compare oxygen-ozone therapy and/or global postural re-education in complicated chronic low back pain

    PubMed Central

    Apuzzo, Dario; Giotti, Chiara; Pasqualetti, Patrizio; Ferrazza, Paolo; Soldati, Paola; Zucco, Gesualdo M.

    2014-01-01

    Summary Acute low back pain (LBP) is the fifth most common reason for physician visits and about nine out of ten adults experience back pain at some point in their life. In a large number of patients LBP is associated with disc herniation (DH). Recently, oxygen-ozone (O2O3) therapy has been used successfully in the treatment of LBP, reducing pain after the failure of other conservative treatments. The aim of this study was to assess the effects of O2O3 therapy in back pain rehabilitation, comparing three groups of patients suffering from chronic back pain associated with DH submitted to three different treatments: intramuscular O2O3 infiltrations, global postural re-education (GPR), or a combination of the two (O2O3+GPR). The data show that pain severity before treatment was significantly lower in the patients treated with GPR alone (VAS score 7.4) than in the O2O3+GPR patients (VAS score 8.5) and the O2O3 patients (VAS score 8.6). At the end of treatment, pain severity was lower in the O2O3 patients than in the GPR-alone patients. After some years of follow-up only the difference between O2O3+GPR and GPR-alone remained significant. PMID:25014047

  4. Genotypic variation in growth and physiological responses of Finnish hybrid aspen (Populus tremuloides x P. tremula) to elevated tropospheric ozone concentration.

    PubMed

    Oksanen, E; Amores, G; Kokko, H; Amores, J M; Kärenlampi, L

    2001-10-01

    Saplings of six Finnish hybrid aspen (Populus tremuloides Michx. x P. tremula L.) clones were exposed to 0, 50, 100 and 150 ppb ozone (O3) for 32 days in a chamber experiment to determine differences in O3 sensitivity among genotypes. Based on the chamber experiment, three clones with intermediate sensitivity to O3 were selected for a free-air O3 enrichment experiment in which plants were exposed for 2 months to either ambient air (control) or air containing 1.3 x the ambient O3 concentration. We measured stem height and radial growth, number of leaves, dry mass and relative growth rate of leaves, stem and roots, visible leaf injuries, net photosynthesis and stomatal conductance of the clones. There was high clonal variation in susceptibility to O3 in the chamber experiment, indicated by foliar injuries and differential reductions in growth and net photosynthesis. In the free-air O3 enrichment experiment, ozone caused a shift in resource allocation toward stem height growth, thereby altering the shoot to root balance. In both experiments, low O3 concentrations tended to stimulate growth of most clones, whereas 100 and 150 ppb O3 in the chamber experiment impaired growth of most clones. However, growth of the most O3-tolerant clone was not significantly affected by any O3 treatment. PMID:11600339

  5. SOIL RESPIRED D13C SIGNATURES REFLECT ROOT EXUDATE OR ROOT TURNOVER SIGNATURES IN AN ELEVATED CO2 AND OZONE MESOCOSM EXPERIMENT

    EPA Science Inventory

    Bulk tissue and root and soil respired d13C signatures were measured throughout the soil profile in a Ponderosa Pine mesocosm experiment exposed to ambient and elevated CO2 concentrations. For the ambient treatment, root (0-1mm, 1-2mm, and >2mm) and soil d13C signatures were ?24...

  6. Diseases Burden of Chronic Obstructive Pulmonary Disease (COPD) Attributable to Ground-Level Ozone in Thailand: Estimates Based on Surface Monitoring Measurements Data

    PubMed Central

    Pinichka, Chayut; Bundhamcharoen, Kanitta; Shibuya, Kenji

    2016-01-01

    Background: Ambient ozone (O3) pollution has increased globally since preindustrial times. At present, O3 is one of the major air pollution concerns in Thailand, and is associated with health impacts such as chronic obstructive pulmonary disease (COPD). The objective of our study is to estimate the burden of disease attributed to O3 in 2009 in Thailand based on empirical evidence. Methods: We estimated disability-adjusted life years (DALYs) attributable to O3 using the comparative risk assessment framework in the Global Burden of Diseases (GBD) study. We quantified the population attributable fraction (PAF), integrated from Geographic Information Systems (GIS)-based spatial interpolation, the population distribution of exposure, and the exposure-response coefficient to spatially characterize exposure to ambient O3 pollution on a national scale. Exposure distribution was derived from GIS-based spatial interpolation O3 exposure model using Pollution Control Department Thailand (PCD) surface air pollution monitor network sources. Relative risk (RR) and population attributable fraction (PAF) were determined using health impact function estimates for O3. Result: PAF (%) of COPD attributable to O3 were determined by region: at approximately, Northern = 2.1, Northeastern = 7.1, Central = 9.6, Eastern = 1.75, Western = 1.47 and Southern = 1.74. The total COPD burden attributable to O3 for Thailand in 2009 was 61,577 DALYs. Approximately 0.6% of the total DALYs in Thailand is male: 48,480 DALYs; and female: 13,097 DALYs. Conclusion: This study provides the first empirical evidence on the health burden (DALYs) attributable to O3 pollution in Thailand. Varying across regions, the disease burden attributable to O3 was 0.6% of the total national burden in 2009. Better empirical data on local specific sites, e.g. urban and rural areas, alternative exposure assessment, e.g. land use regression (LUR), and a local concentration-response coefficient are required for future studies

  7. Elevated Ecto-5’-nucleotidase-Mediated Increased Renal Adenosine Signaling Via A2B Adenosine Receptor Contributes to Chronic Hypertension

    PubMed Central

    Zhang, Weiru; Zhang, Yujin; Wang, Wei; Dai, Yingbo; Ning, Chen; Luo, Renna; Sun, Kaiqi; Glover, Louise; Grenz, Almut; Sun, Hong; Tao, Lijian; Zhang, Wenzheng; Colgan, Sean P.; Blackburn, Michael R.; Eltzschig, Holger K.; Kellems, Rodney E.; Xia, Yang

    2013-01-01

    Rationale Hypertension is the most prevalent life-threatening disease worldwide and is frequently associated with chronic kidney disease (CKD). However, the molecular basis underlying hypertensive CKD is not fully understood. Objective We sought to identify specific factors and signaling pathways that contribute to hypertensive CKD and thereby exacerbate disease progression. Methods and Results Using high-throughput quantitative reverse-transcription polymerase chain reaction profiling, we discovered that the expression level of 5′-ectonucleotidase (CD73), a key enzyme that produces extracellular adenosine, was significantly increased in the kidneys of angiotensin II–infused mice, an animal model of hypertensive nephropathy. Genetic and pharmacological studies in mice revealed that elevated CD73-mediated excess renal adenosine preferentially induced A2B adenosine receptor (ADORA2B) production and that enhanced kidney ADORA2B signaling contributes to angiotensin II–induced hypertension. Similarly, in humans, we found that CD73 and ADORA2B levels were significantly elevated in the kidneys of CKD patients compared with normal individuals and were further elevated in hypertensive CKD patients. These findings led us to further discover that elevated renal CD73 contributes to excess adenosine signaling via ADORA2B activation that directly stimulates endothelin-1 production in a hypoxia-inducible factor-α–dependent manner and underlies the pathogenesis of the disease. Finally, we revealed that hypoxia-inducible factor-α is an important factor responsible for angiotensin II–induced CD73 and ADORA2B expression at the transcriptional level. Conclusions Overall, our studies reveal that angiotensin II–induced renal CD73 promotes the production of renal adenosine that is a prominent driver of hypertensive CKD by enhanced ADORA2B signaling–mediated endothelin-1 induction in a hypoxia-inducible factor-α–dependent manner. The inhibition of excess adenosine

  8. Comparison of Retinal Nerve Fiber Layer Thickness In Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young versus Older Rats

    PubMed Central

    Abbott, Carla J.; Choe, Tiffany E.; Burgoyne, Claude F.; Cull, Grant; Wang, Lin; Fortune, Brad

    2014-01-01

    Purpose To compare in young and old rats longitudinal measurements of retinal nerve fiber layer thickness (RNFLT) and axonal transport 3-weeks after chronic IOP elevation. Method IOP was elevated unilaterally in 2- and 9.5-month-old Brown-Norway rats by intracameral injections of magnetic microbeads. RNFLT was measured by spectral domain optical coherence tomography. Anterograde axonal transport was assessed from confocal scanning laser ophthalmolscopy of superior colliculi (SC) after bilateral intravitreal injections of cholera toxin-B-488. Optic nerve sections were graded for damage. Results Mean IOP was elevated in both groups (young 37, old 38 mmHg, p = 0.95). RNFL in young rats exhibited 10% thickening at 1-week (50.9±8.1 µm, p<0.05) vs. baseline (46.4±2.4 µm), then 7% thinning at 2-weeks (43.0±7.2 µm, p>0.05) and 3-weeks (43.5±4.4 µm, p>0.05), representing 20% loss of dynamic range. RNFLT in old rats showed no significant change at 1-week (44.9±4.1 µm) vs. baseline (49.2±5.3 µm), but progression to 22% thinning at 2-weeks (38.0±3.7 µm, p<0.01) and 3-weeks (40.0±6.6 µm, p<0.05), representing 59% loss of dynamic range. Relative SC fluorescence intensity was reduced in both groups (p<0.001), representing 77–80% loss of dynamic range and a severe transport deficit. Optic nerves showed 75–95% damage (p<0.001). There was greater RNFL thinning in old rats (p<0.05), despite equivalent IOP insult, transport deficit and nerve damage between age groups (all p>0.05). Conclusion Chronic IOP elevation resulted in severely disrupted axonal transport and optic nerve axon damage in all rats, associated with mild RNFL loss in young rats but a moderate RNFL loss in old rats despite the similar IOP insult. Hence, the glaucomatous injury response within the RNFL depends on age. PMID:25501362

  9. Elevated Levels of Endocannabinoids in Chronic Hepatitis C May Modulate Cellular Immune Response and Hepatic Stellate Cell Activation

    PubMed Central

    Patsenker, Eleonora; Sachse, Philip; Chicca, Andrea; Gachet, María Salomé; Schneider, Vreni; Mattsson, Johan; Lanz, Christian; Worni, Mathias; de Gottardi, Andrea; Semmo, Mariam; Hampe, Jochen; Schafmayer, Clemens; Brenneisen, Rudolf; Gertsch, Jürg; Stickel, Felix; Semmo, Nasser

    2015-01-01

    The endocannabinoid (EC) system is implicated in many chronic liver diseases, including hepatitis C viral (HCV) infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC), however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH) and monoaclyglycerol lipase (MAGL) activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC), ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC) co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects. PMID:25826533

  10. Elevating your elevator talk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important and often overlooked item that every early career researcher needs to do is compose an elevator talk. The elevator talk, named because the talk should not last longer than an average elevator ride (30 to 60 seconds), is an effective method to present your research and yourself in a clea...

  11. Elevated on-treatment levels of serum IFN-gamma is associated with treatment failure of peginterferon plus ribavirin therapy for chronic hepatitis C

    PubMed Central

    Lu, Ming-Ying; Huang, Ching-I; Dai, Chia-Yen; Wang, Shu-Chi; Hsieh, Ming-Yen; Hsieh, Meng-Hsuan; Liang, Po-Cheng; Lin, Yi-Hung; Hou, Nai-Jen; Yeh, Ming-Lun; Huang, Chung-Feng; Lin, Zu-Yau; Chen, Shinn-Cherng; Huang, Jee-Fu; Chuang, Wan-Long; Yu, Ming-Lung

    2016-01-01

    Chronic hepatitis C virus (HCV) infection had been associated with cytokine imbalance. Cytokine dynamics in response to peginterferon/ribavirin therapy have an impact on the treatment efficacy for HCV patients. Ninety-two treatment-naive chronic hepatitis C patients were treated with 24 or 48 weeks of peginterferon/ribavirin therapy according to their viral genotypes. Sustained virologic response (SVR) is defined as undetectable HCV RNA throughout a 24-week post-treatment follow-up period. Dynamic serum levels of the following cytokines: (1) Th1-mediated cytokines: IFN-γ, interleukin-2, and TNF-alpha; (2)Th2-mediated cytokines: interleukin-4, interleukin-5, interleukin-6, and interleukin-10 and (3)immuno-modulatory cytokines: interleukin-1β, interleukin-8, and interleukin-12 were determined by Fluorescent Bead immunoassay. Serial dynamic cytokine expression demonstrated that not only elevated IFN-γ concentrations at specific time points but also the total IFN-γ amount was strongly linked to non-response in peginterferon/ribavirin therapy. IFN-γ levels could serve as an independent predictor for SVR analyzed by multivariate logistic regression test. The accuracy of discriminating responders from non-responders was acceptable when IFN-γ cut-off levels were set at 180, 120, and 40 pg/ml at the 4th week, 12th week, and end-of-treatment of therapy, respectively. Elevated on-treatment IFN-γ concentration was significantly associated with treatment failure among interleukin-28B rs8099917TT carriers and those patients failed to achieve rapid virologic response. PMID:26965318

  12. Retinal complications with elevated circulating plasma C5a associated with interferon-alpha therapy for chronic active hepatitis C.

    PubMed

    Sugano, S; Yanagimoto, M; Suzuki, T; Sato, M; Onmura, H; Aizawa, H; Makino, H

    1994-11-01

    Retinal hemorrhage is a complication of interferon therapy of unknown pathogenesis. We report two chronic active hepatitis C patients who developed retinal hemorrhage and/or cotton wool patches during interferon-alpha therapy 4 and 12 wk after beginning treatment. At the time of the hemorrhage, plasma-activated complement 5, a known potent intravascular aggregator of granulocytes, increased to 54 ng/ml in one patient and to 29 ng/ml in the other patient. When the hemorrhage resolved, it decreased to under 5 ng/ml. Our cases suggest that complement activation occurs in patients treated with interferon-alpha and that activation of complement 5 can lead to retinal capillary infarction and retinal hemorrhage. High levels of activated complement 5 may predict retinal artery infarction or perhaps microvascular emboli in the other organs. PMID:7942735

  13. Ozone exposure and systemic biomarkers: Evaluation of evidence for adverse cardiovascular health impacts.

    PubMed

    Goodman, Julie E; Prueitt, Robyn L; Sax, Sonja N; Pizzurro, Daniella M; Lynch, Heather N; Zu, Ke; Venditti, Ferdinand J

    2015-05-01

    The US Environmental Protection Agency (EPA) recently concluded that there is likely to be a causal relationship between short-term (< 30 days) ozone exposure and cardiovascular (CV) effects; however, biological mechanisms to link transient effects with chronic cardiovascular disease (CVD) have not been established. Some studies assessed changes in circulating levels of biomarkers associated with inflammation, oxidative stress, coagulation, vasoreactivity, lipidology, and glucose metabolism after ozone exposure to elucidate a biological mechanism. We conducted a weight-of-evidence (WoE) analysis to determine if there is evidence supporting an association between changes in these biomarkers and short-term ozone exposure that would indicate a biological mechanism for CVD below the ozone National Ambient Air Quality Standard (NAAQS) of 75 parts per billion (ppb). Epidemiology findings were mixed for all biomarker categories, with only a few studies reporting statistically significant changes and with no consistency in the direction of the reported effects. Controlled human exposure studies of 2 to 5 hours conducted at ozone concentrations above 75 ppb reported small elevations in biomarkers for inflammation and oxidative stress that were of uncertain clinical relevance. Experimental animal studies reported more consistent results among certain biomarkers, although these were also conducted at ozone exposures well above 75 ppb and provided limited information on ozone exposure-response relationships. Overall, the current WoE does not provide a convincing case for a causal relationship between short-term ozone exposure below the NAAQS and adverse changes in levels of biomarkers within and across categories, but, because of study limitations, they cannot not provide definitive evidence of a lack of causation. PMID:25959700

  14. Elevated 1,25-dihydroxyvitamin D levels in patients with chronic obstructive pulmonary disease treated with prednisone

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B.; Fong, L.; Steinbach, L.; Shellito, J.

    1993-01-01

    Glucocorticoid administration is a well established cause of osteopenia. Mechanisms underlying the deleterious effect of glucocorticoids on bone may include direct inhibition of bone formation as well as indirect effects through changes in intestinal calcium absorption, renal calcium excretion, and/or levels of the calciotropic hormones. To further examine the potential role of the calciotropic hormones we measured serum levels of PTH and 1,25 dihydroxyvitamin D [1,25(OH)2D], as well as serum and urine levels of calcium and vertebral bone density in patients with chronic obstructive pulmonary disease being managed with or without prednisone. Patients treated with prednisone had lower spinal bone density (53 vs. 106 mg/cm3) and higher serum calcium (2.40 vs. 2.33 mmol/l), urine calcium (6.9 vs. 2.7 mmol/24h), and 1,25(OH)2D levels (147 vs. 95 pmol/L). Compared to the patients not treated with glucocorticoids. PTH levels also tended to be higher (33 vs. 26 microliters-eq/ml), but the difference was not significant. Serum and urine calcium levels correlated positively with 1,25(OH)2D levels, but none of these measurements correlated with PTH levels. Our results suggest that prednisone treatment alters the regulation of 1,25(OH)2D production, and this may contribute to the loss of bone mineral induced by prednisone.

  15. Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution.

    PubMed

    Bandara, J M R S; Wijewardena, H V P; Liyanege, J; Upul, M A; Bandara, J M U A

    2010-09-15

    The endemic of chronic renal failure (CRF) emerged in 2002 in the farming provinces of Sri Lanka. An estimate of dietary cadmium intake was between 15 and 28 microg/kg body weight per week. The mean urinary cadmium in patients diagnosed with stage 5 kidney failure was 7.6 microg/g creatinine and 11.6 microg/g for asymptomatic persons. The agrochemical triple superphosphate (TSP) fertilizer containing 23.5-71.7 mg Cd/kg was the source of cadmium added to soils. Mean Cd content in cultivated vs. uncultivated soils in Anuradhapura district was 0.02 +/- 0.01 vs. 0.11 +/- 0.19 mg/kg while in Polonnaruwa district, it was 0.005 +/- 0.004 vs. 0.016 +/- 0.005 mg/kg. Prior to the Green Revolution, the amount of fertilizer used in rice cultivation in 1970 was 32,000 metric tons (Mts) rising to 74,000 Mts in 1975. Up to 68.9 Mts of Cd could have entered into the rice-cascade reservoir environment from TSP use since 1973. Diversion of the Mahaweli River in 1970-1980 further increased cadmium input. Cadmium transfer from Upper Mahaweli water to Polgolla was 72.13 kg/day. Cadmium content of the sediments from reservoirs collecting cadmium from irrigated TSP fertilized crop fields (rice and vegetables) was 1.8-2.4 mg/kg. PMID:20430069

  16. Thymoquinone ameliorated elevated inflammatory cytokines in testicular tissue and sex hormones imbalance induced by oral chronic toxicity with sodium nitrite.

    PubMed

    Alyoussef, Abdullah; Al-Gayyar, Mohammed M H

    2016-07-01

    Scientific evidence illustrated the health hazards of exposure to nitrites for prolonged time. Nitrites affected several body organs due to oxidative, inflammatory and apoptosis properties. Furthermore, thymoquinone (TQ) had curative effects against many diseases. We tried to discover the impact of both sodium nitrite and TQ on inflammatory cytokines contents in testicular tissues and hormonal balance both in vivo and in vitro. Fifty adult male SD rats received 80mg/kg sodium nitrite and treated with either 25 or 50mg/kg TQ daily by oral-gavage for twelve weeks. Testis were removed for sperms' count. Testicular tissue homogenates were used for assessment of protein and gene expression of IL-1β, IL-6, TNF-α, Nrf2 and caspase-3. Serum samples were used for measurement of testosterone, LH, FSH and prolactin. Moreover, all the parameters were measured in human normal testis cell-lines, CRL-7002. Sodium nitrite produced significant decrease in serum testosterone associated with raised FSH, LH and prolactin. Moreover, sodium nitrite significantly elevated TNF-α, IL-1β, IL-6, caspase-3 and reduced Nrf2. TQ significantly reversed all these effects both in vivo and in vitro. In conclusion, TQ ameliorated testicular tissue inflammation and restored the normal balance of sex hormones induced by sodium nitrite both in vivo and in vitro. PMID:27038016

  17. Polar ozone

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Grose, W. L.; Jones, R. L.; Mccormick, M. P.; Molina, Mario J.; Oneill, A.; Poole, L. R.; Shine, K. P.; Plumb, R. A.; Pope, V.

    1990-01-01

    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed.

  18. Ozone decomposition

    PubMed Central

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho

    2014-01-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  19. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  20. Tropospheric Enhancement of Ozone over the UAE

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  1. Ozone variability

    NASA Astrophysics Data System (ADS)

    Duetsch, H. U.

    1983-09-01

    The annual and long-term variations in the atmospheric ozone layer were examined on the basis of 55 yr of data taken at Aroya, Switzerland and 25 yr of data gathered by the global ozone network. Attention was given to annual and biennial variations, which showed that the midlatitude peak concentration was affected by a quasi-biennial variation of the tropical stratospheric circulation. Smaller scale circulation patterns were dominant in the lower stratosphere, although an observed negative trend of the total ozone was equally distributed between the troposphere and 24 km altitude. The global ozone increase detected in the 1960s was possible due to general circulation alterations, but may also have been influenced by injection of NO(x) into the atmosphere during atomic bomb testing.

  2. Ozone, Tropospheric

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1995-01-01

    In the early part of the 20th century, ground-based and balloon-borne measurements discovered that most of atmosphere's ozone is located in the stratosphere with highest concentrations located between 15 and 30 km (9,3 and 18.6 miles). For a long time, it was believed that tropospheric ozone originated from the stratosphere and that most of it was destroyed by contact with the earth's surface. Ozone, O3, was known to be produced by the photo-dissociation of molecular oxygen, O2, a process that can only occur at wavelengths shorter than 242 nm. Because such short-wave-length radiation is present only in the stratosphere, no tropospheric ozone production is possible by this mechanism. In the 1940s, however, it became obvious that production of ozone was also taking place in the troposphere. The overall reaction mechanism was eventually identified by Arie Haagen-Smit of the California Institute of Technology, in highly polluted southern California. The copious emissions from the numerous cars driven there as a result of the mass migration to Los Angeles after World War 2 created the new unpleasant phenomenon of photochemical smog, the primary component of which is ozone. These high levels of ozone were injuring vegetable crops, causing women's nylons to run, and generating increasing respiratory and eye-irritation problems for the populace. Our knowledge of tropospheric ozone increased dramatically in the early 1950s as monitoring stations and search centers were established throughout southern California to see what could be done to combat this threat to human health and the environment.

  3. Reduction of elevated cytokine levels in acute/acute-on-chronic liver failure using super-large pore albumin dialysis treatment: an in vitro study.

    PubMed

    Dominik, Adrian; Stange, Jan; Pfensig, Claudia; Borufka, Luise; Weiss-Reining, Helga; Eggert, Martin

    2014-08-01

    The removal of small water soluble toxins and albumin-bound toxins in acute liver failure patients (ALF) or acute-on-chronic liver failure (AocLF) patients has been established using extracorporeal liver support devices (e.g. Molecular Adsorbents Recirculating System; MARS). However, reduction of elevated cytokines in ALF/AocLF using MARS is still not efficient enough to lower patients' serum cytokine levels. New membranes with larger pores or higher cut-offs should be considered in extracorporeal liver support devices based on albumin dialysis in order to address these problems, as the introduction of super-large pore membranes could counterbalance high production rates of cytokines and further improve detoxification in vivo. Using an established in vitro two compartment albumin dialysis model, three novel membranes of different pore sizes were compared with the MARS Flux membrane for cytokine removal and detoxification qualities in vitro. Comparing the membranes, no improvement in the removal of water soluble toxins was found. Albumin-bound toxins were removed more efficiently using novel large (Emic2) to super-large pore sized membranes (S20; HCO Gambro). Clearance of cytokines IL-6 and tumor necrosis factor-α was drastically improved using super-large pore membranes. The Emic2 membrane predominantly removed IL-6. In vitro data suggest that the usage of larger pore sized membranes in albumin dialysis can efficiently reduce elevated cytokine levels and liver failure toxins. Using large to super-large pore membranes might exert effects on patients' serum cytokine levels. Combined with increased detoxification this could lead to higher survival in ALF/AocLF. Promising membranes for clinical evaluation have been identified. PMID:24215331

  4. Ozone Risk Assessment Utilities

    Energy Science and Technology Software Center (ESTSC)

    1999-08-10

    ORAMUS is a user-friendly, menu-driven software system that calculates and displays user-selected risk estimates for health effects attributable to short-term exposure to tropospheric ozone. Inputs to the risk assessment are estimates of exposure to ozone and exposure-response relationships to produce overall risk estimates in the form of probability distributions. Three fundamental models are included: headcount risk, benchmark risk, and hospital admissions. Exposure-response relationships are based on results of controlled human exposure studies. Exposure estimates aremore » based on the EPA''s probabilistic national ambient air quality standards (NAAQS) exposure model, pNEM/Osub3, which simulates air quality associated with attainment of alternative NAAQS. Using ORAMUS, risk results for 27 air quality scenarios, air quality in 9 urban areas, 33 health endpoints, and 4 chronic health endpoints can be calculated.« less

  5. Selected Cytokines Serve as Potential Biomarkers for Predicting Liver Inflammation and Fibrosis in Chronic Hepatitis B Patients With Normal to Mildly Elevated Aminotransferases.

    PubMed

    Deng, Yong-Qiong; Zhao, Hong; Ma, An-Lin; Zhou, Ji-Yuan; Xie, Shi-Bin; Zhang, Xu-Qing; Zhang, Da-Zhi; Xie, Qing; Zhang, Guo; Shang, Jia; Cheng, Jun; Zhao, Wei-Feng; Zou, Zhi-Qiang; Zhang, Ming-Xiang; Wang, Gui-Qiang

    2015-11-01

    Previous studies of small cohorts have implicated several circulating cytokines with progression of chronic hepatitis B (CHB). However, to date there have been no reliable biomarkers for assessing histological liver damage in CHB patients with normal or mildly elevated alanine aminotransferase (ALT). The aim of the present study was to investigate the association between circulating cytokines and histological liver damage in a large cohort. Also, this study was designed to assess the utility of circulating cytokines in diagnosing liver inflammation and fibrosis in CHB patients with ALT less than 2 times the upper limit of normal range (ULN). A total of 227 CHB patients were prospectively enrolled. All patients underwent liver biopsy and staging by Ishak system. Patients with at least moderate inflammation showed significantly higher levels of CXCL-11, CXCL-10, and interleukin (IL)-2 receptor (R) than patients with less than moderate inflammation (P < 0.001). Patients with significant fibrosis had higher levels of IL-8 (P = 0.027), transforming growth factor alpha (TGF-α) (P = 0.011), IL-2R (P = 0.002), and CXCL-11 (P = 0.032) than the group without significant fibrosis. In addition, 31.8% and 29.1% of 151 patients with ALT < 2 × ULN had at least moderate inflammation and significant fibrosis, respectively. Multivariate analysis demonstrated that CXCL-11 was independently associated with at least moderate inflammation, and TGF-α and IL-2R independently correlated with significant fibrosis in patients with ALT < 2 × ULN. Based on certain cytokines and clinical parameters, an inflammation-index and fib-index were developed, which showed areas under the receiver operating characteristics curve (AUROC) of 0.75 (95% CI 0.66-0.84) for at least moderate inflammation and 0.82 (95% CI 0.75-0.90) for significant fibrosis, correspondingly. Compared to existing scores, fib-index was significantly superior to aspartate aminotransferase

  6. Association of Elevated Serum Lipoprotein(a), Inflammation, Oxidative Stress and Chronic Kidney Disease with Hypertension in Non-diabetes Hypertensive Patients.

    PubMed

    Tangvarasittichai, Surapon; Pingmuanglaew, Patcharin; Tangvarasittichai, Orathai

    2016-10-01

    Hypertension is the most common cardiovascular risk factor. Lipoprotein(a) [Lp(a)], inflammation, oxidative stress and chronic kidney disease (CKD) exacerbate the response to tissue injury and acts as markers of the vascular disease, especially in glomerulosclerosis. We compared the clinical characteristics of 138 non-diabetes hypertensive women (ndHT) patients with 417 non-diabetes normotensive subjects and tested the association of hypertension with Lp(a), inflammation, CKD and oxidative stress by using multiple logistic regression. BP, BMI, waist circumference, creatinine, Lp(a), inflammation and malondialdehyde levels were significantly higher and CKD state in the ndHT patients (p < 0.05). Multiple logistic regression showed hypertension associated with increased Lp(a), inflammation, ORs and 95 % CIs were 2.52 (1.33, 4.80), 2.75 (1.44, 5.27) after adjusting for their covariates. Elevated serum Lp(a) and inflammation levels concomitants with increased oxidative stress and CKD were the major risk factors associated with hypertension and implications for the increased risk of HT and vascular disease. PMID:27605742

  7. Evaluation of lightning-induced tropospheric ozone enhancements observed by ozone lidar and simulated by WRF/Chem

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Follette-Cook, Melanie B.; Newchurch, M. J.; Pickering, Kenneth E.; Pour-Biazar, Arastoo; Kuang, Shi; Koshak, William; Peterson, Harold

    2015-08-01

    High spatial- and temporal-resolution ozone lidar profiles, in conjunction with ozonesonde and satellite observations, are well suited to characterize short-term ozone variations due to different physical and chemical processes, such as the impact of lightning-generated NOx (LNOx) on tropospheric ozone. This work presents the hourly variation of tropospheric-ozone profiles measured by an ozone lidar at the University of Alabama in Huntsville, on July 14, 18, and 27, 2011. These ozone lidar data are compared with two WRF/Chem simulations, one with lightning NO (LNO) emissions and the other without. On July 14, 2011, the ozone lidar observed an ozone laminar structure with elevated ozone concentrations of 65∼80 ppbv below 2 km, low ozone (50∼65) ppbv between 2 and 5 km, and high ozone up to 165 ppbv between 5 and 12 km AGL. WRF/Chem simulations, in conjunction with backward trajectory analysis, suggest that lightning events occurring within upwind regions resulted in an ozone enhancement of 28 ppbv at 7.5 km AGL over Huntsville. On July 27, LNO emissions were transported to Huntsville from upwind and account for 75% of NOx and an 8.3 ppbv of ozone enhancement at ∼10 km; the model overestimates ozone between 2.5 and 5 km AGL.

  8. TROP OZONE

    EPA Science Inventory

    Activity Area (F01) The NRMRL tropospheric ozone research program is both coordinated with the research efforts of others and planned to achieve the most important unmet research needs that draw upon its unique expertise. For example, NRMRL emissions research in this area is co...

  9. The Antarctic Ozone Hole

    ERIC Educational Resources Information Center

    Jones, Anna E.

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For…

  10. Ozone and aircraft operations

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1981-01-01

    The cabin ozone problem is discussed. Cabin ozone in terms of health effects, the characteristics of ozone encounters by aircraft, a brief history of studies to define the problem, corrective actions taken, and possible future courses of action are examined. It is suggested that such actions include avoiding high ozone concentrations by applying ozone forecasting in flight planning procedures.

  11. Spatial distribution of tropospheric ozone in western Washington, USA

    USGS Publications Warehouse

    Cooper, S.M.; Peterson, D.L.

    2000-01-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.

  12. Spatial distribution of tropospheric ozone in western Washington, USA.

    PubMed

    Cooper, S M; Peterson, D L

    2000-03-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area approximately 6000 km(2)), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55-67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk. PMID:15092980

  13. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum.

    PubMed

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan Junior, Armando Molina; Zanotto-Filho, Alfeu; Moresco, Karla Suzana; de Oliveira Rios, Alessandro; de Oliveira Salvi, Aguisson; Ortmann, Caroline Flach; de Carvalho, Pâmela; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Fonseca Moreira, José Cláudio

    2016-07-01

    Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile. PMID:26970882

  14. Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, USA

    USGS Publications Warehouse

    Brace, S.; Peterson, D.L.

    1998-01-01

    Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 a??2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.

  15. Lower liver cancer risk with antiviral therapy in chronic hepatitis B patients with normal to minimally elevated ALT and no cirrhosis

    PubMed Central

    Hoang, Joseph K.; Yang, Hwai-I; Le, An; Nguyen, Nghia H.; Lin, Derek; Vu, Vinh D.; Chaung, Kevin; Nguyen, Vincent; Trinh, Huy N.; Li, Jiayi; Zhang, Jian Q.; Chen, Chien-Jen; Nguyen, Mindie H.

