Science.gov

Sample records for chronic ethylene glycol-induced

  1. Dosimetry considerations in the enhanced sensitivity of male Wistar rats to chronic ethylene glycol-induced nephrotoxicity

    SciTech Connect

    Corley, R.A. Wilson, D.M.; Hard, G.C.; Stebbins, K.E.; Bartels, M.J.; Soelberg, J.J.; Dryzga, M.D.; Gingell, R.; McMartin, K.E.; Snellings, W.M.

    2008-04-15

    Male Wistar rats have been shown to be the most sensitive sex, strain and species to ethylene glycol-induced nephrotoxicity in subchronic studies. A chronic toxicity and dosimetry study was therefore conducted in male Wistar rats administered ethylene glycol via the diet at 0, 50, 150, 300, or 400 mg/kg/day for up to twelve months. Subgroups of animals were included for metabolite analysis and renal clearance studies to provide a quantitative basis for extrapolating dose-response relationships from this sensitive animal model in human health risk assessments. Mortality occurred in 5 of 20 rats at 300 mg/kg/day (days 111-221) and 4 of 20 rats at 400 mg/kg/day (days 43-193), with remaining rats at this dose euthanized early (day 203) due to excessive weight loss. Increased water consumption and urine volume with decreased specific gravity occurred at 300 mg/kg/day presumably due to osmotic diuresis. Calculi (calcium oxalate crystals) occurred in the bladder or renal pelvis at {>=} 300 mg/kg/day. Rats dying early at {>=} 300 mg/kg/day had transitional cell hyperplasia with inflammation and hemorrhage of the bladder wall. Crystal nephropathy (basophilic foci, tubule or pelvic dilatation, birefringent crystals in the pelvic fornix, or transitional cell hyperplasia) affected most rats at 300 mg/kg/day, all at 400 mg/kg/day, but none at {<=} 150 mg/kg/day. No significant differences in kidney oxalate levels, the metabolite responsible for renal toxicity, were observed among control, 50 and 150 mg/kg/day groups. At 300 and 400 mg/kg/day, oxalate levels increased proportionally with the nephrotoxicity score supporting the oxalate crystal-induced nephrotoxicity mode of action. No treatment-related effects on the renal clearance of intravenously infused {sup 3}H-inulin, a marker for glomerular filtration, and {sup 14}C-oxalic acid were observed in rats surviving 12 months of exposure to ethylene glycol up to 300 mg/kg/day. In studies with naive male Wistar and F344 rats (a

  2. Effect of Unex on ethylene glycol-induced urolithiasis in rats

    PubMed Central

    Jarald, Elias Edwin; Kushwah, Pankaj; Edwin, Sheeja; Asghar, Suhail; Patni, Showkat Ahmad

    2011-01-01

    This study was aimed to evaluate the effectiveness of the Unex capsule on albino rats as a preventive agent against the development of kidney stones. The Unex capsule is a marketed product of Unijules Life Sciences, Nagpur, containing the extracts of Boerhaavia diffusa and Tribulus terrestris. Activity of Unex was studied using the ethylene glycol-induced urolithiasis model. Standard drug used was Cystone. Several parameters were used including urinary volume, urine pH, urine analysis, and serum analysis to assess the activity. The results indicated that the administration of Unex to rats with ethylene glycol-induced lithiasis significantly reduced and prevented the growth of urinary stones (P < 0.01). Also, the treatment of lithiasis-induced rats by Unex restored all the elevated biochemical parameters (creatinine, uric acid, and blood urea nitrogen), restored the urine pH to normal, and increased the urine volume significantly (P < 0.01) when compared to the model control drug. This study supports the usage of Unex in urolithiasis and the utility could further be confirmed in other animal models. PMID:21845008

  3. Antiurolithiatic and antioxidant activity of Hordeum vulgare seeds on ethylene glycol-induced urolithiasis in rats

    PubMed Central

    Shah, Jignesh G.; Patel, Bharat G.; Patel, Sandip B.; Patel, Ravindra K.

    2012-01-01

    Objective: The objective was to investigate the antiurolithiatic and antioxidant activity of ethanolic extract of Hordeum vulgare seeds (EHV) on ethylene glycol-induced urolithiasis in Wistar albino rats. Materials and Methods: Urolithiasis was produced in Wistar albino rats by adding 0.75% v/v ethylene glycol (EG) to drinking water for 28 days. The ethanolic extract of Hordeum vulgare seeds (EHV) was assessed for its curative and preventive action in urolithiasis. In preventive treatment, the EHV given from 1st day to 28th day, while in the curative regimen, the EHV was given from 15th day to 28th day. Various renal functional and injury markers such as urine volume, calcium, phosphate, uric acid, magnesium, urea, and oxalate were evaluated using urine, serum, and kidney homogenate. Antioxidant parameters such as lipid peroxidation, superoxide dismutase, and catalase were also determined. Results: The EHV treatment (both preventive and curative) increased the urine output significantly compared to the control. The EHV treatment significantly reduced the urinary excretion of the calcium, phosphate, uric acid, magnesium, urea, and oxalate and increased the excretion of citrate compared to EG control. The increased deposition of stone forming constituents in the kidneys of calculogenic rats were significantly lowered by curative and preventive treatment with EHV. It was also observed that the treatment with EHV produced significant decrease in lipid peroxidation, and increased levels of superoxide dismutase and catalase. Conclusion: These results suggest the usefulness of ethanolic extract of Hordeum vulgare seeds as an antiurolithiatic and antioxidant agent. PMID:23248392

  4. Alcea rosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats

    PubMed Central

    Ahmadi, Marzieh; Rad, Abolfazl Khajavi; Rajaei, Ziba; Hadjzadeh, Mousa-Al-Reza; Mohammadian, Nema; Tabasi, Nafiseh Sadat

    2012-01-01

    Introduction: Alcea rosea L. is used in Asian folk medicine as a remedy for a wide range of ailments. The aim of the present study was to investigate the effect of hydroalcoholic extract of Alcea rosea roots on ethylene glycol-induced kidney calculi in rats. Materials and Methods: Male Wistar rats were randomly divided into control, ethylene glycol (EG), curative and preventive groups. Control group received tap drinking water for 28 days. Ethylene glycol (EG), curative and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation; preventive and curative subjects also received the hydroalcoholic extract of Alcea rosea roots in drinking water at dose of 170 mg/kg, since day 0 or day 14, respectively. Urinary oxalate concentration was measured by spectrophotometer on days 0, 14 and 28. On day 28, the kidneys were removed and examined histopathologically under light microscopy for counting the calcium oxalate deposits in 50 microscopic fields. Results: In both preventive and curative protocols, treatment of rats with hydroalcoholic extract of Alcea rosea roots significantly reduced the number of kidney calcium oxalate deposits compared to ethylene glycol group. Administration of Alcea rosea extract also reduced the elevated urinary oxalate due to ethylene glycol. Conclusion: Alcea rosea showed a beneficial effect in preventing and eliminating calcium oxalate deposition in the rat kidney. This effect is possibly due to diuretic and anti-inflammatory effects or presence of mucilaginous polysaccharides in the plant. It may also be related to lowering of urinary concentration of stone-forming constituents. PMID:22701236

  5. Antiurolithiatic activity of ethanol leaf extract of Ipomoea eriocarpa against ethylene glycol-induced urolithiasis in male Wistar rats

    PubMed Central

    Das, Moonjit; Malipeddi, Himaja

    2016-01-01

    Objective: The objective of this study was to investigate the prophylactic and curative effect of the ethanol leaf extract of Ipomoea eriocarpa (Convolvulaceae) (IEE) in ethylene glycol-induced urolithiasis in rats. Materials and Methods: Thirty male Wistar rats were divided into five groups (n = 6). All the groups received stone-inducing treatment till 28th day, comprising 1% ethylene glycol (v/v) with 1% ammonium chloride (w/v) for 4 days, followed by 1% ethylene glycol alone in water, except Group I (Control). Group II received only stone-inducing treatment till 28th day. Group III (Standard) received cystone (500 mg/kg) from 15th day till 28th day. Group IV (Prophylactic) received IEE (200 mg/kg) from 1st day till 28th day and Group V (Curative) received IEE (200 mg/kg) from 15th day till 28th day. Various biochemical parameters such as phosphorus, calcium, magnesium, urea, and creatinine levels were evaluated using urine, serum, and kidney homogenate. The kidneys were also sectioned and examined histopathologically under light microscope to study the kidney architecture and calcium oxalate deposits. Results: The IEE treatment (prophylactic and curative) significantly (P < 0.001) restored the parameters in urine, serum, and kidney homogenate to near-normal level. The histopathological examinations revealed that calcium oxalate crystal deposits in the renal tubules and congestion and dilation of the parenchymal blood vessels were significantly reverted after IEE treatment. Conclusions: The leaf extract of I. eriocarpa reduces and inhibits the growth of urinary stones showing its effect as an antiurolithiatic agent. PMID:27298496

  6. Antiurolithiatic effect of lithocare against ethylene glycol-induced urolithiasis in Wistar rats

    PubMed Central

    Lulat, Sumaiya I.; Yadav, Yogesh Chand; Balaraman, R.; Maheshwari, Rajesh

    2016-01-01

    Aim: This study is aimed to investigate the protective effect of Lithocare (LC) (a polyherbal formulation) against ethylene glycol (EG) induced urolithiasis in Wistar rats. Materials and Methods: The protective effect of LC (400 and 800 mg/kg) was evaluated using EG-induced urolithiasis in rats. Results: Administration of EG in drinking water resulted in hyperoxaluria, hypocalcemia as well as an increased renal excretion of phosphate. Supplementation with LC significantly reduced the urinary calcium, oxalate, and phosphate excretion dose-dependently. There was a significant reduction in the levels of calcium, oxalate as well as a number of calcium oxalate crystals deposits in the kidney tissue of rats administered with LC in EG-treated rats. There was a significant reduction in creatinine, urea, uric acid, and blood urea nitrogen when LC was administered in EG-treated rats. Conclusions: From this study, it was concluded that the supplementation of LC protected EG-induced urolithiasis as it reduced the growth of urinary stones. The mechanism underlying this effect might be due to its antioxidant, diuretic, and reduction in stone-forming constituents. PMID:26997728

  7. Exploring Antiurolithic Effects of Gokshuradi Polyherbal Ayurvedic Formulation in Ethylene-Glycol-Induced Urolithic Rats

    PubMed Central

    Shirfule, Amol L.; Racharla, Venkatesh; Qadri, S. S. Y. H.; Khandare, Arjun L.

    2013-01-01

    Gokshuradi Yog (GY) is a polyherbal ayurvedic formulation used traditionally for several decades in India for the treatment of urolithiasis. The aim of the present study was to determine the underlying mechanism of GY action in the management of calcium oxalate urolithiasis. The effect of Gokshuradi polyherbal aqueous extracts (GPAEs) was studied on various biochemical parameters involved in calcium oxalate formation by employing in vitro and in vivo methods. GPAE exhibited significant antioxidant activity against 1, 1-diphenyl-2-picrylhydrazyl free radical and inhibited lipid peroxidation in the in vitro experiments. The rat model of urolithiasis induced by 0.75% ethylene glycol (EG) and 1% ammonium chloride (AC) in water caused polyuria, weight loss, impairment of renal function, and oxidative stress and decreased antioxidant enzyme activities in untreated control groups. However, GPAE- (25, 50, and 100 mg/kg) treated groups caused diuresis accompanied by a saluretic effect and revealed significant increase in antioxidant enzyme activities along with decreased oxalate synthesizing biochemical parameters at higher doses. This study revealed the antiurolithic effect of GPAE mediated possibly through inhibiting biochemical parameters involved in calcium oxalate formation, along with its diuretic and antioxidant effects, hence supporting its use in the treatment of calcium oxalate urolithiasis. PMID:23554833

  8. Evaluation of anti-urolithiatic effect of aqueous extract of Bryophyllum pinnatum (Lam.) leaves using ethylene glycol-induced renal calculi

    PubMed Central

    Shukla, Apexa Bhanuprasad; Mandavia, Divyesh Rasikbhai; Barvaliya, Manish Jasmatbhai; Baxi, Seema Natvarlal; Tripathi, Chandrabhanu Rajkishore

    2014-01-01

    Materials and Methods : Thirty-six Wistar male rats were randomly divided into six equal groups. Group A animals received distilled water for 28 days. Group B to group F animals received 1% v/v ethylene glycol in distilled water for 28 days and group B served as ethylene glycol control. Groups C and D (preventive groups) received aqueous extract of leaves of B. pinnatum 50 and 100 mg/kg intraperitoneally, respectively for 28 days. Groups E and F (treatment groups) received aqueous extract of leaves of B. pinnatum 50 and 100 mg/kg intraperitoneally, respectively from 15th to 28th day. On days 0 and 28, 24 hrs urine samples were collected for urinary volume and urinary oxalate measurement. On day 28, blood was collected for serum creatinine and blood urea level monitoring. All animals were sacrificed and kidneys were removed, weighed, and histopathologically evaluated for calcium oxalate crystals deposition. Results: Administration of aqueous extract of leaves of B. pinnatum reduced urine oxalate level ‎significantly, as compared with Group B (p<0.001). Serum creatinine and blood urea level were ‎improved significantly in all aqueous extract of leaves of B. pinnatum-treated groups. Relative ‎kidney weight and calcium oxalate depositions were found significantly reduced in animals ‎received ABP as compared with Group B (p<0.001). ‎ Conclusions: B. pinnatum is effective in prevention and treatment of ethylene glycol-induced urolithiasis. PMID:25050313

  9. Antilithiatic effect of Asparagus racemosus Willd on ethylene glycol-induced lithiasis in male albino Wistar rats.

    PubMed

    Christina, A J M; Ashok, K; Packialakshmi, M; Tobin, G C; Preethi, J; Murugesh, N

    2005-11-01

    The ethanolic extract of Asparagus racemosus Willd. was evaluated for its inhibitory potential on lithiasis (stone formation), induced by oral administration of 0.75% ethylene glycolated water to adult male albino Wistar rats for 28 days. The ionic chemistry of urine was altered by ethylene glycol, which elevated the urinary concentration of crucial ions viz. calcium, oxalate, and phosphate, thereby contributing to renal stone formation. The ethanolic extract, however, significantly (p < 0.05) reduced the elevated level of these ions in urine. Also, it elevated the urinary concentration of magnesium, which is considered as one of the inhibitors of crystallization. The high serum creatinine level observed in ethylene glycol-treated rats was also reduced, following treatment with the extract. The histopathological findings also showed signs of improvement after treatment with the extract. All these observations provided the basis for the conclusion that this plant extract inhibits stone formation induced by ethylene glycol treatment. PMID:16357948

  10. The efficacy of antioxidant therapy against oxidative stress and androgen rise in ethylene glycol induced nephrolithiasis in Wistar rats.

    PubMed

    Naghii, M R; Jafari, M; Mofid, M; Eskandari, E; Hedayati, M; Khalagie, K

    2015-07-01

    Administration of natural antioxidants has been used to protect against nephrolithiasis. Urolithiasis was induced by ethylene glycol (EG) in Wistar rats. For 4 weeks, group 1 (control) was fed with a standard commercial diet. Group 2 received the same diet with 0.75% of EG. Group 3 received EG plus the diet and water added with antioxidant nutrients and lime juice as the dietary source of citrate (EG + AX). Group 4 same as group 3 with no EG in water. For 8 weeks, group 5 was fed the standard diet with EG in water for the first 28 days, followed by no EG. Group 6 received the diet with EG for the first 28 days, followed by discontinuation of EG and addition of antioxidant nutrients. Group 7 were provided the diet with antioxidant nutrients for 8 weeks. Group 8 received the diet with antioxidant nutrients for 4 weeks, followed by antioxidant nutrients with EG for the next 4 weeks. Blood samples were collected and kidneys were removed. The size and the mean number of crystal deposits in EG-treated groups was significantly higher than the EG-treated groups, added with antioxidant nutrients and lime juice. After 4 weeks, the mean concentration of malondialdehyde in group 2 was higher than the group 3, and significantly lower in group 4; and in groups 7 after 8 weeks, as well. After 8 weeks, supplementation developed less mean number of deposits in group 6 as compared to group 5; and in group 8, the crystal deposits was substantially less than either group 2 or group 5 (EG-treated rats). Elevated concentration of androgens (as promoters of the formation of renal calculi) as a result of EG consumption decreased following antioxidant supplementations. Results showed a beneficial effect of antioxidant and provided superior renal protection on treating and preventing stone deposition in the rat kidney. PMID:25392345

  11. [Chronic ethylene glycol poisoning].

    PubMed

    Kaiser, W; Steinmauer, H G; Biesenbach, G; Janko, O; Zazgornik, J

    1993-04-30

    Over a six-week period a 60-year-old patient had several unexplained intoxication-like episodes. He finally had severe abdominal cramps with changes in the level of consciousness and oligoanuric renal failure (creatinine 4.7 mg/dl). The history, marked metabolic acidosis (pH 7.15, HCO3- 2.2 mmol/l, pCO2 6.6 mmHg) as well as raised anion residue (43 mmol/l) and the presence of oxalates in urine suggested poisoning by ethylene glycol contained in antifreeze liquid. Intensive haemodialysis adequately eliminated ethylene glycol and its toxic metabolites (glycol aldehyde, glycolic acid). Renal function returned within 10 days, although the concentrating power of the kidney remained impaired for several weeks because of interstitial nephritis. The intoxication had been caused by a defective heating-pipe system from which the antifreeze had leaked into the hot-water boiler (the patient had habitually prepared hot drinks by using water from the hot-water tap). Gas chromatography demonstrated an ethylene glycol concentration of 21 g per litre of water. PMID:8482240

  12. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.

    PubMed Central

    Lehtonen, J. Y.; Kinnunen, P. K.

    1995-01-01

    Exclusion of the strongly hygroscopic polymer, poly(ethylene glycol) (PEG), from the surface of phosphatidylcholine liposomes results in an osmotic imbalance between the hydration layer of the liposome surface and the bulk polymer solution, thus causing a partial dehydration of the phospholipid polar headgroups. PEG (average molecular weight of 6000 and in concentrations ranging from 5 to 20%, w/w) was added to the outside of large unilamellar liposomes (LUVs). This leads to, in addition to the dehydration of the outer monolayer, an osmotically driven water outflow and shrinkage of liposomes. Under these conditions phase separation of the fluorescent lipid 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) embedded in various phosphatidylcholine matrices was observed, evident as an increase in the excimer-to-monomer fluorescence intensity ratio (IE/IM). Enhanced segregation of the fluorescent lipid was seen upon increasing and equal concentrations of PEG both inside and outside of the LUVs, revealing that osmotic gradient across the membrane is not required, and phase separation results from the dehydration of the lipid. Importantly, phase separation of PPDPC could be induced by PEG also in binary mixtures with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), for which temperature-induced phase segregation of the fluorescent lipid below Tm was otherwise not achieved. In the different lipid matrices the segregation of PPDPC caused by PEG was abolished above characteristic temperatures T0 well above their respective main phase transition temperatures Tm. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DMPC, SOPC, and POPC, T0 was observed at approximately 50, 32, 24, and 20 degrees C, respectively. Notably, the observed phase separation of PPDPC cannot be accounted for the 1 degree C increase in Tm for DMPC or for the

  13. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model

    PubMed Central

    Baldev, N.; Sriram, R.; Prabu, P.C.; Gino, A. Kurian

    2015-01-01

    ABSTRACT Purpose: Sodium thiosulfate (STS) is clinically reported to be a promising drug in preventing nephrolithiasis. However, its mechanism of action remains unclear. In the present study, we investigated the role of mitochondrial KATP channel in the renal protection mediated by STS. Materials and Methods: Nephrolithiasis was induced in Wistar rats by administrating 0.4% ethylene glycol (EG) along with 1% ammonium chloride for one week in drinking water followed by only 0.75% EG for two weeks. Treatment groups received STS, mitochondrial KATP channel opener and closer exclusively or in combination with STS for two weeks. Results: Animals treated with STS showed normal renal tissue architecture, supported by near normal serum creatinine, urea and ALP activity. Diazoxide (mitochondria KATP channel opening) treatment to the animal also showed normal renal tissue histology and improved serum chemistry. However, an opposite result was shown by glibenclamide (mitochondria KATP channel closer) treated rats. STS administered along with diazoxide negated the renal protection rendered by diazoxide alone, while it imparted protection to the glibenclamide treated rats, formulating a mitochondria modulated STS action. Conclusion: The present study confirmed that STS render renal protection not only through chelation and antioxidant effect but also by modulating the mitochondrial KATP channel for preventing urolithiasis. PMID:26742969

  14. Regulation of urinary crystal inhibiting proteins and inflammatory genes by lemon peel extract and formulated citrus bioflavonoids on ethylene glycol induced urolithic rats.