    2016-01-01

    Abstract For chronic hepatitis B (CHB), alanine aminotransferase (ALT) ≥2 × upper limit of normal (ULN) is often used as a major criteria to initiate treatment in absence of cirrhosis, though patients with lower ALT may not be free from future risk of hepatocellular carcinoma (HCC). We aimed to examine the effect of antiviral therapy on HCC incidence based on ALT levels. We performed a retrospective study on 3665 patients consisting of United States and Taiwanese REVEAL-HBV cohort who were consecutive, treatment-naïve, noncirrhotic CHB patients aged ≥40 years. Patients were categorized by ALT cutoffs (≥2 × ULN vs <2 × ULN) and subgrouped by treatment status. Kaplan–Meier and Cox proportional hazards models were used to calculate cumulative incidence and hazard ratio (HR) of HCC adjusting for REACH-B scores. A total of 202 patients developed HCC. Antiviral treatment significantly reduced HCC risk: HR 0.24, 95% confidence interval 0.10–0.58; P = 0.001. HCC incidence per 100,000 person-years was significantly higher in untreated versus treated patients, even for those with ALT < 2 × ULN: 314.46 versus 0 per 100,000 person-years, P = 0.0042. For patients with Hepatitis B Virus (HBV) Deoxyribonucleic Acid (DNA) ≥ 2000 IU/mL, the number-needed-to-treat (NNT) were 15 and 14 to prevent 1 incident HCC at year 10 for patients with ALT < 2 × ULN and ≥2 × ULN, respectively. After adjustment by REACH-B score, antiviral treatment significantly decreased HCC incidence even in patients with ALT < 2 × ULN. NNT to prevent 1 incident HCC after 10 years of therapy was low (14–15) in patients with mildly elevated HBV DNA ≥ 2000 IU/mL regardless of ALT levels. PMID:27495067

  16. Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve

    PubMed Central

    2013-01-01

    Background Current research implicates interleukin (IL)-6 as a key component of the nervous-system response to injury with various effects. Methods We used unilateral chronic constriction injury (CCI) of rat sciatic nerve as a model for neuropathic pain. Immunofluorescence, ELISA, western blotting and in situ hybridization were used to investigate bilateral changes in IL-6 protein and mRNA in both lumbar (L4-L5) and cervical (C7-C8) dorsal root ganglia (DRG) following CCI. The operated (CCI) and sham-operated (sham) rats were assessed after 1, 3, 7, and 14 days. Withdrawal thresholds for mechanical hyperalgesia and latencies for thermal hyperalgesia were measured in both ipsilateral and contralateral hind and fore paws. Results The ipsilateral hind paws of all CCI rats displayed a decreased threshold of mechanical hyperalgesia and withdrawal latency of thermal hyperalgesia, while the contralateral hind and fore paws of both sides exhibited no significant changes in mechanical or thermal sensitivity. No significant behavioral changes were found in the hind and fore paws on either side of the sham rats, except for thermal hypersensitivity, which was present bilaterally at 3 days. Unilateral CCI of the sciatic nerve induced a bilateral increase in IL-6 immunostaining in the neuronal bodies and satellite glial cells (SGC) surrounding neurons of both lumbar and cervical DRG, compared with those of naive control rats. This bilateral increase in IL-6 protein levels was confirmed by ELISA and western blotting. More intense staining for IL-6 mRNA was detected in lumbar and cervical DRG from both sides of rats following CCI. The DRG removed from sham rats displayed a similar pattern of staining for IL-6 protein and mRNA as found in naive DRG, but there was a higher staining intensity in SGC. Conclusions Bilateral elevation of IL-6 protein and mRNA is not limited to DRG homonymous to the injured nerve, but also extended to DRG that are heteronymous to the injured nerve. The

  17. Type I Interferon Elevates Co-Regulatory Receptor Expression on CMV- and EBV-Specific CD8 T Cells in Chronic Hepatitis C

    PubMed Central

    Owusu Sekyere, Solomon; Suneetha, Pothakamuri Venkata; Hardtke, Svenja; Falk, Christine Susanne; Hengst, Julia; Manns, Michael Peter; Cornberg, Markus; Wedemeyer, Heiner; Schlaphoff, Verena

    2015-01-01

    Hepatitis C virus (HCV) readily sets up persistence in a large fraction of infected hosts. Mounting epidemiological and immunological evidence suggest that HCV’s persistence could influence immune responses toward unrelated pathogens and vaccines. Nonetheless, the fundamental contribution of the inflammatory milieu during persistent HCV infection in impacting immune cells specific for common pathogens such as CMV and EBV has not been fully studied. As the co-regulatory receptors PD-1, Tim-3, and 2B4 have all been shown to be vital in regulating CD8+ T cell function, we assessed their expression on CMV/EBV-specific CD8+ T cells from patients with chronic hepatitis C (CHC) and healthy controls ex vivo and upon stimulation with virus-specific peptides in vitro. Total and CMV/EBV-specific CD8+ T cells expressing PD-1, Tim-3, and 2B4 were highly enriched in patients with CHC compared to healthy individuals ex vivo. In vitro peptide stimulation further potentiated the differential co-regulatory receptor expression of PD-1, Tim-3, and 2B4, which then culminated in an enhanced functionality of CMV/EBV-specific CD8+ T cells in CHC patients. Comprehensively analyzing plasma cytokines between the two cohorts, we observed that not only was IFNα-2a dominant among 21 other inflammatory mediators elevated in CHC patients but it also correlated with PD-1 and Tim-3 expressions ex vivo. Importantly, IFNα-2a further caused upregulation of these markers upon in vitro peptide stimulation. Finally, we could prospectively study patients receiving novel IFN-free antiviral therapy. Here, we observed that treatment-induced clearance of HCV resulted in a partial reversion of the phenotype of CMV/EBV-specific CD8+ T cells in patients with CHC. These data reveal an alteration of the plasma concentrations of IFNα-2a together with other inflammatory mediators during CHC, which appeared to pervasively influence co-regulatory receptor expression on CMV/EBV-specific CD8+ T cells. PMID:26113847

  18. Earth's Endangered Ozone

    ERIC Educational Resources Information Center

    Panofsky, Hans A.

    1978-01-01

    Included are (1) a discussion of ozone chemistry; (2) the effects of nitrogen fertilizers, fluorocarbons, and high level aircraft on the ozone layer; and (3) the possible results of a decreasing ozone layer. (MR)

  19. Ozone crisis

    SciTech Connect

    Roan, S.

    1989-01-01

    The author presents an account of the depletion of the atmosphere's ozone layer since the discovery of the phenomenon 15 years ago. The book recounts the flight to ban chlorofluorocarbons (CFC's) and describes the science, the people, and the politics involved, up to the March 1988 international treaty restricting CFC production. It surveys the media's coverage, describes the struggle for remedies, and offers a prognosis for the future.

  20. Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.

    2016-01-01

    Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time

  1. Slight chronic elevation of C-reactive protein is associated with lower aerobic fitness but does not impair meal-induced stimulation of muscle protein metabolism in healthy old men

    PubMed Central

    Buffière, Caroline; Mariotti, François; Savary-Auzeloux, Isabelle; Migné, Carole; Meunier, Nathalie; Hercberg, Serge; Cano, Noel; Rémond, Didier; Duclos, Martine; Dardevet, Dominique

    2015-01-01

    Ageing impairs the muscle anabolic effect of food intake, which may explain muscle loss and an increased risk of sarcopenia. Ageing is also associated with low grade inflammation (LGI), which has been negatively correlated with muscle mass and strength. In rodents, the muscle anabolic resistance observed during ageing and sarcopenia has been ascribed to the development of the LGI. We aimed to investigate this relationship in humans. We studied protein metabolism and physical fitness in healthy elderly volunteers with slight chronic C-reactive protein. Two groups of healthy elderly volunteers were selected on the presence (or not) of a chronic, slight, elevation of CRP (Control: <1; CRP+: >2 mg l−1 and <10 mg l−1, for 2 months). Body composition, short performance battery test, aerobic fitness and muscle strength were assessed. Whole body and muscle protein metabolism and the splanchnic extraction of amino acids were assessed using [13C]leucine and [2H]leucine infusion. The anabolic effect of food intake was measured by studying the volunteers both at the post-absorptive and post-prandial states. Slight chronic CRP elevation resulted in neither an alteration of whole body, nor skeletal muscle protein metabolism at both the post-absorptive and the post-prandial states. However, CRP+ presented a reduction of physical fitness, increased abdominal fat mass and post-prandial insulin resistance. Plasma cytokines (interleukin-1, interleukin-6, tumour necrosis factor α) and markers of endothelial inflammation (intercellular adhesion molecule, vascular cell adhesion molecule, selectins) were similar between groups. An isolated elevated CRP in healthy older population does not indicate an impaired skeletal muscle anabolism after food intake, nor an increased risk of skeletal muscle wasting. We propose that a broader picture of LGI (notably with elevated pro-inflammatory cytokines) is required to impact muscle metabolism and mass. However, an isolated chronic CRP

  2. Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defence system.

    PubMed

    Mishra, Amit Kumar; Rai, Richa; Agrawal, S B

    2013-04-01

    The effects of elevated CO2 and O3, singly and in combination were investigated on various physiological, biochemical and yield parameters of two locally grown wheat (Triticum aestivum L.) cultivars (HUW-37 and K-9107) in open top chambers (OTCs). Elevated CO2 stimulated photosynthetic rate (Ps) and Fv/Fm ratio and reduced the stomatal conductance (gs). Reactive oxygen species, lipid peroxidation, anti-oxidative enzymes, ascorbic acid and total phenolics were higher, whereas Ps, gs, Fv/Fm, protein and photosynthetic pigments were reduced in elevated O3 exposure, as compared to their controls. Under elevated CO2 + O3, elevated levels of CO2 modified the plant performance against O3 in both the cultivars. Elevated CO2 caused significant increase in economic yield. Exposure to elevated O3 caused significant reduction in yield and the effect was cultivar-specific. The study concluded that elevated CO2 ameliorated the negative impact of elevated O3 and cultivar HUW-37 was more sensitive to elevated O3 than K-9107. PMID:23720888

  3. Impact of Chronic Total Occlusion in a Noninfarct-related Artery on Clinical Outcomes in Patients With Acute ST-elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention.

    PubMed

    Zhang, Hui-Ping; Zhao, Ying; Li, Hui; Tang, Guo-Dong; Ai, Hu; Zheng, Nai-Xin; Liu, Jing-Hua; Sun, Fu-Cheng

    2016-01-01

    In the setting of primary percutaneous coronary intervention (PCI), encountering with chronic total occlusion (CTO) in a noninfarct-related artery (IRA) is not a rare situation. Limited information on the impact of CTO on clinical outcomes in acute ST-elevation myocardial infarction (STEMI) patients undergoing primary PCI has raised more concerns. The aim of the present study was to evaluate the effect of concurrent CTO in a non-IRA on the clinical outcomes in patients with STEMI undergoing primary PCI.In the present prospective study, 555 consecutive patients with STEMI who underwent early primary PCI from January 2010 to December 2013 were included. The patients were divided into 2 groups: no CTO and CTO. Data on 12 months follow-up was obtained from 449 patients. The primary endpoint was the composite of hospitalization from angina, reinfarction, heart failure, or re-revascularization, and cardiac death at 12 months follow-up.Of the 555 patients, 75 (13.5%) had CTO in a non-IRA. Compared with patients in no CTO group, more patients in CTO group had hypertension (62.7% vs 46.5%, P = 0.009), diabetes (49.3% vs 35.0%, P = 0.024), and 3-vessel disease (52.0% vs 32.3%, P = 0.001). Patients with CTO had a lower left ventricular ejection fraction (LVEF) (40.1% ± 16.8% vs 54.3% ± 12.1%, P = 0.038), more presented with cardiogenic shock on admission (13.3% vs 4.8%, P = 0.008), compared with patients without CTO. Complete revascularization (CR) was less achieved in CTO group than in no CTO group (33.3% vs 49.1%, P = 0.013). The 12-month cardiac mortality rate was 14.5% versus 6.2% (P = 0.039), the incidence of 12-month primary endpoint was 38.7% versus 21.2% (P = 0.003) for CTO and no CTO group, respectively. Multivariate analysis revealed that after correction for baseline differences, CTO in a non-IRA (hazard ratio 4.183, 95% confidence interval 1.940-6.019, P = 0.001), cardiogenic shock on admission (hazard ratio 3.286, 95

  4. Impact of Chronic Total Occlusion in a Noninfarct-related Artery on Clinical Outcomes in Patients With Acute ST-elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention

    PubMed Central

    Zhang, Hui-Ping; Zhao, Ying; Li, Hui; Tang, Guo-Dong; Ai, Hu; Zheng, Nai-Xin; Liu, Jing-Hua; Sun, Fu-Cheng

    2016-01-01

    Abstract In the setting of primary percutaneous coronary intervention (PCI), encountering with chronic total occlusion (CTO) in a noninfarct-related artery (IRA) is not a rare situation. Limited information on the impact of CTO on clinical outcomes in acute ST-elevation myocardial infarction (STEMI) patients undergoing primary PCI has raised more concerns. The aim of the present study was to evaluate the effect of concurrent CTO in a non-IRA on the clinical outcomes in patients with STEMI undergoing primary PCI. In the present prospective study, 555 consecutive patients with STEMI who underwent early primary PCI from January 2010 to December 2013 were included. The patients were divided into 2 groups: no CTO and CTO. Data on 12 months follow-up was obtained from 449 patients. The primary endpoint was the composite of hospitalization from angina, reinfarction, heart failure, or re-revascularization, and cardiac death at 12 months follow-up. Of the 555 patients, 75 (13.5%) had CTO in a non-IRA. Compared with patients in no CTO group, more patients in CTO group had hypertension (62.7% vs 46.5%, P = 0.009), diabetes (49.3% vs 35.0%, P = 0.024), and 3-vessel disease (52.0% vs 32.3%, P = 0.001). Patients with CTO had a lower left ventricular ejection fraction (LVEF) (40.1% ± 16.8% vs 54.3% ± 12.1%, P = 0.038), more presented with cardiogenic shock on admission (13.3% vs 4.8%, P = 0.008), compared with patients without CTO. Complete revascularization (CR) was less achieved in CTO group than in no CTO group (33.3% vs 49.1%, P = 0.013). The 12-month cardiac mortality rate was 14.5% versus 6.2% (P = 0.039), the incidence of 12-month primary endpoint was 38.7% versus 21.2% (P = 0.003) for CTO and no CTO group, respectively. Multivariate analysis revealed that after correction for baseline differences, CTO in a non-IRA (hazard ratio 4.183, 95% confidence interval 1.940–6.019, P = 0.001), cardiogenic shock on admission (hazard

  5. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance.

    PubMed

    Axelsson, J; Bergsten, A; Qureshi, A R; Heimbürger, O; Bárány, P; Lönnqvist, F; Lindholm, B; Nordfors, L; Alvestrand, A; Stenvinkel, P

    2006-02-01

    In the present study, we explore the role of decreased renal function and a genetic polymorphism on the recently discovered protein resistin, apparently able to inhibit hepatic insulin action in mice. We also investigate possible links with inflammation and the insulin resistance present in patients with chronic kidney disease (CKD). This is a post hoc, cross-sectional study comparing 239 prevalent CKD patients with varying degrees of renal function impairment with an age- and gender-matched randomly selected control group of 25 individuals. Glomerular filtration rate (GFR) was estimated by the mean of urea and creatinine clearance (24-h urine samples) (n=204) or by iohexol clearance (n=60). Plasma analysis of blood lipids, insulin, glucose, inflammatory markers (high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-alpha, vascular cellular adhesion molecule, intercellular adhesion molecule) and resistin (kit from LINCO Research, St Charles, MS) was performed using commercially available assays or routine methods. Insulin resistance was estimated by quantitative insulin-sensitivity check index (QUICKI) and homeostasis model assessment for insulin resistance (HOMA-IR) and body composition by dual-energy X-ray absorptiometry. Genotyping of a C/G promoter single nucleotide polymorphism (n=168) at position -180 of the resistin gene was performed by PyroSequencing. Serum levels of resistin were markedly elevated in the CKD patients with both advanced (39.9+/-1.3 ng/ml) and mild to moderate (23.2+/-1.0 ng/ml) renal function impairment, as compared to controls (8.5+/-0.7 ng/ml; P<0.001). In a multiple linear regression model in patients (adjusted r(2)=0.60), only GFR (beta=3.4; P<0.0001), lean body mass (beta=2.2; P<0.001) and the inflammatory markers were independently associated with circulating resistin levels. There was a weak but significant impact of -180 C/G genotype on plasma levels of resistin (median 43.0+/-2.4 ng/ml in CC, 37.5+/-2.0 ng

  6. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    NASA Astrophysics Data System (ADS)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  7. Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields

    PubMed Central

    Long, Stephen P; Ainsworth, Elizabeth A; Leakey, Andrew D.B; Morgan, Patrick B

    2005-01-01

    Predictions of yield for the globe's major grain and legume arable crops suggest that, with a moderate temperature increase, production may increase in the temperate zone, but decline in the tropics. In total, global food supply may show little change. This security comes from inclusion of the direct effect of rising carbon dioxide (CO2) concentration, [CO2], which significantly stimulates yield by decreasing photorespiration in C3 crops and transpiration in all crops. Evidence for a large response to [CO2] is largely based on studies made within chambers at small scales, which would be considered unacceptable for standard agronomic trials of new cultivars or agrochemicals. Yet, predictions of the globe's future food security are based on such inadequate information. Free-Air Concentration Enrichment (FACE) technology now allows investigation of the effects of rising [CO2] and ozone on field crops under fully open-air conditions at an agronomic scale. Experiments with rice, wheat, maize and soybean show smaller increases in yield than anticipated from studies in chambers. Experiments with increased ozone show large yield losses (20%), which are not accounted for in projections of global food security. These findings suggest that current projections of global food security are overoptimistic. The fertilization effect of CO2 is less than that used in many models, while rising ozone will cause large yield losses in the Northern Hemisphere. Unfortunately, FACE studies have been limited in geographical extent and interactive effects of CO2, ozone and temperature have yet to be studied. Without more extensive study of the effects of these changes at an agronomic scale in the open air, our ever-more sophisticated models will continue to have feet of clay. PMID:16433090

  8. Ozone Hole Over Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Total Ozone Mapping Spectrometer (TOMS) show the progressive depletion of ozone over Antarctica from 1979 to 1999. This 'ozone hole' has extended to cover an area as large as 10.5 million square miles in September 1998. The previous record of 10.0 million square miles was set in 1996. The Antarctic ozone hole develops each year between late August and early October. Regions with higher levels of ozone are shown in red. NASA and NOAA instruments have been measuring Antarctic ozone levels since the early 1970s. Large regions of depleted ozone began to develop over Antarctica in the early 1980s. Ozone holes of substantial size and depth are likely to continue to form during the next few years, scientists hope to see a reduction in ozone loss as levels of ozone-destroying CFCs (chlorofluorocarbons) are gradually reduced. Credit: Images by Greg Shirah, NASA Goddard Space Flight Center Scientific Visualization Studio

  9. Airliner cabin ozone: An updated review. Final report

    SciTech Connect

    Melton, C.E.

    1989-12-01

    The recent literature pertaining to ozone contamination of airliner cabins is reviewed. Measurements in airliner cabins without filters showed that ozone levels were about 50 percent of atmospheric ozone. Filters were about 90 percent effective in destroying ozone. Ozone (0.12 to 0.14 ppmv) caused mild subjective respiratory irritation in exercising men, but 0.20 to 0.30 ppmv did not have adverse effects on patients with chronic heart or lung disease. Ozone (1.0 to 2.0 ppmv) decreased survival time of influenza-infected rats and mice and suppressed the capacity of lung macrophages to destroy Listeria. Airway responses to ozone are divided into an early parasympathetically mediated bronchoconstrictive phase and a later histamine-mediated congestive phase. Evidence indicates that intracellular free radicals are responsible for ozone damage and that the damage may be spread to other cells by toxic intermediate products: Antioxidants provide some protection to cells in vitro from ozone but dietary intake of antioxidant vitamins by humans has only a weak effect, if any. This review indicates that earlier findings regarding ozone toxicity do not need to be corrected. Compliance with existing FAA ozone standards appears to provide adequate protection to aircrews and passengers.

  10. Antiretroviral Drugs and Risk of Chronic Alanine Aminotransferase Elevation in Human Immunodeficiency Virus (HIV)-Monoinfected Persons: The Data Collection on Adverse Events of Anti-HIV Drugs Study.

    PubMed

    Kovari, Helen; Sabin, Caroline A; Ledergerber, Bruno; Ryom, Lene; Reiss, Peter; Law, Matthew; Pradier, Christian; Dabis, Francois; d'Arminio Monforte, Antonella; Smith, Colette; de Wit, Stephane; Kirk, Ole; Lundgren, Jens D; Weber, Rainer

    2016-01-01

    Background.  Although human immunodeficiency virus (HIV)-positive persons on antiretroviral therapy (ART) frequently have chronic liver enzyme elevation (cLEE), the underlying cause is often unclear. Methods.  Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study participants without chronic viral hepatitis were observed to the earliest of cLEE (elevated aminotransferase ≥6 months), death, last follow-up, or January 2, 2014. Antiretroviral treatment exposure was categorized as follows: no exposure and ongoing short- and long-term exposure (<2 or ≥2 years) after initiation. Association between development of cLEE and ART exposure was investigated using Poisson regression. Results.  Among 21 485 participants observed for 105 413 person-years (PY), 6368 developed cLEE (incidence 6.04/100 PY; 95% confidence interval [CI], 5.89-6.19). Chronic liver enzyme elevation was associated with short-and long-term exposure to didanosine (<2 years rate ratio [RR] = 1.29, 95% CI, 1.11-1.49; >2 years RR = 1.26, 95% CI, 1.13-1.41); stavudine (<2 years RR = 1.51, 95% CI, 1.26-1.81; >2 years RR = 1.17, 95% CI, 1.03-1.32), and tenofovir disoproxil fumarate (<2 years RR = 1.55, 95% CI, 1.40-1.72; >2 years RR = 1.18, 95% CI, 1.05-1.32), but only short-term exposure to nevirapine (<2 years RR = 1.44, 95% CI, 1.29-1.61), efavirenz (<2 years RR = 1.14, 95% CI, 1.03-1.26), emtricitabine (<2 years RR = 1.18, 95% CI, 1.04-1.33), and atazanavir (<2 years RR = 1.20, 95% CI, 1.04-1.38). Chronic liver enzyme elevation was not associated with use of lamivudine, abacavir, and other protease inhibitors. Mortality did not differ between participants with and without cLEE. Conclusions.  Although didanosine, stavudine, nevirapine, and efavirenz have been described to be hepatotoxic, we additionally observed a consistent association between tenofovir and cLEE emerging within the first 2 years after drug initiation. This novel tenofovir-cLEE signal should be further investigated

  11. Antiretroviral Drugs and Risk of Chronic Alanine Aminotransferase Elevation in Human Immunodeficiency Virus (HIV)-Monoinfected Persons: The Data Collection on Adverse Events of Anti-HIV Drugs Study

    PubMed Central

    Kovari, Helen; Sabin, Caroline A.; Ledergerber, Bruno; Ryom, Lene; Reiss, Peter; Law, Matthew; Pradier, Christian; Dabis, Francois; d'Arminio Monforte, Antonella; Smith, Colette; de Wit, Stephane; Kirk, Ole; Lundgren, Jens D.; Weber, Rainer

    2016-01-01

    Background. Although human immunodeficiency virus (HIV)-positive persons on antiretroviral therapy (ART) frequently have chronic liver enzyme elevation (cLEE), the underlying cause is often unclear. Methods. Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study participants without chronic viral hepatitis were observed to the earliest of cLEE (elevated aminotransferase ≥6 months), death, last follow-up, or January 2, 2014. Antiretroviral treatment exposure was categorized as follows: no exposure and ongoing short- and long-term exposure (<2 or ≥2 years) after initiation. Association between development of cLEE and ART exposure was investigated using Poisson regression. Results. Among 21 485 participants observed for 105 413 person-years (PY), 6368 developed cLEE (incidence 6.04/100 PY; 95% confidence interval [CI], 5.89–6.19). Chronic liver enzyme elevation was associated with short-and long-term exposure to didanosine (<2 years rate ratio [RR] = 1.29, 95% CI, 1.11–1.49; >2 years RR = 1.26, 95% CI, 1.13–1.41); stavudine (<2 years RR = 1.51, 95% CI, 1.26–1.81; >2 years RR = 1.17, 95% CI, 1.03–1.32), and tenofovir disoproxil fumarate (<2 years RR = 1.55, 95% CI, 1.40–1.72; >2 years RR = 1.18, 95% CI, 1.05–1.32), but only short-term exposure to nevirapine (<2 years RR = 1.44, 95% CI, 1.29–1.61), efavirenz (<2 years RR = 1.14, 95% CI, 1.03–1.26), emtricitabine (<2 years RR = 1.18, 95% CI, 1.04–1.33), and atazanavir (<2 years RR = 1.20, 95% CI, 1.04–1.38). Chronic liver enzyme elevation was not associated with use of lamivudine, abacavir, and other protease inhibitors. Mortality did not differ between participants with and without cLEE. Conclusions. Although didanosine, stavudine, nevirapine, and efavirenz have been described to be hepatotoxic, we additionally observed a consistent association between tenofovir and cLEE emerging within the first 2 years after drug initiation. This novel tenofovir-cLEE signal should be

  12. Evidence of ozone injury to a crop plant in India

    NASA Astrophysics Data System (ADS)

    Bambawale, O. M.

    Evidence is presented to show that a serious leaf spot disease of potato which appeared each year in the Punjab since 1978 is primarily due to ozone: (i) The symptoms of the leaf spot were similar to the ozone stipple of potato reported in the U.S.A. (ii) Activated charcoal and ethylenediurea effectively controlled the spots. (iii) Elevated ozone in the atmosphere was detected with the bioindicators Nicotiana tabacum var. Bel-W3 and potato variety Cherokee. This is the first report of ozone injury to a crop plant in India.

  13. Bromate oxidized from bromide during sonolytic ozonation.

    PubMed

    Lu, Ning; Wu, Xue-Fei; Zhou, Ji-Zhi; Huang, Xin; Ding, Guo-Ji

    2015-01-01

    Sonolytic ozonation (US/O3) is an effective way to degrade many pollutants in drinking water as the elevated mass transfer rate of ozone gas and the enhanced forming of hydroxyl radicals (OH). This work investigated the formation of bromate (BrO3(-)) from bromide (Br(-)) in sonolytic ozonation. At neutral pH, the bromate conversion rate ([BrO3(-)]/[Br(-)]0) was increased to 60% by ultrasound at continuous ozone flow (0-0.2Lmin(-1)), much higher than that without ultrasound or without bubbling. This indicates that the promoting effect of sonolysis on BrO3(-) formation is mainly due to the sonolytic decomposition of ozone and the enhancement of gas-liquid transfer. The [BrO3(-)]/[Br(-)]0 was increased with increasing pH. In addition, the reduction of HOBr/OBr(-) with ultrasound demonstrates that bromate may be inhibited as the bromide was formed with the H2O2 generation under ultrasound. This suggests the competition between bromate and bromide during the US/O3 led to the inhibition of bromate formation at high ozone flow. Therefore, our result reveals that the bromate formation under ultrasound is improved remarkably in US/O3 in quick treatment with proper ozone flow (<0.2Lmin(-1)). PMID:24931426

  14. Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry

    PubMed Central

    Weschler, Charles J.

    2006-01-01

    Objective The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related health effects by extensive review of the literature as well as further analyses of published data. Findings Daily inhalation intakes of indoor ozone (micrograms per day) are estimated to be between 25 and 60% of total daily ozone intake. This is especially noteworthy in light of recent work indicating little, if any, threshold for ozone’s impact on mortality. Additionally, the present study estimates that average daily indoor intakes of ozone oxidation products are roughly one-third to twice the indoor inhalation intake of ozone alone. Some of these oxidation products are known or suspected to adversely affect human health (e.g., formaldehyde, acrolein, hydroperoxides, fine and ultrafine particles). Indirect evidence supports connections between morbidity/mortality and exposures to indoor ozone and its oxidation products. For example, cities with stronger associations between outdoor ozone and mortality tend to have residences that are older and less likely to have central air conditioning, which implies greater transport of ozone from outdoors to indoors. Conclusions Indoor exposures to ozone and its oxidation products can be reduced by filtering ozone from ventilation air and limiting the indoor use of products and materials whose emissions react with ozone. Such steps might be especially valuable in schools, hospitals, and childcare centers in regions that routinely experience elevated outdoor ozone concentrations. PMID:17035131

  15. Identification of sources contributing to PM2.5 and ozone at elevated sites in the western U.S. by receptor analysis: Lassen Volcanic National Park, California, and Great Basin National Park, Nevada.

    PubMed

    VanCuren, Richard Tony; Gustin, Mae Sexauer

    2015-10-15

    The proposed revision of the United States (US) air quality standard for ozone will result in violations in sparsely populated remote rural areas in the Western US. Replicating air quality as measured at surface monitoring sites by modeling is particularly difficult in this region due to complex terrain, poorly represented in regional and global models, and uncertainties in emission rates and timing at all scales (locally as well as hundreds to thousands of km upwind). As an alternative method, a fully empirical, receptor-based scheme using in situ aerosol composition and simple meteorological variables to simulate ozone (O3) measurements was tested and found to produce O3 simulation results comparable in uncertainty to regional modeling, and supporting trajectory-based identification of O3 source regions. This approach was tested using two widely-separated (650 km) high altitude (approx. 2 km above sea level) monitoring sites, Lassen Volcanic National Park, in northern California (LAVO) and Great Basin National Park in eastern Nevada (GRBA). Comparing correlations between observed O3 and aerosols, and examining back-trajectories associated with peak concentrations for the two sites permitted distinguishing among local, distant North American, and Asian sources of particulate matter (PM2.5) and O3. This analysis indicates that anthropogenic enhancement of O3 at LAVO is primarily due to transport from Asia. Asia is also the dominant source of anthropogenic O3 at GRBA in spring, but regional North American sources of O3 appear to drive additional ozone peaks in late summer and fall at this more interior site. PMID:25864796

  16. Lingmao Formula Combined with Entecavir for HBeAg-Positive Chronic Hepatitis B Patients with Mildly Elevated Alanine Aminotransferase: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Zhu, Xiao-Jun; Sun, Xue-Hua; Zhou, Zheng-Hua; Liu, Shun-Qing; Lv, Hua; Li, Man; Li, Lu; Gao, Yue-Qiu

    2013-01-01

    Objective. To determine the efficacy and safety of Lingmao Formula combined with entecavir for HBeAg-positive chronic hepatitis B patients with mildly elevated alanine aminotransferase (ALT). Methods. 301 patients were randomly assigned to receive Lingmao Formula combined with entecavir (treatment group) or placebo combined with entecavir (control group) for 52 weeks. The outcomes of interest included the reduction of serum HBV DNA level, HBeAg loss, HBeAg seroconversion, ALT normalization, and histological improvement. Results. The mean decrease of serum HBV DNA level from baseline and the percentage of patients who had reduction in serum HBV DNA level ≥2 lg copies/mL in treatment group were significantly greater than that in control group (5.5 versus 5.4 lg copies/mL, P = 0.010; 98.5% versus 92.6%, P = 0.019). The percentage of HBeAg loss in treatment group was 22.8%, which was much higher than a percentage of 12.6% in control group (P = 0.038). There was no significant difference between the two groups in histological improvement. Safety was similar in the two groups. Conclusions. The combination of Lingmao Formula with entecavir could result in significant decrease of serum HBV DNA and increase of HBeAg loss for HBeAg-positive chronic hepatitis B patients with mildly elevated ALT without any serious adverse events. Clinical trial registration number is ChiCTR-TRC-09000594. PMID:24058372

  17. Antarctic Ozone Hole, 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  18. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    NASA Astrophysics Data System (ADS)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  19. Tropospheric Ozone and Photochemical Smog

    NASA Astrophysics Data System (ADS)

    Sillman, S.

    2003-12-01

    emitted species, in a process that is driven by sunlight and is accelerated by warm temperatures. This smog is largely the product of gasoline-powered engines (especially automobiles), although coal-fired industry can also generate photochemical smog. The process of photochemical smog formation was first identified by Haagen-Smit and Fox (1954) in association with Los Angeles, a city whose geography makes it particularly susceptible to this type of smog formation. Sulfate aerosols and organic particulates are often produced concurrently with ozone, giving rise to a characteristic milky-white haze associated with this type of air pollution.Today ozone and particulates are recognized as the air pollutants that are most likely to affect human health adversely. In the United States, most major metropolitan areas have periodic air pollution events with ozone in excess of government health standards. Violations of local health standards also occur in major cities in Canada and in much of Europe. Other cities around the world (especially Mexico City) also experience very high ozone levels. In addition to urban-scale events, elevated ozone occurs in region-wide events in the eastern USA and in Western Europe, with excess ozone extending over areas of 1,000 km2 or more. Ozone plumes of similar extent are found in the tropics (especially in Central Africa) at times of high biomass burning (e.g., Jenkins et al., 1997; Chatfield et al., 1998). In some cases ozone associated with biomass burning has been identified at distances up to 104 km from its sources (Schultz et al., 1999).Ozone also has a significant impact on the global troposphere, and ozone chemistry is a major component of global tropospheric chemistry. Global background ozone concentrations are much lower than urban or regional concentrations during pollution events, but there is evidence that the global background has increased as a result of human activities (e.g., Wang and Jacob, 1998; Volz and Kley, 1988). A rise in

  20. ELEVATING MECHANISM

    DOEpatents

    Frederick, H.S.; Kinsella, M.A.

    1959-02-24

    An elevator is described, which is arranged for movement both in a horizontal and in a vertical direction so that the elevating mechanism may be employed for servicing equipment at separated points in a plant. In accordance with the present invention, the main elevator chassis is suspended from a monorail. The chassis, in turn supports a vertically moveable carriage, a sub- carriage vertically moveable on the carriage, and a turntable carried by the sub- carriage and moveable through an arc of 90 with the equipment attached thereto. In addition, the chassis supports all the means required to elevate or rotate the equipment.

  1. Effects of chronic elevated levels of CO2 on the concentration of blood cellular elements and plasma corticosterone in the male rat

    NASA Technical Reports Server (NTRS)

    Alexander, R. A.; Lang, C. K.; Steele, M. K.; Corbin, B. J.; Wade, C. E.

    1995-01-01

    The mean CO2 concentration on the Space Shuttle is 0.3% and has reached 0.7%, for extended periods of time. Following space flight, it has been shown that both humans and animals have significant changes in red blood cell counts (RBC) and white blood cell counts (WBC). In other studies, where no significant change did occur in the total WBC, a significant change did occur in the distribution of WBC. WBC are affected by circulating levels of glucocorticoids, which often increase when animals or humans are exposed to adverse and/or novel stimuli (e.g. elevated CO2 levels or weightlessness). The purpose of this study was to determine if elevations in CO2 concentration produce changes in total WBC and/or their distribution.

  2. Chronic elevation of systemic glucagon-like peptide-1 following surgical weight loss: association with nausea and vomiting and effects on adipokines.

    PubMed

    Al-Rasheid, Noora; Gray, Rosaire; Sufi, Pratik; Marina-Gonzalez, Nephtali; Al-Sayrafi, Mohammed; Atherton, Elizabeth; Mohamed-Ali, Vidya

    2015-02-01

    We determined whether persistent nausea and vomiting (N/V) symptoms following Roux-en-Y gastric bypass surgery is due to elevated systemic glucagon-like peptide-1 (GLP-1) and leptin in female non-diabetic subjects. Subjects with N/V post-Roux-en-Y gastric bypass (RYGB) surgery had significantly elevated fasting GLP-1 levels compared to that with post-operative asymptomatic subjects and to morbidly obese, obese and lean subjects not undergoing surgery. Weight loss, glycaemia, insulin and post-prandial GLP-1 levels were similar in all post-operative subjects. Despite comparable BMI, leptin was significantly lower in symptomatic subjects. Furthermore, leptin secretion from subcutaneous adipose tissue was inhibited by GLP-1 (0.1-1.0 nM; n = 6). Persistent N/V following RYGB surgery is associated with elevated fasting GLP-1, but lower leptin levels. The latter may be a consequence of the direct GLP-1 inhibition of leptin secretion from adipose tissue. PMID:25411121

  3. Ozone in the free atmosphere

    NASA Technical Reports Server (NTRS)

    Whitten, R. C. (Editor); Prasad, S. S. (Editor)

    1985-01-01

    The present book provides a summary of the state of scientific knowledge of stratospheric and free tropospheric ozone as it exists at the beginning of 1983. Ozone photochemistry in the stratosphere is discussed, taking into account fundamental molecular properties, the absorption spectrum of ozone, photodissociation, ozone formation and destruction in the upper atmosphere, the photochemistry of odd-hydrogen, the photochemistry of odd-nitrogen, the photochemistry of odd-chlorine, and photochemistry-temperature coupling. The observed distribution of atmospheric ozone and its variations are considered along with ozone transport, ozone in the troposphere, stratospheric ozone perturbations, and climatic and biological effects. Attention is given to the techniques of observing atmospheric ozone, horizontal-vertical ozone transport and conservative quantities, measurements of tropospheric ozone, the tropospheric ozone budget, ozone models, natural ozone variations, and anthropogenic ozone perturbations.

  4. Ozone Trend Detectability

    NASA Technical Reports Server (NTRS)

    Campbell, J. W. (Editor)

    1981-01-01

    The detection of anthropogenic disturbances in the Earth's ozone layer was studied. Two topics were addressed: (1) the level at which a trend in total ozoning is detected by existing data sources; and (2) empirical evidence in the prediction of the depletion in total ozone. Error sources are identified. The predictability of climatological series, whether empirical models can be trusted, and how errors in the Dobson total ozone data impact trend detectability, are discussed.

  5. Ozone Layer Observations

    NASA Technical Reports Server (NTRS)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  6. Ozone: A Multifaceted Molecule with Unexpected Therapeutic Activity.

    PubMed

    Zanardi, I; Borrelli, E; Valacchi, G; Travagli, V; Bocci, V

    2016-01-01

    A comprehensive outline for understanding and recommending the therapeutic use of ozone in combination with established therapy in diseases characterized by a chronic oxidative stress is currently available. The view of the absolute ozone toxicity is incorrect, because it has been based either on lung or on studies performed in artificial environments that do not correspond to the real antioxidant capacity of body compartments. In fact, ozone exerts either a potent toxic activity or it can stimulate biological responses of vital importance, analogously to gases with prospective therapeutic value such as NO, CO, H2S, H2, as well as O2 itself. Such a crucial difference has increasingly become evident during the last decade. The purpose of this review is to explain the aspects still poorly understood, highlighting the divergent activity of ozone on the various biological districts. It will be clarified that such a dual effect does not depend only upon the final gas concentration, but also on the particular biological system where ozone acts. The real significance of ozone as adjuvant therapeutic treatment concerns severe chronic pathologies among which are cardiovascular diseases, chronic obstructive pulmonary diseases, multiple sclerosis, and the dry form of age-related macular degeneration. It is time for a full insertion of ozone therapy within pharmaceutical sciences, responding to all the requirements of quality, efficacy and safety, rather than as either an alternative or an esoteric approach. PMID:26687830

  7. 2001 OZONE DESIGN VALUE

    EPA Science Inventory

    Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the atmosphere when air is stagnant and temperatures are high to form ozone. Ozone is known to cause adverse health eff...

  8. 2020 OZONE DESIGN VALUE

    EPA Science Inventory

    Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the atmosphere when air is stagnant and temperatures are high to form ozone. Ozone is known to cause adverse health eff...

  9. OZONE BYPRODUCT FORMATION

    EPA Science Inventory

    The use of ozone for water treatment has been increasing as ozone has great potential for degrading water pollutants and inactivating viruses, Giardia cysts, and Cryptosporidium oocysts. Although it appears that ozone generates less undesirable disinfection by-products (DBPs) th...

  10. Ozone Antimicrobial Efficacy

    EPA Science Inventory

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  11. The origin of ozone

    NASA Astrophysics Data System (ADS)

    Grewe, V.

    2006-05-01

    Highest atmospheric ozone production rates can be found at around 30 km in the tropical stratosphere, leading to ozone mixing ratios of about 10 ppmv. Those stratospheric air masses are then transported to extra-tropical latitudes via the Brewer-Dobson circulation. This is considered the main mechanism to generate mid- and high latitude ozone. By applying the climate-chemistry models E39/C and MAECHAM4/CHEM, this view is investigated in more detail. The origin of ozone in the troposphere and stratosphere is analysed, by incorporating a diagnostics ("marked ozone origin tracers") into the models, which allows to identify the origin of ozone. In most regions the simulated local ozone concentration is dominated by local ozone production, i.e. less than 50% of the ozone at higher latitudes of the stratosphere is produced in the tropics, which conflicts with the idea that the tropics are the global source for stratospheric ozone. Although episodic stratospheric intrusions occur basically everywhere, the main ozone stratosphere-to-troposphere exchange is connected to exchange processes at the sub-tropical jet-stream. The simulated tropospheric influx of ozone amounts to 420 Tg per year, and originates in the Northern Hemisphere from the extra-tropical stratosphere, whereas in the Southern Hemisphere a re-circulation of tropical tropospheric ozone contributes most to the influx of ozone into the troposphere. In the model E39/C, the upper troposphere of both hemispheres is clearly dominated by tropical tropospheric ozone (40%-50%) except for northern summer hemisphere, where the tropospheric contribution (from the tropics as well as from the Northern Hemisphere) does not exceed 20%.

  12. Growth, physiological and biochemical response of ponderosa pine pinus ponderosa' to ozone. Final report

    SciTech Connect

    Temple, P.J.; Bytnerowicz, A.

    1993-11-01

    In 1989 and 1990, the effects of multi-year ozone exposures on growth, foliar injury and physiological responses in ponderosa pine were examined. Two-year old seedlings were exposed to four ozone treatments in open-top chambers: clean air (subambient levels of oxidants and particles); ambient ozone; twice-ambient ozone; or ambient air. The study was performed at Shirley Meadow in the southern Sierra Nevada. In both years, ambient ozone levels were representative of other forests in the region. While ozone is the most phytotoxic air pollutant, seedlings also experienced elevated concentrations of nitric acid and ammonia. In 1990, ambient ozone significantly increased injury to previous year needles. Premature senescence and alterations in physiological responses were also noted. Exposure to twice-ambient ozone reduced seedling biomass, increased injury and caused decreases in a variety of physiological responses.

  13. Nicotiana tabacum as model for ozone - plant surface reactions

    NASA Astrophysics Data System (ADS)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  14. Overview of ozone bleaching

    SciTech Connect

    Sonnenberg, L.B.

    1995-12-31

    The potential impact of the pulp and paper industry on the environment may be reduced by replacing chlorine-based bleaching reagents with ozone. The reactivity of ozone coupled with the heterogeneity of pulp allows many types of reactions to occur during pulp bleaching. Ozone cleaves the aromatic rings and side chain double bonds in lignin in Criegee-type mechanisms. Activated carbon-hydrogen bonds are fragmented in lignin side chains, as well as Cl carbons of {beta}-glycosides, by way of a 1,3 dipolar insertion forming a hydrotrioxide intermediate. Ozone also attacks carbohydrates at acetal oxygens, depolymerizing at the glycosidic bond. Unsaturated sites are ozonated before aliphatic sites resulting in a predominance of lignin reactions over carbohydrate reactions until lignin is substantially removed from the pulp. Important factors in the successful application of ozone bleaching include minimizing ozone decomposition and other secondary reactions, reducing exposure of cellulose to high concentrations of ozone and radicals, and promoting uniform exposure of ozone to lignin. The quantity of chlorinated organic compounds in effluents can be drastically reduced by replacing chlorine-based bleaching reagents with ozone; less organochlorine is formed and there can be greater recycle of bleach plant wastes back to the recovery cycle. Recycling of bleach plant waste also reduces total organic loading in the effluent. The toxicity of ozone filtrates is variable compared to conventional filtrates and depends on several parameters including bleaching conditions, biological treatment, and target organisms.

  15. Ozone and the stratosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  16. Spring polar ozone behavior

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1992-01-01

    Understanding of the springtime behavior of polar stratospheric ozone as of mid 1990 is summarized. Heterogeneous reactions on polar stratospheric clouds as hypothesis for ozone loss are considered and a simplified description of the behavior of Antarctic ozone in winter and spring is given. Evidence that the situation is more complicated than described by the theory is produced. Many unresolved scientific issues remain and some of the most important problems are identified. Ozone changes each spring since 1979 have clearly established for the first time that man made chlorine compounds influence stratospheric ozone. Long before important advances in satellite and in situ investigations, it was Dobson's decision to place a total ozone measuring spectrometer at Halley Bay in Antarctica during the International Geophysical Year and subsequent continuous monitoring which led to the discovery that ozone was being destroyed each spring by chlorine processed by polar stratospheric clouds.

  17. Forests and ozone: productivity, carbon storage, and feedbacks

    PubMed Central

    Wang, Bin; Shugart, Herman H.; Shuman, Jacquelyn K.; Lerdau, Manuel T.

    2016-01-01

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution. PMID:26899381

  18. Monocular Elevation Deficiency - Double Elevator Palsy

    MedlinePlus

    ... Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? Monocular Elevation Deficiency, also known by the ...

  19. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  20. Plant surface reactions: an ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2015-07-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: how much ozone effectively enters the plant through open stomata and how much is lost by chemical reactions at the plant surface? In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis of cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too. Fluid dynamic calculations were used to model ozone distribution in the diffusion limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way, that ozone flux through the open stomata is strongly reduced. Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  1. Repeated thermal stressor causes chronic elevation of baseline corticosterone and suppresses the physiological endocrine sensitivity to acute stressor in the cane toad (Rhinella marina).

    PubMed

    Narayan, Edward J; Hero, Jean-Marc

    2014-04-01

    Extreme environmental temperature could impact the physiology and ecology of animals. The stress endocrine axis provides necessary physiological stress response to acute (day-day) stressors. Presently, there are no empirical evidences showing that exposure to extreme thermal stressor could cause chronic stress in amphibians. This could also modulate the physiological endocrine sensitivity to acute stressors and have serious implications for stress coping in amphibians, particularly those living in fragmented and disease prone environments. We addressed this important question using the cane toad (Rhinella marina) model from its introduced range in Queensland, Australia. We quantified their physiological endocrine sensitivity to a standard acute (capture and handling) stressor after exposing the cane toads to thermal shock at 35°C for 30min daily for 34 days. Corticosterone (CORT) responses to the capture and handling protocol were measured on three sampling intervals (days 14, 24, and 34) to determine whether the physiological endocrine sensitivity was maintained or modulated over-time. Two control groups (C1 for baseline CORT measurement only and C2 acute handled only) and two temperature treatment groups (T1 received daily thermal shock up to day 14 only and a recovery phase of 20 days and T2 received thermal shock daily for 34 days). Results showed that baseline CORT levels remained high on day 14 (combined effect of capture, captivity and thermal stress) for both T1 and T2. Furthermore, baseline CORT levels decreased for T1 once the thermal shock was removed after day 14 and returned to baseline by day 29. On the contrary, baseline CORT levels kept on increasing for T2 over the 34 days of daily thermal shocks. Furthermore, the magnitudes of the acute CORT responses or physiological endocrine sensitivity were consistently high for both C1 and T1. However, acute CORT responses for T2 toads were dramatically reduced between days 24 and 34. These novel findings

  2. Impacts of Ozone-vegetation Interactions and Biogeochemical Feedbacks on Atmospheric Composition and Air Quality Under Climate Change

    NASA Astrophysics Data System (ADS)

    Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.

    2015-12-01

    Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.

  3. Ozone trends: A review

    NASA Astrophysics Data System (ADS)

    Staehelin, J.; Harris, N. R. P.; Appenzeller, C.; Eberhard, J.

    2001-05-01

    Ozone plays a very important role in our atmosphere because it protects any living organisms at the Earth's surface against the harmful solar UVB and UVC radiation. In the stratosphere, ozone plays a critical role in the energy budget because it absorbs both solar UV and terrestrial IR radiation. Further, ozone in the tropopause acts as a strong greenhouse gas, and increasing ozone trends at these altitudes contribute to climate change. This review contains a short description of the various techniques that provided atmospheric ozone measurements valuable for long-term trend analysis. The anthropogenic emissions of substances that deplete ozone (chlorine- and bromine-containing volatile gases) have increased from the 1950s until the second half of the 1980s. The most severe consequence of the anthropogenic release of ozone-depleting substances is the "Antarctic ozone hole." Long-term observations indicate that stratospheric ozone depletion in the southern winter-spring season over Antarctica started in the late 1970s, leading to a strong decrease in October total ozone means. Present values are only approximately half of those observed prior to 1970. In the Arctic, large ozone depletion was observed in winter and spring in some recent years. Satellite and ground-based measurements show no significant trends in the tropics but significant long-term decreasing trends in the northern and southern midlatitudes (of the order of 2-4% per decade in the period from 1970 to 1996 and an acceleration in trends in the 1980s). Ozone at northern midlatitudes decreased by -7.4±2% per decade at 40 km above mean sea level, while ozone loss was small at 30 km. Large trends were found in the lower stratosphere, -5.1±1.8% at 20 km and -7.3±4.6% at 15 km, where the bulk of the ozone resides. The possibility of a reduction in the observed trends has been discussed recently, but it is very hard to distinguish this from the natural variability. As a consequence of the Montreal Protocol

  4. Tropospheric ozone in the Nisqually River Drainage, Mount Rainier National Park

    USGS Publications Warehouse

    Peterson, D.L.; Bowers, Darci

    1999-01-01

    We quantified the summertime distribution of tropospheric ozone in the topographically complex Nisqually River drainage of Mount Rainier National Park from 1994 to 1997. Passive ozone samplers were used along an elevational transect to measure weekly average ozone concentrations ranging from 570 m to 2040 m elevation. Weekly average ozone concentrations were positively correlated with elevation, with the highest concentrations consistently measured at the highest sampling site (Panorama Point). Weekly average ozone concentrations at Mount Rainier National Park are considerably higher than those in the Seattle-Tacoma metropolitan area to the west. The anthropogenic contribution to ozone within the Nisqually drainage was evaluated by comparing measurements at this location with measurements from a 'reference' site in the western Olympic Mountains. The comparison suggests there is a significant anthropogenic source of ozone reaching the Cascade Range via atmospheric transport from urban areas to the west. In addition. temporal (week to week) variation in ozone distribution is synchronous within the Nisqually drainage, which indicates that subregional patterns are detectable with weekly averages. The Nisqually drainage is likely the 'hot spot' for air pollution in Mount Rainier National Park. By using passive ozone samplers in this drainage in conjunction with a limited number of continuous analyzers, the park will have a robust monitoring approach for measuring tropospheric ozone over time and protecting vegetative and human health.

  5. [Study of ozonization effects on mineral water components].

    PubMed

    Zhao, Y; Yang, L; Chen, Y; Sha, X

    1998-03-01

    The disinfection effects of ozonization and its influences on chemical components of mineral water were investigated. The results showed that ozone at the level of 0.5 mg/L and with the exposure time of 5 minutes effectively destroyed bacteria in mineral water. High level ozone showed no strong influences on some beneficial components, such as strontium and metasilicate and on some main components, such as bicarbonate, hardness and alkalinity, but slightly elevated pH value. Ozonization reduced the contents of total dissolved solids and oxygen demand, and decomposed some reductive contaminants such as ammonia, cyanide and phenols. Ozonization will convert part of the bromide into hypobromite and bromate. PMID:10682614

  6. Elevated Plasma Level of Interferon-λ1 in Chronic Spontaneous Urticaria: Upregulated Expression in CD8+ and Epithelial Cells and Induction of Inflammatory Cell Accumulation

    PubMed Central

    Wang, S. F.; Gao, X. Q.; Xu, Y. N.; Li, D. N.; Wang, H. Y.

    2016-01-01

    Interferon- (IFN-) λ1 is regarded as a potent bio-active molecule in innate immunity. However, little is known about its role in chronic spontaneous urticaria (CSU). We therefore investigated expression of IFN-λ1 in CSU, its cellular location, and its influence on inflammatory cell accumulation by using flow cytometry analysis, skin tissue dispersion, immunohistochemical stain, and a mouse peritoneal inflammation model. The results showed that level of IFN-λ1 was 2.0-fold higher in plasma of the patients with CSU than the level in healthy control (HC) subjects. Among leukocytes examined, only CD8+ T cells expressed more IFN-λ1 in CSU blood. Double labeling immunohistochemical staining revealed that IFN-λ1+ inflammatory cells such as mast cells, eosinophils, B cells, neutrophils, and macrophages were mainly located in dermis, whereas epidermis tissue highly expressed IFN-λ1. IFN-λ1 induced a dose-dependent increase in number of eosinophils, lymphocytes, mast cells, macrophages, and neutrophils in the peritoneum of mice at 6 h following injection, which was inhibited by pretreatment of the animals with anti-intercellular adhesion molecule- (ICAM-) 1 and/or anti-L-selectin antibodies. In conclusion, IFN-λ1 is likely to play a role in the pathogenesis of CSU. Blocking IFN-λ1 production may help to reduce the accumulation of inflammatory cells in the involved CSU skin. PMID:27445435

  7. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  8. Elevated mu-opioid receptor expression in the nucleus of the solitary tract accompanies attenuated withdrawal signs after chronic low dose naltrexone in opiate-dependent rats.

    PubMed

    Van Bockstaele, E J; Rudoy, C; Mannelli, P; Oropeza, V; Qian, Y

    2006-02-15

    We previously described a decrease in withdrawal behaviors in opiate-dependent rats that were chronically treated with very low doses of naltrexone in their drinking water. Attenuated expression of withdrawal behaviors correlated with decreased c-Fos expression and intracellular signal transduction elements [protein kinase A regulatory subunit II (PKA) and phosphorylated cAMP response element binding protein (pCREB)] in brainstem noradrenergic nuclei. In this study, to determine whether similar cellular changes occurred in forebrain nuclei associated with drug reward, expressions of PKA and pCREB were analyzed in the ventral tegmental area, frontal cortex, striatum, and amygdala of opiate-treated rats that received low doses of naltrexone in their drinking water. No significant difference in PKA or pCREB was detected in these regions following drug treatment. To examine further the cellular mechanisms in noradrenergic nuclei that could underlie attenuated withdrawal behaviors following low dose naltrexone administration, the nucleus of the solitary tract (NTS) and locus coeruleus (LC) were examined for opioid receptor (OR) protein expression. Results showed a significant increase in muOR expression in the NTS of morphine-dependent rats that received low doses of naltrexone in their drinking water, and increases in muOR expression were also found to be dose dependent. Protein expression of muOR in the LC and deltaOR in either brain region remained unchanged. In conclusion, our previously reported decreases in c-Fos and PKA expression in the NTS following pretreatment with low doses of naltrexone may be partially explained by a greater inhibition of NTS neurons resulting from increased muOR expression in this region. PMID:16385558

  9. Rebound of Antarctic ozone

    NASA Astrophysics Data System (ADS)

    Salby, Murry; Titova, Evgenia; Deschamps, Lilia

    2011-05-01

    Restrictions on CFCs have led to a gradual decline of Equivalent Effective Stratospheric Chlorine (EESC). A rebound of Antarctic ozone, however, has remained elusive, masked by large interannual changes that dominate its current evolution. A positive response of ozone is not expected to emerge for at least 1-2 decades, possibly not for half a century. We show that interannual changes of the Antarctic ozone hole are accounted for almost perfectly by changes in dynamical forcing of the stratosphere. The close relationship enables dynamically-induced changes of ozone to be removed, unmasking the climate signal associated with CFCs. The component independent of dynamically-induced changes exhibits a clear upward trend over the last decade - the first signature of a rebound in Antarctic ozone. It enables ozone to be tracked relative to CFCs and other changes of climate.

  10. Ozone therapy in periodontics

    PubMed Central

    Gupta, G; Mansi, B

    2012-01-01

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics. PMID:22574088

  11. New Directions: Ozone-initiated reaction products indoors may be more harmful than ozone itself

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.

    2004-10-01

    Epidemiological studies have found associations between ozone concentrations measured at outdoor monitoring stations and certain adverse health outcomes. As a recent example, Gent et al. (2003, Journal of the American Medical Association 290, 1859-1867) have observed an association between ozone levels and respiratory symptoms as well as the use of maintenance medication by 271 asthmatic children living in Connecticut and the Springfield area of Massachusetts. In another example, Gilliland et al. (2001, Epidemiology 12, 43-54) detected an association between short-term increases in ozone levels and increased absences among 4th grade students from 12 southern California communities during the period from January to June 1996. Although children may spend a significant amount of time outdoors, especially during periods when ozone levels are elevated, they spend a much larger fraction of their time indoors. I hypothesize that exposure to the products of ozone-initiated indoor chemistry is more directly responsible for the health effects observed in the cited epidemiological studies than is exposure to outdoor ozone itself.

  12. Ozone flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.

    1981-01-01

    Flow visualization techniques using ozone for tracing gas flows are proposed whereby ozone is detected through its strong absorption of ultraviolet light, which is easily made visible with fluorescent materials, or through its reaction with nitric oxide to form excited nitrogen dioxide, which in relaxing emits detectable light. It is shown that response speeds in the kHz range are possible with an ultraviolet detection system for initial ozone concentrations of about 1%.

  13. The Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    1988-01-01

    Processes that may be responsible for the thinning in the ozone layer above the South Pole are described. The chlorine catalytic cycle which destroys ozone is described, as are the major types of reactions that are believed to interfere with this cycle by forming chlorine reservoirs. The suspected contributions of polar stratospheric clouds to these processes are examined. Finally, the possibility that the ozone hole may be due more to a shift in atmospheric dynamics than to chemical destruction is addressed.

  14. An automated ozone photometer

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph R.

    1988-01-01

    A photometer capable of automatically measuring ozone concentration data to very high resolution during scientific research flights in the earth's atmosphere was developed at the NASA Ames Research Center. This instrument was recently deployed to study the ozone hole over Antarctica. Ozone is detected by absorbing 253.7-nm radiation from an ultraviolet lamp which shines through the sample of air and impinges on a vacuum phototube. A lower output from the phototube indicates more ozone present in the air sample. The photometer employs a CMOS 280 control, data collection, and storage.

  15. Global tropospheric ozone investigations

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.

    1998-01-01

    Ozone (O3) is one of the most important trace gases in the troposphere, and it is responsible for influencing many critical chemical and radiative processes. Ozone contributes to the formation of the hydroxyl radical (OH), which is central to most chemical reactions in the lower atmosphere, and it absorbs UV, visible, and infrared radiation which affects the energy budget and atmospheric temperatures. In addition, O3 can be used as a tracer of atmospheric pollution and stratosphere troposphere exchange. At elevated concentrations, O3 can also produce detrimental biological and human health effects. The US National Research Council (NRC) Board on Sustainable Development reviewed the US Global Change Research Program (USGCRP) [NRC, 1995], and it identified tropospheric chemistry as one of the high priority areas for the USGCRP in the next decade. The NRC identified the following specific challenges in tropospheric chemistry. Although we understand the reason for the high levels of 03 over several regions of the world, we need to better establish the distribution of O3 in the troposphere in order to document and understand the changes in the abundance of global tropospheric O3. This information is needed to quantify the contribution of O3 to the Earth' s radiative balance and to understand potential impacts on the health of the biosphere. Having recognized the importance of particles in the chemistry of the stratosphere, we must determine how aerosols and clouds affect the chemical processes in the troposphere. This understanding is essential to predict the chemical composition of the atmosphere and to assess the resulting forcing effects in the climate system. We must determine if the self-cleansing chemistry of the atmosphere is changing as a result of human activities. This information is required to predict the rate at which pollutants are removed from the atmosphere. Over nearly two decades, airborne Differential Absorption Lidar (DIAL) systems have been used in

  16. Monocular Elevation Deficiency - Double Elevator Palsy

    MedlinePlus

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? ...

  17. Ozone as Janus: this controversial gas can be either toxic or medically useful.

    PubMed Central

    Bocci, Velio

    2004-01-01

    Ozone is an intrinsically toxic gas and its hazardous employment has led to a poor consideration of ozone therapy. The aim of this review is to indicate that a wrong dogma and several misconceptions thwart progress: in reality, properly performed ozone therapy, carried out by expert physicians, can be very useful when orthodox medicine appears inadequate. The unbelievable versatility of ozone therapy is due to the cascade of ozone-derived compounds able to act on several targets leading to a multifactorial correction of a pathological state. During the past decade, contrary to all expectations, it has been demonstrated that the judicious application of ozone in chronic infectious diseases, vasculopathies, orthopedics and even dentistry has yielded such striking results that it is deplorable that the medical establishment continues to ignore ozone therapy. PMID:15203558

  18. How do increasing background concentrations of tropospheric ozone affect peatland plant growth and carbon gas exchange?

    NASA Astrophysics Data System (ADS)

    Williamson, Jennifer L.; Mills, Gina; Hayes, Felicity; Jones, Timothy; Freeman, Chris

    2016-02-01

    In this study we have demonstrated that plants originating from upland peat bogs are sensitive to increasing background concentrations of ozone. Peatland mesocosms from an upland peat bog in North Wales, UK were exposed to eight levels of elevated background ozone in solardomes for 4 months from May to August, with 24 h mean ozone concentrations ranging from 16 to 94 ppb and cumulative AOT024hr ranging from 45.98 ppm h to 259.63 ppm h. Our results show that plant senescence increased with increasing exposure to ozone, although there was no significant effect of increasing ozone on plant biomass. Assessments of carbon dioxide and methane fluxes from the mesocosms suggests that there was no change in carbon dioxide fluxes over the 4 month exposure period but that methane fluxes increased as cumulative ozone exposure increased to a maximum AOT 024hr of approximately 120 ppm h and then decreased as cumulative ozone exposure increased further.

  19. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra.

    PubMed

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H; Holopainen, Jarmo K; Albrectsen, Benedicte R; Blande, James D

    2015-04-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. PMID:25645061

  20. Theoretical investigation of the pressure and temperature dependence of atmospheric ozone deposition of trees

    SciTech Connect

    Larson, T.V.; Vong, R.J.

    1990-01-01

    Methods for describing the exposure patterns of forests to atmospheric ozone concentrations are compared with special emphasis on the situation at high altitudes, such as the Appalachian Mountains of the eastern USA. Limitations to the use of ozone concentration as mass per unit volume are discussed and a correction for temperature and pressure changes is derived. If identical ozone mass concentrations were measured at two sites separated by 2000 m elevation, the ozone flux at the lower site would exceed the flux at the higher site by 4-8% due to the temperature and pressure effects on both air volume and ozone deposition velocity. It is recommended that ozone exposures be described in terms of 'flux-corrected' mass concentrations or volumetric mixing ratios when ambient ozone data from sites at different altitudes are to be compared. (Copyright (c) 1990 Elsevier Science Publishers Ltd, England.)

  1. Adeno-associated virus mediated SOD gene therapy protects the retinal ganglion cells from chronic intraocular pressure elevation induced injury via attenuating oxidative stress and improving mitochondrial dysfunction in a rat model

    PubMed Central

    Jiang, Wenmin; Tang, Luosheng; Zeng, Jun; Chen, Baihua

    2016-01-01

    Purpose: This study aimed to determine whether chronic intraocular pressure (IOP) elevation induces retinal oxidative stress and alters mitochondrial morphology and function of retinal ganglion cells (RGC) and to explore the effects of AAV-SOD2 gene therapy on the RGC survival and mitochondrial dysfunction. Methods: Chronic experimental glaucoma was induced unilaterally in adult male Sprague-Dawley rats by laser burns at trabecular meshwork and episcleral veins 2 times with an interval of one week. One eye of each rat was intravitreally pretreated with recombinant adeno-associated virus expressing SOD2 (AAV-SOD2) or recombinant AAV expressing GFP (AAV-GFP) 21 days before glaucoma induction. RGCs counting, morphometric analysis of retina and optic nerve, and detection of activities of retinal SOD2 and catalase, MDA, mitochondrial morphology, mitochondrial dynamin protein OPA1 and DRP-1 expressions were conducted at 4, 8, 12 and 24 weeks. Results: Severe RGC loss, degeneration of optic nerve, reduced thickness of RGC layer and nerve fiber layer, significant decrease in total SOD and catalase activities, mitochondrial dysfunction and increased MDA were observed at 4, 8, 12 and 24 weeks after glaucoma. Pretreatment with AAV-SOD2 significantly reduced MDA and attenuated the damage to RGCs through a mitochondria-related pathway. Conclusion: AAV mediated pre-treatment with SOD2 is able to attenuate oxidative stress and improve mitochondrial dysfunction of RGC and optic nerve secondary to glaucoma. Thus, SOD2 may be used to prevent the retinal RGCs from glaucoma, which provides a promising strategy for glaucoma therapy. PMID:27158370

  2. Polar Ozone Workshop. Abstracts

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1988-01-01

    Results of the proceedings of the Polar Ozone Workshop held in Snowmass, CO, on May 9 to 13, 1988 are given. Topics covered include ozone depletion, ozonometry, polar meteorology, polar stratospheric clouds, remote sensing of trace gases, atmospheric chemistry and dynamical simulations.

  3. The Antarctic Ozone Hole.

    ERIC Educational Resources Information Center

    Stolarski, Richard S.

    1988-01-01

    Discusses the Airborne Antarctic Ozone Experiment (1987) and the findings of the British Antarctic Survey (1985). Proposes two theories for the appearance of the hole in the ozone layer over Antarctica which appears each spring; air pollution and natural atmospheric shifts. Illustrates the mechanics of both. Supports worldwide chlorofluorocarbon…

  4. Surface Ozone in Kiev

    NASA Astrophysics Data System (ADS)

    Shavrina, A. V.; Mikulskaya, I. A.; Kiforenko, S. I.; Blum, O. B.; Sheminova, V. A.; Veles, A. A.