    PubMed

    Sridharan, Badrinathan; Mehra, Yogita; Ganesh, Rajesh Nachiappa; Viswanathan, Pragasam

    2016-08-01

    The objective of this study is to check the regulation of crystal matrix proteins and inflammatory mediators by citrus bioflavonoids (CB) and Lemon peel (LP) extract in hyperoxaluric rats. The animals were divided into six groups with 6 animals each. Group 1: Control, Group 2: Urolithic (Ethylene glycol (EG)-0.75%); Group 3 & 5: Preventive study (EG + CB (20 mg/kg body weight) and LP (100 mg/kg body weight) extract administration from 0th-7th week) respectively; Group 4 & 6: Curative study (EG + CB and LP extract administration from 4th-7th week) respectively by oral administration. Urinary lithogenic factors (Calcium, oxalate, phosphate and citrate) were normalized in CB & LP supplemented rats, while serum parameters revealed the nephroprotective nature of the intervening agents compared to urolithic rats (p < 0.001). Immunoblotting studies showed significantly increased expression of THP, osteopontin and transferrin in kidneys of urolithic rats (p < 0.001), while preventive and curative study showed near normal expression of these proteins. Expression of NF-κB, TNF-α and IL-6 were raised significantly (p < 0.001), while a very minimal increase in MCP-1 expression was observed in urolithic rats compared to control. Hence, supplementation of CB and LP reduced the crystal promoting factors and provides protection from crystal induced renal damage. PMID:27241030

  15. Polyacrylic acid attenuates ethylene glycol induced hyperoxaluric damage and prevents crystal aggregation in vitro and in vivo.

    PubMed

    Sridharan, Badrinathan; Ganesh, Rajesh Nachiappa; Viswanathan, Pragasam

    2016-05-25

    The study explores calcium oxalate crystal inhibiting characteristic of polyacrylic acid (pAA), an anionic polymer in in vitro and in vivo. Animals were divided into 5 groups where group 1 served as control, group 2 were made hyperoxaluric by supplementing with Ethylene glycol (EG) 0.75% (v/v) for 30 days. Group 3, 4 & 5 were also given with EG and treated simultaneously with 2.5, 5 & 10 mg of pAA/kg of body weight, respectively. Urine, serum and tissue analyses along with histological studies were performed at the end of the 30 days study. In vitro crystallization was significantly inhibited by pAA and further it was supported by particle size analyses, XRD and FT-IR studies. Toxicological analyses showed that pAA was safe to use in animals at concentrations below 100 mg/kg BW. In vivo anti-urolithic study showed significant improvement in urinary lithogenic factors (calcium, oxalate, phosphate, citrate & magnesium) and renal function parameters (creatinine, urea and protein). Tissue analyses on anti-oxidant enzyme activity and lipid peroxides showed maintenance of tissue antioxidant status in the pAA supplemented rats and histological studies demonstrated the nephroprotection offered by pAA and were concurrent to the biochemical analyses. Supplementation of pAA not only reduces the crystal aggregation but also regulates the expression and localization of crystal inhibiting proteins and gene expression of inflammatory cytokines in experimental animals. In summary, pAA is a potent anti-urolithic agent in rats and we can propose that 10 mg/kg body weight is the effective dosage of pAA and this concentration can be used for further studies. PMID:27018375

  16. Ethylene update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gaseous plant hormone ethylene is required for many aspects of plant growth, development and responses to the environment. Potato tubers produce low amounts of ethylene and are highly sensitive to ethylene in the atmosphere. Several responses of potato tubers to endogenous and exogenous ethylene...

  17. Polyethylene glycol-induced heteroassociation of malate dehydrogenase and citrate synthase

    SciTech Connect

    Merz, J.M.; Webster, T.A.; Appleman, J.R.; Manley, E.R.; Yu, H.A.; Datta, A.; Ackerson, B.J.; Spivey, H.O.

    1987-10-01

    Studies by dynamic and total intensity light scattering, ultracentrifugation, electron microscopy, and chemical crosslinking on solutions of the pig heart mitochondrial enzymes, malate dehydrogenase and citrate synthase (separately and together) demonstrate that polyethylene glycol induces very large homoassociations of each enzyme, and still larger heteroenzyme complexes between these two enzymes in the solution phase. Specificity of this heteroassociation is indicated by the facts that heteroassociations with bovine serum albumin were not observed for either the mitochondrial dehydrogenase or the synthase or between cytosolic malate dehydrogenase and citrate synthase. The weight fraction of the enzymes in the mitochondrial dehydrogenase-synthase associated particles in the solution phase was less than 0.03% with the dilute conditions used in the dynamic light scattering measurements. Neither palmitoyl-CoA nor other solution conditions tested significantly increased this weight fraction of associated enzymes in the solution phase. Because of the extremely low solubility of the associated species, however, the majority of the enzymes can be precipitated as the heteroenzyme complex. This precipitation is a classical first-order transition in spite of the large particle sizes and broad size distribution. Ionic effects on the solubility of the heteroenzyme complex appear to be of general electrostatic nature. Polyethylene glycol was found to be more potent in precipitating this complex than dextrans, polyvinylpyrrolidones, ficoll, and beta-lactoglobulin.

  18. Differential Effects of Elevated Ozone on Two Hybrid Aspen Genotypes Predisposed to Chronic Ozone Fumigation. Role of Ethylene and Salicylic Acid1

    PubMed Central

    Vahala, Jorma; Keinänen, Markku; Schützendübel, Andres; Polle, Andrea; Kangasjärvi, Jaakko

    2003-01-01

    The role of ethylene (ET) signaling in the responses of two hybrid aspen (Populus tremula L. × P. tremuloides Michx.) clones to chronic ozone (O3; 75 nL L−1) was investigated. The hormonal responses differed between the clones; the O3-sensitive clone 51 had higher ET evolution than the tolerant clone 200 during the exposure, whereas the free salicylic acid concentration in clone 200 was higher than in clone 51. The cellular redox status, measured as glutathione redox balance, did not differ between the clones suggesting that the O3 lesions were not a result of deficient antioxidative capacity. The buildup of salicylic acid during chronic O3 exposure might have prevented the up-regulation of ET biosynthesis in clone 200. Blocking of ET perception with 1-methylcyclopropene protected both clones from the decrease in net photosynthesis during chronic exposure to O3. After a pretreatment with low O3 for 9 d, an acute 1.5-fold O3 elevation caused necrosis in the O3-sensitive clone 51, which increased substantially when ET perception was blocked. The results suggest that in hybrid aspen, ET signaling had a dual role depending on the severity of the stress. ET accelerated leaf senescence under low O3, but under acute O3 elevation, ET signaling seemed to be required for protection from necrotic cell death. PMID:12746525

  19. Subchronic toxicity of ethylene glycol in Wistar and F-344 rats is related to metabolism and clearance of metabolites.

    SciTech Connect

    Cruzan, G; Corley, Rick A.; Hard, G; Mertens, J W.; McMartin, K. E.; Snellings, W; Gingell, Ralph; Deyo, J A.

    2004-10-01

    nephrotoxicity progressed over the 16 weeks, the clearance of ethylene glycol and its metabolites decreased, exacerbating the toxicity. Benchmark dose analysis indicated a BMDL05 for kidney toxicity in Wistar rats of 71.5 mg/kg/day; nearly four-fold lower than in F-344 rats (285 mg/kg/day). This study confirms that the Wistar rat is more sensitive to ethylene glycol-induced renal toxicity than the F344 rat and indicates that metabolism plays a role in the strain differences.

  20. Ethylene glycol

    Integrated Risk Information System (IRIS)

    Ethylene glycol ; CASRN 107 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  1. Ethylene diamine

    Integrated Risk Information System (IRIS)

    Ethylene diamine ; CASRN 107 - 15 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  2. Ethylene Gas in Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is a small volatile organic molecule that is produced by plants and many microbes. Potato tubers sense ethylene at concentrations of less than 1 ppm and respond to ethylene in ways that may be beneficial or detrimental for potato tuber storage. High concentrations of ethylene suppress sprou...

  3. Ethylene process design optimization

    SciTech Connect

    2001-09-01

    Integration of Advanced Technologies will Update Ethylene Plants. Nearly 93 million tons of ethylene are produced annually in chemical plants worldwide, using an energy intensive process that consumes 2.5 quadrillion Btu per year.

  4. Derivation of a chemical-specific adjustment factor (CSAF) for use in the assessment of risk from chronic exposure to ethylene glycol: application of International Programme for Chemical Safety guidelines.

    PubMed

    Palmer, Robert B; Brent, Jeffrey

    2005-09-01

    The International Programme for Chemical Safety (IPCS) has developed a set of guidelines ("the Guidance") for the establishment of Chemical-Specific Adjustment Factors (CSAFs) for in the assessment of toxicity risk to the human population as a result of chemical exposure. The development of case studies is encouraged in the Guidance document and comments on them have been encouraged by the IPCS. One provision in the Guidance is for the determination of CSAFs based on human data. We present a case study of the use of the Guidance for the determination of the CSAF for ethylene glycol (EG) primarily utilizing clinically obtained data. The most relevant endpoint for this analysis was deemed to be acute renal injury. These data were applied based on an assessment of the known pharmaco/toxico-kinetic properties of EG. Because of the lack of both bioaccumulation of EG and reports of chronic or progressive renal injury from EG, it was concluded that the most appropriate model of chronic exposure is one of repeated acute episodes. The most relevant exposure metric was determined to be plasma glycolate concentration. Based on a prospective human study of EG-poisoned patients, the NOAEL for glycolate was found to be 10.1 mM. This value is similar to that obtained from animal data. The application of the Guidelines to this data resulted in a CSAF of 10.24, corresponding to a daily EG dose of 43.7 mg/kg/day. In 2000, Health Canada (HC) produced an animal data-based analysis of the maximum tolerated dose of EG. The results of our analysis are compared with those of HC, and the strengths and weaknesses of these two data types related to EG are discussed. PMID:15990139

  5. Derivation of a chemical-specific adjustment factor (CSAF) for use in the assessment of risk from chronic exposure to ethylene glycol: Application of international programme for chemical safety guidelines

    SciTech Connect

    Palmer, Robert B. . E-mail: RPalmer@Toxicologyassoc.com; Brent, Jeffrey

    2005-09-01

    The International Programme for Chemical Safety (IPCS) has developed a set of guidelines ('the Guidance') for the establishment of Chemical-Specific Adjustment Factors (CSAFs) for in the assessment of toxicity risk to the human population as a result of chemical exposure. The development of case studies is encouraged in the Guidance document and comments on them have been encouraged by the IPCS. One provision in the Guidance is for the determination of CSAFs based on human data. We present a case study of the use of the Guidance for the determination of the CSAF for ethylene glycol (EG) primarily utilizing clinically obtained data. The most relevant endpoint for this analysis was deemed to be acute renal injury. These data were applied based on an assessment of the known pharmaco/toxico-kinetic properties of EG. Because of the lack of both bioaccumulation of EG and reports of chronic or progressive renal injury from EG, it was concluded that the most appropriate model of chronic exposure is one of repeated acute episodes. The most relevant exposure metric was determined to be plasma glycolate concentration. Based on a prospective human study of EG-poisoned patients, the NOAEL for glycolate was found to be 10.1 mM. This value is similar to that obtained from animal data. The application of the Guidelines to this data resulted in a CSAF of 10.24, corresponding to a daily EG dose of 43.7 mg/kg/day. In 2000, Health Canada (HC) produced an animal data-based analysis of the maximum tolerated dose of EG. The results of our analysis are compared with those of HC, and the strengths and weaknesses of these two data types related to EG are discussed.

  6. AUTOMOTIVE EMISSIONS OF ETHYLENE DIBROMIDE

    EPA Science Inventory

    Ethylene dibromide, a suspected carcinogen, and ethylene dichloride are commonly used in leaded gasoline as scavengers. Ethylene dibromide emission rates were determined from seven automobiles which had a wide range of control devices, ranging from totally uncontrolled to evapora...

  7. Ethylene insensitive plants

    DOEpatents

    Ecker, Joseph R.; Nehring, Ramlah; McGrath, Robert B.

    2007-05-22

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  8. ACR process for ethylene

    SciTech Connect

    Baldwin, R.L.; Kamm, G.R.

    1983-01-01

    Describes how the advanced cracking reactor process, which is ready for a logical commercial application, offers total liquids feedstock flexibility from light naphthenes through vacuum gas oils in the same production unit. Several processes are presently being developed which are aimed at maintaining olefin selectivity when cracking the heaviest feeds. Addresses the problems posed by such heavy feedstocks. The following trends favor the ACR process in the 1980s: natural gas price decontrol; limited natural gas reserves; few new domestic LPG-based ethylene plants will be built; an economic recovery will create the need for more ethylene capacity; modest increases in ''real'' crude oil prices; plentiful supplies of vacuum gas oil at prices making it an attractive ethylene feedstock; and increasing supplies of light naphtha at prices making it an attractive ethylene feedstock as well. Predicts that these factors will swing the preferred feedstocks for ethylene manufacture back to crude oil distillates before the end of the decade. Argues that in this environment, the ACR process can deliver the lowest cost ethylene in the industry. ACR has full-range feedstock flexibility, high selectivity to ethylene, and less sensitivity to feedstock costs and co-product credits.

  9. Ethylene production from methionine

    PubMed Central

    Lieberman, M.; Kunishi, A. T.; Mapson, L. W.; Wardale, D. A.

    1965-01-01

    1. A new reaction is described in which ethylene is formed from the Cu+-catalysed breakdown of methionine in phosphate buffer at 30° in air. Some of the other products of the reaction are methionine sulphone, methionine sulphoxide, homocysteic acid, homocystine, acrolein, dimethyl disulphide, methanethiol, ethyl methyl sulphide, methane and ethane. These are considered to be produced in different reaction pathways. 2. Hydrogen peroxide is an intermediate in this reaction and can support ethylene production in the model system in anaerobic atmospheres. Cuprous copper is the active form that catalyses the formation of ethylene from an oxidized intermediate. The initial reaction is probably a Strecker degradation, but the aldehyde product is further degraded to ethylene and other products. 3. Methional (CH3·S·CH2·CH2·CHO) is the most effective producer of ethylene in the model system and appears to be an intermediate in the reaction. 4. The evidence, from both tracer studies and from other precursors of ethylene in the reaction, indicates that ethylene is derived from the −CH2·CH2− group of methionine. PMID:16749150

  10. Ethylene glycol poisoning

    MedlinePlus

    ... attempt or as a substitute for drinking alcohol (ethanol). This article is for information only. Do NOT ... attempt or as a substitute for drinking alcohol (ethanol). Ethylene glycol is found in many household products, ...

  11. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  12. Ethylene-Vapor Optrodes

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1993-01-01

    Porous optical fibers include sensing regions filled with reagents. Optical-fiber chemical sensors (optrodes) developed to measure concentrations of ethylene in air in enclosed artificial plant-growth environments. Such measurements needed because ethylene acts as plant-growth hormone affecting growth at concentrations less than or equal to 20 parts per billion. Optrodes small, but exhibit sensitivities comparable to those of larger instruments. Operated safely in potentially explosive atmospheres and neither cause, nor susceptible to, electrical interference at suboptical frequencies.

  13. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  14. Ethylene and Fruit Ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments designed to down-regulate specific tomato ethylene receptor isoforms using antisense suppression have been reported for LeETR1, NR and LeETR4. Down-regulation of LeETR1 expression in transgenic plants did not alter fruit ripening but resulted in plants with shorter internodes and reduce...

  15. Ethylene thiourea (ETU)

    Integrated Risk Information System (IRIS)

    Ethylene thiourea ( ETU ) ; CASRN 96 - 45 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  16. ETHYLENE AND POSTHARVEST COMMODITIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper is a review of the plant hormone ethylene, a simple two carbon molecule. This hormone is biologically active at low concentrations (part per billion to part per million range). Since it is a gas, it is easily transported long distances via diffusion from site of synthesis within the pla...

  17. Ethylene in mutualistic symbioses

    PubMed Central

    Khatabi, Behnam; Schäfer, Patrick

    2012-01-01

    Ethylene (ET) is a gaseous phytohormone that participates in various plant physiological processes and essentially contributes to plant immunity. ET conducts its functions by regulating the expression of ET-responsive genes or in crosstalk with other hormones. Several recent studies have shown the significance of ET in the establishment and development of plant-microbe interactions. Therefore, it is not surprising that pathogens and mutualistic symbionts target ET synthesis or signaling to colonize plants. This review introduces the significance of ET metabolism in plant-microbe interactions, with an emphasis on its role in mutualistic symbioses. PMID:23072986

  18. Interstellar Antifreeze: Ethylene Glycol

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-05-01

    Interstellar ethylene glycol (HOCH2CH2OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  19. Interstellar Antifreeze: Ethylene Glycol

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-01-01

    Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  20. [Secondary hyperoxaluria and nephrocalcinosis due to ethylene glycol poisoning].

    PubMed

    Monet, C; Richard, E; Missonnier, S; Rebouissoux, L; Llanas, B; Harambat, J

    2013-08-01

    We report the case of a 3-year-old boy admitted to the pediatric emergency department for ethylene glycol poisoning. During hospitalization, he presented dysuria associated with crystalluria. Blood tests showed metabolic acidosis with an elevated anion gap. A renal ultrasound performed a few weeks later revealed bilateral medullary hyperechogenicity. Urine microscopic analysis showed the presence of weddellite crystals. Secondary nephrocalcinosis due to ethylene glycol intoxication was diagnosed. Hyperhydration and crystallization inhibition by magnesium citrate were initiated. Despite this treatment, persistent weddellite crystals and nephrocalcinosis were seen more than 2years after the intoxication. Ethylene glycol is metabolized in the liver by successive oxidations leading to its final metabolite, oxalic acid. Therefore, metabolic acidosis with an elevated anion gap is usually found following ethylene glycol intoxication. Calcium oxalate crystal deposition may occur in several organs, including the kidneys. The precipitation of calcium oxalate in renal tubules can lead to nephrocalcinosis and acute kidney injury. The long-term renal prognosis is related to chronic tubulointerstitial injury caused by nephrocalcinosis. Treatment of ethylene glycol intoxication is based on specific inhibitors of alcohol dehydrogenase and hemodialysis in the most severe forms, and should be started promptly. PMID:23827374

  1. Participation of ethylene in gravitropism

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    In shoots of many plants, of which tomato (Lycopersicon esculentum Mill.) is an example, ethylene production is substantially increased during gravitropism. As a first step toward elucidating the role of ethylene in gravitropism, detailed time courses of ethylene production in isolated hypocotyl segments and whole plants were measured for gravistimulated and upright tomato seedlings. In the first experiment, seedlings were set upright or laid horizontal and then, at 15 min intervals, sets of hypocotyls were excised and sealed into gas tight vials. A steady long term rise in ethylene production begins after 15 min gravistimulation. It is possible that this increase is a consequence of the accumulation of indoleacetic acid (IAA) in the lower tissue of the hypocotyle. In a second kind of experiment, whole seedlings were enclosed in sealed chambers and air samples were withdrawn at 5 min intervals. Stimulated seedlings produced more ethylene than controls during the first 5 min interval, but not appreciably more during the second. This suggests the possibility that the ethylene production induced during the first 5 min occurs immediately rather than after a lag, and thus much too soon to be controlled by redistribution of IAA.

  2. BIOSYNTHESIS OF STRESS ETHYLENE IN SOYBEAN SEEDLINGS: SIMILARITIES TO ENDOGENOUS ETHYLENE BIOSYNTHESIS

    EPA Science Inventory

    The similarity of stress ethylene biosynthesis in whole plants to endogenous ethylene biosynthesis was investigated using two inhibitors of ethylene biosynthesis, amino-ethoxyvinylglycine (AVG) and cobalt chloride (Co2+); and the intermediates, methionine, S-adenosylmethionine (S...

  3. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kane, James A. (Inventor)

    2001-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  4. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kanc, James A. (Inventor)

    2000-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  5. Ethylene-producing bacteria that ripen fruit.

    PubMed

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples. PMID:25393892

  6. Portable Ethylene Oxide Sterilization Chamber

    PubMed Central

    Songer, J. R.; Mathis, R. G.

    1969-01-01

    A portable ethylene oxide sterilization chamber was designed, constructed, and tested for use in the sterilization of embolectomy catheters. The unit can accommodate catheters up to 40 inches (101.6 cm) in length and can be operated for less than 4 cents per cycle. A constant concentration of 500 mg of ethylene oxide per liter of space and holding periods of 4 and 6 hr at 43 and 22 C, respectively, were adequate when tested with B. subtilis spores. The estimated cost of construction was $165.00. If temperature control is unnecessary, the cost is approximately $80.00. Images PMID:4977644

  7. Nonphysiological binding of ethylene by plants.

    PubMed

    Abeles, F B

    1984-03-01

    Ethylene binding to seedling tissue of Vicia faba, Phaseolus vulgaris, Glycine max, and Triticum aestivum was demonstrated by determining transit time required for ethylene to move through a glass tube filled with seedling tissue. Transit time for ethylene was greater than that for methane indicating that these tissues had an affinity for ethylene. However, the following observations suggest that the binding was not physiological. Inhibitors of ethylene action such as Ag(+) ions and CO(2) did not decrease binding. Mushrooms which have no known sites of ethylene action also demonstrated ethylene binding. The binding of acetylene, propylene, ethylene, propane, and ethane more closely followed their solubility in water than any known physiological activity. PMID:16663455

  8. Nonphysiological Binding of Ethylene by Plants

    PubMed Central

    Abeles, Fred B.

    1984-01-01

    Ethylene binding to seedling tissue of Vicia faba, Phaseolus vulgaris, Glycine max, and Triticum aestivum was demonstrated by determining transit time required for ethylene to move through a glass tube filled with seedling tissue. Transit time for ethylene was greater than that for methane indicating that these tissues had an affinity for ethylene. However, the following observations suggest that the binding was not physiological. Inhibitors of ethylene action such as Ag+ ions and CO2 did not decrease binding. Mushrooms which have no known sites of ethylene action also demonstrated ethylene binding. The binding of acetylene, propylene, ethylene, propane, and ethane more closely followed their solubility in water than any known physiological activity. PMID:16663455

  9. Colorometric detection of ethylene glycol vapor

    NASA Technical Reports Server (NTRS)

    Helm, C.; Mosier, B.; Verostko, C. E.

    1970-01-01

    Very low concentrations of ethylene glycol in air or other gases are detected by passing a sample through a glass tube with three partitioned compartments containing reagents which successively convert the ethylene glycol vapor into a colored compound.

  10. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  11. Ethylene oxide sterilisation--is it safe?

    PubMed Central

    Gillespie, E H; Jackson, J M; Owen, G R

    1979-01-01

    Tests show that ethylene oxide penetrates and can sterilise long narrow tubes in a hospital ethylene oxide steriliser. Residual ethylene oxide levels in plastic tubing after sterilisation have been estimated. Although initially the levels were very high, storage for four days at room temperature reduced them to a safe level. If adequate controls of the sterilising process and storage are carried out, sterilisation by ethylene oxide is considered to be safe for new plastics and clean equipment. Images Figure PMID:512032

  12. 49 CFR 173.323 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Ethylene oxide. 173.323 Section 173.323... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.323 Ethylene oxide. (a) For packaging ethylene oxide in non-bulk packagings, silver mercury or any of its alloys or copper may not be used in...

  13. Antioxidants inhibition of high plasma androgenic markers in the pathogenesis of ethylene glycol (EG)-induced nephrolithiasis in Wistar rats.

    PubMed

    Naghii, Mohammad Reza; Mofid, Mahmood; Hedayati, Mehdi; Khalagi, Kazem

    2014-04-01

    The association between serum gonadal steroids and urolithiasis in males received only limited attention. Calcium oxalate urolithiasis is induced by administration of ethylene glycol in drinking water. It appears that the administration of natural antioxidants has been used to protect against nephrolithiasis in human and experimental animals. The purpose is to study the potential role of antioxidants as inhibitors of high plasma androgenic markers or hyperandrogenicity in the pathogenesis of ethylene glycol-induced nephrolithiasis in Wistar rats. Male Wistar rats were studied in 4-week period. Group 1 (control) was fed a standard commercial diet. Group 2 received the same diet with 0.5 % of ethylene glycol. Group 3 received EG plus the diet and water added with antioxidant nutrients and lime juice as the dietary source of citrate. Group 4 and Group 5 were treated similar to Group 2 and Group 3 with 0.75 % of ethylene glycol. For antioxidant supplementation, the standard diet enriched with 4,000.0 μg vitamin E and 1,500.0 IU vitamin A for each rat per day added to the diet once a week, and provided daily with 5.0 mg vitamin C, 400.0 μg vitamin B6, 20.0 μg selenium, 12.0 mg zinc, and 2.0 mg boron for each rat per day in their drinking water. After treatment period, collection of blood was performed and kidneys were removed and used for histopathological examination. The results based on various assays, measuring size of crystal deposition, and histological examinations showed that high concentration of androgens acts as promoter for the formation of renal calculi due to ethylene glycol consumption and the inhibitory role of antioxidant complex in the formation of renal calculi disease. Data revealed that the size and the mean number of crystal deposits determined in EG 0.75 % treated groups (G4) were significantly higher than the EG-treated groups, added with antioxidant nutrients and lime juice (G5). The mean concentration of androgens in Group 4 increased after

  14. Ethylene and senescence in petals of tradescantia.

    PubMed

    Suttle, J C; Kende, H

    1978-08-01

    Flowers of Tradescantia (clone O2) which are ephemeral, produce ethylene during senescence with the maximum rates occurring during the initial period of fading. Senescing isolated petals produce ethylene in a similar manner, exhibit a loss of membrane semipermeability, and exogenous ethylene hastens the onset as well as the subsequent rate of this loss. The aminoethoxy analog of 0.1 millimolar rhizobitoxine completely inhibits ethylene production by isolated petals but only partially the loss of membrane semipermeability. Isolated petals acquire a sensitivity to ethylene as they mature, becoming fully sensitive on the day of anthesis. PMID:16660498

  15. Ethylene effects in pea stem tissue

    SciTech Connect

    Steen, D.A.; Chadwick, A.V.

    1981-01-01

    The marked effects of ethylene on pea stem growth have been investigated. Low temperatures and colchicine, both known microtubule depolymerization agents, reverse the effects of ethylene in straight growth tests. Low temperature (6 C) also profoundly reduces the effects of gas in terms of swelling, hook curvature, and horizontal mutation. Deuterium oxide, an agent capable of rigidifying microtubular structure, mimics the effects of ethylene. Electron microscopy shows that microtubule orientation is strikingly altered by ethylene. These findings indicate that some of the ethylene responses may be due to a stabilizing effect on microtubules in plant cells.

  16. Acute hepatotoxicity of ethylene and halogenated ethylenes after PCB pretreatment.

    PubMed

    Conolly, R B; Jaeger, R J

    1977-12-01

    Previous studies from our laboratory have shown that ethylene, vinyl fluoride monomer (VFM), vinyl chloride monomer (VCM), and vinyl bromide monomer (VBM) are all acutely hepatotoxic in rats pretreated with polychlorinated biphenyl (PCB). The time course of hepatic injury development after exposure and several parameters, environmental and chemical, affecting this toxicity were evaluated in the work reported here. Liver injury, as measured by serum alanine-alpha-ketoglutarate transaminase (SAKT) or sorbitol dehydrogenase (SDH), develops progressively over a 24-hr period following a 4-hr inhalation exposure of PCB-pretreated rats to ethylene or VCM. Environmental temperature during exposure to VCM does not affect hepatotoxicity or mortality below 30.3 degrees C. At 33.8 degrees C, however, mortality and SAKT are dramatically increased. Overnight fasting, which depletes hepatic glutathione (GSH) of PCB-pretreated rats before exposure to ethylene or VCM, significantly increases the hepatotoxicity of these compounds as measured by SDH. The combined effects of fasting and of trichloropropane epoxide (TCPE), an inhibitor of epoxide hydrase (EH), were also examined. TCPE treatment of fasted PCB-pretreated rats immediately before exposure was synergistic in increasing the acute toxicity of ethylene and VCM. TCPE increased mortality in fed or fasted rats exposed to VFM, but there was no effect of fasting alone. Both fasting and TCPE increased the sensitivity of PCB-pretreated rats to VBM, but there was not a clearly synergistic effect of fasting plus TCPE. These data suggest that the acute toxicity of these compounds is mediated through epoxide intermediates. PMID:417916

  17. Ethylene glycol poisoning in sheep.

    PubMed

    2015-05-16

    Oxalate toxicity in sheep as a consequence of exposure to ethylene glycol. Chlamydophila abortus infection in a dairy cow. Neosporosis diagnosed in a newborn lamb with deformities. Yersiniosis affecting a 1000-strong goat herd. Porcine reproductive and respiratory syndrome causing blue ears in 14-week-old pigs. Avian tuberculosis diagnosed in an adult Mandarin duck. These are among matters discussed in the Animal and Plant Health Agency's (APHA's) disease surveillance report for January and February 2015. PMID:25977491

  18. Chronic pancreatitis

    MedlinePlus

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... abuse over many years. Repeated episodes of acute pancreatitis can lead to chronic pancreatitis. Genetics may be ...

  19. Ethylene oxide and acetaldehyde in hot cores

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, A.; Vasyunin, A.; Herbst, E.; Viti, S.; Ward, M. D.; Price, S. D.; Brown, W. A.

    2014-04-01

    Context. Ethylene oxide (c-C2H4O), and its isomer acetaldehyde (CH3CHO), are important complex organic molecules because of their potential role in the formation of amino acids. The discovery of ethylene oxide in hot cores suggests the presence of ring-shaped molecules with more than 3 carbon atoms such as furan (c-C4H4O), to which ribose, the sugar found in DNA, is closely related. Aims: Despite the fact that acetaldehyde is ubiquitous in the interstellar medium, ethylene oxide has not yet been detected in cold sources. We aim to understand the chemistry of the formation and loss of ethylene oxide in hot and cold interstellar objects (i) by including in a revised gas-grain network some recent experimental results on grain surfaces and (ii) by comparison with the chemical behaviour of its isomer, acetaldehyde. Methods: We introduce a complete chemical network for ethylene oxide using a revised gas-grain chemical model. We test the code for the case of a hot core. The model allows us to predict the gaseous and solid ethylene oxide abundances during a cooling-down phase prior to star formation and during the subsequent warm-up phase. We can therefore predict at what temperatures ethylene oxide forms on grain surfaces and at what temperature it starts to desorb into the gas phase. Results: The model reproduces the observed gaseous abundances of ethylene oxide and acetaldehyde towards high-mass star-forming regions. In addition, our results show that ethylene oxide may be present in outer and cooler regions of hot cores where its isomer has already been detected. Our new results are compared with previous results, which focused on the formation of ethylene oxide only. Conclusions: Despite their different chemical structures, the chemistry of ethylene oxide is coupled to that of acetaldehyde, suggesting that acetaldehyde may be used as a tracer for ethylene oxide towards cold cores.

  20. Cooling in the tropics: ethylene glycol overdose.

    PubMed

    Holyoak, Adam L; Fraser, Todd A; Gelperowicz, Pascal

    2011-03-01

    Ethylene glycol is the active ingredient used in radiator antifreeze. Severe ingestions of ethylene glycol are uncommon in Australia, but if untreated, can result in multiorgan dysfunction, particularly renal failure and cerebral oedema. We report on a patient who consumed a large quantity of ethylene glycol. He was treated with enteral ethanol and went on to make a full recovery, despite an initial moribund state. We briefly review the pathophysiology and current treatment strategies for ethylene glycol intoxication, and discuss issues surrounding enteral versus parenteral ethanol administration. PMID:21355826

  1. Ethylene, Plant Senescence and Abscission 1

    PubMed Central

    Burg, Stanley P.

    1968-01-01

    Evidence supporting the hypothesis that ethylene is involved in the control of senescence and abscission is reviewed. The data indicate that ethylene causes abscission in vivo by inhibiting auxin synthesis and transport or enhancing auxin destruction, thus lowering the diffusible auxin level. Studies with isolated leaves and explants suggest that the gas also may influence abscission by accelerating senescence and through an action on plant cell walls. Freshly prepared explants produce ethylene at a rate which must be high enough to maximally affect the tissue and this may explain why these explants (stage I) cannot respond to applied ethylene. PMID:16657016

  2. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. PMID:25590685

  3. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase

    SciTech Connect

    Carlin, DA; Bertolani, SJ; Siegel, JB

    2015-01-01

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  4. Poly(ethylene oxide) functionalization

    DOEpatents

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  5. CADMIUM-INDUCED ETHYLENE PRODUCTION IN BEAN PLANTS

    EPA Science Inventory

    Studies were conducted to (1) compare stress ethylene production from roots and shoots (2) determine the association between stress ethylene production and tissue Cd levels; and (3) investigate the time course of stress ethylene production following the rhizosphere application of...

  6. Health Assessment Document for Ethylene Oxide

    EPA Science Inventory

    The largest single use of ethylene oxide is as an intermediate in the synthesis of ethylene glycol. However, small amounts of this epoxide are used as a sterilant or pesticide in commodities, pharmaceuticals, medical devices, tobacco, and other items, representing a considerable ...

  7. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.440 Ethylene...

  8. Ethylene glycol, hazardous substance in the household.

    PubMed

    Patocka, Jirí; Hon, Zdenek

    2010-01-01

    Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment. PMID:20608228

  9. Ethylene in Storage: The Phantom Menace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is a small, gaseous, hydrocarbon that exists in the atmosphere at low concentrations. Plants, including potato tubers, produce ethylene as part of natural developmental processes and in response to some stresses, such as low temperature stress. Several lines of research have demonstrated th...

  10. Methods and compositions to modulate ethylene sensitivity

    DOEpatents

    Stepanova, Anna N.; Ecker, Joseph R.

    2007-01-30

    The field of the invention relates to plants and plant genes, including both plant mutants and transgenic plants containing a gene that confers an ethylene insensitive phenotype. Also encompassed by the invention are methods of using the disclosed plant gene to confer an ethylene insensitive phenotype.

  11. 29 CFR 1910.1047 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Ethylene oxide. 1910.1047 Section 1910.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1047 Ethylene oxide. (a) Scope and...

  12. Synthesis of p-xylene from ethylene.

    PubMed

    Lyons, Thomas W; Guironnet, Damien; Findlater, Michael; Brookhart, Maurice

    2012-09-26

    As oil supplies dwindle, there is a growing need to develop new routes to chemical intermediates that utilize alternative feedstocks. We report here a synthesis of para-xylene, one of the highest volume chemicals derived from petroleum, using only ethylene as a feedstock. Ethylene is an attractive alternative feedstock, as it can be derived from renewable biomass resources or harnessed from large domestic shale gas deposits. The synthesis relies on the conversion of hexene (from trimerization of ethylene) to 2,4-hexadiene followed by a Diels-Alder reaction with ethylene to form 3,6-dimethylcyclohexene. This monoene is readily dehydrogenated to para-xylene uncontaminated by the ortho and meta isomers. We report here a selective synthesis of para-xylene, uncontaminated by the ortho or meta isomers, using ethylene as the sole feedstock. PMID:22934909

  13. The ethylene response pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The simple gas ethylene influences a diverse array of plant growth and developmental processes including germination, senescence, cell elongation, and fruit ripening. This review focuses on recent molecular genetic studies, principally in Arabidopsis, in which components of the ethylene response pathway have been identified. The isolation and characterization of two of these genes has revealed that ethylene sensing involves a protein kinase cascade. One of these genes encodes a protein with similarity to the ubiquitous Raf family of Ser/Thr protein kinases. A second gene shows similarity to the prokaryotic two-component histidine kinases and most likely encodes an ethylene receptor. Additional elements involved in ethylene signaling have only been identified genetically. The characterization of these genes and mutants will be discussed.

  14. Ethylene synthesis and sensitivity in crop plants

    NASA Technical Reports Server (NTRS)

    Klassen, Stephen P.; Bugbee, Bruce

    2004-01-01

    Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.

  15. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  16. Enhancement of RNA Synthesis, Protein Synthesis, and Abscission by Ethylene

    PubMed Central

    Abeles, F. B.; Holm, R. E.

    1966-01-01

    Ethylene stimulated RNA and protein synthesis in bean (Phaseolus vulgaris L. var. Red Kidney) abscission zone explants prior to abscission. The effect of ethylene on RNA synthesis and abscission was blocked by actinomycin D. Carbon dioxide, which inhibits the effect of ethylene on abscission, also inhibited the influence of ethylene on protein synthesis. An aging period appears to be essential before bean explants respond to ethylene. Stimulation of protein synthesis by ethylene occurred only in receptive or senescent explants. Treatment of juvenile explants with ethylene, which has no effect on abscission also has no effect on protein synthesis. Evidence in favor of a hormonal role for ethylene during abscission is discussed. PMID:16656405

  17. Effect of Ethylene Pathway Mutations upon Expression of the Ethylene Receptor ETR1 from Arabidopsis1

    PubMed Central

    Zhao, Xue-Chu; Qu, Xiang; Mathews, Dennis E.; Schaller, G. Eric

    2002-01-01

    The ethylene receptor family of Arabidopsis consists of five members, one of these being ETR1. The effect of ethylene pathway mutations upon expression of ETR1 was examined. For this purpose, ETR1 levels were quantified in mutant backgrounds containing receptor loss-of-function mutations, ethylene-insensitive mutations, and constitutive ethylene response mutations. Ethylene-insensitive mutations of ETR1 resulted in a posttranscriptional increase in levels of the mutant receptor. Treatment of seedlings with silver, which leads to ethylene insensitivity, also resulted in an increase in levels of ETR1. Loss-of-function mutations of ETR1 resulted in both transcriptional and posttranscriptional changes in levels of the receptor. Most other ethylene pathway mutations, including a newly isolated T-DNA insertion mutation in the gene encoding the ethylene receptor ERS1, had relatively minor effects upon the expression of ETR1. Our results indicate that mutations in ETR1 can affect expression at the posttranscriptional level, and suggest that these posttranscriptional changes may contribute to the phenotypes observed in the mutants. Our results also refine the model on how mutations in ethylene receptors are able to confer dominant ethylene insensitivity upon plants. PMID:12481081

  18. A study of ethylene glycol exposure and kidney function of aircraft de-icing workers.

    PubMed

    Gérin, M; Patrice, S; Bégin, D; Goldberg, M S; Vyskocil, A; Adib, G; Drolet, D; Viau, C

    1997-01-01

    Ethylene glycol levels were measured in 154 breathing zone air samples and in 117 urine samples of 33 aviation workers exposed to de-icing fluid (basket operators, de-icing truck drivers, leads and coordinators) studied during 42 worker-days over a winter period of 2 months at a Montreal airport. Ethylene glycol as vapour did not exceed 22 mg/m3 (mean duration of samples 50 min). Mist was quantified at higher levels in 3 samples concerning 1 coordinator and 2 basket operators (76-190 mg/m3, 45-118 min). In 16 cases workers' post-shift or next-morning urine contained quantities of ethylene glycol exceeding 5 mmol/mol creatinine (up to 129 mmol/mol creatinine), with most of these instances occurring in basket operators and coordinators, some of whom did not wear paper masks and/or were accidentally sprayed with de-icing fluid. Diethylene glycol was also found in a few air and urinary samples at levels around one tenth those of ethylene glycol. Urinary concentrations of albumin, beta-N-acetyl-glucosaminidase, beta-2-microglobulin and retinol-binding protein were measured and compared over various periods, according to subgroups based on exposure level and according to the frequency of extreme values. These analyses did not demonstrate acute or chronic kidney damage that could be attributed to working in the presence of ethylene glycol. In conclusion, this study does not suggest important health effects of exposure to de-icing fluid in this group of workers. Potential for overexposure exists, however, in certain work situations, and recommendations on preventive measures are given. In addition, these results suggest that other routes of absorption than inhalation, such as the percutaneous route, may be important and that urinary ethylene glycol may be a useful indicator of exposure to ethylene glycol. PMID:9138000

  19. Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis.