    The study of total ozone over Kiev and its concentration changes with height in the troposphere has been made on the base of ground-based observations with the infrared Fourier-spectrometer in the Main Astronomical Observatory of National Academy of Sciences of Ukraine (MAO NASU) as part of ESA-NIVR-KNMI project no 2907 "OMI validation by ground based remote sensing: ozone columns and atmospheric profiles "(2005-2008) [1,2,4]. Ground-level ozone in Kiev for an episode of its high concentrations in August 2000 was also simulated with the model of urban air pollution UAM-V [5,6]. In 2008 the satellite data Aura-OMI on profiles of ozone in the atmosphere OMO3PR became available (http://disc.sci.gsfc.nasa.gov/ Aura/data-holdings/OMI/ omo3pr_v003.shtml). They include ozone content in the lower layer of the atmosphere, beginning from 2005, which can be used to evaluate the ground-level ozone in all cities of Ukraine. The comparison of the data of ozone air pollution in Kiev (ozone - the pollutant of the first class of danger) and medical statistics data of of respiratory system (RS) diseases of the city population was carried out with the package "Statistica". A regression analysis, prognostic regression modelling, and retrospective prognosis of the epidemiological situation with respect to RS pathologies in Kiev in 2000-2006 were performed.

  5. Ozone and temperature trends

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Fioletov, Vitali; Bishop, Lane; Godin, Sophie; Bojkov, Rumen D.; Kirchhoff, Volker; Chanin, Marie-Lise; Zawodny, Joseph M.; Zerefos, Christos S.; Chu, William

    1991-01-01

    An update of the extensive reviews of the state of knowledge of measured ozone trends published in the Report of the International Ozone Trends Panel is presented. The update contains a review of progress since these reports, including reviewing of the ozone records, in most cases through March 1991. Also included are some new, unpublished reanalyses of these records including a complete reevaluation of 29 stations located in the former Soviet Union. The major new advance in knowledge of the measured ozone trend is the existence of independently calibrated satellite data records from the Total Ozone Mapping Spectrometer (TOMS) and Stratospheric Aerosol and Gas Experiment (SAG) instruments. These confirm many of the findings, originally derived from the Dobson record, concerning northern mid-latitude changes in ozone. We now have results from several instruments, whereas the previously reported changes were dependent on the calibration of a single instrument. This update will compare the ozone records from many different instruments to determine whether or not they provide a consistent picture of the ozone change that has occurred in the atmosphere. The update also briefly considers the problem of stratospheric temperature change. As in previous reports, this problem received significantly less attention, and the report is not nearly as complete. This area needs more attention in the future.

  6. Saving Our Ozone Shield.

    ERIC Educational Resources Information Center

    Lacoste, Beatrice

    1992-01-01

    Discusses the introduction and continued use of chlorofluorocarbons (CFCs) as related to stratospheric ozone depletion. Presents the characteristics of CFCs conducive to the chemical reaction with ozone, the history of CFC use and detection of related environmental problems, health hazards, and alternatives to CFC use. (MCO)

  7. Systemic Metabolic Derangement, Pulmonary Effects, and Insulin Insufficiency following subchronic ozone exposure in rats

    EPA Science Inventory

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to in...

  8. Observing trends in total ozone and extreme ozone events

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-05-01

    The ozone layer in the stratosphere has been recovering since the 1989 Montreal Protocol reduced the use of ozone-destroying chlorofluorocarbons. Fitzka et al. observed trends in total ozone levels and the vertical distribution of ozone at Hoher Sonnblick, a mountain in Austria, from 1994 to 2011.

  9. Inversion structure and winter ozone distribution in the Uintah Basin, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Lyman, Seth; Tran, Trang

    2015-12-01

    The Uintah Basin in Utah, U.S.A. experiences high concentrations of ozone during some winters due to strong, multi-day temperature inversions that facilitate the buildup of pollution from local sources, including the oil and gas industry. Together, elevation of monitoring sites and proximity to oil and gas wells explain as much as 90% of spatial variability in surface ozone concentrations during inversion episodes (i.e., R2 = 0.90). Inversion conditions start earlier and last longer at lower elevations, at least in part because lower elevations are more insulated from winds aloft that degrade inversion conditions and dilute produced ozone. Surface air transport under inversions is dominated by light, diurnal upslope-downslope flow that limits net transport distances. Thus, different areas of the Basin are relatively isolated from each other, allowing spatial factors like elevation and proximity to sources to strongly influence ozone concentrations at individual sites.

  10. Ozone-Induced Metabolic Impairment is Attenuated in Adrenalectomized Wistar Kyoto Rats

    EPA Science Inventory

    Rationale: Air pollutants have been linked to increased incidence of metabolic syndrome however the mechanisms are poorly understood. We have recently shown that ozone exposure induces significant hyperglycemia together with elevated serum leptin and epinephrine in the Wistar Ky...

  11. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  12. Surface ozone in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Burley, Joel D.; Theiss, Sandra; Bytnerowicz, Andrzej; Gertler, Alan; Schilling, Susan; Zielinska, Barbara

    2015-05-01

    Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (2010) and passive samplers (2002, 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50-55 ppb. Some site-to-site variability is observed within the Basin during the well-mixed hours of 10:00 to 17:00 PST, but large differences between different sites are observed in the late evening and pre-dawn hours. The observed trends correlate most strongly with elevation, topography, and surface vegetation. High elevation sites with steeply sloped topography and drier ground cover experience elevated O3 concentrations throughout the night because they maintain good access to downward mixing of O3-rich air from aloft with smaller losses due to dry deposition. Low elevation sites with flat topography and more dense surface vegetation experience low O3 concentrations in the pre-dawn hours because of greatly reduced downward mixing coupled with enhanced O3 removal via efficient dry deposition. Additionally, very high average O3 concentrations were measured with passive samplers in the middle of the Lake in 2010. This latter result likely reflects diminished dry deposition to the surface of the Lake. High elevation Tahoe Basin sites with exposure to nocturnal O3-rich air from aloft experience daily maxima of 8-h average O3 concentrations that are frequently higher than concurrent maxima from the polluted upwind comparison sites of Sacramento, Folsom, and Placerville. Wind rose analyses of archived NAM 12 km meteorological data for the summer of 2010 suggest that some of the sampling sites situated near the shoreline may have experienced on-shore "lake breezes" during daytime hours and/or off-shore "land breezes" during the night. Back-trajectory analysis with the HYSPLIT model suggests that much of the ozone measured at Lake Tahoe results from the transport of "polluted background" air into the Basin from upwind

  13. Surface Ozone in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Burley, J. D.; Bytnerowicz, A.; Zielinska, B.; Schilling, S.

    2014-12-01

    Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (12 sites in 2010) and passive samplers (31 sites 2002; 34 sites in 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50-55 ppb. Minimal site-to-site variability is observed within the Basin during the well-mixed hours of 10:00 to 17:00 PST, but large differences between different sites are observed in the late evening and pre-dawn hours. The observed trends correlate most strongly with elevation, topography, and surface vegetation. High elevation sites with steeply sloped topography and drier ground cover experience elevated O3 concentrations throughout the night because they maintain good access to downward mixing of ozone-rich air from aloft with minimal losses due to dry deposition. Low elevation sites with flat topography and wetter surface vegetation experience low O3 concentrations in the pre-dawn hours because of greatly reduced downward mixing coupled with enhanced O3 removal via efficient dry deposition. Very high average O3 concentrations (overall seasonal average = 64 ppb) were measured with passive samplers in the middle of the Lake in 2010. This latter finding may reflect high emissions of O3 precursors from vehicular traffic around the Lake, emissions from motorboats, and/or elevated rates of photochemical processes due to high solar radiation and stagnant air masses over the Lake. Tahoe Basin sites with good nocturnal exposure to ozone-rich air from aloft experience average O3 concentrations that are frequently higher than concurrent averages from the polluted upwind comparison sites of Sacramento, Folsom, and Placerville.

  14. The Hole in the Ozone Layer.

    ERIC Educational Resources Information Center

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  15. The Two Faces of Ozone.

    ERIC Educational Resources Information Center

    Monastersky, Richard

    1989-01-01

    Provides answers to questions regarding the ozone problem: (1) nature of ozone in the troposphere and stratosphere; (2) possibility of sending the excess ozone at ground level to the stratosphere; (3) possibility of producing pure ozone and carrying it to the stratosphere; and (4) banning chlorofluorocarbons. (YP)

  16. Fundamentals of ISCO Using Ozone

    EPA Science Inventory

    In situ chemical oxidation (ISCO) using ozone involves the introduction of ozone gas (O3) into the subsurface to degrade organic contaminants of concern. Ozone is tri-molecular oxygen (O2) that is a gas under atmospheric conditions and is a strong oxidant. Ozone may react with ...

  17. Ozone-vegetation interaction in the Earth system: implications for air quality, ecosystems and agriculture

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.; Heald, C. L.

    2015-12-01

    Surface ozone is one of the most significant air pollutants due to its damaging effects not only on human health, but also on vegetation and crop productivity. Chronic ozone exposure has been shown to reduce photosynthesis and interfere with gas exchange in plants, which in turn affect the surface energy balance, carbon sink and other biogeochemical fluxes. Ozone damage on vegetation can thus have major ramifications on climate and atmospheric composition, including possible feedbacks onto ozone itself (see figure) that are not well understood. The damage of ozone on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to ozone-vegetation interaction. Using the Community Earth System Model, we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is modified by -20 to +4 ppbv depending on the relative importance of competing mechanisms in different regions. We also perform a statistical analysis of multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures to characterize the spatial variability of crop sensitivity to ozone and temperature extremes, specifically accounting for the confounding effect of ozone-temperature covariation. We find that several crops exhibit stronger sensitivity to ozone than found by previous field studies, with a strong anticorrelation between the sensitivity and average ozone levels that reflects biological adaptive ozone resistance. Our results show that a more complete understanding of ozone-vegetation interaction is necessary to derive more realistic future projections of climate, air quality and agricultural production, and thereby to formulate optimal strategies to safeguard public health and food security.

  18. Meteorology-induced variations in the spatial behavior of summer ozone pollution in Central California

    SciTech Connect

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    2010-06-23

    Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels in different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.

  19. Ozone risk for crops and pastures in present and future climates

    NASA Astrophysics Data System (ADS)

    Fuhrer, Jürg

    2009-02-01

    Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions

  20. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  1. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  2. A Total Ozone Dependent Ozone Profile Climatology Based on Ozone-Sondes and Aura MLS Data

    NASA Astrophysics Data System (ADS)

    Labow, G. J.; McPeters, R. D.; Ziemke, J. R.

    2014-12-01

    A new total ozone-based ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining data from the Microwave Limb Sounder (MLS) with data from balloon sondes and binned by zone and total ozone. Because profile shape varies with total column ozone, this climatology better captures the ozone variations than the previously used seasonal climatologies, especially near the tropopause. This is significantly different than ozone climatologies used in the past as there is no time component. The MLS instrument on Aura has excellent latitude coverage and measures ozone profiles daily from the upper troposphere to the lower mesosphere at ~3.5 km resolution. Almost a million individual MLS ozone measurements are merged with data from over 55,000 ozonesondes which are then binned as a function of total ozone. The climatology consists of average ozone profiles as a function of total ozone for six 30 degree latitude bands covering altitudes from 0-75 km (in Z* pressure altitude coordinates). This new climatology better represents the profile shape as a function of total ozone than previous climatologies and shows some remarkable and somewhat unexpected correlations between total ozone and ozone in the lower altitudes, particularly in the lower and middle troposphere. These data can also be used to infer biases and errors in either the MLS retrievals or ozone sondes.

  3. Plasma catecholamine activity in chronic lead poisoning

    SciTech Connect

    deCastro, F.J.

    1990-04-01

    Plasma catecholamines where measured in 15 children with chronic lead poisoning and 15 matched controls by radioimmunassay. The data suggest that plasma catecholamines (norepinephrine and epinphrine) were significantly elevated in chronic lead poisoning. Plasma catecholamine elevation may well be important in the clinical finding of hyperactivity and hypertension associated with chronic lead poisoning.

  4. On the role of climate variability on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Lin, M.

    2014-12-01

    The response of tropospheric ozone to changing atmospheric circulation is poorly understood owing to a lack of reliable long-term observations. There is great current interest in quantifying the extent to which observed ozone trends over recent decades at northern mid-latitude sites are driven by changes in precursor emissions versus shifts in atmospheric circulation patterns. In this talk, I present a detailed analysis of the impact of interannual to decadal climate variability on tropospheric ozone, based on observations and a suite of chemistry-climate model hindcast simulations. Decadal shifts in circulation regimes modulate long-range transport of Asian pollution, leading to very different seasonal ozone trends at Mauna Loa Observatory in the subtropical Pacific Ocean. During autumn, the flow of ozone-rich air from Eurasia towards Hawaii strengthened in the mid-1990s onwards, as a result of the positive phase of the Pacific North American pattern, increasing ozone at Mauna Loa. During spring, weakening airflow from Asia in the 2000s, tied to La-Niña-like decadal cooling in the equatorial Pacific Ocean, offsets ozone increases at Mauna Loa that otherwise would have occurred due to rising Asian emissions. The circulation-driven variability in Asian pollution over the subtropical North Pacific regions manifests mainly as changes in the mean as opposed to in transport events. At high-elevation Western U.S. sites, intrusions of stratospheric ozone deep into the troposphere during spring exert a greater influence than Asian pollution, particularly on the high tail of observed surface ozone distribution. We show that year-to-year variability in springtime high-ozone episodes measured in Western U.S. surface air is tied to known modes of climate variability, which modulate meanders in the polar frontal jet conducive to deep stratospheric ozone intrusions. Specifically, the La Niña-related increase in the frequency of deep stratospheric intrusion events plays a

  5. Low density solid ozone

    SciTech Connect

    Teolis, B. D.; Fama, M.; Baragiola, R. A.

    2007-08-21

    We report a very low density ({approx}0.5 g/cm{sup 3}) structure of solid ozone. It is produced by irradiation of solid oxygen with 100 keV protons at 20 K followed by heating to sublime unconverted oxygen. Upon heating to 47 K the porous ozone compacts to a density of {approx}1.6 g/cm{sup 3} and crystallizes. We use a detailed analysis of the main infrared absorption band of the porous ozone to interpret previous research, where solid oxygen was irradiated by UV light and keV electrons.

  6. Arctic ozone loss

    SciTech Connect

    Zurer, P.S.

    1989-03-06

    Scientists have returned from the first comprehensive probe of the Arctic stratosphere with unexpectedly dire results: The winter atmosphere in the north polar region is loaded with the same destructive chlorine compounds that cause the Antarctic ozone hole. Atmospheric researchers who only a few weeks ago were comforted by the thought that the warmer Northern Hemisphere is strongly protected from the processes that lead to massive losses of ozone during spring in Antarctica now see very little standing in the way of an Arctic ozone hole.

  7. Influence of baseline ozone on surface air quality in the western U.S

    NASA Astrophysics Data System (ADS)

    Jaffe, D. A.; Downey, N.

    2011-12-01

    As the ozone air quality standard is made more stringent, cities, counties and states will need a better understanding of the sources of ozone. While Eulerian models can provide important indications of the sources, they are often challenged by episodic emissions (eg wildfires), interannual variability and/or coarse model resolution. These challenges are especially problematic in the western United States. Thus we need improved tools to directly use available observations to better understand and identify ozone sources. In this study we examine the relationship between measured free tropospheric/baseline ozone and surface ozone at several receptor sites in the western U.S. Our focus is on air quality sites in the Pacific Northwest and Rocky Mtn region that exceed current or new air quality standards that have been proposed. Elevated sites in the Rocky Mtns are exposed to high ozone from the free troposphere. Significant interannual variations occur in spring, due to variations in baseline ozone, and in summer, due to variations in wildfires. In the Rocky Mtn region there are significant correlations between the surface and free tropospheric mixing ratios using both daily and monthly means for spring and summer months (see Jaffe 2011; DOI: 10.1021/es1028102). This implies that free tropospheric ozone mixes down and frequently contributes to elevated ozone at the surface. In the Pacific Northwest, we are using data from suburban and rural monitoring locations to identify ozone from local and non-local sources. The approach for both the Rocky Mtn and Pacific Northwest sites is to develop a statistical model for ozone using all available observations, (e.g. PM, meteorology, satellite data and trajectories) to quantify the variable contribution from baseline ozone. The statistical model can then be evaluated against actual observations of baseline ozone. The statistical model can also be useful to help identify "exceptional events" as defined by the US EPA.

  8. Chronic pancreatitis

    MedlinePlus

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... abuse over many years. Repeated episodes of acute pancreatitis can lead to chronic pancreatitis. Genetics may be ...

  9. Influence of elevated alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance in fathead minnows during chronic, multi-trophic exposures to a metal mine effluent.

    PubMed

    Ouellet, Jacob D; Dubé, Monique G; Niyogi, Som

    2013-09-01

    Metal bioavailability in aquatic organisms is known to be influenced by various water chemistry parameters. The present study examined the influence of alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance of fathead minnows (Pimephales promelas) during environmentally relevant chronic exposures to a metal mine effluent (MME). Sodium bicarbonate (NaHCO3) or NOM (as commercial humic acid) were added to a Canadian MME [45 percent process water effluent (PWE)] in order to evaluate whether increases in alkalinity (3-4 fold) or NOM (~1.5-3mg/L dissolved organic carbon) would reduce metal accumulation and mitigate reproductive toxicity in fathead minnows during a 21-day multi-trophic exposure. Eleven metals (barium, boron, cobalt, copper, lithium, manganese, molybdenum, nickel, rubidium, selenium, and strontium) were elevated in the 45 percent PWE relative to the reference water. Exposure to the unmodified 45 percent PWE resulted in a decrease of fathead minnow egg production (~300 fewer eggs/pair) relative to the unmodified reference water, over the 21-day exposure period. Water chemistry modifications produced a modest decrease in free ion activity of some metals (as shown by MINTEQ, Version 3) in the 45 percent PWE exposure water, but did not alter the metal burden in the treatment-matched larval Chironomus dilutus (the food source of fish during exposure). The tissue-specific metal accumulation increased in fish exposed to the 45 percent PWE relative to the reference water, irrespective of water chemistry modifications, and the tissue metal concentrations were found to be similar between fish in the unmodified and modified 45 percent PWE (higher alkalinity or NOM) treatments. Interestingly however, increased alkalinity and NOM markedly improved fish egg production both in the reference water (~500 and ~590 additional eggs/pair, respectively) and 45 percent PWE treatments (~570 and ~260 additional eggs

  10. Soil microbial responses to elevated CO2 and O3 in a nitrogen-aggrading agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite decades of study, the underlying mechanisms by which soil microbes respond to rising atmospheric CO2 and ozone remain poorly understood. A prevailing hypothesis, which states that changes in C availability induced by elevated CO2 and ozone drive alterations in soil microbes and the processe...

  11. Introduction to working group on tropospheric ozone, Health Effects Institute environmental epidemiology planning project.

    PubMed Central

    Tager, I B

    1993-01-01

    The working group on tropospheric ozone of the Health Effects Institute has evaluated the need for epidemiologic studies on the health effects of ozone (O3) exposure. This paper summarizes current data and identifies possible research questions. The extent to which ozone exposure results in chronic health effects is largely undefined and is the central issue for epidemiologic studies. Most current data focus on transient endpoints; the link between acute changes in symptoms and/or lung function and possible chronic effects has not been established. Concepts of ozone-induced health effects have been extended to include processes of chronic disease (e.g., markers of ongoing inflammation and repair, markers of accelerated lung aging). Traditional epidemiologic studies performed have focused only on accelerated lung aging and are limited by a number of methodologic problems. Recent, very preliminary, studies suggest new opportunities for the use of human lung tissue and a variety biological response markers as part of epidemiologic studies. The identification of sensitive subpopulations with regard to ozone-induced health effects has been studied incompletely and is important both in terms of study efficiency and mechanistic insight. Methodologic advances in the reconstruction of past ozone exposure are seen as essential, as is the incorporation of emerging markers of biologic response to ozone into traditional epidemiologic study designs. Finally, more data on the joint and independent contribution of other ambient air pollutants to putative ozone-induced health effects is warranted. PMID:8206032

  12. Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill.

    PubMed

    Chaparro, T R; Pires, E C

    2015-01-01

    Pulp and paper mill effluents represent a challenge when treatment technologies are considered, not only to reduce organic matter, but also to reduce the toxicological effects. Although anaerobic treatment has shown promising results, as well as advantages when compared with an aerobic system, this process alone is not sufficient to reduce recalcitrant compounds. Thus, an advanced oxidation process was applied. This experiment was performed to determine the effect of ozone and ozone/UV treating a horizontal anaerobic immobilized biomass reactor effluent from a kraft cellulose pulp mill for 306 days with an organic volumetric load of 2.33 kgCOD/m³/day. The removal of organic compounds was measured by the following parameters: adsorbable organically bound halogens (AOX), total phenols, chemical oxygen demand (COD), dissolved organic carbon and absorbance values in the UV-visible spectral region. Moreover, ecotoxicity and genotoxicity tests were conducted before and after treatment with ozone and ozone/UV. At an applied ozone dosage of 0.76 mgO₃/mgCOD and an applied UV dosage of 3.427 Wh/m(3), the organochlorine compounds measured as AOX reached removal efficiencies of 40%. Although the combination of ozone/UV showed better results in colour (79%) and total phenols (32%) compared with only ozone, the chronic toxicity and the genotoxicity that had already been removed in the anaerobic process were slightly increased. PMID:25714637

  13. Ozone Therapy in Dentistry

    PubMed Central

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  14. IMPACT OF OZONE AND SULPHUR DIOXIDE ON SOYBEAM YIELD

    EPA Science Inventory

    Little dose-response information exists on the effects of chronic ozone (O3) and intermittent sulfur dioxide (SO2) exposures on the yield of important agricultural crops. Such information is needed for refinement of estimates of air pollution induced crop losses. Field-grown plan...

  15. Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.

  16. The ozone backlash

    SciTech Connect

    Taubes, G.

    1993-06-11

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam.

  17. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion.

    PubMed

    Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R

    2011-06-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C. PMID:21477906

  18. Surface-Level Ozone Variability in the Gulf of Maine during ICARTT 2004

    NASA Astrophysics Data System (ADS)

    Rawlins, W. T.; Bauer, A. J.; Sonnenfroh, D. M.; Hintsa, E. J.; Twickler, M. S.; Talbot, R. W.

    2005-12-01

    During July and August 2004, the PSI UV Ozone Photometer was deployed on a commercial cruise ferry to measure temporal and spatial variations in ozone off the New Hampshire coast. The MV Thomas Laighton, operated by the Isles of Shoals Steamship Company in Portsmouth, NH, provided a mobile platform from which to conduct twice daily measurement transects between the coastline and the Isles of Shoals area some 8 km offshore. Ozone mixing ratios, ambient air temperature, and GPS latitude and longitude were sampled at a 1 Hz data rate via a mast and forward-facing air sampling inlet extending into the free stream above the wheelhouse of the vessel. The spatial resolution of the 1 Hz measurements was 5 to 10 m. Previous measurements of this type, during NEAQS 2002, showed extensive spatial variability in off-shore ozone mixing ratios during high-ozone events. The 2004 measurements sampled primarily very low ozone levels associated with clean air from the north and east, as well as a limited set of medium-ozone events associated with southwesterly winds from the polluted urban corridor. As in 2002, the data show substantial spatial variability in ozone mixing ratios for a given transect. These include frequent small-scale depletions in ozone on the scale of tens of meters, due to titration of ozone by localized NOx emissions including the ship's own exhaust, and large scale ozone depletions on the scale of km, associated with medium-high-ozone events. The results are compared to calculated air parcel trajectories, and to ozone measurements from fixed-site instruments on Appledore Island and on a buoy stationed 20 km east of Appledore Island. In general, the off-shore ozone concentrations appear to be greatly elevated only during periods of southerly or southwesterly winds, and are modulated by a complex sea breeze/land breeze effect near the coastline.

  19. MULTIPOLLUTANT METHODS - METHODS FOR OZONE AND OZONE PRECURSORS

    EPA Science Inventory

    This task involves the development and testing of methods for monitoring ozone and compounds associated with the atmospheric chemistry of ozone production both as precursors and reaction products. Although atmospheric gases are the primary interest, separation of gas and particl...

  20. Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft

    PubMed Central

    Bekö, Gabriel; Allen, Joseph G.; Weschler, Charles J.; Vallarino, Jose; Spengler, John D.

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry. PMID:26011001

  1. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft.

    PubMed

    Bekö, Gabriel; Allen, Joseph G; Weschler, Charles J; Vallarino, Jose; Spengler, John D

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry. PMID:26011001

  2. Ozone Depletion by Hydrofluorocarbons

    NASA Astrophysics Data System (ADS)

    Hurwitz, M.; Fleming, E. L.; Newman, P. A.; Li, F.; Mlawer, E. J.; Cady-Pereira, K. E.; Bailey, R.

    2015-12-01

    Hydrofluorocarbons (HFCs) are second-generation replacements for the chlorofluorocarbons (CFCs), halons and other substances that caused the 'ozone hole'. Atmospheric concentrations of HFCs are projected to increase dramatically in the coming decades. Coupled chemistry-climate simulations forced by these projections show that HFCs will impact the global atmosphere in 2050. As strong radiative forcers, HFCs modulate atmospheric temperature, thereby changing ozone-destroying catalytic cycles and enhancing the stratospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Sensitivity simulations with the NASA Goddard Space Flight Center (GSFC) 2D model show that HFC-125 is the most important contributor to atmospheric change in 2050, as compared with HFC-23, HFC-32, HFC-134a and HFC-143a. Incorporating the interactions between chemistry, radiation and dynamics, for a likely 2050 climate, ozone depletion potentials (ODPs) for HFCs range from 4.3x10-4 to 3.5x10-2; previously HFCs were assumed to have negligible ODPs since these species lack chlorine or bromine atoms. The ozone impacts of HFCs are further investigated with the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). The GEOSCCM is a three-dimensional, fully coupled ocean-atmosphere model with interactive stratospheric chemistry. Sensitivity simulations in which CO2, CFC-11 and HCFC-22 are enhanced individually are used as proxies for the atmospheric response to the HFC concentrations expected by the mid-21st century. Sensitivity simulations provide quantitative estimates of the impacts of these greenhouse gases on global total ozone, and can be used to assess their effects on the recovery of Antarctic ozone.

  3. Ozonation of Canadian Athabasca asphaltene

    NASA Astrophysics Data System (ADS)

    Cha, Zhixiong

    Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites

  4. Ozone Contamination in Aircraft Cabins. Appendix A: Ozone toxicity

    NASA Technical Reports Server (NTRS)

    Melton, C. E.

    1979-01-01

    The recommendation that at various altitudes the amount of air with which ozone has mixed changes, thus changing the volume per volume relationship is discussed. The biological effects of ozone on human health and the amount of ozone necessary to produce symptoms were investigated.

  5. Children's Models of the Ozone Layer and Ozone Depletion.

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  6. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    EPA Science Inventory

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  7. Ozone Minimums, 1979 to 2013

    NASA Video Gallery

    Minimum concentration of ozone in the southern hemisphere for each year from 1979-2013 (there is no data from 1995). Each image is the day of the year with the lowest concentration of ozone. A grap...

  8. "OZONE SOURCE APPORTIONMENT IN CMAQ'

    EPA Science Inventory

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental tran...

  9. Elevated Carbon Dioxide and Ozone Concentrations Alter Soybean Antioxidant Metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One important mechanism by which plants sense and respond to their environment is through redox control. Oxidative damage at the cellular level can feed forward to decrease leaf photosynthesis and therefore canopy and ecosystem productivity. How rising atmospheric carbon dioxide (CO2) and tropospher...

  10. An automated ozone photometer

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph R.

    1988-01-01

    A photometer capable of automatically measuring ozone concentration data to very high resolution during scientific research flights in the Earth's atmosphere was developed at NASA Ames Research Center. This instrument was recently deployed to study the ozone hole over Antarctica. Ozone is detected by absorbing 253.7-nm radiation from an ultraviolet lamp which shines through the sample of air and impinges on a vacuum phototube. A lower output from the phototube indicates more ozone present in the air sample. The photometer employs a CMOS Z80 microprocessor with an STD bus system for experiment control, data collection, and storage. Data are collected and stored in nonvolatile memory for experiments lasting up to 8 hr. Data are downloaded to a portable ground-support computer and processed after the aircraft lands. An independent single-board computer in the STD bus also calculates ozone concentration in real time with less resolution than the CMOS Z80 system, and sends this value to a cockpit meter to aid the pilot in navigation.

  11. Ames ER-2 ozone measurements

    NASA Technical Reports Server (NTRS)

    Pearson, R., Jr.; Vedder, James F.; Starr, W. L.

    1990-01-01

    The objective of this research is to study ozone (O3) in the stratosphere. Measurements of the ozone mixing ratio at 1 s intervals are obtained with an ultraviolet photometer which flies on the ER-2 aircraft. The photometer determines the amount of ozone in air by measuring the transmission of ultraviolet light through a fixed path with and without ambient O3 present.

  12. Ozone depletion by hydrofluorocarbons

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Mlawer, Eli; Cady-Pereira, Karen; Bailey, Roshelle

    2015-10-01

    Atmospheric concentrations of hydrofluorocarbons (HFCs) are projected to increase considerably in the coming decades. Chemistry climate model simulations forced by current projections show that HFCs will impact the global atmosphere increasingly through 2050. As strong radiative forcers, HFCs increase tropospheric and stratospheric temperatures, thereby enhancing ozone-destroying catalytic cycles and modifying the atmospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Simulations with the NASA Goddard Space Flight Center 2-D model show that HFC-125 is the most important contributor to HFC-related atmospheric change in 2050; its effects are comparable to the combined impacts of HFC-23, HFC-32, HFC-134a, and HFC-143a. Incorporating the interactions between chemistry, radiation, and dynamics, ozone depletion potentials (ODPs) for HFCs range from 0.39 × 10-3 to 30.0 × 10-3, approximately 100 times larger than previous ODP estimates which were based solely on chemical effects.

  13. Variability and trends in total and vertically resolved stratospheric ozone based on the CATO ozone data set

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Staehelin, J.; Maeder, J. A.; Wohltmann, I.; Bodeker, G. E.

    2006-10-01

    Trends in ozone columns and vertical distributions were calculated for the period 1979-2004 based on the ozone data set CATO (Candidoz Assimilated Three-dimensional Ozone) using a multiple linear regression model. CATO has been reconstructed from TOMS, GOME and SBUV total column ozone observations in an equivalent latitude and potential temperature framework and offers a pole to pole coverage of the stratosphere on 15 potential temperature levels. The regression model includes explanatory variables describing the influence of the quasi-biennial oscillation (QBO), volcanic eruptions, the solar cycle, the Brewer-Dobson circulation, Arctic ozone depletion, and the increase in stratospheric chlorine. The effects of displacements of the polar vortex and jet streams due to planetary waves, which may significantly affect trends at a given geographical latitude, are eliminated in the equivalent latitude framework. The QBO shows a strong signal throughout most of the lower stratosphere with peak amplitudes in the tropics of the order of 10-20% (peak to valley). The eruption of Pinatubo led to annual mean ozone reductions of 15-25% between the tropopause and 23 km in northern mid-latitudes and to similar percentage changes in the southern hemisphere but concentrated at altitudes below 17 km. Stratospheric ozone is elevated over a broad latitude range by up to 5% during solar maximum compared to solar minimum, the largest increase being observed around 30 km. This is at a lower altitude than reported previously, and no negative signal is found in the tropical lower stratosphere. The Brewer-Dobson circulation shows a dominant contribution to interannual variability at both high and low latitudes and accounts for some of the ozone increase seen in the northern hemisphere since the mid-1990s. Arctic ozone depletion significantly affects the high northern latitudes between January and March and extends its influence to the mid-latitudes during later months. The vertical

  14. SAGE II Ozone Analysis

    NASA Technical Reports Server (NTRS)

    Cunnold, Derek; Wang, Ray

    2002-01-01

    Publications from 1999-2002 describing research funded by the SAGE II contract to Dr. Cunnold and Dr. Wang are listed below. Our most recent accomplishments include a detailed analysis of the quality of SAGE II, v6.1, ozone measurements below 20 km altitude (Wang et al., 2002 and Kar et al., 2002) and an analysis of the consistency between SAGE upper stratospheric ozone trends and model predictions with emphasis on hemispheric asymmetry (Li et al., 2001). Abstracts of the 11 papers are attached.

  15. Tropospheric ozone in the vicinity of the ozone hole - 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Warren, Linda S.; Hypes, Warren D.; Tuck, Adrian F.; Kelly, Kenneth K.; Krueger, Arlin J.

    1989-01-01

    Results are presented on ozone measurements in the upper troposphere/lower stratosphere over Antarctica, obtained by NASA DC-8 aircraft during the August/September 1987 Airborne Antarctic Ozone Experiment. The ozone mixing ratios as high as several hundred ppbv were measured, but in all cases these ratios were observed in pockets of upper atmospheric air, both in the vicinity of and away from the location of the ozone hole. The background ozone values in the surrounding troposphere were typically in the range of 20-50 ppbv. Correlation of tropospheric ozone observations with the boundaries of the ozone hole differed in the course of the experiment. During the August 28 - September 2 flights, encounters with ozone-rich air were limited, and the background tropospheric ozone appeared to decrease beneath the hole. For the later flights, and as the ozone hole deepened, the ozone-rich air was frequently observed in the vicinity of the hole, and the average ozone values at the flight altitude were frequently higher than the background values.