    PubMed

    Wagstaff, Carol; Chanasut, Usawadee; Harren, Frans J M; Laarhoven, Luc-Jan; Thomas, Brian; Rogers, Hilary J; Stead, Anthony D

    2005-03-01

    Senescence of floral organs is broadly divided into two groups: those that exhibit sensitivity to exogenous ethylene and those that do not. Endogenous ethylene production from the former group is via a well-characterized biochemical pathway and is either due to developmental or pollination-induced senescence. Many flowers from the order Liliales are characterized as ethylene-insensitive since they do not appear to produce endogenous ethylene, or respond to exogenous ethylene treatments, however, the majority of cases studied are wilting flowers, rather than those where life is terminated by perianth abscission. The role of ethylene in the senescence and abscission of Alstroemeria peruviana cv. Rebecca and cv. Samora tepals was previously unclear, with silver treatments recommended for delaying leaf rather than flower senescence. In the present paper the effects of exogenous ethylene, 2-chloroethylphosphonic acid (CEPA) and silver thiosulphate (STS) treatments on tepal senescence and abscission have been investigated. Results indicate that sensitivity to ethylene develops several days after flower opening such that STS only has a limited ability to delay tepal abscission. Detachment force measurements indicate that cell separation events are initiated after anthesis. Endogenous ethylene production was measured using laser photoacoustics and showed that Alstroemeria senesce independently of ethylene production, but that an extremely small amount of ethylene (0.15 nl flower(-1) h(-1)) is produced immediately prior to abscission. Investigation of the expression of genes involved in ethylene biosysnthesis by semi-quantitative RT-PCR indicated that transcriptional regulation is likely to be at the level of ACC oxidase, and that the timing of ACC oxidase gene expression is coincident with development of sensitivity to exogenous ethylene. PMID:15689338

  20. Ethylene-forming enzyme and bioethylene production

    PubMed Central

    2014-01-01

    Worldwide, ethylene is the most produced organic compound. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and a process has been developed for its conversion into liquid transportation fuels. Currently, commercial ethylene production involves steam cracking of fossil fuels, and is the highest CO2-emitting process in the chemical industry. Therefore, there is great interest in developing technology for ethylene production from renewable resources including CO2 and biomass. Ethylene is produced naturally by plants and some microbes that live with plants. One of the metabolic pathways used by microbes is via an ethylene-forming enzyme (EFE), which uses α-ketoglutarate and arginine as substrates. EFE is a promising biotechnology target because the expression of a single gene is sufficient for ethylene production in the absence of toxic intermediates. Here we present the first comprehensive review and analysis of EFE, including its discovery, sequence diversity, reaction mechanism, predicted involvement in diverse metabolic modes, heterologous expression, and requirements for harvesting of bioethylene. A number of knowledge gaps and factors that limit ethylene productivity are identified, as well as strategies that could guide future research directions. PMID:24589138

  1. Current methods for detecting ethylene in plants

    PubMed Central

    Cristescu, Simona M.; Mandon, Julien; Arslanov, Denis; De Pessemier, Jérôme; Hermans, Christian; Harren, Frans J. M.

    2013-01-01

    Background In view of ethylene's critical developmental and physiological roles the gaseous hormone remains an active research topic for plant biologists. Progress has been made to understand the ethylene biosynthesis pathway and the mechanisms of perception and action. Still numerous questions need to be answered and findings to be validated. Monitoring gas production will very often complete the picture of any ethylene research topic. Therefore the search for suitable ethylene measuring methods for various plant samples either in the field, greenhouses, laboratories or storage facilities is strongly motivated. Scope This review presents an update of the current methods for ethylene monitoring in plants. It focuses on the three most-used methods – gas chromatography detection, electrochemical sensing and optical detection – and compares them in terms of sensitivity, selectivity, time response and price. Guidelines are provided for proper selection and application of the described sensor methodologies and some specific applications are illustrated of laser-based detector for monitoring ethylene given off by Arabidopsis thaliana upon various nutritional treatments. Conclusions Each method has its advantages and limitations. The choice for the suitable ethylene sensor needs careful consideration and is driven by the requirements for a specific application. PMID:23243188

  2. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  3. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  4. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  5. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor.

    PubMed

    Lacey, Randy F; Binder, Brad M

    2016-08-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. PMID:27246094

  6. 49 CFR 173.323 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and gaskets must be constructed of materials which are compatible with ethylene oxide and do not lower... the lading. (h) Neoprene, natural rubber and asbestos gaskets are prohibited. All packing and...

  7. 49 CFR 173.323 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and gaskets must be constructed of materials which are compatible with ethylene oxide and do not lower... the lading. (h) Neoprene, natural rubber and asbestos gaskets are prohibited. All packing and...

  8. Thermomechanically integrated distillation of ethylene from ethane

    SciTech Connect

    Greene, D.G.; Haddad, H.; Manley, D.B.

    1994-12-31

    The separation of ethylene from ethane by distillation is normally the final step in the production of ethylene. The critical temperature of ethylene is about 50 F, therefore moderately low temperatures and moderately high pressures are typically used to provide optimum economic conditions. The optimum design can require thick walled and heavy pressure vessels which may be constructed of expensive alloy steels depending on the specific operating conditions. The required purity of ethylene usually exceeds 99.9%, and the economic level of recovery is approximately 99%. In addition, the relative volatility of ethylene to ethane is moderately small ranging from about 1.13 for high pressure mixtures rich in ethylene to 2.34 for low pressure mixtures rich in ethane. The relatively high purity and recovery and relatively low relative volatility dictate a large distillation column with more than 100 trays and a large diameter for world scale production levels of over a billion pounds per year of ethylene. The installed capital cost for a unit of this type and size can exceed twenty million dollars, and utility costs can exceed one million dollars per year. Consequently, there is a strong economic incentive to reduce costs through improved process designs for the distillation of ethylene from ethane, and the process is well studied in the literature. Thermomechanically integrated distillation provides an improved design which can reduce both capital and operating costs as compared to the best conventional designs. In this paper, the conventional designs for both vapor and liquid feeds are reviewed, the underlying thermodynamics characterizing the process is discussed, alternative thermomechanically integrated designs are presented, and utility and purchased equipment costs are compared.

  9. Use of membranes for ethylene recovery in polymerization processes

    SciTech Connect

    Dembicki, D.R.; Coan, F.L.; Glassford, C.L.; Overman, D.C.

    1986-11-18

    This patent describes an improved process for manufacture of ethylene polymers wherein the improvement comprises: (a) contacting at least part of the gas mixture remaining after polymerization containing unconverted ethylene monomer with a normally solid, semi-permeable, asymmetric, water-dry, cellulose triacetate hollow fiber membrane at conditions which promote selective permeation of ethylene through the membrane; and (b) recycling the ethylene-enriched permeate as feed for the ethylene polymerization.

  10. Non-conventional sources for ethylene

    SciTech Connect

    Leonard, J.P.; Weiss, L.H.

    1981-12-01

    Two processes for conversion of methanol to ethylene are reviewed as to economic attractiveness at about 1990. The processes are homologation of methane to ethanol with dehydration to ethylene and direct catalytic cracking of methanol to ethylene using Mobil zeolite catalysts. For the economic projections, synthesis gas is assumed to be available from a large leverage-financed, synthetis gas unit based on a pressurized, entrained bed, coal-gasifier, built on the US Gulf Coast in 1990 at a cost of $0.19/m/sup 3/, and methane is valued at $650/metric ton in 1990 based on continuous operation of natural gas-based methanol plants in the US. The economics of ethylene production via conventional steam cracking of naphtha/gas oil are compared with those of the new technology. The methanol homologation/ethanol dehydration route to ethylene is more attractive than catalytic cracking at 40% carbon selectivity to ethylene. At higher selectivities, the methanol cracking scheme becomes economically competitive. However, with an assumption of a price of $650/metric ton for methanol in 1990, neiter methanol-based route is competitive with conventional steam cracking on the Gulf Coast in 1990. A methanol price of $500/metric ton would make the methanol-based oriduction routes attractive. 23 references.

  11. Ethylene Production and Ethylene Effects on Respiration Rate of Postharvest Sugarbeet Roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene elevates respiration, is induced by wounding, and contributes to wound-induced respiration in most postharvest plant products. Ethylene production and its effects on respiration rate, however, have not been determined in sugarbeet (Beta vulgaris L.) root, even though any elevation in respi...

  12. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.

    PubMed

    Fiebig, Antje; Dodd, Ian C

    2016-01-01

    Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. PMID:25950248

  13. Health- and vegetative-based effect screening values for ethylene.

    PubMed

    Erraguntla, Neeraja K; Grant, Roberta L

    2015-11-01

    Ethylene (ET) is ubiquitous in the environment and is produced both naturally and due to anthropogenic sources. Interestingly, the majority of ambient ET contribution is from natural sources and anthropogenic sources contribute only a minor portion. While microbes and plants naturally produce a large amount of ET, mammals are reported to produce only a small amount of ET endogenously. Anthropogenic sources of ET include the combustion of gas, fuel, coal and biomass. ET is also widely used as an intermediate to make other chemicals and products and is also used for controlled ripening of fruits and vegetables. Although, a review of human and laboratory animal studies indicate ET to be relatively non-toxic, there is concern about the potential toxicity of ET because ET is metabolically converted to ethylene oxide (EtO). EtO has been classified to be carcinogenic to human by the inhalation route by the International Agency for Research on Cancer (IARC) cancer. ET, however, has been classified as a Group 3 chemical which indicates it is not classified as a human carcinogen by IARC. Several studies have reported ET to cause adverse effects to plant species (vegetation effects) at concentrations that are not adverse to humans. Therefore, the Texas Commission of Environmental Quality (TCEQ) conducted detailed health and welfare (odor and vegetation) based assessments of ET to develop both health and vegetative based toxicity factors in 2008 in accordance with TCEQ guidelines. The health assessment based on well-conducted animal toxicity studies resulted in identification of higher points of departures and subsequently higher effect screening levels (ESLs) that were more than a magnitude higher than the threshold adverse effect level for vegetative effects for ET. Further, based on a weight-of-evidence evaluation of potential mutagenic and carcinogenic mode-of-actions for ET it appears the metabolic conversion of ET to EtO is of insufficient magnitude to cause concern of

  14. Novel membrane technology for green ethylene production.

    SciTech Connect

    Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L.

    2008-01-01

    Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side

  15. Portable Apparatus for Electrochemical Sensing of Ethylene

    NASA Technical Reports Server (NTRS)

    Manoukian, Mourad; Tempelman, Linda A.; Forchione, John; Krebs, W. Michael; Schmitt, Edwin W.

    2007-01-01

    A small, lightweight, portable apparatus based on an electrochemical sensing principle has been developed for monitoring low concentrations of ethylene in air. Ethylene has long been known to be produced by plants and to stimulate the growth and other aspects of the development of plants (including, notably, ripening of fruits and vegetables), even at concentrations as low as tens of parts per billion (ppb). The effects are magnified in plant-growth and -storage chambers wherein ethylene can accumulate. There is increasing recognition in agriculture and related industries that it is desirable to monitor and control ethylene concentrations in order to optimize the growth, storage, and ripening of plant products. Hence, there are numerous potential uses for the present apparatus in conjunction with equipment for controlling ethylene concentrations. The ethylene sensor is of a thick-film type with a design optimized for a low detection limit. The sensor includes a noble metal sensing electrode on a chip and a hydrated solid-electrolyte membrane that is held in contact with the chip. Also located on the sensor chip are a counter electrode and a reference electrode. The sensing electrode is held at a fixed potential versus the reference electrode. Detection takes place at active-triple-point areas where the sensing electrode, electrolyte, and sample gas meet. These areas are formed by cutting openings in the electrolyte membrane. The electrode current generated from electrochemical oxidation of ethylene at the active triple points is proportional to the concentration of ethylene. An additional film of the solid-electrolyte membrane material is deposited on the sensing electrode to increase the effective triple-point areas and thereby enhance the detection signal. The sensor chip is placed in a holder that is part of a polycarbonate housing. When fully assembled, the housing holds the solid-electrolyte membrane in contact with the chip (see figure). The housing includes

  16. Ethylene detection in fruit supply chains

    PubMed Central

    Janssen, S.; Schmitt, K.; Blanke, M.; Bauersfeld, M. L.; Wöllenstein, J.; Lang, W.

    2014-01-01

    Ethylene is a gaseous ripening phytohormone of fruits and plants. Presently, ethylene is primarily measured with stationary equipment in laboratories. Applying in situ measurement at the point of natural ethylene generation has been hampered by the lack of portable units designed to detect ethylene at necessary resolutions of a few parts per billion. Moreover, high humidity inside controlled atmosphere stores or containers complicates the realization of gas sensing systems that are sufficiently sensitive, reliable, robust and cost efficient. In particular, three measurement principles have shown promising potential for fruit supply chains and were used to develop independent mobile devices: non-dispersive infrared spectroscopy, miniaturized gas chromatography and electrochemical measurement. In this paper, the measurement systems for ethylene are compared with regard to the needs in fruit logistics; i.e. sensitivity, selectivity, long-term stability, facilitation of automated measurement and suitability for mobile application. Resolutions of 20–10 ppb can be achieved in mobile applications with state-of-the-art equipment, operating with the three methods described in the following. The prices of these systems are in a range below €10 000. PMID:24797138

  17. Ethylene detection in fruit supply chains.

    PubMed

    Janssen, S; Schmitt, K; Blanke, M; Bauersfeld, M L; Wöllenstein, J; Lang, W

    2014-06-13

    Ethylene is a gaseous ripening phytohormone of fruits and plants. Presently, ethylene is primarily measured with stationary equipment in laboratories. Applying in situ measurement at the point of natural ethylene generation has been hampered by the lack of portable units designed to detect ethylene at necessary resolutions of a few parts per billion. Moreover, high humidity inside controlled atmosphere stores or containers complicates the realization of gas sensing systems that are sufficiently sensitive, reliable, robust and cost efficient. In particular, three measurement principles have shown promising potential for fruit supply chains and were used to develop independent mobile devices: non-dispersive infrared spectroscopy, miniaturized gas chromatography and electrochemical measurement. In this paper, the measurement systems for ethylene are compared with regard to the needs in fruit logistics; i.e. sensitivity, selectivity, long-term stability, facilitation of automated measurement and suitability for mobile application. Resolutions of 20-10 ppb can be achieved in mobile applications with state-of-the-art equipment, operating with the three methods described in the following. The prices of these systems are in a range below €10 000. PMID:24797138

  18. Ethylene and Metal Stress: Small Molecule, Big Impact

    PubMed Central

    Keunen, Els; Schellingen, Kerim; Vangronsveld, Jaco; Cuypers, Ann

    2016-01-01

    The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress. PMID:26870052

  19. Ethylene and Metal Stress: Small Molecule, Big Impact.

    PubMed

    Keunen, Els; Schellingen, Kerim; Vangronsveld, Jaco; Cuypers, Ann

    2016-01-01

    The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress. PMID:26870052

  20. Ozone-induced ethylene release from leaf surfaces

    SciTech Connect

    Rodecap, K.D.; Tingey, D.T.

    1986-01-01

    Ozone-induced stress-ethylene emissions from the adaxial and abaxial leaf surfaces of four plant species (Glycine max (L) Merr. cv. Dare, Lycopersicon esculentum Mill cv. Roma VF, Eucalyptus globulus Labill. and Hedera helix L.) were studied to determine if the stress ethylene diffused through the stomata or cuticle. In plants not exposed to ozone, basal ethylene was detected above both the adaxial and abaxial leaf surfaces of all the plant species examined, indicating that some ethylene can diffuse across the leaf cuticle. Oxone-induced stress ethylene production in all species examined. These data indicate that ozone-induced stress ethylene primarily diffuses from the leaf via the stomata.

  1. Regulated ethylene insensitivity through the inducible expression of the Arabidopsis etr1-1 mutant ethylene receptor in tomato.

    PubMed

    Gallie, Daniel R

    2010-04-01

    Ethylene serves as an important hormone controlling several aspects of plant growth and development, including fruit ripening and leaf and petal senescence. Ethylene is perceived following its binding to membrane-localized receptors, resulting in their inactivation and the induction of ethylene responses. Five distinct types of receptors are expressed in Arabidopsis (Arabidopsis thaliana), and mutant receptors have been described that repress ethylene signaling in a dominant negative manner. One such mutant, ethylene resistant1-1 (etr1-1), results in a strong ethylene-insensitive phenotype in Arabidopsis. In this study, regulated expression of the Arabidopsis etr1-1 in tomato (Solanum lycopersicum) was achieved using an inducible promoter. In the absence of the inducer, transgenic seedlings remained sensitive to ethylene, but in its presence, a state of ethylene insensitivity was induced, resulting in the elongation of the hypocotyl and root in dark-grown seedlings in the presence of ethylene, a reduction or absence of an apical hook, and repression of ethylene-inducible E4 expression. The level of ethylene sensitivity could be controlled by the amount of inducer used, demonstrating a linear relationship between the degree of insensitivity and etr1-1 expression. Induction of etr1-1 expression also repressed the epinastic response to ethylene as well as delayed fruit ripening. Restoration of ethylene sensitivity was achieved following the cessation of the induction. These results demonstrate the ability to control ethylene responses temporally and in amount through the control of mutant receptor expression. PMID:20181754

  2. Plant defense genes are regulated by ethylene

    SciTech Connect

    Ecker, J.R.; Davis, R.W.

    1987-08-01

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.

  3. Ethylene Modulates Sphingolipid Synthesis in Arabidopsis

    PubMed Central

    Wu, Jian-xin; Wu, Jia-li; Yin, Jian; Zheng, Ping; Yao, Nan

    2015-01-01

    Sphingolipids have essential structural and bioactive functions in membranes and in signaling. However, how plants regulate sphingolipid biosynthesis in the response to stress remains unclear. Here, we reveal that the plant hormone ethylene can modulate sphingolipid synthesis. The fungal toxin Fumonisin B1 (FB1) inhibits the activity of ceramide synthases, perturbing sphingolipid homeostasis, and thus inducing cell death. We used FB1 to test the role of ethylene signaling in sphingolipid synthesis in Arabidopsis thaliana. The etr1-1 and ein2 mutants, which have disrupted ethylene signaling, exhibited hypersensitivity to FB1; by contrast, the eto1-1 and ctr1-1 mutants, which have enhanced ethylene signaling, exhibited increased tolerance to FB1. Gene expression analysis showed that during FB1 treatment, transcripts of genes involved in de novo sphingolipid biosynthesis were down-regulated in ctr1-1 mutants but up-regulated in ein2 mutants. Strikingly, under normal conditions, ctr1-1 mutants contained less ceramides and hydroxyceramides, compared with wild type. After FB1 treatment, ctr1-1 and ein2 mutants showed a significant improvement in sphingolipid contents, except the ctr1-1 mutants showed little change in hydroxyceramide levels. Treatment of wild-type seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid down-regulated genes involved in the sphingolipid de novo biosynthesis pathway, thus reducing sphingolipid contents and partially rescuing FB1-induced cell death. Taking these results together, we propose that ethylene modulates sphingolipids by regulating the expression of genes related to the de novo biosynthesis of sphingolipids. PMID:26734030

  4. Visible absorption spectrum of liquid ethylene

    PubMed Central

    Nelson, Edward T.; Patel, C. Kumar N.