  16. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  17. Karlson ozone sterilizer. Final report

    SciTech Connect

    Karlson, E.

    1984-05-07

    The authors have a functional sterilization system employing ozone as a sterilization agent. This final report covers the work that led to the first medical sterilizer using ozone as the sterilizing agent. The specifications and the final design were set by hospital operating room personnel and public safety standards. Work on kill tests using bacteria, viruses and fungi determined the necessary time and concentration of ozone necessary for sterilization. These data were used in the Karlson Ozone Sterilizer to determine the length of the steps of the operating cycle and the concentration of ozone to be used. 27 references.

  18. Total Ozone Prediction: Stratospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Kawa, S. Ramdy; Douglass, Anne R.

    2003-01-01

    The correct prediction of total ozone as a function of latitude and season is extremely important for global models. This exercise tests the ability of a particular model to simulate ozone. The ozone production (P) and loss (L) will be specified from a well- established global model and will be used in all GCMs for subsequent prediction of ozone. This is the "B-3 Constrained Run" from M&MII. The exercise mostly tests a model stratospheric dynamics in the prediction of total ozone. The GCM predictions will be compared and contrasted with TOMS measurements.

  19. Assimilation of Satellite Ozone Observations

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.

    2003-01-01

    This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.

  20. Elevated Plasma Endothelin-1 and Pulmonary Arterial Pressure in Children Exposed to Air Pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J.; Reed, William

    2007-01-01

    Background Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. Objectives The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O3 that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. Methods We conducted a study of 81 children, 7.9 ± 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O3 levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Results Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 μm in aerodynamic diameter (PM2.5) before endothelin-1 measurement (p = 0.03). Conclusions Chronic exposure of children to PM2.5 is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure. PMID:17687455

  1. Urban greening impacts on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Grote, R.; Churkina, G.; Butler, T. M.; Morfopoulos, C.

    2013-12-01

    Cities are characterized by elevated air temperatures as well as high anthropogenic emissions of air pollutants. Cities' greening in form of urban parks, street trees, and vegetation on roofs and walls of buildings is supposed to generally mitigate negative impacts on human health and well-being. However, high emissions of biogenic volatile organic compounds (BVOC) from certain popular urban plants in combination with the elevated concentrations of NOx have the potential to increase ground-level ozone concentrations - with negative impacts on health, agriculture, and climate. Policies targeting reduction of ground-level ozone in urban and suburban areas therefore must consider limiting BVOC emissions along with measures for decreasing NOx and VOC from anthropogenic sources. For this, integrated climate/ chemistry models are needed that take into account the species-specific physiological responses of urban plants which in turn drive their emission behavior. Current models of urban climate and air quality 1) do not account for the feedback between ozone concentrations, productivity, and BVOC emission and 2) do not distinguish different physiological properties of urban tree species. Instead environmental factors such as light, temperature, carbon dioxide, and water supply are applied disregarding interactions between such influences. Thus we may not yet be able to represent the impacts of air pollution under multiple changed conditions such as climate change, altered anthropogenic emission patterns, and new urban structures. We present here the implementation of the new BVOC emission model (Morfopolous et al., in press) that derives BVOC emissions directly from the electron production potential and consumption from photosynthesis calculation that is already supplied by the CLM land surface model. The new approach has the advantage that many environmental drivers of BVOC emissions are implicitly considered in the description of plant photosynthesis and phenology. We

  2. The Ozone Show.

    ERIC Educational Resources Information Center

    Mathieu, Aaron

    2000-01-01

    Uses a talk show activity for a final assessment tool for students to debate about the ozone hole. Students are assessed on five areas: (1) cooperative learning; (2) the written component; (3) content; (4) self-evaluation; and (5) peer evaluation. (SAH)

  3. Ozone decomposing filter

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Whinnery, Jr., LeRoy L.

    1999-01-01

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  4. Ozone and temperature trends

    NASA Technical Reports Server (NTRS)

    Labitzke, K.; Miller, A. J.; Angell, J.; Deluisi, J.; Frederick, J.; Logan, J.; Mateer, C.; Naujokat, B.; Reinsel, G.; Tiao, G.

    1985-01-01

    The measurement of temporal changes in ozone and temperature are discussed. The data are examined within the context of natural atmospheric variability and data problems. The results are compared to numerical model calculations. The major issues are defined in terms of goal achievement. Each parameter is considered in terms of instrument type, long term effects, and altitude.

  5. Ozone decomposing filter

    SciTech Connect

    Simandl, R.F.; Brown, J.D.; Whinnery, L.L. Jr.

    1999-11-02

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  6. Ozone Layer Educator's Guide.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This guide has been developed through a collaborative effort involving the U.S. Environmental Protection Agency (EPA), the National Oceanic and Atmospheric Administration (NOAA), and the National Aeronautics and Space Administration (NASA). It is part of an ongoing commitment to ensure that the results of scientific research on ozone depletion are…

  7. Dobson ozone spectrophotometer modification.

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  8. Revisiting Antarctic Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  9. Studies on the biological effects of ozone: 10. Release of factors from ozonated human platelets.

    PubMed Central

    Valacchi, G; Bocci, V

    1999-01-01

    In a previous work we have shown that heparin, in the presence of ozone (O3), promotes a dose-dependent platelet aggregation, while after Ca2+ chelation with citrate, platelet aggregation is almost negligible. These results led us to think that aggregation may enhance the release of platelet components. We have here shown that indeed significantly higher amount of platelet-derived growth factor (PDGF), transforming growth factor beta1 (TGF-beta1) and interleukin-8 (IL-8) are released in a dose-dependent manner after ozonation of heparinised platelet-rich plasma samples. These findings may explain the enhanced healing of torpid ulcers in patients with chronic limb ischemia treated with O3 autohaemoteraphy (O3-AHT). PMID:10704074

  10. Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists

    SciTech Connect

    Abbey, D.E.; Mills, P.K.; Petersen, F.F.; Beeson, W.L. )

    1991-08-01

    Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution.

  11. Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists.

    PubMed Central

    Abbey, D E; Mills, P K; Petersen, F F; Beeson, W L

    1991-01-01

    Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution. PMID:1954938

  12. Respiratory responses of subjects with allergic rhinitis to ozone exposure and their relationship to nonspecific airway reactivity

    SciTech Connect

    McDonnell, W.F.; Horstman, D.H.; Abdul-Salaam, S.; Raggio, L.J.; Green, J.A.

    1987-01-01

    Ozone exposure in man produces changes in respiratory function and symptoms. There is a large degree of unexplained intersubject variability in the magnitude of these responses. There is concern that individuals with chronic respiratory diseases may also be more responsive to ozone than normal individuals. The purpose of this study was to describe the responses of subjects with allergic rhinitis to ozone exposure and to compare these responses to those previously observed in normal individuals. A further purpose was to measure the association between baseline nonspecific airway reactivity and changes in lung function and respiratory symptoms following ozone exposure.

  13. Intradiscal injection of oxygen-ozone gas mixture for the treatment of cervical disc herniations.

    PubMed

    Alexandre, A; Corò, L; Azuelos, A; Buric, J; Salgado, H; Murga, M; Marin, F; Giocoli, H

    2005-01-01

    For disc herniations the use of open surgical approaches is reduced since new percutaneous methods allowing shrinkage of the disc and improvement of the radicular function are gaining interest. Studies on the spontaneous disappearance of disc fragments have demonstrated autoimmune responses with a chronic inflammatory reaction. Also radicular pain has been shown to be mostly due to biochemical mechanisms. Researchers in different fields surprisingly noticed that a brief, calculated, oxidative stress by ozone administration may correct a persistent imbalance due to excessive, chronic oxidative injury. Oxygen-ozone gas injection in painful patients has a dramatic effect on clinical symptoms. On these bases the intradiscal injection of oxygen-ozone gas has been conceived. We report the treatment on a series of patients affected by cervical disc pathology, treated by intradiscal injection of oxygen-ozone gas mixture. The effects both on pain and on radicular dysfunction are impressive. The morphological effect of the treatment was also evaluated by pathological examination. PMID:15830973

  14. Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; von Gunten, Urs; Behra, Renata; Morgenroth, Eberhard; Kaegi, Ralf

    2015-09-15

    Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations. PMID:26270654

  15. Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2016-01-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: can surface reactions limit the stomatal uptake of ozone and therefore reduce its detrimental effects to plants?In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety-dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by a prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too.Fluid dynamic calculations were used to model ozone distribution in the diffusion-limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way that the ozone flux through the open stomata is strongly reduced.Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  16. Industrial emissions cause extreme urban ozone diurnal variability

    NASA Astrophysics Data System (ADS)

    Zhang, Renyi; Lei, Wenfang; Tie, Xuexi; Hess, Peter

    2004-04-01

    Simulations with a regional chemical transport model show that anthropogenic emissions of volatile organic compounds and nitrogen oxides (NOx = NO + NO2) lead to a dramatic diurnal variation of surface ozone (O3) in Houston, Texas. During the daytime, photochemical oxidation of volatile organic compounds catalyzed by NOx results in episodes of elevated ambient O3 levels significantly exceeding the National Ambient Air Quality Standard. The O3 production rate in Houston is significantly higher than those found in other cities over the United States. At night, a surface NOx maximum occurs because of continuous NO emission from industrial sources, and, consequently, an extensive urban-scale "hole" of surface ozone (<10 parts per billion by volume in the entire Houston area) is formed as a result of O3 removal by NO. The results suggest that consideration of regulatory control of O3 precursor emissions from the industrial sources is essential to formulate ozone abatement strategies in this region.

  17. Research Spotlight: Ozone-destroying iodine measured in Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-01-01

    Iodine in the atmosphere can destroy ozone and can also accelerate bromine-catalyzed ozone depletion. Iodine has been measured in the Antarctic atmosphere at levels that cause significant ozone depletion. Mahajan et al. now report detailed measurements of iodine in the Arctic lower troposphere above Hudson Bay. They observed episodes of elevated levels of iodine monoxide as well as other iodine compounds. They suggest that the iodine monoxide probably originated from organoiodine compounds released from ice and seawater algae in areas of open water surrounded by sea ice in Hudson Bay. The emissions of these iodinated compounds will probably grow if sea ice cover in the Arctic continues to decrease. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2009JD013665, 2010)

  18. Ozone risk assessment for plants: central role of metabolism-dependent changes in reducing power.

    PubMed

    Dizengremel, Pierre; Le Thiec, Didier; Bagard, Matthieu; Jolivet, Yves

    2008-11-01

    The combination of stomatal-dependent ozone flux and total ascorbate level is currently presented as a correct indicator for determining the degree of sensitivity of plants to ozone. However, the large changes in carbon metabolism could play a central role in the strategy of the foliar cells in response to chronic ozone exposure, participating in the supply of reducing power and carbon skeletons for repair and detoxification, and modifying the stomatal mode of functioning. To reinforce the accuracy of the definition of the threshold for ozone risk assessment, it is proposed to also consider the redox pool (NAD(P)H), the ratio between carboxylases and the water use efficiency as indicators of the differential ozone tolerance of plants. PMID:18243452

  19. The impact of atmospheric composition on plants: a case study of ozone and poplar.

    PubMed

    Renaut, Jenny; Bohler, Sacha; Hausman, Jean-François; Hoffmann, Lucien; Sergeant, Kjell; Ahsan, Nagib; Jolivet, Yves; Dizengremel, Pierre

    2009-01-01

    Tropospheric ozone is the main atmospheric pollutant that causes damages to trees. The estimation of the threshold for ozone risk assessment depends on the evaluation of the means that this pollutant impacts the plant and, especially, the foliar organs. The available results show that, before any visible symptom appears, carbon assimilation and the underlying metabolic processes are decreased under chronic ozone exposure. By contrast, the catabolic pathways are enhanced, and contribute to the supply of sufficient reducing power necessary to feed the detoxification processes. Reactive oxygen species delivered during ozone exposure serve as toxic compounds and messengers for the signaling system. In this review, we show that the contribution of genomic tools (transcriptomics, proteomics, and metabolomics) for a better understanding of the mechanistic cellular responses to ozone largely relies on spectrometric measurements. PMID:18985755

  20. Can vitamin E protect humans against the pathological effects of ozone in smog

    SciTech Connect

    Pryor, W.A. )

    1991-03-01

    Ozone reacts with polyunsaturated fatty acids (PUFAs) in vitro to form free radicals, and vitamin E slows or prevents this reaction. Consistent with this, dietary vitamin E significantly protects animals against the deleterious effects of ozone and the absence of vitamin E potentiates damage by ozone. Thus, chemical and animal studies as well as the opposite effects of ozone and vitamin E on the immune system suggest the hypothesis that vitamin E can protect humans against the harmful effects of chronic exposures to ozone. However, because most humans are not vitamin E deficient, the more relevant question is whether amounts of vitamin E above the minimum of dietary requirement provide increased protection. The need for and design of further studies to answer this question are discussed. 161 refs.

  1. Stratospheric contribution to surface ozone in the desert Southwest during the 2013 Las Vegas Ozone Study

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II; Brioude, J. F.; Cooper, O. R.; Holloway, J. S.; Lin, M.; Marchbanks, R.; Pierce, R. B.; Reddy, P. J.; Sandberg, S.; Weickmann, A. M.; Williams, E. J.; Gustin, M. S.; Iraci, L. T.; Leblanc, T.; Yates, E. L.

    2014-12-01

    The 2013 Las Vegas Ozone Study (LVOS) was designed to investigate the potential impact of stratosphere-troposphere transport (STT) and long-range transport of pollution from Asia on surface O3 concentrations in Clark County, NV. This measurement campaign, which took place in May and June of 2013, was conducted at Angel Peak, NV, a high elevation site about 2.8 km above mean sea level and 45 km west of Las Vegas. The study was organized around the NOAA ESRL truck-based TOPAZ scanning ozone lidar with collocated in situ sampling of O3, CO, and meteorological parameters. These measurements were supported by the NOAA/NESDIS real time modelling system (RAQMS), FLEXPART particle dispersion model, and the NOAA GFDL AM3 model. In this talk, I will describe one of several STT events that occurred during the LVOS campaign. This intrusion, which was profiled by TOPAZ on the night of May 24-25, was also sampled by the NASA Alpha Jet, the Table Mountain ozone lidar, and by an ozonesonde flying above southern California. This event also led to significant ozone increases at surface monitors operated by Clark County, the California Air Resources Board, the U.S. National Park Service, and the Nevada Rural Ozone Initiative (NRVOI), and resulted in exceedances of the 2008 75 ppbv O3 NAAQS both in Clark County and in surrounding areas of Nevada and southern California. The potential implications of this and similar events for air quality compliance in the western U.S. will be discussed.

  2. Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles

    PubMed Central

    Kodavanti, Urmila P.; Thomas, Ronald; Ledbetter, Allen D.; Schladweiler, Mette C.; Shannahan, Jonathan H.; Wallenborn, J. Grace; Lund, Amie K.; Campen, Matthew J.; Butler, Elizabeth O.; Gottipolu, Reddy R.; Nyska, Abraham; Richards, Judy E.; Andrews, Deborah; Jaskot, Richard H.; McKee, John; Kotha, Sainath R.; Patel, Rishi B.; Parinandi, Narasimham L.

    2011-01-01

    Background Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown. Objective We sought to determine whether episodic exposure of rats to ozone or diesel exhaust particles (DEP) causes differential cardiovascular impairments that are exacerbated by ozone plus DEP. Methods and results Male Wistar Kyoto rats (10–12 weeks of age) were exposed to air, ozone (0.4 ppm), DEP (2.1 mg/m3), or ozone (0.38 ppm) + DEP (2.2 mg/m3) for 5 hr/day, 1 day/week for 16 weeks, or to air, ozone (0.51 or 1.0 ppm), or DEP (1.9 mg/m3) for 5 hr/day for 2 days. At the end of each exposure period, we examined pulmonary and cardiovascular biomarkers of injury. In the 16-week study, we observed mild pulmonary pathology in the ozone, DEP, and ozone + DEP exposure groups, a slight decrease in circulating lymphocytes in the ozone and DEP groups, and decreased platelets in the DEP group. After 16 weeks of exposure, mRNA biomarkers of oxidative stress (hemeoxygenase-1), thrombosis (tissue factor, plasminogen activator inhibitor-1, tissue plasminogen activator, and von Willebrand factor), vasoconstriction (endothelin-1, endothelin receptors A and B, endothelial NO synthase) and proteolysis [matrix metalloprotease (MMP)-2, MMP-3, and tissue inhibitor of matrix metalloprotease-2] were increased by DEP and/or ozone in the aorta, but not in the heart. Aortic LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) mRNA and protein increased after ozone exposure, and LOX-1 protein increased after exposure to ozone + DEP. RAGE (receptor for advanced glycation end products) mRNA increased in the ozone + DEP group. Exposure to ozone or DEP depleted cardiac mitochondrial phospholipid fatty acids (DEP > ozone). The combined effect of ozone and DEP exposure was less pronounced than exposure to either pollutant alone. Exposure to ozone or DEP for 2 days (acute) caused mild changes in the aorta. Conclusions In animals exposed to ozone or DEP alone for 16

  3. Tropospheric ozone in the vicinity of the ozone hole: 1987 Airborne Antarctic Ozone Experiment

    SciTech Connect

    Gregory, G.L.; Warren, L.S. ); Hypes, W.D. ); Tuck, A.F.; Kelly, K.K. ); Krueger, A.J. )

    1989-11-30

    Tropospheric ozone measurements over Antarctica aboard the NASA DC-8 aircraft are summarized. As part of the August/September 1987 Airborne Antarctic Ozone Experiment, the aircraft flew 13 missions covering a latitude of 53{degree}-90{degree}S, at altitudes to 13 km. Ozone mixing ratios as high as several hundred parts per billion by volume (ppbv) were measured, but in all cases these ratios were observed in pockets or patches of upper atmospheric air. These pockets were observed both in the vicinity of and away from the location of the ozone hole. At times, and as a result of these pockets, the ozone levels at the flight altitude of the aircraft, as averaged beneath the boundaries of the stratospheric ozone hole, were 2-3 times higher than background tropospheric values. The data suggest that the ozone-rich air seldom penetrated below about 9-km altitude. Background ozone values in the surrounding troposphere were typically in the range of 20-50 ppbv. Correlation of tropospheric ozone observations with the boundaries of the ozone hole differed during the experiment. During the early flights (August 28 through September 2), encounters with ozone-rich air were limited and background tropospheric ozone (at the flight altitude) appeared to decrease beneath the hole. For many of the later flights, and as the hole deepened, the reverse was noted, in that ozone-rich air was frequently observed in the vicinity of the hole and, as noted earlier, average ozone at the flight altitude was frequently higher than background values.

  4. Chemical loss of ozone in the Arctic polar vortex in the winter of 1991- 1992

    NASA Technical Reports Server (NTRS)

    Salawitch, R. J.; Wofsy, S. C.; Gottlieb, E. W.; Lait, L. R.; Newman, P. A.; Schoeberl, M. R.; Loewenstein, M.; Podolske, J. R.; Strahan, S. E.; Proffitt, M. H.

    1993-01-01

    In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.

  5. Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992

    NASA Technical Reports Server (NTRS)

    Salawitch, R. J.; Wofsy, S. C.; Gottlieb, E. W.; Lait, L. R.; Newman, P. A.; Schoeberl, M. R.; Strahan, S. E.; Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Proffitt, M. H.; Fahey, D. W.; Kelly, K. K.; Webster, C. R.; May, R. D.; Baumgardner, D.; Dye, J. E.; Wilson, J. C.; Elkins, J. W.; Anderson, J. G.

    1993-01-01

    In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.

  6. 16 CFR 260.11 - Ozone-safe and ozone-friendly claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It...

  7. 16 CFR 260.11 - Ozone-safe and ozone-friendly claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It...

  8. Elevated glutathione level does not protect against chronic alcohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes--alcohol dehydrogenase and Cytochrome P450 2E1.

    PubMed

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Chatterjee, Suvro; Clemens, Dahn L; Dey, Aparajita

    2011-06-01

    Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied. Untreated VL-17A cells exhibited apoptosis and oxidative stress when compared with untreated HepG2 cells. Chronic alcohol exposure, i.e., 100 mM ethanol treatment for 72 h caused a significant decrease in viability (47%) in VL-17A cells but not in HepG2 cells. Chronic ethanol mediated cell death in VL-17A cells was predominantly apoptotic, with increased oxidative stress as the underlying mechanism. Chronic ethanol exposure of VL-17A cells resulted in 1.1- to 2.5-fold increased levels of ADH and CYP2E1. Interestingly, the level of the antioxidant GSH was found to be 3-fold upregulated in VL-17A cells treated with ethanol, which may be a metabolic adaptation to the persistent and overwhelming oxidative stress. In conclusion, the increased GSH level may not be sufficient enough to protect VL-17A cells from chronic alcohol mediated oxidative stress and resultant apoptosis. PMID:21414402

  9. Solving the Tulsa ozone problem

    SciTech Connect

    Wagner, K.K.; Wilson, J.D.; Gibeau, E.

    1998-12-31

    Local governments and interested parties in Tulsa, Oklahoma are planning actions to keep Tulsa in compliance with the ozone ambient air quality standard. Based on recent data Tulsa exceeds the new eight hour average national ambient air quality standard for ozone and occasionally exceeds the previous one hour standard. Currently, Tulsa is in attainment of the former one-hour ozone standard. The first planning step is to integrate the existing information about Tulsa`s ozone problem. Prior studies of Tulsa ozone are reviewed. Tulsa`s recent air quality and meteorological monitoring are evaluated. Emission inventory estimates are assessed. Factors identified with Tulsa`s ozone problem are the transport of ozone and precursor gases, a possible role for biogenic emissions, and a simplistic ozone forecasting method. The integration of information found that current air quality and meteorological monitoring is meager. Observations of volatile organic compounds and NO{sub y} are absent. Prior intensive studies in 1977 and 1985 are more than ten years old and lack relevance to today`s problem. Emission inventory estimates are scarce and uncertain. The current knowledge base was judged inadequate to properly characterize the present ozone problem. Actions are recommended to enlarge the information base to address Tulsa`s ozone problem.

  10. CFCS and the ozone layer.

    PubMed

    Hayman, G D

    1997-05-01

    Ozone is an important constituent of the atmosphere. Ozone forms a distinct layer in the lower stratosphere known as the ozone layer. The ozone layer acts as a fragile shield because it protects man and other life forms from exposure to harmful short-wavelength ultraviolet (UV) radiation. The agents, particularly chemical, which affect the amount of ozone present in the atmosphere have been a source of concern for more than 20 years. This has been reinforced by the dramatic decline of stratospheric ozone levels first measured in Antarctica and now apparent worldwide. The combination of routine measurements of ozone depletion, careful laboratory studies and mathematical modelling of ozone in the atmosphere, has demonstrated that the reactive fragments produced when chlorofluorocarbons (CFCs), halons and other halogenated compounds break down in the stratosphere are responsible for the ozone loss. As CFCs have widespread and sometimes apparently essential uses in modern society, there has been an intense effort to develop safe, effective replacements which have a negligible or much smaller impact on the environment. The Montreal Protocol, signed by over 140 nations, has been implemented to control and phase out the chemical compounds responsible for ozone loss. PMID:9519506

  11. Precision ozone calibration system based on vapor pressures of ozone

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Hanson, D.; Morton, J.

    1987-01-01

    A precision ozone calibration system for stratospheric research has been developed and evaluated. Vapor pressures above solid ozone are mixed with a carrier gas (N2) to produce stratospheric ozone mixing ratios at total pressures of 1 to cover 20 torr. The uncertainty in the ozone mixing ratios is approximately + or - 1.5 percent, the stability of ozone is + or - 0.3 percent. Experiments to be calibrated may sample the gas mixture over a wide range of flow rates; the maximum throughput of gas with corrections of less than 1 percent to ozone is about 200 torr 1/min. A mass spectrometer system continuously monitors the purity and stability of the N2-O3 gas mixture.

  12. Elevated atmospheric CO2 and O3 differentially alter nitrogen acquisition in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both CO2 and ozone (O3) concentrations in the atmosphere have increased over the past 50 years and are predicted to rise continually during this century. Elevated CO2 usually stimulates while elevated O3 often inhibits plant photosynthesis and primary production. Whether these changes are partly re...

  13. Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth).

    PubMed

    Saleem, A; Loponen, J; Pihlaja, K; Oksanen, E

    2001-05-01

    The response of phenolic compounds as a result of long-term low open-field ozone exposure was studied in ozone-sensitive and ozone-tolerant clones of European silver birch (Betula pendula Roth). The saplings were exposed to 1.5-1.6 times the ambient (elevated) ozone and ambient air (as control) over three growing seasons from May 1996 until August 1998. Quantification by modified Folin-Ciocalteau assay showed a 16.2% increase in total phenolics in elevated ozone plants as compared to that in controls and a corresponding 9.9% increase of 10 phenolic compounds quantified by HPLC. Five nonflavonoids and five flavonoids showed 8.4% and 11.4% increases, respectively. The phenolic results indicated slightly higher ozone sensitivity of clone 5 as compared to clone 2. The most ozone-responsive phenolic compounds in clone 2 and clone 5 were (+)-catechin (CT), chlorogenic acid (CGA), 5-p-coumaroylquinic acid (5CQA), 3-p-coumaroylquinic acid (3CQA), myricetin galactopyranoside (MG), quercetin-3-O-glucuronopyranoside (QGR), and quercetin-3-O-arabinofuranoside (QA). Increased phenolic content in ozone-exposed plants was related to impaired growth and accelerated leaf senescence, indicated by enhanced autumn leaf yellowing and lower chlorophyll and Mg content. The change in carbon allocation towards defensive phenolics at the expense of growth was greater in the ozone-sensitive clone as compared to tolerant clone. PMID:11471939

  14. Balloonborne ozone and aerosol measurements in the antarctic ozone hole

    SciTech Connect

    Hofmann, D.J.; Harder, J.W.; Rolf, S.R.; Rosen, J.M. )

    1987-01-01

    The National Ozone Expedition (NOZE) was mounted in 1986 using winter fly-in flights to McMurdo Station in August, which is approximately the time the ozone reduction begins. The University of Wyoming Atmospheric Physics group participated in this expedition through balloonborne measurements of the vertical distribution of ozone and aerosol particles. Between 24 August and 6 November, 33 ozone soundings, 6 aerosol sounding, and 3 condensation nuclei soundings were conducted using polyethylene balloons which were able to penetrate the cold (< {minus}80C) antarctic stratosphere. The authors summarize these results here.

  15. Ozone and ozone byproducts in the cabins of commercial aircraft.

    PubMed

    Weisel, Clifford; Weschler, Charles J; Mohan, Kris; Vallarino, Jose; Spengler, John D

    2013-05-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density, and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were >75 ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal, and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy, and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO's formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  16. Assessing the public health benefits of reduced ozone concentrations.

    PubMed Central

    Levy, J I; Carrothers, T J; Tuomisto, J T; Hammitt, J K; Evans, J S

    2001-01-01

    In this paper we examine scientific evidence and related uncertainties in two steps of benefit-cost analyses of ozone reduction: estimating the health improvements attributable to reductions in ozone and determining the appropriate monetary values of these improvements. Although substantial evidence exists on molecular and physiologic impacts, the evidence needed to establish concentration-response functions is somewhat limited. Furthermore, because exposure to ozone depends on factors such as air conditioning use, past epidemiologic studies may not be directly applicable in unstudied settings. To evaluate the evidence likely to contribute significantly to benefits, we focus on four health outcomes: premature mortality, chronic asthma, respiratory hospital admissions, and minor restricted activity days. We determine concentration-response functions for these health outcomes for a hypothetical case study in Houston, Texas, using probabilistic weighting reflecting our judgment of the strength of the evidence and the possibility of confounding. We make a similar presentation for valuation, where uncertainty is due primarily to the lack of willingness-to-pay data for the population affected by ozone. We estimate that the annual monetary value of health benefits from reducing ozone concentrations in Houston is approximately $10 per person per microgram per cubic meter (24-hr average) reduced (95% confidence interval, $0.70-$40). The central estimate exceeds past estimates by approximately a factor of five, driven by the inclusion of mortality. We discuss the implications of our findings for future analyses and determine areas of research that might help reduce the uncertainties in benefit estimation. PMID:11748028

  17. The usefulness of ozone treatment in spinal pain

    PubMed Central

    Bocci, Velio; Borrelli, Emma; Zanardi, Iacopo; Travagli, Valter

    2015-01-01

    Objective The aim of this review is to elucidate the biochemical, molecular, immunological, and pharmaceutical mechanisms of action of ozone dissolved in biological fluids. Studies performed during the last two decades allow the drawing of a comprehensive framework for understanding and recommending the integration of ozone therapy for spinal pain. Methods An in-depth screening of primary sources of information online – via SciFinder Scholar, Google Scholar, and Scopus databases as well as Embase, PubMed, and the Cochrane Database of Systemic Reviews – was performed. In this review, the most significant papers of the last 25 years are presented and their proposals critically evaluated, regardless of the bibliometric impact of the journals. Results The efficacy of standard treatments combined with the unique capacity of ozone therapy to reactivate the innate antioxidant system is the key to correcting the oxidative stress typical of chronic inflammatory diseases. Pain pathways and control systems of algesic signals after ozone administration are described. Conclusion This paper finds favors the full insertion of ozone therapy into pharmaceutical sciences, rather than as either an alternative or an esoteric approach. PMID:26028964

  18. The Impact of Meteorology on Ozone Levels in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Theiss, Sandra

    The Lake Tahoe Basin is located on the California-Nevada border and occasionally experiences elevated levels of ozone exceeding the 70 ppb California Air Resources Board (CARB) ambient air quality standard (8-hour average). Previous studies indicate that both the local generation of ozone in the Basin and long-range transport from out-of-Basin sources are important in contributing to ozone exceedances, but little is known about the impact of meteorology on the distribution of ozone source regions. In order to develop a better understanding of the factors affecting ozone levels and sources in the Lake Tahoe Basin, this study combines observational data from a 2010 and 2012 summer field campaigns, HYSPLIT back trajectories, and WRF model output to examine the meteorological influences of ozone transport in the topographically complex Lake Tahoe Basin. Findings from the field work portions of this study include enhanced background ozone levels at higher elevations, the local circulation pattern of lake breezes occurring at Lake level sites, and an indication that ozone precursors are coming off the Lake. Our analysis also showed that if transport of ozone does occur, it is more likely to come from the San Joaquin Valley to the south rather than originate in the large cities to the west, such as Sacramento and San Francisco. Analysis of modeled PBL schemes as compared with observational data showed that the ACM2 PBL scheme best represented the geographical domain. The ACM2 PBL scheme was then used to show wind circulation patterns in the Lake Tahoe Basin and concluded that there is decent vertical mixing over the Basin and no indication of ozone transport from the west however some indication of transport from the east. Overall this study concludes that transport from the west is less significant than transport from the south and east, and that transport only influences ozone values at higher elevations. Within the Basin itself (at lower elevations), local factors

  19. Isoprene biosynthesis in hybrid poplar impacts ozone tolerance

    NASA Astrophysics Data System (ADS)

    Behnke, K.; Kleist, E.; Uerlings, R.; Wildt, J.; Rennenberg, H.; Schnitzler, J. P.

    2009-04-01

    Isoprene is the most abundant volatile compound emitted by vegetation. It influences air chemistry and is thought to take part in plant defense reactions against abiotic stress such as high temperature or ozone. However, whether or not isoprene emission interacts with ozone tolerance of plants is still in discussion. We exploited transgenic non-isoprene emitting Grey poplar (Populus x canescens) in a biochemical and physiological model study to investigate the effect of acute ozone stress on the elicitation of defense-related emissions of plant volatiles, photosynthesis and the antioxidative system. We recorded that non-isoprene emitting poplars are more resistant to ozone as indicated by less damaged leaf area and higher assimilation rates compared to ozone-exposed wild type plants. The integral of green leaf volatile (GLV) emissions was different between the two poplar phenotypes and a reliable early marker for subsequent leaf damage. For other stress-induced volatiles like mono-, homo-, and sesquiterpenes, and methyl salicylate similar time profiles, pattern and emission intensities were observed in both transgenic and wild type plants. However, un-stressed non-isoprene emitting poplars are characterized by elevated levels of ascorbate and α-tocopherol as well as a more effective de-epoxidation ratio of xanthophylls than in wild type plants. Since ozone quenching properties of ascorbate are much higher than those of isoprene and furthermore α-tocopherol also is an essential antioxidant, non-isoprene emitting poplars might benefit from changes within the antioxidative system by providing them with enhanced ozone tolerance.

  20. Regional Transport Versus Local Production of Ground Level Tropospheric Ozone in the Baltimore Region: a Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Hudson, R. D.; Nguyen, D.

    2006-05-01

    Significant levels of ozone in the lowest 2000 m of the atmosphere, often above the planetary boundary layer, have been measured from aircraft flights over the eastern US. These elevated amounts of ozone can be mixed down to the ground as the nocturnal inversion breaks down at about 10.00 am. We have observed this downward insertion of ozone in the daily ground based measurements made by the Maryland Department of the Environment. There is a strong correlation between the amount of ozone brought down and the direction of the winds above the boundary layer, agreeing with previous studies of regional transport. The ozone data from seven measurement sites in the Baltimore region over the period 1994 to 2005 has been examined. There is a distinct change in the amount of ozone mixed down between 2002 and 2003. The implications of the results of the analysis to local pollution controls will be discussed.

  1. The Antarctic ozone hole

    SciTech Connect

    Stolarski, R.S.

    1988-01-01

    Because the effects are so serious, many investigators have been racing to determine the causes of the hole which develops each southern spring within the polar vortex, an isolated air mass that circulates around the South Pole during a large part of the year. This paper reviews two of the foremost theories for this ozone hole. Mechanisms of the pollution theory, which proposes that the cause is chlorofluorocarbons and nitrogen oxides in the atmosphere, are reviewed. The second theory proposes a natural shift in the air movements that transport ozone-rich air into the polar stratosphere during the southern spring as the cause. Current data suggest both theories are correct, but data are considered inconclusive.

  2. Ozonated olive oils and the troubles.

    PubMed

    Uysal, Bulent

    2014-01-01

    One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. PMID:26401346

  3. Ozone, Air Quality, and Asthma (For Parents)

    MedlinePlus

    ... found in both the Earth's upper and lower atmospheres. The protective ozone in the upper atmosphere is very different from the harmful ozone in the lower atmosphere. Ozone that exists naturally 10 to 30 miles ( ...

  4. Ozonated olive oils and the troubles

    PubMed Central

    Uysal, Bulent

    2014-01-01

    One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. PMID:26401346

  5. Protecting beans from ozone

    SciTech Connect

    Pierce, R.

    1983-03-01

    A chemical treatment to protect navy beans from ozone damage increased yields by an average of more than 20% in 3 years of tests. An experimental antioxidant chemical, EDU, made by the DuPont company was tested as soil applications and sprays on several varieties and under a variety of soil and planting conditions. The average yield increases were between 16 and 24%. Chemical treatment also increased snap bean pod production by 12%.

  6. Ozone attainment: A different perspective

    SciTech Connect

    Beck, W.B. )

    1988-01-01

    Recent attention on the ozone non-attainment issue has been focused on Washington. Both Congress and the EPA have made efforts at addressing the post-1987 crisis in the many non-attainment areas. In contrast to the political activity, this paper presents some interesting technical perspectives on ozone attainment for many areas of the U.S.. Issues such as transport, climate and natural ozone sources are discussed in the context of exceedance frequency for several geographical areas of the country.

  7. Another deep Antarctic ozone hole

    SciTech Connect

    Kerr, R.A.

    1990-10-19

    Again in 1990, drastic depletion of stratospheric ozone over the South Pole has been measured, in August 140 Dobson units, far below the 220 Dobson units typically seen over Antarctica. This extensive destruction of ozone is determined to be brought about by sunshine acting in combination with the chlorine released from chlorofluorohydrocarbons (CFCs) by icy stratospheric clouds. It is concluded that CFC concentrations have now reached a level that will almost totally destroy the ozone in the lower stratosphere in most years.

  8. Ozone transport commission developments

    SciTech Connect

    Joyce, K.M.

    1995-08-01

    On September 27, 1994, the states of the Ozone Transport Commission (OTC) signed an important memorandum of understanding (MOU) agreeing to develop a regional strategy for controlling stationary sources of nitrogen oxide emissions. Specifically, the states of the Ozone Transport Region, OTR, agreed to propose regulations for the control of NOx emissions from boilers and other indirect heat exchangers with a maximum gross heat input rate of at least 250 million BTU per hour. The Ozone Transport Region was divided into Inner, Outer and Northern Zones. States in the Outer Zone agreed to reduce NOx emissions by 55%. States in the Inner Zone agreed to reduce NOx emissions 65%. Facilities in both zones have the option to emit NOx at a rate no greater than 0.2 pounds per million Btu by May 1, 1999. This option provides fairness for the gas-fired plants which already have relatively low NOx emissions. Additionally, States in the Inner and Outer Zones agreed to reduce their NOx emissions by 75% or to emit NOx at a rate no greater than 0.15 pounds per million BTU by May 1, 2003. The Northern Zone States agree to reduce their rate of NOx emissions by 55% from base year levels by May 1, 2003, or to emit NOx at a rate no greater than 0.2 pounds per million BTU. As part of this MOU, States also agreed to develop a regionwide trading mechanism to provide a cost-effective mechanism for implementing the reductions.

  9. Ozone measurement systems improvements studies

    NASA Technical Reports Server (NTRS)

    Thomas, R. W.; Guard, K.; Holland, A. C.; Spurling, J. F.

    1974-01-01

    Results are summarized of an initial study of techniques for measuring atmospheric ozone, carried out as the first phase of a program to improve ozone measurement techniques. The study concentrated on two measurement systems, the electro chemical cell (ECC) ozonesonde and the Dobson ozone spectrophotometer, and consisted of two tasks. The first task consisted of error modeling and system error analysis of the two measurement systems. Under the second task a Monte-Carlo model of the Dobson ozone measurement technique was developed and programmed for computer operation.

  10. Impact of Surface Emissions to the Zonal Variability of Tropical Tropospheric Ozone and Carbon Monoxide for November 2004

    NASA Technical Reports Server (NTRS)

    Bowman, K. W.; Jones, D.; Logan, J.; Worden, H.; Boersma, F.; Chang, R.; Kulawik, S.; Osterman, G.; Worden, J.

    2008-01-01

    The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network show the so called zonal 'wave-one' pattern, which is characterized by peak ozone concentrations (70-80 ppb) centered over the Atlantic, as well as elevated concentrations of ozone over Indonesia and Australia (60-70 ppb) in the lower troposphere. Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI) NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT) CO profiles (Jones et al., 2007). These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30-40% and led to changes in GEOS-Chem upper tropospheric ozone of up to 40% over Indonesia. The remaining residual differences can be explained in part by upper tropospheric ozone produced from lightning NOx in the South Atlantic. Furthermore, model simulations from GEOS-Chem indicate that ozone over Indonesian/Australian is more sensitive to changes in surface emissions of NOx than ozone over the tropical Atlantic.

  11. High concentration of surface ozone observed along the Khumbu Valley Nepal April 2007

    NASA Astrophysics Data System (ADS)

    Moore, G. W. K.; Semple, J. L.

    2009-07-01

    Increasing air pollution in Southeast Asia has the potential for dramatic impacts on the population and climate in relatively pristine regions such as the Himalaya. Recent measurements near Mount Everest indicate the presence of elevated levels of ozone at elevations from 5000m to 9000m that are the result of both the long-range transport of tropospheric pollutants from Southeast Asia as well as the descent of ozone-rich stratospheric air. Here we report on the first surface ozone concentration transect in the Mount Everest region. The data collected at elevations from 2900m to 5200m indicate an increase in concentration with height as well as 8-hour average exposures in excess of 140ppb. Satellite data and meteorological diagnostics suggest a stratospheric source for the high levels observed. The majority of values observed exceed guidelines for human exposure and therefore are of a magnitude to suggest that they are of physiological relevance.

  12. Is it true that ozone is always toxic? The end of a dogma

    SciTech Connect

    Bocci, Velio . E-mail: bocci@unisi.it

    2006-11-01

    There are a number of good experimental studies showing that exposure by inhalation to prolonged tropospheric ozone damages the respiratory system and extrapulmonary organs. The skin, if extensively exposed, may also contribute to the damage. The undoubtful strong reactivity of ozone has contributed to establish the dogma that ozone is always toxic and its medical application must be proscribed. Although it is less known, judiciously practiced ozonetherapy is becoming very useful either on its own or applied in combination with orthodox medicine in a broad range of pathologies. The opponents of ozonetherapy base their judgment on the ozone chemistry, and physicians, without any knowledge of the problem, are often skeptical. During the last 15 years, a clear understanding of the action of ozone in biology and medicine has been gained, allowing today to argue if it is true that ozone is always toxic. The fundamental points that are discussed in this paper are: the topography, anatomical and biochemical characteristics of the organs daily exposed to ozone versus the potent antioxidant capacity of blood exposed to a small and precisely calculated dose of ozone only for a few minutes. It is becoming clear how the respiratory system undergoing a chronic oxidative stress can release slowly, but steadily, a huge amount of toxic compounds able to enter the circulation and cause serious damage. The aim of this paper is to objectively evaluate this controversial issue.

  13. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia

    NASA Astrophysics Data System (ADS)

    Toh, Ying Ying; Lim, Sze Fook; von Glasow, Roland

    2013-05-01

    The surface ozone concentrations at the Tanah Rata regional Global Atmosphere Watch (GAW) station, Malaysia (4°28‧N, 101°23‧E, 1545 m above Mean Sea Level (MSL)) from June 2006 to August 2008 were analyzed in this study. Overall the ozone mixing ratios are very low; the seasonal variations show the highest mixing ratios during the Southwest monsoon (average 19.1 ppb) and lowest mixing ratios during the spring intermonsoon (average 14.2 ppb). The diurnal variation of ozone is characterised by an afternoon maximum and night time minimum. The meteorological conditions that favour the formation of high ozone levels at this site are low relative humidity, high temperature and minimum rainfall. The average ozone concentration is lower during precipitation days compared to non-precipitation days. The hourly averaged ozone concentrations show significant correlations with temperature and relative humidity during the Northeast monsoon and spring intermonsoon. The highest concentrations are observed when the wind is blowing from the west. We found an anticorrelation between the atmospheric pressure tide and ozone concentrations. The ozone mixing ratios do not exceed the recommended Malaysia Air Quality Guidelines for 1-h and 8-h averages. Five day backward trajectories on two high ozone episodes in 07 August 2006 (40.0 ppb) and 24 February 2008 (45.7 ppb) are computed using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the origin of the pollutants and influence of regional transport. The high ozone episode during 07 August 2006 (burning season during southwest monsoon) is mainly attributed to regional transport from biomass burning in Sumatra, whereas favourable meteorological conditions (i.e. low relative humidity, high temperature and solar radiation, zero rainfall) and long range transport from Indo-China have elevated the ozone concentrations during 24 February 2008.

  14. The effect of ozone on inflammatory cell infiltration and airway hyperresponsiveness in the guinea pig lung

    SciTech Connect

    Schultheis, A.J.H.

    1993-01-01

    Inflammatory cells may contribute to the development of exaggerated bronchoconstrictor responses since a persistent link has been noted between pulmonary inflammation and airway hyperresponsiveness. In these studies guinea pigs were exposed to 2.0 ppm ozone for 4 hours, then immediately sacrificed or allowed to breathe filtered air for up to 14 days. Following ozone exposure there was an immediate massive neutrophil infiltration into the lung. Neutrophils in lung digest dropped to control values within 3-12 hours post-ozone but remained elevated in BAL fluid for 3 days. There was probable eosinophil degranulation within the first 24 hours post-ozone. Guinea pigs were hyperresponsive to vigal stimulation through 3 days post-ozone. Although they were also hyperresponsive to ACh, responses to MCh were unchanged. Neuronal M[sub 2] receptors were dysfunctional through 3 days post-ozone. There was resolution of inflammation, airway responsiveness, and neuronal M[sub 2] receptor function by 14 days post-exposure. This investigation has (1) confirmed an immediate lung inflammation following acute ozone exposure; (2) established that cells in BAL give a distorted reflection of inflammatory events in lung digest; (3) demonstrated that ozone-induced hyperresponsiveness is at least partially due to efferent cholinergic mechanisms without functional changes of muscarinic receptors on airway smooth muscle; (4) shown that ACh may not be an appropriate agent to test ozone-induced airway hyperresponsiveness; and (5) demonstrated that inhibitory neuronal M[sub 2] receptors are dysfunctional following ozone exposure. There was close linkage between these events, suggesting that they may be causally related. This investigation proposes a specific mechanism, dysfunction of neuronal M[sub 2] receptors, by which inflammatory cells could cause airway hyperresponsiveness following acute ozone exposure.

  15. Severe chemical ozone loss in the Arctic during the winter of 1995-96

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Crutzen, Paul J.; Grooβ, Jens-Uwe; Bürhl, Christoph; Russell, James M.; Gernandt, Hartwig; McKenna, Daniel S.; Tuck, Adrian F.

    1997-10-01

    Severe stratospheric ozone depletion is the result of perturbations of chlorine chemistry owing to the presence of polar stratospheric clouds (PSCs) during periods of limited exchange of air between the polar vortex and midlatitudes and partial exposure of the vortex to sunlight. These conditions are consistently encountered over Antarctica during the austral spring. In the Arctic, extensive PSC formation occurs only during the coldest winters, when temperatures fall as low as those regularly found in the Antarctic,,. Moreover, ozone levels in late winter and early spring are significantly higher than in the corresponding austral season,,, and usually strongly perturbed by atmospheric dynamics. For these reasons, chemical ozone loss in the Arctic is difficult to quantify. Here we use the correlation between CH4 and O3 in the Arctic polar vortex to discriminate between changes in ozone concentration due to chemical and dynamical effects. Our results indicate that 120-160 Dobson units (DU) of ozone were chemically destroyed between January and March 1996-a loss greater than observed in Antarctica in 1985, when the `ozone hole' was first reported,. This loss outweighs the expected increase in total ozone over the same period through dynamical effects, leading to an observed net decrease of about 50DU. This ozone loss arises through the simultaneous occurrence of extremely low Arctic stratospheric temperatures, and large stratospheric chlorine loadings. Comparable depletion is likely to recur because stratospheric cooling, and elevated chlorine concentrations, are expected to persist for several decades.

  16. Effect of ozone and histamine on airway permeability to horseradish peroxidase in guinea pigs

    SciTech Connect

    Miller, P.D.; Gordon, T.; Warnick, M.; Amdur, M.O.

    1986-01-01

    Airway permeability was studied in groups of male guinea pigs at 2, 8, and 24 h after a 1-h exposure to 1 ppm ozone or at 2 h after a 1-h exposure to filtered air (control). Intratracheal administration of 2 mg horseradish peroxidase (HRP) was followed by blood sampling at 5-min intervals up to 30 min. The rate of appearance of HRP in plasma was significantly higher at 2 and 8 h after ozone exposure than that found in animals examined 2 h after air exposure or 24 h after ozone exposure. A dose of 0.12 mg/kg of subcutaneous histamine given after the 15 min blood sample significantly increased the already elevated permeability seen at 2 h post ozone, but had no effect on animals exposed to filtered air 2 h earlier or to ozone 24 h earlier. No difference was seen in the amount of subcutaneous radiolabeled histamine in the lungs of animals exposed 2 h earlier either to air or to ozone. These data indicate that a short-term exposure to ozone produced a reversible increase in respiratory epithelial permeability to HRP in guinea pigs. The potentiation of this increased permeability by histamine may be another manifestation of ozone-induced hyperreactivity.

  17. Responses of selected birch (Betula pendula Roth) clones to ozone change over time.

    PubMed

    Oksanen, E.

    2003-06-01

    A long-term free air ozone fumigation experiment was conducted to study changes in physiological ozone responses during tree ontogeny and exposure time in ozone sensitive and tolerant clones of European white birch (Betula pendula Roth), originated from south and central Finland. The trees were grown in soil in natural microclimatic conditions under ambient ozone (control) and 1.4-1.7 x ambient (elevated) ozone from May 1996 to October 2001, and were measured for stem and foliage growth, net photosynthesis, stomatal conductance, stomatal density, visible injuries, foliar starch content and bud formation. After 6 years of exposure, the magnitude of ozone-induced growth reductions in the sensitive clone was 12-48% (significant difference), levels similar or greater than those reported earlier for 2- and 3-year-old saplings undergoing shorter exposures. In the tolerant clone, growth of these larger trees was reduced by 1-38% (significant difference in stem volume), although the saplings had previously been unaffected. In both clones, ozone stress led to significantly reduced leaf-level net photosynthesis but significantly increased stomatal conductance rates during the late summer, resulting in a lower carbon gain for bud formation and the onset of visible foliar injuries. Increasing ozone sensitivity with duration of exposure was explained by a change in growth form (relatively reduced foliage mass), a lower photosynthesis to stomatal conductance ratio during the late summer, and deleterious carry-over effects arising from the reduced number of over-wintering buds. PMID:12803615

  18. Interactive and additive influences of Gender, BMI and Apolipoprotein 4 on cognition in children chronically exposed to high concentrations of PM2.5 and ozone. APOE 4 females are at highest risk in Mexico City.

    PubMed

    Calderón-Garcidueñas, Lilian; Jewells, Valerie; Galaz-Montoya, Carolina; van Zundert, Brigitte; Pérez-Calatayud, Angel; Ascencio-Ferrel, Eric; Valencia-Salazar, Gildardo; Sandoval-Cano, Marcela; Carlos, Esperanza; Solorio, Edelmira; Acuña-Ayala, Hilda; Torres-Jardón, Ricardo; D'Angiulli, Amedeo

    2016-10-01

    Children's air pollution exposures are associated with systemic and brain inflammation and the early hallmarks of Alzheimer's disease (AD). The Apolipoprotein E (APOE) 4 allele is the most prevalent genetic risk for AD, with higher risk for women. We assessed whether gender, BMI, APOE and metabolic variables in healthy children with high exposures to ozone and fine particulate matter (PM2.5) influence cognition. The Wechsler Intelligence Scale for Children (WISC-R) was administered to 105 Mexico City children (12.32±5.4 years, 69 APOE 3/3 and 36 APOE 3/4). APOE 4v 3 children showed decrements on attention and short-term memory subscales, and below-average scores in Verbal, Performance and Full Scale IQ. APOE 4 females had higher BMI and females with normal BMI between 75-94% percentiles had the highest deficits in Total IQ, Performance IQ, Digit Span, Picture Arrangement, Block Design and Object Assembly. Fasting glucose was significantly higher in APOE 4 children p=0.006, while Gender was the main variable accounting for the difference in insulin, HOMA-IR and leptin (p<.05). Gender, BMI and APOE influence children's cognitive responses to air pollution and glucose is likely a key player. APOE 4 heterozygous females with >75% to <94% BMI percentiles are at the highest risk of severe cognitive deficits (1.5-2SD from average IQ). Young female results highlight the urgent need for gender-targeted health programmes to improve cognitive responses. Multidisciplinary intervention strategies could provide paths for prevention or amelioration of female air pollution targeted cognitive deficits and possible long-term AD progression. PMID:27376929

  19. Comparison of satellite measurements of ozone and ozone trends

    SciTech Connect

    Rusch, D.W.; Clancy, R.T.; Bhartia, P.K. |

    1994-10-01

    Measurements of ozone retrieved from satellite instruments over the 1979-1991 period are compared. The instruments used are the total ozone mapping spectrometer (TOMS), the solar backscattered ultraviolet experiment (SBUV), and stratospheric aerosol and gas experiments (SAGE) I and II. Although there is good agreement between the absolute densities of ozone as measured by the various instruments, the long-term changes (1979-1990) disagree sharply as a function of pressure and in the integrated ozone amount. In the upper stratosphere, SBUV trends are negative with maximum values of about -1.5%/year at high latitudes. Combined SAGE I and II trends are slightly positive in this region and peak near 0.5%/year at equatorial latitudes. In the lower stratosphere, SBUV trends reflect small decreases in ozone, generally less than -0.4%/year except at high southern latitudes where the trends rearch values of approximately -1.5%/year. SAGE ozone trends exhibit large decreases particularly in the equatorial regions where decreases of 3-6%/year are seen at pressures between 60 and 90 mbar. At higher latitudes, SAGE trends are more comparable to SBUV trends in the lower stratosphere. Total ozone trends from TOMS and SBUV agree within their uncertainties. Near-zero trends are indicated at low latitudes, and larger, negative trends (approximately -0.5%/year) are indicated near the poles. The SAGE column ozone trends depend upon the base level altitude of integration but do not exhibit a strong latitude dependence.

  20. Table Mountain ozone intercomparison: Brewer ozone spectrophotometer Umkehr observations

    SciTech Connect

    McElroy, C.T.; Kerr, J.B.

    1995-05-20

    The authors present the result of ozone column measurements, and vertical profiles, derived from Brewer ozone spectrophotometer measurements, in conjunction with the Umkehr technique. The Umkehr results agreed within 15% with the average measurments of this campaign between 20 and 40 km altitude. When restricted to the altitude range of 24 to 40 km the agreement was within about 5%.

  1. Ultraviolet Radiation and Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Stolarski, R.

    2003-01-01

    Ultraviolet radiation from the sun produces ozone in the stratosphere and it participates in the destruction of ozone. Absorption of solar ultraviolet radiation by ozone is the primary heating mechanism leading to the maximum in temperature at the stratopause. Variations of solar ultraviolet radiation on both the 27-day solar rotation period and the 11-year solar cycle affect ozone by several mechanisms. The temperature and ozone in the upper stratosphere respond to solar uv variations as a coupled system. An increase in uv leads to an increase in the production of ozone through the photolysis of molecular oxygen. An increase in uv leads to an increase in temperature through the heating by ozone photolysis. The increase in temperature leads to a partially-offsetting decrease in ozone through temperature-dependent reaction rate coefficients. The ozone variation modulates the heating by ozone photolysis. The increase in ozone at solar maximum enhances the uv heating. The processes are understood and supported by long-term data sets. Variation in the upper stratospheric temperatures will lead to a change in the behavior of waves propagating upward from the troposphere. Changes in the pattern of wave dissipation will lead to acceleration or deceleration of the mean flow and changes in the residual or transport circulation. This mechanism could lead to the propagation of the solar cycle uv variation from the upper stratosphere downward to the lower stratosphere. This process is not well-understood and has been the subject of an increasing number of model studies. I will review the data analyses for solar cycle and their comparison to model results.

  2. Transport aloft drives peak ozone in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    VanCuren, Richard

    2015-05-01

    Transport of anthropogenic pollution eastward out of the Los Angeles megacity region in California has been periodically observed to reach the Colorado River and the Colorado Plateau region beyond. In the 1980s, anthropogenic halocarbon tracers measured in and near the Las Angeles urban area and at a mountain-top site near the Colorado River, 400 km downwind, were shown to have a correlated seven-day cycle explainable by transport from the urban area with a time lag of 1-2 days. Recent short term springtime intensive studies using aircraft observations and regional modeling of long range transport of ozone from the Southern California megacity region showed frequent and persistent ozone impacts at surface sites across the Colorado Plateau and Southern Rocky Mountain region, at distances up to 1500 km, also with time lags of 1-2 days. However, the timing of ozone peaks at low altitude monitoring sites within the Mojave Desert, at distances from 100 to 400 km from the South Coast and San Joaquin Valley ozone source regions, does not show the expected time-lag behavior seen in the larger transport studies. This discrepancy is explained by recognizing ozone transport across the Mojave Desert to occur in a persistent layer of polluted air in the lower free troposphere with a base level at approximately 1 km MSL. This layer impacts elevated downwind sites directly, but only influences low altitude surface ozone maxima through deep afternoon mixing. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), from long-range transport from Asia, and stratospheric down-mixing. Recognition of the role of afternoon mixing during spring and summer over the Mojave explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, and resolves an apparent paradox in the timing of ozone peaks due to

  3. Ozone in remote areas of the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Musselman, Robert C.; Korfmacher, John L.

    2014-01-01

    Ozone (O3) data are sparse for remote, non-urban mountain areas of the western U.S. Ozone was monitored 2007-2011 at high elevation sites in national forests in Colorado and northeastern Utah using a portable battery-powered O3 monitor. The data suggest that many of these remote locations already have O3 concentrations that would contribute to exceedance of the current National Ambient Air Quality Standard (NAAQS) for O3 and most could exceed a proposed more stringent secondary standard. There were significant year-to-year differences in O3 concentration. Ozone was primarily in the mid-concentration range, rarely exceeding 100 ppb or dropping below 30 ppb. The small diel changes in concentration indicate mixing ratios of NOx, VOCs, and O3 that favor stable O3 concentrations. The large number of mid-level O3 concentrations contributed to high W126 O3 values, the metric proposed as a possible new secondary standard. Higher O3 concentrations in springtime and at night suggest that stratospheric intrusion may be contributing to ambient O3 at these sites. Highest nighttime O3 concentrations occurred at the highest elevations, while daytime O3 concentrations did not have a relationship with elevation. These factors favor O3 concentrations at many of our remote locations that may exceed the O3 NAAQS, and suggest that exceedances are likely to occur at other western rural locations.

  4. THE USE OF THE ELEVATED PLUS MAZE IN THE TOXICOLOGY LABORAOTRY: PILOT STUDIES AND ASSESSMENT OF ANXIETY IN RATS EXPOSED TO LEAD ACETATE OR SUB-CHRONIC LEVELS OF TOLUENE.

    EPA Science Inventory

    A common complaint of individuals exposed to neurotoxic agents is increased anxiety.

    Rat models of the effects of long-term exposure to environmental chemicals on anxiety

    are lacking. The elevated plus-maze (EPM) is a widely used tool in the search for new

  5. Approach to managing elevated creatinine.

    PubMed Central

    Tremblay, Richard

    2004-01-01

    OBJECTIVE: To describe a systematic approach to finding the underlying cause of an elevated creatinine level. QUALITY OF EVIDENCE: This diagnostic approach is based on a synthesis of information from reference works on nephrology, articles found through a MEDLINE search, and the author's personal experience. MAIN MESSAGE: Elevated creatinine levels suggest the differential diagnosis of renal failure (RF). History and a complete physical examination are important, keeping in mind that RF is often asymptomatic in the early stages. After repeating the creatinine test to verify results, baseline tests should be ordered to identify the cause of the RF. Comparing results of serial tests is essential for determining whether RF is acute or chronic, stable or progressive. An ultrasound scan is particularly useful for eliminating an obstructive cause; the size of the kidney can indicate whether disease is acute or chronic. Complementary blood tests and imaging studies might be useful. CONCLUSION: Diagnosing and managing RF can appear complex, but a systematic approach will help you find the cause and treat the condition. PMID:15171676

  6. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    NASA Astrophysics Data System (ADS)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  7. IMPACT OF OZONE ON VEGETATION

    EPA Science Inventory

    Visible injury on vegetation is one of the earliest and most obvious manifestations of ozone injury. However, ozone effects are not limited to visible injury; impacts range from reduced plant growth, decreased yield, changes in crop quality and alterations in susceptibility to ab...

  8. Rocket ozone sounding network data

    NASA Technical Reports Server (NTRS)

    Wright, D. U.; Krueger, A. J.; Foster, G. M.

    1978-01-01

    During the period December 1976 through February 1977, three regular monthly ozone profiles were measured at Wallops Flight Center, two special soundings were taken at Antigua, West Indies, and at the Churchill Research Range, monthly activities were initiated to establish stratospheric ozone climatology. This report presents the data results and flight profiles for the period covered.

  9. IMPROVED TECHNIQUES FOR RESIDUAL OZONE

    EPA Science Inventory

    Eight analytical methods for the determination of residual ozone in water are evaluated. Four are iodometric methods based on the reduction of ozone by iodide ion: the iodometric method, the amperometric method, the arsenic (III) back titration method, and the N, N-diethyl-p-phen...

  10. Simplified ozone detection by chemiluminescence

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Rogowski, R. S.; Richards, R. R.

    1977-01-01

    Ozone is detected by film coated with solid, such as rubrene, that reacts with ozone to degree proportional to concentration in sample gas. Gas flow is stopped, and film is heated to produce light (chemiluminescence) in proportion to amount of reacted material on sensor.

  11. Plant responses to tropospheric ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  12. OZONE MULTI-YEAR PLAN

    EPA Science Inventory

    The tropospheric ozone research program addresses not only ozone, but other criteria pollutants such as SO2, nitrogen dioxide, carbon monoxide, and lead. It focuses on developing tools to help with implementation of National Ambient Air Quality Standards (NAAQS), such as improvin...

  13. Ozone Modeling Using Neural Networks.

    NASA Astrophysics Data System (ADS)

    Narasimhan, Ramesh; Keller, Joleen; Subramaniam, Ganesh; Raasch, Eric; Croley, Brandon; Duncan, Kathleen; Potter, William T.

    2000-03-01

    Ozone models for the city of Tulsa were developed using neural network modeling techniques. The neural models were developed using meteorological data from the Oklahoma Mesonet and ozone, nitric oxide, and nitrogen dioxide (NO2) data from Environmental Protection Agency monitoring sites in the Tulsa area. An initial model trained with only eight surface meteorological input variables and NO2 was able to simulate ozone concentrations with a correlation coefficient of 0.77. The trained model was then used to evaluate the sensitivity to the primary variables that affect ozone concentrations. The most important variables (NO2, temperature, solar radiation, and relative humidity) showed response curves with strong nonlinear codependencies. Incorporation of ozone concentrations from the previous 3 days into the model increased the correlation coefficient to 0.82. As expected, the ozone concentrations correlated best with the most recent (1-day previous) values. The model's correlation coefficient was increased to 0.88 by the incorporation of upper-air data from the National Weather Service's Nested Grid Model. Sensitivity analysis for the upper-air variables indicated unusual positive correlations between ozone and the relative humidity from 500 hPa to the tropopause in addition to the other expected correlations with upper-air temperatures, vertical wind velocity, and 1000-500-hPa layer thickness. The neural model results are encouraging for the further use of these systems to evaluate complex parameter cosensitivities, and for the use of these systems in automated ozone forecast systems.

  14. Rocket ozone sounding network data

    NASA Technical Reports Server (NTRS)

    Wright, D. U.; Krueger, A. J.; Foster, G. M.

    1979-01-01

    During the period March 1977 through May 1977, three regular monthly ozone profiles were measured at Wallops Flight Center and three regular monthly ozone profiles were measured at the Churchill Research Range. One additional flight was conducted at Wallops Flight Center in support of Nimbus 4 SBUV. Data results and flight profiles for the period covered are presented.

  15. Nonaqueous ozonation of vulcanized rubber

    DOEpatents

    Serkiz, Steven M.

    1999-01-01

    A process and resulting product is provided in which a solid particulate, such as vulcanized crumb rubber, has the surface functional groups oxidized by ozonation using a nonpolar solvent. The ozonation process renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels of the treated crumb rubber can be used in new rubber mixtures.

  16. Nonaqueous ozonation of vulcanized rubber

    SciTech Connect

    Serkiz, S.M.

    1999-12-07

    A process and resulting product are provided in which a solid particulate, such as vulcanized crumb rubber, has the surface functional groups oxidized by ozonation using a nonpolar solvent. The ozonation process renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels of the treated crumb rubber can be used in new rubber mixtures.

  17. INTERACTIVE EFFECTS OF ATMOSPHERIC CARBON DIOXIDE AND OZONE ON GAS-EXCHANGE, BIOMASS, AND YIELD OF ESSEX SOYBEAN: A COMPILATION OF STUDIES FROM TEN GROWING SEASONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current levels of pollutant ozone in industrialized regions worldwide suppress the growth and yield of many agronomically important crops. Meanwhile, atmospheric concentrations of CO2 continue to increase, due in large part to the same activities leading to elevated tropospheric ozone production, c...

  18. Interaction effects of temperature and ozone on lung function and markers of systemic inflammation, coagulation, and fibrinolysis: A crossover study of healthy young volunteers

    EPA Science Inventory

    BACKGROUND: Trends in climate suggest that extreme weather events such as heat waves will become more common. High levels of the gaseous pollutant ozone are associated with elevated temperatures. Ozone has been associated with respiratory diseases as well as cardiovascular morbid...

  19. Source attribution of tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  20. Clathrate hydrates for ozone preservation.

    PubMed

    Muromachi, Sanehiro; Ohmura, Ryo; Takeya, Satoshi; Mori, Yasuhiko H

    2010-09-01

    We report the experimental evidence for the preservation of ozone (O(3)) encaged in a clathrate hydrate. Although ozone is an unstable substance and is apt to decay to oxygen (O(2)), it may be preserved for a prolonged time if it is encaged in hydrate cavities in the form of isolated molecules. This possibility was assessed using a hydrate formed from an ozone + oxygen gas mixture coexisting with carbon tetrachloride or xenon. Each hydrate sample was stored in an air-filled container at atmospheric pressure and a constant temperature in the range between -20 and 2 degrees C and was continually subjected to iodometric measurements of its fractional ozone content. Such chronological measurements and structure analysis using powder X-ray diffraction have revealed that ozone can be preserved in a hydrate-lattice structure for more than 20 days at a concentration on the order of 0.1% (hydrate-mass basis). PMID:20707330

  1. Ozone adsorption on carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were

  2. Ozone trends in Great Smoky Mountains National Park over the past two decades: Implications for plants and ecosystems

    EPA Science Inventory

    Hourly ozone data from five sampling locations in Great Smoky Mountains National Park and one low elevation location adjacent to the Park in NC were analyzed over the period 1989 to 2012 for diurnal and season trends. Sampling locations spanned an elevational range from 564 m at...

  3. 35 state ozone transport region (OTAG) & ozone & PM NAAQS & regional HAZE FACA

    SciTech Connect

    Mathur, B.

    1996-11-01

    The activities of the 35 state ozone transport regions (OTAG) are summarized. Topics discussed include: the Chicago 15 percent plan; federal measures; VOC reduction goals; daily maximum ozone concentrations; ozone attainment demonstration policy; OTAG`s progress to date; significant upcoming activities; ozone transport assessment; model sensitivity analysis; FACA processes; and ozone, particulate matter, and regional haze implementation programs.