    1981-01-01

    The visible absorption spectrum of liquid ethylene at ≈ 108 K from 5500 Å to 7200 Å was measured by using a pulsed tunable dye laser, immersed-transducer, gated-detection opto-acoustic spectroscopy technique. The absorption features show the strongest band with an absorption coefficient of ≈2 × 10-2 cm-1 and the weakest band with an absorption coefficient of ≈1 × 10-4 cm-1. Proposed assignments of the observed absorption peaks involve combinations of overtones of local and normal modes of vibration of ethylene. PMID:16592978

  5. Tungsten imido catalysts for selective ethylene dimerisation.

    PubMed

    Wright, Christopher M R; Turner, Zoë R; Buffet, Jean-Charles; O'Hare, Dermot

    2016-02-14

    A tungsten imido complex W(NDipp)Me3Cl (Dipp = 2,6-(i)Pr-C6H3) is active for the selective dimerisation of ethylene to yield 1-butene under mild conditions. Immobilisation and activation of W(NDipp)Cl4(THF) on layered double hydroxides, silica or polymethylaluminoxane yields active solid state catalysts for the selective dimerisation of ethylene. The polymethylaluminoxane-based catalyst displays a turnover frequency (4.0 molC2H4 molW(-1) h(-1)) almost 7 times that of the homogeneous catalyst. PMID:26779579

  6. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section 880.6860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas...

  7. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section 880.6860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas...

  8. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section 880.6860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas...

  9. Atmospheric ethylene concentrations in research and commercial potato storages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene has detrimental effects on product quality for many vegetables. Because of this, atmospheric ethylene content is monitored and managed in many vegetable storage facilities. Comparable monitoring is not done in potato storages and, as a consequence, the concentration of ethylene present in t...

  10. Timing of Ethylene Modification Is Critical For Regeneration In Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : The plant hormone ethylene is important for higher rates of callus formation and green plant regeneration. Ethylene can have positive or negative effects on these traits depending on the genotype, type of explant and stage of application. Therefore, the effects of both ethylene precur...

  11. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American Society for... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon...

  12. Ethylene Perception by the ERS1 Protein in Arabidopsis1

    PubMed Central

    Hall, Anne E.; Findell, Jennifer L.; Schaller, G. Eric; Sisler, Edward C.; Bleecker, Anthony B.

    2000-01-01

    Ethylene perception in Arabidopsis is controlled by a family of five genes, including ETR1, ERS1 (ethylene response sensor 1), ERS2, ETR2, and EIN4. ERS1, the most highly conserved gene with ETR1, encodes a protein with 67% identity to ETR1. To clarify the role of ERS1 in ethylene sensing, we biochemically characterized the ERS1 protein by heterologous expression in yeast. ERS1, like ETR1, forms a membrane-associated, disulfide-linked dimer. In addition, yeast expressing the ERS1 protein contains ethylene-binding sites, indicating ERS1 is also an ethylene-binding protein. This finding supports previous genetic evidence that isoforms of ETR1 also function in plants as ethylene receptors. Further, we used the ethylene antagonist 1-methylcyclopropene (1-MCP) to characterize the ethylene-binding sites of ERS1 and ETR1. We found 1-MCP to be both a potent inhibitor of the ethylene-induced seedling triple response, as well as ethylene binding by yeast expressing ETR1 and ERS1. Yeast expressing ETR1 and ERS1 showed nearly identical sensitivity to 1-MCP, suggesting that the ethylene-binding sites of ETR1 and ERS1 have similar affinities for ethylene. PMID:10938361

  13. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  14. Expression of Ethylene Biosynthesis Genes in Barley Tissue Culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone ethylene influences green plant regeneration rates from barley callus cultures. Our studies have focused on the effects of short treatments of an ethylene inhibitor or an ethylene precursor on green plant regeneration from two barley cultivars and the expression patterns of two eth...

  15. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  16. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  17. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  18. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents...

  19. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene dichloride. 173.230 Section 173.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  20. Ethylene Formation in Sugar Beet Leaves

    PubMed Central

    Elstner, Erich F.; Konze, Jörg R.; Selman, Bruce R.; Stoffer, Claus

    1976-01-01

    Ethylene production by sugar beet (Beta vulgaris L.) leaf discs is inhibited by white (or red, >610 nm) light or by wounding. In contrast, in wounded leaf discs, ethylene production is stimulated by light. The effect of light on wounded leaf discs has been studied by using an in vitro system which mimics the loss of compartmentation in the wounded leaf. Chlorophyll-free extracts from sugar beet leaves stimulate the production of the superoxide free radical ion (as a prerequisite for ethylene formation) by illuminated chloroplast lamellae. The substance from the crude leaf extracts which is active in stimulating the production of the superoxide free radical ion has been identified as 3-hydroxytyramine (dopamine). Exogenous dopamine between 5 μm and 100 μm stimulates ethylene formation by illuminated chloroplast lamellae from methional. It also stimulates the production of the superoxide free radical ion, the formation of which apparently involves both a lamellar phenoloxidase and photosynthetic electron transport as a 1-electron donor, and is cyanide-sensitive. PMID:16659639

  1. Heat Bonding of Irradiated Ethylene Vinyl Acetate

    NASA Technical Reports Server (NTRS)

    Slack, D. H.

    1986-01-01

    Reliable method now available for joining parts of this difficult-tobond material. Heating fixture encircles ethylene vinyl acetate multiplesocket part, providing heat to it and to tubes inserted in it. Fixtures specially designed to match parts to be bonded. Tube-and-socket bonds made with this technique subjected to tensile tests. Bond strengths of 50 percent that of base material obtained consistently.

  2. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents...

  3. Ethylene glycol monobutyl ether (EGBE) (2-Butoxyethanol)

    Integrated Risk Information System (IRIS)

    Ethylene glycol monobutyl ether ( EGBE ) ( 2 - Butoxyethanol ) ; CASRN 111 - 76 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I (

  4. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Toxic and Hazardous...

  5. Ethylene and plant responses to phosphate deficiency

    PubMed Central

    Song, Li; Liu, Dong

    2015-01-01

    Phosphorus is an essential macronutrient for plant growth and development. Phosphate (Pi), the major form of phosphorus that plants take up through roots, however, is limited in most soils. To cope with Pi deficiency, plants activate an array of adaptive responses to reprioritize internal Pi use and enhance external Pi acquisition. These responses are modulated by sophisticated regulatory networks through both local and systemic signaling, but the signaling mechanisms are poorly understood. Early studies suggested that the phytohormone ethylene plays a key role in Pi deficiency-induced remodeling of root system architecture. Recently, ethylene was also shown to be involved in the regulation of other signature responses of plants to Pi deficiency. In this article, we review how researchers have used pharmacological and genetic approaches to dissect the roles of ethylene in regulating Pi deficiency-induced developmental and physiological changes. The interactions between ethylene and other signaling molecules, such as sucrose, auxin, and microRNA399, in the control of plant Pi responses are also examined. Finally, we provide a perspective for the future research in this field. PMID:26483813

  6. Preparation of bank bone using defatting, freeze-drying and sterilisation with ethylene oxide gas. Part 1. Experimental evaluation of its efficacy and safety.

    PubMed

    Kakiuchi, M; Ono, K; Nishimura, A; Shiokawa, H

    1996-01-01

    We devised a method of sterilising bone allografts which consists of defatting in chloroform and methanol, freeze-drying and sterilisation with ethylene oxide gas. The purpose of defatting and freeze-drying was to facilitate subsequent sterilisation by eliminating the barrier to diffusion of the gas into bone, to lower residual levels of ethylene oxide and its toxic by-products, to eliminate alloantigens and to make storage possible at room temperature. The efficacy and safety of the method were evaluated by testing the sterilisation of infected bone from 6 patients with active chronic osteomyelitis, the penetration of ethylene oxide into human femoral heads treated by this or by freeze-drying or freeze-thawing, and the desorption of ethylene oxide and its toxic by-products from pieces of bone treated by these methods. All the samples of infected bone tested negative for bacteria after treatment. The gas penetrated into the central area of the femoral heads in a few hours. Residual levels of ethylene oxide and its toxic by-products were much lower in the treated bone than in freeze-dried or freeze-thawed bone, and decreased quickly in flowing air. Prior defatting and freeze-drying facilitated penetration of ethylene oxide into bone during sterilisation and the desorption of ethylene oxide and its toxic by-products after sterilisation. Preparation under clean, but not sterile, conditions and storage at room temperature make bone banking more practical and efficient. PMID:8832315

  7. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  8. Toxic exposure to ethylene dibromide and mercuric chloride: effects on laboratory-reared octopuses.

    PubMed

    Adams, P M; Hanlon, R T; Forsythe, J W

    1988-01-01

    The effects of acute and chronic exposure to either ethylene dibromide (EDB) or mercuric chloride (MC) were studied in laboratory-reared Octopus joubini, O. maya and O. bimaculoides. The advantages of using octopuses were that the responses were immediate, highly visible and sensitive. All species demonstrated signs of toxicity to acute and chronic exposure to EDB and to MC. A dosage-sensitive relationship for the loss and subsequent recovery of locomotor response and of chromatophore expansion was found for each species after acute exposure. For each species the LC50 for chronic exposure occurred within 12 hr at 100 mg/l for EDB and within 3 hr at 1,000 mg/l for MC. This study demonstrated the potential usefulness of laboratory-reared octopuses in evaluating the toxicity of marine environmental pollutants. PMID:3072470

  9. Saudi ethylene plants move toward more feed flexibility

    SciTech Connect

    Lee, A.K.K.; Aitani, A.M. )

    1990-09-10

    Demand for basic petrochemicals, such as propylene, butenes, and aromatics, is increasing in Saudi Arabia. This paper discusses how increased demand for these materials will require a change to heavier feedstocks, such as butanes, naphtha, and gas oil, for the next generation of Saudi Arabian ethylene plants. Changing to heavier ethylene plant feedstocks would also take pressure off of limited ethane supplies in the region. Ethylene production in Saudi Arabia currently has the advantages of low-cost feedstock, cheap energy, and low-cost capital loans. The existing ethylene plants are designed to crack ethane and produce, primarily, ethylene.

  10. Ethylene dynamics in the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1994-01-01

    A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.

  11. Characterisation of ethylene pathway components in non-climacteric capsicum

    PubMed Central

    2013-01-01

    Background Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the ‘Breaker stage’. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. Results The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. Conclusions ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato

  12. Ethylene, a key factor in the regulation of seed dormancy

    PubMed Central

    Corbineau, Françoise; Xia, Qiong; Bailly, Christophe

    2014-01-01

    Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA) and gibberellins (GAs). Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L-1. Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1) demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS) may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a crosstalk between hormones and other signals will be discussed. PMID:25346747

  13. Ethylene, a key factor in the regulation of seed dormancy.

    PubMed

    Corbineau, Françoise; Xia, Qiong; Bailly, Christophe; El-Maarouf-Bouteau, Hayat

    2014-01-01

    Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA) and gibberellins (GAs). Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L(-1). Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1) demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS) may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a crosstalk between hormones and other signals will be discussed. PMID:25346747

  14. Dynamic changes of the ethylene biosynthesis in 'Jonagold' apple.

    PubMed

    Bulens, Inge; Van de Poel, Bram; Hertog, Maarten L A T M; Cristescu, Simona M; Harren, Frans J M; De Proft, Maurice P; Geeraerd, Annemie H; Nicolai, Bart M

    2014-02-01

    In this study, the short-term and dynamic changes of the ethylene biosynthesis of Jonagold apple during and after application of controlled atmosphere (CA) storage conditions were quantified using a systems biology approach. Rapid responses to imposed temperature and atmospheric conditions were captured by continuous online photoacoustic ethylene measurements. Discrete destructive sampling was done to understand observed changes of ethylene biosynthesis at the transcriptional, translational and metabolic level. Application of the ethylene inhibitor 1-methylcyclopropene (1-MCP) allowed for the discrimination between ethylene-mediated changes and ethylene-independent changes related to the imposed conditions. Online ethylene measurements showed fast and slower responses during and after application of CA conditions. The changes in 1-aminocyclopropane-1-carboxylate synthase (ACS) activity were most correlated with changes in ACS1 expression and regulated the cold-induced increase in ethylene production during the early chilling phase. Transcription of ACS3 was found ethylene independent and was triggered upon warming of CA-stored apples. Increased expression of ACO1 during shelf life led to a strong increase in 1-aminocyclopropane-1-carboxylate oxidase (ACO) activity, required for the exponential production of ethylene during system 2. Expression of ACO2 and ACO3 was upregulated in 1-MCP-treated fruit showing a negative correlation with ethylene production. ACO activity never became rate limiting. PMID:23957643

  15. Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures.

    PubMed

    Pesquet, Edouard; Tuominen, Hannele

    2011-04-01

    The exact role of ethylene in xylogenesis remains unclear, but the Zinnia elegans cell culture system provides an excellent model with which to study its role during the differentiation of tracheary elements (TEs) in vitro. Here, we analysed ethylene homeostasis and function during Z. elegans TE differentiation using biochemical, molecular and pharmacological methods. Ethylene evolution was confined to specific stages of TE differentiation. It was found to peak at the time of TE maturation and to correlate with the activity of the ethylene biosynthetic 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The ethylene precursor ACC was exported and accumulated to high concentrations in the extracellular medium, which also displayed a high capacity to convert ACC into ethylene. The effects of adding inhibitors of the ethylene biosynthetic ACC synthase and ACC oxidase enzymes to the TE cultures demonstrated for the first time strict dependence of TE differentiation on ethylene biosynthesis and a stimulatory effect of ethylene on the rate of TE differentiation. In a whole-plant context, our results suggest that ethylene synthesis occurs in the apoplast of the xylem elements and that ethylene participates, in a paracrine manner, in the control of the cambial stem cell pool size during secondary xylem formation. PMID:21219334

  16. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  17. Fragmentation pathways of ethylene after core ionization

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Bocharova, I.; Sturm, F. P.; Gehrken, N.; Haxton, D. J.; Belkacem, A.; Weber, Th.; Zohrabi, M.; Ben-Itzhak, I.; Gatton, A.; Williams, J.; Reedy, D.; Nook, C.; Landers, A.; Gassert, H.; Zeller, S.; Voigtsberger, J.; Jahnke, T.; Doerner, R.

    2014-05-01

    We have measured the Auger electrons in coincidence with the recoil ions, resulting from the core ionization of ethylene molecules, by employing the COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS) method. The Auger-electron and recoil-ion energy maps are used to identify the fragmentation pathways and they are compared to the valence photo-double-ionization of ethylene. The dicationic electronic states favored by the propensity rules are identified and their role on the fragmentation pathways is discussed. The molecular-frame Auger electron angular distribution provides further insight into the breakup of this molecule after core ionization. Supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231.

  18. Gas dynamics of ethylene oxide during sterilization

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Matthews, I. P.; Wang, C.

    1999-07-01

    This article reports a case study of the dynamics of ethylene oxide gas during sterilization using a microwave spectrometer. A diffusion equation is used to describe the processes of gas penetration, gas sorption, and chemical reactions. The three processes, although mathematically related, may be solved separately under simplified assumptions. This permits the prediction of gas penetration and sorption as well as the effect of chemical reactions upon the gas concentration for loads of differing dimensions and densities.

  19. Extended operating cycles in ethylene plants

    SciTech Connect

    Bruin, C.J. de

    1994-12-31

    Length of ethylene plant operating cycles is mainly determined by: legislative requirements for statutory inspection, need for periodic major maintenance, and fouling depending on operating conditions and plant design provisions. After consultations with local authorities the authors were led to believe that requirement and scope of inspection may be relaxed. Equipment fouling is the principal operating cause for scheduled shutdowns. Based on actual experience in the Moerdijk Lower Olefins Plants key operating and design aspects influencing equipment fouling are discussed.

  20. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission.

    PubMed

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-09-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617

  1. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission1[OPEN

    PubMed Central

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-01-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617

  2. Microbiological aspects of ethylene oxide sterilization. II. Microbial resistance to ethylene oxide.

    PubMed

    Kereluk, K; Gammon, R A; Lloyd, R S

    1970-01-01

    The death rate kinetics of several sporeforming and nonsporeforming microorganisms, including radiation-resistant cocci, were determined by exposing them to a mixture of ethylene oxide and dichlorodifluoromethane (500 mg of ethylene oxide per liter, 30 to 50% relative humidity, and 54.4 C). Spore survivor curves obtained from tests of inoculated and exposed hygroscopic and nonhygroscopic carriers showed that the spores of Bacillus subtilis var. niger are more resistant to ethylene oxide than are spores of Clostridium sporogenes, B. stearothermophilus, and B. pumilus. The decimal reduction times (expressed as D values at 54.4 C-500 mg of ethylene oxide per liter) obtained under the test conditions for B. subtilis var. niger spores on hygroscopic and nonhygroscopic carriers exceeded the values obtained for the other organisms considered, both sporeformers and nonsporeformers. The decimal reduction times for the vegetative cells of the radiation-resistant organisms (Micrococcus radiodurans and two strains of Streptococcus faecalis) and the ATCC strain of S. faecalis demonstrated comparable resistance to ethylene oxide with the spores of C. sporogenes, B. stearothermophilus, and B. pumilus, but not those of B. subtilis var. niger. PMID:5415211

  3. Crude oil to ethylene in one step

    SciTech Connect

    Kirk, R.O.

    1983-02-01

    Reports that the most important feature of the partial combustion cracking (PCC) process is its ability to convert heavy petroleum fractions to light olefins with minimum residue. Presents diagram of the PCC process; graph of feedstock cost vs. return on investment (ROI); and tables with average ethylene yields, cracking yields, and PCC vs. LPG and naphtha cracking. Finds that the 10% difference in capital between the PCC and the naphtha feed case is due mainly to the cost of the acid gas and sulfur handling sections required for the PCC, but not for a naphtha cracker. The very favorable ROI and ethylene costs are due to the relative difference in feedstock pricing. Sensitivity of ROI to changes in feedstock was also studied for the PCC cases. The ratio of cost of high-sulfur fuel oil (HSFO) to average crude price is used to indicate the substantial effect of feedstock price on the attractiveness of the project. Concludes that with HSFO at 85 to 100% of crude value, the PCC represents an excellent investment for future ethylene needs.

  4. Participation of Ethylene in Two Modes of Gravistimulation of Shoots

    NASA Technical Reports Server (NTRS)

    Harrison, M.

    1985-01-01

    In order to elucidate the role of ehtylene in gravitropism, detailed time courses for ethylene production in horizontal and upright plants were measured. Tomato and pea were chosen as examples of plants which exhibit different patterns of gravitropic curvature. Tomato seedlings were placed in gas-tight lucite boxes from which air was sampled and analyzed for ethylene. During the first 2 min interval after one set of plants was turned horizontal ethylene production was double the baseline. Similarly, plants rotated 3 rpm about a vertical axis transiently doubled ethylene production when the axis was shifted 90 deg. In order to clarify the role of this 2-min burst, the effect of exogenous ethylene was studied. In peas, epicotyls were excised, equilibrated until wound ethylene had subsided to a low stable level, and ethylene production was measured in vertical and horizontal segments. As for tomatoes, excised pea epicotyls increased their rate of ethylene production during the first 2 min of gravistimulation. Also, very low concentrations of exogenous ethylene slightly enhance curvature. On the other hand, higher levels of ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) inhibit overall curvature.

  5. Role of ethylene in responses of plants to nitrogen availability

    PubMed Central

    Khan, M. I. R.; Trivellini, Alice; Fatma, Mehar; Masood, Asim; Francini, Alessandra; Iqbal, Noushina; Ferrante, Antonio; Khan, Nafees A.

    2015-01-01

    Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest. PMID:26579172

  6. Chronic cholecystitis

    MedlinePlus

    Cholecystitis - chronic ... Most of the time, chronic cholecystitis is caused by repeated attacks of acute (sudden) cholecystitis. Most of these attacks are caused by gallstones in the gallbladder. These ...

  7. Chronic Bronchitis

    MedlinePlus

    Bronchitis is an inflammation of the bronchial tubes, the airways that carry air to your lungs. It ... chest tightness. There are two main types of bronchitis: acute and chronic. Chronic bronchitis is one type ...

  8. Development of an inhalation unit risk factor for ethylene dichloride.

    PubMed

    Myers, Jessica L

    2016-08-01

    The Texas Commission on Environmental Quality (TCEQ) conducts up-to-date carcinogenic assessments for chemicals emitted in Texas. An inhalation unit risk factor (URF) was developed for ethylene dichloride (EDC, CAS 107-06-2) based on tumorigenicity results observed in a 2-year animal inhalation study conducted by Nagano et al. More specifically, the incidence of combined mammary gland tumors (adenomas, fibroadenomas, adenocarcinomas) in female rats demonstrated a statistically significant dose-response relationship, was amenable to benchmark concentration (BMC) modeling, was ultimately determined to be the most sensitive tumorigenic effect in the most sensitive species and sex, and was utilized as the carcinogenic endpoint for the development of the URF. The 95% lower confidence limit of the BMC at the 10% excess risk level (BMCL10 of 40.1 ppm) was determined for calculation of the URF. The resulting URF based on increased incidence of combined mammary gland tumors in female rats is 1.4E-02 per ppm (3.4E-03 per mg/m(3)). The lifetime air concentration corresponding to a no significant excess risk level of 1 in 100 000 is 0.71 ppb (2.9 μg/m(3)), which is considered sufficiently health-protective for use in protecting the general public against the potential carcinogenic effects of chronic exposure to EDC in ambient air. PMID:27308968

  9. Chronic Bronchitis

    MedlinePlus

    ... carry air to your lungs. It causes a cough that often brings up mucus. It can also cause shortness of breath, wheezing, a low fever, and chest tightness. There are two main types of bronchitis: acute and chronic. Chronic bronchitis is one type of COPD (chronic ...

  10. Epinasty of Poinsettias-the Role of Auxin and Ethylene.

    PubMed

    Reid, M S; Mor, Y; Kofranek, A M

    1981-05-01

    Upward physical restraint of the normally horizontal bracts of poinsettia (Euphorbia pulcherrima Willd.) resulted in increased ethylene production and epinastic curvature of the petioles after 5 days. Downward restraint caused little change in ethylene production or epinasty, indicating that the enhanced ethylene production observed in petioles bent upwards is not due to the bending stress alone. Epinasty, measured upon removal of upward physical restraint, was not affected by spraying plants with aminoxyacetic acid to reduce ethylene production or with silver thiosulfate to prevent ethylene action. Removal of the bract blades prevented the epinastic response of the petiole, and the response was restored by applying indoleacetic acid to the cut petiole end. Redistribution of auxin appears to be responsible for both the epinasty and the increased ethylene production of reoriented poinsettia bracts. PMID:16661798

  11. Epinasty of Poinsettias—the Role of Auxin and Ethylene

    PubMed Central

    Reid, Michael S.; Mor, Yoram; Kofranek, Anton M.

    1981-01-01

    Upward physical restraint of the normally horizontal bracts of poinsettia (Euphorbia pulcherrima Willd.) resulted in increased ethylene production and epinastic curvature of the petioles after 5 days. Downward restraint caused little change in ethylene production or epinasty, indicating that the enhanced ethylene production observed in petioles bent upwards is not due to the bending stress alone. Epinasty, measured upon removal of upward physical restraint, was not affected by spraying plants with aminoxyacetic acid to reduce ethylene production or with silver thiosulfate to prevent ethylene action. Removal of the bract blades prevented the epinastic response of the petiole, and the response was restored by applying indoleacetic acid to the cut petiole end. Redistribution of auxin appears to be responsible for both the epinasty and the increased ethylene production of reoriented poinsettia bracts. Images PMID:16661798

  12. Interaction of Light and Ethylene on Stem Gravitropism

    NASA Technical Reports Server (NTRS)

    Harrison, Marcia A.

    1996-01-01

    The major objective of this study was to evaluate light-regulated ethylene production during gravitropic bending in etiolated pea stems. Previous investigations indicated that ethylene production increases after gravistimulation and is associated with the later (counter-reactive) phase of bending. Additionally, changes in the counter-reaction and locus of curvature during gravitropism are greatly influenced by red light and ethylene production. Ethylene production may be regulated by the levels of available precursor (1-aminocyclopropane-l-carboxylic acid, ACC) via its synthesis, conjugation to malonyl-ACC or glutamyl-ACC, or oxidation to ethylene. The regulation of ethylene production by quantifying ACC and conjugated ACC levels in gravistimulated pea stemswas examined. Also measured was the changes in protein and enzyme activity associated with gravitropic curvature by electrophoretic and spectrophotometric techniques. An image analysis system was used to visualize and quantify enzymatic activity and transcriptional products in gravistimulated and red-light treated etiolated pea stem tissues.

  13. Low capital implementation of distributed distillation in ethylene recovery

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  14. The Role of Ethylene in Plants Under Salinity Stress

    PubMed Central

    Tao, Jian-Jun; Chen, Hao-Wei; Ma, Biao; Zhang, Wan-Ke; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene. PMID:26640476

  15. Ethylene: a factor in defoliation induced by auxins.

    PubMed

    Hallaway, M; Osborne, D J

    1969-03-01

    Aerial sprays of synthetic auxins defoliate many species of tropical trees. Treatment of Euonymus japonica leaves with the n-butyl ester of 2,4-dichlorophenoxyacetic acid causes premature senescence and leaf fall and stimulates ethylene production by the blade 5-to 25-fold. Exposure to ethylene alone similarly accelerates senescence and leaf fall. Evidence indicates that the defoliant action of auxin is mediated through the enhanced amounts of ethylene in the blade. PMID:5764868

  16. Ethylene suppresses tomato (solanum lycopersicum) fruit set through modification of gibberellin metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone ethylene is probably best know as the “ripening hormone”. Ethylene also plays roles in senescence, stress responses and organ shedding (abscission). Regulation of ethylene synthesis, ethylene scavenging and genetic repression of ethylene synthesis and/or signaling are tactics dep...

  17. Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls

    NASA Technical Reports Server (NTRS)

    Harrison, M. A.; Pickard, B. G.

    1986-01-01

    Assessments of the participation of ethylene in gravitropism by hypocotyls of tomato (Lycopersicon esculentum Mill.) indicate that gravitropism can occur without substantial change in ethylene production. Moreover, lowering or evaluating ethylene over a considerable range, as well as inhibiting ethylene action, fails to influence gravitropic bending. This vitiates the possibility that ethylene is a mediator of the primary, negative gravitropic response of tomato shoots.

  18. Controlled release of ethylene via polymeric films for food packaging

    NASA Astrophysics Data System (ADS)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  19. Gravitropism in higher plant shoots. I - A role for ethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Salisbury, Frank B.

    1981-01-01

    Two inhibitors of ethylene synthesis, Co(2+) and aminoethoxyvinylglycine (AVG), and two inhibitors of ethylene action, Ag(+) and CO2, are shown to delay the gravitropic response of cocklebur (Xanthium strumarium L.), tomato (Lycopersicon esculentum Mill.), and castor bean (Ricinus communis L.) stems. Gentle shaking on a mechanical shaker does not inhibit the gravitropic response, but vigorous hand shaking for 120 seconds delays the response somewhat. AVG and Ag(+) further delay the response of mechanically stimulated plants. AVG retards the storage of bending energy but not of stimulus. In gravitropism, graviperception may first stimulate ethylene evolution, which may then influence bending directly, or responses involving ethylene could be more indirect.

  20. The involvement of ethylene in regulation of Arabidopsis gravitropism

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhu, Lin

    Plant gravitropism is a directional response to gravity stimulus. This response involves a com-plex signaling network. Ethylene, a major plant hormone, has been found to modulate grav-itropism. The biosynthesis of ethylene is induced by the gravi-stimulus and the requirement for ethylene during gravitropism is tissue-dependent. While ethylene plays a modulating role in inflorescence stems, the light-grown hypocotyls of Arabidopsis requires ethylene to achieve a maximum gravicurvature. Because both inhibitory and stimulatory effects of ethylene on gravitropism have been overwhelmingly documented, there is a need to postulate a new theory to consolidate the apparently contradictory results. A dual-and-opposing effects (DOE) theory is therefore hypothesized to address how ethylene is involved in regulation of Arabidopsis grav-itropism, in which it is suggested that both stimulatory and inhibitory effects act on the same organ of a plant and co-exist at the same time in a mutually opposing manner. The final out-come of gravitropic response is determined by the dynamic display between the two opposing effects. A prolonged pretreatment of ethylene promotes the gravitropism in both inflorescence and light-grown hypocotyls, while a short ethylene pretreatment inhibits gravitropism. Gener-ally speaking, the inhibitory effect of ethylene is dominant over the expression of the stimula-tory effect in light-grown hypocotyls, whereas the stimulatory effect is dominant in inflorescence stem. Each effect is also positively correlated with concentrations of ethylene and in a time-dependent manner. The stimulatory effect occurs slowly but continues to react after the removal of ethylene, whereas the inhibitory effect takes place abruptly and diminishes shortly after its removal. Forward genetic screening based on the DOE phenotype of ethylene-treated Arabidop-sis has revealed a novel component in gravity signaling pathway: EGY1 (ethylene-dependent gravitropism-deficient and yellow

  1. Treatment of plants with gaseous ethylene and gaseous inhibitors of ethylene action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is an interesting plant hormone to work with. It’s a gas! Literally. And this affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some ...

  2. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor1[OPEN

    PubMed Central

    2016-01-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. PMID:27246094

  3. [Interference of ethylene glycol on lactate assays].

    PubMed

    Graïne, H; Toumi, K; Roullier, V; Capeau, J; Lefèvre, G

    2007-01-01

    Ethylene glycol is broken down to three main organic acids: glycolic acid, glyoxylic acid and oxalic acid which cause severe metabolic acidosis. Effect of these three acids on lactate assays was evaluated in five blood gas analysers and two clinical chemistry analysers. For all systems, no influence of oxalic acid on lactate results could be demonstrated. No interference of glycolic acid could be observed on lactate assay performed with Rapid Lab 1265 (R: 104,9 +/- 12,1%), Vitros 950 (R: 105,7 +/- 5,3 %) and Architect ci8200 (R: 104,9 +/- 4,7%), but on the contrary, CCX 4, OMNI S, ABL 725 and 825 demonstrated a concentration-dependent interference. No interference of glyoxylic acid could be observed with Vitros 950, but a positive interference could be observed with ABL 725 and 825, OMNI S, CCX4 and Architect ci8200 A linear relationship between apparent lactate concentration found with ABL 725 and 825, OMNI S, CCX 4, and glyoxylic acid could be observed (0,94 < r < 0,99), a weaker interference being observed with Rapid Lab 1265 and Architect ci 8200. Our results demonstrated that in case of ethylene glycol poisoning, cautious interpretation of lactate assay should be done, since wrong results of lactacidemia could lead to misdiagnostic and delay patient treatment. PMID:17627925

  4. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-07-01

    Detonation experiments are conducted in a 52 mm square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3 . Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ } ) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  5. Siloxene-supported catalysts for ethylene polymerization

    SciTech Connect

    Badley, R.D.; Johnson, M.M. )

    1993-06-01

    A new type of Ziegler ethylene polymerization catalyst has been formed using as a support, siloxene, a layer compound with an empirical formula of Si[sub 2]H[sub 2]O. Siloxene is a reducing compound, and it reacts with excess TiCl[sub 4], giving an inactive brown solid with 5.2% Ti and 8.0% Cl. However, when additional TiCl[sub 4] is reduced by a metal alkyl and precipitated onto the brown solid, a catalyst with moderate activity is formed. Maximum activity for ethylene polymerization was obtained when the catalyst was pretreated with n-butylmagnesium, contained 0.06 g CaCl[sub 2]/g siloxene, and was run at 80[degrees]C with 40-50 ppm of TEA cocatalyst. These catalysts are very active in the initial portion of the reaction, but the activity decreases rapidly over the first 30 min. Their hydrogen response and hexene incorporation is similar to that observed with other Ziegler catalysts. 17 refs., 7 figs., 2 tabs.

  6. Molecular Biology of ethylene during tomato fruit development and maturation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytohormone ethylene plays critical roles in many developmental events and environmental responses of plants. Climacteric fruits such as tomato, apple or pears, are characterized by a ripening-related increase in respiration and elevated ethylene synthesis to rapidly coordinate and synchronize ...

  7. Health Assessment Document for Ethylene Oxide (External Review Draft)

    EPA Science Inventory

    The largest single use of ethylene oxide is an intermediate in the synthesis of ethylene glycol. However, small amounts of this epoxide are used as a sterilant or pesticide in commodities, pharmaceuticals, medical devices, tobacco, and other items, representing a considerable pot...

  8. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... liquid or vapor phase, including the vent risers, shall be insulated. Flanges need not be covered, but if... installed to maintain the temperature of the liquid below 90 °F, at least two complete cooling...

  9. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... liquid or vapor phase, including the vent risers, shall be insulated. Flanges need not be covered, but if... installed to maintain the temperature of the liquid below 90 °F, at least two complete cooling...

  10. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... liquid or vapor phase, including the vent risers, shall be insulated. Flanges need not be covered, but if... installed to maintain the temperature of the liquid below 90 °F, at least two complete cooling...

  11. Cytokinin-Induced Ethylene Biosynthesis in Nonsenescing Cotton Leaves

    PubMed Central

    Suttle, Jeffrey C.

    1986-01-01

    The influence of cytokinins on ethylene production was examined using cotton leaf tissues. Treatment of intact cotton (Gossypium hirsutum L. cv LG 102) seedlings with both natural and synthetic cytokinins resulted in an increase in ethylene production by excised leaves. The effectiveness of the cytokinins tested was as follows: thidiazuron ≫ BA ≫ isopentyladenine ≥ zeatin ≫ kinetin. Using 100 micromolar thidiazuron (TDZ), an initial increase in ethylene production was observed 7 to 8 hours post-treatment, reached a maximum by 24 hours and then declined. Inhibitors of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis and its oxidation to ethylene reduced ethylene production 24 hours post-treatment; however, by 48 hours only inhibitors of ACC oxidation were effective. The increase in ethylene production was accompanied by a massive accumulation of ACC and its acid-labile conjugate. TDZ treatment resulted in a significant increase in the capacity of tissues to oxidize ACC to ethylene. Endogenous levels of methionine remained constant following TDZ treatment. It was concluded that the stimulation of ethylene production in cotton leaves following cytokinin treatment was the result of an increase in both the formation and oxidation of ACC. Images Fig. 4 PMID:16665168

  12. Burst of ethylene upon horizontal placement of tomato seedlings

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    Seedlings of Lycopersicon esculentum Mill. cv Rutgers emit a pulse of ethylene during the first 2 to 4 minutes following horizontal placement. Because this burst appears too rapid and brief to be mediated by increase in net activity of 1-aminocyclopropane-1-carboxylic acid synthase, it might result form accelerated transformation of vacuolar 1-aminocyclopropane-1-carboxylic acid to ethylene.

  13. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... with a ventilation system designed to circulate and exchange the air in the cabinet to shorten the...

  14. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... with a ventilation system designed to circulate and exchange the air in the cabinet to shorten the...

  15. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... with a ventilation system designed to circulate and exchange the air in the cabinet to shorten the...

  16. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... with a ventilation system designed to circulate and exchange the air in the cabinet to shorten the...

  17. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... with a ventilation system designed to circulate and exchange the air in the cabinet to shorten the...

  18. OZONE-INDUCED ETHYLENE RELEASE FROM LEAF SURFACES

    EPA Science Inventory

    Ozone-induced stress ethylene emissions from the adaxial and abaxial leaf surfaces of four plant species (Glycine max (L) Merr. cv. Dare, Lycopersicon esculentum Mill cv. Roma VF, Eucalyptus globulus Labill. and Hedera helix L.) were studied to determine if the stress ethylene di...

  19. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer,...

  20. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...,” which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon...

  1. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...,” which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon...

  2. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...,” which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon...

  3. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...,” which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon...

  4. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer,...

  5. Ammonia And Ethylene Optrodes For Research On Plant Growth

    NASA Technical Reports Server (NTRS)

    Zhou, Quan; Tabacco, Mary Beth

    1995-01-01

    Fiber-optic sensors developed for use in measuring concentrations of ammonia and ethylene near plants during experiments on growth of plants in enclosed environments. Developmental fiber-optic sensors satisfy need to measure concentrations as low as few parts per billion (ppb) and expected to contribute to research on roles of ethylene and ammonia in growth of plants.

  6. Chronic migraine.

    PubMed

    Schwedt, Todd J

    2014-01-01

    Chronic migraine is a disabling neurologic condition that affects 2% of the general population. Patients with chronic migraine have headaches on at least 15 days a month, with at least eight days a month on which their headaches and associated symptoms meet diagnostic criteria for migraine. Chronic migraine places an enormous burden on patients owing to frequent headaches; hypersensitivity to visual, auditory, and olfactory stimuli; nausea; and vomiting. It also affects society through direct and indirect medical costs. Chronic migraine typically develops after a slow increase in headache frequency over months to years. Several factors are associated with an increased risk of transforming to chronic migraine. The diagnosis requires a carefully performed patient interview and neurologic examination, sometimes combined with additional diagnostic tests, to differentiate chronic migraine from secondary headache disorders and other primary chronic headaches of long duration. Treatment takes a multifaceted approach that may include risk factor modification, avoidance of migraine triggers, drug and non-drug based prophylaxis, and abortive migraine treatment, the frequency of which is limited to avoid drug overuse. This article provides an overview of current knowledge regarding chronic migraine, including epidemiology, risk factors for its development, pathophysiology, diagnosis, management, and guidelines. The future of chronic migraine treatment and research is also discussed. PMID:24662044

  7. Chronic kidney disease

    MedlinePlus

    Kidney failure - chronic; Renal failure - chronic; Chronic renal insufficiency; Chronic kidney failure; Chronic renal failure ... Chronic kidney disease (CKD) slowly gets worse over months or years. You may not notice any symptoms for some ...

  8. Kinetics of ethylene oxide desorption from sterilized materials.

    PubMed

    Mendes, Gisela C; Brandão, Teresa R S; Silva, Cristina L M

    2013-01-01

    Ethylene oxide gas is commonly used to sterilize medical devices, and concerns about using this agent on biological systems are well-established. Medical devices sterilized by ethylene oxide must be properly aerated to remove residual gas and by-products. In this work, kinetics of ethylene oxide desorption from different sterilized materials were studied in a range of aeration temperatures. The experimental data were well-described by a Fickian diffusion mass transfer behavior, and diffusivities were estimated for two textile and two polymeric materials within the temperature range of 1.5 to 59.0 degrees C. The results will allow predictions of ethylene oxide desorption, which is a key step for the design of sterilization/aeration processes, contributing to an efficient removal of residual ethylene oxide content. PMID:23513954

  9. Detection of ethylene in smokers breath by laser photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Giubileo, Gianfranco; Puiu, Adriana P.; Dumitras, Dan C.

    2004-07-01

    In the experiments reported in this paper small traces of ethylene down to ppb level have been detected by means of photoacoustic spectroscopy in the breath exhaled from humans. The method has been applied in studying how the concentration of the ethylene coming out from human lungs is modified after smoking. We followed up the evolution of ethylene concentration in the case of several people by monitoring the ethylene before and after smoking. In each case the first exhaled air sample was collected prior smoking the cigarette and compared with the samples collected after 30 minutes following the inhalation of cigarette smoke. In all the experiments a high value of ethylene concentration was found immediately after smoking. The experimental laser based photoacoustic system has been realized in ENEA Laboratories in Frascati, Italy.

  10. Determination of ammonia in ethylene using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.

    1997-01-01

    A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.

  11. Ethylene-Mediated Acclimations to Flooding Stress1

    PubMed Central

    Sasidharan, Rashmi; Voesenek, Laurentius A.C.J.

    2015-01-01

    Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations. PMID:25897003

  12. Ethylene production throughout growth and development of plants

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  13. Developing tools for investigating the multiple roles of ethylene: Identification and mapping genes for ethylene biosynthesis and reception in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone ethylene is important to many plant processes from germination through senescence, including responses to in vitro growth and plant regeneration. Knowledge of the number of genes, and of their function, that are involved in ethylene biosynthesis and reception is necessary to determ...

  14. Research tools: ethylene preparation. In: Chi-Kuang Wen editor. Ethylene in plants. Springer Netherlands. Springer Link

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is a plant hormone that regulates many aspects of plant growth and development, germination, fruit ripening, senescence, sex determination, abscission, defense, gravitropism, epinasty, and more. For experimental purposes, one needs to treat plant material with ethylene and its inhibitors t...