  4. Ozone-Induced Hypertussive Responses in Rabbits and Guinea Pigs.

    PubMed

    Clay, Emlyn; Patacchini, Riccardo; Trevisani, Marcello; Preti, Delia; Branà, Maria Pia; Spina, Domenico; Page, Clive

    2016-04-01

    Cough remains a major unmet clinical need, and preclinical animal models are not predictive for new antitussive agents. We have investigated the mechanisms and pharmacological sensitivity of ozone-induced hypertussive responses in rabbits and guinea pigs. Ozone induced a significant increase in cough frequency and a decrease in time to first cough to inhaled citric acid in both conscious guinea pigs and rabbits. This response was inhibited by the established antitussive drugs codeine and levodropropizine. In contrast to the guinea pig, hypertussive responses in the rabbit were not inhibited by bronchodilator drugs (β2 agonists or muscarinic receptor antagonists), suggesting that the observed hypertussive state was not secondary to bronchoconstriction in this species. The ozone-induced hypertussive response in the rabbit was inhibited by chronic pretreatment with capsaicin, suggestive of a sensitization of airway sensory nerve fibers. However, we could find no evidence for a role of TRPA1 in this response, suggesting that ozone was not sensitizing airway sensory nerves via activation of this receptor. Whereas the ozone-induced hypertussive response was accompanied by a significant influx of neutrophils into the airway, the hypertussive response was not inhibited by the anti-inflammatory phosphodiesterase 4 inhibitor roflumilast at a dose that clearly exhibited anti-inflammatory activity. In summary, our results suggest that ozone-induced hypertussive responses to citric acid may provide a useful model for the investigation of novel drugs for the treatment of cough, but some important differences were noted between the two species with respect to sensitivity to bronchodilator drugs. PMID:26837703

  5. Ozone-Induced Hypertussive Responses in Rabbits and Guinea Pigs

    PubMed Central

    Clay, Emlyn; Patacchini, Riccardo; Trevisani, Marcello; Preti, Delia; Branà, Maria Pia; Spina, Domenico

    2016-01-01

    Cough remains a major unmet clinical need, and preclinical animal models are not predictive for new antitussive agents. We have investigated the mechanisms and pharmacological sensitivity of ozone-induced hypertussive responses in rabbits and guinea pigs. Ozone induced a significant increase in cough frequency and a decrease in time to first cough to inhaled citric acid in both conscious guinea pigs and rabbits. This response was inhibited by the established antitussive drugs codeine and levodropropizine. In contrast to the guinea pig, hypertussive responses in the rabbit were not inhibited by bronchodilator drugs (β2 agonists or muscarinic receptor antagonists), suggesting that the observed hypertussive state was not secondary to bronchoconstriction in this species. The ozone-induced hypertussive response in the rabbit was inhibited by chronic pretreatment with capsaicin, suggestive of a sensitization of airway sensory nerve fibers. However, we could find no evidence for a role of TRPA1 in this response, suggesting that ozone was not sensitizing airway sensory nerves via activation of this receptor. Whereas the ozone-induced hypertussive response was accompanied by a significant influx of neutrophils into the airway, the hypertussive response was not inhibited by the anti-inflammatory phosphodiesterase 4 inhibitor roflumilast at a dose that clearly exhibited anti-inflammatory activity. In summary, our results suggest that ozone-induced hypertussive responses to citric acid may provide a useful model for the investigation of novel drugs for the treatment of cough, but some important differences were noted between the two species with respect to sensitivity to bronchodilator drugs. PMID:26837703

  6. Options to accelerate ozone recovery: ozone and climate benefits

    NASA Astrophysics Data System (ADS)

    Daniel, J. S.; Fleming, E. L.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-08-01

    Hypothetical reductions in future emissions of ozone-depleting substances (ODSs) and N2O are evaluated in terms of effects on equivalent effective stratospheric chlorine (EESC), globally-averaged total column ozone, and radiative forcing through 2100. Due to the established success of the Montreal Protocol, these actions can have only a fraction of the impact on ozone depletion that regulations already in force have had. If all anthropogenic ODS and N2O emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional restrictions. Direct radiative forcing by 2100 would be about 0.23 W/m2 lower from the elimination of anthropogenic N2O emissions and about 0.005 W/m2 lower from the destruction of the chlorofluorocarbon (CFC) bank. Due to the potential impact of N2O on future ozone levels, we provide an approach to incorporate it into the EESC formulation, which is used extensively in ozone depletion analyses. The ability of EESC to describe total ozone changes arising from additional ODS and N2O controls is also quantified.

  7. Nitroaromatic hydrocarbon ozonation in water. 1: Single ozonation

    SciTech Connect

    Beltran, F.J.; Encinar, J.M.; Alonso, M.A.

    1998-01-01

    Single ozonation of two nitroaromatic hydrocarbons (nitrobenzene and 2,6-dinitrotoluene) under different experimental conditions (ozone feed rate, pH, temperature, hydroxyl radical scavengers) has been studied. The absence of hydroxyl radical scavengers, pHs 7--9, and temperatures below 30 C are optimum conditions for nitroaromatic removal. Due to the importance of hydroxyl radical reactions, removal rates in natural water are much lower than those observed in laboratory ultrapure water. Rate constants of the direct reaction between ozone and nitroaromatic hydrocarbons at 20 C have been found to be lower than 6 M{sup {minus}1} s{sup {minus}1}. More than 99% of nitroaromatic removal is due to hydroxyl radical oxidation. Single ozonation of nitroaromatics can then be classified as a real advanced oxidation technology. Nitrophenols, compounds very reactive toward ozone and hydroxyl radicals, and 2,6-dinitrobenzaldehyde, identified in the single ozonation of nitrobenzene and 2,6-dinitrotoluene, respectively, are some of the first intermediates of single ozonation.

  8. Global impact of the Antarctic ozone hole: Chemical Propagation

    SciTech Connect

    Prather, M.; Jaffe, A.H. )

    1990-03-20

    A model is presented for the chemical mixing of stratosphere air over spatial scales from tens of kilometers to meters. Photochemistry, molecular diffusion, and strain (the stretching of air parcels due to wind shear) are combined into a single one-dimensional model. The model is applied to the case in which chemically perturbed air parcels from the Antarctic stratosphere are transported to mid-latitudes and strained into thin ribbon-like filaments until they are diffusively mixed with the ambient stratosphere. For this sensitivity study the authors consider four types of Antarctic air: a control case representing unprocessed polar air; heterogeneous processing by polar stratospheric clouds (PSCs) that has repartitioned the Cl{sub x} and NO{sub y} families; processing that also includes denitrification and dehydration; and all processing plus 90% ozone depletion. Large abundances of ClO, resulting initially from heterogeneous processing of stratospheric air on PSCs, are sustained by extensive denitrification. (One exception is the case of Antarctic air with major ozone depletion in which ClO is converted rapidly to HCl upon release of small amounts of NO{sub x} as a result of the extremely nonlinear Cl{sub x}-NO{sub y} chemical system.) ClO concentrations in the mid-latitude stratosphere should be enhanced by as much as a factor of 5 due to the mixing of air processed around the Antarctic vortex and will remain elevated for most of the following season. Chemical propagation of the Antarctic ozone hole occurs in two phases: rapid loss of ozone in the heterogeneously processed parcels as they evolve in isolation, and more slowly, a relative recovery of ozone over the following months. Another important effect is the transport of denitrified Antarctic air reducing NO{sub x} and hence the total catalytic destruction of ozone throughout the southern mid-latitudes.

  9. Total ozone changes in the 1987 Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  10. Is the Ozone Hole over Your Classroom?

    ERIC Educational Resources Information Center

    Cordero, Eugene C.

    2002-01-01

    Reports on a survey of first year university science students regarding their understanding of the ozone layer, ozone depletion, and the effect of ozone depletion on Australia. Suggests that better teaching resources for environmental issues such as ozone depletion and global warming are needed before improvements in student understanding can be…

  11. Ozone dosimetry predictions for humans and rats

    SciTech Connect

    Overton, J.H.; Graham, R.C.; McCurdy, T.R.; Richmond, H.M.

    1990-11-01

    The report summarizes ozone (O3) dosimetry model predictions for rats and humans under several different scenarios based on the most recent empirical data and theoretical considerations in the field of O3 dosimetry. The report was prepared at the request of the Office of Air Quality Planning and Standards (OAQPS) as an input to be considered by scientists participating in a chronic lung injury risk assessment project for O3. As indicated in the report a number of judgments and assumptions had to be made to obtain the dosimetry predictions. In addition to presenting the simulation results, the O3 dosimetry model used to make the predictions is discussed and the choice or method of selecting important physiological parameters explained. This includes anatomical dimensions, choices of rat and human ventilatory parameters, and the method of estimating human and rat upper respiratory tract uptake. Finally, a comparison of simulation results to recent experimental dosimetry results is discussed.

  12. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    PubMed

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure. PMID:26559808

  13. Corona discharge influences ozone concentrations near rats.

    PubMed

    Goheen, Steven C; Gaither, Kari; Anantatmula, Shantha M; Mong, Gary M; Sasser, Lyle B; Lessor, Delbert

    2004-02-01

    Ozone can be produced by corona discharge either in dry air or when one electrode is submerged in water. Since ozone is toxic, we examined whether ozone production by corona near laboratory animals could reach levels of concern. Male rats were exposed to a corona discharge and the concentration of ozone produced was measured. The resulting concentration of ozone ranged from ambient levels to 250 ppb when animals were located 1 cm from a 10 kV source. Similar ozone concentrations were observed when a grounded water source was present. Possible explanations for, as well as concerns regarding, ozone production under these conditions are discussed. PMID:14735560

  14. When will Antarctic ozone begin to recover?

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-01-01

    Emissions of ozone-depleting substances have declined over recent decades, but it takes time for the ozone layer to recover. Regular measurements of ozone levels above the South Pole now stretch back 25 years. Hassler et al. analyzed these recorded ozone data to assess changes in ozone loss rates. Consistent with previous studies, they found that ozone loss rates have been stable over the past 15 years, neither increasing nor decreasing. However, they predict that, assuming future atmospheric dynamics are similar to today's, ozone loss rates will begin to decline noticeably between 2017 and 2021. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016353, 2011)

  15. Unprecedented Arctic ozone loss in 2011.

    PubMed

    Manney, Gloria L; Santee, Michelle L; Rex, Markus; Livesey, Nathaniel J; Pitts, Michael C; Veefkind, Pepijn; Nash, Eric R; Wohltmann, Ingo; Lehmann, Ralph; Froidevaux, Lucien; Poole, Lamont R; Schoeberl, Mark R; Haffner, David P; Davies, Jonathan; Dorokhov, Valery; Gernandt, Hartwig; Johnson, Bryan; Kivi, Rigel; Kyrö, Esko; Larsen, Niels; Levelt, Pieternel F; Makshtas, Alexander; McElroy, C Thomas; Nakajima, Hideaki; Parrondo, Maria Concepción; Tarasick, David W; von der Gathen, Peter; Walker, Kaley A; Zinoviev, Nikita S

    2011-10-27

    Chemical ozone destruction occurs over both polar regions in local winter-spring. In the Antarctic, essentially complete removal of lower-stratospheric ozone currently results in an ozone hole every year, whereas in the Arctic, ozone loss is highly variable and has until now been much more limited. Here we demonstrate that chemical ozone destruction over the Arctic in early 2011 was--for the first time in the observational record--comparable to that in the Antarctic ozone hole. Unusually long-lasting cold conditions in the Arctic lower stratosphere led to persistent enhancement in ozone-destroying forms of chlorine and to unprecedented ozone loss, which exceeded 80 per cent over 18-20 kilometres altitude. Our results show that Arctic ozone holes are possible even with temperatures much milder than those in the Antarctic. We cannot at present predict when such severe Arctic ozone depletion may be matched or exceeded. PMID:21964337

  16. Brewer Umkehr ozone profile retrievals

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Disterhoft, P.; Lantz, K. O.; Bhartia, P. K.; McPeters, R. D.; Flynn, L. E.; Oltmans, S. J.; Johnson, B. J.; Stanek, M.

    2011-12-01

    The Dobson Umkehr network has been a key data set for stratospheric ozone trend calculations (WMO Ozone assessments) and has earned its place as a benchmark network for stratospheric ozone profile observations. The Umkehr data has also been used to provide a long-term reference to the merging of the satellite ozone records (MOD), estimate the seasonal influence of an 11-year solar signal in the vertical distribution of stratospheric ozone, and to assess the ability of several remote and in-situ sensing systems in capturing ozone variability. It was found that Dobson Umkehr measurement errors were often comparable to errors derived for satellite and ozone-sounding methods. The Umkehr measurements are also available from the Brewer spectrophotometers [McElroy et al., 1995]. In 2005, the Dobson Umkehr algorithm (UMK04) was modified to retrieve ozone profile data from Brewer Umkehr measurements taken at two spectral channels [Petropavlovskikh et al, 2011]. The PC version of the Brewer algorithm was developed by M. Stanek (IOC, Canada and Czech Republic Meteorological Institute) in close collaboration with I. Petropavlovskikh. It was implemented at the NEUBrew network for operational processing of Umkehr data retrieved daily for all operational sites. The most recently developed Brewer ozone retrieval algorithm (MSBU) utilizes measurements that are currently available from the operational Brewer instruments. Umkehr measurements at multiple wavelength channels (similar to the satellite BUV method) and significantly reduced range of solar zenith angle are used for the twice a day operational ozone profile retrievals. Intercomparisons against ozone climatology, sounding, satellite overpasses and Dobson ozone datasets for NOASA/Goddard, Boulder, CO and MLO, HI sites are presented in this paper. The MSBU algorithm reduces noise in the intra-annual variability of the Brewer retrieved ozone as compared to the single pair ozone retrieval. Tropospheric ozone retrievals also

  17. Urban and Rural Ozone Collect over Lusaka (Zambia, 15.5 S, 28 E) during SAFARI-2000 (September 2000)

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tai; Phalane, N. Agnes; Coetzee, Gert J. R.

    2002-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, broken by a frontal passage that reduced boundary layer ozone by 30%. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39-54 Dobson Units (note 1.3 km elevation at the launch site). A stable layer of high ozone at 2-5 km was advected from rural burning regions in western Zambia and neighboring countries, making Lusaka a collection point for transboundary pollution. This is confirmed by trajectories that show ozone leaving Angola, Namibia, Botswana and South Africa before heading toward the Indian Ocean and returning to Lusaka via Mozambique and Zimbabwe. Ozone in the mixed layer at Lusaka is heavily influenced by local sources.

  18. Ozone is mutagenic in Salmonella

    SciTech Connect

    Dillon, D.; Combes, R.; McConville, M.; Zeiger, E. )

    1992-01-01

    Ozone is a highly reactive gas that has been tested for genotoxicity in a number of systems. Induced genetic damage resulting from ozone treatment may not be readily observed because of the high toxicity of the chemical and difficulties in generating and administering controlled concentrations. The mutagenicity of ozone was investigated in Salmonella typhimurium using a plate test protocol designed for reactive vapours and gases. Ozone, at two to three consecutive doses, induced weak, albeit statistically significant, mutagenic responses in tester strain TA102 with and without Aroclor-induced rat liver S9 (lowest effective mean concentration of 0.019 ppm; 35 min total exposure). However, dose-related responses were not always obtained. No mutagenicity was detected in strains TA98, TA100, or TA1535, with or without S9. In strain TA104, ozone induced a weak response only at a single dose with S9; this response was not reproducible. Mutagenicity was dependent on the ozone flow rate and total exposure time, with variations in the optimum dose-time regimen leading to toxicity or complete inactivity. The data show that ozone is a very weak bacterial mutagen and only when tested under narrowly prescribed, subtoxic dosing conditions.

  19. Total ozone trend over Cairo

    NASA Technical Reports Server (NTRS)

    Hassan, G. K. Y.

    1994-01-01

    A world wide interest in protecting ozone layer against manmade effects is now increasing. Assessment of the ozone depletion due to these activities depends on how successfully we can separate the natural variabilities from the data. The monthly mean values of total ozone over Cairo (30 05N) for the period 1968-1988, have been analyzed using the power spectral analysis technique. The technique used in this analysis does not depend on a pre-understanding of the natural fluctuations in the ozone data. The method depends on increasing the resolution of the spectral peaks in order to obtain the more accurate sinusoidal fluctuations with wavelength equal to or less than record length. Also it handles the possible sinusoidal fluctuations with wavelength equal to or less than record length. The results show that it is possible to detect some of the well known national fluctuations in the ozone record such as annual, semiannual, quasi-biennial and quasi-quadrennial oscillations. After separating the natural fluctuations from the ozone record, the trend analysis of total ozone over Cairo showed that a decrease of about -1.2% per decade has occurred since 1979.

  20. Trends in ozone profile measurements

    NASA Technical Reports Server (NTRS)

    Johnston, H.; Aikin, A.; Barnes, R.; Chandra, S.; Cunnold, D.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mccormick, M. P.; Mcmaster, L.

    1989-01-01

    From an examination of the agreements and differences between different satellite instruments, it is difficult to believe that existing satellite instruments determine upper stratospheric ozone much better than 4 pct.; by extension, it probably would require at least a 4 pct. change to be reliably detected as a change. The best estimates of the vertical profiles of ozone change in the upper stratosphere between 1979 and 1986 are judged to be those given by the two SAGE satellite instruments. SAGE-2 minus SAGE-1 gives a much lower ozone reduction than that given by the archived Solar Backscatter UV data. The average SAGE profiles of ozone changes between 20 and 50 degs north and between 20 and 50 degs south are given. The SAGE-1 and SAGE-2 comparison gives an ozone reduction of about 4 pct. at 25 km over temperate latitudes. Five ground based Umkehr stations between 36 and 52 degs north, corrected for the effects of volcanic aerosols, report an ozone reduction between 1979 and 1987 at Umkehr layer 8 of 9 + or - 5 pct. The central estimate of upper stratospheric ozone reduction given by SAGE at 40 km is less than the central value estimated by the Umkehr method at layer 8.

  1. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  2. Surface-Level Ozone Variability in the Coastal Marine Boundary Layer Measured in the Gulf of Maine on a Commercial Ferry During NEAQS 2002

    NASA Astrophysics Data System (ADS)

    Rawlins, W. T.; Polex, J. A.; Mulhall, P. A.; Twickler, M. S.; Talbot, R. W.

    2003-12-01

    As part of the New England Air Quality Study in July-August 2002, we deployed the PSI UV Ozone Photometer on a commercial cruise ferry to measure temporal and spatial variations in ozone off the New Hampshire coast. The MV Thomas Laighton, operated by the Isles of Shoals Steamship Company in Portsmouth, NH, provided a mobile platform from which to conduct twice-daily measurement transects between the coastline and the Isles of Shoals area some 8 km offshore. Ozone mixing ratios, ambient air temperature, and GPS latitude and longitude were sampled at a 1 Hz data rate (5 to 10 m spatial resolution) via a mast and forward-facing air sampling inlet extending into the free stream above the wheelhouse of the vessel. The measurements provide detailed views of offshore ozone buildup in two different high-ozone events (>100 ppbv). The data exhibit extensive spatial variability in ozone mixing ratios for a given transect. These include frequent small-scale depletions in ozone on the scale of tens of meters, due to titration of ozone by localized NOx emissions, and large scale ozone depletions on the order of km, associated with the high-ozone events. In general, the off-shore ozone concentrations are greatly elevated during periods of southwesterly winds from the polluted urban corridor, and are modulated near the coastline by a complex sea breeze/land breeze effect. This research was supported by the National Oceanic and Atmospheric Administration.

  3. Potentials and limits for the use of ozone as a fish disease control agent

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Nelson, Nancy C.; Yasutake, Wm. T.

    1979-01-01

    Ozone and chlorine inactivation curves were determined in three types of freshwater at 20 C for the destruction of the fish pathogens Aeromonas salmonicida the etiologic agent of furunculosis, and Yersinia ruckeri the enteric redmouth bacterium (ERM). Ozone and chlorine inactivation curves were also obtained in the same water types at 10 C for the fish pathogenic viruses infectious hematopoietic necrosis (IHNV), and infectious pancreatic necrosis (IPNV). Acute toxicity tests using the rainbow trout as a representative salmonid revealed that ozone was highly toxic at the dose levels used. Partial chronic (3. mo.) testing revealed that ozone exposure at 2 μg/L causes only minimal physiological changes, none of which would be expected to compromise biological function.

  4. [Biomedical and economic consequences of stratosphere ozone depletion].

    PubMed

    Strzhizhovskiĭ, A D

    1998-01-01

    Information on possible human health-changes associated with stratosphere ozone depletion and amplification factor (% increase of the stick rate by 1% decrease of ozone) values for acute (erythema, keratitis, cataract, immunosuppression) and chronic (skin cancer, cataract) effects of natural UV-radiation was analysed. Amplification factor (AF) values for acute UV-effects increase with degree of ozone depletion. For degrees less than 12.5% they are independent of latitude and equal to 1.9 for erythema, 1.3-1.5 for keratitis, 1.7-2.3 for cataract and 0.9-1.1 for immunosuppression. AF values for incidence of non-melanoma skin cancer are independent of age, higher in males than females, and higher for squamous cell carcinoma, than for basal cell carcinoma. Their optimal estimations for whites equal to 2.7 for basal cell and 4.6 for squamous cell carcinoma. AF values for incidence of cutaneous malignant melanoma range between 1 and 2, for melanoma mortality--between 0.3 and 2. AF values for incidence of cataract range between 0.3 and 1.2 with optimal estimations between 0.6 and 0.8. Prognosis of non-melanoma skin cancer and cataract incidences, melanoma mortality and economic loss for different scenarios of stratosphere ozone depletion are presented. PMID:9633627

  5. The National Ozone Expedition, 1986

    SciTech Connect

    Solomon, S. )

    1987-01-01

    Eighteen scientists from four separate institutions came to McMurdo Station during the period from August to November, 1986, to carry out an intensive stratospheric measurement program aimed at obtaining further data on the antarctic ozone hole. The results from the composite of experiments strongly suggest that chemistry (specifically, the chemistry of anthropogenically produced halocarbon species) probably plays an important role in the development of the antarctic ozone hole. If the antarctic ozone hole is due to mankind's use of chlorofluorocarbons, then it represents the first time that the environment has been shown to be sensitive to man's activities on a global scale.

  6. Ozone and ozonated oils in skin diseases: a review.

    PubMed

    Travagli, V; Zanardi, I; Valacchi, G; Bocci, V

    2010-01-01

    Although orthodox medicine has provided a variety of topical anti-infective agents, some of them have become scarcely effective owing to antibiotic- and chemotherapeutic-resistant pathogens. For more than a century, ozone has been known to be an excellent disinfectant that nevertheless had to be used with caution for its oxidizing properties. Only during the last decade it has been learned how to tame its great reactivity by precisely dosing its concentration and permanently incorporating the gas into triglycerides where gaseous ozone chemically reacts with unsaturated substrates leading to therapeutically active ozonated derivatives. Today the stability and efficacy of the ozonated oils have been already demonstrated, but owing to a plethora of commercial products, the present paper aims to analyze these derivatives suggesting the strategy to obtain products with the best characteristics. PMID:20671923

  7. Ozone and Ozonated Oils in Skin Diseases: A Review

    PubMed Central

    Travagli, V.; Zanardi, I.; Valacchi, G.; Bocci, V.

    2010-01-01

    Although orthodox medicine has provided a variety of topical anti-infective agents, some of them have become scarcely effective owing to antibiotic- and chemotherapeutic-resistant pathogens. For more than a century, ozone has been known to be an excellent disinfectant that nevertheless had to be used with caution for its oxidizing properties. Only during the last decade it has been learned how to tame its great reactivity by precisely dosing its concentration and permanently incorporating the gas into triglycerides where gaseous ozone chemically reacts with unsaturated substrates leading to therapeutically active ozonated derivatives. Today the stability and efficacy of the ozonated oils have been already demonstrated, but owing to a plethora of commercial products, the present paper aims to analyze these derivatives suggesting the strategy to obtain products with the best characteristics. PMID:20671923

  8. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  9. N-fixation in legumes--An assessment of the potential threat posed by ozone pollution.

    PubMed

    Hewitt, D K L; Mills, G; Hayes, F; Norris, D; Coyle, M; Wilkinson, S; Davies, W

    2016-01-01

    The growth, development and functioning of legumes are often significantly affected by exposure to tropospheric ozone (O3) pollution. However, surprisingly little is known about how leguminous Nitrogen (N) fixation responds to ozone, with a scarcity of studies addressing this question in detail. In the last decade, ozone impacts on N-fixation in soybean, cowpea, mung bean, peanut and clover have been shown for concentrations which are now commonly recorded in ambient air or are likely to occur in the near future. We provide a synthesis of the existing literature addressing this issue, and also explore the effects that may occur on an agroecosystem scale by predicting reductions in Trifolium (clovers) root nodule biomass in United Kingdom (UK) pasture based on ozone concentration data for a "high" (2006) and "average" ozone year (2008). Median 8% and 5% reductions in clover root nodule biomass in pasture across the UK were predicted for 2006 and 2008 respectively. Seasonal exposure to elevated ozone, or short-term acute concentrations >100 ppb, are sufficient to reduce N-fixation and/or impact nodulation, in a range of globally-important legumes. However, an increasing global burden of CO2, the use of artificial fertiliser, and reactive N-pollution may partially mitigate impacts of ozone on N-fixation. PMID:26385644

  10. Lusaka, Zambia during SAFARI-2000: A Collection Point for Ozone Pollution

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tal; Phahlane, N. Agnes; Coetzee, G. J. R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    In August and September, throughout south central Africa, seasonal clearing of dry vegetation and other fire-related activities lead to intense smoke haze and ozone formation. The first ozone soundings in the heart of the southern African burning region were taken at Lusaka, Zambia (155 deg S, 28 deg E) in early September 2000. Over 90 ppbv ozone was recorded at the surface (1.3 km elevation) and column tropospheric ozone was greater than 50 DU during a stagnant period. These values are much higher than concurrent measurements over Nairobi (1 deg S, 38 deg E) and Irene (25 deg S, 28 deg E, near Pretoria). The heaviest ozone pollution layer (800-500 hPa) over Lusaka is due to recirculated trans-boundary ozone. Starting out over Zambia, Angola, and Namibia, ozone heads east to the Indian Ocean, before turning back over Mozambique and Zimbabwe, heading toward Lusaka. Thus, Lusaka is a collection point for pollution, consistent with a picture of absolutely stable layers recirculating in a gyre over southern Africa.

  11. Distribution of tropospheric ozone in the tropics from satellite and ozonesonde measurements

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Brackett, V. G.; Fakhruzzaman, K.

    1992-01-01

    Measurements from two independent satellite data sets have been used to derive the climatology of the integrated amount of ozone in the troposphere. These data have led to the finding that large amounts of ozone pollution are generated by anthropogenic activity originating from both the industrialized regions of the Northern Hemisphere and from the southern tropical regions of Africa. To verify the existence of this ozone anomaly over this region of the world, an ozonesonde capability has been established at Ascension Island, located downwind of the primary source region of this ozone pollution, which likely results from the photochemical oxidation of emissions emanating from the widespread burning of savanna. These first ozonesonde profiles suggest that much of the ozone generated over Africa during the 'burning season' (primarily July-October) reaches Ascension Island. These high levels of ozone in the lower troposphere become much lower by December. Elevated ozone concentrations in the middle troposphere are once again evident in February, which may be the result of biomass burning emissions being transported from western and northern Africa.

  12. Land cover change impacts on surface ozone: an observation-based study

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lin, Jintai

    2016-04-01

    Ozone air quality is a critical global environmental issue. Although it is clear that industrialization and urbanization has increased surface ozone through enhanced emissions of its precursors, much less is known about the role of changes in land cover and land use. Human activities have substantially altered the global land cover and land use through agriculture, urbanization, deforestation, and afforestation. Changes in Land cover and land use affect the ozone levels by altering soil emissions of nitrogen oxides (NOx), biogenic emissions of volatile organic compounds (VOCs), and dry deposition of ozone itself. This study performs a series of experiments with a chemical transport model based on satellite observation of land types to analyze the influences of changes in land cover/land use and their impact on surface ozone concentration. Our results indicate that land cover change explains 1-2 ppbv of summertime surface ozone increase in the Western United States and 1-6 ppbv of increase in Southern China between 2001 and 2012. This is largely driven by enhanced isoprene emissions and soil NOx emissions. It is also found that land cover change itself elevates summertime surface zone in Canadian coniferous forests by up to 4 ppbv mainly through substantial decreases in ozone dry deposition associated with increased vegetation density in a warmer climate.

  13. First observations of surface ozone concentration from the summit region of Mount Everest

    NASA Astrophysics Data System (ADS)

    Semple, John L.; Moore, G. W. K.

    2008-10-01

    The extreme height of Mount Everest is such that its summit region may periodically be in the lower stratosphere. In this regard it provides a unique location for observing the exchange of ozone between the upper troposphere and lower stratosphere. Here we report the first surface ozone measurements from the summit region of Mount Everest. Simultaneous measurements were recorded at different elevations on the north side from base camp (5676 m) to the summit (8848 m) during May 2005. The concentrations measured were as high as 70 ppb. Meteorological diagnostics suggest that the stratosphere as well as the long range transport of polluted tropospheric air masses from South East Asia are sources of the observed ozone. There is evidence that the source region for ozone in the vicinity of Mount Everest may vary with the onset of the summer monsoon.

  14. Sensitivity Studies for Assimilated Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Winslow, Nathan; Wargan, Krzysztof; Rood, Richard; Pawson, Steven

    2002-01-01

    An ozone data assimilation system at the NASA/Goddard Data Assimilation Office (DAO) produces three-dimensional global ozone fields. They are obtained by assimilating ozone retrieved from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument and the Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) measurements into an off-line parameterized chemistry and transport model. In this talk we focus on the quality of lower stratospheric assimilated ozone profiles. Ozone in the lower stratosphere plays a key role in the forcing of climate. A biased ozone field in this region will adversely impact calculations of the stratosphere-troposphere exchange and, when used as a first guess in retrievals, the values determined from satellite observations. The SBUV/2 ozone data have a coarse vertical resolution with increased uncertainty below the ozone maximum, and TOMS provides only total ozone columns. Thus, the assimilated ozone profiles in the lower stratosphere are only weakly constrained by the incoming SBUV and TOMS data. Consequently, the assimilated ozone distribution should be sensitive to changes in inputs to the statistical analysis scheme. We investigate the sensitivity of assimilated ozone profiles to changes in a variety of system inputs: TOMS and SBUV/2 data selection, forecast and observations error covariance models, inclusion or omission of a parameterized chemistry model, and different versions of DAO assimilated wind fields used to drive the transport model. Comparisons of assimilated ozone fields with independent observations, primarily ozone sondes, are used to determine the impact of each of these changes.

  15. Ozone Production Efficiency in the Baltimore-Washington Urban Plume

    NASA Astrophysics Data System (ADS)

    Hembeck, L.; Vinciguerra, T.; Carpenter, S. F.; Loughner, C.; Canty, T. P.; Weinheimer, A. J.; Cohen, R. C.; Wisthaler, A.; Fried, A.; Pickering, K. E.; Crawford, J. H.; Dickerson, R. R.; Salawitch, R. J.

    2014-12-01

    Elevated levels of tropospheric ozone caused by its precursor emissions of NOx and VOCs have a negative impact on human health and crops. Informed regulatory decisions on how to reduce surface ozone in the Baltimore-Washington region can be made with a thorough understanding of urban plume chemistry and climate. The ozone production efficiency (OPE), which is based on the observed ratio of O3 and various nitrogen species, provides a mechanism for quantitatively assessing air quality representation of a key component of the photochemical evolution of urban plumes. We investigate the representation of ozone precursors within the CMAQ (Community Multi-scale Air Quality) air quality model, with a focus on assessing how well the model represents NOx and HOx chemistry. A comprehensive set of atmospheric observations for which OPE can be found and HO2 and RO2can be inferred, is available from NASA's DISCOVER-AQ campaign for July 2011 in the Baltimore-Washington region. Preliminary results show that the OPE as well as the NOx/NOy ratio in the Baltimore-Washington region derived from measurements is twice as high as within CMAQ, and that isoprene and formaldehyde are too low within CMAQ. Implications for policy will be briefly discussed.

  16. Recent Results of Ambient Ozone Monitoring in Southern Sierra Nevada and White Mountains, California

    NASA Astrophysics Data System (ADS)

    Burley, J. D.; Bytnerowicz, A.; Cisneros, R.; Schweizer, D.