  15. The adhesion of oxygen-plasma treated poly(ethylene) and poly(ethylene terephthlate) films

    SciTech Connect

    Holton, S.L.; Kinloch, A.J.; Watts, J.F.

    1996-12-31

    The effects of low-pressure oxygen-plasma treatment on the surfaces of poly(ethylene) (PE) and poly(ethylene terephthlate) (PET) films and its influence on the adhesion of PE/PET laminates were assessed. The 90{degree} peel test was used to estimate the adhesive fracture energy, G{sub c} for the laminates. XPS, SEM and AFM were used to analyse the treated films and fracture surfaces. Significant improvements in bond strength occurred within very short treatment times (5s at 50W) with the maximum adhesion occurring after 300s. For longer treatment times the bond strengths decrease slightly. G{sub c} values were found to be low when PET was the peel arm. When PE was the peel arm, the G{sub c} values were substantially larger using the current analysis.

  16. Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes.

    PubMed

    Booker, Matthew A; DeLong, Alison

    2015-09-01

    Strictly controlled production of ethylene gas lies upstream of the signaling activities of this crucial regulator throughout the plant life cycle. Although the biosynthetic pathway is enzymatically simple, the regulatory circuits that modulate signal production are fine tuned to allow integration of responses to environmental and intrinsic cues. Recently identified posttranslational mechanisms that control ethylene production converge on one family of biosynthetic enzymes and overlay several independent reversible phosphorylation events and distinct mediators of ubiquitin-dependent protein degradation. Although the core pathway is conserved throughout seed plants, these posttranslational regulatory mechanisms may represent evolutionarily recent innovations. The evolutionary origins of the pathway and its regulators are not yet clear; outside the seed plants, numerous biochemical and phylogenetic questions remain to be addressed. PMID:26134162

  17. Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes1

    PubMed Central

    Booker, Matthew A.; DeLong, Alison

    2015-01-01

    Strictly controlled production of ethylene gas lies upstream of the signaling activities of this crucial regulator throughout the plant life cycle. Although the biosynthetic pathway is enzymatically simple, the regulatory circuits that modulate signal production are fine tuned to allow integration of responses to environmental and intrinsic cues. Recently identified posttranslational mechanisms that control ethylene production converge on one family of biosynthetic enzymes and overlay several independent reversible phosphorylation events and distinct mediators of ubiquitin-dependent protein degradation. Although the core pathway is conserved throughout seed plants, these posttranslational regulatory mechanisms may represent evolutionarily recent innovations. The evolutionary origins of the pathway and its regulators are not yet clear; outside the seed plants, numerous biochemical and phylogenetic questions remain to be addressed. PMID:26134162

  18. Chronic pancreatitis.

    PubMed

    Majumder, Shounak; Chari, Suresh T

    2016-05-01

    Chronic pancreatitis describes a wide spectrum of fibro-inflammatory disorders of the exocrine pancreas that includes calcifying, obstructive, and steroid-responsive forms. Use of the term chronic pancreatitis without qualification generally refers to calcifying chronic pancreatitis. Epidemiology is poorly defined, but incidence worldwide seems to be on the rise. Smoking, drinking alcohol, and genetic predisposition are the major risk factors for chronic calcifying pancreatitis. In this Seminar, we discuss the clinical features, diagnosis, and management of chronic calcifying pancreatitis, focusing on pain management, the role of endoscopic and surgical intervention, and the use of pancreatic enzyme-replacement therapy. Management of patients is often challenging and necessitates a multidisciplinary approach. PMID:26948434

  19. Information theory and the ethylene genetic network.

    PubMed

    González-García, José S; Díaz, José

    2011-10-01

    information content in the input message that the cell's genetic machinery is processing during a given time interval. Furthermore, combining Information Theory with the frequency response analysis of dynamical systems we can examine the cell's genetic response to input signals with varying frequencies, amplitude and form, in order to determine if the cell can distinguish between different regimes of information flow from the environment. In the particular case of the ethylene signaling pathway, the amount of information managed by the root cell of Arabidopsis can be correlated with the frequency of the input signal. The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a varying input. Outside of this window the nucleus reads the input message as an approximately non-varying one. This frequency response analysis is also useful to estimate the rate of information transfer during the transport of each new ERF1 molecule into the nucleus. Additionally, application of Information Theory to analysis of the flow of information in the ethylene signaling pathway provides a deeper insight in the form in which the transition between auxin and ethylene hormonal activity occurs during a circadian cycle. An ambitious goal for the future would be to use Information Theory as a theoretical foundation for a suitable model of the information flow that runs at each level and through all levels of biological organization. PMID:21897127

  20. Ethylene glycol: properties, synthesis, and applications.

    PubMed

    Yue, Hairong; Zhao, Yujun; Ma, Xinbin; Gong, Jinlong

    2012-06-01

    Ethylene glycol (EG) is an important organic compound and chemical intermediate used in a large number of industrial processes (e.g. energy, plastics, automobiles, and chemicals). Indeed, owing to its unique properties and versatile commercial applications, a variety of chemical systems (e.g., catalytic and non-catalytic) have been explored for the synthesis of EG, particularly via reaction processes derived from fossil fuels (e.g., petroleum, natural gas, and coal) and biomass-based resources. This critical review describes a broad spectrum of properties of EG and significant advances in the prevalent synthesis and applications of EG, with emphases on the catalytic reactivity and reaction mechanisms of the main synthetic methodologies and applied strategies. We also provide an overview regarding the challenges and opportunities for future research associated with EG. PMID:22488259

  1. Bacterial Modulation of Plant Ethylene Levels

    PubMed Central

    Gamalero, Elisa; Glick, Bernard R.

    2015-01-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. PMID:25897004

  2. OMV studies ethylene expansion in Germany

    SciTech Connect

    1996-10-23

    OMV(Vienna) is evaluating plans to debottleneck its ethylene plant at Burghausen from 310,000 m.t./year to at least 400,000 m.t./year. Senior v.p. Jochen Berger says OMV is studying the limits to which the cracker can be expanded. {open_quotes}We`re pretty sure we can go to 400,000 m.t./year, but in two months we`ll have a better idea,{close_quotes} says Berger. The expansion will also depend on the future requirements of downstream operations at the Burghausen site, which include OMV plastics subsidiary PCD`s high-density polyethylene and polypropylene units and the vinyl chloride monomer and polyvinyl chloride units operated by Hoechst-Wacker joint venture Vinnolit.

  3. Photothermal degradation of ethylene/vinylacetate copolymer

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Chung, S.; Clayton, A.; Di Stefano, S.; Oda, K.; Hong, S. D.; Gupta, A.

    1983-01-01

    Photothermal degradation studies were conducted on a 'stabilized' formulation of ethylene/vinyl acetate copolymer (EVA) in the temperature range 25-105 C under three different oxygen environments (in open air, with limited access to O2, and in a dark closed stagnant oven). These studies were performed in order to evaluate the utility of EVA as an encapsulation material for photovoltaic modules. Results showed that at low temperature (25 C), slow photooxidation of the polymer occurred via electronic energy transfer involving the UV absorber incorporated in the polymer. However, no changes in the physical properties of the bulk polymer were detected up to 1500 hours of irradiation. At elevated temperatures, leaching and evaporation of the additives occurred, which ultimately resulted in the chemical crosslinking of the copolymer and the formation of volatile photoproducts such as acetic acid.

  4. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliot M.; Chang, Caren; Bleecker, Anthony B.

    1998-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  5. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  6. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    1997-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  7. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1998-10-20

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 67 figs.

  8. Bacterial Modulation of Plant Ethylene Levels.

    PubMed

    Gamalero, Elisa; Glick, Bernard R

    2015-09-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. PMID:25897004

  9. A New Interstellar Cyclic Molecule, Ethylene Oxide

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, A.

    1997-12-01

    Ethylene oxide (c-C2H4O) is only the fourth known ring molecule identified in the interstellar medium, detected in the Galactic Center cloud SgrB2(N) by Dickens et al. (1997). It is the higher energy isomer of both the more familiar interstellar species acetaldehyde (CH3CHO) and the as yet undetected molecule vinyl alcohol (CH2CHOH). Dickens et al. (1997) reported a c-C2H4O molecular column density about an order of magnitude less than that reported for CH3CHO in SgrB2(N). This is a factor of 200 larger than the predictions of the new standard gas phase chemistry model of Lee, Bettens, and Herbst (1996), suggesting that the formation of c-C2H4O may be related to molecular formation on interstellar grains. We present observations of the c-C2H4O to CH3CHO abundance ratio in 5 additional molecular clouds. The data were taken in October 1997 with the Swedish-European Submillimeter Telescope in Chile. The confirmation of ethylene oxide in molecular clouds provides an appealing scenario for the first link in the chain of reactions leading to the origin of life, since it has been suggested as a possible pathway to the formation of the related cyclic molecule oxiranecarbonitrile (c-C3H3NO; cf., Dickens et al. 1996), a precursor to the synthesis of sugar phosphates which comprise the backbone of our molecular genetic structure. References: Dickens, J.E., Irvine, W.M., Ohishi, M., Ikeda, M., Ishikawa, S., Nummelin, A., and Hjalmarson, A. 1997, Astrophys. J., 489 (in press). Dickens, J.E. et al. 1996, Orig. Life Evol. Biosphere, 26, 97. Lee, H.-H., Bettens, R.P.A., and Herbst, E. 1996, Astron. Astrophys. Supp., 119, 111.

  10. Effects of ethylene on gene expression in carrot roots

    SciTech Connect

    Nichols, S.E.

    1984-01-01

    To investigate ethylene effects on expression of genetic information, cDNA clones corresponding to ethylene-induced carrot root mRNAs were constructed and isolated. RNA dot blot analysis showed that for the three clones studied peak cytosolic mRNA prevalence occurred at 21 hours of treatment followed thereafter by rapid messenger decay. DNA filter excess hybridization to in vitro synthesized nuclear RNA showed that the ethylene-induced mRNA increase is engendered by transcription of previously quiescent genes. The kinetics and magnitude of changes in mRNA prevalence parallel changes in transcriptional activity; therefore, the ethylene effect is primarily at the level of the transcription. In vivo pulse labelling with (/sup 35/S)-methionine showed that between 18 and 27 hours of ethylene treatment a 2.5 fold increase in translational efficiency occurred for one message studied. The resulting protein is the predominant protein synthesized in carrots treated with ethylene for 27 hours. Thus, ethylene exerts multiple regulatory controls on the expression of genetic information.

  11. Degradation of ethylene glycol using Fenton's reagent and UV.

    PubMed

    McGinnis, B D; Adams, V D; Middlebrooks, E J

    2001-10-01

    Oxidation of ethylene glycol in aqueous solutions was found to occur with the addition of Fenton's reagent with further conversion observed upon UV irradiation. The pH range studied was 2.5-9.0 with initial H2O2 concentrations ranging from 100 to 1000 mg/l. Application of this method to airport storm-water could potentially result in reduction of chemical oxygen demand by conversion of ethylene glycol to oxalic and formic acids. Although the amount of H2O2 added follows the amount of ethylene glycol degraded, smaller H2O2 doses were associated with increases in the ratio of ethylene glycol removed per unit H2O2 added indicating the potential of pulsed doses or constant H2O2 feed systems. Ethylene glycol removal was enhanced by exposure to UV light after treatment with Fenton's reagent, with rates dependent on initial H2O2 concentration. In addition to ethylene glycol, the principle products of this reaction, oxalic and formic acids, have been shown to be mineralized in other HO generating systems presenting the potential for ethylene glycol mineralization in this system with increased HO* production. PMID:11572583

  12. Two episodes of ethylene oxide poisoning--a case report.

    PubMed

    Lin, T J; Ho, C K; Chen, C Y; Tsai, J L; Tsai, M S

    2001-06-01

    Ethylene oxide is used as a sterilizer, a solvent, a plasticizer and in the manufacture of special solvents, antifreeze, polyester resins and non-ionic surfactants. Its toxicity is caused by an alkylating reaction with most organic substances in the body. Four workers, without any protection, managed the leakage of ethylene oxide from the collecting tank improperly on July 29, 2000. In the same factory, the overflow of ethylene oxide in process resulted in leakage of ethylene oxide again on Aug. 7, 2000. Two workers were poisoned despite wearing full-face respirators with ethylene oxide approved canisters. In these two events, the workers all smelled an ether-like odor. Six workers experienced nausea, vomiting, chest tightness, shortness of breath, dizziness, cough and ocular irritation. One worker had transient loss of consciousness. Oxygen therapy and supportive care were used. Patients were discharged in stable condition. The permissible exposure limit of ethylene oxide in air is 1 ppm as an eight hour TWA. Above 50 ppm, the odor threshold, a positive-pressure supplied air respirator is needed to protect the worker. Full-face respirators with ethylene oxide approved canisters could not protect our cases who smelled the odor and were exposed to an unknown concentration. It is important to wear positive-pressure self-contained breathing apparatuses equipped with full facepieces to clean up the contamination area and rescue the patients. PMID:11593964

  13. Aging tests of ethylene contaminated argon/ethane

    SciTech Connect

    Atac, M.; Bauer, G.

    1994-09-22

    We report on aging tests of argon/ethane gas with a minor (1800 ppM) component of ethylene. The measurements were first conducted with the addition of alcohol to test the suppression of aging by this additive, with exposure up to {approx}1.5 C/cm. Tests have included: a proportional tube with ethanol, another with isopropyl alcohol, and for comparison a tube has also been run with ethanol and argon/ethane from CDF`s old (ethylene-free) ethane supply. The aging test with ethanol showed no difference between the ethylene-free and the ethylene tube. Furthermore, raw aging rates of argon/ethane and argon/ethane/ethylene were measured by exposing tubes without the addition of alcohol to about 0.1 C/cm. Again, no significant difference was observed. In conclusion, we see no evidence that ethylene contamination up to 1800 ppM has any adverse effect on wire aging. However, this level of ethylene does seem to significantly suppress the gas gain.

  14. Ethylene-Induced Lateral Expansion in Etiolated Pea Stems 1

    PubMed Central

    Taiz, Lincoln; Rayle, David L.; Eisinger, William

    1983-01-01

    Ethylene-induced inhibition of elongation and promotion of lateral expansion in the stems of etiolated pea (Pisum sativum L. var Alaska) seedlings is not associated with any alteration of auxin-stimulated proton extrusion. Indeed, lateral expansion in response to ethylene apparently requires an acidified wall since it is prevented by strong neutral buffers and by the ATPase inhibitor orthovanadate. Ethylene treatment reduces the capacity of live and frozen-thawed sections to extend in the longitudinal direction in response to acid. The effect of ethylene on lateral acid growth capacity is more complicated. Ethylene-treated internodes do not exhibit acid-induced lateral expansion. Ethylene-treated segments which have been frozen-thawed do show an enhanced capacity to extend in the transverse direction at acid pH, but only when the inner tissues have been removed by coring. We conclude that two of the factors which control the directionality of expansion during ethylene treatment are a decrease in the sensitivity of the walls to acid longitudinally and an increase in the sensitivity of the outer cortical parenchyma walls to acid in the transverse direction. PMID:16663230

  15. Ethylene production by plants in a closed environment

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    Ethylene production by 20-m^2 stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml m^-2 day^-1 during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 nl g^-1 fresh weight h^-1 Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  16. Ethylene Production by Plants in a Closed Environment

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    1996-01-01

    Ethylene production by 20-sq m stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml/sq m/day during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 ml/g fresh weight/h. Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  17. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  18. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  19. Highly selective catalytic process for synthesizing 1-hexene from ethylene

    DOEpatents

    Sen, Ayusman; Murtuza, Shahid; Harkins, Seth B.; Andes, Cecily

    2002-01-01

    Ethylene is trimerized to form 1-hexene, at a selectivity of up to about 99 mole percent, by contacting ethylene, at an ethylene pressure of from about 200-1500 psig and at a reaction temperature of from about 0.degree. C. to about 100.degree. C., with a catalyst comprising a tantalum compound (e.g., TaCl.sub.5) and a alkylating component comprising a metal hydrocarbyl compound or a metal hydrocarbyl halide compound (e.g., Sn(CH.sub.3).sub.4).

  20. The molecular basis of ethylene signalling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Woeste, K.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    The simple gas ethylene profoundly influences plants at nearly every stage of growth and development. In the past ten years, the use of a genetic approach, based on the triple response phenotype, has been a powerful tool for investigating the molecular events that underlie these effects. Several fundamental elements of the pathway have been described: a receptor with homology to bacterial two-component histidine kinases (ETR1), elements of a MAP kinase cascade (CTR1) and a putative transcription factor (EIN3). Taken together, these elements can be assembled into a simple, linear model for ethylene signalling that accounts for most of the well-characterized ethylene mediated responses.

  1. Effect of Ethylene on Flower Abscission: a Survey

    PubMed Central

    VAN DOORN, WOUTER G.

    2002-01-01

    The effect of ethylene on flower abscission was investigated in monocotyledons and eudicotyledons, in about 300 species from 50 families. In all species studied except Cymbidium, flower abscission was highly sensitive to ethylene. Flower fall was not consistent among the species in any family studied. It also showed no relationship with petal senescence or abscission, nor with petal colour changes or flower closure. Results suggest that flower abscission is generally mediated by endogenous ethylene, but that some exceptional ethylene‐insensitive abscission occurs in the Orchidaceae. PMID:12102524

  2. Mutational Analysis of the Ethylene Receptor ETR1. Role of the Histidine Kinase Domain in Dominant Ethylene Insensitivity1

    PubMed Central

    Gamble, Rebekah L.; Qu, Xiang; Schaller, G. Eric

    2002-01-01

    The ethylene receptor family of Arabidopsis consists of five members, one of these being ETR1. The N-terminal half of ETR1 contains a hydrophobic domain responsible for ethylene binding and membrane localization. The C-terminal half of the polypeptide contains domains with homology to histidine (His) kinases and response regulators, signaling motifs originally identified in bacteria. The role of the His kinase domain in ethylene signaling was examined in planta. For this purpose, site-directed mutations were introduced into the full-length wild-type ETR1 gene and into etr1-1, a mutant allele that confers dominant ethylene insensitivity on plants. The mutant forms of the receptor were expressed in Arabidopsis and the transgenic plants characterized for their ethylene responses. A mutation that eliminated His kinase activity did not affect the ability of etr1-1 to confer ethylene insensitivity. A truncated version of etr1-1 that lacks the His kinase domain also conferred ethylene insensitivity. Possible mechanisms by which a truncated version of etr1-1 could exert dominance are discussed. PMID:11950991

  3. Chronic cholecystitis

    MedlinePlus

    ... foods may relieve symptoms in people. However, the benefit of a low-fat diet has not been proven. Alternative Names Cholecystitis - chronic Images Cholecystitis, CT scan Cholecystitis, cholangiogram Cholecystolithiasis Gallstones, cholangiogram Cholecystogram References Wang ...

  4. Chronic Pain

    MedlinePlus

    ... adults. Common chronic pain complaints include headache, low back pain, cancer pain, arthritis pain, neurogenic pain (pain resulting ... Institute of Neurological Disorders and Stroke (NINDS). Low Back Pain Fact Sheet Back Pain information sheet compiled by ...

  5. Chronic Pain

    MedlinePlus

    ... your pain. Medicines used for chronic pain include pain relievers, antidepressants, and anticonvulsants. Different types of medicines help ... If your doctor recommends an over-the-counter pain reliever, read and follow the instructions on the box. ...

  6. Redox-labelled poly(ethylene glycol) used as a diffusion probe in poly(ethylene glycol) melts

    SciTech Connect

    Haas, O.; Velasquez, C.; Porat, Z.

    1995-12-01

    Ferrocene labelled monomethyl poly(ethylene glycol) MPEG with molecular weights of 1900 and 750 was prepared and used as an electrochemical diffusion probe in poly(ethylene glycol) melts. Cyclic voltammetry and chronoamperometry were used in connection with microdisk electrodes to measure the diffusion coefficient of redox tagged molecules using melted poly(ethylene glycol) as a solvent. The molecular weight of the solvent polymer was 750, 2000 and 20000. Results from the temperature dependency of the diffusion process and of the viscosity and conductivity of the polymer electrolyte are presented and discussed.

  7. Ear infection - chronic

    MedlinePlus

    Middle ear infection - chronic; Otitis media - chronic; Chronic otitis media; Chronic ear infection ... Chole RA. Chronic otitis media, mastoiditis, and petrositis. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . 6th ed. ...

  8. Intercalation of ethylene glycol into yttrium hydroxide layered materials.

    PubMed

    Xi, Yuanzhou; Davis, Robert J

    2010-04-19

    Intercalation of ethylene glycol into layered yttrium hydroxide containing nitrate counterions was accomplished by heating the reagents in a methanol solution of sodium methoxide under autogenous pressure at 413 K for 20 h. The resulting crystalline material had an expanded interlayer distance of 10.96 A, confirming the intercalation of an ethylene glycol derived species. Characterization of the material by FT-IR spectroscopy, thermogravimetric analysis, and the catalytic transesterification of tributyrin with methanol was consistent with direct bonding of ethylene glycolate anions (O(2)C(2)H(5)(-)) to the yttrium hydroxide layers, forming Y-O-C bonds. The layers of the material are proposed to be held together by H-bonding between the hydroxyls of grafted ethylene glycol molecules attached to adjacent layers. Glycerol can also be intercalated into yttrium hydroxide layered materials by a similar method. PMID:20302308

  9. Theoretical studies of the reduction of ethylene carbonate

    NASA Astrophysics Data System (ADS)

    Li, Tao; Balbuena, Perla B.

    2000-02-01

    A mechanism for the reduction of ethylene carbonate proposed by D. Aurbach, M.D. Levi, E. Levi and A. Schechter [J. Phys. Chem. B 101 (1997) 2195] is analyzed using quantum ab initio and classical transition state theory methods. The reduction reaction leads to open-chain anion products. The two-electron transfer reduction mechanism forming carbonate and ethylene di-carbonate radical anions is thermodynamically feasible. The first electron transfer is the rate-determining step. Further reaction of the carbonate ion with lithium ion or with another ethylene carbonate molecule yields Li 2CO 3 as the most probable product, with lithium ethylene di-carbonate most likely to be present at high solvent concentrations.

  10. Evaluation of the Carcinogenicity of Ethylene Oxide (External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of ethylene oxide (cancer) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  11. Storage stability of Bacillus subtilis ethylene oxide biological indicators.

    PubMed Central

    Reich, R R

    1980-01-01

    Bacillus subtilis biological indicators, stored at ambient and freezer conditions for 24 months, demonstrated no statistical difference in ethylene oxide resistance and spore viability from initial production levels. PMID:6766701

  12. Enhanced ethylene production via flash methanolysis of coal

    SciTech Connect

    Sundaram, M.S.; Steinberg, M.; Fallon, P.

    1984-01-01

    In an on-going pyrolysis research project at the Brookhaven National Laboratory, the methods to increase the yield of ethylene through flash methanolysis of coal is being investigated. Flash methanolysis is defined as pyrolysis of coal under pressure in an atmosphere of methane. This study attempts to identify the influence of important process variables such as reaction temperature, gas pressure, solids residence time, gas/solids ratio etc. on the production characteristics of ethylene and other pyrolysis products.

  13. Enhanced ethylene production via flash methanolysis of coal

    SciTech Connect

    Sundaram, M.S.; Fallon, P.; Steinberg, M.

    1984-04-01

    In an on-going pyrolysis research project at the Brookhaven National Laboratory, the methods to increase the yield of ethylene through flash methanolysis of coal is being investigated. Flash methanolysis is defined as pyrolysis of coal under pressure in an atmosphere of methane. This study attempts to identify the influence of important process variables such as reaction temperature, gas pressure, solids residence time, gas/solids ratio etc. on the production characteristics of ethylene and other pyrolysis products.

  14. Enhanced ethylene production via flash methanolysis of coal

    SciTech Connect

    Sundaram, M.S.; Steinberg, M.; Fallon, P.

    1983-12-01

    According to a recent report, an estimated 31 billion pounds of ethylene was produced in the US alone. Ethylene is an important raw material in the vast plastic and polymer markets. An upward trend in the demand for ethylene has been predicted for the future years. Currently, ethylene is produced mainly through thermal and catalytic hydrocracking of ethane and other hydrocarbons. Although a large amount of work has been performed on the production of gaseous and liquid fuels from coal, much less attention has been focused on the production of ehtylene using coal as the raw material. In an on-going pyrolysis research project at the Brookhaven National Laboratory, methods for increasing the yield of ethylene through flash methanolysis of coal are being investigated. Flash methanolysis is defined as pyrolysis of coal under pressure in an atmosphere of methane. This study attempts to identify the influence of important process variables such as reaction temperature, gas pressure, solids residence time, gas/solids ratio etc on the production of ethylene and other pyrolysis products. We have shown that there are definite advantages in the use of methane as an atmosphere in the flash pyrolysis of coal. At temperatures higher than 800/sup 0/C, 2 to 5 times greater yields of ethylene are obtainable in methane atmosphere compared to flash pyrolysis in an inert helium atmosphere. An enhancement in the yield of ethylene and BTX are important raw materials in the vast polymer and plastic markets, flash methanolysis of coal has potential process applications. 5 references, 4 figures, 6 tables.

  15. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    PubMed

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  16. Tracing Poly(ethylene-oxide) Crystallization using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Capaldi, Xavier; Amanuel, Samuel

    The early stages of nucleation and crystallization of Poly(ethylene-oxide) have been studied using Atomic Force Microscopy equipped with a heating and cooling stage. Effects of molecular weight and sample preparation techniques were studied using amplitude and frequency modulation. Mapping the viscoelastic behavior at different temperatures and has enabled the development of a relatively new technique for following the evolution of crystallization and melting of a semi-crystalline polymer. Tracing Poly(ethylene-oxide) Crystallization using Atomic Force Microscopy.

  17. Ammonia and ethylene oxide permeation through selected protective clothing.

    PubMed

    Berardinelli, S P; Moyer, E S; Hall, R C

    1990-11-01

    An automated permeation test system was developed to collect permeation data. Three test specimens were evaluated simultaneously versus a challenge gas. The study evaluated chemical protective clothing garment materials for use by emergency response personnel confronted by ammonia or ethylene oxide in the gas phase. A total of 13 encapsulating suit materials and 2 glove materials were tested. Surgical latex material is not recommended for use in handling ammonia or ethylene oxide; other materials offer much greater protection. PMID:2085165

  18. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  19. New sterilization technologies alternative to ethylene oxide

    NASA Astrophysics Data System (ADS)

    Tabrizian, Maryam; Lerouge, Sophie; Debrie, Anne; Yahia, L'Hocine

    1997-06-01

    Sterilization of biomedical devices may induce bulk and surface modification, responsible for the decrease or loss of their biofunctionality. Pure ethylene oxide (EO) at low temperature and new alternative techniques such as cold gas plasma sterilization have been developed for heat-sensitive polymers. There is a lack of the knowledge concerning their safety in terms of materials damage and consequences on the biofunctionality of sterilized devices. The objective of our work consists in studying bulk and surface changes in biomedical devices induced by these two sterilization techniques. Samples from PVC, Polyurethane, Polyacrylate and Polyethylene-based medical devices are subjected to 1, 5, and 10 sterilization cycles by Steri-Vac-3M (pure EO), Sterrad-100$TM, J&J (gas plasma + H2O2), and studied by X-rays photoelectron spectroscopy. Preliminary results show an increasing in Oxygen/Carbon ratio by a factor of 1.3 to 4.4 between the first and tenth cycle indicating the surface oxidation by gas plasma sterilization processes. Some changes in C-C chemical bounding are associated with EO sterilization.

  20. Science and the perceived environmental risk from ethylene glycol and propylene glycol

    SciTech Connect

    Snellings, W.M.; Shah, S.I.; Garska, D.; Williams, J.B.

    1994-12-31

    Ethylene glycol and propylene glycol are widely used in aircraft deicing fluids (ADF), heat transfer fluids, and engine coolants. Discharges of these compounds to the environment have been reduced in recent years, but remain significant. The perceived environmental risk affects the decisions of businesses and regulatory agencies. There is a perception that propylene glycol poses a lower environmental risk than ethylene glycol. This perception is an inference from the use of low concentrations of propylene glycol in food additives -- something safe for food must be safe for fish. Environmental risk, however, must be established on the basis of scientific data, including acute and chronic toxicity to freshwater and saltwater species, oxygen demand, and persistence. A review of aquatic toxicity data for marine and freshwater species, and a review of treatability data in wastewater and soil for these widely used compounds has been completed. The data show that the two compounds, in fact, pose similar environmental risks, and in certain aspects one or the other glycol appears to be preferable. All aspects must be considered to give a valid perception of risk. The role of additives in deicing fluids is significant. Environmental fate and effect data indicate that additives are usually more toxic than the glycols, and environmental data for particular formulations must be evaluated as part of any risk assessment.

  1. The Role of Ethylene in Plant Responses to K(+) Deficiency.

    PubMed

    Schachtman, Daniel P

    2015-01-01

    Potassium is an essential macronutrient that is involved in regulating turgor, in driving plant growth, and in modulating enzyme activation. The changes in root morphology, root function, as well as cellular and molecular responses to low potassium conditions have been studied in the model plant Arabidopsis and in other plant species. In Arabidopsis ethylene plays a key role in roots in the transduction of the low potassium signal, which results in altered root function and growth. The first clues regarding the role of ethylene were detected through transcriptional profiling experiments showing changes in the expression of genes related to ethylene biosynthesis. Later it was shown that ethylene plays a foundational early role in the many responses observed in Arabidopsis. One of the most striking findings is the link between ethylene and reactive oxygen species (ROS) production, which is part of the signal transduction pathway in K(+) deprived plants. This mini-review will summarize what is known about the role ethylene plays in response to low potassium in Arabidopsis and other plant species. PMID:26734048

  2. Involvement of Ethylene in Picloram-induced Leaf Movement Response.

    PubMed

    Morgan, P W; Baur, J R

    1970-11-01

    The relationship of root-applied 4-amino-3,5,6-trichloropicolinic acid (picloram) to ethylene production and the leaf movement response in honey mesquite (Prosopis juliflora [Swartz] DC. var. glandulosa [Torr.] Cockerell) and huisache (Acacia farnesiana [L.] Willd.) was studied in detail. The threshold and saturation levels of exogenous ethylene and root-applied picloram necessary to inhibit leaf movement were determined. Internal levels of ethylene in excess of those necessary to saturate the leaf movement inhibition response occurred in tops of treated plants before and after symptom expression. These internal levels of ethylene, while averages for the entire plant tops, probably occur at the specific site of action and thus account for the action of picloram in inhibition of leaf movement and related responses. Quantitative differences in the leaf movement response of both species to picloram and ethylene were observed. In huisache alone, a very small change in ethylene levels was necessary to produce a major blockage of the leaf movement response, suggesting that the gas may have a natural function in that species. PMID:16657525

  3. Molecular analysis of ethylene-insensitive mutants in arabidopsis

    SciTech Connect

    Meyerowitz, E.

    1991-01-01

    The subject of this study is the biochemical basis of ethylene reception. The Arabidopsis thaliana ETR gene codes for the ethylene receptor or is involved in transduction of the ethylene-generated signal. We have cloned an etr mutation which results in a decrease in the ethylene response of the plant, with a decrease in ethylene binding of about five-fold. Two genes have been found in the cloned region which confer resistance. By sequence analysis, the first protein contains three distinct regions: a transmembrane region, a serine/threonine protein kinase region, and a control region similar to the RAS-binding region of yeast adenylate cyclase. The second protein contains a zinc-finger; since sequence of the first protein shows no mutant-dependent changes, and transition metals have been implicated in ethylene binding, this protein could be the ETR gene product. However, no mutant dependent differences have been found in this protein, either. The mutation could be upstream of the coding region of either gene and involve regulatory elements, so we are continuing to sequence. (MHB)

  4. Evaluating OSHA's ethylene oxide standard: exposure determinants in Massachusetts hospitals.

    PubMed Central

    LaMontagne, A D; Kelsey, K T

    2001-01-01

    OBJECTIVES: This study sought to identify determinants of workplace exposures to ethylene oxide to assess the effect of the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide standard. METHODS: An in-depth survey of all hospitals in Massachusetts that used ethylene oxide from 1990 through 1992 (96% participation, N = 90) was conducted. Three types of exposure events were modeled with logistic regression: exceeding the 8-hour action level, exceeding the 15-minute excursion limit, and worker exposures during unmeasured accidental releases. Covariates were drawn from data representing an ecologic framework including direct and indirect potential exposure determinants. RESULTS: After adjustment for frequencies of ethylene oxide use and exposure monitoring, a significant inverse relation was observed between exceeding the action level and the use of combined sterilizer-aerators, an engineering control technology developed after the passage of the OSHA standard. Conversely, the use of positive-pressure sterilizers that employ ethylene oxide gas mixtures was strongly related to both exceeding the excursion limit and the occurrence of accidental releases. CONCLUSIONS: These findings provide evidence of a positive effect of OSHA's ethylene oxide standard and specific targets for future prevention and control efforts. PMID:11236406

  5. The Role of Ethylene in Plant Responses to K+ Deficiency

    PubMed Central

    Schachtman, Daniel P.

    2015-01-01

    Potassium is an essential macronutrient that is involved in regulating turgor, in driving plant growth, and in modulating enzyme activation. The changes in root morphology, root function, as well as cellular and molecular responses to low potassium conditions have been studied in the model plant Arabidopsis and in other plant species. In Arabidopsis ethylene plays a key role in roots in the transduction of the low potassium signal, which results in altered root function and growth. The first clues regarding the role of ethylene were detected through transcriptional profiling experiments showing changes in the expression of genes related to ethylene biosynthesis. Later it was shown that ethylene plays a foundational early role in the many responses observed in Arabidopsis. One of the most striking findings is the link between ethylene and reactive oxygen species (ROS) production, which is part of the signal transduction pathway in K+ deprived plants. This mini-review will summarize what is known about the role ethylene plays in response to low potassium in Arabidopsis and other plant species. PMID:26734048

  6. Endovascular Treatment of a Superior Mesenteric Artery Aneurysm Secondary to Behcet's Disease with Onyx (Ethylene Vinyl Alcohol Copolymer)

    SciTech Connect

    Gueven, Koray Rozanes, Izzet; Kayabali, Murat; Minareci, Ozenc

    2009-01-15

    Behcet's disease is a complex multisystemic chronic inflammatory disease that is characterized by oral and genital aphtous ulcers and vasculitis. Aneurysms of major arteries are the most important cause of mortality in Behcet's disease. Four patients with superior mesenteric artery (SMA) aneurysms related to Behcet's disease have been reported in the literature. We report here the first successful endovascular treatment of a giant, wide-necked SMA aneurysm secondary to Behcet's disease. We performed a balloon-assisted embolization technique using ethylene vinyl alcohol copolymer (Onyx, ev3, Irvine, CA, USA). There were no signs of recurrence during 2-year follow-up.

  7. Root and shoot gas exchange respond additively to moderate ozone and methyl jasmonate without induction of ethylene: ethylene is induced at higher O3 concentrations

    PubMed Central

    Grantz, D.A.; Vu, H.-B.

    2012-01-01

    The available literature is conflicting on the potential protection of plants against ozone (O3) injury by exogenous jasmonates, including methyl jasmonate (MeJA). Protective antagonistic interactions of O3 and MeJA have been observed in some systems and purely additive effects in others. Here it is shown that chronic exposure to low to moderate O3 concentrations (4–114 ppb; 12 h mean) and to MeJA induced additive reductions in carbon assimilation (A n) and root respiration (R r), and in calculated whole plant carbon balance. Neither this chronic O3 regime nor MeJA induced emission of ethylene (ET) from the youngest fully expanded leaves. ET emission was induced by acute 3 h pulse exposure to much higher O3 concentrations (685 ppb). ET emission was further enhanced in plants treated with MeJA. Responses of growth, allocation, photosynthesis, and respiration to moderate O3 concentrations and to MeJA appear to be independent and additive, and not associated with emission of ET. These results suggest that responses of Pima cotton to environmentally relevant O3 are not mediated by signalling pathways associated with ET and MeJA, though these pathways are inducible in this species and exhibit a synergistic O3×MeJA interaction at very high O3 concentrations. PMID:22563119

  8. Surface Plasmon Resonance Sensor Based on Ethylene Tetra-Fluoro-Ethylene Hollow Fiber.

    PubMed

    Chen, Pan; He, Yu-Jing; Zhu, Xiao-Song; Shi, Yi-Wei

    2015-01-01

    A new kind of hollow fiber surface plasmon resonance sensor (HF-SPRS) based on the silver-coated ethylene tetra-fluoro-ethylene (ETFE) hollow fiber (HF) is presented. The ETFE HF-SPRS is fabricated, and its performance is investigated experimentally by measuring the transmission spectra of the sensor when filled by liquid sensed media with different refractive indices (RIs). Theoretical analysis based on the ray transmission model is also taken to evaluate the sensor. Because the RI of ETFE is much lower than that of fused silica (FSG), the ETFE HF-SPRS can extend the lower limit of the detection range of the early reported FSG HF-SPRS from 1.5 to 1.42 approximately. This could greatly enhance the application potential of HF-SPRS. Moreover, the joint use of both ETFE and FSG HF-SPRSs can cover a wide detection range from 1.42 to 1.69 approximately with high sensitivities larger than 1000 nm/RIU. PMID:26540062

  9. Surface Plasmon Resonance Sensor Based on Ethylene Tetra-Fluoro-Ethylene Hollow Fiber

    PubMed Central

    Chen, Pan; He, Yu-Jing; Zhu, Xiao-Song; Shi, Yi-Wei

    2015-01-01

    A new kind of hollow fiber surface plasmon resonance sensor (HF-SPRS) based on the silver-coated ethylene tetra-fluoro-ethylene (ETFE) hollow fiber (HF) is presented. The ETFE HF-SPRS is fabricated, and its performance is investigated experimentally by measuring the transmission spectra of the sensor when filled by liquid sensed media with different refractive indices (RIs). Theoretical analysis based on the ray transmission model is also taken to evaluate the sensor. Because the RI of ETFE is much lower than that of fused silica (FSG), the ETFE HF-SPRS can extend the lower limit of the detection range of the early reported FSG HF-SPRS from 1.5 to 1.42 approximately. This could greatly enhance the application potential of HF-SPRS. Moreover, the joint use of both ETFE and FSG HF-SPRSs can cover a wide detection range from 1.42 to 1.69 approximately with high sensitivities larger than 1000 nm/RIU. PMID:26540062

  10. Properties of Poly (ethylene terephthalate) / Poly(ethylene terephthalate-co-4,4'bibenzoate) Blends

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Min, Byung-Gil; Schiraldi, David; Collard, David; Hibbs, Michael; Zhou, Chongfu; Ma, Hongming

    2002-03-01

    A blend of poly (ethylene terephthalate) (PET) and a semi-rigid poly(ethylene terephthalate-co-4,4'bibenzoate) (PETBB55), containing 55 mole terephthalate, was melt processed using a twin screw extruder at 285^oC with a resident time of 100 seconds and the PET to PETBB55 blend ratio was 70:30. ^13C NMR spectroscopy showed that little or no transesterification occurred during extrusion due to the short residence time. However, the as-blended sample is optically transparent and exhibited only one Tg. The blend also exhibited only one Tm at 245^oC, which is lower than the Tm for PET (255^oC) as well as that for PETBB55 (259^oC). The Tm further decreased by keeping the polymer for longer time in the melt state, and finally approached a value of 220^oC and at this sate the blend has transesterified to a completely random copolymer as observed by ^13C NMR. The as-blended chip showed much slower crystallization than PET and showed a minimum isothermal crystallization rate at 155^oC when cooled from the melt. The isothermally crystallized sample showed a secondary endothermic peak just above the crystallization temperature but well below Tm. This peaks has been studied using modulated Differential Scanning Calorimetery. The blend has been melt spun into fibers with a modulus higher than that of PET.