    2014-12-01

    Ambient ozone has been monitored in the southern Sierra Nevada and White Mountains of California as 2-week average concentrations with Ogawa passive samplers and as 1-hour average concentrations with 2B Technologies UV absorption monitors. Our summer season investigations have included: (1) an elevational transect (1,237 to 4,342 masl) consisting of 5 sites in the White Mountains (2009 -2014); (2) a west to east southern Sierra Nevada transect consisting of 9 sites at elevations between 510 and 3,490 masl (2012 and 2013); and (3) two sites at the Devils Postpile National Monument at 2,130 masl (2007 - 2014). In the White Mountains average ozone concentrations increased with elevation, reaching the highest values at White Mountain Summit. A strongly pronounced diurnal distribution of ozone was observed at the low elevation site in Bishop (OVS), with low values at night and in the early morning and highest concentrations during mid-day. High elevation sites (Crooked Creek, Barcroft Station and Summit) were characterized by flat ozone curves with similar concentrations during daytime and nighttime, typically around 50 ppb. During the 2013 summer season, two-week averages from passive samplers ranged from 32 to 60 ppb for all White Mountains sites with the highest values at the Summit and the lowest at OVS. Along the southern Sierra Nevada transect, average concentrations in summer 2013 ranged from 36.5 to 54.0 ppb with the highest value recorded at the highest elevation eastern site, Piute Pass, and the lowest at low-elevation and western Shaver Lake site. Prather, Mountain Rest and Shaver Lake sites had the most exceedances of 8 h federal health standard of 75 ppb and the California health standard of 70 ppb. The Devils Postpile site was characterized by low ozone concentrations at night and in the early morning, and late afternoon maxima. In 2007 and 2008 the ozone values measured at Devils Postpile occasionally exceeded the federal health standard, with more

  17. Using Satellites, Sondes, and Surface Measurements to Assess Regional Model Ozone Performance

    NASA Astrophysics Data System (ADS)

    Herron-Thorpe, F. L.; Lamb, B.; Mount, G. H.; Vaughan, J. K.; Emmons, L. K.

    2012-12-01

    The AIRPACT-3 air quality modeling system for the Pacific Northwest (Herron-Thorpe et al., 2012), which uses dynamic boundary conditions derived from MOZART-4, is used to determine the potential impact on surface ozone from polluted air masses entering the model domain during spring and summer of 2008. Tropospheric ozone column research products derived from Aura/OMI (Liu et al., 2010 and Ziemke et al., 2006) are used to analyze specific high ozone events. Tropospheric columns from the two OMI research products compare well, but with some notable differences. Ozone sonde profiles are compared to tropospheric ozone OMI profiles derived by Liu (2010). Surface measurements of trace gases made at the summit of Mt. Bachelor, OR (Ambrose et al., 2011) are used to help classify ozone events as upper troposphere/lower stratosphere intrusions and/or long-range transport from Asia. AIRS ozone and carbon monoxide retrievals (v 5.2.2) are used to help determine the source of increased ozone at Mt. Bachelor and other elevated sites. Finally, we compare the results from both static and dynamic boundary conditions and use non-reactive tracers to investigate transport of elevated ozone from the model boundary to surface sites. References: Herron-Thorpe, F. L., Mount, G. H., Emmons, L. K., Lamb, B. K., Chung, S. H., and Vaughan, J. K.: Regional air-quality forecasting for the Pacific Northwest using MOPITT/TERRA assimilated carbon monoxide MOZART-4 forecasts as a near real-time boundary condition, Atmos. Chem. Phys., 12, 5603-5615, doi:10.5194/acp-12-5603-2012, 2012. J.L. Ambrose, D.R. Reidmiller, D.A. Jaffe, Causes of high O3 in the lower free troposphere over the Pacific Northwest as observed at the Mt. Bachelor Observatory, Atmospheric Environment, Volume 45, Issue 30, September 2011, Pages 5302-5315, ISSN 1352-2310, 10.1016/j.atmosenv.2011.06.056. Liu, X., Bhartia, P. K., Chance, K., Spurr, R. J. D., and Kurosu, T. P.: Ozone profile retrievals from the Ozone Monitoring

  18. Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    de Vries, Johan

    The Ozone Monitoring Instrument is a trace gas monitoring instrument in the line of GOME (ERS-2) and Sciamachy (ENVISAT). Following these instruments, OMI provides UV-visible spectroscopy with a resolution sufficient to separate out the various absorbing trace gases (using DOAS or `Full' retrieval), but shaped as an imaging spectrometer. This means that a two dimensional detector is used where one dimension records the spectrum and the other images the swath. The scanning mechanism from the GOME and Sciamachy is not required anymore and there are considerable advantages with respect to simultaneous measurement of swath pixels, polarisation and obtainable swath width. The OMI consortium for a phase B is formed by Fokker Space & Systems and TPD in the Netherlands and VTT in Finland. In the presentation UV-visible atmospheric remote sensing will be placed in perspective and the OMI will be explaned.

  19. The photolysis of ozone

    NASA Technical Reports Server (NTRS)

    Lissi, E.; Heicklen, J.

    1972-01-01

    Ozone was photolyzed at 25 C with steady illumination at several wavelengths from 2288 to 2850 A, at O3 pressures from 0.1 to 2.7 torr, and at absorbed intensities from 0.15 to 65 microns/min. Experiments were done in pure dry O3, and in the presence of He, CO2, N2, H2O, H2, N2O, He-CO2, He-H2O, CO2-H2O, O2-N2O, CO2-O2, and N2O5-O2-CO2 mixtures. The results show that in the absence of added gases or in the presence of He, the quantum yield of O3 consumption is 5.5 independent of conditions, except at pressures below 0.4 torr. In the presence of CO2 or N2, ozone consumption falls toward 4.0. The primary photolytic act produces O(1 D) and siglet O2, presumably O2(1 delta), at all wavelengths below 3000 A. Relative quenching constants O(1 D) removal by various gases were measured at 2288, 2537, and 2800 A. For O3, CO2, and N2, the relative rates are 1.0/0.4 to 0.5/0.08 to 0.11 at all wavelengths. For H2O the constant at 2537 A is 1.5 relative to that for O3. With N2O, a noticeable wavelength effect is observed and the relative rate constants are 1.5, 2 to 3, 4.0 for O3 compared to N2O at 2800, 2537, and 2288 A, respectively.

  20. Monitoring of atmospheric particles and ozone in Sequoia National Park: 1985-1987. Final report

    SciTech Connect

    Cahill, T.A.

    1989-06-01

    The Air Quality Group Monitored particles and ozone in Sequoia National Park as part of an effort to understand the impact of acid deposition and other air pollutants on the park's forests and watersheds. For high-elevation ozone measurement, the project developed a new solar-powered ozone monitoring system. The particulate matter sampled was analyzed for elemental content using nuclear techniques. The measurements were correlated with meteorology, known elemental sources, and wet and dry deposition measurements. The results show that particulate matter at Sequoia National Park is similar to that present at other sites on the western slope of the Sierra Nevada range at equivalent elevations. Some anthropogenic species, including nickel and sulfate, are present in higher concentrations at Sequoia than at Yosemite National Park.

  1. 54. West elevation of portion of elevated Mainline structure (Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. West elevation of portion of elevated Mainline structure (Section F-5) over Washington Street - looking East - at the corner of Bray Street. - Boston Elevated Railway, Elevated Mainline, Washington Street, Boston, Suffolk County, MA

  2. Ozonation of cooling tower waters

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.; Howe, R. D. (Inventor)

    1979-01-01

    Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria.

  3. Air Quality Guide for Ozone

    MedlinePlus

    ... is one of our nation’s most common air pollutants. Use the chart below to help reduce your ... human health. Ozone forms when two types of pollutants (VOCs and NOx) react in sunlight. These pollutants ...

  4. A search For Artic ozone

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Four atmospheric scientists took off with their instruments for Greenland last week, where they will try to see if depletion of stratospheric ozone in the Arctic can be detected as it has been in Antarctica since 1985.Members of the scientific team include Susan Solomon and George Mount of the Aeronomy Laboratory at the National Atmospheric and Oceanic Administration (NOAA) in Boulder, Colo., and Ryan Sanders and Roger Jakoubec of the Cooperative Institute for Research in Environmental Science in Norman, Okla. These four participated in previous National Ozone Expedition (NOZE) investigations at McMurdo Station in Antarctica that helped document the ozone “hole,” decreases of up to 50% in ozone during the early austral spring in September and October of the last 2 years (1986-1987).

  5. Ozone - Current Air Quality Index

    MedlinePlus

    ... reducing exposure to extremely high levels of particle pollution is available here . Fires: Current Conditions Click to ... Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke from fires | What You Can Do Health ...

  6. Ozone and Nitrogen Deposition as Modifiers of Biogeochemical Fluxes and Processes in California Forests

    NASA Astrophysics Data System (ADS)

    Fenn, M. E.

    2011-12-01

    The combined effects of ozone and N deposition results in major perturbations of C and N cycling in forests of southern and central California. Increased shoot:root ratios of the major trees species, N-stimulation of aboveground growth, and premature foliar abscission result in greater aboveground C and N pools. Fire suppression exacerbates these perturbations and provides the opportunity for chronic N deposition to further increase the stand densification problem. Long-term litter decomposition rates are retarded by N enrichment which contributes further to litter accumulation in the forest floor. Stage 3 of N saturation in California mixed conifer forests occurs as chronic N deposition, in conjunction with co-occurring ozone effects, decreases fine root biomass, interferes with stomatal control, and increases the susceptibility of ponderosa pine trees to drought stress and bark beetle attack, leading to increased stand mortality. Hot moments of N transfers from canopy to the forest floor occur during precipitation events that follow long dry periods, but particularly during fog events. During initial soil wet up, pulses of NO and N2O emissions from the forest floor occur. Streamwater losses of nitrate are highest following storms preceded by dry periods, but also during peak runoff, typically in February and March. However, major losses of accumulated N occur during and after fire events. However, ecosystem N budgets, biogeochemical modeling studies and experimental burns in N-saturated chaparral catchments in southern California demonstrate that symptoms of N excess are not easily reversed by N release in and following fire. Even with decreased N deposition, momentum for elevated N losses from California forests would likely continue, driven by actively nitrifying soils and increased N content of litter and soil organic matter. Initial studies show that during peak runoff, as much as 20-40% of runoff nitrate in some catchments is throughput of unassimilated

  7. DEVELOMENT AND EVALUATION OF A MODEL FOR ESTIMATING LONG-TERM AVERAGE OZONE EXPOSURES TO CHILDREN

    EPA Science Inventory

    Long-term average exposures of school-age children can be modelled using longitudinal measurements collected during the Harvard Southern California Chronic Ozone Exposure Study over a 12-month period: June, 1995-May, 1996. The data base contains over 200 young children with perso...

  8. Monsoon circulation and atmospheric ozone

    NASA Astrophysics Data System (ADS)

    Khrgian, A. Kh.; Nguyen, Van Thang

    1991-01-01

    The effect of the Indonesian-Australian winter monsoon, proceeding from the Asian continent to the south, on the atmospheric ozone is examined. It is shown that large-scale atmospheric circulation phenomena caused by monsoons in the tropical regions of Australia and in south-eastern Asia can cause significant falls in atmospheric ozone concentrations. The common occurrence of such phenomena might explain the higher-than-average incidence of skin cancer in Australia.

  9. Method of sterilization using ozone

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    2002-01-01

    Methods of using ozone have been developed which sterilize instruments and medical wastes, oxidize, organics found in wastewater, clean laundry, break down contaminants in soil into a form more readily digested by microbes, kill microorganisms present in food products, and destroy toxins present in food products. The preferred methods for killing microorganism and destroying toxins use pressurized, humidified, and concentrated ozone produced by an electrochemical cell.

  10. Ozone Treatment For Cooling Towers

    NASA Technical Reports Server (NTRS)

    Blackwelder, Rick; Baldwin, Leroy V.; Feeney, Ellen S.

    1990-01-01

    Report presents results of study of cooling tower in which water treated with ozone instead of usual chemical agents. Bacteria and scale reduced without pollution and at low cost. Operating and maintenance costs with treatment about 30 percent of those of treatment by other chemicals. Corrosion rates no greater than with other chemicals. Advantage of ozone, even though poisonous, quickly detected by smell in very low concentrations.

  11. Using ozone to treat cooling tower water

    SciTech Connect

    Webster, L.

    1995-07-01

    Ozone is a controversial but promising alternative to chemicals for treating water in cooling towers. A powerful disinfectant, ozone can prevent biofouling of heat exchange surfaces, and may mitigate scale and corrosion. Ozone treatment of cooling towers can cut costs for energy, water, sewage, and regulatory compliance. Ozone treatment is an electrotechnology, but ozone equipment represents only a small electric load. Although ozone has provided excellent results in some cooling tower applications, its effectiveness has not been proven conclusively. Less than 1,000 cooling towers use ozone water treatment in the United States. Acceptance of this technology is increasing, however, as indicated by its use by such large firms as IBM, AT and T, DuPont, and Xerox, and by its adoption by some chemical water treatment suppliers. The energy efficiency implications of ozone treatment are being researched. Southern California Edison found that in some systems, ozone treatment improved chiller efficiency up to 20 percent due to cleaner heat exchange surfaces.

  12. Corona Discharge Influences Ozone Concentrations Near Rats

    SciTech Connect

    Goheen, Steven C.; Gaither, Kari A.; Anantatmula, Shantha M.; Mong, Gary M.; Sasser, Lyle B.; Lessor, Delbert L.

    2004-02-26

    Ozone is produced by corona discharge in air. Its production is enhanced near grounded water. Whether grounded animals behave like grounded water, producing more ozone was investigated. Rats were exposed to corona discharge in a plastic cage. The concentration of ozone in the gas phase was monitored. The ozone concentration exceeded ambient levels only in the presence of corona discharge and either rats or water. When water or rats were exposed to corona discharge, ozone levels were more than 10 times higher than controls. Ozone levels increased rapidly with applied voltage. There was also a correlation between the distance of the corona needle to the rats and the amount of ozone produced. As the distance increased, ozone production decreased. These results are discussed in relation to the potential exposure of mammals to ozone in the vicinity of corona discharge and electric fields.

  13. Ground-level ozone in Alberta

    SciTech Connect

    Sandhu, H.S.

    1999-11-01

    This literature review on ground-level ozone in Alberta begins with introductory sections on the precursors and products of ozone formation, the chemistry and meteorology of ozone, and atmospheric ozone models. The subsequent section reviews ozone data from ambient air quality monitoring stations in Alberta. The final section discusses trends in ozone concentrations in urban and rural areas of Alberta, human and environmental health effects of ozone, proposed national ambient objectives and Canada-wide standards for ground-level ozone, and options for an ozone concentration standard for Alberta. Appendices include an outline of air pollutant monitoring methods used in Alberta, lists of monitoring stations, and tables of monitoring results for nitrogen oxides, total hydrocarbons, and volatile organic compounds at Calgary and Edmonton sites.

  14. Ground-level ozone in Alberta

    SciTech Connect

    Sandhu, H.S.

    1999-01-01

    This literature review on ground-level ozone in Alberta begins with introductory sections on the precursors and products of ozone formation, the chemistry and meteorology of ozone, and atmospheric ozone models. The subsequent section reviews ozone data from ambient air quality monitoring stations in Alberta. The final section discusses trends in ozone concentrations in urban and rural areas of Alberta, human and environmental health effects of ozone, proposed national ambient objectives and Canada-wide standards for ground-level ozone, and options for an ozone concentration standard for Alberta. Appendices include an outline of air pollutant monitoring methods used in Alberta, lists of monitoring stations, and tables of monitoring results for nitrogen oxides, total hydrocarbons, and volatile organic compounds at Calgary and Edmonton sites.

  15. The grain drain. Ozone effects on historical maize and soybean yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous controlled experiments find that elevated ground-level ozone concentrations ([O3]) damage crops and reduce yield. There have been no estimates of the actual field yield losses in the USA from [O3], even though such estimates would be valuable for projections of future food production and fo...

  16. An Evaluation of the Antimicrobial Effects of Gas-Phase Ozone

    EPA Science Inventory

    This project evaluated the effects of exposing a variety of microorganisms on porous and non-porous materials to elevated gaseous ozone concentrations ranging from 100 - 1000 ppm. Gypsum wallboard (porous) and glass slide (non-porous) building materials were used. Two fungi organ...

  17. High ozone increases soil perchlorate but does not affect foliar perchlorate content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone (O3) is implicated in the natural source inventory of perchlorate (ClO4-), a hydrophilic salt that migrates to ground water and interferes with uptake of iodide in mammals, including humans. Tropospheric O3 is elevated in many areas. We previously showed (Grantz et al., 2013; Environmental Pol...

  18. From climate change to molecular response: redox proteomics of ozone-induced responses in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone (O3) causes significant agricultural losses with soybean being highly sensitive to this oxidant. Here we assess the effect of elevated seasonal O3 exposure on the total and redox proteomes of soybean. To understand the molecular responses to O3 exposure, soybean grown at the Soybean Free Air C...

  19. The 2002 Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  20. Wave-Like Ozone Movements

    NASA Astrophysics Data System (ADS)

    Roldugin, V. C.; Nikulin, G. N.; Henriksen, K.

    The wave-like character of the total ozone variations is examined from the Aral Sea and Karaganda observatories in Middle Asia, and from Tromsø and Murmansk in the Arctic. The waves have a period of 10-20 days and an amplitude of about 20-50 DU. They are seen practically every year when the ozone data do not contain too many gaps. In Middle Asia waves with the same periods are found in geopotential height and tropopause pressure variations. The ozone waves are caused by dynamic meteorological disturbances near the tropopause. The passing of a wave crest in the pressure field causes the convergence of ozone poor air under the tropopause and the divergence of ozone rich air above the tropopause giving rise to a total ozone content decrease. The passing of a wave trough stimulates the opposite process. By crosscorrelation analysis the wave-like movement was determined as eastward for both pairs of stations with a velocity of 11-15 °/day.

  1. Ozone Conference II: Abstract Proceedings

    SciTech Connect

    1999-11-01

    Ozone Conference II: Pre- and Post-Harvest Applications Two Years After Gras, was held September 27-28, 1999 in Tulare, California. This conference, sponsored by EPRI's Agricultural Technology Alliance and Southern California Edison's AgTAC facility, was coordinated and organized by the on-site ATA-AgTAC Regional Center. Approximately 175 people attended the day-and-a-half conference at AgTAC. During the Conference twenty-two presentations were given on ozone food processing and agricultural applications. Included in the presentations were topics on: (1) Ozone fumigation; (2) Ozone generation techniques; (3) System and design applications; (4) Prewater treatment requirements; (5) Poultry water reuse; (6) Soil treatments with ozone gas; and (7) Post-harvest aqueous and gaseous ozone research results. A live videoconference between Tulare and Washington, D.C. was held to discuss the regulators' view from inside the beltway. Attendees participated in two Roundtable Question and Answer sessions and visited fifteen exhibits and demonstrations. The attendees included university and governmental researchers, regulators, consultants and industry experts, technology developers and providers, and corporate and individual end-users. This report is comprised of the Abstracts of each presentation, biographical sketches for each speaker and a registration/attendees list.

  2. Effectiveness of ozonation treatment in eliminating toxicity of oil sands process-affected water to Chironomus dilutus.

    PubMed

    Anderson, J C; Wiseman, S B; Wang, N; Moustafa, A; Perez-Estrada, L; Gamal El-Din, M; Martin, J W; Liber, K; Giesy, J P

    2012-01-01

    Water soluble organic compounds (OCs), including naphthenic acids (NAs), are potentially toxic constituents of oil sands process-affected water (OSPW) that is generated during extraction of bitumen from Alberta oil sands. Ozonation can decrease concentrations of OCs in OSPW. However, effects of ozonated-OSPW on multicellular organisms are unknown. A 10-day and a chronic exposure of Chironomus dilutus to OSPW were conducted to assess effects on survival, growth, development, and behavior. Two separate batches of OSPW were treated with 30 or 80 mg ozone (O(3))/L. Wet body masses of larvae exposed to OSPW were 64 to 77% less than their respective controls (p < 0.001). However, both levels of ozonation significantly attenuated effects of OSPW on growth. Similarly, chronic exposure to untreated OSPW resulted in significantly less pupation than in the controls, with 31% and 71% less pupation of larvae exposed to the two batches of OSPW (p < 0.05). Emergence was significantly less for larvae exposed to OSPW, with 13% and 8% of larvae emerging, compared to 81% in controls (p < 0.0001). Both levels of ozonation of OSPW attenuated effects on emergence. These results suggest that OCs degraded by ozonation causes toxicity of OSPW toward C. dilutus, and that ozonation attenuates toxicity of OSPW. PMID:21992611

  3. New dynamic NNORSY ozone profile climatology

    NASA Astrophysics Data System (ADS)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  4. Ozone induces synthesis of systemic prostacyclin by cyclooxygenase-2 dependent mechanism in vivo.

    PubMed

    Schulz, Siegfried; Ninke, Simone; Watzer, Bernhard; Nüsing, Rolf Michael

    2012-02-15

    Under certain pathological conditions, e.g., infectious or neoplastic diseases, application of ozone exerts therapeutic effects. However, pharmacological mechanisms are not understood. Since an interaction with the arachidonic acid metabolism is suggested we investigated the effect of intraperitoneal insufflation of ozone on prostanoid system in vivo. Upon ozone application (4 mg/kg) to rats we observed an approximate 3-fold increase in excretion rate of 6-keto-prostaglandin (PG) F1α and of 2,3-dinor-6-keto-PG F1α, the measurable stable products of prostacyclin. In plasma and vessel tissue 6-keto-PG F1α concentration was also significantly increased. In contrast, excretion rates for PGE2 and thromboxane (TX) B2 did not change. F2-isoprostanes, regarded as endogenous indicators of oxidative stress, were also unaffected by ozone application. Oxygen insufflation used as control was without any effect on prostanoid levels. Ozone caused increase in 6-keto-PG F1α by arterial but not by venous vessel tissues with peak activity 6-9h following insufflation. The increase in PGI2 synthesis was dependent on cyclooxygenase (COX)-2 activity, demonstrated by its sensitivity towards COX-2 inhibition, and by enhanced COX-2 mRNA and protein expression in vessels. Ozone exerted no rise in excretion rate of prostacyclin metabolites in COX-2(-/-) but in COX-1(-/-) mice. Enzymatic activity and mRNA expression of vascular PGI2 synthase (PGIS) was unaffected by ozone treatment. In summary our study shows for the first time that ozone insufflation causes enhanced expression of COX-2 in the vessel system leading to exclusive elevation of systemic PGI2 levels. We assume that PGI2 stimulation may contribute to the beneficial effects of ozone treatment. PMID:22155309

  5. Atmospheric characteristics conducive to high-ozone days in the Atlanta metropolitan area

    NASA Astrophysics Data System (ADS)

    Diem, Jeremy E.

    The purpose of this paper is to identify the atmospheric conditions associated with elevated ground-level ozone concentrations during June-August of 2000-2007 at 11 ozone-monitoring stations in the Atlanta, GA, USA metropolitan statistical area (MSA). Analyses were confined to high-ozone days (HODs), which had a daily maximum 8-h average ozone concentration in the 95th percentile of all June-August values. Therefore, each station had 36 HODs. The southeastern and far northern portions of the MSA had HODs with the highest and lowest ozone concentrations, respectively. HODs at nearly all Atlanta MSA ozone-monitoring stations were enabled by migratory anticyclones. HODs for most stations were hot, dry, and calm with low morning mixing heights and high afternoon mixing heights. All sets of HODs had daily mean relative humidities and afternoon mixing heights that, respectively, were significantly less than and significantly greater than mean values for the remaining days. Urbanized Atlanta typically was upwind of an ozone-monitoring station on its HODs; therefore, wind direction on HODs varied considerably among the stations. HODs may have been caused partially by NO x emissions from electric-utility power plants: HODs in the southern portion of the MSA were linked to air-parcel trajectories intersecting a power plant slightly northwest of Atlanta and plants in the Ohio River Valley, while HODs in the northern portion of the MSA were linked to air-parcel trajectories intersecting two large power plants slightly southeast of the Atlanta MSA. Results from this study suggest that future research in the Atlanta MSA should focus on power-plant contributions to ground-level ozone concentrations as well as the identification of non-monitored locations with potentially high ozone concentrations.

  6. Have ozone effects on carbon sequestration been overestimated? A new biomass response function for wheat

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Danielsson, H.; Simpson, D.; Mills, G.

    2014-08-01

    Elevated levels of tropospheric ozone can significantly impair the growth of crops. The reduced removal of CO2 by plants leads to higher atmospheric concentrations of CO2, enhancing radiative forcing. Ozone effects on economic yield, e.g. the grain yield of wheat (Triticum aestivum L.), are currently used to model effects on radiative forcing. However, changes in grain yield do not necessarily reflect changes in total biomass. Based on an analysis of 22 ozone exposure experiments with field-grown wheat, we investigated whether the use of effects on grain yield as a proxy for effects on biomass under- or overestimates effects on biomass. First, we confirmed that effects on partitioning and biomass loss are both of significant importance for wheat yield loss. Then we derived ozone dose response functions for biomass loss and for harvest index (the proportion of above-ground biomass converted to grain) based on 12 experiments and recently developed ozone uptake modelling for wheat. Finally, we used a European-scale chemical transport model (EMEP MSC-West) to assess the effect of ozone on biomass (-9%) and grain yield (-14%) loss over Europe. Based on yield data per grid square, we estimated above-ground biomass losses due to ozone in 2000 in Europe, totalling 22.2 million tonnes. Incorrectly applying the grain yield response function to model effects on biomass instead of the biomass response function of this paper would have indicated total above-ground biomass losses totalling 38.1 million (i.e. overestimating effects by 15.9 million tonnes). A key conclusion from our study is that future assessments of ozone-induced loss of agroecosystem carbon storage should use response functions for biomass, such as that provided in this paper, not grain yield, to avoid overestimation of the indirect radiative forcing from ozone effects on crop biomass accumulation.

  7. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  8. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    NASA Astrophysics Data System (ADS)

    Singer, Brett C.; Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Lunden, Melissa M.; Weschler, Charles J.; Nazaroff, William W.

    This study investigated the formation of secondary pollutants resulting from household product use in the presence of ozone. Experiments were conducted in a 50-m 3 chamber simulating a residential room. The chamber was operated at conditions relevant to US residences in polluted areas during warm-weather seasons: an air exchange rate of 1.0 h -1 and an inlet ozone concentration of approximately 120 ppb, when included. Three products were used in separate experiments. An orange oil-based degreaser and a pine oil-based general-purpose cleaner were used for surface cleaning applications. A plug-in scented-oil air freshener (AFR) was operated for several days. Cleaning products were applied realistically with quantities scaled to simulate residential use rates. Concentrations of organic gases and secondary organic aerosol from the terpene-containing consumer products were measured with and without ozone introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs was of similar magnitude to homogeneous reaction with continuously emitted constituents. Formaldehyde generation resulted from product use with ozone present, increasing indoor levels by the order of 10 ppb. Cleaning product use in the presence of ozone generated substantial fine particle concentrations (more than 100 μg m -3) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods.

  9. Refractory intraoperative hypotension with elevated serum tryptase

    PubMed Central

    Larson, Kelly J.; Divekar, Rohit D.; Butterfield, Joseph H.; Schwartz, Lawrence B.; Weingarten, Toby N.

    2015-01-01

    Severe intraoperative hypotension has been reported in patients on angiotensin-converting enzyme inhibitors and angiotensin II receptor subtype 1 antagonists. We describe a patient on lisinopril who developed refractory intraoperative hypotension associated with increased serum tryptase level suggesting mast cell activation (allergic reaction). However, allergology workup ruled out an allergic etiology as well as mastocytosis, and hypotension recalcitrant to treatment was attributed to uninterrupted lisinopril therapy. Elevated serum tryptase was attributed to our patient's chronic renal insufficiency. PMID:25653920

  10. NATIONAL ELEVATION DATASET

    EPA Science Inventory

    The USGS National Elevation Dataset (NED) has been developed by merging the highest-resolution, best-quality elevation data available across the United States into a seamless raster format. NED is the result of the maturation of the USGS effort to provide 1:24,000-scale Digital ...

  11. NATIONAL ELEVATION DATASET HILLSHADE

    EPA Science Inventory

    The USGS National Elevation Dataset (NED) has been developed bymerging the highest-resolution, best-quality elevation data available across the United States into a seamless raster format. NED is the result of the maturation of the USGS effort to provide 1:24,000-scale Digital E...

  12. Scientific assessment of ozone depletion: 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past few years, there have been highly significant advances in the understanding of the impact of human activities on the Earth's stratospheric ozone layer and the influence of changes in chemical composition of the radiative balance of the climate system. Specifically, since the last international scientific review (1989), there have been five major advances: (1) global ozone decreases; (2) polar ozone; (3) ozone and industrial halocarbons; (4) ozone and climate relations; and (5) ozone depletion potentials (ODP's) and global warming potentials (GWP's). These topics and others are discussed.

  13. The 1991 Antarctic ozone hole - TOMS observations

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin; Schoeberl, Mark; Newman, Paul; Stolarski, Richard

    1992-01-01

    The 1991 Antarctic springtime ozone decline, as measured by the Total Ozone Mapping Spectrometer (TOMS), was similar to those of earlier deep ozone hole years, 1987, 1989, and 1990. The minimum total ozone value was recorded on October 5, 1991 at 108 Dobson units near the South Pole. This was 8 DU lower than in any of the earlier years. Four of the last five years have exhibited an extensive, deep ozone hole. The area of the hole was about the same as in 1987, 1989, and 1990. The recovery of the low total ozone values occurred in mid-November as the polar vortex broke up.

  14. Tropospheric Ozone Over North America

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Thompson, A. M.; Cooper, O. R.; Merrill, J. T.; Tarasick, D. W.; Newchurch, M. J.

    2007-05-01

    Ozone in the troposphere plays a significant role as an absorber of infrared radiation (greenhouse gas), in the cleansing capacity of the atmosphere as a precursor of hydroxol radical formation, and a regulated air pollutant capable of deleterious health and ecosystem effects. Knowledge of the ozone budget in the troposphere over North America (NA) is required to properly understand the various mechanisms that contribute to the measured distribution and to develop and test models capable of simulating and predicting this key player in atmospheric chemical and physical processes. Recent field campaigns including the 2004 and 2006 INTEX Ozone Network Studies (IONS) http:croc.gsfc.nasa.gov/intexb/ions06.html that have included intensive ozone profile measurements from ozonesondes provide a unique data set for describing tropospheric ozone over a significant portion of the North American continent. These campaigns have focused on the spring and summer seasons when tropospheric ozone over NA is particularly influenced by long-range transport processes, significant photochemical ozone production resulting from both anthropogenic and natural (lightning) precursor emissions, and exchange with the stratosphere. This study uses ozone profiles measured over NA in the latitude band from approximately 12-60N, extending from the tropics to the high mid latitudes, to describe the seasonal behavior of tropospheric ozone over NA with an emphasis on the spring and summer. This includes the variability within seasons at a particular site as well as the contrasts between the seasons. Emphasis is placed on the variations among the sites including latitudinal and longitudinal gradients and how these differ through the seasons and with altitude in the troposphere. Regional differences are most pronounced during the summer season likely reflecting the influence of a wider variation in processes influencing the tropospheric ozone distribution including lightning NOX production in the upper

  15. Mars elevation distribution

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Howington-Kraus, Annie E.; Ablin, Karyn K.

    1991-01-01

    A Digital Terrain Model (DTM) of Mars was derived with both Mercator and Sinusoidal Equal-Area projections from the global topographic map of Mars (scale 1:15 million, contour interval 1 km). Elevations on the map are referred to Mars' topographic datum that is defined by the gravity field at a 6.1-millibar pressure surface with respect to the center of mass of Mars. The DTM has a resolution at the equator of 1/59.226 degrees (exactly 1 km) per pixel. By using the DTM, the volumetric distribution of Mars topography above and below the datum has previously been calculated. Three types of elevation distributions of Mars' topography were calculated from the same DTM: (1) the frequency distribution of elevations at the pixel resolution; (2) average elevations in increments of 6 degrees in both longitude and latitude; and (3) average elevations in 36 separate blocks, each covering 30 degrees of latitude and 60 degrees of longitude.

  16. Issues in Stratospheric Ozone Depletion.

    NASA Astrophysics Data System (ADS)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  17. Chronic cholecystitis

    MedlinePlus

    Cholecystitis - chronic ... Most of the time, chronic cholecystitis is caused by repeated attacks of acute (sudden) cholecystitis. Most of these attacks are caused by gallstones in the gallbladder. These ...

  18. Chronic Bronchitis

    MedlinePlus

    Bronchitis is an inflammation of the bronchial tubes, the airways that carry air to your lungs. It ... chest tightness. There are two main types of bronchitis: acute and chronic. Chronic bronchitis is one type ...

  19. Distribution of total ozone and stratospheric ozone in the tropics - Implications for the distribution of tropospheric ozone

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Larsen, Jack C.

    1987-01-01

    Climatologies of total columnar ozone and integrated stratospheric ozone amounts at low latitudes (15 deg N to 15 deg S), derived from satellite observations, are presented. A significant longitudinal variability in total ozone is present, with highest values generally located between 60 deg W and 60 deg E. The integrated stratospheric component of total ozone, on the other hand, does not exhibit a longitudinal preference for high values. Therefore it is hypothesized that the climatological longitudinal distribution of tot